上海长宁区2018年中考数学一模和答案解析
2018年上海市长宁区中考数学一模试卷和解析答案
2018年上海市长宁区中考数学一模试卷一、选择题(本大题共6题,每题4分,满分24分)【每小题只有一个正确选项,在答题纸相应题号地选项上用2B铅笔正确填涂】1.(4分)在Rt△ABC中,∠C=90°,∠A=α,AC=3,则AB地长可以表示为()A.B.C.3sinαD.3cosα2.(4分)如图,在△ABC中,点D、E分别在边BA、CA地延长线上,=2,那么下列条件中能判断DE∥BC地是()A.B.C.D.3.(4分)将抛物线y=﹣(x+1)2+3向右平移2个单位后得到地新抛物线地表达式为()A.y=﹣(x+1)2+1 B.y=﹣(x﹣1)2+3 C.y=﹣(x+1)2+5 D.y=﹣(x+3)2+34.(4分)已知在直角坐标平面内,以点P(﹣2,3)为圆心,2为半径地圆P 与x轴地位置关系是()A.相离B.相切C.相交D.相离、相切、相交都有可能5.(4分)已知是单位向量,且=﹣2,=4,那么下列说法错误地是()A.B.||=2 C.||=﹣2|| D.=﹣6.(4分)如图,在四边形ABCD中,对角线AC与BD相交于点O,AC平分∠DAB,且∠DAC=∠DBC,那么下列结论不一定正确地是()A.△AOD∽△BOC B.△AOB∽△DOC C.CD=BC D.BC•CD=AC•OA二、填空题(本大题共12题,每题4分,满分48分)【在答题纸相应题号后地空格内直接填写答案】7.(4分)若线段a、b满足,则地值为.8.(4分)正六边形地中心角等于度.9.(4分)若抛物线y=(a﹣2)x2地开口向上,则a地取值范围是.10.(4分)抛物线y=x2﹣4x+3地顶点坐标为.11.(4分)已知△ABC与△DEF相似,且△ABC与△DEF地相似比为2:3,若△DEF 地面积为36,则△ABC地面积等于.12.(4分)已知线段AB=4,点P是线段AB地黄金分割点,且AP<BP,那么AP 地长为.13.(4分)若某斜面地坡度为1:,则该坡面地坡角为度.14.(4分)已知点A(﹣2,m)、B(2,n)都在抛物线y=x2+2x﹣t上,则m与n地大小关系是m n.(填“>”、“<”或“=”)15.(4分)如图,在Rt△ABC中,∠BAC=90°,点G是重心,联结AG,过点G 作DG∥BC,DG交AB于点D,若AB=6,BC=9,则△ADG地周长等于.16.(4分)已知⊙O1地半径为4,⊙O2地半径为R,若⊙O1与⊙O2相切,且O1O2=10,则R地值为.17.(4分)如果一个四边形地某个顶点到其他三个顶点地距离相等,我们把这个四边形叫做等距四边形,这个顶点叫做这个四边形地等距点.如图,已知梯形ABCD是等距四边形,AB∥CD,点B是等距点.若BC=10,cosA=,则CD地长等于.18.(4分)如图,在边长为2地菱形ABCD中,∠D=60°,点E、F分别在边AB、BC上.将△BEF沿着直线EF翻折,点B恰好与边AD地中点G重合,则BE地长等于.三、解答题(本大题共7题,满分78分)【将下列各题地解答过程,做在答题纸地相应位置上】19.(10分)计算:﹣cos30°.20.(10分)如图,在△ABC中,点D在边AB上,DE∥BC,DF∥AC,DE、DF 分别交边AC、BC于点E、F,且.(1)求地值;(2)联结EF,设=,=,用含、地式子表示.21.(10分)如图,点C在⊙O上,联结CO并延长交弦AB于点D,=,联结AC、OB,若CD=40,AC=20.(1)求弦AB地长;(2)求sin∠ABO地值.22.(10分)如图,一栋居民楼AB地高为16米,远处有一栋商务楼CD,小明在居民楼地楼底A处测得商务楼顶D处地仰角为60°,又在商务楼地楼顶D处测得居民楼地楼顶B处地俯角为45°.其中A、C两点分别位于B、D两点地正下方,且A、C两点在同一水平线上,求商务楼CD地高度.(参考数据:≈1.414,≈1.732.结果精确到0.1米)23.(12分)如图,在△ABC中,点D在边BC上,联结AD,∠ADB=∠CDE,DE 交边AC于点E,DE交BA延长线于点F,且AD2=DE•DF.(1)求证:△BFD∽△CAD;(2)求证:BF•DE=AB•AD.24.(12分)在直角坐标平面内,直线y=x+2分别与x轴、y轴交于点A、C.抛物线y=﹣+bx+c经过点A与点C,且与x轴地另一个交点为点B.点D在该抛物线上,且位于直线AC地上方.(1)求上述抛物线地表达式;(2)联结BC、BD,且BD交AC于点E,如果△ABE地面积与△ABC地面积之比为4:5,求∠DBA地余切值;(3)过点D作DF⊥AC,垂足为点F,联结CD.若△CFD与△AOC相似,求点D地坐标.25.(14分)已知在矩形ABCD中,AB=2,AD=4.P是对角线BD上地一个动点(点P不与点B、D重合),过点P作PF⊥BD,交射线BC于点F.联结AP,画∠FPE=∠BAP,PE交BF于点E.设PD=x,EF=y.(1)当点A、P、F在一条直线上时,求△ABF地面积;(2)如图1,当点F在边BC上时,求y关于x地函数解析式,并写出函数定义域;(3)联结PC,若∠FPC=∠BPE,请直接写出PD地长.2018年上海市长宁区中考数学一模试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)【每小题只有一个正确选项,在答题纸相应题号地选项上用2B铅笔正确填涂】1.(4分)在Rt△ABC中,∠C=90°,∠A=α,AC=3,则AB地长可以表示为()A.B.C.3sinαD.3cosα【解答】解:∵Rt△ABC中,∠C=90°,∠A=α,AC=3,∴coaα=,∴AB==.故选:A.2.(4分)如图,在△ABC中,点D、E分别在边BA、CA地延长线上,=2,那么下列条件中能判断DE∥BC地是()A.B.C.D.【解答】解:∵当=时,DE∥BC,∴选项D正确,故选:D.3.(4分)将抛物线y=﹣(x+1)2+3向右平移2个单位后得到地新抛物线地表达式为()A.y=﹣(x+1)2+1 B.y=﹣(x﹣1)2+3 C.y=﹣(x+1)2+5 D.y=﹣(x+3)2+3【解答】解:∵将抛物线y=﹣(x+1)2+3向右平移2个单位,∴新抛物线地表达式为y=﹣(x+1﹣2)2+3=﹣(x﹣1)2+3,故选:B.4.(4分)已知在直角坐标平面内,以点P(﹣2,3)为圆心,2为半径地圆P 与x轴地位置关系是()A.相离B.相切C.相交D.相离、相切、相交都有可能【解答】解:∵点P地坐标为(﹣2,3),∴点P到x轴地距离是3,∵2<3,∴以点P(﹣2,3)为圆心,2为半径地圆P与x轴地位置关系是相离,故选:A.5.(4分)已知是单位向量,且=﹣2,=4,那么下列说法错误地是()A.B.||=2 C.||=﹣2|| D.=﹣【解答】解:∵=﹣2,=4,∴∥,||=2,=﹣,∴A、B、D正确,故选:C.6.(4分)如图,在四边形ABCD中,对角线AC与BD相交于点O,AC平分∠DAB,且∠DAC=∠DBC,那么下列结论不一定正确地是()A.△AOD∽△BOC B.△AOB∽△DOC C.CD=BC D.BC•CD=AC•OA【解答】解:A、∵∠DAC=∠DBC,∠AOD=∠BOC,∴△AOD∽△BOC,故此选项正确,不合题意;B、∵△AOD∽△BOC,∴=,∴=,又∵∠AOB=∠COD,∴△AOB∽△DOC,故此选项正确,不合题意;C、∵△AOB∽△DOC,∴∠BAO=∠ODC,∵AC平分∠DAB,∴∠DAC=∠BAC,∴∠BAC=∠BDC,∵∠DAC=∠DBC,∴∠CDB=∠CBD,∴CD=BC,故此选项正确,不合题意;D、无法得出BC•CD=AC•OA,故此选项错误,符合题意.故选:D.二、填空题(本大题共12题,每题4分,满分48分)【在答题纸相应题号后地空格内直接填写答案】7.(4分)若线段a、b满足,则地值为.【解答】解:因为,所以,故答案为:;8.(4分)正六边形地中心角等于60度.【解答】解:∵正六边形地六条边都相等,∴正六边形地中心角==60°.故答案为:60.9.(4分)若抛物线y=(a﹣2)x2地开口向上,则a地取值范围是a>2.【解答】解:∵抛物线y=(a﹣2)x2地开口向上,∴a﹣2>0,解得a>2.故答案为:a>2;10.(4分)抛物线y=x2﹣4x+3地顶点坐标为(2,﹣1).【解答】解:∵﹣=﹣=2,==﹣1,∴顶点坐标是(2,﹣1).11.(4分)已知△ABC与△DEF相似,且△ABC与△DEF地相似比为2:3,若△DEF 地面积为36,则△ABC地面积等于16.【解答】解:∵△ABC~△DEF,相似比为2:3,∴△ABC地面积与△DEF地面积比为:4:9,∵△DEF地面积为36∴△ABC地面积为16,故答案为16.12.(4分)已知线段AB=4,点P是线段AB地黄金分割点,且AP<BP,那么AP 地长为6﹣2.【解答】解:由于P为线段AB=4地黄金分割点,且AP<BP,则BP=×4=(2 ﹣2)cm.∴AP=4﹣BP=6﹣2故答案为:(6﹣2)cm.13.(4分)若某斜面地坡度为1:,则该坡面地坡角为30度.【解答】解:∵某斜面地坡度为1:,∴tanα==,∴α=30°.故答案为:30.14.(4分)已知点A(﹣2,m)、B(2,n)都在抛物线y=x2+2x﹣t上,则m与n地大小关系是m<n.(填“>”、“<”或“=”)【解答】解:∵y=x2+2x﹣t=(x+1)2﹣t﹣1,∴a=1>0,有最小值为﹣t﹣1,∴抛物线开口向上,∵抛物线y=x2+2x﹣t对称轴为直线x=﹣1,∵﹣2<0<2,∴m<n.故答案为:<15.(4分)如图,在Rt△ABC中,∠BAC=90°,点G是重心,联结AG,过点G 作DG∥BC,DG交AB于点D,若AB=6,BC=9,则△ADG地周长等于10.【解答】解:延长AG交BC于H.∵G是重心,∴AG:AH=2:3,∵DG∥BH,∴===,∴==,∴AD=4,DG=3,∵∠BAC=90°,AH是斜边中线,∴AH=BC=4.5,∴AG=AH=3,∴△ADG地周长=4+3+3=10.故答案为10;16.(4分)已知⊙O1地半径为4,⊙O2地半径为R,若⊙O1与⊙O2相切,且O1O2=10,则R地值为6或14cm.【解答】解:当⊙O1和⊙O2内切时,⊙O2地半径为10+4=14cm;当⊙O1和⊙O2外切时,⊙O2地半径为10﹣4=6cm;故答案为:6或14cm.17.(4分)如果一个四边形地某个顶点到其他三个顶点地距离相等,我们把这个四边形叫做等距四边形,这个顶点叫做这个四边形地等距点.如图,已知梯形ABCD是等距四边形,AB∥CD,点B是等距点.若BC=10,cosA=,则CD地长等于16.【解答】解:如图作BM⊥AD于M,DE⊥AB于E,BF⊥CD于F.∵AB∥CD,易知四边形BEDF是矩形,∴DE=BF,∵点B是等距点,∴BA=BD=BC=10,在Rt△ABM中,cosA==,∴AM=DM=,BM=3,∵•AD•BM=•AB•DE,∴DE=BF=6,∵BD=BC,BF⊥CD,∴DF=CF==8,∴CD=2DF=16.故故答案为16.18.(4分)如图,在边长为2地菱形ABCD中,∠D=60°,点E、F分别在边AB、BC上.将△BEF沿着直线EF翻折,点B恰好与边AD地中点G重合,则BE地长等于.【解答】解:如图,作GH⊥BA交BA地延长线于H,EF交BG于O.∵四边形ABCD是菱形,∠D=60°,∴△ABC,△ADC度数等边三角形,AB=BC=CD=AD=2,∴∠BAD=120°,∠HAG=60°,'∵AG=GD=1,∴AH=AG=,HG=,在Rt△BHG中,BG==,∵△BEO∽△BGH,∴=,∴=,∴BE=,故答案为.三、解答题(本大题共7题,满分78分)【将下列各题地解答过程,做在答题纸地相应位置上】19.(10分)计算:﹣cos30°.【解答】解:原式=﹣=﹣=2+﹣=2+.20.(10分)如图,在△ABC中,点D在边AB上,DE∥BC,DF∥AC,DE、DF 分别交边AC、BC于点E、F,且.(1)求地值;(2)联结EF,设=,=,用含、地式子表示.【解答】解:(1)∵=,∴=,∵DE∥BC,∴==,又∵DF∥AC,∴==;(2)∵=,∴=,∵=,与方向相反,∴=﹣,同理:=,又∵=+=﹣.21.(10分)如图,点C在⊙O上,联结CO并延长交弦AB于点D,=,联结AC、OB,若CD=40,AC=20.(1)求弦AB地长;(2)求sin∠ABO地值.【解答】解:(1)∵CD过圆心O,=,∴CD⊥AB,AB=2AD=2BD,∵CD=40,AC=20,∠ADC=90°,∴AD==20,∴AB=2AD=40;(2)设圆O地半径为r,则OD=40﹣r,∵BD=AD=20,∠ODB=90°,∴BD2+OD2=OB2,即202+(40﹣r)2=r2,解得,r=25,OD=15,∴sin∠ABO==.22.(10分)如图,一栋居民楼AB地高为16米,远处有一栋商务楼CD,小明在居民楼地楼底A处测得商务楼顶D处地仰角为60°,又在商务楼地楼顶D处测得居民楼地楼顶B处地俯角为45°.其中A、C两点分别位于B、D两点地正下方,且A、C两点在同一水平线上,求商务楼CD地高度.(参考数据:≈1.414,≈1.732.结果精确到0.1米)【解答】解:过点B作BE⊥CD与点E,由题意可知∠DBE=45°,∠DAC=60°,CE=AB=16,设AC=x,则CD=x,BE=AC=x,∵DE=CD﹣CE=x﹣16,∵∠BED=90°,∠DBE=45°,∴BE=DE,∴x=x﹣16,∴x=8+8,CD=x=24+8≈37.9(米),答:商务楼CD地高度为37.9米.23.(12分)如图,在△ABC中,点D在边BC上,联结AD,∠ADB=∠CDE,DE 交边AC于点E,DE交BA延长线于点F,且AD2=DE•DF.(1)求证:△BFD∽△CAD;(2)求证:BF•DE=AB•AD.【解答】证明:(1)∵AD2=DE•DF,∴,∵∠ADF=∠EDA,∴△ADF∽△EDA,∴∠F=∠DAE,又∵∠ADB=∠CDE,∴∠ADB+∠ADF=∠CDE+∠ADF,即∠BDF=∠CDA,∴△BFD∽△CAD;(2)∵△BFD∽△CAD,∴,∵,∴,∵△BFD∽△CAD,∴∠B=∠C,∴AB=AC,∴,∴BF•DE=AB•AD.24.(12分)在直角坐标平面内,直线y=x+2分别与x轴、y轴交于点A、C.抛物线y=﹣+bx+c经过点A与点C,且与x轴地另一个交点为点B.点D在该抛物线上,且位于直线AC地上方.(1)求上述抛物线地表达式;(2)联结BC、BD,且BD交AC于点E,如果△ABE地面积与△ABC地面积之比为4:5,求∠DBA地余切值;(3)过点D作DF⊥AC,垂足为点F,联结CD.若△CFD与△AOC相似,求点D 地坐标.【解答】解:(1)当y=0时,x+2=0,解得x=﹣4,则A(﹣4,0);当x=0时,y=x+2=2,则C(0,2),把A(﹣4,0),C(0,2)代入y=﹣+bx+c得,解得,∴抛物线地解析式为y=﹣﹣x+2;(2)过点E作EH⊥AB于点H,如图1,当y=0时,﹣﹣x+2=0,解得x1=﹣4,x2=1,则B(1,0)设E(x,x+2),∵S=•(1+4)•2=5,△ABC而△ABE地面积与△ABC地面积之比为4:5,=4,∴S△AEB∴•(1+4)•(x+2)=4,解得x=﹣,∴E(﹣,),∴BH=1+=,在Rt△BHE中,cot∠EBH===,即∠DBA地余切值为;(3)∠AOC=∠DFC=90°,若∠DCF=∠ACO时,△DCF∽△ACO,如图2,过点D作DG⊥y轴于点G,过点C作CQ⊥DC交x轴于点Q,∵∠DCQ=∠AOC,∴∠DCF+∠ACQ=90°,即∠ACO+∠ACQ=90°,而∠ACO+∠CAO=90°,∴∠ACQ=∠CAO,∴QA=QC,设Q(m,0),则m+4=,解得m=﹣,∴Q(﹣,0),∵∠QCO+∠DCG=90°,∠QCO+∠CQO=90°,∴∠DCG=∠CQO,∴Rt△DCG∽Rt△CQO,∴=,即===,设DG=4t,CG=3t,则D(﹣4t,3t+2),把D(﹣4t,3t+2)代入y=﹣﹣x+2得﹣8t2+6t+2=3t+2,整理得8t2﹣3t=0,解得t1=0(舍去),t2=,∴D(﹣,);当∠DCF=∠CAO时,△DCF∽△CAO,则CD∥AO,∴点D地纵坐标为2,把y=2代入y=﹣﹣x+2得﹣﹣x+2=2,解得x1=﹣3,x2=0(舍去),∴D(﹣3,2),综上所述,点D地坐标为(﹣,)或(﹣3,2).25.(14分)已知在矩形ABCD中,AB=2,AD=4.P是对角线BD上地一个动点(点P不与点B、D重合),过点P作PF⊥BD,交射线BC于点F.联结AP,画∠FPE=∠BAP,PE交BF于点E.设PD=x,EF=y.(1)当点A、P、F在一条直线上时,求△ABF地面积;(2)如图1,当点F在边BC上时,求y关于x地函数解析式,并写出函数定义域;(3)联结PC,若∠FPC=∠BPE,请直接写出PD地长.【解答】解:(1)如图,∵矩形ABCD,∴∠BAD=∠ABF=90°,∴∠ABD+∠ADB=90°,∵A、P、F在一条直线上,且PF⊥BD,∴∠BPA=90°,∴∠ABD+∠BAF=90°,∴∠ADB=∠BAF,∵tan∠ADB===,∴tan∠BAF==,∴BF=1,∴S=•AB•BF=×2×1=1.△ABF(2)如图1中,∵PF⊥BP,∴∠BPF=90°,∴∠PFB+∠PBF=90°,∵∠ABF=90°,∴∠PBF+∠ABP=90°,∴∠ABP=∠PFB,又∵∠BAP=∠FPE∴△BAP∽△FPE,∴=,∵AD∥BC,∴∠ADB=∠PBF,∴tan∠PBF=tan∠ADB=,即=,∵BP=2﹣x,∴PF=(2﹣x),∴=,∴y=(≤x<2).(3)①当点F在线段BC上时,如图1﹣1中,∵∠FPB=∠BCD=90°,∴∠1+∠2=90°,∠1+∠3=90°,∴∠2=∠3,∵∠4=∠5,∠4+∠7=90°,∠5+∠6=90°,∴∠6=∠7,∴△PEF∽△PCD,∴=,∴=,整理得:x2﹣2x+4=0,解得x=±1.②如图2中,当点F在线段BC地延长线上时,作PH⊥AD于H,连接DF.由△APH∽△DFC,可得=,∴=,解得x=或(舍弃),综上所述,PD地长为±1或.赠送:初中数学几何模型举例【模型四】 几何最值模型: 图形特征:P ABl运用举例:1. △ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为AP 的中点,则MF 的最小值为B2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。
〖汇总3套试卷〗上海市长宁区2018年单科质检数学试题
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.观察下列图形,则第n个图形中三角形的个数是()A.2n+2 B.4n+4 C.4n﹣4 D.4n【答案】D【解析】试题分析:由已知的三个图可得到一般的规律,即第n个图形中三角形的个数是4n,根据一般规律解题即可.解:根据给出的3个图形可以知道:第1个图形中三角形的个数是4,第2个图形中三角形的个数是8,第3个图形中三角形的个数是12,从而得出一般的规律,第n个图形中三角形的个数是4n.故选D.考点:规律型:图形的变化类.2.由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是()A.3 B.4 C.5 D.6【答案】B【解析】分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.解答:解:从主视图看第一列两个正方体,说明俯视图中的左边一列有两个正方体,主视图右边的一列只有一行,说明俯视图中的右边一行只有一列,所以此几何体共有四个正方体.故选B.3.如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E;B、E是半圆弧的三等分点,BD的长为43,则图中阴影部分的面积为()A .4633π-B .8933π-C .33223π-D .8633π- 【答案】D 【解析】连接BD ,BE ,BO ,EO ,先根据B 、E 是半圆弧的三等分点求出圆心角∠BOD 的度数,再利用弧长公式求出半圆的半径R ,再利用圆周角定理求出各边长,通过转化将阴影部分的面积转化为S △ABC ﹣S 扇形BOE ,然后分别求出面积相减即可得出答案. 【详解】解:连接BD ,BE ,BO ,EO ,∵B ,E 是半圆弧的三等分点,∴∠EOA =∠EOB =∠BOD =60°,∴∠BAD =∠EBA =30°,∴BE ∥AD ,∵BD 的长为43π , ∴6041803R ππ= 解得:R =4,∴AB =ADcos30°=3,∴BC =12AB =3 ∴AC 3=6,∴S △ABC =12×BC×AC =12×23=63 ∵△BOE 和△ABE 同底等高,∴△BOE 和△ABE 面积相等,∴图中阴影部分的面积为:S △ABC ﹣S 扇形BOE =2604863633603ππ⨯= 故选:D .【点睛】本题主要考查弧长公式,扇形面积公式,圆周角定理等,掌握圆的相关性质是解题的关键.4.30cos ︒的值是() A .22 B .33 C .12 D .32【答案】D【解析】根据特殊角三角函数值,可得答案.【详解】解:330cos ︒=, 故选:D .【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.5.多项式ax 2﹣4ax ﹣12a 因式分解正确的是( )A .a (x ﹣6)(x+2)B .a (x ﹣3)(x+4)C .a (x 2﹣4x ﹣12)D .a (x+6)(x ﹣2)【答案】A【解析】试题分析:首先提取公因式a ,进而利用十字相乘法分解因式得出即可.解:ax 2﹣4ax ﹣12a=a (x 2﹣4x ﹣12)=a (x ﹣6)(x+2).故答案为a (x ﹣6)(x+2).点评:此题主要考查了提取公因式法以及十字相乘法分解因式,正确利用十字相乘法分解因式是解题关键.6.如图,已知函数3y x =-与k y x =的图象在第二象限交于点()1,A m y ,点()21,B m y -在k y x =的图象上,且点B 在以O 点为圆心,OA 为半径的O 上,则k 的值为( )A .34-B .1-C .32-D .2-【答案】A【解析】由题意(),3A m m -,因为O 与反比例函数k y x=都是关于直线y x =-对称,推出A 与B 关于直线y x =-对称,推出()3,B m m -,可得31m m =-,求出m 即可解决问题;【详解】函数3y x =-与k y x =的图象在第二象限交于点()1,A m y , ∴点(),3A m m -O 与反比例函数k y x=都是关于直线y x =-对称, A ∴与B 关于直线y x =-对称, ()3,B m m ∴-,31m m ∴=-,12m ∴=- ∴点13,22A ⎛⎫- ⎪⎝⎭ 133224k ∴=-⨯=- 故选:A .【点睛】本题考查反比例函数与一次函数的交点问题,反比例函数的图像与性质,圆的对称性及轴对称的性质.解题的关键是灵活运用所学知识解决问题,本题的突破点是发现A ,B 关于直线y x =-对称.7.如图,C ,B 是线段AD 上的两点,若AB CD =,2BC AC =,则AC 与CD 的关系为( )A .2CD AC =B .3CD AC = C .4CD AC = D .不能确定 【答案】B【解析】由AB=CD ,可得AC=BD ,又BC=2AC ,所以BC=2BD ,所以CD=3AC.【详解】∵AB=CD ,∴AC+BC=BC+BD ,即AC=BD ,又∵BC=2AC ,∴BC=2BD ,∴CD=3BD=3AC.故选B .【点睛】本题考查了线段长短的比较,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍转化线段之间的数量关系是十分关键的一点.8.如图,△ABC 的三个顶点分别为A(1,2)、B(4,2)、C(4,4).若反比例函数y =k x在第一象限内的图象与△ABC 有交点,则k 的取值范围是( )A.1≤k≤4B.2≤k≤8C.2≤k≤16D.8≤k≤16【答案】C【解析】试题解析:由于△ABC是直角三角形,所以当反比例函数kyx=经过点A时k最小,进过点C时k最大,据此可得出结论.∵△ABC是直角三角形,∴当反比例函数kyx=经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=1,∴2≤k≤1.故选C.9.某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x元,则下列所列方程正确的是()A.2003503x x=-B.2003503x x=+C.2003503x x=+D.2003503x x=-【答案】B【解析】试题分析:设每个笔记本的价格为x元,根据“用200元购买笔记本的数量与用350元购买笔袋的数量相同”这一等量关系列出方程即可.考点:由实际问题抽象出分式方程10.如图,点C、D是线段AB上的两点,点D是线段AC的中点.若AB=10cm,BC=4cm,则线段DB的长等于()A.2cm B.3cm C.6cm D.7cm【答案】D【解析】先求AC,再根据点D是线段AC的中点,求出CD,再求BD.【详解】因为,AB=10cm,BC=4cm,所以,AC=AB-BC=10-4=6(cm)因为,点D是线段AC的中点,所以,CD=3cm,所以,BD=BC+CD=3+4=7(cm)故选D【点睛】本题考核知识点:线段的中点,和差.解题关键点:利用线段的中点求出线段长度.二、填空题(本题包括8个小题)11.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.【答案】8【解析】证明△AEC ≌△FBA ,根据全等三角形对应边相等可得EC=AB=4,然后再利用三角形面积公式进行求解即可.【详解】∵四边形ACDF 是正方形,∴AC=FA ,∠CAF=90°,∴∠CAE+∠FAB=90°,∵∠CEA=90°,∴∠CAE+∠ACE=90°,∴∠ACE=∠FAB ,又∵∠AEC=∠FBA=90°,∴△AEC ≌△FBA ,∴CE=AB=4,∴S 阴影=1·2AB CE =8, 故答案为8.【点睛】本题考查了正方形的性质、全等三角形的判定与性质,三角形面积等,求出CE=AB 是解题的关键.12.如图,直线l 1∥l 2∥l 3,等边△ABC 的顶点B 、C 分别在直线l 2、l 3上,若边BC 与直线l 3的夹角∠1=25°,则边AB 与直线l 1的夹角∠2=________.【答案】【解析】试题分析:如图:∵△ABC 是等边三角形,∴∠ABC=60°,又∵直线l 1∥l 2∥l 3,∠1=25°,∴∠1=∠3=25°.∴∠4=60°-25°=35°,∴∠2=∠4=35°.考点:1.平行线的性质;2.等边三角形的性质.13.已知654a b c ==,且26a b c +-=,则a 的值为__________. 【答案】1【解析】分析:直接利用已知比例式假设出a ,b ,c 的值,进而利用a+b-2c=6,得出答案.详解:∵654a b c ==, ∴设a=6x ,b=5x ,c=4x ,∵a+b-2c=6,∴6x+5x-8x=6,解得:x=2,故a=1.故答案为1.点睛:此题主要考查了比例的性质,正确表示出各数是解题关键.14.如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若较短的直角边BC =5,将四个直角三角形中较长的直角边分别向外延长一倍,得到图2所示的“数学风车”,若△BCD 的周长是30,则这个风车的外围周长是_____.【答案】71【解析】分析:由题意∠ACB 为直角,利用勾股定理求得外围中一条边,又由AC 延伸一倍,从而求得风车的一个轮子,进一步求得四个.详解:依题意,设“数学风车”中的四个直角三角形的斜边长为x,AC=y,则x2=4y2+52,∵△BCD的周长是30,∴x+2y+5=30则x=13,y=1.∴这个风车的外围周长是:4(x+y)=4×19=71.故答案是:71.点睛:本题考查了勾股定理在实际情况中的应用,注意隐含的已知条件来解答此类题.15.A.如果一个正多边形的一个外角是45°,那么这个正多边形对角线的条数一共有_____条.B.用计算器计算:7•tan63°27′≈_____(精确到0.01).【答案】20 5.1【解析】A、先根据多边形外角和为360°且各外角相等求得边数,再根据多边形对角线条数的计算公式计算可得;B、利用计算器计算可得.【详解】A、根据题意,此正多边形的边数为360°÷45°=8,则这个正多边形对角线的条数一共有8(83)2⨯-=20,故答案为20;B、7•tan63°27′≈2.646×2.001≈5.1,故答案为5.1.【点睛】本题主要考查计算器-三角函数,解题的关键是掌握多边形的内角与外角、对角线计算公式及计算器的使用.16.如图,小量角器的零度线在大量角器的零度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P在小量角器上对应的度数为65°,那么在大量角器上对应的度数为_____度(只需写出0°~90°的角度).【答案】1.【解析】设大量角器的左端点是A,小量角器的圆心是B,连接AP,BP,则∠APB=90°,∠ABP=65°,因而∠PAB=90°﹣65°=25°,在大量角器中弧PB所对的圆心角是1°,因而P在大量角器上对应的度数为1°.故答案为1.17.在平面直角坐标系中,点A(2,3)绕原点O逆时针旋转90°的对应点的坐标为_____.【答案】(﹣3,2)【解析】作出图形,然后写出点A′的坐标即可.【详解】解答:如图,点A′的坐标为(-3,2).故答案为(-3,2).【点睛】本题考查的知识点是坐标与图象变化-旋转,解题关键是注意利用数形结合的思想求解.18.一只蚂蚁从数轴上一点A出发,爬了7 个单位长度到了+1,则点A 所表示的数是_____【答案】﹣6 或8【解析】试题解析:当往右移动时,此时点A 表示的点为﹣6,当往左移动时,此时点A 表示的点为8.三、解答题(本题包括8个小题)19.已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.求证:AP=BQ;在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.【答案】(1)证明见解析;(2)①AQ﹣AP=PQ,②AQ﹣BQ=PQ,③DP﹣AP=PQ,④DP﹣BQ=PQ.【解析】试题分析:(1)利用AAS证明△AQB≌△DPA,可得AP=BQ;(2)根据AQ﹣AP=PQ和全等三角形的对应边相等可写出4对线段.试题解析:(1)在正方形中ABCD中,AD=BA,∠BAD=90°,∴∠BAQ+∠DAP=90°,∵DP⊥AQ,∴∠ADP+∠DAP=90°,∴∠BAQ=∠ADP,∵AQ⊥BE于点Q,DP⊥AQ于点P,∴∠AQB=∠DPA=90°,∴△AQB≌△DPA(AAS),∴AP=BQ.(2)①AQ﹣AP=PQ,②AQ﹣BQ=PQ,③DP﹣AP=PQ,④DP﹣BQ=PQ.考点:(1)正方形;(2)全等三角形的判定与性质.20.列方程解应用题八年级学生去距学校10 km的博物馆参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.km h【答案】15/【解析】试题分析:设骑车学生的速度为xkm/h,利用时间关系列方程解应用题,一定要检验.试题解析:解:设骑车学生的速度为xkm/h,由题意得10101-=,23x x=.解得x15=是原方程的解.经检验x15答: 骑车学生的速度为15km/h.21.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:本次调查中,一共调查了位好友.已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?【答案】(1)30;(2)①补图见解析;②120;③70人.【解析】分析:(1)由B类别人数及其所占百分比可得总人数;(2)①设D类人数为a,则A类人数为5a,根据总人数列方程求得a的值,从而补全图形;②用360°乘以A类别人数所占比例可得;③总人数乘以样本中C、D类别人数和所占比例.详解:(1)本次调查的好友人数为6÷20%=30人,故答案为:30;(2)①设D类人数为a,则A类人数为5a,根据题意,得:a+6+12+5a=30,解得:a=2,即A类人数为10、D类人数为2,补全图形如下:②扇形图中,“A”对应扇形的圆心角为360°×1030=120°,故答案为:120;③估计大约6月1日这天行走的步数超过10000步的好友人数为150×12230+=70人.点睛:此题主要考查了条形统计图、扇形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.解方程311(1)(2)xx x x-=--+.【答案】原分式方程无解.【解析】根据解分式方程的方法可以解答本方程,去分母将分式方程化为整式方程,解整式方程,验证. 【详解】方程两边乘(x﹣1)(x+2),得x(x+2)﹣(x﹣1)(x+2)=3即:x2+2x﹣x2﹣x+2=3整理,得x=1检验:当x=1时,(x﹣1)(x+2)=0,∴原方程无解.【点睛】本题考查解分式方程,解题的关键是明确解放式方程的计算方法.23.小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800米/分的速度匀速从乙地到甲地,两人距离乙地的路程y (米)与小张出发后的时间x (分)之间的函数图象如图所示.求小张骑自行车的速度;求小张停留后再出发时y 与x 之间的函数表达式;求小张与小李相遇时x 的值.【答案】(1)300米/分;(2)y=﹣300x+3000;(3)7811分. 【解析】(1)由图象看出所需时间.再根据路程÷时间=速度算出小张骑自行车的速度.(2)根据由小张的速度可知:B (10,0),设出一次函数解析式,用待定系数法求解即可.(3)求出CD 的解析式,列出方程,求解即可.【详解】解:(1)由题意得:240012003004-=(米/分), 答:小张骑自行车的速度是300米/分;(2)由小张的速度可知:B (10,0),设直线AB 的解析式为:y=kx+b ,把A (6,1200)和B (10,0)代入得:10061200,k b k b +=⎧⎨+=⎩ 解得:3003000,k b =-⎧⎨=⎩∴小张停留后再出发时y 与x 之间的函数表达式;3003000y x =-+;(3)小李骑摩托车所用的时间:24003,800= ∵C (6,0),D (9,2400),同理得:CD 的解析式为:y=800x ﹣4800,则80048003003000x x -=-+, 7811x = 答:小张与小李相遇时x 的值是7811分.【点睛】考查一次函数的应用,考查学生观察图象的能力,熟练掌握待定系数法求一次函数解析式是解题的关键.24.“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为度;请补全条形统计图;若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.【答案】(1) 60,90;(2)见解析;(3) 300人【解析】(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;(2)由(1)可求得了解的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案.【详解】解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:15×360°=90°;60故答案为60,90;(2)60﹣15﹣30﹣10=5;补全条形统计图得:(3)根据题意得:900×15560+=300(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.【点睛】本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的相关知识点.25.为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?【答案】(1)本次试点投放的A型车60辆、B型车40辆;(2)3辆;2辆【解析】分析:(1)设本次试点投放的A型车x辆、B型车y辆,根据“两种款型的单车共100辆,总价值36800元”列方程组求解可得;(2)由(1)知A、B型车辆的数量比为3:2,据此设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据“投资总价值不低于184万元”列出关于a的不等式,解之求得a的范围,进一步求解可得.详解:(1)设本次试点投放的A型车x辆、B型车y辆,根据题意,得:100 40032036800x yx y+=⎧⎨+=⎩,解得:6040 xy=⎧⎨=⎩,答:本次试点投放的A型车60辆、B型车40辆;(2)由(1)知A、B型车辆的数量比为3:2,设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据题意,得:3a×400+2a×320≥1840000,解得:a≥1000,即整个城区全面铺开时投放的A型车至少3000辆、B型车至少2000辆,则城区10万人口平均每100人至少享有A型车3000×100100000=3辆、至少享有B型车2000×100100000=2辆.点睛:本题主要考查二元一次方程组和一元一次不等式的应用,解题的关键是理解题意找到题目蕴含的相等(或不等)关系,并据此列出方程组.26.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?【答案】10,1.【解析】试题分析:可以设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得出方程求出边长的值.试题解析:设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得化简,得,解得:当时,(舍去),当时,,答:所围矩形猪舍的长为10m、宽为1m.考点:一元二次方程的应用题.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1,0.21,2π ,18,0.20202中,无理数的个数为( ) A .1B .2C .3D .4 【答案】C0.21,2π ,18,0.20202中,2π,共三个. 故选C .2.点A (m ﹣4,1﹣2m )在第四象限,则m 的取值范围是 ( )A .m >12B .m >4C .m <4D .12<m <4 【答案】B 【解析】根据第四象限内点的横坐标是正数,纵坐标是负数列出不等式组,然后求解即可.【详解】解:∵点A (m-1,1-2m )在第四象限,∴40120m m -⎧⎨-⎩>①,<②解不等式①得,m >1,解不等式②得,m >12所以,不等式组的解集是m >1,即m 的取值范围是m >1.故选B .【点睛】本题考查各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 3.下列各式中,互为相反数的是( )A .2(3)-和23-B .2(3)-和23C .3(2)-和32-D .3|2|-和32- 【答案】A【解析】根据乘方的法则进行计算,然后根据只有符号不同的两个数互为相反数,可得答案.【详解】解:A. 2(3)-=9,23-=-9,故2(3)-和23-互为相反数,故正确; B. 2(3)-=9,23=9,故2(3)-和23不是互为相反数,故错误;C. 3(2)-=-8,32-=-8,故3(2)-和32-不是互为相反数,故错误;D. 3|2|-=8,32-=8故3|2|-和32-不是互为相反数,故错误.故选A.【点睛】本题考查了有理数的乘方和相反数的定义,关键是掌握有理数乘方的运算法则.4.某种品牌手机经过二、三月份再次降价,每部售价由1000元降到810元,则平均每月降价的百分率为( )A .20%B .11%C .10%D .9.5% 【答案】C【解析】设二,三月份平均每月降价的百分率为x ,则二月份为1000(1)x -,三月份为21000(1)x -,然后再依据第三个月售价为1,列出方程求解即可.【详解】解:设二,三月份平均每月降价的百分率为x .根据题意,得21000(1)x -=1.解得10.1x =,2 1.9x =-(不合题意,舍去).答:二,三月份平均每月降价的百分率为10%【点睛】本题主要考查一元二次方程的应用,关于降价百分比的问题:若原数是a ,每次降价的百分率为a ,则第一次降价后为a (1-x );第二次降价后后为a (1-x )2,即:原数x (1-降价的百分率)2=后两次数. 5.如图,△ABC 在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置.如果△ABC 的面积为10,且sinA =5,那么点C 的位置可以在( )A .点C 1处B .点C 2处 C .点C 3处D .点C 4处【答案】D【解析】如图:∵AB=5,10ABC S =△, ∴D 4C =4, ∵5sin 5A =, ∴545DC AC AC ==,∴AC=45, ∵在RT △AD 4C 中,D 44C =,AD=8, ∴A 4C =228445+=,故答案为D.6.如图,在矩形ABCD 中,P 、R 分别是BC 和DC 上的点,E 、F 分别是AP 和RP 的中点,当点P 在BC 上从点B 向点C 移动,而点R 不动时,下列结论正确的是( )A .线段EF 的长逐渐增长B .线段EF 的长逐渐减小C .线段EF 的长始终不变D .线段EF 的长与点P 的位置有关【答案】C 【解析】试题分析:连接AR ,根据勾股定理得出AR=22AD DR +的长不变,根据三角形的中位线定理得出EF=12AR ,即可得出线段EF 的长始终不变, 故选C .考点:1、矩形性质,2、勾股定理,3、三角形的中位线7.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( ) A . B . C . D .【答案】B【解析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A 、C 、D 都不是中心对称图形,只有B 是中心对称图形. 故选B.8.如图,二次函数y=ax 2+bx+c (a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab <0,②b 2>4a ,③0<a+b+c <2,④0<b <1,⑤当x >﹣1时,y >0,其中正确结论的个数是A.5个B.4个C.3个D.2个【答案】B【解析】解:∵二次函数y=ax3+bx+c(a≠3)过点(3,3)和(﹣3,3),∴c=3,a﹣b+c=3.①∵抛物线的对称轴在y轴右侧,∴b=-,x>3.x2a∴a与b异号.∴ab<3,正确.②∵抛物线与x轴有两个不同的交点,∴b3﹣4ac>3.∵c=3,∴b3﹣4a>3,即b3>4a.正确.④∵抛物线开口向下,∴a<3.∵ab<3,∴b>3.∵a﹣b+c=3,c=3,∴a=b﹣3.∴b﹣3<3,即b<3.∴3<b<3,正确.③∵a﹣b+c=3,∴a+c=b.∴a+b+c=3b>3.∵b<3,c=3,a<3,∴a+b+c=a+b+3<a+3+3=a+3<3+3=3.∴3<a+b+c<3,正确.⑤抛物线y=ax3+bx+c与x轴的一个交点为(﹣3,3),设另一个交点为(x3,3),则x3>3,由图可知,当﹣3<x<x3时,y>3;当x>x3时,y<3.∴当x>﹣3时,y>3的结论错误.综上所述,正确的结论有①②③④.故选B.9.如图所示的两个四边形相似,则α的度数是()A.60°B.75°C.87°D.120°【答案】C【解析】根据相似多边形性质:对应角相等.【详解】由已知可得:α的度数是:360〫-60〫-75〫-138〫=87〫故选C【点睛】本题考核知识点:相似多边形.解题关键点:理解相似多边形性质.10.如图,在平面直角坐标系中,点A在第一象限,点P在x轴上,若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有()A.2个B.3个C.4个D.5个【答案】C【解析】分为三种情况:①AP=OP,②AP=OA,③OA=OP,分别画出即可.【详解】如图,分OP=AP(1点),OA=AP(1点),OA=OP(2点)三种情况讨论.∴以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有4个.故选C.【点睛】本题考查了等腰三角形的判定和坐标与图形的性质,主要考查学生的动手操作能力和理解能力,注意不要漏解.二、填空题(本题包括8个小题)11.如图,在平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(2,4),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在反比例函数y=kx的图象上,则k的值为_____.【答案】1【解析】根据题意和旋转的性质,可以得到点C 的坐标,把点C 坐标代入反比例函数y=k x 中,即可求出k 的值.【详解】∵OB 在x 轴上,∠ABO=90°,点A 的坐标为(2,4),∴OB=2,AB=4∵将△AOB 绕点A 逆时针旋转90°,∴AD=4,CD=2,且AD//x 轴∴点C 的坐标为(6,2),∵点O 的对应点C 恰好落在反比例函数y=k x的图象上, ∴k=2612⨯=,故答案为1.【点睛】本题考查反比例函数图象上点的坐标特征、坐标与图形的变化-旋转,解答本题的关键是明确题意,利用数形结合的思想解答.12.2018年5月13日,中国首艘国产航空母舰首次执行海上试航任务,其排水量超过6万吨,将数60000用科学记数法表示应为_______________.【答案】4610⨯【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】60000小数点向左移动4位得到6,所以60000用科学记数法表示为:6×1,故答案为:6×1.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.13.如图,点O (0,0),B(0,1)是正方形OBB 1C 的两个顶点,以对角线OB 1为一边作正方形OB 1B 2C 1,再以正方形OB 1B 2C 1的对角线OB 2为一边作正方形OB 2B 3C 2,……,依次下去.则点B 6的坐标____________.【答案】(-1,0)【解析】根据已知条件由图中可以得到B1所在的正方形的对角线长为2,B2所在的正方形的对角线长为(2)2,B3所在的正方形的对角线长为(2)3;B4所在的正方形的对角线长为(2)4;B5所在的正方形的对角线长为(2)5;可推出B6所在的正方形的对角线长为(2)6=1.又因为B6在x轴负半轴,所以B6(-1,0).解:如图所示∵正方形OBB1C,∴OB12,B1所在的象限为第一象限;∴OB2=2)2,B2在x轴正半轴;∴OB3=2)3,B3所在的象限为第四象限;∴OB4=2)4,B4在y轴负半轴;∴OB5=2)5,B5所在的象限为第三象限;∴OB6=2)6=1,B6在x轴负半轴.∴B6(-1,0).故答案为(-1,0).14.分解因式:ax2﹣2ax+a=___________.【答案】a(x-1)1.【解析】先提取公因式a,再对余下的多项式利用完全平方公式继续分解.【详解】解:ax 1-1ax+a ,=a (x 1-1x+1),=a (x-1)1.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.计算:21m m ++112m m ++=______. 【答案】1.【解析】利用同分母分式加法法则进行计算,分母不变,分子相加.【详解】解:原式=12112121m m m m m +++==++. 【点睛】本题考查同分母分式的加法,掌握法则正确计算是本题的解题关键.16.分解因式:a 3-a=【答案】(1)(1)a a a -+【解析】a 3-a=a(a 2-1)=(1)(1)a a a -+17.已知甲、乙两组数据的折线图如图,设甲、乙两组数据的方差分别为S 甲2、S 乙2,则S 甲2__S 乙2(填“>”、“=”、“<”)【答案】>【解析】要比较甲、乙方差的大小,就需要求出甲、乙的方差;首先根据折线统计图结合根据平均数的计算公式求出这两组数据的平均数;接下来根据方差的公式求出甲、乙两个样本的方差,然后比较即可解答题目.【详解】甲组的平均数为:3626463+++++=4, S 甲2=16×[(3-4)2+(6-4)2+(2-4)2+(6-4)2+(4-4)2+(3-4)2]=73,。
最新届长宁区中考数学一模及答案
2017-2018学年第一学期初三数学教学质量检测试卷(考试时间:100分钟 满分:150分)2018.01一、选择题(本大题共6题, 每题4分, 满分24分)【每小题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】 1.在Rt ∆ABC 中,∠C =90°,α=∠A ,AC =3,则AB 的长可以表示为( ▲ ) (A )αcos 3; (B ) αsin 3; (C ) αsin 3; (D ) αcos 3. 2.如图,在∆ABC 中,点D 、E 分别在边BA 、CA 的延长线上,2=ADAB,那么下列条件中能判断DE ∥BC 的是( ▲ ) (A )21=EC AE ; (B ) 2=AC EC; (C )21=BC DE ; (D )2=AEAC. 3. 将抛物线3)1(2++-=x y 向右平移2个单位后得到的新抛物线的表达式为( ▲ )(A ) 1)1(2++-=x y ; (B ) 3)1(2+--=x y ;(C ) 5)1(2++-=x y ; (D )3)3(2++-=x y .4. 已知在直角坐标平面内,以点P (-2,3)为圆心,2为半径的圆P 与x 轴的位置关系是( ▲ ) (A ) 相离; (B ) 相切; (C ) 相交; (D ) 相离、相切、相交都有可能. 5. 已知是单位向量,且2-=,4=,那么下列说法错误..的是( ▲ ) (A )//; (B ) 2||=a ;(C ) ||2||a b -=; (D )21-=. 6. 如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,AC平分∠DAB ,且∠DAC =∠DBC ,那么下列结论不一定正确.....的是( ▲ ) (A )AOD ∆∽BOC ∆; (B )AOB ∆∽DOC ∆; (C )CD =BC ; (D )OA AC CD BC ⋅=⋅.二、填空题(本大题共12题, 每题4分, 满分48分) 【在答题纸相应题号后的空格内直接填写答案】 7.若线段a 、b 满足21=b a ,则bba +的值为 ▲ . 8.正六边形的中心角等于 ▲ 度.9.若抛物线2)2(x a y -=的开口向上,则a 的取值范围是 ▲ .10.抛物线342+-=x x y 的顶点坐标是 ▲ .11.已知∆ABC 与∆DEF 相似,且∆ABC 与∆DEF 的相似比为2:3,若∆DEF 的面积为36,则∆ABC 的面积等于 ▲ .12.已知线段AB=4,点P 是线段AB 的黄金分割点,且AP<BP ,那么AP 的长为 ▲ . 13.若某斜面的坡度为3:1,则该坡面的坡角为 ▲ 度.14.已知点A (-2,m )、B (2,n )都在抛物线t x x y -+=22上,则m 与n 的大小关系是m ▲ n .(填“>”、“<”或“=”) 15.如图,在Rt ∆ABC 中,∠BAC =90°,点G 是重心, 联结AG ,过点G 作DG//BC ,DG 交AB 于点D , 若AB=6,BC=9,则∆ADG 的周长等于 ▲ .16.已知⊙1O 的半径为4,⊙2O 的半径为R ,若⊙1O 与⊙2O 相切,且1021=O O ,则R 的值为 ▲ .17.如果一个四边形的某个顶点到其他三个顶点的距离相等,我们把这个四边形叫做等距四边形,这个顶点叫做这个 四边形的等距点.如图,已知梯形ABCD 是等距四边形,AB//CD ,点B 是等距点. 若BC =10,1010cos =A , 则CD 的长等于 ▲ .18.如图,在边长为2的菱形ABCD 中,︒=∠60D ,点E 、F 分别在边AB 、BC 上. 将∆BEF 沿着直线EF 翻折, 点B 恰好与边AD 的中点G 重合,则BE 的长等于 ▲ .三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】 19.(本题满分10分)计算:︒--︒︒30cos 60tan 45sin 445cot 02.20.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,在∆ABC 中,点D 在边AB 上,DE //BC ,DF //AC ,DE 、DF 分别交边AC 、BC 于点E 、F ,且23=EC AE .(1)求BCBF的值; (2)联结EF ,设=,=,用含、的式子表示EF .21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,点C 在⊙O 上,联结CO 并延长交弦AB 于点D ,AC BC =,联结AC 、OB ,若CD =40,520=AC . (1)求弦AB 的长; (2)求ABO ∠sin 的值. 22.(本题满分10分)如图,一栋居民楼AB 的高为16米,远处有一栋商务楼CD , 小明在居民楼的楼底A 处测得商务楼顶D 处的仰角为60°,又在商 务楼的楼顶D 处测得居民楼的楼顶B 处的俯角为45°.其中A 、C 两点分别位于B 、D 两点的正下方,且A 、C 两点在同一水平线上, 求商务楼CD 的高度.(参考数据:414.12≈,732.13≈.结果精确到0.1米)23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,在∆ABC 中,点D 在边BC 上,联结AD ,∠ADB=∠CDE , DE 交边AC 于点E ,DE 交BA 延长线于点F ,且DF DE AD ⋅=2. (1)求证:BFD ∆∽CAD ∆; (2)求证:AD AB DE BF ⋅=⋅.24.(本题满分12分,每小题4分)在直角坐标平面内,直线221+=x y 分别与x 轴、y 轴交于点A 、C . 抛物线c bx x y ++-=221经过点A 与点C ,且与x 轴的另一个交点为点B . 点D 在该抛物线上,且位于直线AC 的上方. (1)求上述抛物线的表达式;(2)联结BC 、BD ,且BD 交AC 于点E ,如果∆ABE 的面积与∆ABC 的面积之比为4:5,求∠DBA 的余切值;(3)过点D 作DF ⊥AC ,垂足为点F ,联结CD . 若∆CFD 与∆AOC 相似,求点D 的坐标.25.(本题满分14分,第(1)小题3分,第(2)小题6分,第(3)小题5分)已知在矩形ABCD 中,AB =2,AD =4. P 是对角线BD 上的一个动点(点P 不与点B 、D 重合),过点P 作PF ⊥BD ,交射线BC 于点F . 联结AP ,画∠FPE =∠BAP ,PE 交BF 于点E . 设PD=x ,EF =y .(1)当点A 、P 、F 在一条直线上时,求∆ABF 的面积;(2)如图1,当点F 在边BC 上时,求y 关于x 的函数解析式,并写出函数定义域;(3)联结PC,若∠FPC=∠BPE,请直接写出PD的长.长宁区2017-2018学年第一学期初三数学参考答案和评分建议2018.1一、选择题:(本大题共6题,每题4分,满分24分)1.A;2.D;3.B;4.A;5.C;6.D.二.填空题:(本大题共12题,满分48分)7.23; 8.060; 9.a >2;10.)1,2(-; 11.16; 12.526-; 13.030; 14.<; 15.10;16.6或14; 17.16; 18.57. 三、(本大题共7题,第19、20、21、22题每题10分,第23、24题每题12分,第25题14分,满分78分)19. (本题满分10分)解:原式=233)22(412--⨯ (4分) =23321-- (2分) =2332-+ (2分) =232+(2分) 20.(本题满分10分,第(1)小题5分,第(2)小题5分) 解:(1)∵23=EC AE ∴52=AC EC (1分) ∵DE//BC ∴52==AC EC AB BD (2分) 又∵DF//A ∴52==AB BD BC BF (2分) (2)∵52=BC BF ∴53=BC FC ∵=,与方向相反 ∴a CF 53-= (2分)同理:b EC 52=(2分) 又∵→+=CF EC EF ∴→-=a b EF 5352 (1分)21.(本题满分10分,第(1)小题5分,第(2)小题5分) 解:(1)∵CD 过圆心O , AC BC =∴C D ⊥AB ,AB=2AD=2BD (2分) ∵CD =40,520=AC 又∵∠ADC=090∴2022=-=CD AC AD (2分)∴AB=2AD=40 (1分) (2)设圆O 的半径为r ,则OD =40-r (1分) ∵BD =AD =20, ∠ODB=090 ∴222OB OD BD =+∴222)40(20r r =-+ (1分) ∴r =25,OD =15 (2分) ∴532515sin ===∠OB OD ABO (1分) 22.(本题满分10分)解:过点B 作BE ⊥CD 与点E ,由题意可知∠DBE=045,∠DAC=060,CE=AB=16 (2分)设AC=x ,则x CD 3=,BE=AC=x (1分) ∵163-=-=x CE CD DE (1分)∵0045,90=∠=∠DBE BED ∴BE=DE ∴163-=x x (2分)∴1316-=x (1分)∴)13(8+=x (1分)∴9.3738243≈+==x CD (1分)答: 商务楼CD 的高度为37.9米。
【数学】上海市16区2018届中考一模数学试卷分类汇编平面向量含答案
【关键字】数学上海市16区2018届九年级上学期期末(一模)数学试卷分类汇编平面向量专题宝山区20.(本题满分10分,每小题各5分)如图,AB∥CD∥EF,而且线段AB、CD、EF的长度分别为5、3、2.(1)求AC:CE的值;(2)如果记作,记作,求(用、表示).长宁区20.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,在ABC中,点D在边AB上,DE//BC,DF//AC,DE、DF分别交边AC、BC于点E、F,且.(1)求的值;(2)联结EF,设,,用含、的式子表示.崇明区20.(本题满分10分,每小题各5分)如图,在中,BE平分交AC于点E,过点E作交AB于点D,已知,.(1)求BC的长度;(2)如果,,那么请用、表示向量.奉贤区20.(本题满分10分,第(1)小题满分6分,第(2)小题满分4分)已知:如图,在平行四边形ABCD中,AD=2,点E是边BC的中点,AE、BD想交于点F,过点F作FG∥BC,交边DC于点G.(1)求FG的长;(2)设,,用的线性组合表示.虹口区如图,在△ABC中,点E在边AB上,点G是△ABC的重心,联结AG并延长交BC于点D.(1)若,,用向量表示向量;(2)若∠B=∠ACE,AB=6,,BC=9,求EG的长.黄浦区嘉定区金山区如图,已知平行四边形ABCD,点M、N分别是边DC、BC的中点,设,,求向量关于、的分解式.静安区闵行区浦东新区20.(本题满分10分,每小题5分)如图,已知△ABC 中,点D 、E 分别在边AB 和AC 上,DE ∥BC ,且DE 经过△ABC 的重心,设.(1) ▲ (用向量表示);(2)设,在图中求作.(不要求写作法,但要指出所作图中表示结论的向量.)普陀区22.(本题满分10分)下面是一位同学做的一道作图题:已知线段、、(如图),求作线段,使.他的作法如下:1.以点为端点画射线,.2.在上依次截取,.3.在上截取.4.联结,过点作∥,交于点.所以:线段____________就是所求的线段.(1)试将结论补完整:线段 ▲ 就是所求的线段x .(2)这位同学作图的依据是 ▲ ;(3)如果4OA =,5AB =,AC m =,试用向量m 表示向量DB .松江区20.(本题满分10分,每小题各5分)如图,已知△ABC 中,D 、E 、F 分别是边AB 、BC 、CA 上的点,且EF //AB ,2CF AD FA DB==. (1)设AB a =,AC b =.试用、表示AE(2)如果△ABC 的面积是9,求四边形ADEF 的面积. 徐汇区19.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图,在△ABC 中,∠ACD =∠B ,AD =4,DB =5.(1)求AC 的长(2)若设,CA a CB b ==,试用、的线性组合表示向量CD . 杨浦区20.(本题满分10分,第(1)、(2)小题各5分)已知:如图,Rt △ABC 中,∠ACB =90°,sin B =3,点D 、E 分别在边AB 、BC (第20题图) C E F BA D上,且AD ∶DB =2∶3,DE ⊥BC .(1)求∠DCE 的正切值;(2)如果设AB a =,CD b =,试用a 、b 表示AC .参考答案 宝山区长宁区20.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)∵23=EC AE ∴52=AC EC (1分) ∵DE //BC ∴52==AC EC AB BD (2分) 又∵DF //AC ∴52==AB BD BC BF (2分) (2)∵52=BC BF ∴53=BC FC ∵=,CF 与BC 方向相反 ∴53-= (2分) 同理:b EC 52= (2分) 又∵→+=CF EC EF ∴→-=a b EF 5352 (1分) 崇明区20、(1)∵BE 平分ABC ∠ ∴ABE CBE =∠∠∵ED BC ∥ ∴DEB CBE =∠∠∴ABE DEB =∠∠ ………………………………………………………2分∴4BD DE ==∵ED BC ∥ ∴DE AD BC AB= ……………………………………1分 又∵5AD =,4BD = ∴9AB =∴459BC = ∴365BC = ………………………………………2分 (2)∵ED BC ∥ ∴5=9DE AD BC AB = ∴95BC DE = …………………………………………………………1分 又∵ED 与CB 同向 ∴95CB ED = ………………………………1分 (第20题图)∵AD a =,AE b = ∴ED a b =- ……………………………1分∴9955CB a b =- …………………………………………………………2分 奉贤区虹口区黄浦区金山区静安区闵行区20.(本题共2小题,第(1)小题4分,第(2)小题6分,满分10分)如图,已知向量a 、b 和p ,求作:(1)向量132a b -+. (2)向量p 分别在a 、b 方向上的分向量.20.解:(1)作图.…………………………………………………………………………(3分)结论. …………………………………………………………………………(1分)(2)作图.…………………………………………………………………………(4分)结论. …………………………………………………………………………(2分)浦东新区20.解:(1)=23a .……………………………(5分) (2)图正确得4分,结论:AF 就是所要求作的向量. …(1分).普陀区22.解: (1)CD ; ·························································································································· (2分) (2)平行线分线段成比例定理(两条直线被三条平行的直线所截,截得的对应线段成比例);或:三角形一边的平行线性质定理(平行于三角形一边的直线截其他两边所在的直线,截得的对应线段成比例). ··············································································································································· (2分)(3)∵BD ∥AC ,∴AC OA BD OB=. ················································································ (1分) ∵4OA =,5AB =,∴49AC BD =. ········································································· (2分) 得94BD AC =. ········································································································· (1分) (第20题图)(第20题图)B∵94BD AC =,AC m =,DB 与AC 反向, ∴94DB m =-. ·········································································································· (2分) 青浦区松江区20.解:(1)∵EF //AB∴CF CE FA EB= 又CF AD FA DB= ∴CE AD EB DB=…………………………………………(1分) ∴DE ∥AC , ………………………………………(1分)∴四边形ADEF 是平行四边形………………………(1分)AE AF AD =+ ……………………………………(1分)∵2CF AD FA DB ==,AB a =,AC b = ∴13AF b =, 23AD a = 2133AE a b =+………………………………………(1分) (2)∵EF //AB ,2CF FA = ∴9:4:=∆∆ABC CEF S S ………………………………(1分)∵△ABC 的面积是9,∴4=∆CEF S ……………………………………………(1分)由(1)得DE ∥AC ,且2AD DB= ∴9:1:=∆∆ABC BDE S S ………………………………(1分)∴1=∆BDE S …………………………………………(1分)∴四边形ADEF 的面积=9-4-1=4……………………(1分)徐汇区19.(1)在△ABC 中,∠ACD =∠B ,∠A =∠A ,∴ ACDABC ∆. ……………………………………………………(2分) ∴AD AC AC AB=,即2AC AD AB = ∴249AC =⨯, 6.AC = ……………………………………………(2分)(2) 49CD CA AD a AB =+=+ ……………………………………………(2分) 4()9a AC CB =++4()9a ab =+-+ ………………………………(2分) 5499a b =+ ………………………………………………………(2分) 杨浦区20.(本题满分10分,第(1)、(2)小题各5分)解:(1)∵∠ACB =90°,sin B =35,∴35AC AB =. -------------------------(1分) ∴设AC =3a ,AB =5a . 则BC =4a .∵AD :DB =2:3,∴AD =2a ,DB =3a .∵∠ACB =90°即AC ⊥BC ,又DE ⊥BC ,∴AC//DE. ∴DE BD AC AB =, CE AD CB AB=. ∴335DE a a a =, 245CE a a a =. ∴95DE a =,85CE a =.----------(2分) ∵DE ⊥BC ,∴9tan 8DE DCE CE ∠==.-----------------------------(2分) (2)∵AD :DB =2:3,∴AD :AB =2:5. ------------------------------------------------(1分) ∵AB a =,CD b =,∴25AD a =. DC b =-.--------------------(2分) ∵AC AD DC =+,∴25AC a b =-.-----------------------------------(2分)此文档是由网络收集并进行重新排版整理.word 可编辑版本!。
2018届长宁区中考数学一模及答案
2017-2018学年第一学期初三数学教学质量检测试卷(考试时间:100分钟 满分:150分)2018.01一、选择题(本大题共6题, 每题4分, 满分24分)【每小题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】 1.在Rt ∆ABC 中,∠C =90°,α=∠A ,AC =3,则AB 的长可以表示为( ▲ )(A )αcos 3; (B ) αsin 3; (C ) αsin 3; (D ) αcos 3. 2.如图,在∆ABC 中,点D 、E 分别在边BA 、CA 的延长线上,2=ADAB,那么下列条件中能判断DE ∥BC 的是( ▲ ) (A )21=EC AE ; (B ) 2=AC EC; (C )21=BC DE ; (D )2=AEAC. 3. 将抛物线3)1(2++-=x y 向右平移2个单位后得到的新抛物线的表达式为( ▲ ) (A ) 1)1(2++-=x y ; (B ) 3)1(2+--=x y ; (C ) 5)1(2++-=x y ; (D )3)3(2++-=x y .4. 已知在直角坐标平面内,以点P (-2,3)为圆心,2为半径的圆P 与x 轴的位置关系是( ▲ ) (A ) 相离; (B ) 相切; (C ) 相交; (D ) 相离、相切、相交都有可能. 5. 已知是单位向量,且2-=,4=,那么下列说法错误..的是( ▲ ) (A )b a //; (B ) 2||=a ;(C ) ||2||a b -=; (D )21-=. 6. 如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,AC平分∠DAB ,且∠DAC =∠DBC ,那么下列结论不一定正确.....的是( ▲ ) (A )AOD ∆∽BOC ∆; (B )AOB ∆∽DOC ∆; (C )CD =BC ; (D )OA AC CD BC ⋅=⋅.二、填空题(本大题共12题, 每题4分, 满分48分) 【在答题纸相应题号后的空格内直接填写答案】 7.若线段a 、b 满足21=b a ,则bb a +的值为 ▲ . 8.正六边形的中心角等于 ▲ 度.第2题图AB CDE 第6题图O ABCD9.若抛物线2)2(x a y -=的开口向上,则a 的取值范围是 ▲ . 10.抛物线342+-=x x y 的顶点坐标是 ▲ .11.已知∆ABC 与∆DEF 相似,且∆ABC 与∆DEF 的相似比为2:3,若∆DEF 的面积为36,则∆ABC 的面积等于 ▲ .12.已知线段AB=4,点P 是线段AB 的黄金分割点,且AP<BP ,那么AP 的长为 ▲ . 13.若某斜面的坡度为3:1,则该坡面的坡角为 ▲ 度.14.已知点A (-2,m )、B (2,n )都在抛物线t x x y -+=22上,则m 与n 的大小关系是m ▲ n .(填“>”、“<”或“=”) 15.如图,在Rt ∆ABC 中,∠BAC =90°,点G 是重心, 联结AG ,过点G 作DG//BC ,DG 交AB 于点D , 若AB=6,BC=9,则∆ADG 的周长等于 ▲ .16.已知⊙1O 的半径为4,⊙2O 的半径为R ,若⊙1O 与⊙2O 相切,且1021=O O ,则R 的值为 ▲ .17.如果一个四边形的某个顶点到其他三个顶点的距离相等,我们把这个四边形叫做等距四边形,这个顶点叫做这个 四边形的等距点.如图,已知梯形ABCD 是等距四边形,AB//CD ,点B 是等距点. 若BC =10,1010cos =A , 则CD 的长等于 ▲ .18.如图,在边长为2的菱形ABCD 中,︒=∠60D ,点E 、F 分别在边AB 、BC 上. 将∆BEF 沿着直线EF 翻折, 点B 恰好与边AD 的中点G 重合,则BE 的长等于 ▲ .三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】 19.(本题满分10分)计算:︒--︒︒30cos 60tan 45sin 445cot 02.第18题图A B CDBCDA 第17题图第15题图D AG20.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,在∆ABC 中,点D 在边AB 上,DE //BC ,DF //AC ,DE 、DF 分别交边AC 、BC于点E 、F ,且23=EC AE . (1)求BCBF的值;(2)联结EF ,设=,=,用含、的式子表示.21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,点C 在⊙O 上,联结CO 并延长交弦AB 于点D ,AC BC =, 联结AC 、OB ,若CD =40,520=AC . (1)求弦AB 的长; (2)求ABO ∠sin 的值. 22.(本题满分10分)如图,一栋居民楼AB 的高为16米,远处有一栋商务楼CD , 小明在居民楼的楼底A 处测得商务楼顶D 处的仰角为60°,又在商 务楼的楼顶D 处测得居民楼的楼顶B 处的俯角为45°.其中A 、C 两点分别位于B 、D 两点的正下方,且A 、C 两点在同一水平线上, 求商务楼CD 的高度.(参考数据:414.12≈,732.13≈.结果精确到0.1米)23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,在∆ABC 中,点D 在边BC 上,联结AD ,∠ADB=∠CDE , DE 交边AC 于点E ,DE 交BA 延长线于点F ,且DF DE AD ⋅=2. (1)求证:BFD ∆∽CAD ∆; (2)求证:AD AB DEBF ⋅=⋅. 24.(本题满分12分,每小题4分)在直角坐标平面内,直线221+=x y 分别与x 轴、y 轴交于点A 、C . 抛物线c bx x y ++-=221经过点A 与点C,且与x 轴的另一个交点为点B . 点D 在该抛物线上,且位于直线AC 的上方. (1)求上述抛物线的表达式;(2)联结BC 、BD ,且BD 交AC 于点E ,如果∆ABE 的面积与∆ABC 的面积之比为4:5,求∠DBA 的余切值;F EDABC第23题图第20题图FAD E 第21题图(3)过点D 作DF ⊥AC ,垂足为点F ,联结CD . 若∆CFD 与∆AOC 相似,求点D 的坐标.25.(本题满分14分,第(1)小题3分,第(2)小题6分,第(3)小题5分)已知在矩形ABCD 中,AB =2,AD =4. P 是对角线BD 上的一个动点(点P 不与点B 、D 重合),过点P 作PF ⊥BD ,交射线BC 于点F . 联结AP ,画∠FPE =∠BAP ,PE 交BF 于点E . 设PD=x ,EF =y .(1)当点A 、P 、F 在一条直线上时,求∆ABF 的面积;(2)如图1,当点F 在边BC 上时,求y 关于x 的函数解析式,并写出函数定义域; (3)联结PC ,若∠FPC =∠BPE ,请直接写出PD 的长.备用图第24题图备用图 备用图图1DCBA DCBA F EP D CB A 第25题图长宁区2017-2018学年第一学期初三数学参考答案和评分建议2018.1一、选择题:(本大题共6题,每题4分,满分24分) 1.A ; 2.D ; 3.B ; 4.A ; 5.C ; 6.D . 二.填空题:(本大题共12题,满分48分)7.23; 8.060; 9.a >2;10.)1,2(-; 11.16; 12.526-; 13.030; 14.<; 15.10;16.6或14; 17.16; 18.57.三、(本大题共7题,第19、20、21、22题每题10分,第23、24题每题12分,第25题14分,满分78分) 19. (本题满分10分)解:原式=233)22(412--⨯ (4分) =23321-- (2分) =2332-+ (2分) =232+(2分) 20.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)∵23=EC AE ∴52=AC EC (1分) ∵DE//BC ∴52==AC EC AB BD (2分) 又∵DF//A ∴52==AB BD BC BF (2分) (2)∵52=BC BF ∴53=BC FC ∵=,CF 与BC 方向相反 ∴a CF 53-= (2分)同理:b EC 52= (2分)又∵→+=CF ∴→-=a b EF 5352 (1分)21.(本题满分10分,第(1)小题5分,第(2)小题5分) 解:(1)∵CD 过圆心O , AC BC =∴C D ⊥AB ,AB=2AD=2BD (2分)∵CD =40,520=AC 又∵∠ADC=090 ∴2022=-=CD AC AD (2分)∴AB=2AD=40 (1分) (2)设圆O 的半径为r ,则OD =40-r (1分) ∵BD =AD =20, ∠ODB=090 ∴222OB OD BD =+∴222)40(20r r =-+ (1分) ∴r =25,OD =15 (2分) ∴532515sin ===∠OB OD ABO (1分) 22.(本题满分10分)解:过点B 作BE ⊥CD 与点E ,由题意可知∠DBE=045,∠DAC=060,CE=AB=16 (2分)设AC=x ,则x CD 3=,BE=AC=x (1分) ∵163-=-=x CE CD DE (1分) ∵045,90=∠=∠DBE BED ∴BE=DE ∴163-=x x (2分) ∴1316-=x (1分) ∴)13(8+=x (1分) ∴9.3738243≈+==x CD (1分)答: 商务楼CD 的高度为37.9米。
2017-2018上海市长宁区中考一模数学试卷(含答案)2018.01 (1)
2017学年第一学期初三数学教学质量检测试卷(考试时间:100分钟 满分:150分)2018.01考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本调研卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题, 每题4分, 满分24分)【每小题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】 1.在Rt ∆ABC 中,∠C =90°,α=∠A ,AC =3,则AB 的长可以表示为( ▲ )(A )αcos 3; (B ) αsin 3; (C ) αsin 3; (D ) αcos 3. 2.如图,在∆ABC 中,点D 、E 分别在边BA 、CA 的延长线上,2=ADAB,那么下列条件中能判断DE ∥BC 的是( ▲ ) (A )21=EC AE ; (B ) 2=AC EC; (C )21=BC DE ; (D )2=AEAC. 3. 将抛物线3)1(2++-=x y 向右平移2个单位后得到的新抛物线的表达式为( ▲ ) (A ) 1)1(2++-=x y ; (B ) 3)1(2+--=x y ; (C ) 5)1(2++-=x y ; (D )3)3(2++-=x y .4. 已知在直角坐标平面内,以点P (-2,3)为圆心,2为半径的圆P 与x 轴的位置关系是( ▲ ) (A ) 相离; (B ) 相切; (C ) 相交; (D ) 相离、相切、相交都有可能. 5. 已知e 是单位向量,且e a 2-=,e b 4=,那么下列说法错误..的是( ▲ ) (A )b a //; (B ) 2||=a ;(C ) ||2||a b -=; (D )21-=. 6. 如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,AC平分∠DAB ,且∠DAC =∠DBC ,那么下列结论不一定正确.....的是( ▲ ) (A )AOD ∆∽BOC ∆; (B )AOB ∆∽DOC ∆; (C )CD =BC ; (D )OA AC CD BC ⋅=⋅.第2题图AB CDE 第6题图O ABCD二、填空题(本大题共12题, 每题4分, 满分48分) 【在答题纸相应题号后的空格内直接填写答案】 7.若线段a 、b 满足21=b a ,则bb a +的值为 ▲ . 8.正六边形的中心角等于 ▲ 度.9.若抛物线2)2(x a y -=的开口向上,则a 的取值范围是 ▲ . 10.抛物线342+-=x x y 的顶点坐标是 ▲ .11.已知∆ABC 与∆DEF 相似,且∆ABC 与∆DEF 的相似比为2:3,若∆DEF 的面积为36,则∆ABC 的面积等于 ▲ .12.已知线段AB=4,点P 是线段AB 的黄金分割点,且AP<BP ,那么AP 的长为 ▲ . 13.若某斜面的坡度为3:1,则该坡面的坡角为 ▲ 度.14.已知点A (-2,m )、B (2,n )都在抛物线t x x y -+=22上,则m 与n 的大小关系是m ▲ n .(填“>”、“<”或“=”)15.如图,在Rt ∆ABC 中,∠BAC =90°,点G 是重心, 联结AG ,过点G 作DG//BC ,DG 交AB 于点D , 若AB=6,BC=9,则∆ADG 的周长等于 ▲ .16.已知⊙1O 的半径为4,⊙2O 的半径为R ,若⊙1O 与⊙2O 相切,且1021=O O ,则R 的值为 ▲ .17.如果一个四边形的某个顶点到其他三个顶点的距离相等,我们把这个四边形叫做等距四边形,这个顶点叫做这个 四边形的等距点.如图,已知梯形ABCD 是等距四边形,AB//CD ,点B 是等距点. 若BC =10,1010cos =A , 则CD 的长等于 ▲ .18.如图,在边长为2的菱形ABCD 中,︒=∠60D ,点E 、F 分别在边AB 、BC 上. 将∆BEF 沿着直线EF 翻折, 点B 恰好与边AD 的中点G 重合,则BE 的长等于 ▲ .第18题图A B CDBCDA 第17题图第15题图D AG三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】 19.(本题满分10分)计算:︒--︒︒30cos 60tan 45sin 445cot 02.20.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,在∆ABC 中,点D 在边AB 上,DE //BC ,DF //AC ,DE 、DF 分别交边AC 、BC于点E 、F ,且23=EC AE . (1)求BCBF的值; (2)联结EF ,设=,=,用含、的式子表示.21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,点C 在⊙O 上,联结CO 并延长交弦AB 于点D , AC BC=, 联结AC 、OB ,若CD =40,520=AC . (1)求弦AB 的长; (2)求ABO ∠sin 的值. 22.(本题满分10分)如图,一栋居民楼AB 的高为16米,远处有一栋商务楼CD , 小明在居民楼的楼底A 处测得商务楼顶D 处的仰角为60°,又在商 务楼的楼顶D 处测得居民楼的楼顶B 处的俯角为45°.其中A 、C 两点分别位于B 、D 两点的正下方,且A 、C 两点在同一水平线上, 求商务楼CD 的高度.(参考数据:414.12≈,732.13≈.结果精确到0.1米)23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,在∆ABC 中,点D 在边BC 上,联结AD ,∠ADB=∠CDE , DE 交边AC 于点E ,DE 交BA 延长线于点F ,且DF DE AD ⋅=2. (1)求证:BFD ∆∽CAD ∆; (2)求证:AD AB DEBF ⋅=⋅.F EA第23题图第20题图AD E 第21题图24.(本题满分12分,每小题4分)在直角坐标平面内,直线221+=x y 分别与x 轴、y 轴交于点A 、C . 抛物线c bx x y ++-=221经过点A 与点C ,且与x 轴的另一个交点为点B . 点D 在该抛物线上,且位于直线AC 的上方. (1)求上述抛物线的表达式;(2)联结BC 、BD ,且BD 交AC 于点E ,如果∆ABE 的面积与∆ABC 的面积之比为4:5,求∠DBA 的余切值;(3)过点D 作DF ⊥AC ,垂足为点F ,联结CD . 若∆CFD 与∆AOC 相似,求点D 的坐标.25.(本题满分14分,第(1)小题3分,第(2)小题6分,第(3)小题5分)已知在矩形ABCD 中,AB =2,AD =4. P 是对角线BD 上的一个动点(点P 不与点B 、D 重合),过点P 作PF ⊥BD ,交射线BC 于点F . 联结AP ,画∠FPE =∠BAP ,PE 交BF 于点E . 设PD=x ,EF =y .(1)当点A 、P 、F 在一条直线上时,求∆ABF 的面积;(2)如图1,当点F 在边BC 上时,求y 关于x 的函数解析式,并写出函数定义域; (3)联结PC ,若∠FPC =∠BPE ,请直接写出PD 的长.备用图第24题图备用图 备用图图1DCBA DCBAF EP D CB A 第25题图长宁区2017学年第一学期初三数学参考答案和评分建议2018.1一、选择题:(本大题共6题,每题4分,满分24分) 1.A ; 2.D ; 3.B ; 4.A ; 5.C ; 6.D . 二.填空题:(本大题共12题,满分48分)7.23; 8.060; 9.a >2;10.)1,2(-; 11.16; 12.526-; 13.030; 14.<; 15.10;16.6或14; 17.16; 18.57.三、(本大题共7题,第19、20、21、22题每题10分,第23、24题每题12分,第25题14分,满分78分) 19. (本题满分10分)解:原式=233)22(412--⨯ (4分) =23321-- (2分) =2332-+ (2分) =232+(2分) 20.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)∵23=EC AE ∴52=AC EC (1分) ∵DE//BC ∴52==AC EC AB BD (2分) 又∵DF//A ∴52==AB BD BC BF (2分) (2)∵52=BC BF ∴53=BC FC ∵=,CF 与BC 方向相反 ∴a CF 53-= (2分)同理:52= (2分)又∵→+=CF ∴→-=a b EF 5352 (1分)21.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)∵CD 过圆心O , AC BC= ∴C D ⊥AB ,AB=2AD=2BD (2分)∵CD =40,520=AC 又∵∠ADC=090 ∴2022=-=CD AC AD (2分)∴AB=2AD=40 (1分) (2)设圆O 的半径为r ,则OD =40-r (1分) ∵BD =AD =20, ∠ODB=090 ∴222OB OD BD =+∴222)40(20r r =-+ (1分) ∴r =25,OD =15 (2分) ∴532515sin ===∠OB OD ABO (1分) 22.(本题满分10分)解:过点B 作BE ⊥CD 与点E ,由题意可知∠DBE=045,∠DAC=060,CE=AB=16 (2分)设AC=x ,则x CD 3=,BE=AC=x (1分) ∵163-=-=x CE CD DE (1分) ∵0045,90=∠=∠DBE BED ∴BE=DE ∴163-=x x (2分) ∴1316-=x (1分) ∴)13(8+=x (1分) ∴9.3738243≈+==x CD (1分)答: 商务楼CD 的高度为37.9米。
上海市长宁区2018年中考数学一模和答案解析
'.学年第一学期初三数学教学质量检测试卷2017-20182018.01分)(考试时间:100分钟满分:150分)一、选择题(本大题共6题, 每题4分, 满分24 【每小题只有一个正确选项, 在答题纸相应题号的选项上用2B铅笔正确填涂】?3A???ABCACABC的长可以表示为(,则▲,1.在Rt =中,∠)=90°,33??cos3sin3 A)(D).;(B);(C)(;??sincos?CAEBAABCD 2.如图,在分别在边的延长线上,中,点、、ED AB2?BCDE),那么下列条件中能判断▲∥的是(A ADEC1AE2??(A);(B);ACEC2BC AC1DE2?? D)C).;((第2题图AEBC223?(x?1)y??▲2个单位后得到的新抛物线的表达式为()3.将抛物线向右平移223?))y??(x?1?1y??(x?1(A);(B);223)x?3?y1x?)?5??(y??((D.)(C );PP)▲(-2,3)为圆心,2为半径的圆与轴的位置关系是(4.已知在直角坐标平面内,以点x相离、相切、相交都有可能.相交;(D)C (A)相离;(B)相切;()e4b?e?2ae?是单位向量,且▲)已知,那么下列说法错误的是(,5...1b//a||b|??2|a?|a|2b?a?)()D);((AC).;;(B B2A AC ACBDOABCD,与相交于点.如图,在四边形中,对角线6O DBCDABDAC)∠,那么下列结论不一定正确的是(平分∠▲,且∠=.....DOC?AOD?BOCAOB??∽∽;A)(B);(DCOA?BC?CDAC?BCCD.C())=;(D 6题图第每题二、填空题(本大题共12题, 4分, 分)满分48 【在答题纸相应题号后的空格内直接填写答案】a1a?b?b、a,则满足7.若线段的值为▲.b2b8.正六边形的中心角等于▲度.;.'.2ax?2)y?(a 9.若抛物线的开口向上,则的取值范围是▲.23x?y?x?4的顶点坐标是▲.10.抛物线?????DEFABCDEFABCDEF的相似比为11.已知2:3与与,的面积为相似,且36,若?ABC 的面积等于▲.则APAP<BPAB=PAB,那么4,点的黄金分割点,且是线段12.已知线段的长为▲.31:,则该坡面的坡角为▲度..若某斜面的坡度为132ty?x?2x?nAmBnm与).已知点都在抛物线(-2,、)上,则(2,的大小关系14nm”)“<”或“是=▲.(填“>”、?GABCBAC中,∠是重心,15.如图,在Rt=90°,点A DABGDG//BCDGAG作于点,,联结交,过点?ADGAB=BC= 6,的周长等于▲.9,则若DG BC OOOO R的半径为与⊙,⊙,若⊙16.已知⊙相切,的半径为4题图第15221110OO?R的值为▲.,则且21BA 17.如果一个四边形的某个顶点到其他三个顶点的距离相等,我们把这个四边形叫做等距四边形,这个顶点叫做这个ABCD如图,已知梯形是等距四边形,四边形的等距点.CD10?cosA BCAB//CDB,. 若=10,点,是等距点 17题图第10CD则的长等于▲.AD?D??60ABCD中,的菱形.如图,在边长为2,18?EFBCE、FABBEF点翻折,沿着直线分别在边、将上. CB BEGBAD的长等于▲.的中点点恰好与边重合,则题图第18三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】19.(本题满分10分)cot45??cos30?.计算:2060tan??45sin4;.'.20.(本题满分10分,第(1)小题5分,第(2)小题5分)?BC ABCDABDEBCDFACDE、AC、DF分别交边中,点//在边,上,如图,在,//A3AE?FE、于点,且.2ECBF 1)求的值;(DE BC EF baBC?AC?ba EF.、2)联结,用含的式子表示,设,(BCF 20题图第分)2)小题5521.(本题满分10分,第(1)小题分,第(DAB BCAC?DCOCOAB,上,联结于点并延长交弦如图,点,在⊙O5?20AC CDOBAC,若,=40联结.、AB的长;(1)求弦C ABO?sin)求的值.(2 21题图第.(本题满分10分)22DCDAB如图,一栋居民楼,的高为16米,远处有一栋商务楼°60DA小明在居民楼的楼底处的仰角为处测得商务楼顶,又在商°45CA、DB.其中务楼的楼顶处的俯角为处测得居民楼的楼顶CB、DA、两点的正下方,且两点分别位于两点在同一水平线上,BCD求商务楼的高度.4141.2?7331.?米.,结果精确到) (0.1参考数据CA题22)小题6分))小题23.(本题满分12分,第(16分,第(F?∠ADB=∠CDEADABCDBC,上,联结中,点,在边如图,E2DFDE??AD FBAEDEDEAC交,且交边延长线于点于点.,CAD?BFD?(1)求证:;BD ADBF?DE??AB()求证:.2题图第23分)分,每小题24.(本题满分1241122x??bx?y??y?xc xCyA轴、分别与在直角坐标平面内,直线轴交于点、抛物线.22BDCxACA的上方.轴的另一个交点为点在该抛物线上,且位于直线. 经过点与点点,且与(1)求上述抛物线的表达式;??ABCABEEBDBC、BDAC的面积之比为4:5)联结(2,,且交于点,如果的面积与DBA的余切值;求∠;.'.??DFDDFACCDAOCCFD作的坐标.⊥,垂足为点相似,求点3)过点,联结与. 若(第24题图备用图)小题5分)2)小题6分,第(3325.(本题满分14分,第(1)小题分,第(DBADABCDABPBDP,中,=2,、=4. 不与点是对角线重合)已知在矩形上的一个动点(点EPEBAPBFFPPFBDBCAPFPE. 交,画∠于点⊥,交射线=∠于点. 联结,过点作yEFPD=x =设., ABFFAP在一条直线上时,求(1)当点、的面积;、xBCyF上时,求在边关于的函数解析式,并写出函数定义域;2 ()如图1,当点PDPCFPCBPE)联结(3,请直接写出,若∠=∠的长.DADA DA PBFEC B备用图1备用图图25题图第;.'.答案和评分建议学长宁区2017-2018学年第一学期初三数参考2018.1(本大题共6题,每题4分,满分24分)一、选择题:D.;6.B1.A;2.D;3.;4.A;5.C 分)12题,满分48(本大题共二.填空题:30a1656?260),?1(2>.;.2;10.11.12;8;.7;;9.27016630?..;17.;16;15.10;.18或13.1414;.5分,、1920、21、22题每题10分,第23、24题每题12分,第2514题三、(本大题共7题,第分)满分7831?) 解:原式分(4=19. (本题满分10分)2223?4?()231? (2 =分) 232?3?32?=) (2分23?2) = (2分2分))小题20.(本题满分10分,第(1)小题5分,第(252ECAE3??)∵∴(1分)1(解:52ACEC2BDEC??(2∵DE//BC∴分)5ABAC2BFBD??又∵DF//A分)(2∴5ABBC3BF2FC??)∵(2∴5BC5BC3BCCF aBC?aCF??与方向相反(,2∴分)∵52b?EC 2同理:分)(523??EF?b?aCFEF??EC(1∴分)又∵5521.(本题满分10分,第(1)小题5分,第(2)小题5分)AC?BC过圆心O,1解:()∵CD DABAB=AD=BD(2C∴⊥,22分);.'.0520AC?90ADC=CD,∵又∵∠=402220AD?AC??CD 2∴分)(AD=AB=∴12分)40(rODrO =40-分)()设圆的半径为1,则(22202OB?90?BDOD ODB=ADBD∴= ∵=20, ∠222r?(40?r)?20分)(∴1ODr =25,分)=15 (∴2315OD???sin?ABO∴分)(1525OB分)(本题满分1022.045∠DBE=BECDE,B⊥,作与点由题意可知解:过点060CE=AB=,∠DAC=分)(216x?3CD BE=AC=xAC=x则1,分)设(,??CEDE?CD3x?16∵分)(10016??3xx45?DBE??BED?90,BE=DE分)(∴2∵∴16?x(1∴分)1?3)18(3?x?(∴1分)937.?83?CD?3x?241∴分)(CD分)(1答:商务楼米。
2018年上海市初三数学一模试卷18题汇总解析
2018年上海市初三一模数学考试18题解析2018.01一. 普陀区18. 如图,ABC 中,5AB ,6AC ,将ABC 翻折,使得点A 落到边BC 上的点A 处,折痕分别交边AB 、AC 于点E 、点F ,如果A F ∥AB ,那么BE【解析】设BE x ,由题意可知:5A E AE xA F ∥AB 13 又∵12 ∴23 A E ∥AC ∴AE BE AC AB 即565x x 解得2511x 即2511BE 二. 奉贤区18. 已知ABC ,AB AC ,8BC ,点D 、E 分别在边BC 、AB 上,将ABC 沿着直线DE 翻折,点B 落在边AC 上的点M 处,且4AC AM ,设BD m ,那么ACB 的正切值是 (用含m 的代数式表示)【解析】作MN BC 于N ,AH BC 于H ,MD BD mAB AC ,8BC ,AH BC 4BH CHMN BC ,AH BC MN ∥AH CN CM CH AC3CN ∴835DN BC BD CN m m在Rt MND 中,222MN DN MD 3MN∴tan 9MN ACB CN三. 杨浦区18. 如图,在ABC 中,AB AC ,将ABC 绕点A 旋转,当点B 与点C 重合时,点C 落 在点D 处,如果2sin 3B ,6BC ,那么BC 的中点M 和CD 的中点N 的距离是【解析】12 ,M 为BC 的中点,N 为CD 的中点 1MAN ,AM AN 又∵AB AC ∴AB AM AC AN ,1MAN AMN ∽ABC AM MN AB BC ∵2sin 3AM B AB,6BC ∴4MN 四. 黄浦区18. 如图,平面上七个点A 、B 、C 、D 、E 、F 、G ,图中所有的连线长均相等,则cos BAF【解析】联结AC 、AD 、BF ,作CH AD 于H∵ABG 、BCG 、AEF 、DEF 为等边三角形 120ABC AED 又∵AB BC AE DE ∴ABC ≌AED AC AD四边形ABCG 和四边形AEDF 为菱形 12 BAF CAD又AB AF ,AC AD ∴ABF ∽ACD设2AB 那么AC ADCH CH,解得3AH ,5cos 6AH BAF AC解法二:根据上面分析,问题可以简化为,已知边长比为2CD ,∴AC AD ,取CD 中点K ,∴1CK KD ,易得△ADK ∽△CDH ,∴3KD HD HD AD CD,即3AH 5cos 6AH CAH AC .五. 松江区18. 如图,在ABC 中,90C ,4AC BC ,将ABC 翻折,使得点A 落在边BC 的中点A 处,折痕分别交边AB 、AC 于点D 、点E ,那么:AD AE 的值为【解析】作AF AB 于F在Rt ECA 中,222CE A C A E 即222()AC A E A C A E∵4AC ,2A C ∴52A E 即52AEAF AB ,2A B ,45B A F BF在Rt A DF 中,222A F DF A D 即222()A F AB BF A D A D∵AB ,A F BF∴3A D AD ∴5::323AD AE 六. 徐汇区18. 在ABC 中,90C ,3AC ,4BC (如图),将ACB 绕点A 顺时针方向旋转得ADE (点C 、B 的对应点分别为点D 、E ),点D 恰好落在直线BE 上,直线BE 与直线AC 交于点F ,则线段AF 的长为【解析】如图所示,点D 恰好落在直线BE 上AD BE ,AB AE 4BD DE在Rt BCF ,222BC CF BF 即BFADF ∽BCF AD AFBC BF ,即34 ,解得757AF七. 闵行区18. 如图,在等腰ABC 中,AB AC ,30B ,以点B 为旋转中心,旋转30°,点A 、 C 分别落在点A 、C 处,直线AC 、A C 交于点D ,那么AD AC的值为【解析】设2AB AC ,那么BC(1)顺时针旋转,如图1,303060C BA ,30C AB C D在Rt BC E 中,30C ,BC BC BE 2AE60BAD ABC AD ∥BC 1sin 42AE ADE AD AD∴ 422AD AC (2)逆时针旋转,如图2,303060CBA ,30C A B CD在Rt BCE 中,30C ,BC BE 2A E 1AE60BA D A BC tan 33A E A DE DE DE∴ 2AD ,1AD AC综上所述:AD AC 的值为21 八. 虹口区18. 在Rt ABC 中,90C ,6AC ,8BC (如图),点D 是边AB 上一点,把ABC 绕着点D 旋转90°,得到A B C ,边B C 与边AB 相交于点E ,如果AD BE ,那么AD 长为【解析】当点D 位于图1位置时,边B C 与边AB 不相交当点D 位于图2位置时,设AD x ,BE x ,10B D BD x ,① 当ABC 是顺时针旋转时,AD BE AB DE 210DE xB DE ∽BC A DE BD A C B C 即2101068x x 解得7011x ② 当ABC 是逆时针旋转时,AD BE DE AB 102DE xB DE ∽BC ADE B D A C B C 即1021068x x 解得2x , 当2x 时,即图1的情况,不符,舍去,综上,7011AD九. 静安区18. 如图,矩形纸片ABCD ,4AD ,3AB ,如果点E 在边BC 上,将纸片沿AE 折叠,使点B 落在点F 处,联结FC ,当EFC 是直角三角形时,那么BE 的长为【解析】① 当EFC 是直角时(如图1),设BE x ,4CE x∵190B ∴1180EFC 即A 、F 、C 在同一条直线上∴532CF AC AF在Rt EFC 中,222EF CF CE 即2222(4)x x 解得32x② 当CEF 是直角时(如图2)那么1245 ,点B 正好落在边AD 上∵90B ,245 ,∴3BE AB ,综上:BE 的长为32或3.十. 浦东新区18. 如图,已知在Rt ABC 中,90ACB ,4cos 5B ,8BC ,点D 在边BC 上, 将ABC 沿着过点D 的一条直线翻折,使点B 落在AB 边上的点E 处,联结CE 、DE , 当BDE AEC 时,则BE 的长是【解析】作CF AB 于F ,DH AB 于H设3DH x ,那么4BH EH x ,5BD x 90ACB ,4cos 5B,8BC 245AC BC CF AB DH BH CF BF 325BF ∴3285EF BE BF x 在Rt CEF 中,222222432((8)55CE CF EF x ∵BDE AEC ,∴CEB CDE 又∵ECB DCE , ∴BCE ∽ECD 2CE BC CD ∴222432((8)8(85)55x x 解得3940x ∴3985BE x 十一. 长宁18. 如图,在边长为2的菱形ABCD 中,60D ,点E 、F 分别在边AB 、BC 上,将BEF 沿着直线EF 翻折,点B 恰好与边AD 的中点G 重合,则BE 的长等于【解析】如右图所示,在Rt △GFC 中,设GF BF x ,2FC x ,GC ,∴22(2)3x x ,74x ,即74BF ,∵2IO ,1BI ,∴34IF ,设BH m ,∴EH ,74HF m ,EH OI HF IF ,解得710m ,∴725BE m18. 如图,点M 是正方形ABCD 的边BC 的中点,联结AM ,将BM 沿某一过M 的直线翻折,使B 落在AM 上的E 处,将线段AE 绕A 顺时针旋转一定角度,使E 落在F 处,如果E 在旋转过程中曾经交AB 于G ,当EF BG 时,旋转角EAF 的度数是【解析】作FE FH ,设2AB ,AM ,1MB ME ,1AE AF AG ,∴3GB EF FH AFE ∽△FEH ,∴24EF AE HE HE ,∴3AH ,∴AH HF FE ,∴5180EAF AFE FEA EAF , 即36EAF .十三. 崇明县18. 如图,在ABC 中,90ACB ,点D 、E 分别在AC 、BC 上,且CDE B ,将CDE 沿DE 折叠,点C 恰好落在AB 边上的点F 处,如果8AC ,10AB ,那么CD 的长为【解析】CF DE ,CDE B 190CDE∵CDE B ,90A B ∴1A∴ABC ∽CDOAC AB OC CD45OC CD ∴85CF CD 12A ACF ∽CFD AC CF CFDF即2CF AC CD ∴28()85CD CD 解得258CD18. 如图,在直角梯形ABCD 中,AD ∥BC ,90B ,3AD ,4AB ,8BC ,点E 、F 分别在边CD 、BC 上,联结EF ,如果CEF 沿直线EF 翻折,点C 与点A 恰好重合,那么DE EC的值是【解析】作DG ∥EF 交AC 于G在Rt ABC 中,8BC ,4AB AC ∴12CH AC DG ∥EF ,EF AC DG AC 又AD ∥BC 12∴ADG ∽CAB AD AG AC BC AG HG AC AG CH DG ∥EF 25DE HG EC CH十五. 青浦区18. 如图,在ABC 中,7AB ,6AC ,45A ,点D 、E 分别在边AB 、BC 上,将BDE 沿着DE 所在直线翻折,点B 落在点P 处,PD 、PE 分别交边AC 于点M 、N ,如果2AD ,PD AB ,垂足为点D ,那么MN 的长是【解析】7AB ,2AD 5BD DPPD AB ,45A ,2AD 2DM ∴3MPPD AB 1245又45A DE ∥ACDE BD AC AB 307DE ,MN MP DE DP 187MN18. 如图,在矩形ABCD 中,E 是AD 上一点,把ABE 沿直线BE 翻折,点A 正好落在BC 边上的点F 处,如果四边形CDEF 和矩形ABCD 相似,那么四边形CDEF 和矩形ABCD 面积比是【解析】四边形CDEF 和矩形ABCD 相似DE CD CD AD 即2CD DE AD ∵()CD EF AE AD DE∴2()AD DE DE AD 即2230AD AD DE DE解得32DE AD3=2CDEFABCD S CD DE DE S CD AD AD 四边形矩形。
中考数学试题-2018.4初三数学答案(长宁) 最新
2018初三数学教学质量检测卷评分建议一、选择题(本大题共6题,每题4分,满分24分.)1.D2.C3.A4.B5.C6.D二、填空题(本大题共12题,每题4分,满分48分.填对得4分,填错或不填、多填均得0分) 7. 2 8.1 9.x5 10. 1 11. b a - 12. 3±≠x 13. 2321+=x y14. △OAF ,△OED 15.0120-22=+x x (或()12112=+x ,()12111=+++x x x )16.31 17.()b a +43(或b a 4343+) 18. 30三、解答题:(本大题共7题,满分78分)19.(本题10分)解:︒︒-︒+︒60sin 30sin 260sin 30sin 22=()260sin 30sin ︒-︒ ………4分=22321⎪⎪⎭⎫⎝⎛-=2321- ……………… 4分 =213-(或2123-) …… 2分 20.(本题10分)解:整理(1)\(2)得⎪⎩⎪⎨⎧+>+->335211x x x (2)()()⎪⎩⎪⎨⎧->-+-+>22212121x x⎩⎨⎧<+->22)21(x x …………… 2分⎩⎨⎧<-->121x x …… …….2分∴ 121<<--x …… ……..1分 ∴不等式组的整数解为-2,-1,0 …….. 3分21.(本题10分)(1)80;……………..2分(2)0.18 ;………...2分(3)84;…………..3分(4)不合理,初三年级学生的随机样本不能代表该校全体学生。
……3分22.(本题10分)证明:如图,过点P作三边AB、BC、CA所在直线的垂线,垂足分别是Q、M、N。
.….2分则垂线段PQ、PM、PN即为P点到三边AB、BC、CA所在直线的距离。
……2分∵P是∠ABC的平分线BD上的一点∴PM=PQ……………………………………2分∵P是∠ACM的平分线CE上的一点∴PM=PN……………………………………2分∴PQ=PM=PN∴P点到三边AB、BC、CA所在直线的距离相等。
2018年上海长宁区初三一模数学试卷答案
jia
os
hi
∣ ⃗ ∣ ∣ b = −2 ∣ ∣a ⃗ ∣ ∣ ∣
/1
a ⃗ = −
2/
学生版 答案
A 教师版
答案版
04
编辑
).
⃗ b
= ∠DBC
,那么下列结论不一定正确
A. C.
△AOD ∽ △BOC
B. D.
△AOB ∽ △DOC
C D = BC
BC ⋅ C D = AC ⋅ OA
答案 解析
= 3
,
18 /1
,
答案
2/ 0
4
.
答案 解析
6
或14
如下两图易得10 − 4 = 6 或10 + 4 = 14 .
17. 如果一个四边形的某个顶点到其他三个顶点的距离相等,我们把这个四边形叫做等距四边形,这个顶点叫做这个四边形的等 距点,如图,已知梯形ABC D是等距四边形.AB//C D,点B是等距点,若BC 于 .
D
A
.∵∠AOD = ∠BOC ,且∠DAC
= ∠DBC
,
∴△AOD ∽ △BOC ,
B
.由A得
OA OD
=
OB OC
,
又∵∠AOB = ∠DOC ,以△AOB∽△DOC ,
C
.由B得∠OAB = ∠ODC ,
= ∠DBC
又∵AC 平分∠DAB,∠DAC
,
∴∠OAB = ∠OAD = ∠OBC , 故∠C DO = ∠C BO ,以C D = BC ,
= 10
,cos A =
− − √ 10 10
.则C D的长等
/0
4
os
解析
[试卷合集3套]上海市长宁区2018届中考数学一月一模拟试题
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列函数中,y 随着x 的增大而减小的是( )A .y=3xB .y=﹣3xC .3y x =D .3y x =-【答案】B【解析】试题分析:A 、y=3x ,y 随着x 的增大而增大,故此选项错误;B 、y=﹣3x ,y 随着x 的增大而减小,正确;C 、3y x =,每个象限内,y 随着x 的增大而减小,故此选项错误;D 、3y x =-,每个象限内,y 随着x 的增大而增大,故此选项错误;故选B .考点:反比例函数的性质;正比例函数的性质.2.如果将抛物线2y x 2=+向下平移1个单位,那么所得新抛物线的表达式是A .()2y x 12=-+B .()2y x 12=++C .2y x 1=+D .2y x 3=+【答案】C【解析】根据向下平移,纵坐标相减,即可得到答案.【详解】∵抛物线y=x 2+2向下平移1个单位,∴抛物线的解析式为y=x 2+2-1,即y=x 2+1.故选C .3.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A .甲超市的利润逐月减少B .乙超市的利润在1月至4月间逐月增加C .8月份两家超市利润相同D .乙超市在9月份的利润必超过甲超市【答案】D【解析】根据折线图中各月的具体数据对四个选项逐一分析可得.【详解】A 、甲超市的利润逐月减少,此选项正确,不符合题意;B、乙超市的利润在1月至4月间逐月增加,此选项正确,不符合题意;C、8月份两家超市利润相同,此选项正确,不符合题意;D、乙超市在9月份的利润不一定超过甲超市,此选项错误,符合题意,故选D.【点睛】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.4.解分式方程12x-﹣3=42x-时,去分母可得()A.1﹣3(x﹣2)=4 B.1﹣3(x﹣2)=﹣4C.﹣1﹣3(2﹣x)=﹣4 D.1﹣3(2﹣x)=4【答案】B【解析】方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断.【详解】方程两边同时乘以(x-2),得1﹣3(x﹣2)=﹣4,故选B.【点睛】本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键. 5.如图,某小区计划在一块长为31m,宽为10m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m1.若设道路的宽为xm,则下面所列方程正确的是()A.(31﹣1x)(10﹣x)=570 B.31x+1×10x=31×10﹣570C.(31﹣x)(10﹣x)=31×10﹣570 D.31x+1×10x﹣1x1=570【答案】A【解析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m1,即可列出方程:(31−1x)(10−x)=570,故选A.6.把三角形按如图所示的规律拼图案,其中第①个图案中有1个三角形,第②个图案中有4个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A.15 B.17 C.19 D.24【答案】D【解析】由图可知:第①个图案有三角形1个,第②图案有三角形1+3=4个,第③个图案有三角形1+3+4=8个,第④个图案有三角形1+3+4+4=12,…第n个图案有三角形4(n﹣1)个(n>1时),由此得出规律解决问题.【详解】解:解:∵第①个图案有三角形1个,第②图案有三角形1+3=4个,第③个图案有三角形1+3+4=8个,…∴第n个图案有三角形4(n﹣1)个(n>1时),则第⑦个图中三角形的个数是4×(7﹣1)=24个,故选D.【点睛】本题考查了规律型:图形的变化类,根据给定图形中三角形的个数,找出a n=4(n﹣1)是解题的关键.7.点A(m﹣4,1﹣2m)在第四象限,则m的取值范围是()A.m>12B.m>4C.m<4 D.12<m<4【答案】B【解析】根据第四象限内点的横坐标是正数,纵坐标是负数列出不等式组,然后求解即可.【详解】解:∵点A(m-1,1-2m)在第四象限,∴40120mm-⎧⎨-⎩>①,<②解不等式①得,m>1,解不等式②得,m>1 2所以,不等式组的解集是m>1,即m的取值范围是m>1.故选B.【点睛】本题考查各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8.若23,则a的值可以是()A.﹣7 B.163C.132D.12【答案】C【解析】根据已知条件得到4<a-2<9,由此求得a的取值范围,易得符合条件的选项.【详解】解:∵2<2a <3,∴4<a-2<9,∴6<a<1.又a-2≥0,即a≥2.∴a的取值范围是6<a<1.观察选项,只有选项C符合题意.故选C.【点睛】考查了估算无理数的大小,估算无理数大小要用夹逼法.9.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.10.已知关于x的方程2x+a-9=0的解是x=2,则a的值为A.2 B.3 C.4 D.5【答案】D【解析】∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=1.故选D.二、填空题(本题包括8个小题)11.如图,已知⊙P的半径为2,圆心P在抛物线y=12x2﹣1上运动,当⊙P与x轴相切时,圆心P的坐标为_____.【答案】(6,1)或(﹣6,1)【解析】根据直线和圆相切,则圆心到直线的距离等于圆的半径,得点P的纵坐标是1或-1.将P的纵坐标代入函数解析式,求P点坐标即可【详解】根据直线和圆相切,则圆心到直线的距离等于圆的半径,得点P的纵坐标是1或-1.当y=1时,12x1-1=1,解得x=±6当y=-1时,12x1-1=-1,方程无解故P点的坐标为(62,)或(-62,)【点睛】此题注意应考虑两种情况.熟悉直线和圆的位置关系应满足的数量关系是解题的关键.12.如图△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=35,则BC的长为_____.【答案】4【解析】试题解析:∵3 cos5BDC∠=,可∴设DC=3x,BD=5x,又∵MN是线段AB的垂直平分线,∴AD=DB=5x,又∵AC=8cm,∴3x+5x=8,解得,x=1,在Rt△BDC中,CD=3cm,DB=5cm,222253 4.BC DB CD =-=-=故答案为:4cm.13.如图,六边形ABCDEF 的六个内角都相等.若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于_________.【答案】2【解析】凸六边形ABCDEF ,并不是一规则的六边形,但六个角都是110°,所以通过适当的向外作延长线,可得到等边三角形,进而求解.【详解】解:如图,分别作直线AB 、CD 、EF 的延长线和反向延长线使它们交于点G 、H 、P .∵六边形ABCDEF 的六个角都是110°,∴六边形ABCDEF 的每一个外角的度数都是60°.∴△AHF 、△BGC 、△DPE 、△GHP 都是等边三角形.∴GC=BC=3,DP=DE=1.∴GH=GP=GC+CD+DP=3+3+1=8,FA=HA=GH-AB-BG=8-1-3=4,EF=PH-HF-EP=8-4-1=1.∴六边形的周长为1+3+3+1+4+1=2.故答案为2.【点睛】本题考查了等边三角形的性质及判定定理;解题中巧妙地构造了等边三角形,从而求得周长.是非常完美的解题方法,注意学习并掌握.14.计算tan 260°﹣2sin30°2cos45°的结果为_____.【答案】1【解析】分别算三角函数,再化简即可.【详解】解:原式=23()-2×1222 =1.【点睛】本题考查掌握简单三角函数值,较基础.15.如图,在矩形ABCD 中,AB=3,AD=5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么cos ∠EFC 的值是 .【答案】.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF ,根据余弦的概念计算即可.由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF ,cos ∠BAF==,∴cos ∠EFC=,故答案为:.考点:轴对称的性质,矩形的性质,余弦的概念.16.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.【答案】1或-1【解析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x 2+2(m-3)x+16是关于x 的完全平方式,∴2(m-3)=±8,解得:m=-1或1,故答案为-1或1.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.17.一只蚂蚁从数轴上一点 A 出发,爬了7 个单位长度到了+1,则点 A 所表示的数是_____【答案】﹣6 或 8【解析】试题解析:当往右移动时,此时点A 表示的点为﹣6,当往左移动时,此时点A 表示的点为8. 18.如图,小量角器的零度线在大量角器的零度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P 在小量角器上对应的度数为65°,那么在大量角器上对应的度数为_____度(只需写出0°~90°的角度).【答案】1.【解析】设大量角器的左端点是A,小量角器的圆心是B,连接AP,BP,则∠APB=90°,∠ABP=65°,因而∠PAB=90°﹣65°=25°,在大量角器中弧PB所对的圆心角是1°,因而P在大量角器上对应的度数为1°.故答案为1.三、解答题(本题包括8个小题)19.解方程:112 22xx x-=---【答案】无解【解析】解:去分母:方程两边同时乘以x-2,得1-x=-1-2(x-2)1-x="-1-2x+4X="2检验:当x=2时,x-2=0,所以x=2不是原方程的解.∴原方程无解.【详解】请在此输入详解!20.为有效治理污染,改善生态环境,山西太原成为国内首个实现纯电动出租车的城市,绿色环保的电动出租车受到市民的广泛欢迎,给市民的生活带来了很大的方便,下表是行驶路程在15公里以内时普通燃油出租车和纯电动出租车的运营价格:车型起步公里数起步价格超出起步公里数后的单价普通燃油型 3 13元 2.3元/公里纯电动型 3 8元2元/公里张先生每天从家打出租车去单位上班(路程在15公里以内),结果发现,正常情况下乘坐纯电动出租车比乘坐燃油出租车平均每公里节省0.8元,求张先生家到单位的路程.【答案】8.2 km【解析】首先设小明家到单位的路程是x千米,根据题意列出方程进行求解.【详解】解:设小明家到单位的路程是x千米.依题意,得13+2.3(x-3)=8+2(x-3)+0.8x.解得:x=8.2答:小明家到单位的路程是8.2千米.【点睛】本题考查一元一次方程的应用,找准等量关系是解题关键.21.如图,在△ABC中,∠A=45°,以AB为直径的⊙O经过AC的中点D,E为⊙O上的一点,连接DE,BE,DE与AB交于点F.求证:BC为⊙O的切线;若F为OA的中点,⊙O的半径为2,求BE的长.【答案】(1)证明见解析;(2)610 5【解析】(1)连接BD,由圆周角性质定理和等腰三角形的性质以及已知条件证明∠ABC=90°即可;(2)连接OD,根据已知条件求得AD、DF的长,再证明△AFD∽△EFB,然后根据相似三角形的对应边成比例即可求得.【详解】(1)连接BD,∵AB为⊙O的直径,∴BD⊥AC,∵D是AC的中点,∴BC=AB,∴∠C=∠A=45°,∴∠ABC=90°,∴BC是⊙O的切线;(2)连接OD,由(1)可得∠AOD=90°,∵⊙O的半径为2,F为OA的中点,∴OF=1,BF=3,22AD222=+=∴2222DF OF OD125=++=,∵BD BD=,∴∠E=∠A,∵∠AFD=∠EFB,∴△AFD∽△EFB,∴DF BF AD BE =,即53BE22=, ∴6BE 105=. 【点睛】本题考查了切线的判定与性质、相似三角形的判定与性质以及勾股定理的运用;证明某一线段是圆的切线时,一般情况下是连接切点与圆心,通过证明该半径垂直于这一线段来判定切线.22.制作一种产品,需先将材料加热达到60℃后,再进行操作,设该材料温度为y (℃)从加热开始计算的时间为x (min ).据了解,当该材料加热时,温度y 与时间x 成一次函数关系:停止加热进行操作时,温度y 与时间x 成反比例关系(如图).已知在操作加热前的温度为15℃,加热5分钟后温度达到60℃.分别求出将材料加热和停止加热进行操作时,y 与x 的函数关系式;根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?【答案】(1);(2)20分钟.【解析】(1)材料加热时,设y=ax+15(a≠0),由题意得60=5a+15,解得a=9,则材料加热时,y 与x 的函数关系式为y=9x+15(0≤x≤5).停止加热时,设y=(k≠0),由题意得60=,解得k=300,则停止加热进行操作时y 与x 的函数关系式为y=(x≥5);(2)把y=15代入y=,得x=20, 因此从开始加热到停止操作,共经历了20分钟.答:从开始加热到停止操作,共经历了20分钟.23.进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:通过这段对话,请你求出该地驻军原来每天加固的米数.【答案】300米【解析】解:设原来每天加固x 米,根据题意,得.去分母,得 1200+4200=18x (或18x=5400)解得300x =.检验:当300x =时,20x ≠(或分母不等于0).∴300x =是原方程的解.答:该地驻军原来每天加固300米.24.探究:在一次聚会上,规定每两个人见面必须握手,且只握手1次若参加聚会的人数为3,则共握手 次:;若参加聚会的人数为5,则共握手 次;若参加聚会的人数为n (n 为正整数),则共握手 次;若参加聚会的人共握手28次,请求出参加聚会的人数.拓展:嘉嘉给琪琪出题:“若线段AB 上共有m 个点(含端点A ,B ),线段总数为30,求m 的值.”琪琪的思考:“在这个问题上,线段总数不可能为30”琪琪的思考对吗?为什么?【答案】探究:(1)3,1;(2)(1)2n n -;(3)参加聚会的人数为8人;拓展:琪琪的思考对,见解析. 【解析】探究:(1)根据握手次数=参会人数×(参会人数-1)÷2,即可求出结论;(2)由(1)的结论结合参会人数为n ,即可得出结论;(3)由(2)的结论结合共握手28次,即可得出关于n 的一元二次方程,解之取其正值即可得出结论; 拓展:将线段数当成握手数,顶点数看成参会人数,由(2)的结论结合线段总数为2,即可得出关于m 的一元二次方程,解之由该方程的解均不为整数可得出琪琪的思考对.【详解】探究:(1)3×(3-1)÷2=3,5×(5-1)÷2=1.故答案为3;1.(2)∵参加聚会的人数为n (n 为正整数),∴每人需跟(n-1)人握手,∴握手总数为()12n n -.故答案为()12n n -.(3)依题意,得:()12n n -=28,整理,得:n 2-n-56=0,解得:n 1=8,n 2=-7(舍去).答:参加聚会的人数为8人.拓展:琪琪的思考对,理由如下:如果线段数为2,则由题意,得:()12m m -=2, 整理,得:m 2-m-60=0,解得m 1=12+,m 2=2(舍去). ∵m 为正整数,∴没有符合题意的解,∴线段总数不可能为2.【点睛】本题考查了一元二次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,列式计算;(2)根据各数量之间的关系,用含n 的代数式表示出握手总数;(3)(拓展)找准等量关系,正确列出一元二次方程.25.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.该网店甲、乙两种羽毛球每筒的售价各是多少元?根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的35,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元. ①若设购进甲种羽毛球m 筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W (元)与甲种羽毛球进货量m (筒)之间的函数关系式,并说明当m 为何值时所获利润最大?最大利润是多少?【答案】(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.【解析】(1)设甲种羽毛球每筒的售价为x 元,乙种羽毛球每筒的售价为y 元,由条件可列方程组,则可求得答案;(2)①设购进甲种羽毛球m 筒,则乙种羽毛球为(200﹣m )筒,由条件可得到关于m 的不等式组,则可求得m 的取值范围,且m 为整数,则可求得m 的值,即可求得进货方案;②用m可表示出W,可得到关于m的一次函数,利用一次函数的性质可求得答案.【详解】(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,根据题意可得1523255x yx y-=⎧⎨+=⎩,解得6045xy=⎧⎨=⎩,答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①若购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,根据题意可得()()504020878032005m mm m⎧+-≤⎪⎨>-⎪⎩,解得75<m≤78,∵m为整数,∴m的值为76、77、78,∴进货方案有3种,分别为:方案一,购进甲种羽毛球76筒,乙种羽毛球为124筒,方案二,购进甲种羽毛球77筒,乙种羽毛球为123筒,方案一,购进甲种羽毛球78筒,乙种羽毛球为122筒;②根据题意可得W=(60﹣50)m+(45﹣40)(200﹣m)=5m+1000,∵5>0,∴W随m的增大而增大,且75<m≤78,∴当m=78时,W最大,W最大值为1390,答:当m=78时,所获利润最大,最大利润为1390元.【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用、一次函数的应用,弄清题意找准等量关系列出方程组、找准不等关系列出不等式组、找准各量之间的数量关系列出函数解析式是解题的关键.26.全民学习、终身学习是学习型社会的核心内容,努力建设学习型家庭也是一个重要组成部分.为了解“学习型家庭”情况,对部分家庭五月份的平均每天看书学习时间进行了一次抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下列问题:本次抽样调查了个家庭;将图①中的条形图补充完整;学习时间在2~2.5小时的部分对应的扇形圆心角的度数是度;若该社区有家庭有3000个,请你估计该社区学习时间不少于1小时的约有多少个家庭?【答案】(1)200;(2)见解析;(3)36;(4)该社区学习时间不少于1小时的家庭约有2100个.【解析】(1)根据1.5~2小时的圆心角度数求出1.5~2小时所占的百分比,再用1.5~2小时的人数除以所占的百分比,即可得出本次抽样调查的总家庭数;(2)用抽查的总人数乘以学习0.5-1小时的家庭所占的百分比求出学习0.5-1小时的家庭数,再用总人数减去其它家庭数,求出学习2-2.5小时的家庭数,从而补全统计图;(3)用360°乘以学习时间在2~2.5小时所占的百分比,即可求出学习时间在2~2.5小时的部分对应的扇形圆心角的度数;(4)用该社区所有家庭数乘以学习时间不少于1小时的家庭数所占的百分比即可得出答案.【详解】解:(1)本次抽样调查的家庭数是:30÷54360=200(个);故答案为200;(2)学习0.5﹣1小时的家庭数有:200×108360=60(个),学习2﹣2.5小时的家庭数有:200﹣60﹣90﹣30=20(个),补图如下:(3)学习时间在2~2.5小时的部分对应的扇形圆心角的度数是:360×20200=36°;故答案为36;(4)根据题意得:3000×903020200++=2100(个).答:该社区学习时间不少于1小时的家庭约有2100个.【点睛】本题考查条形统计图、扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列判断正确的是( )A .任意掷一枚质地均匀的硬币10次,一定有5次正面向上B .天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C .“篮球队员在罚球线上投篮一次,投中”为随机事件D .“a 是实数,|a|≥0”是不可能事件【答案】C【解析】直接利用概率的意义以及随机事件的定义分别分析得出答案.【详解】A 、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;B 、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误;C 、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;D 、“a 是实数,|a|≥0”是必然事件,故此选项错误.故选C .【点睛】此题主要考查了概率的意义以及随机事件的定义,正确把握相关定义是解题关键.2.已知抛物线y =ax 2+bx+c (a <0)与x 轴交于点A (﹣1,0),与y 轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n ),则下列结论:①4a+2b <0; ②﹣1≤a≤23; ③对于任意实数m ,a+b≥am 2+bm 总成立;④关于x 的方程ax 2+bx+c =n ﹣1有两个不相等的实数根.其中结论正确的个数为( ) A .1个B .2个C .3个D .4个 【答案】C【解析】①由抛物线的顶点横坐标可得出b=-2a ,进而可得出4a+2b=0,结论①错误;②利用一次函数图象上点的坐标特征结合b=-2a 可得出a=-3c ,再结合抛物线与y 轴交点的位置即可得出-1≤a≤-23,结论②正确; ③由抛物线的顶点坐标及a <0,可得出n=a+b+c ,且n≥ax 2+bx+c ,进而可得出对于任意实数m ,a+b≥am 2+bm 总成立,结论③正确;④由抛物线的顶点坐标可得出抛物线y=ax 2+bx+c 与直线y=n 只有一个交点,将直线下移可得出抛物线y=ax 2+bx+c 与直线y=n-1有两个交点,进而可得出关于x 的方程ax 2+bx+c=n-1有两个不相等的实数根,结合④正确.【详解】:①∵抛物线y=ax 2+bx+c 的顶点坐标为(1,n ),∴-2b a=1, ∴b=-2a ,∴4a+2b=0,结论①错误;②∵抛物线y=ax 2+bx+c 与x 轴交于点A (-1,0),∴a-b+c=3a+c=0,∴a=-3c . 又∵抛物线y=ax 2+bx+c 与y 轴的交点在(0,2),(0,3)之间(包含端点),∴2≤c≤3,∴-1≤a≤-23,结论②正确; ③∵a <0,顶点坐标为(1,n ),∴n=a+b+c ,且n≥ax 2+bx+c ,∴对于任意实数m ,a+b≥am 2+bm 总成立,结论③正确;④∵抛物线y=ax 2+bx+c 的顶点坐标为(1,n ),∴抛物线y=ax 2+bx+c 与直线y=n 只有一个交点,又∵a <0,∴抛物线开口向下,∴抛物线y=ax 2+bx+c 与直线y=n-1有两个交点,∴关于x 的方程ax 2+bx+c=n-1有两个不相等的实数根,结合④正确.故选C .【点睛】本题考查了二次函数图象与系数的关系、抛物线与x 轴的交点以及二次函数的性质,观察函数图象,逐一分析四个结论的正误是解题的关键.3.已知抛物线y=ax 2+bx+c 与反比例函数y=b x的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac 的图象可能是( ) A . B . C .D.【答案】B【解析】分析: 根据抛物线y=ax2+bx+c与反比例函数y=bx的图象在第一象限有一个公共点,可得b>0,根据交点横坐标为1,可得a+b+c=b,可得a,c互为相反数,依此可得一次函数y=bx+ac的图象.详解: ∵抛物线y=ax2+bx+c与反比例函数y=bx的图象在第一象限有一个公共点,∴b>0,∵交点横坐标为1,∴a+b+c=b,∴a+c=0,∴ac<0,∴一次函数y=bx+ac的图象经过第一、三、四象限.故选B.点睛: 考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b>0,ac<0. 4.如图,数轴上有A,B,C,D四个点,其中表示互为倒数的点是()A.点A与点B B.点A与点D C.点B与点D D.点B与点C【答案】A【解析】试题分析:主要考查倒数的定义和数轴,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.根据倒数定义可知,-2的倒数是-12,有数轴可知A对应的数为-2,B对应的数为-12,所以A与B是互为倒数.故选A.考点:1.倒数的定义;2.数轴.5.已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根【答案】D【解析】根据方程有两个相等的实数根可得出b=a+1或b=-(a+1),当b=a+1时,-1是方程x 2+bx+a=0的根;当b=-(a+1)时,1是方程x 2+bx+a=0的根.再结合a+1≠-(a+1),可得出1和-1不都是关于x 的方程x 2+bx+a=0的根.【详解】∵关于x 的一元二次方程(a+1)x 2+2bx+(a+1)=0有两个相等的实数根,∴()()2210{2410a b a +≠-+==, ∴b=a+1或b=-(a+1).当b=a+1时,有a-b+1=0,此时-1是方程x 2+bx+a=0的根;当b=-(a+1)时,有a+b+1=0,此时1是方程x 2+bx+a=0的根.∵a+1≠0,∴a+1≠-(a+1),∴1和-1不都是关于x 的方程x 2+bx+a=0的根.故选D .【点睛】本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.6.小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是 11()1323x x x ▲---+=-, 这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x =5,于是,他很快便补好了这个常数,并迅速地做完了作业。
【数学】长宁区2018年一模试卷及答案
(考试时间:100 分钟 满分:150 分)2018.01
一、选择题(本大题共 6 题, 每题 4 分, 满分 24 分) 【每小题只有一个正确选项, 在答题纸相应题号的选项上用 2B 铅笔正确填涂】 1.在 Rt ∆ ABC 中,∠C=90°, ∠A = α ,AC= 3 ,则 AB 的长可以表示为( ▲ ) (A)
联结 AC、OB,若 CD=40, AC = 20 5 . (1)求弦 AB 的长; (2)求 sin ∠ABO 的值.
O
C
第 21 题图
咨询电话:4000-121-121
3
22. (本题满分 10 分) D 如图,一栋居民楼 AB 的高为 16 米,远处有一栋商务楼 CD, ,又在商 小明在居民楼的楼底 A 处测得商务楼顶 D 处的仰角为 60° 务楼的楼顶 D 处测得居民楼的楼顶 B 处的俯角为 45° .其中 A、C 两点分别位于 B、D 两点的正下方,且 A、C 两点在同一水平线上, 求商务楼 CD 的高度. (参考数据: 2 ≈ 1.414 , 3 ≈ 1.732 .结果精确到 0.1 米) A C 第 22 题图 B
2
▲
.
▲
.
11.已知 ∆ ABC 与 ∆ DEF 相似,且 ∆ ABC 与 ∆ DEF 的相似比为 2:3,若 ∆ DEF 的面积为 36,则 ∆ ABC 的面积等于 ▲ . ▲ .
12.已知线段 AB=4,点 P 是线段 AB 的黄金分割点,且 AP<BP,那么 AP 的长为 13.若某斜面的坡度为 1 : 3 ,则该坡面的坡角为 ▲ 度.
4.已知在直角坐标平面内, 以点 P(-2,3)为圆心, 2 为半径的圆 P 与 x 轴的位置关系是 ( ▲ ) (A) 相离; (B) 相切; (C) 相交; (D) 相离、相切、相交都有可能.
2018年上海市长宁区初三数学一模试卷
2017学年第一学期初三数学教学质量检测试卷(考试时间:100分钟 满分:150分)2018.01考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本调研卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题, 每题4分, 满分24分)【每小题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】 1.在Rt ∆ABC 中,∠C =90°,α=∠A ,AC =3,则AB 的长可以表示为( ▲ )(A )αcos 3; (B ) αsin 3; (C ) αsin 3; (D ) αcos 3. 2.如图,在∆ABC 中,点D 、E 分别在边BA 、CA 的延长线上,2=ADAB,那么下列条件中能判断DE ∥BC 的是( ▲ ) (A )21=EC AE ; (B ) 2=AC EC; (C )21=BC DE ; (D )2=AEAC. 3. 将抛物线3)1(2++-=x y 向右平移2个单位后得到的新抛物线的表达式为( ▲ ) (A ) 1)1(2++-=x y ; (B ) 3)1(2+--=x y ; (C ) 5)1(2++-=x y ; (D )3)3(2++-=x y .4. 已知在直角坐标平面内,以点P (-2,3)为圆心,2为半径的圆P 与x 轴的位置关系是( ▲ ) (A ) 相离; (B ) 相切; (C ) 相交; (D ) 相离、相切、相交都有可能. 5. 已知e 是单位向量,且e a 2-=,e b 4=,那么下列说法错误..的是( ▲ ) (A )b a //; (B ) 2||=a ;(C ) ||2||a b -=; (D )21-=. 6. 如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,AC平分∠DAB ,且∠DAC =∠DBC ,那么下列结论不一定正确.....的是( ▲ ) (A )AOD ∆∽BOC ∆; (B )AOB ∆∽DOC ∆; (C )CD =BC ; (D )OA AC CD BC ⋅=⋅.第2题图AB CDE 第6题图O ABD二、填空题(本大题共12题, 每题4分, 满分48分) 【在答题纸相应题号后的空格内直接填写答案】 7.若线段a 、b 满足21=b a ,则bb a +的值为 ▲ . 8.正六边形的中心角等于 ▲ 度.9.若抛物线2)2(x a y -=的开口向上,则a 的取值范围是 ▲ . 10.抛物线342+-=x x y 的顶点坐标是 ▲ .11.已知∆ABC 与∆DEF 相似,且∆ABC 与∆DEF 的相似比为2:3,若∆DEF 的面积为36,则∆ABC 的面积等于 ▲ .12.已知线段AB=4,点P 是线段AB 的黄金分割点,且AP<BP ,那么AP 的长为 ▲ . 13.若某斜面的坡度为3:1,则该坡面的坡角为 ▲ 度.14.已知点A (-2,m )、B (2,n )都在抛物线t x x y -+=22上,则m 与n 的大小关系是m ▲ n .(填“>”、“<”或“=”)15.如图,在Rt ∆ABC 中,∠BAC =90°,点G 是重心, 联结AG ,过点G 作DG//BC ,DG 交AB 于点D , 若AB=6,BC=9,则∆ADG 的周长等于 ▲ .16.已知⊙1O 的半径为4,⊙2O 的半径为R ,若⊙1O 与⊙2O 相切,且1021=O O ,则R 的值为 ▲ .17.如果一个四边形的某个顶点到其他三个顶点的距离相等,我们把这个四边形叫做等距四边形,这个顶点叫做这个 四边形的等距点.如图,已知梯形ABCD 是等距四边形,AB//CD ,点B 是等距点. 若BC =10,1010cos =A , 则CD 的长等于 ▲ .18.如图,在边长为2的菱形ABCD 中,︒=∠60D ,点E 、F 分别在边AB 、BC 上. 将∆BEF 沿着直线EF 翻折, 点B 恰好与边AD 的中点G 重合,则BE 的长等于 ▲ .第18题图A B CDBCDA 第17题图第15题图D AG三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】 19.(本题满分10分)计算:︒--︒︒30cos 60tan 45sin 445cot 02.20.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,在∆ABC 中,点D 在边AB 上,DE //BC ,DF //AC ,DE 、DF 分别交边AC 、BC于点E 、F ,且23=EC AE . (1)求BCBF的值; (2)联结EF ,设=,=,用含、的式子表示.21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,点C 在⊙O 上,联结CO 并延长交弦AB 于点D ,AC BC =, 联结AC 、OB ,若CD =40,520=AC . (1)求弦AB 的长; (2)求ABO ∠sin 的值. 22.(本题满分10分)如图,一栋居民楼AB 的高为16米,远处有一栋商务楼CD , 小明在居民楼的楼底A 处测得商务楼顶D 处的仰角为60°,又在商 务楼的楼顶D 处测得居民楼的楼顶B 处的俯角为45°.其中A 、C 两点分别位于B 、D 两点的正下方,且A 、C 两点在同一水平线上, 求商务楼CD 的高度.(参考数据:414.12≈,732.13≈.结果精确到0.1米)23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,在∆ABC 中,点D 在边BC 上,联结AD ,∠ADB=∠CDE , DE 交边AC 于点E ,DE 交BA 延长线于点F ,且DF DE AD ⋅=2. (1)求证:BFD ∆∽CAD ∆; (2)求证:AD AB DEBF ⋅=⋅.F EA第23题图第20题图AD E 第21题图24.(本题满分12分,每小题4分)在直角坐标平面内,直线221+=x y 分别与x 轴、y 轴交于点A 、C . 抛物线c bx x y ++-=221经过点A 与点C ,且与x 轴的另一个交点为点B . 点D 在该抛物线上,且位于直线AC 的上方. (1)求上述抛物线的表达式;(2)联结BC 、BD ,且BD 交AC 于点E ,如果∆ABE 的面积与∆ABC 的面积之比为4:5,求∠DBA 的余切值;(3)过点D 作DF ⊥AC ,垂足为点F ,联结CD . 若∆CFD 与∆AOC 相似,求点D 的坐标.25.(本题满分14分,第(1)小题3分,第(2)小题6分,第(3)小题5分)已知在矩形ABCD 中,AB =2,AD =4. P 是对角线BD 上的一个动点(点P 不与点B 、D 重合),过点P 作PF ⊥BD ,交射线BC 于点F . 联结AP ,画∠FPE =∠BAP ,PE 交BF 于点E . 设PD=x ,EF =y .(1)当点A 、P 、F 在一条直线上时,求∆ABF 的面积;(2)如图1,当点F 在边BC 上时,求y 关于x 的函数解析式,并写出函数定义域; (3)联结PC ,若∠FPC =∠BPE ,请直接写出PD 的长.备用图第24题图备用图 备用图图1DA DCBAF EP D CB A 第25题图长宁区2017学年第一学期初三数学参考答案和评分建议2018.1一、选择题:(本大题共6题,每题4分,满分24分) 1.A ; 2.D ; 3.B ; 4.A ; 5.C ; 6.D . 二.填空题:(本大题共12题,满分48分)7.23; 8.060; 9.a >2;10.)1,2(-; 11.16; 12.526-; 13.030; 14.<; 15.10;16.6或14; 17.16; 18.57.三、(本大题共7题,第19、20、21、22题每题10分,第23、24题每题12分,第25题14分,满分78分) 19. (本题满分10分)解:原式=233)22(412--⨯ (4分) =23321-- (2分) =2332-+ (2分) =232+(2分) 20.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)∵23=EC AE ∴52=AC EC (1分) ∵DE//BC ∴52==AC EC AB BD (2分) 又∵DF//A ∴52==AB BD BC BF (2分) (2)∵52=BC BF ∴53=BC FC ∵=,CF 与BC 方向相反 ∴a CF 53-= (2分)同理:b EC 52= (2分)又∵→+=CF EC EF ∴→-=a b EF 5352 (1分)21.(本题满分10分,第(1)小题5分,第(2)小题5分) 解:(1)∵CD 过圆心O , AC BC =∴C D ⊥AB ,AB=2AD=2BD (2分)∵CD =40,520=AC 又∵∠ADC=090 ∴2022=-=CD AC AD (2分)∴AB=2AD=40 (1分) (2)设圆O 的半径为r ,则OD =40-r (1分) ∵BD =AD =20, ∠ODB=090 ∴222OB OD BD =+∴222)40(20r r =-+ (1分) ∴r =25,OD =15 (2分) ∴532515sin ===∠OB OD ABO (1分) 22.(本题满分10分)解:过点B 作BE ⊥CD 与点E ,由题意可知∠DBE=045,∠DAC=060,CE=AB=16 (2分)设AC=x ,则x CD 3=,BE=AC=x (1分) ∵163-=-=x CE CD DE (1分) ∵0045,90=∠=∠DBE BED ∴BE=DE ∴163-=x x (2分) ∴1316-=x (1分) ∴)13(8+=x (1分) ∴9.3738243≈+==x CD (1分)答: 商务楼CD 的高度为37.9米。
2018年上海长宁区初三一模数学试卷
2018年上海长宁区初三一模数学试卷选择题(本大题共6题.每题4分.满分24分).1.A. B.C. D.在中,,,,则的长可以表示为( ).Rt △ABC ∠C =90∘∠A =αAC =3AB 3cos α3sin α3sin α3cos α2.A. B.C. D.如图.在中,点、分别在边、的延长线上,.那么下列条件中能判断的是( ).△ABC D E BA CA =2ABAD DE//BC=AE EC 12=2ECAC =DE BC 12=2ACAE 3.A. B.C. D.将抛物线向右平移个单位后得到的新抛物线的表达式为( ).y =−+3(x +1)22y =−+1(x +1)2y =−+3(x −1)2y =−+5(x +1)2y =−+3(x +3)24.A.相离 B.相切C.相交D.相离、相切、相交都有可能已知在直角坐标平面内,以点为圆心,为半径的圆与轴的位置关系是( ).P (−2,3)2P x 5.A. B.C. D.已知是单位向量,且..那么下列说法错误的是( ).e =−2a e =4b e//a b =2∣a ∣=−2∣∣b ∣∣∣a ∣=−a 12b填空题(本大题共12题.每题4分.满分48分).6.A. B.C. D.如图,在四边形中.对角线与相交于点,平分,且,那么下列结论不一定正确的是( ).ABCD AC BD O AC ∠DAB ∠DAC =∠DBC △AOD ∽△BOC△AOB ∽△DOC CD =BC BC ⋅CD =AC ⋅OA7.若线段、满足,的值为 .a b =a b 12a +b b8.正六边形的中心角等于 度.9.若抛物线的开口向上,的取值范围是 .y =(a −2)x 2a 10.抛物线的顶点坐标是 .y =−4x +3x 211.已知与相似,与的相似比为,的面积为.则的面积等于 .△ABC △DEF △ABC △DEF 2:3△DEF 36△ABC 12.已知线段,点是线段的黄金分割点,且,那么的长为 .AB =4P AB AP <BP AP 13.若某斜面的坡度为,则该坡面的坡角为 度.1:3√14.已知点、都在抛物线上,则与的大小关系是 .(填“”、“”或“”)A (−2,m )B (2,n )y =+2x −t x 2m n m n ><=15.如图,在中,.点是重心.联结,过点作,交于点.若,,则的周长等于 .Rt △ABC ∠BAC =90∘G AG G DG //BC DG AB D AB =6BC =9△ADG解答题(本大题共7题.满分78分).16.已知⊙的半径为.⊙的半径为,若⊙与⊙相切,且,则的值为 .O 14O 2R O 1O 2=10O 1O 2R 17.如果一个四边形的某个顶点到其他三个顶点的距离相等,我们把这个四边形叫做等距四边形,这个顶点叫做这个四边形的等距点,如图,已知梯形是等距四边形.,点是等距点,若,.则的长等于 .ABCD AB //CD B BC =10cos A =10−−√10CD 18.如图.在边长为的菱形中,,点、分别在边、上,将沿着直线翻折.点恰好与边的中点重合.则的长等于 .2ABCD ∠D =60∘E F AB BC △BEF EF B AD G BE 19.计算:.−cos 30cot 45∘445−tan 60sin 2∘∘∘20.如图.在中,点在边上,,,、分别交边、于点、,且.△ABC D AB DE //BC DF //AC DE DF AC BC E F =AE EC 32(1)求的值.(2)联结,设.,用含、的式子表示.BF BC EF =BC −→−a =AC −→−b a b EF −→−21.(1)求弦的长.(2)求的值.如图,点在⊙上,联结并延长交弦于点,,联结、,若,.C O CO AB D =AC ⌢BC ⌢AC OB CD =40AC =205√AB sin ∠ABO 22.如图.一栋居民楼的高为米,远处有一栋商务楼,小明在居民楼的楼底处测得商务楼顶处的仰角为,又在商务楼的楼顶处测得居民楼的楼顶处的俯角为,其中、两点分别位于、两点的正下方,且、两点在同一水平线上,求商务楼的高度.(参考数据:..结果精确到米)AB 16CD A D 60∘D B 45∘A C B D A C CD ≈1.4142√=1.7323√0.123.如图,在中,点在边上,联结,,交边于点,交延长线于点,且.△ABC D BC AD ∠ADB =∠CDE DE AC E DE BA F A =DE ⋅DF D 2(1)求证:.(2)求证:.△BFD∽△CADBF⋅DE=AB⋅AD24.(1)求上述抛物线的表达式.(2)连结、,且交于点,如果的面积与的面积之比为.求的余切值.(3)过点作,垂足为点,连结,若与相似,求点的坐标.在直角坐标平面内,直线分别与轴、轴交于点、,抛物线经过点与点,且与轴的另一个交点为点,点在该抛物线上,且位于直线的上方.y=x+212x y A C y=−+bx+c12x2A C xB D ACBC BD BD AC E△ABE△ABC4:5∠DBAD DF⊥AC F CD△CFD△AOC D25.(1)当点、、在一条直线上时,求的面积.(2)如图.当点在边上时,求关于的函数解析式,并写出函数定义域.已知在矩形中,.,是对角线上的一个动点(点不与点、重合).过点作,交射线于点,联结,画,交于点,设,.ABCD AB=2AD=4P BD P B D P P F⊥BD BC F AP∠FP E=∠BAP P E BF E P D=x EF=yA P F△ABF1F BC y x(3)连结.若,请直接写出的长.P C∠FP C=∠BP E P D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年第一学期初三数学教学质量检测试卷(考试时间:100分钟 满分:150分)2018.01一、选择题(本大题共6题, 每题4分, 满分24分)【每小题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】 1.在Rt ∆ABC 中,∠C =90°,α=∠A ,AC =3,则AB 的长可以表示为( ▲ )(A )αcos 3; (B ) αsin 3; (C ) αsin 3; (D ) αcos 3. 2.如图,在∆ABC 中,点D 、E 分别在边BA 、CA 的延长线上,2=ADAB,那么下列条件中能判断DE ∥BC 的是( ▲ ) (A ) 21=EC AE ; (B ) 2=AC EC;(C ) 21=BC DE ; (D )2=AEAC .3. 将抛物线3)1(2++-=x y 向右平移2个单位后得到的新抛物线的表达式为( ▲ ) (A ) 1)1(2++-=x y ; (B ) 3)1(2+--=x y ; (C ) 5)1(2++-=x y ; (D )3)3(2++-=x y .4.已知在直角坐标平面内,以点P (-2,3)为圆心,2为半径的圆P 与x 轴的位置关系是( ▲ ) (A )相离; (B ) 相切; (C ) 相交; (D ) 相离、相切、相交都有可能. 5. 已知e 是单位向量,且e a 2-=,e b 4=,那么下列说法错误..的是( ▲ ) (A )b a //;(B )2||=a ;(C )||2||a b -=;(D )b a 21-=. 6. 如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,AC 平分∠DAB ,且∠DAC =∠DBC ,那么下列结论不一定正确.....的是( ▲ ) (A )AOD ∆∽BOC ∆;(B )AOB ∆∽DOC ∆; (C )CD =BC ;(D )OA AC CD BC ⋅=⋅.二、填空题(本大题共12题, 每题4分, 满分48分) 【在答题纸相应题号后的空格内直接填写答案】 7.若线段a 、b 满足21=b a ,则bba +的值为▲. 8.正六边形的中心角等于▲度.第2题图AB CDE 第6题图O ABCD9.若抛物线2)2(x a y -=的开口向上,则a 的取值范围是▲. 10.抛物线342+-=x x y 的顶点坐标是▲.11.已知∆ABC 与∆DEF 相似,且∆ABC 与∆DEF 的相似比为2:3,若∆DEF 的面积为36,则∆ABC 的面积等于▲.12.已知线段AB=4,点P 是线段AB 的黄金分割点,且AP<BP ,那么AP 的长为▲. 13.若某斜面的坡度为3:1,则该坡面的坡角为▲度.14.已知点A (-2,m )、B (2,n )都在抛物线t x x y -+=22上,则m 与n 的大小关系是m ▲n .(填“>”、“<”或“=”)15.如图,在Rt ∆ABC 中,∠BAC =90°,点G 是重心, 联结AG ,过点G 作DG//BC ,DG 交AB 于点D , 若AB=6,BC=9,则∆ADG 的周长等于▲.16.已知⊙1O 的半径为4,⊙2O 的半径为R ,若⊙1O 与⊙2O 相切,且1021=O O ,则R 的值为▲.17.如果一个四边形的某个顶点到其他三个顶点的距离相等,我们把这个四边形叫做等距四边形,这个顶点叫做这个 四边形的等距点.如图,已知梯形ABCD 是等距四边形,AB//CD ,点B 是等距点. 若BC =10,1010cos =A , 则CD 的长等于▲.18.如图,在边长为2的菱形ABCD 中,︒=∠60D ,点E 、F 分别在边AB 、BC 上. 将∆BEF 沿着直线EF 翻折, 点B 恰好与边AD 的中点G 重合,则BE 的长等于▲.三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】 19.(本题满分10分)计算:︒--︒︒30cos 60tan 45sin 445cot 02.第18题图A B CDBCDA 第17题图第15题图D ABG20.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,在∆ABC 中,点D 在边AB 上,DE //BC ,DF //AC ,DE 、DF 分别交边AC 、BC于点E 、F ,且23=EC AE .(1)求BCBF的值;(2)联结EF ,设a BC =,b AC =,用含a 、b 的式子表示EF .21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,点C 在⊙O 上,联结CO 并延长交弦AB 于点D ,AC BC =,联结AC 、OB ,若CD =40,520=AC . (1)求弦AB 的长; (2)求ABO ∠sin 的值. 22.(本题满分10分)如图,一栋居民楼AB 的高为16米,远处有一栋商务楼CD , 小明在居民楼的楼底A 处测得商务楼顶D 处的仰角为60°,又在商 务楼的楼顶D 处测得居民楼的楼顶B 处的俯角为45°.其中A 、C 两点分别位于B 、D 两点的正下方,且A 、C 两点在同一水平线上, 求商务楼CD 的高度.(参考数据:414.12≈,732.13≈.结果精确到0.1米)23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,在∆ABC 中,点D 在边BC 上,联结AD ,∠ADB=∠CDE ,DE 交边AC 于点E ,DE 交BA 延长线于点F ,且DF DE AD ⋅=2.(1)求证:BFD ∆∽CAD ∆; (2)求证:AD AB DE BF ⋅=⋅. 24.(本题满分12分,每小题4分)在直角坐标平面内,直线221+=x y 分别与x 轴、y 轴交于点A 、C . 抛物线c bx x y ++-=221经过点A 与点C ,且与x 轴的另一个交点为点B . 点D 在该抛物线上,且位于直线AC 的上方. (1)求上述抛物线的表达式;(2)联结BC 、BD ,且BD 交AC 于点E ,如果∆ABE 的面积与∆ABC 的面积之比为4:5,求∠DBA 的余切值;F E DABC第23题图第20题图FAD E 第21题图(3)过点D 作DF ⊥AC ,垂足为点F ,联结CD . 若∆CFD 与∆AOC 相似,求点D 的坐标.25.(本题满分14分,第(1)小题3分,第(2)小题6分,第(3)小题5分)已知在矩形ABCD 中,AB =2,AD =4. P 是对角线BD 上的一个动点(点P 不与点B 、D 重合),过点P 作PF ⊥BD ,交射线BC 于点F . 联结AP ,画∠FPE =∠BAP ,PE 交BF 于点E . 设PD=x ,EF =y .(1)当点A 、P 、F 在一条直线上时,求∆ABF 的面积;(2)如图1,当点F 在边BC 上时,求y 关于x 的函数解析式,并写出函数定义域; (3)联结PC ,若∠FPC =∠BPE ,请直接写出PD 的长.备用图第24题图备用图 备用图图1DCBA DCBA F EPD CB A 第25题图长宁区2017-2018学年第一学期初三数学参考答案和评分建议2018.1一、选择题:(本大题共6题,每题4分,满分24分) 1.A ; 2.D ; 3.B ; 4.A ; 5.C ; 6.D . 二.填空题:(本大题共12题,满分48分)7.23;8.060;9.a >2;10.)1,2(-;11.16;12.526-; 13.030;14.<;15.10;16.6或14;17.16;18.57.三、(本大题共7题,第19、20、21、22题每题10分,第23、24题每题12分,第25题14分,满分78分) 19. (本题满分10分)解:原式=233)22(412--⨯(4分) =23321--(2分) =2332-+(2分) =232+(2分) 20.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)∵23=EC AE ∴52=AC EC (1分) ∵DE//BC ∴52==AC EC AB BD (2分)又∵DF//A ∴52==AB BD BC BF (2分)(2)∵52=BC BF ∴53=BC FC∵a BC =,CF 与BC 方向相反 ∴53-=(2分) 同理:52=(2分)又∵→+=CF EC EF ∴→-=a b EF 5352(1分)21.(本题满分10分,第(1)小题5分,第(2)小题5分) 解:(1)∵CD 过圆心O,AC BC = ∴C D ⊥AB ,AB=2AD=2BD (2分) ∵CD =40,520=AC 又∵∠ADC=090 ∴2022=-=CD AC AD (2分)∴AB=2AD=40(1分)(2)设圆O 的半径为r ,则OD =40-r (1分) ∵BD =AD =20, ∠ODB=090∴222OB OD BD =+ ∴222)40(20r r =-+(1分) ∴r =25,OD =15 (2分) ∴532515sin ===∠OB OD ABO (1分) 22.(本题满分10分)解:过点B 作BE ⊥CD 与点E ,由题意可知∠DBE=045,∠DAC=060,CE=AB=16 (2分)设AC=x ,则x CD 3=,BE=AC=x (1分)∵163-=-=x CE CD DE (1分)∵0045,90=∠=∠DBE BED ∴BE=DE ∴163-=x x (2分)∴1316-=x (1分) ∴)13(8+=x (1分) ∴9.3738243≈+==x CD (1分)答: 商务楼CD 的高度为37.9米。
(1分) 23.(本题满分12分,第(1)小题6分,第(2)小题6分) 证明:(1)∵DF DE AD ⋅=2∴ADDFDE AD =∵EDA ADF ∠=∠∴ADF ∆∽EDA ∆(2分)∴DAE F ∠=∠(1分)又∵∠ADB=∠CDE ∴∠ADB+∠ADF =∠CDE+∠ADF即∠BDF =∠CDA (2分) ∴BFD ∆∽CAD ∆(1分) (2)∵BFD ∆∽CAD ∆∴ADDFAC BF =(2分) ∵AD DF DE AD =∴DEAD AC BF =(1分) ∵BFD ∆∽CAD ∆∴C B ∠=∠∴AC AB =(1分) ∴DEAD AB BF =∴AD AB DE BF ⋅=⋅. (2分) 24.(本题满分12分,每小题4分) 解:(1)由已知得A (-4,0),C (0,2)(1分) 把A 、C 两点的坐标代入c bx x y ++-=221得 ⎩⎨⎧=-=0482b C (1分) ∴⎪⎩⎪⎨⎧=-=223c b (1分) ∴223212+--=x x y (1分)(2)过点E 作EH ⊥AB 于点H 由上可知B (1,0)∵ABC ABE S S ∆∆=54∴OC AB EH AB ∙⨯=∙215421∴5854==OC EH (2分) ∴)58,54(-E ∴59154=+=HB (1分)∵090=∠EHB ∴895859cot ===∠EH HB DBA (1分)(3)∵DF ⊥AC ∴090=∠=∠AOC DFC①若CAO DCF ∠=∠,则CD//AO ∴点D 的纵坐标为2把y=2代入223212+--=x x y 得x=-3或x=0(舍去) ∴D (-3,2)(2分)②若ACO DCF ∠=∠时,过点D 作DG ⊥y 轴于点G ,过点C 作CQ ⊥DG 交x 轴于点Q∵090=∠=∠AOC DCQ ∴090=∠+∠=∠+∠CAO ACO ACQ DCF ∴CAO ACQ ∠=∠∴CQ AQ =设Q (m ,0),则442+=+m m ∴23-=m ∴)0,23(-Q易证:COQ ∆∽DCG ∆∴34232QO CO GC DG ===设D(-4t,3t+2)代入223212+--=x x y 得t=0(舍去)或者83=t∴)825,23(-D (2分)25.(本题满分14分,第(1)小题3分,第(2)小题6分,第(3)小题5分) 解:(1)∵矩形ABCD ∴090=∠=∠ABF BAD∴090=∠+∠ADB ABD ∵A 、P 、F 在一条直线上,且PF ⊥BD ∴090=∠BPA ∴090=∠+∠BAF ABD ∴BAF ADB ∠=∠ ∵2142tan ===∠AD AB ADB ∴21tan ==∠AB BF BAF ∴1=BF (2分) ∴1122121=⨯⨯=∙=∆BF AB S ABF(1分) (2)∵PF ⊥BP ∴090=∠BPF∴090=∠+∠PBF PFB ∵090=∠ABF ∴090=∠+∠ABP PBF ∴PFB ABP ∠=∠又∵∠BAP =∠FPE∴BAP ∆∽FPE ∆∴EFBPPF AB =(2分) ∵AD//BC ∴PBF ADB ∠=∠∴21tan tan =∠=∠ADB PBF 即21=BP PF ∵x BP -=52∴)52(21x PF -=(2分) ∴y xx-=-522522∴)52552(4)52(2<≤-=x x y (1分+1分) (3)15±(3分) 或514557-(2分)。