高惠璇多元统计分析习题答案
应用多元统计分析课后习题答案高惠璇
第三章 多元正态总体参数的检验
3-2 设X~Nn(μ,σ2In), A,B为n阶对称阵.
若AB =0 ,证明X′AX与X′BX相互独立.
证明的思路:记rk(A)=r. 因A为n阶对称阵,存在正交阵Γ,使得
Γ ′AΓ=diag(λ1,…,λr 0,..,0) 令Y=Γ′X,则Y~Nn(Γ′μ,σ2In),
(2x12
x22
2x1x2
22x1
14x2
65)
1 2 1 2
1
2
exp
1
212
2 2
(1
2
)
[
2 2
(
x1
1 ) 2
21 2(x1
1)(x2
2
)
2 1
(
x2
2
)
2
]
比较上下式相应的系数,可得:
1 2
2 2
1 2
2
1
2 1
1
1 2 1
2 1
1
2
1/
21
2 2
2
2
2 1
21 22 21 21
f (x; , ) a
a0 (2 ) p/ 2 |
(x )1
|1/ 2 ,当0 a
(x )
1
ba02
时,
其中 b2 2 ln[a(2 ) p/2 | |1/ 2 ] 2 ln[aa0 ] 0, 20
第二章 多元正态分布及参数的估计
因 0,的特征值记为1 2 p 0, i对应
3-1 设X~Nn(μ,σ2In), A为对称幂等 阵,且rk(A)=r(r≤n),证明
证明 因A为对称幂等阵,而对称幂等阵的
应用多元统计分析课后习题答案高惠璇第四章部分习题解答
其中β=(C'C)-1C'Y. 证明: Q( ) (Y C )(Y C ) ˆ C ˆ C )(Y C ˆ C ˆ C ) (Y C ˆ )(Y C ˆ ) ( ˆ )C C ( ˆ ) (Y C
ˆ) (1 R 2 ) ( y y ) 2 . ( 3 )残差平方和Q( i
i 1
13
第四章 回归分析
ˆ C(CC)1CY HY ˆ C 证明:(1)估计向量为 Y 1 n 1 ˆ 1 1 ˆ y ˆ i 1n Y 1n HY ( H 1n )Y y n i 1 n n n 1 1n Y y. n
解:样本的似然函数为
L(a, b, 2 )
1 2 2 2 exp [( y a ) ( y 2 a b ) ( y a 2 b ) ] 1 2 3 3 2 2 2 2 1
ˆ, 2 ) ˆ, b L(a
1 2 ˆ) 2 ( y a ˆ) 2 ] ˆ ˆ ˆ exp [( y a ) ( y 2 a b 2 b 2 3 3 2 2 1 2 2 1
3 似然比统计量的分子为
2
1 ˆ0 ( y1 y2 3 y3 ) a 11
ˆ0 , ˆ 0 ) (2 ) ( ˆ0 ) L( a
3 2
3 2 2
3 exp[ ]. 2
5
第四章 回归分析
似然比统计量为
2
ˆ0 , ˆ 0 ) ( L( a ˆ0 ) 2 ˆ, ˆ, b ˆ ) L( a
可得参数向量β和σ2的最大似然估计为:
ˆ (C C ) 1 C Y . 2 1 ˆ )(Y C ˆ) ˆ ( Y C n
应用多元统计分析课后习题答案高惠璇(第五章部分习题解答学习教案
第6页/共22页
7
第七页,共22页。
第五章 判别分析
解三:后验概率(gàilǜ)判别法, 计算样品x已知,属Gt的后验概率(gàilǜ):
P(t | x)
qt ft (x)
3
(t 1,2,3)
qi fi (x)
i 1
当样品(yàngpǐn)x=2.5时,经计算可得
P(1| x 2.5)
D22 (x) 1.5625 ln 22 2.9488 ,
D32 (x) 0.25 ln 1 0.25,
因样品到G1的广义(guǎngyì)平方距离最小,所以将 样品x=2.5 判归G1.
第5页/共22页
6 第六页,共22页。
第五章 判别分析
解二:利用定理5.2.1的推论(tuīlùqnt )f,t计(x算), (t 1,2,3)
当X (1)
2200时,
h1( X (1) ) h2 ( X (1) )
7.5 exp{125} 54
75.9229
1
因h1( X ) h2 ( X ), 故判X (1) G2.
当X (2)
1250 时,
h1( X (2) ) h2 ( X (2) )
7.5 exp{0}
7.5
1
因h1( X ) h2 ( X ), 故判X (2) G2.
解一:广义平方(píngfāng)距离判别法
样品X到Gt的广义平方(píngfāng)距离的计算
公式D为t2 ( X ) dt2 ( X ) g1(t) g2 (t),(t 1,2,3).
其中g 1 D12 (
(t) ln x) 1
|
2 t
|,
应用多元统计分析课后习题答案高惠璇第二章部分习题解答学习资料
1 2 [y ( 1 7 )2 (y 2 4 )2]
g(y1,y2)
设函数 g(y1, y2) 是随机向量Y的密度函数.
15
第二章 多元正态分布及参数的估计
(3) 随机向量
YYY12~N274,
I2
(4) 由于 XX X121011Y Y12CY
1 0 1 1 7 4 3 4 , 1 0 1 1 I2 1 0 1 1 1 1 2 1
e e d x e 2
2
1 2 (x 1 7 )2
9
第二章 多元正态分布及参数的估计
1 1 2(2x1 22x2 16 5 x1 2 1x4 14)91 2(x2x17)2
e e dx 2
2
2 1e 2 1 e dx 1 2(x1 28x1 1)6
1 2(x2x17)2 2
1(
1 e2
(22)(22)0
可得Σ的特征值 1 2 (1 )2 , 2 (1 ).
22
第二章 多元正态分布及参数的估计
λi (i=1,2)对应的特征向量为 1
1
l1
2 1 2
l1
2 1 2
由(1)可得椭圆方程为 2(1y 1 2)b22(1y 2 2)b21
其 b 2 中 2 la n ( 2 ) [ | |1 /2 ] 2 l2 n2 [ 1 2 a ]
解二:比较系数法 设 f(x 1,x2)2 1ex 1 2 p (2 x 1 2x2 2 2 x 1x2 2x 1 2 1x2 4 6) 5
2 1 2 11 2ex 2 p 1 2 2 2 1 (1 2)[2 2(x 1 1)2 2 1 2(x 1 1)x (2 2) 1 2(x2 2)2]
应用多元统计分析课后习题答案高惠璇(第四章部分习题解答)
可得
令
aˆ0111(y1y23y3)
ln L (a ˆ0 , 2
2 ) 2 3 2 2 (1 2 )2[y ( 1 a ˆ0 )2 ] 0
可得 ˆ2 1 3 (y 1 a ˆ0 )2 (y 2 a ˆ0 )2 (y 3 3 a ˆ0 )2d ˆ r0 2 f
似然比统计量的分子为
可编辑ppt 3
第四章 回归分析
令 ln 2 L 2 322 (1 2)2[y (1 a ˆ)2 ] 0
可得 ˆ 2 1 3 ( y 1 a ˆ ) 2 ( y 2 2 a ˆ b ˆ ) 2 ( y 3 a ˆ 2 b ˆ ) 2
似然比统计量的分母为
L(a ˆ,b ˆ,ˆ2)(2)2 3(ˆ2)2 3exp 3][.
解:模型(4.1.3)为 Y ~NCn(0,2In),
样本的似然函数为
L (, 2 ) (2) n 2 (2 ) n 2 e x 2 1 p 2( Y C )( Y C )
lnL(,2)ln2()n 2ln(2)n 22 12(YC)(YC) ln2()n 2ln(2)n 2可2编1辑p2pt(YY2YCCC) 11
i1
n
n
(yi y)2 (yˆi yˆ)2
(其中 yˆ1 n ni1
yˆi),
i1
i1
试证明:(1) yˆ y;
n
n
(2) R2 (yˆi y)2 (yi y)2;
第四章 回归分析
③ A(B-A)=O3×3 .由第三章§3.1的结论6知
YAY 与Y(BA)Y相互独 也立 就;是
ˆ02ˆ2与ˆ2相互独立.
由第三章§3.1的结论4知(H0:a=b成立时)
Y(B2A)Y~2(1,)因 , 12(Z0a)(BA)Z0a0 3(ˆ0 22ˆ2)Y(B2A)Y~2(1)
应用多元统计分析课后习题答案高惠璇部分习题解答(00004)市公开课金奖市赛课一等奖课件
[(
y1
aˆ0
)2
]
0
可得
ˆ
2
1 3
( y1
aˆ0 )2
( y2
aˆ0 )2
( y3
3aˆ0 )2
drf
ˆ
2 0
似然比统计量分子为
L(aˆ0
, ˆ 0 2
)
(2
)
3 2
(ˆ 0 2
)
3 2
exp[
3 2
].
第5页
5
第四章 回归分析
似然比统计量为
L(aˆ0 ,ˆ02 ) L(aˆ,bˆ,ˆ 2 )
第18页 18
第四章 回归分析
第19页 19
第四章 回归分析
等号成立 C(ˆ ) 0 (CC)1C • C(ˆ ) 0 ˆ.
第20页 20
第四章 回归分析
第21页 21
第四章 回归分析
第22页 22
第四章 回归分析
见附录P394定理7.2(7.5)式
第23页 23
第四章 回归分析
证实:(1)预计向量为 Yˆ Cˆ C(CC)1CY HY
yˆ
1 n
n i 1
yˆi
1 n
1n
Yˆ
1 n
1n
HY
1 n
(H1n )Y
1 n
1n
Y
y.
(因1n C张成的空间,这里有H1n 1n )
(2) 因 n ( yi y)( yˆi yˆ ) n ( yi yˆi yˆi y)( yˆi y)
0
ln
L
2
n
2
2
1
2( 2 )2
(Y
应用多元统计分析课后习题答案高惠璇(第二章部分习题解答
2
x12
22
x1
65
x12
14
x1
49)
1 2
(
x2
x1
7)2
e e dx2
2
1 e
1 2
(
x12
8
x1
16)
2
1
2
e dx
1 2
(
x2
x1
7
)
2
2
1 e
1 2
(
x1
4
)
2
2
X1 ~ N(4,1).
类似地有
f2 (x2 ) f (x1, x2 )dx1
1
e
1 4
(
x2
3)2
注意:由D(X)≥0,可知 (Σ1-Σ2) ≥0.
8
第二章 多元正态分布及参数的估计
2-11 已知X=(X1,X2)′的密度函数为
f
( x1 ,
x2 )
1
2
exp
1 2
(2 x12
x22
2 x1 x2
22 x1
14 x2
65)
试求X的均值和协方差阵.
解一:求边缘分布及Cov(X1,X2)=σ12
应用多元统计分析
第二章部分习题解答
第二章 多元正态分布及参数的估计
2-1 设3维随机向量X~N3(μ,2I3),已知
002,
A
0.5 0.5
1 0
00.5.5, d 12.
试求Y=AX+d的分布.
解:利用性质2,即得二维随机向量Y~N2(y,y),
其中:
2
第二章 多元正态分布及参数的估计
2-2 设X=(X1,X2)′~N2(μ,Σ),其中
应用多元统计分析课后习题答案高惠璇第七章习题解答
7-4 设总体X=(X1,…,Xp)′~Np(μ,Σ) (Σ>0),等概率密度
椭球为
(X-μ)′Σ-1(X-μ)=C2(C为常数).
试问椭球的主轴方成分分析
7-5 设3维总体X的协差阵为
试求总体主成分.
4 0 0
0 4 0
0 0 2
解:总体主成分为
Zi Xi(i1,2,3)
1
1
(2) 求X
(3) 试问当ρ取多大时才能使第一主成分的贡献率达95%以上.
解:
5
第七章 主成分分析
6
第七章 主成分分析
7-3 设p维总体X的协差阵为
21
1
1
(01).
(1)
Z1 1p(X1X2Xp);
(2) 试求第一主成分的贡献率.
7
第七章 主成分分析
解:
1
8
第七章 主成分分析
2
12
13 14
12 2
14 13
13 14 2
12
14
13
12 2
,
其中 1 21 31,421 4 21.3
试求X的主成分.
12
第七章 主成分分析
解:
13
第七章 主成分分析
7-8
14
第七章 主成分分析
15
第七章 主成分分析
7-9
16
第七章 主成分分析
主成分向量为
Z ( X 1 ,X 2 ,X 3 ) 或 Z ( X 2 ,X 1 ,X 3 )
三个主成分的方差分别为4,4,2.
10
第七章 主成分分析
7-6
设3维总体X的协差阵为
2 2
2 2
应用多元统计分析课后习题答案高惠璇三部分习题解答公开课一等奖优质课大赛微课获奖课件
max
0
L(0,0 )
max
L(
,
0
)
分子
|
1
20
|n/ 2
exp
1 2
n
( X ( )
1
0 )01( X ( )
0 )
|
1
20
|n/ 2
exp
1 2
n
tr[01
1
( X ( )
0 )( X ( )
0 )]
第17页 17
第三章 多元正态总体参数检查
Yr1
X BX
Y Γ BΓΓ
Y HY
(Yr
1
,,
Yn
)
H
22
Yn
由于Y1, …,Yr ,Yr+1 ,…,Yn互相独立,
故X′AX与X′BX互相独立.
第9页
9
第三章 多元正态总体参数检查
3-3 设X~Np(μ,Σ),Σ>0,A和B为p阶对称阵, 试证实 (X-μ)′A(X-μ)与(X-μ)′B(X-μ)互相独立
Np(μ,Σ)随机样本, X和Ax分别表示正态总体X样 本均值向量和离差阵,则由性质1有
Tx2 n(n 1)( X ) Ax1( X )
~ T 2 ( p, n 1).
令 Y(i) CX (i) d (i 1,..., n)
其中C是p p非退化常数矩阵, d是p 1常向量。
则 Y(i) ~ N p (C d,CC) (i 1,2,..., n)
max L(
, 0 )
max L(, ) ,
分子当ˆ X达最大,且最大值
L( X
, 0 )
应用多元统计分析课后习题答案高惠璇第二章部分习题解答
22 14
12
2 2
22
2 1
21 212
65
2
4211
22 22
22 14
12
4 3
13
第二章 多元正态分布及参数的估计
故X=(X1,X2)′为二元正态随机向量.且
E(
X
)
4 3
,
D(
X
)
1 1
21
解三:两次配方法
(1)第一次配方: 2x12 2x1x2 x22 (x1 x2 )2 x12
2
]
g( y1, y2 )
设函数 g( y1, y2 ) 是随机向量Y的密度函数.
15
第二章 多元正态分布及参数的估计
(3) 随机向量
Y
YY12
~
N2
7 4
,
I2
(4) 由于
X
X X
1 2
0 1
11
Y1 Y2
CY
0 1
11 74
34
,
0 1
11
I
2
0 1
11
1 1
2 2
X 2 ~ N (3,2).
10
第二章 多元正态分布及参数的估计
12 Cov( X1, X 2 ) E[( X1 E( X1))( X 2 E( X 2 )]
E[( X1 4)( X 2 3)]
(x1 4)(x2 3) f (x1, x2 )dx1dx2
令uu21
x1 x2
19
第二章 多元正态分布及参数的估计
2-17 设X~Np(μ,Σ),Σ>0,X的密度函数记为 f(x;μ,Σ).(1)任给a>0,试证明概率密度等高面
应用多元统计分析课后习题解答详解北大高惠璇(第二章部分习题解答)
2 2
X 2 ~ N (3,2).
10
第二章 多元正态分布及参数的估计
12 Cov( X1, X 2 ) E[( X1 E( X1))( X 2 E( X 2 )]
E[( X1 4)( X 2 3)]
(x1 4)(x2 3) f (x1, x2 )dx1dx2
令uu21
x1 x2
X
X X
(1) (2)
~
N2 p
(1) (2)
,
1 2
2 1
,
其中μ(i) (i=1,2)为p维向量,Σi (i=1,2)为p阶矩阵,
(1) 试证明X(1) +X(2)和X(1) -X(2) 相互独立.
(2) 试求X(1) +X(2) 和X(1) -X(2) 的分布.
解 :(1) 令
Y
2
x12
22
x1
65
x12
14
x1
49)
1 2
(
x2
x1
7)2
e e dx2
2
1 e
1 2
(
x12
8
x1
16)
2
1
2
e dx
1 2
(
x2
x1
7
)
2
2
1 e
1 2
(
x1
4
)
2
2
X1 ~ N(4,1).
类似地有
f2 (x2 ) f (x1, x2 )dx1
1
e
1 4
(
x2
3)2
4
第二章 多元正态分布及参数的估计
(2) 因
Y
X1 X1
应用多元统计分析课后习题答案详解北大高惠璇部分习题解答省名师优质课赛课获奖课件市赛课一等奖课件
4.7067
取a 1 A1( (1) (2) )
d
1 65 1381
3323 ,
则aAa
1,
且a满足 : Ba Aa ( d 2 ).
12
第五章 鉴别分析
判别效率(a) aBa 4.7067.
aAa
Fisher线性判别函数为u( X ) aX
1 89765
(32
X1
33X
2 判别准则为 判X G1 , 当W ( X ) 0,
判X G2 , 当W ( X ) 0, 试求错判概率P(2 |1)和P(1| 2).
解 : 记a 1 ( (1) (2) ),W ( X ) ( X )a是X的
线性函数,当X
G1时,W
(
X
)
~
N1
(1,
2 1
), 且
20
第五章 鉴别分析
20 20
时,
u
(
X
(1)
)
1 89765
(32,33)
20 20
4.3390
因u( X (1) ) 4.3390 u* , 判X (1) G2.
当X (1)
15 20
时,
u
(
X
(2)
)
1 89765
(32,33)1250
3.8050
因u( X (2) ) 3.8050 u* 判X (2) G1.
其中W ( X ) a( X *)
( X * )1( (1) (2) ) ,
* 1 ( (1) (2) ).
2 10
第五章 鉴别分析
5-4 设有两个正态总体G1和G2,已知(m=2)
(1)
1105, (2)
应用多元统计分析课后习题答案高惠璇第七章习题解答
04
习题4解答
题目
• 题目:在多元线性回归中,如果 一个自变量与其他自变量高度相 关,那么这个自变量是否应该被 包括在回归模型中?为什么?
解答
01
解答:在多元线性回归中,如果一个自变量与其他自变量 高度相关,那么这个自变量是否应该被包括在回归模型中 ,需要视具体情况而定。
解答
• 当$x < 0$时,$P(X \leq x) = \frac{1}{2}e^{x}$,所以$p(x) = \frac{1}{2}e^{x}$。
解答
• 接下来,我们计算期望值
• 当$x \geq 0$时,$E(X) = \int{0}^{\infty}xp(x)dx = \int{0}^{\infty}\frac{1}{2}xe^{-xdx} = \frac{1}{2}e^{-x}|_{0}^{\infty} = 0$。
• 因此,$E(X) = 0$。
01
03 02
解答
• 当$x \geq 0$时,$P(X^2 \leq x) = P(X \leq \sqrt{x}) = \frac{1}{2}e^{-\sqrt{x}}$,所以 $p_1(x) = \frac{1}{2}\sqrt{x}e^{\sqrt{x}}$。
答案
证明过程如上所述,结论 正确。
证明过程如上所述,结论 正确。
证明过程如上所述,结论 正确。
答案1
答案2
答案3
03
习题3解答
题目
题目:设随机变量$X$的 分布函数为$F(x) = begin{cases}
0 & x notin mathbf{R}
frac{1}{2}e^{-|x|} & x in mathbf{R}
高惠璇多元统计分析习题答案
第四章4-1 设⎪⎩⎪⎨⎧++=+-=+=,2,2,332211εεεb a y b a y a y ).,0(~323321I N σεεεε⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=(1)试求参数b a ,的最小二乘估计;(2)试导出检验b a H =:0的似然比统计量,并指出当假设成立时,这个统计量是分布是什么?解:(1)由题意可知.,,,211201321321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=εεεεβ b a y y y Y C 则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎪⎪⎭⎫ ⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==--321'1''1'211201************)(ˆy y y Y C C C β.ˆˆ)2(51)2(6132321⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-++ba y y y y y(2)由题意知,检验b a H =:0的似然比统计量为2322ˆ⎪⎪⎭⎫ ⎝⎛=σσλ 其中,])ˆ2ˆ()ˆˆ2()ˆ[(31ˆ2322212b a y b a y a y --++-+-=σ。
当0H 成立时,设0a b a ==,则⎪⎩⎪⎨⎧+=+=+=,3,,303202101εεεa y a y a y ,311⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=C 可得,ˆ)3y (111311311311)(ˆ0321321'1''1'ay y y y y Y C C C =++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎪⎪⎪⎭⎫ ⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==--β ],)ˆ3()ˆ()ˆ[(31ˆ20320220120a y a y ay -+-+-=σ因此,当假设0H 成立时,与似然比统计量λ等价的F 统计量及其分布为).1,1(~ˆˆˆ2202F F σσσ-=4-3 设Y 与321,,x x x 有相关关系,其8组观测数据见表4.5.表 4.5 观测数据序号 1x2x3xY1 38 47.5 23 66.02 41 21.3 17 43.0 3 34 36.5 21 36.0 4 35 18.0 14 23.0 5 31 29.5 11 27.06 34 14.2 9 14.07 29 21.0 4 12.0 83210.087.6(1)设εββββ++++=3322110x x x Y ,试求回归方程及决定系数2R 和均方误差2s 。
应用多元统计分析课后习题答案详解北大高惠璇(第五章部分习题解答)
特征向量时等号成立 .
又S 1B ( X (1) X (2) )( X (1) X (2) )S 1与
D 2 ( X (1) X (2) )S 1( X (1) X (2) )
有相同的特征值 .故1 D2;
18
第五章 判别分析
以下来验a就 证是D2对应的一个特征: 向量 S1BaS1(X(1) X(2))(X(1) X(2))S1(X(1) X(2))
应用多元统计分析
第五章部分习题解答
第五章 判别分析
5-1 已知总体Gi (m=1)的分布为: N((i),i2) (i=1,2) ,按
距离判别准则为(不妨设μ(1)>μ(2),σ1<σ2)
xx G G21,,若 若x**或 xx**,,
其中
解:
*
1(2) 1
2(1) 2
试. 求错判概率P(2|1)和P(1|2).
2
PU a PU b
(1) 2
(2) 1
(1) 1
(2) 2
.
.
(b) (a)
4
第五章 判别分析
5-2 设三个总体的分布分别为: G1为N(2,0.52), G2为
N(0,22),G3为N(3,12).试问样品x=2.5应判归哪一类? (1) 按距离准则; (2) 按Bayes准则 q1q2q31 3,L(j|i) 1 0,,ii jj
所以 q1f1(x)0.16,1类 3 似可得 q2f2(x)0.03,0q34f3(x)0.11,74
因0.1613>0.1174>0.0304,所以样品x=2.5判归G1.
7
第五章 判别分析
解三:后验概率判别法,
计算样品x已知,属Gt的后验概率:
应用多元统计分析课后习题答案高惠璇第七章习题解答共20页
第七章 主成分分析
17
第七章 主成分分析
7-10
18
第七章 主成分分析
77--1112
19
谢谢
解:
9
第七章 主成分分析
7-5 设3维总体X的协差阵为
试求总体主成分.
4 0 0
0 4 0
0 0 2
解:总体主成分为
Zi Xi(i1,2,3)
主成分向量为
Z ( X 1 ,X 2 ,X 3 ) 或 Z ( X 2 ,X 1 ,X 3 )
三个主成分的方差分别为4,4,2.
(01).
(1)
Z1 1p(X1X2Xp);
(2) 试求第一主成分的贡献率.
7
第七章 主成分分析
解:
1
8
第七章 主成分分析
7-4 设总体X=(X1,…,Xp)′~Np(μ,Σ) (Σ>0),等概率密度
椭球为
(X-μ)′Σ-1(X-μ)=C2(C为常数).
试问椭球的主轴方向是什么?
14 13
13 14 2
12
14
13
12 2
,
其中 1 21 31,421 4 21.3
试求X的主成分.
12
第七章 主成分分析
解:
13
第七章 主成分分析
7-8
14
第七章 主成分分析
15
第七章 主成分分析
7-9
16
10
第七章 主成分分析
7-6
设3维总体X的协差阵为
2 2
2 2
0
2
0 2 2
应用多元统计分析课后习题答案高惠璇(第六章习题解答)
0,
第六章 聚类分析
6-5 试从定义直接证明最长和最短距离法的单调性. 证明:先考虑最短距离法: ( L1) ( L1) D D 设第L步从类间距离矩阵 ij
D
( L1) pq
min D
( L1) pq
( L1) ij
故合并Gp和Gq为一新类Gr,这时第L步的并类距离:
0, p (1 )
0, q (1 ) np nr (1 ) nq nr
nq nr
0, ( 1)
p q (1 )
11
18
故可变类平均法具有单调性。
第六章 聚类分析
对于可变法,因
1 1 0, p 0, q 0, ( 1) 2 2 1 1 p q 11 2 2
证明 : (1)设d 和d 为距离, 令d d
(1) ( 2)
(1)
d .
( 2)
2
以下来验证d满足作为距离所要求的3个条件.
第六章 聚类分析
① ② ③
(2) 设d是距离,a >0为正常数.令d*=ad,显然有
① ②
d cd ij 0, 且仅当X (i ) X ( j )时d 0;
应用多元统计分析
第六章部分习题解答
第六章 聚类分析
6-1 证明下列结论: (1) 两个距离的和所组成的函数仍是距离; (2) 一个正常数乘上一个距离所组成的函数 仍是距离; (3)设d为一个距离,c>0为常数,则 d * d d c 仍是一个距离; (4) 两个距离的乘积所组成的函数不一定是 距离;
(6.2.2)
9
第六章 聚类分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章4-1 设⎪⎩⎪⎨⎧++=+-=+=,2,2,332211εεεb a y b a y a y ).,0(~323321I N σεεεε⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=(1)试求参数b a ,的最小二乘估计;(2)试导出检验b a H =:0的似然比统计量,并指出当假设成立时,这个统计量是分布是什么?解:(1)由题意可知.,,,211201321321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=εεεεβ b a y y y Y C 则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎪⎪⎭⎫ ⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==--321'1''1'211201************)(ˆy y y Y C C C β.ˆˆ)2(51)2(6132321⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-++ba y y y y y(2)由题意知,检验b a H =:0的似然比统计量为2322ˆ⎪⎪⎭⎫ ⎝⎛=σσλ 其中,])ˆ2ˆ()ˆˆ2()ˆ[(31ˆ2322212b a y b a y a y --++-+-=σ。
当0H 成立时,设0a b a ==,则⎪⎩⎪⎨⎧+=+=+=,3,,303202101εεεa y a y a y ,311⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=C 可得,ˆ)3y (111311311311)(ˆ0321321'1''1'ay y y y y Y C C C =++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎪⎪⎪⎭⎫ ⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==--β ],)ˆ3()ˆ()ˆ[(31ˆ20320220120a y a y ay -+-+-=σ因此,当假设0H 成立时,与似然比统计量λ等价的F 统计量及其分布为).1,1(~ˆˆˆ2202F F σσσ-=4-3 设Y 与321,,x x x 有相关关系,其8组观测数据见表4.5.表 4.5 观测数据序号 1x2x3xY1 38 47.5 23 66.02 41 21.3 17 43.0 3 34 36.5 21 36.0 4 35 18.0 14 23.0 5 31 29.5 11 27.06 34 14.2 9 14.07 29 21.0 4 12.0 83210.087.6(1)设εββββ++++=3322110x x x Y ,试求回归方程及决定系数2R 和均方误差2s 。
解:用sas 软件的编写程序如下:title ' "应用多元统计分析" p171 习题4-3';data xt43;input x1-x3 y; cards ;38 47.5 23 66.0 41 21.3 17 43.0 34 36.5 21 36.0 35 18.0 14 23.0 31 29.5 11 27.0 34 14.2 9 14.0 29 21.0 4 12.0 32 10.0 8 7.6 ;proc print ;run ;proc reg data =xt43; model y=x1-x3; run ;quit ; 运行结果如下:由结果可知:其回归方程为.6747.03313.12518.37267.106ˆ321x x x Y -++-=决定系数为 R 2=0.9909 均方误差为 S 2=(2.44158)2.习题五5-1 已知总体)1(=m G i 的分布为)2,1)(,(2)(=i N i i σμ,按距离判别准则为(不妨设21)2()1(,σσμμ<>)⎩⎨⎧≥≤∈<<∈,,,,**2**1μμμμx x G x x G x 或 若 若 其中 .,121221*211221*σσσμσμμσσσμσμμ--=++=)()()()( 试求错判概率)1|2(P 和)2|1(P 。
解:由题意,其错判概率为 )]()([1)1|2(1)1(*1)1(*σμμσμμ-Φ--Φ-=P)]()([11)1(2112211)1(121221σμσσσμσμσμσσσμσμ-++Φ----Φ-=)()()()()]()([121)1()2(12)2()1(σσμμσσμμ+-Φ---Φ-=),()(21)1()2(12)1()2(σσμμσσμμ+-Φ+--Φ=)]()(1[1)2|1(1)1(*1)1(*σμμσμμ-Φ+-Φ--=P)()(2)2(2112212)2(121221σμσσσμσμσμσσσμσμ-++Φ----Φ=)()()()()()(21)2()1(12)2()1(σσμμσσμμ+-Φ---Φ=)](1[)(121)1()2(12)1()2(\σσμμσσμμ+-Φ----Φ-=).()(12)1()2(21)1()2(σσμμσσμμ--Φ-+-Φ=5-2 设三个总体21,G G 和3G 的分布分别为)2,0(),5.0,2(22N N 和)1,3(2N 。
试问样品5.2=x 应判归哪一类?(1)按距离判别准则;(2)按贝叶斯判别准则(取⎩⎨⎧=≠====ji ji i j L q q q ,0,1)|(,31321)。
解:由题意(1)样品x 与三个总体21,G G 和3G 的马氏距离分别为 ,15.0)25.2()()(22212121=-=-=σμx x d,5625.12)05.2()()(22222222=-=-=σμx x d,25.01)35.2()()(22232323=-=-=σμx x d显然,{})()(),(),(min 23232221x d x d x d x d =,则3G x ∈,即样品5.2=x 应判归总体3G 。
(2)样品x 与三个总体21,G G 和3G 的贝叶斯距离分别为,3863.0)3863.1(1)l n ()()(212121-=-+=+=σx d x D ,9488.24ln 5625.1)ln()()(222222=+=+=σx d x D,25.01ln 25.0)ln()()(232323=+=+=σx d x D显然,{})()(),(),(min 21232221x D x D x D x D =,则1G x ∈,即样品5.2=x 应判归总体1G 。
5-4 设有两个正态总体1G 和2G ,已知)2(=m ,2520,1510)2()1(⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=μμ , ⎥⎦⎤⎢⎣⎡=∑⎥⎦⎤⎢⎣⎡=∑57-7-20,3212121821 先验概率21q q =,而75)2|1(,10)1|2(==L L 。
试问样品 ,2020)1(⎥⎦⎤⎢⎣⎡=X 及 ⎥⎦⎤⎢⎣⎡=2015)2(X 各判归哪一类?(2)按贝叶斯判别准则(假定⎥⎦⎤⎢⎣⎡=∑=∑3212121812)。
解:方法一(后验概率))1(11')1(10,1)(21)ln(μμ-∑-=q C,2245.4)ln(151032121218151021)ln(11'1-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=-q q )2(12')2(20,2)(21)ln(μμ-∑-=q C,9468.13)ln(252032121218252021)ln(11'1-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=-q q ,4259.1315103212121820201')1()1(111')1(=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=∑=--X C X μ,4630.2525203212121820201')1()2(122')1(=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=∑=--X C X μ,8056.1115103212121820151')2()1(111')2(=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=∑=--X C Xμ,5278.2125203212121820151')2()2(122')2(=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=∑=--X C X μ则4259.132245.4)ln()(11')1(0,1)1(1+-=+=q C XC X Y,2014.9)l n (1+=q4630.259468.13)ln()(12')1(0,2)1(2+-=+=q C XC XY,5162.11)ln(1+=q8056.112245.4)ln()(11')2(0,1)2(1+-=+=q C XC X Y,5811.7)l n (1+=q5278.219468.13)ln()(12')2(0,2)2(2+-=+=q C X C XY,5810.7)ln(1+=q显然,)()(),()()2(2)2(1)1(2)1(1X Y X Y X Y X Y ><,故,2)1(G X ∈)1()2(G X ∈。
方法二(平均损失) )(10)(75)1|2()()2|1()()()()()1(1)1(2)1(11)1(22)1(2)1(1)1(X f X f L X f q L X f q X h X h X W ===)()(21e x p {215)2()1(12')2()1(μμ-∑--=-XX)}()(21)1()1(12')1()1(μμ-∑-+-X X)25202020(32121218)25202020(21exp{5.71'⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-=- ,19229.75)}15102020(32121218)15102020(211'>=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡+- )(10)(75)1|2()()2|1()()()()()2(1)2(2)2(11)2(22)2(2)2(1)2(X f X f L X f q L X f q X h X h X W ===)()(21e x p {215)2()2(12')2()2(μμ-∑--=-X X)}()(21)1()2(12')1()2(μμ-∑-+-XX)25202015(32121218)25202015(21exp{5.71'⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-=-,15.7)}15102015(32121218)15102015(211'>=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡+- 故,2)1(G X ∈ )2()2(G X ∈。