用列举法求概率课件PPT
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等可能性事件
等可能性事件
等可能性事件的两个特征: 1.出现的结果有有限多个; 2.各结果发生的可能性相等;
等可能性事件的概率可以用列举法而求得。
.
练习:
1、 一个口袋内装有大小相等的1个红球和已 编有不同号码的3个黑球,从中摸出2个球. (1)共有多少种不同的结果? (2)摸出2个黑球有多种不同的结果? (3)摸出两个黑球的概率是多少?
12
3
4
5
6 第1个
解:由表可看出,同时投掷两个骰子,可能 出现的结果有36个,它们出现的可能性相等。
(1)满足两个骰子点数相同(记为事件A)的结果有6个
P( A) 6 1 36 6
(2)满足两个骰子点数和为9(记为事件B)的结果有4个
P(B) 4 1 36 9
(3)满足至少有一个骰子的点数为2(记为事件C)的结果有11个。
不漏地列出所有可能结果,通常采用 列表法 。
把两个骰子分别标记为第1个和第2个,列表如下:
第2个
6 1,6 2,6 3,6 4,6 5,6 6,6
5 1,5 2,5 3,5 4,5 5,5 6,5 4 1,4 2,4 3,4 4,4 5,4 6,4 3 1,3 2,3 3,3 4,3 5,3 6,3 2 1,2 2,2 3,2 4,2 5,2 6,2 1 1,1 2,1 3,1 4,1 5,1 6,1
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
解:由表中可以看出,在两堆牌中分别取一张,它可 能出现的结果有36个,它们出现的可能性相等 满足两张牌的数字之积为奇数(记为事件A) 的有(1,1)(1,3)(1,5)(3,1)(3,3)(3,5)(5,1)(5,3)(5,5) 这9种情况,所以
12
3
4
5
6 第1个
P(A) 14 7 36 18
“配紫色”游戏 要“玩”出水平
小颖为学校联欢会设计了一个“配紫色”游戏:下面是两 个可以自由转动的转盘,每个转盘被分成相等的几个扇形.
则将第1个数字能整除第2个数字事件记为事件A,满足情况的有(1,1), (2,1),(2,2),(3,1),(3,3),(4,1),(4,2),
(4,4),(5,1),(5,5),(6,1)(6,2),(6,3),(6,6)。
ຫໍສະໝຸດ Baidu第2个
6 1,6 2,6 3,6 4,6 5,6 6,6
5 1,5 2,5 3,5 4,5 5,5 6,5 4 1,4 2,4 3,4 4,4 5,4 6,4 3 1,3 2,3 3,3 4,3 5,3 6,3 2 1,2 2,2 3,2 4,2 5,2 6,2 1 1,1 2,1 3,1 4,1 5,1 6,1
用列举法求概率课件PPT下载
复习
必然事件;
在一定条件下必然发生的事件,
不可能事件;
在一定条件下不可能发生的事件
随机事件;
在一定条件下可能发生也可能不发生的事件,
概率的定义
一般地,如果在一次试验中,有n种可 能的结果,并且它们发生的可能性都 相等,事件A包含其中的m种结果,那 么事件A发生的概率P(A)=m/n
0≤P(A) ≤1. 必然事件的概率是1,不可能事件的概率是0.
问题1.掷一枚硬币,落地后会出现几种结果?
2种等可能的结果
问题2.抛掷一个骰子,它落地时向上的数有几种可 能?
6种等可能的结果
问题3.从分别标有1.2.3.4.5.的5根纸签中随机抽取 一根,抽出的签上的标号有几种可能?
5种等可能的结果
用列举法求概率
口袋中一红三黑共4个小球,一次从中取出两个小球, 求 “取出的小球都是黑球”的概率 直接列举 解:一次从口袋中取出两个小球时, 所有可能出现的 结果共6个,即 (红,黑1)(红,黑2)(红,黑3) (黑1,黑2)(黑1,黑3)(黑2,黑3) 且它们出现的可能性相等。 满足取出的小球都是黑球(记为事件A)的结果有3个, 即(黑1,黑2)(黑1,黑3)(黑2,黑3) , 则
P(C ) 11 36
如果把例5中的“同时掷两个骰子”改为 “把一个骰子掷两次”,所得的结果有变化 吗?
没有变化
思考:
小明和小亮做扑克游戏,桌面上放有两堆牌,分 别是红桃和黑桃的1,2,3,4,5,6,小明建议:我从红桃 中抽取一张牌,你从黑桃中取一张,当两张牌数字 之积为奇数时,你得1分,为偶数我得1分,先得 到10分的获胜”。如果你是小亮,你愿意接受这 个游戏的规则吗?
P(A)= 3 = 1 62
问题:利用分类列举法可以事件发生的各 种情况,对于列举复杂事件的发生情况还 有什么更好的方法呢?
例3.同时掷两个质地均匀的骰子,计算下列 事件的概率:
(1)两个骰子的点数相同; (2)两个骰子点数的和是9;
(3)至少有一个骰子的点数为2。
分析:当一次试验要涉及两个因素(例如掷两个 骰子)并且可能出现的结果数目较多时,为不重
P(A)=
总结经验: 当一次试验要涉及两个因素,并且可能出 现的结果数目较多时,为了不重不漏的列 出所有可能的结果,通常采用列表的办法
随堂练习 (基础练习) 1、一个袋子中装有2个红球和2个绿球,任意摸出一 球,记录颜色放回,再任意摸出一球,记录颜色放回,请 你估计两次都摸到红球的概率是________。
这个游戏对小亮和小明公 平吗?
你能求出小亮得分的概率吗?
用表格表示
红桃 1
2
3
4
5
6
黑桃
1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
2、某人有红、白、蓝三件衬衫和红、白、蓝三条 长裤,该人任意拿一件衬衫和一条长裤,求正好 是一套白色的概率_________。
3、在6张卡片上分别写有1—6的整数,随机的抽取 一张后放回,再随机的抽取一张,那么,第一次取出 的数字能够整除第2次取出的数字的概率是多少?
解:将两次抽取卡片记为第1个和第2个,用表格列出所有可 能出现的情况,如图所示,共有36种情况。
等可能性事件
等可能性事件的两个特征: 1.出现的结果有有限多个; 2.各结果发生的可能性相等;
等可能性事件的概率可以用列举法而求得。
.
练习:
1、 一个口袋内装有大小相等的1个红球和已 编有不同号码的3个黑球,从中摸出2个球. (1)共有多少种不同的结果? (2)摸出2个黑球有多种不同的结果? (3)摸出两个黑球的概率是多少?
12
3
4
5
6 第1个
解:由表可看出,同时投掷两个骰子,可能 出现的结果有36个,它们出现的可能性相等。
(1)满足两个骰子点数相同(记为事件A)的结果有6个
P( A) 6 1 36 6
(2)满足两个骰子点数和为9(记为事件B)的结果有4个
P(B) 4 1 36 9
(3)满足至少有一个骰子的点数为2(记为事件C)的结果有11个。
不漏地列出所有可能结果,通常采用 列表法 。
把两个骰子分别标记为第1个和第2个,列表如下:
第2个
6 1,6 2,6 3,6 4,6 5,6 6,6
5 1,5 2,5 3,5 4,5 5,5 6,5 4 1,4 2,4 3,4 4,4 5,4 6,4 3 1,3 2,3 3,3 4,3 5,3 6,3 2 1,2 2,2 3,2 4,2 5,2 6,2 1 1,1 2,1 3,1 4,1 5,1 6,1
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
解:由表中可以看出,在两堆牌中分别取一张,它可 能出现的结果有36个,它们出现的可能性相等 满足两张牌的数字之积为奇数(记为事件A) 的有(1,1)(1,3)(1,5)(3,1)(3,3)(3,5)(5,1)(5,3)(5,5) 这9种情况,所以
12
3
4
5
6 第1个
P(A) 14 7 36 18
“配紫色”游戏 要“玩”出水平
小颖为学校联欢会设计了一个“配紫色”游戏:下面是两 个可以自由转动的转盘,每个转盘被分成相等的几个扇形.
则将第1个数字能整除第2个数字事件记为事件A,满足情况的有(1,1), (2,1),(2,2),(3,1),(3,3),(4,1),(4,2),
(4,4),(5,1),(5,5),(6,1)(6,2),(6,3),(6,6)。
ຫໍສະໝຸດ Baidu第2个
6 1,6 2,6 3,6 4,6 5,6 6,6
5 1,5 2,5 3,5 4,5 5,5 6,5 4 1,4 2,4 3,4 4,4 5,4 6,4 3 1,3 2,3 3,3 4,3 5,3 6,3 2 1,2 2,2 3,2 4,2 5,2 6,2 1 1,1 2,1 3,1 4,1 5,1 6,1
用列举法求概率课件PPT下载
复习
必然事件;
在一定条件下必然发生的事件,
不可能事件;
在一定条件下不可能发生的事件
随机事件;
在一定条件下可能发生也可能不发生的事件,
概率的定义
一般地,如果在一次试验中,有n种可 能的结果,并且它们发生的可能性都 相等,事件A包含其中的m种结果,那 么事件A发生的概率P(A)=m/n
0≤P(A) ≤1. 必然事件的概率是1,不可能事件的概率是0.
问题1.掷一枚硬币,落地后会出现几种结果?
2种等可能的结果
问题2.抛掷一个骰子,它落地时向上的数有几种可 能?
6种等可能的结果
问题3.从分别标有1.2.3.4.5.的5根纸签中随机抽取 一根,抽出的签上的标号有几种可能?
5种等可能的结果
用列举法求概率
口袋中一红三黑共4个小球,一次从中取出两个小球, 求 “取出的小球都是黑球”的概率 直接列举 解:一次从口袋中取出两个小球时, 所有可能出现的 结果共6个,即 (红,黑1)(红,黑2)(红,黑3) (黑1,黑2)(黑1,黑3)(黑2,黑3) 且它们出现的可能性相等。 满足取出的小球都是黑球(记为事件A)的结果有3个, 即(黑1,黑2)(黑1,黑3)(黑2,黑3) , 则
P(C ) 11 36
如果把例5中的“同时掷两个骰子”改为 “把一个骰子掷两次”,所得的结果有变化 吗?
没有变化
思考:
小明和小亮做扑克游戏,桌面上放有两堆牌,分 别是红桃和黑桃的1,2,3,4,5,6,小明建议:我从红桃 中抽取一张牌,你从黑桃中取一张,当两张牌数字 之积为奇数时,你得1分,为偶数我得1分,先得 到10分的获胜”。如果你是小亮,你愿意接受这 个游戏的规则吗?
P(A)= 3 = 1 62
问题:利用分类列举法可以事件发生的各 种情况,对于列举复杂事件的发生情况还 有什么更好的方法呢?
例3.同时掷两个质地均匀的骰子,计算下列 事件的概率:
(1)两个骰子的点数相同; (2)两个骰子点数的和是9;
(3)至少有一个骰子的点数为2。
分析:当一次试验要涉及两个因素(例如掷两个 骰子)并且可能出现的结果数目较多时,为不重
P(A)=
总结经验: 当一次试验要涉及两个因素,并且可能出 现的结果数目较多时,为了不重不漏的列 出所有可能的结果,通常采用列表的办法
随堂练习 (基础练习) 1、一个袋子中装有2个红球和2个绿球,任意摸出一 球,记录颜色放回,再任意摸出一球,记录颜色放回,请 你估计两次都摸到红球的概率是________。
这个游戏对小亮和小明公 平吗?
你能求出小亮得分的概率吗?
用表格表示
红桃 1
2
3
4
5
6
黑桃
1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
2、某人有红、白、蓝三件衬衫和红、白、蓝三条 长裤,该人任意拿一件衬衫和一条长裤,求正好 是一套白色的概率_________。
3、在6张卡片上分别写有1—6的整数,随机的抽取 一张后放回,再随机的抽取一张,那么,第一次取出 的数字能够整除第2次取出的数字的概率是多少?
解:将两次抽取卡片记为第1个和第2个,用表格列出所有可 能出现的情况,如图所示,共有36种情况。