曲线拟合的最小二乘法

合集下载

第3章曲线拟合的最小二乘法计算方法

第3章曲线拟合的最小二乘法计算方法

最小二乘拟合,特别是多项式拟合,是最流行的数据处理 方法之一.它常用于把实验数据(离散的数据)归纳总结为经 验公式(连续的函数),以利于进一步的推演分析或应用.
1
结束
§3.2 线性拟合和二次拟合函数
1. 线性拟合
计 已知数据点为 ( xi , yi ), i 1,2,..., n
算 用直线 p( x) a bx作为近似曲线,均方误差为

i xi yi xi yi xi2 xi2yi xi3
xi4
0 3 5 15 9 45 27
81

1 5 2 10 25 50 125 625

2 6 1 6 36 36 216 1296

3 8 2 16 64 128 512 4096

4 10 4 40 100 400 1000 10000

Y ln y, A ln a Y A bx
8
i
xi
0
1
yi
Yi
15.3
2.7279
xi2
xiYi
1
2.7279
1
2
20.5
3.0204
4
6.0408

2
3
27.4
3.3105
9
9.9315

3
4
36.6
3.6000
16
14.4000

4
5
49.1
3.8939
25
19.4695

5
6
65.6
4
例1 设5组数据如下表,用一多项式对其进行拟合。
x 3 5 6 8 10

计算方法 第三章曲线拟合的最小二乘法20191103

计算方法 第三章曲线拟合的最小二乘法20191103

§2 多项式拟合函数
例3.1 根据如下离散数据拟合曲线并估计误差
x 1 23 4 6 7 8 y 2 36 7 5 3 2
解: step1: 描点
7
*
step2: 从图形可以看出拟
6 5
*
合曲线为一条抛物线:
4
y c0 c1 x c2 x2
3 2 1
* *
* * *
step3: 根据基函数给出法

18
定理 法方程的解是存在且唯一的。
证: 法方程组的系数矩阵为
(0 ,0 ) (1 ,0 )
G
(0
,1
)
(1 ,1 )
(0 ,n ) (1 ,n )
(n ,0 )
(
n
,
1
)
(n ,n )
因为0( x),1( x), ...,n( x)在[a, b]上线性无关,
所以 G 0,故法方程 GC F 的解存在且唯一。
第三章 曲线拟合的最小二乘法
2
最小二乘拟合曲线
第三章 曲线拟合的最小二乘
2021/6/21

3
三次样条函数插值曲线
第三章 曲线拟合的最小二乘
2021/6/21

4
Lagrange插值曲线
第三章 曲线拟合的最小二乘
2021/6/21

5
一、数据拟合的最小二乘法的思想
已知离散数据: ( xi , yi ), i=0,1,2,…,m ,假设我们用函
便得到最小二乘拟合曲线
n
* ( x) a*j j ( x) j0
为了便于求解,我们再对法方程组的导出作进一步分析。
第三章 曲线拟合的最小二乘

曲线拟合的最小二乘法问题

曲线拟合的最小二乘法问题
50
250
500
750
1000
1250
1500
2.幂函数拟合: T(x)=0.0410863 x1.14587 T(1000)=112.541
400 300 200 100
500
1000
1500
2000
2500
3000
应用实例: 上海机床厂为客户加工一个压轴,要求压轴边缘曲线 过下列各点,试设计压轴边缘曲线的方程 。
1.双曲线: (a>0)
1 ? a? b
y
x
2. 指数函数: y ? ae bx
3.指数函数: (a>0)
b
y ? ae x
4.对数函数: y ? a ? b ln x
5.幂函数: y ? axb
6.S曲线
1 y ? a ? be? x
例 现有一组测量数据如下表:
xi
0.0 0.5 1.0 1.5 2.0 2.5
6 15
2.70 36
16.24
7 10
2.302 49
16.11
8 10
2.302 64
18.420
9 5
1.6094 81
14.484
Sum
10
55
5
1.609 33.54
100
385
16.09 133.34
法方程组 ? 11b ? 55a ? 33.5479
??55 ? 385a ? 133.3486
??(? 1,? 0 )
??
(? 1,? 1 )
?
? ?
(?
1,? n
?
)
????a1
? ?
?? ??

最小二乘法拟合曲线求最大值

最小二乘法拟合曲线求最大值

最小二乘法拟合曲线求最大值
最小二乘法是一种拟合曲线的方法,它是通过优化平方误差最小化来找到拟合曲线的参数。

最小二乘法可以用来拟合各种类型的曲线,包括直线、多项式、指数和对数函数等。

如果要找到拟合曲线的最大值,可以通过以下步骤进行:
1. 根据数据点的坐标,使用最小二乘法找到最佳拟合曲线的参数。

这可以通过使用线性回归或多项式回归的方法来实现。

2. 使用找到的曲线参数,求曲线的导数。

导数表示曲线在每个点上的斜率。

3. 找到导数等于零的点。

这些点可能是拟合曲线的极值点,包括最大值和最小值。

4. 比较这些极值点的函数值,找到最大值。

需要注意的是,最小二乘法本身不能直接找到曲线的最大值,它只能通过拟合曲线函数的参数来间接推断最大值所在的位置。

因此,在找到最佳拟合曲线的参数后,还需要进行额外的导数计算和极值点分析才能找到实际的最大值点。

此外,如果数据点中存在噪声或异常值,最小二乘法可能会受到影响,导致拟合曲线得到的最大值并不准确。

在实际应用中,可能需要使用其他方法来处理这些问题。

曲线拟合的最小二乘法

曲线拟合的最小二乘法
2.6 曲线拟合的最小二乘法
插 值 含 义 的 图 像 表 示 :
Y
y pn (x )
插 值
X
《数值计算》课件 第四章 插值与拟合
拟合含义的图像表示:
Y
y p n (x )
曲线拟合
X
返回
《数值计算》课件 第四章 插值与拟合
Байду номын сангаас、直线拟合
假设所给数据点 ( xi , yi )( i 1, 2, , N )的分布 大致成一直线 .
yi
解之得
a 3.9374, b 7.4626 ,
因而拟合直线为 y 3.9374 7.4626 x
《数值计算》课件 第四章 插值与拟合
二、多项式拟合
问题 对于给定的一组数据 ( xi , yi )( i 1, 2, , m )求作n ( n m )次多项式 y aj x j ,
j 0 n
使总误差 j Q yi a j xi i 1 j 0
m n 2
为最小.
多 项 式 拟 合 问 题
上述拟合多项式的构造可归结为多元函数的极值问题 .
《数值计算》课件 第四章 插值与拟合
(1)最小二乘拟合多项式Pn ( x ) 的求解
利用多元函数的极值含义 (即由多元函数的极值的必要条件)可得 对
m
x
j i
yi
(j=0,1,…,n)
第四章 插值与拟合
m m m 具体化取 j=2 时所对应的等式为 : yi n m 1 x x i a0 i 0 m m i m m m i 03 i 0n 2 2 2 x m a m mx x a a x y x y 0 i 1 i n 1n i i i a1 i 2 i x xi i xi i 0 i 0 i i 0 0 i 0 i 0 i 0 i 0 这是关于系数 a 的线性方程组 a0 , a1 ,…, m n m m x in x in 1 x i2 n 写成矩阵形式为 a n m n i 0 i 0 xi yi i 0 i 0

标准曲线的最小二乘法拟合和相关系数

标准曲线的最小二乘法拟合和相关系数

标准曲线的最⼩⼆乘法拟合和相关系数标准曲线的最⼩⼆乘法拟合和相关系数(合肥⼯业⼤学控释药物研究室尹情胜)1 ⽬的⽤最⼩⼆乘法拟合⼀组变量(,,i=1-n)之间的线性⽅程(y=ax+b),表⽰两变量间的函数关系;(开创者:德国数学家⾼斯)⼀组数据(,,i=1-n)中,两变量之间的相关性⽤相关系数(R)来表⽰。

(开创者:英国统计学家卡尔·⽪尔逊)2 最⼩⼆乘法原理⽤最⼩⼆乘法拟合线性⽅程时,其⽬标是使拟合值()与实测值()差值的平⽅和(Q)最⼩。

式(1)3 拟合⽅程的计算公式与推导当Q最⼩时,;得到式(2)、式(3):式(2)式(3)由式(3)和式(4),得出式(4)和式(5):式(4)式(5)式(4)乘以n,式(5)乘以,两式相减并整理得斜率a:斜率(k=xy/xx,n*积和-和积)式(6)截距b的计算公式为公式(5),也即:截距b=(y-x)/n,差平均差)式(7)4 相关系数的意义与计算公式相关系数(相关系数的平⽅称为判定系数)是⽤以反映变量之间相关关系密切程度的统计指标。

相关系数(也称积差相关系数)是按积差⽅法计算,同样以两变量与各⾃平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。

相关系数r xy取值在-1到1之间。

r xy = 0时,称x,y不相关;| r xy | = 1时,称x,y完全相关,此时,x,y之间具有线性函数关系;| r xy | < 1时,X的变动引起Y的部分变动,r xy的绝对值越⼤,x的变动引起y的变动就越⼤,|r xy | > 0.8时称为⾼度相关,当0.5< | r xy|<0.8时称为显著相关,当0.3<| r xy |<0.5时,成为低度相关,当| r xy | < 0.3时,称为⽆相关。

(式(7)5 临界相关系数的意义5.1 临界相关系数中显著性⽔平(α)与置信度(P)的关系显著性⽔平取0.05,表⽰置信度为95%;取0.01,置信度就是99%。

excel拟合曲线用的最小二乘法

excel拟合曲线用的最小二乘法

Excel拟合曲线用的最小二乘法1. 介绍Excel作为一款常用的办公软件,被广泛应用于数据分析和处理,而拟合曲线是数据分析中常用的方法之一。

拟合曲线用的最小二乘法是一种常见的拟合方法,通过最小化数据点与拟合曲线之间的距离来找到最佳拟合曲线,从而对数据进行预测和分析。

在本文中,我将从深度和广度的角度来探讨Excel拟合曲线用的最小二乘法,带你深入探索这一主题。

2. 最小二乘法的原理在Excel中进行曲线拟合时,最小二乘法是一种常用的拟合方法。

其原理是通过最小化残差平方和来找到最佳拟合曲线。

残差是指每个数据点到拟合曲线的垂直距离,最小二乘法通过调整拟合曲线的参数,使得残差平方和最小化,从而得到最佳拟合曲线。

在Excel中,可以利用内置函数或插件来实现最小二乘法的曲线拟合,对于不同类型的曲线拟合,可以选择不同的拟合函数进行拟合。

3. Excel中的拟合曲线在Excel中进行拟合曲线时,首先需要将数据导入Excel,然后利用内置的数据分析工具或者插件来进行曲线拟合。

通过选择拟合函数、调整参数等操作,可以得到拟合曲线的相关信息,如拟合优度、参数估计值等。

可以根据拟合曲线的结果来对数据进行预测和分析,从而得到对应的结论和见解。

4. 个人观点与理解对于Excel拟合曲线用的最小二乘法,我认为这是一种简单而有效的数据分析方法。

它能够快速对数据进行拟合,并得到拟合曲线的相关信息,对于数据的预测和分析具有一定的帮助。

然而,也需要注意到拟合曲线并不一定能够准确描述数据的真实情况,需要结合实际背景和专业知识进行分析和判断。

在使用最小二乘法进行曲线拟合时,需要注意数据的可靠性和拟合结果的可信度,以避免出现不准确的结论和偏差的情况。

5. 总结通过本文的探讨,我们对Excel拟合曲线用的最小二乘法有了更深入的了解。

最小二乘法的原理、Excel中的实际操作以及个人观点与理解都得到了充分的展示和探讨。

在实际应用中,需要结合具体情况和专业知识来灵活运用最小二乘法进行曲线拟合,从而得到准确的分析和预测结果。

曲线拟合的线性最小二乘法及其MATLAB程序

曲线拟合的线性最小二乘法及其MATLAB程序

曲线拟合的线性最⼩⼆乘法及其MATLAB程序3.1 曲线拟合的线性最⼩⼆乘法及其MATLAB 程序例3.1.1 给出⼀组数据点),(i i y x 列⼊表3-1中,试⽤线性最⼩⼆乘法求拟合曲线,并估计其误差,作出拟合曲线.表3-1 例3.1.1的⼀组数据),(y x解(1)在MATLAB ⼯作窗⼝输⼊程序>> x=[-2.5 -1.7 -1.1 -0.8 0 0.1 1.5 2.7 3.6];y=[-192.9 -85.50 -36.15 -26.52 -9.10 -8.43 -13.12 6.50 68.04];plot(x,y,'r*'),legend('实验数据(xi,yi)')xlabel('x'), ylabel('y'),title('例3.1.1的数据点(xi,yi)的散点图')运⾏后屏幕显⽰数据的散点图(略).(3)编写下列MATLAB 程序计算)(x f 在),(i i y x 处的函数值,即输⼊程序>> syms a1 a2 a3 a4x=[-2.5 -1.7 -1.1 -0.8 0 0.1 1.5 2.7 3.6];fi=a1.*x.^3+ a2.*x.^2+ a3.*x+ a4运⾏后屏幕显⽰关于a 1,a 2, a 3和a 4的线性⽅程组fi =[ -125/8*a1+25/4*a2-5/2*a3+a4,-4913/1000*a1+289/100*a2-17/10*a3+a4,-1331/1000*a1+121/100*a2-11/10*a3+a4,-64/125*a1+16/25*a2-4/5*a3+a4,a4, 1/1000*a1+1/100*a2+1/10*a3+a4,27/8*a1+9/4*a2+3/2*a3+a4, 19683/1000*a1+729/100*a2+27/10*a3+a4, 5832/125*a1+324/25*a2+18/5*a3+a4]编写构造误差平⽅和的MATLAB 程序>> y=[-192.9 -85.50 -36.15 -26.52 -9.10 -8.43 -13.12 6.50 68.04];fi=[-125/8*a1+25/4*a2-5/2*a3+a4,-4913/1000*a1+289/100*a2-17/10*a3+a4,-1331/1000*a1+121/100*a2-11/10*a3+a4,-64/125*a1+16/25*a2-4/5*a3+a4, a4, 1/1000*a1+1/100*a2+1/10*a3+a4,27/8*a1+9/4*a2+3/2*a3+a4,19683/1000*a1+729/100*a2+27/10*a3+a4,5832/125*a1+324/25*a2+18/5*a3+a4];fy=fi-y; fy2=fy.^2; J=sum(fy.^2)运⾏后屏幕显⽰误差平⽅和如下J=(-125/8*a1+25/4*a2-5/2*a3+a4+1929/10)^2+(-4913/1000*a1+289/100*a2-17/10*a3+a4+171/2)^2+(-1331/1000*a1+121/100*a2-11/10*a3+a4+723/20)^2+(-64/125*a1+16/25*a2-4/5*a3+a4+663/25)^2+(a4+91/10)^2+(1/1000*a1+1/100*a2+1/10*a3+a4+843/100)^2+(27/8*a1+9/4*a2+3/2*a3+a4+328/25)^2+(19683/1000*a1+729/100*a2+27/10*a3+a4-13/2)^2+(5832/125*a1+324/25*a2+18/5*a3+a4-1701/25)^2为求4321,,,a a a a 使J 达到最⼩,只需利⽤极值的必要条件0=??ka J )4,3,2,1(=k ,得到关于4321,,,a a a a 的线性⽅程组,这可以由下⾯的MA TLAB 程序完成,即输⼊程序>> syms a1 a2 a3 a4J=(-125/8*a1+25/4*a2-5/2*a3+a4+1929/10)^2+(-4913/1000*a1+289/100*a2-17/10*a3+a4...+171/2)^2+(-1331/1000*a1+121/100*a2-11/10*a3+a4+723/20)^2+(-64/125*a1+16/25*a2-4/5*a3+a4+663/25)^2+(a 4+91/10)^2+(1/1000*a1+1/100*a2+1/10*a3+a4+843/100)^2+(27/8*a1+9/4*a2+3/2*a3+a4+328/25)^2+(19683/1000*a1+729/100*a2+27/10*a3+a4-13/2)^2+(5832/125*a1+324/25*a2+18/5*a3+a4-1701/25)^2;Ja1=diff(J,a1); Ja2=diff(J,a2); Ja3=diff(J,a3); Ja4=diff(J,a4);Ja11=simple(Ja1), Ja21=simple(Ja2), Ja31=simple(Ja3), Ja41=simple(Ja4),运⾏后屏幕显⽰J 分别对a 1, a 2 ,a 3 ,a 4的偏导数如下Ja11=56918107/10000*a1+32097579/25000*a2+1377283/2500*a3+23667/250*a4-8442429/625Ja21 =32097579/25000*a1+1377283/2500*a2+23667/250*a3+67*a4+767319/625Ja31 =1377283/2500*a1+23667/250*a2+67*a3+18/5*a4-232638/125Ja41 =23667/250*a1+67*a2+18/5*a3+18*a4+14859/25解线性⽅程组Ja 11 =0,Ja 21 =0,Ja 31 =0,Ja 41 =0,输⼊下列程序>>A=[56918107/10000, 32097579/25000, 1377283/2500, 23667/250; 32097579/25000, 1377283/2500, 23667/250, 67; 1377283/2500, 23667/250, 67, 18/5; 23667/250, 67, 18/5, 18];B=[8442429/625, -767319/625, 232638/125, -14859/25];C=B/A, f=poly2sym(C)运⾏后屏幕显⽰拟合函数f 及其系数C 如下C = 5.0911 -14.1905 6.4102 -8.2574f=716503695845759/140737488355328*x^3-7988544102557579/562949953421312*x^2+1804307491277693/281474976710656*x-4648521160813215/562949953421312故所求的拟合曲线为8.25746.410214.19055.0911)(23-+-=x x x x f .(4)编写下⾯的MATLAB 程序估计其误差,并作出拟合曲线和数据的图形.输⼊程序>> xi=[-2.5 -1.7 -1.1 -0.8 0 0.1 1.5 2.7 3.6];y=[-192.9 -85.50 -36.15 -26.52 -9.10 -8.43 -13.12 6.50 68.04];n=length(xi);f=5.0911.*xi.^3-14.1905.*xi.^2+6.4102.*xi -8.2574;x=-2.5:0.01: 3.6;F=5.0911.*x.^3-14.1905.*x.^2+6.4102.*x -8.2574;fy=abs(f-y); fy2=fy.^2; Ew=max(fy),E1=sum(fy)/n, E2=sqrt((sum(fy2))/n)plot(xi,y,'r*'), hold on, plot(x,F,'b-'), hold offlegend('数据点(xi,yi)','拟合曲线y=f(x)'),xlabel('x'), ylabel('y'),title('例3.1.1的数据点(xi,yi)和拟合曲线y=f(x)的图形')运⾏后屏幕显⽰数据),(i i y x 与拟合函数f 的最⼤误差E w ,平均误差E 1和均⽅根误差E 2及其数据点),(i i y x 和拟合曲线y =f (x )的图形(略).Ew = E1 = E2 =3.105 4 0.903 4 1.240 93.2 函数)(x r k 的选取及其MATLAB 程序例3.2.1 给出⼀组实验数据点),(i i y x 的横坐标向量为x =(-8.5,-8.7,-7.1,-6.8,-5.10,-4.5,-3.6,-3.4,-2.6,-2.5, -2.1,-1.5, -2.7,-3.6),纵横坐标向量为y =(459.26,52.81,198.27,165.60,59.17,41.66,25.92, 22.37,13.47, 12.87, 11.87,6.69,14.87,24.22),试⽤线性最⼩⼆乘法求拟合曲线,并估计其误差,作出拟合曲线.解(1)在MATLAB ⼯作窗⼝输⼊程序>>x=[-8.5,-8.7,-7.1,-6.8,-5.10,-4.5,-3.6,-3.4,-2.6,-2.5,-2.1,-1.5, -2.7,-3.6];y=[459.26,52.81,198.27,165.60,59.17,41.66,25.92,22.37,13.47, 12.87, 11.87,6.69,14.87,24.22];plot(x,y,'r*'),legend('实验数据(xi,yi)')xlabel('x'), ylabel('y'),title('例3.2.1的数据点(xi,yi)的散点图')运⾏后屏幕显⽰数据的散点图(略).(3)编写下列MATLAB 程序计算)(x f 在),(i i y x 处的函数值,即输⼊程序>> syms a bx=[-8.5,-8.7,-7.1,-6.8,-5.10,-4.5,-3.6,-3.4,-2.6,-2.5,-2.1,-1.5,-2.7,-3.6]; fi=a.*exp(-b.*x)运⾏后屏幕显⽰关于a 和b 的线性⽅程组fi =[ a*exp(17/2*b), a*exp(87/10*b), a*exp(71/10*b),a*exp(34/5*b), a*exp(51/10*b), a*exp(9/2*b), a*exp(18/5*b), a*exp(17/5*b), a*exp(13/5*b), a*exp(5/2*b), a*exp(21/10*b),a*exp(3/2*b), a*exp(27/10*b), a*exp(18/5*b)]编写构造误差平⽅和的MATLAB 程序如下>>y=[459.26,52.81,198.27,165.60,59.17,41.66,25.92,22.37,13.47,12.87, 11.87, 6.69,14.87,24.22];fi =[ a*exp(17/2*b), a*exp(87/10*b), a*exp(71/10*b), a*exp(34/5*b), a*exp(51/10*b), a*exp(9/2*b), a*exp(18/5*b),a*exp(17/5*b), a*exp(13/5*b), a*exp(5/2*b), a*exp(21/10*b), a*exp(3/2*b), a*exp(27/10*b), a*exp(18/5*b)];fy=fi-y;fy2=fy.^2;J=sum(fy.^2)运⾏后屏幕显⽰误差平⽅和如下J =(a*exp(17/2*b)-22963/50)^2+(a*exp(87/10*b)-5281/100)^2+(a*exp(71/10*b)-19827/100)^2+(a*exp(34/5*b)-828/5)^2+(a*exp(51/10*b)-5917/100)^2+(a*exp(9/2*b)-2083/50)^2+(a*exp(18/5*b)-648/25)^2+(a*exp(17/5*b)-2237/100)^2+(a*exp(13/5*b)-1347/100)^2+(a*ex p(5/2*b)-1287/100)^2+(a*exp(21/10*b)-1187/100)^2+(a*exp(3/2*b)-669/100)^2+(a*exp(27/10*b)-1487/100)^2+(a*exp(18/5*b)-1211/50)^2为求b a ,使J 达到最⼩,只需利⽤极值的必要条件,得到关于b a ,的线性⽅程组,这可以由下⾯的MA TLAB 程序完成,即输⼊程序>> syms a bJ=(a*exp(17/2*b)-22963/50)^2+(a*exp(87/10*b)-5281/100)^2+(a*exp(71/10*b)-19827/100)^2+(a*exp(34/5*b)-828/5)^2+(a*exp(51/10*b)-5917/100)^2+(a*exp(9/2*b)-2083/50)^2+(a*exp(18/5*b)-648/25)^2+(a*exp(17/5*b)-2237/100)^2+(a*exp(13/5*b)-1347/100)^2+(a*exp(5/2*b)-1287/100)^2+(a*exp(21/10*b)-1187/100)^2+ (a*exp(3/2*b )-669/100)^2+(a*exp(27/10*b)-1487/100)^2+(a*exp(18/5*b)-1211/50)^2;Ja=diff(J,a); Jb=diff(J,b);Ja1=simple(Ja), Jb1=simple(Jb),运⾏后屏幕显⽰J 分别对b a ,的偏导数如下Ja1 =2*a*exp(3*b)+2*a*exp(17*b)+2*a*exp(87/5*b)+2*exp(68/5*b)*a+2*exp(9*b)*a+2*a*exp(34/5*b)-669/50*exp(3/2*b)-1487/50*exp(27/10*b)-2507/25*exp(18/5*b)-22963/25*exp(17/2*b)-5281/50*exp(87/10*b)-19827/50*exp(71/10*b)-2237/50*exp(17/5*b)-1656/5*exp(34/5*b)-1347/50*exp(13/5*b)-5917/50*exp(51/10*b)-1287/50*exp(5/2*b )-2083/25*exp(9/2*b)-1187/50*exp(21/10*b)+4*a*exp(36/5*b)+2*a*exp(26/5*b)+2*a*exp(71/5*b)+2*a*exp(51/5*b)+2*a*exp(5*b)+2*a*exp (21/5*b)+2*a*exp(27/5*b)Jb1 =1/500*a*(2100*a*exp(21/10*b)^2+8500*a*exp(17/2*b)^2+6800*a*exp(34/5*b)^2-10035*exp(3/2*b)-40149*exp(27/10*b)-180504*exp (18/5*b)-3903710*exp(17/2*b)-459447*exp(87/10*b)-1407717*exp(71/10*b)-76058*exp(17/5*b)-1126080*exp(34/5*b)-35022*exp(13/5*b)-301767*exp(51/10*b)-32175*exp(5/2*b)-187470*exp(9/2*b)-24927*ex p(21/10*b)+7100*a*exp(71/10*b)^2+5100*a*exp(51/10*b)^2+4500*a*exp(9/2*b)^2+7200*a*exp(18/5*b)^2+3400*a*exp(17/5*b)^2+2600*a*exp(13/5*b)^2+2500*a*exp(5/2*b)^2+1500*a*exp(3/2*b)^2+2700*a*exp(27/10*b)^2+8700*a*exp(87/10*b)^2)⽤解⼆元⾮线性⽅程组的⽜顿法的MATLAB 程序求解线性⽅程组J a1 =0,J b1 =0,得a = b=2.811 0 0.581 6故所求的拟合曲线(7.13)为0811.2)(=x f e x 5816.0-.(4)编写下⾯的MATLAB 程序估计其误差,并做出拟合曲线和数据的图形.输⼊程序>> xi=[-8.5 -8.7 -7.1 -6.8 -5.10 -4.5 -3.6 -3.4 -2.6 -2.5-2.1 -1.5 -2.7 -3.6];y=[459.26 52.81 198.27 165.60 59.17 41.66 25.92 22.3713.47 12.87 11.87 6.69 14.87 24.22];n=length(xi); f=2.8110.*exp(-0.5816.*xi); x=-9:0.01: -1;F=2.8110.*exp(-0.5816.*x); fy=abs(f-y); fy2=fy.^2;Ew=max(fy),E1=sum(fy)/n, E2=sqrt((sum(fy2))/n), plot(xi,y,'r*'), hold on plot(x,F,'b-'), hold off,legend('数据点(xi,yi)','拟合曲线y=f(x)')xlabel('x'), ylabel('y'),title('例3.2.1的数据点(xi,yi)和拟合曲线y=f(x)的图形')运⾏后屏幕显⽰数据),(i i y x 与拟合函数f 的最⼤误差E w = 390.141 5,平均误差E 1=36.942 2和均⽅根误差E 2=106.031 7及其数据点),(i i y x 和拟合曲线y =f (x )的图形(略).3.3 多项式拟合及其MATLAB 程序例3.3.1 给出⼀组数据点),(i i y x 列⼊表3–3中,试⽤线性最⼩⼆乘法求拟合曲线,并估计其误差,作出拟合曲线.表3–3 例3.3.1的⼀组数据),(y x解(1)⾸先根据表3–3给出的数据点i i ,⽤下列MATLAB 程序画出散点图.在MATLAB ⼯作窗⼝输⼊程序>> x=[-2.9 -1.9 -1.1 -0.8 0 0.1 1.5 2.7 3.6];y=[53.94 33.68 20.88 16.92 8.79 8.98 4.17 9.1219.88];plot(x,y,'r*'), legend('数据点(xi,yi)')xlabel('x'), ylabel('y'),title('例3.3.1的数据点(xi,yi)的散点图')运⾏后屏幕显⽰数据的散点图(略).(3)⽤作线性最⼩⼆乘拟合的多项式拟合的MATLAB 程序求待定系数k a )3,2,1(=k .输⼊程序>> a=polyfit(x,y,2)运⾏后输出(7.16)式的系数a =2.8302 -7.3721 9.1382故拟合多项式为2138.91372.72830.2)(2+-=x x x f .(4)编写下⾯的MATLAB 程序估计其误差,并做出拟合曲线和数据的图形.输⼊程序>> xi=[-2.9 -1.9 -1.1 -0.8 0 0.1 1.5 2.7 3.6];y=[53.94 33.68 20.88 16.92 8.79 8.98 4.17 9.12 19.88];n=length(xi); f=2.8302.*xi.^2-7.3721.*xi+9.1382x=-2.9:0.001:3.6;F=2.8302.*x.^2-7.3721.*x+8.79;fy=abs(f-y); fy2=fy.^2; Ew=max(fy), E1=sum(fy)/n,E2=sqrt((sum(fy2))/n), plot(xi,y,'r*', x,F,'b-'),legend('数据点(xi,yi)','拟合曲线y=f(x)')xlabel('x'), ylabel('y'),title('例3.3.1 的数据点(xi,yi)和拟合曲线y=f(x)的图形')运⾏后屏幕显⽰数据),(i i y x 与拟合函数f 的最⼤误差E w ,平均误差E1和均⽅根误差E 2及其数据点(x i ,y i )和拟合曲线y =f (x )的图形(略).Ew = E1 = E2 =0.745 7, 0.389 2, 0.436 33.4 拟合曲线的线性变换及其MATLAB 程序例3.4.1 给出⼀组实验数据点),(i i y x 的横坐标向量为x =(7.5 6.8 5.10 4.53.6 3.4 2.6 2.5 2.1 1.5 2.7 3.6),纵横坐标向量为y =(359.26 165.60 59.17 41.66 25.92 22.37 13.47 12.87 11.87 6.69 14.87 24.22),试⽤线性变换和线性最⼩⼆乘法求拟合曲线,并估计其误差,作出拟合曲线.解(1)⾸先根据给出的数据点),(i i y x ,⽤下列MATLAB 程序画出散点图.在MATLAB ⼯作窗⼝输⼊程序>> x=[7.5 6.8 5.10 4.5 3.6 3.4 2.6 2.5 2.1 1.5 2.73.6];y=[359.26 165.60 59.17 41.66 25.92 22.37 13.47 12.87 11.87 6.69 14.87 24.22];plot(x,y,'r*'), legend('数据点(xi,yi)')xlabel('x'), ylabel('y'),title('例3.4.1的数据点(xi,yi)的散点图')运⾏后屏幕显⽰数据的散点图(略).(2)根据数据散点图,取拟合曲线为a y =e bx )0,0(≠>b a ,其中b a ,是待定系数.令b B a A y Y ===,ln ,ln ,则(7.19)化为Bx A Y +=.在MATLAB ⼯作窗⼝输⼊程序>> x=[7.5 6.8 5.10 4.5 3.6 3.4 2.6 2.5 2.1 1.5 2.73.6];y=[359.26 165.60 59.17 41.66 25.92 22.37 13.47 12.87 11.87 6.69 14.87 24.22];Y=log(y); a=polyfit(x,Y,1); B=a(1);A=a(2); b=B,a=exp(A)n=length(x); X=8:-0.01:1; Y=a*exp(b.*X); f=a*exp(b.*x);plot(x,y,'r*',X,Y,'b-'), xlabel('x'),ylabel('y')legend('数据点(xi,yi)','拟合曲线y=f(x)')title('例3.4.1 的数据点(xi,yi)和拟合曲线y=f(x)的图形')fy=abs(f-y); fy2=fy.^2; Ew=max(fy), E1=sum(fy)/n,E2=sqrt((sum(fy2))/n)运⾏后屏幕显⽰a y =e bx 的系数b =0.624 1,a =2.703 9,数据),(i i y x 与拟合函数f的最⼤误差Ew =67.641 9,平均误差E 1=8.677 6和均⽅根误差E 2=20.711 3及其数据点),(i i y x 和拟合曲线9703.2)(=x f e x 1624.0的图形(略).3.5 函数逼近及其MATLAB 程序最佳均⽅逼近的MATLAB 主程序function [yy1,a,WE]=zjjfbj(f,X,Y,xx)m=size(f);n=length(X);m=m(1);b=zeros(m,m); c=zeros(m,1);if n~=length(Y)error('X 和Y 的维数应该相同')endfor j=1:mfor k=1:mb(j,k)=0;for i=1:nb(j,k)=b(j,k)+feval(f(j,:),X(i))*feval(f(k,:),X(i));endendc(j)=0;for i=1:nc(j)=c(j)+feval(f(j,:),X(i))*Y(i);endenda=b\c;WE=0;for i=1:nff=0;for j=1:mff=ff+a(j)*feval(f(j,:),X(i));endWE=WE+(Y(i)-ff)*(Y(i)-ff);endif nargin==3return ;endyy=[];for i=1:ml=[];for j=1:length(xx)l=[l,feval(f(i,:),xx(j))];endyy=[yy l'];endyy=yy*a; yy1=yy'; a=a';WE;例3.5.1 对数据X 和Y , ⽤函数2,,1x y x y y ===进⾏逼近,⽤所得到的逼近函数计算在 6.5=x 处的函数值,并估计误差.其中X =(1 3 4 5 6 7 8 9); Y =(-11 -13 -11 -7 -1 7 17 29).解在MATLAB ⼯作窗⼝输⼊程序>> X=[ 1 3 4 5 6 7 8 9]; Y=[-11 -13 -11 -7 -1 7 17 29];f=['fun0';'fun1';'fun2']; [yy,a,WE]=zjjfbj(f,X,Y,6.5)运⾏后屏幕显⽰如下yy =2.75000000000003a =-7.00000000000010 -4.99999999999995 1.00000000000000WE =7.172323350269439e-027例3.5.2 对数据X 和Y ,⽤函数2,,1x y x y y ===,x y cos =,=y e x,xy sin =进⾏逼近,其中X =(0 0.50 1.00 1.50 2.00 2.50 3.00),Y =(0 0.4794 0.8415 0.9815 0.9126 0.5985 0.1645).解在MATLAB ⼯作窗⼝输⼊程序>> X=[ 0 0.50 1.00 1.50 2.00 2.50 3.00];Y=[0 0.4794 0.8415 0.9815 0.9126 0.5985 0.1645];f=['fun0';'fun1';'fun2';'fun3';'fun4';'fun5'];xx=0:0.2:3;[yy,a,WE]=zjjfbj(f,X,Y, xx), plot(X,Y,'ro',xx,yy,'b-')运⾏后屏幕显⽰如下(图略)yy = Columns 1 through 7-0.0005 0.2037 0.3939 0.5656 0.7141 0.8348 0.9236Columns 8 through 140.9771 0.9926 0.9691 0.9069 0.8080 0.6766 0.5191Columns 15 through 160.3444 0.1642a = 0.3828 0.4070 -0.3901 0.0765 -0.4598 0.5653 WE = 1.5769e-004即,最佳逼近函数为y=0.3828+0.4070*x-0.3901*x^2+0.0765*exp(x) -0.4598*cos(x) +0.5653*sin(x).。

曲线拟合的最小二乘法

曲线拟合的最小二乘法

一、曲线拟合是什么?曲线拟合也就是求一条曲线,使数据点均在离此曲线的上方或下方不远处, 它既能反映数据的总体分布,又不至于出现局部较大的波动, 能反映被逼近函数的特性,使求得的逼近函数与已知函数从总体上来说其偏差按某种方法度量达到最小。

设函数y=f(x)在m个互异点的观测数据为求一个简单的近似函数φ(x),使之“最好”地逼近f(x),而不必满足插值原则。

这时没必要取φ(xi) = yi, 而要使i=φ(xi)yi 总体上尽可能地小。

这种构造近似函数的方法称为曲线拟合,称函数y=φ(x)为经验公式或拟合曲线。

如下为一个曲线拟合示意图。

清楚什么是曲线拟合之后,我们还需要了解一个概念——残差。

曲线拟合不要求近似曲线严格过所有的数据点,但使求得的逼近函数与已知函数从总体上来说其偏差按某种方法度量达到总体上尽可能地小。

若令(1-1)则为残向量(残差)。

“使(1-1)尽可能地小”有不同的准则(1)残差最大值最小(2)残差绝对值和最小(绝对值的计算比较麻烦)(3)残差平方和最小(即最小二乘原则。

计算比较方便,对异常值非常敏感,并且得到的估计量具有优良特性。

)二、最小二乘法是什么?个人粗俗理解:按照最小二乘原则选取拟合曲线的方法,称为最小二乘法。

百度百科:最小二乘法(又称最小平方法)是一种数学优化技术。

它通过最小化误差的平方和寻找数据的最佳函数匹配。

利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。

最小二乘法还可用于曲线拟合。

其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。

三、求解最小二乘法(包含数学推导过程)我们以最简单的线性模型来解释最小二乘法。

什么是线性模型呢?监督学习中,如果预测的变量是离散的,我们称其为分类(如决策树,支持向量机等),如果预测的变量是连续的,我们称其为回归。

回归分析中,n个自变量,且因变量和自变量之间是线性关系,则称为一/多元线性回归分析。

python曲线拟合的最小二乘法

python曲线拟合的最小二乘法

python曲线拟合的最小二乘法最小二乘法是一种常用的曲线拟合方法。

它的核心思想是寻找一条曲线,使得曲线上的点到实际数据点的距离之和最小。

在Python中,可以使用scipy库中的optimize.curve_fit函数来实现最小二乘法的曲线拟合。

该函数接受两个参数:要拟合的函数和实际数据点。

首先,需要定义一个函数,表示要拟合的曲线形式。

然后,通过curve_fit函数传入该函数和实际数据点,即可得到最小二乘法的曲线拟合结果。

以下是一个简单的示例代码:```pythonimport numpy as npfrom scipy import optimizeimport matplotlib.pyplot as plt# 定义要拟合的曲线形式def func(x, a, b, c):return a * np.exp(-b * x) + c# 实际数据点xdata = np.array([0, 1, 2, 3, 4, 5])ydata = np.array([1, 2, 3, 4, 5, 6])# 曲线拟合params, params_covariance = optimize.curve_fit(func, xdata, ydata)# 拟合结果a, b, c = paramsprint("拟合参数:a =", a, ", b =", b, ", c =", c)# 画出拟合曲线和实际数据点plt.plot(xdata, ydata, 'bo', label='实际数据点')plt.plot(xdata, func(xdata, a, b, c), 'r-', label='拟合曲线') plt.xlabel('x')plt.ylabel('y')plt.legend()plt.show()```在这个示例代码中,我们定义了一个指数形式的曲线函数func,并使用实际数据点进行拟合。

最小二乘法拟合指数曲线

最小二乘法拟合指数曲线

最小二乘法拟合指数曲线在数学建模和数据分析中,最小二乘法是一种常用的数学方法,它常被用来求解拟合问题。

拟合问题的目标是找到一条曲线,使其与给定的数据点最为接近。

对于指数曲线的拟合,最小二乘法同样可以发挥作用。

首先,我们需要明确指数曲线的函数形式。

指数曲线一般可以用以下公式表示:y=ae^(bx),其中a和b都是常数,e是自然对数的底。

其次,最小二乘法的关键思想是找到使得拟合曲线与实际数据点之间的误差最小的参数值。

对于指数曲线的拟合,我们可以将误差定义为实际数据点与拟合曲线之间的垂直距离,即残差。

最小二乘法的目标是最小化所有数据点的残差的平方和。

为了求解最小二乘曲线拟合问题,我们首先需要构建残差函数。

对于给定的数据点(xi,yi),我们可以计算出对应的拟合值fi=ae^(bxi),然后计算残差ei=yi-fi。

然后我们需要最小化所有残差的平方和。

可以通过对残差函数进行求导,令导数为0,得到使得残差函数最小的参数值。

解得的参数值即为最小二乘法拟合指数曲线所需要的参数。

利用这些参数,我们可以得到拟合的指数曲线方程,并利用该方程进行预测和分析。

最后,我们需要评估拟合结果的好坏程度。

常用的评估指标包括平均绝对误差(MAE)、均方根误差(RMSE)等。

这些指标可以帮助我们了解拟合结果与实际数据之间的偏差程度,以及拟合模型的预测准确性。

综上所述,最小二乘法是一种有效的拟合方法,可以用于拟合指数曲线。

通过构建残差函数并最小化残差的平方和,我们可以求解出使得拟合曲线与实际数据点最为接近的参数值。

然后利用这些参数,我们可以得到拟合的指数曲线方程,并进行进一步的分析和预测。

当然,我们也需要在评估拟合结果时使用合适的指标来判断拟合的好坏程度。

通过合理地运用最小二乘法,我们可以更好地理解和应用指数曲线拟合问题。

数值分析论文--曲线拟合的最小二乘法

数值分析论文--曲线拟合的最小二乘法

曲线拟合的最小二乘法姓名:学号:专业:材料工程学院:材料科学与工程学院科目:数值分析曲线拟合的最小二乘法一、目的和意义在物理实验中经常要观测两个有函数关系的物理量。

根据两个量的许多组观测数据来确定它们的函数曲线,这就是实验数据处理中的曲线拟合问题。

这类问题通常有两种情况:一种是两个观测量x 与y 之间的函数形式已知,但一些参数未知,需要确定未知参数的最佳估计值;另一种是x 与y 之间的函数形式还不知道,需要找出它们之间的经验公式。

后一种情况常假设x 与y 之间的关系是一个待定的多项式,多项式系数就是待定的未知参数,从而可采用类似于前一种情况的处理方法。

在两个观测量中,往往总有一个量精度比另一个高得多,为简单起见把精度较高的观测量看作没有误差,并把这个观测量选作 x,而把所有的误差只认为是y的误差。

设 x 和 y 的函数关系由理论公式y=f(x;c1,c2,……cm)(0-0-1)给出,其中 c1,c2,……cm 是 m 个要通过实验确定的参数。

对于每组观测数据(xi,yi)i=1,2,……,N。

都对应于xy 平面上一个点。

若不存在测量误差,则这些数据点都准确落在理论曲线上。

只要选取 m 组测量值代入式(0-0-1),便得到方程组yi = f (x ;c1 ,c2 ,……cm)(0-0-2)式中 i=1,2,……,m.求 m 个方程的联立解即得 m 个参数的数值。

显然N<m 时,参数不能确定。

y 2 y 在 N>m 的情况下,式(0-0-2)成为矛盾方程组,不能直接用解方程的方法求得 m 个参数值,只能用曲线拟合的方法来处理。

设测量中不存在着系统误差,或者说已经修正,则 y 的观测值 yi 围绕着期望值 <f (x ;c1,c2,……cm)> 摆 动,其分布为正态分布,则 yi 的概率密度为p y i1 exp,式中i是分布的标准误差。

为简便起见,下面用 C 代表(c1,c2,……cm )。

最小二乘法曲线拟合原理

最小二乘法曲线拟合原理

最小二乘法曲线拟合原理最小二乘法曲线拟合(LeastSquaresCurveFitting,简称LSCF)是采用数学统计技术进行多元函数拟合所用的一种技术。

它可以快速、准确地根据已经给定的实验数据拟合出一条实验曲线,从而给出诸如拟合函数的系数值等信息。

因此,最小二乘法曲线拟合在各种科学、工程实验中有着广泛的应用。

最小二乘法曲线拟合的原理很简单,它是基于“最小化误差”的概念,即拟合出来的曲线应尽可能接近给定的实验数据,使实验数据与拟合函数之间的差距最小。

这就要求我们求出实验数据与拟合函数之间的差距,这一差距被称为拟合误差,也称为“残差”。

最小二乘法曲线拟合的基本思想就是使残差的平方和(即拟合误差的平方和)取得最小值,从而实现拟合函数接近实验数据的目的。

最小二乘法曲线拟合的求解流程主要是:首先确定拟合函数的形式,然后利用已经给定的实验数据,建立最小二乘拟合问题,即求解各系数的拟合关系,然后利用几何极值法或矩阵方法求解给定拟合函数的拟合系数值,最后就可以得到拟合函数的数学公式及其系数值了。

最小二乘法曲线拟合由于给出的实验数据精度不同和系数组合不同,可以曲线拟合许多不同的函数形式,数学模型复杂度从一次函数到高阶复合函数都可以拟合。

例如,它可以拟合出多项式函数、指数函数、对数函数、三次样条函数、双曲线函数等。

由于最小二乘法曲线拟合能够实现快速、准确地根据实验数据拟合出实验曲线,因此它在科学、工程实验中有着广泛的应用。

例如可以用它来估计经济预期的变化趋势,也可以用于关键的工艺参数的优化设计,也可以用于机械性能的预测,还可以应用于心理研究中,帮助心理学家了解人类心理活动的变化规律。

最小二乘法曲线拟合的最大优点在于曲线拟合的精度较高,可以得到较为精确的拟合结果,模型的复杂度也很强,可以拟合许多不同的函数形式,但其缺点也是与优点相对应的,可能会使拟合结果产生畸变,拟合精度也会受到实验数据的精度的影响。

综上,最小二乘法曲线拟合是一种重要的数学统计技术,它能够根据已经给定的实验数据拟合出接近实验数据的函数,广泛应用于科学、工程实验,从而可以深入探究实验过程背后的规律,帮助人们更好地理解实验结果,是科学研究中不可缺少的一种技术。

python曲线拟合的最小二乘法

python曲线拟合的最小二乘法

Python曲线拟合的最小二乘法引言在实际应用中,我们经常需要通过已知数据去拟合一条曲线,以便更好地理解数据的趋势和规律。

曲线拟合是一种常用的数据分析方法,而最小二乘法则是其中最常见和重要的一种技术手段。

本文将介绍如何使用Python进行曲线拟合,并着重讨论最小二乘法的应用和原理。

1. 什么是最小二乘法?最小二乘法是一种数学优化方法,用于确定一组数据和一个数学关系式之间的最优拟合曲线。

具体来说,对于给定的一组数据点,最小二乘法的目标是找到一个数学模型,使得该模型计算出的值与实际观测值之间的残差平方和最小。

2. 最小二乘法的原理考虑一个简单的情况,假设我们有一组数据点(x1, y1), (x2, y2), … , (xn, yn),我们想要用一条直线y = ax + b来拟合这些数据。

最小二乘法的目标是找到最优的参数a和b,使得拟合后的直线与数据点之间的残差平方和最小。

为了求解最优参数,可以通过最小化残差平方和的方式来进行。

具体来说,可以定义一个损失函数,即残差平方和的平均值,如下所示:J(a, b) = (1/n) * Σ(yi - (axi + b))^2其中,n表示数据点的个数,xi和yi分别表示第i个数据点的横坐标和纵坐标。

通过最小化这个损失函数,可以得到最优的参数a和b。

对于更复杂的情况,比如需要拟合高阶曲线,最小二乘法的原理类似,只是拟合模型不同。

还可以通过增加更多的参数来适应更复杂的曲线形状。

3. 使用Python进行最小二乘法曲线拟合在Python中,使用最小二乘法进行曲线拟合非常方便,可以使用scipy库的optimize模块中的curve_fit函数来实现。

我们需要导入必要的库:import numpy as npfrom scipy.optimize import curve_fitimport matplotlib.pyplot as plt我们可以定义拟合的数学模型。

以拟合一条指数函数为例,定义一个指数函数的模型:def func(x, a, b, c):return a * np.exp(-b * x) + c接下来,我们可以生成一组测试数据:x = np.linspace(0, 4, 50)y = func(x, 2.5, 1.3, 0.5)使用curve_fit函数进行曲线拟合:params, params_covariance = curve_fit(func, x, y)我们可以绘制原始数据和拟合曲线的图像:plt.plot(x, y, 'bo', label='Original Data')plt.plot(x, func(x, params[0], params[1], params[2]), 'r-', label='Fitted Curv e')plt.legend()plt.show()4. 个人观点和总结最小二乘法在数据分析和曲线拟合中被广泛应用,其原理简单而有效。

最小二乘法曲线拟合_原理及matlab实现

最小二乘法曲线拟合_原理及matlab实现

曲线拟合(curve-fitting ):工程实践中,用测量到的一些离散的数据},...2,1,0),,{(m i y x i i =求一个近似的函数)(x ϕ来拟合这组数据,要求所得的拟合曲线能最好的反映数据的基本趋势(即使)(x ϕ最好地逼近()x f ,而不必满足插值原则。

因此没必要取)(i x ϕ=i y ,只要使i i i y x -=)(ϕδ尽可能地小)。

原理:给定数据点},...2,1,0),,{(m i y x i i =。

求近似曲线)(x ϕ。

并且使得近似曲线与()x f 的偏差最小。

近似曲线在该点处的偏差i i i y x -=)(ϕδ,i=1,2,...,m 。

常见的曲线拟合方法:1.使偏差绝对值之和最小2.使偏差绝对值最大的最小3.使偏差平方和最小最小二乘法:按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。

推导过程:1. 设拟合多项式为:2. 各点到这条曲线的距离之和,即偏差平方和如下:3. 问题转化为求待定系数0a ...k a 对等式右边求i a 偏导数,因而我们得到了: .......4、 把这些等式化简并表示成矩阵的形式,就可以得到下面的矩阵:5. 将这个范德蒙得矩阵化简后可得到:6. 也就是说X*A=Y ,那么A = (X'*X)-1*X'*Y ,便得到了系数矩阵A ,同时,我们也就得到了拟合曲线。

MATLAB 实现:MATLAB 提供了polyfit ()函数命令进行最小二乘曲线拟合。

调用格式:p=polyfit(x,y,n)[p,s]= polyfit(x,y,n)[p,s,mu]=polyfit(x,y,n)x,y 为数据点,n 为多项式阶数,返回p 为幂次从高到低的多项式系数向量p 。

x 必须是单调的。

矩阵s 包括R (对x 进行QR 分解的三角元素)、df(自由度)、normr(残差)用于生成预测值的误差估计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

cii
i0
)
n
i0
cii
)
(0 , y)
(1
,
y
)
(n , y)
((10
,*)
,
*
)
(0 ,
(1,
y)
y)
(n
,
*
)
(n , y)
左乘向量C*的转置
(*,*) (*, y)
2020年6月15日星期一
YFNie@
10
误差估计表示
2 (* y,* y) (*,*) 2(*, y) ( y, y)
6 曲线拟合的最小二乘法
背景:
离散数据的特点
数据不准确 数据多,甚至是是大量的 数据采样一般基本上反映函数的基本性态
离散数据建模方法
插值法:经过离散点,高次插值不可靠,分段插值 不够光滑
曲线拟合:曲线符合离散点分布的基本轮廓,或符 合某理论规律,不要求曲线精确通过每一离散点。
2020年6月15日星期一
Th. Page 89,可行,不是最有效的)
2020年6月15日星期一
YFNie@
4
6.2 最小二乘法拟合模型的求解
问题的矩阵形式表述 法方程组 平方误差 法方程组系数矩阵(Gram矩阵)的表示 矛盾方程以及加号逆 举例 基于离散正交多项式的最小二乘拟合
2020年6月15日星期一
定理3.6 如果离散Gram矩阵是实正定对称矩阵, 则 向量 C * (c0* , c1* , , cn* )T使得二次函数I(C)取
最小值的充分必要条件是向量 C*是线性方程组
GnC=Y 的解向量.
Remark 1 当Gn是实对称正定矩阵时,det(Gn)0 , 定理中的线性方程组的解向量是存在惟一的, 此时最 小二乘曲线拟合问题有惟一的解函数. 称定理中的方 程组为线性空间上最小二乘问题的法方程组.
第j个节点的残差
max
范数:正数ωj是第j个采样点处r的权 。
切比雪夫意义下的曲线拟合
0 jm
j | rj |
min
最小二乘意义下的曲线拟合
m
r 2
jrj2 min
j0
2020年6月15日星期一
YFNie@
3
(拟合过程续)
总结
切比雪夫意义下的曲线拟合模型
YFNie@
5
最小二乘问题的矩阵形式表述
n
求 *(x) ci*i (x) =span0,1, ,n )使得 i0
r(*)
2 2
min
r ( )
2 2
min
m
jrj2 min
j0
ci R
m
j
n
cii
(x
j
)
y
j
2
j 0
i0
0in
min I (c0, c1,...,cn ) ci R 0in
(y,y) (* , * )
( y, y) (*, y)
( y, y) Y TC*
2020年6月15日星期一
YFNie@
11
离散Gram矩阵的进一步讨论
(i , k
行向量
)
m
j 0
j
i
(x
j
(i (x 0 ),i
)k (x j (x1 ),
) , i
m
离散内积 : ( f , g) j f (x j )g(x j ) j0
I (c0, c1,...,cn ) n cii y, n cii y
i0
i0
2020年6月15日星期一
YFNie@
6
最小二乘问题等价于
(矩阵表述续)
n
求 * (x) ci*i (x), 使 i0
2020年6月15日星期一1)
(1
,0
)
(1,1)
(n ,0 ) (n ,1)
(0 ,n (1,n
)
)
cc10**
(0 ,
(1,
y) y)
(n
,n
)
cn*
(n , y)
(0 ,
(1
,
(n ,
n
cii
)
i0 n
Y ((0, y),(1, y), , (n , y))T
(0,0 ) (0,1)
Gn
(1,0
)
(1,1)
(n ,0 ) (n ,1)
(0,n )
(1,n
)
(n ,n )
离散
Gram 矩阵
2020年6月15日星期一
YFNie@
8
法方程组
n
解函数 * (x) ci*i (x) i0
求 * (x) = (x; c0, c1, , cn ) : ci R,0 i n使得
r(*) min r( )
最小二乘意义下的曲线拟合模型
求 * (x) = (x; c0, c1, , cn ) : ci R,0 i n使得
r(*) 2
min
r( )
2
确定函数类的一种方法:多项式(简单,Weierstrass
I (c0* , c1* , , cn* )
min I (c0 , c1, , cn )
ci R 0in
I (c0 , c1 , , cn ) ( y, y)
n cii y, n cii y
i0
i0
(,) 2(, y) ( y, y)
nn
n
cic j (i, j ) 2 ci (i , y) ( y, y) CT GnC 2CTY ( y, y)
(x) eaxb ;
(x)
x axb
2020年6月15日星期一
YFNie@
2
(拟合过程续)
选择最好的曲线
依据某种标准选择一条“最好”的简单曲线作为离散数
据(
xi
,
yi
) m i0
的连续模型。
标准:拟合残差向量r的某种范数最小.
残差向量 r=(r0,r1,r…j ,rm)(Tx=j r;(cc00,,cc11,,…,cnn)) y j
i0 j0
i0
C (c0 ,c1, , cn )T
2020年6月15日星期一
Y ((0 , y), (1, y), , (n , y))T
YFNie@
7
最小二乘问题等价于
(矩阵表述续)
I (C) CTGnC 2CTY ( y, y) min
C (c0 ,c1, , cn )T
YFNie@
1
6.1 曲线拟合的过程
造型:通过作图分析或直接依据物理规律 选取合适的曲线类型,即拟合模型:
(x; c0 , c1, , cn )
•线性拟合模型:
待定参数数目n通常 远小于节点数目m.
(x) c00 (x) c11(x) cnn (x)
•非线性拟合模型:
相关文档
最新文档