组合数学PPT第一章排列与组合.

合集下载

组合数学课件-第一章:排列与组合

组合数学课件-第一章:排列与组合

积分性质
若G(x)是母函数,则它的不定积分∫G(x)dx (其中C为常数)也是母函数。
线性性质
若G1(x)和G2(x)是两个母函数,则它们的 线性组合k1*G1(x)+k2*G2(x)(k1和k2是 常数)也是母函数。
微分性质
若G(x)是母函数,则它的导数G'(x)也是母 函数。
乘积性质
若G1(x)和G2(x)是两个母函数,则它们的 乘积G1(x)*G2(x)也是母函数。
对称性
C(n,m) = C(n,n-m),即从n个元素中取出m个元 素的组合数与从n个元素中取出n-m个元素的组 合数相等。
递推关系
C(n,m) = C(n-1,m-1) + C(n-1,m),即当前组合 数等于前一个元素在组合中和不在组合中的两种 情况之和。
边界条件
C(n,0) = C(n,n) = 1,即从n个元素中取出0个或 n个元素的组合数均为1。
典型例题解析
例1
从10个数中任取4个数,求其中最大数为6的组合数。
解析
此问题等价于从6个数(1至6)中取4个数的组合数,即 C(6,4)。
例2
在所有的三位数中,各位数字之和等于10的三位数有 多少个?
解析
此问题可转化为从9个数字(1至9)中取3个数字的组合 数,即C(9,3),然后考虑三个数字的全排列,即3!,因此 总共有C(9,3) × 3!个符合条件的三位数。
组合与排列的关系
组合数可以看作是从n个元素中取出m个元素进行排 列的种数除以m的阶乘,即C(n,m)=A(n,m)/m!。 因此,在计算组合数时也可以利用排列数和容斥原 理来进行计算。
THANKS
隔板法
将n个相同的元素分成r组的方法数可以用母函数表示为 C(n+r-1,r),其中C表示组合数。

组合数学课件--第一章第三节组合意义的解释(共27张PPT)

组合数学课件--第一章第三节组合意义的解释(共27张PPT)
21
:应用举例
码b与码a之间的汉明距离要大于或等于2r+1.
如果存在a与a的距离小于r,那么a与b的距离大于r。 解:先将1到999的整数都看作3位数,例如2就看作是002,这样从000到999。
试求从1到1000的整数中,0出现的次数。 求方程的非负整数的解的个数. 因此不合法的0的个数为 码b与码a之间的汉明距离要大于或等于2r+1. 9 *Stirling公式 35 C(m,0)+C(m,1)+C(m,2)+…+C(m,m)=2m
6
1.6.3 线性方程的整数解的个数问题:
x1+x2+…+xn=b,n和b都是非负整数;
求方程的非负整数的解的个数. 允许重复的组合模型是r个无标志的球放进n个有 区别的盒子的情况:
方程的非负整数的个数与b个无标志的球放进n个 有区别的盒子的情况一一对应.
C(n+b-1,b)
7
1.7 组合的解释
m[C(n,0)+C(n,1)+…+C(n,r)]≤2n
m
2n
C(n,0)C(n,1)...C(n,r)
***
23
1.9 司特林(Stirling公式)
n!~ 2n(n)n
e
2n (n)n
lim n
e 1 n!
***
24
1.9 例题
例:求小于10000的正整数中含有数字1的数的个数。
解:小于10000的正整数是1到9999,如果我们 把不到4位的数前面补零,
{1,2},{1,3}, {2,3},
如果允许重复,多了
{1,1}, {2,2}, {3,3}。
组合模型:

排列组合ppt课件

排列组合ppt课件

排列的分类与计算方法
01
02
03
排列的定义
排列是指从给定个数的元 素中取出指定个数的元素 进行排序。
排列的分类
根据取出的元素是否重复 ,排列可分为重复排列和 不重复排列。
排列的计算方法
排列的计算公式为 nPr=n!/(n-r)!,其中n为 总元素个数,r为要取出的 元素个数。
组合的分类与计算方法
后再合并答案。
利用对称性
在某些问题中,可以利用对称性 来简化计算,例如在计算圆周率 时可以利用对称性来减少计算量

学会推理和猜测
在某些问题中,需要学会推理和 猜测,尝试不同的方法和思路,
以寻找正确的答案。
解题注意事项与易错点
注意细节
在解题过程中要注意细节,例如元素的重复、遗漏等问题,避免 出现错误。
组合的定义
组合是指从给定个数的元 素中取出指定个数的元素 进行组合,不考虑排序。
组合的分类
根据取出的元素是否重复 ,组合可分为重复组合和 不重复组合。
组合的计算方法
组合的计算公式为 nCr=n!/(r!(n-r)!),其中n 为总元素个数,r为要取出 的元素个数。
排列组合的复杂应用
排列与组合的应用
另一个应用是解决组合问题,例如,在从n个不同元素中 选出m个元素的所有组合的问题中,可以使用排列组合的 方法来解决。
排列组合在物理中的应用
排列组合在物理中也有着广泛的应用,其中最常见的是在量子力学和统计物理中 。例如,在量子力学中,波函数的对称性和反对称性可以通过排列组合来描述。
在统计物理中,分子和原子的分布和运动可以通过排列组合来描述。例如,在理 想气体中,分子的分布和运动可以通过组合数学的方法来描述。

组合数学课件--第一章第二节 允许重复的组合与不相邻的组合

组合数学课件--第一章第二节 允许重复的组合与不相邻的组合
11
一、序数法
怎样建立a(3)a(2)a(1)p(1)p(2)p(3)p(4)
a(3) 确定4的位置,a(2)确定3的位置
a(1)确定2的位置,剩余的位置就是1的位置 例3:021, 3 2 1 4 例3: 201, 2 4 1 3
12
一、序数法
求n个不同的数的全排列,主要有以下两步:
1、求出0到n!-1之间各数对应的序列{an-1, an-2,…, a1} m=an-1(n-1)!+an-2(n-2)!+…a2 * 2!+a1*1! 2、由{an-1, an-2,…, a1}确定排列序列p1p2…pn an-1,确定n的位置, an-2确定n-1的位置, ……………………… a1确定2的位置, 剩下的是1的位置。
9
一、序数法
推论 从0到n!-1的n!个整数与序列{an-1, an-2,…, a1} 一一对应。这里 0a1 1,0 a2 2, …, 0 an-1 n-1 算法: int a[]={0}; int m,n;// 0=<m<=n!-1 int b=m; int index =1; do { a[index]=b%(index+1); b = b/(index+1); index++; } while(b);
14
一、序数法
2、对于0,1,2,…,n!-1共n!个数求序列a[i]
for( i = 0; i < fact; i++ ) { int b=i, index =1; do { a[index]=b%(index+1); b = b/(index+1); index++; } while(b);

排列与组合ppt课件

排列与组合ppt课件
数。
从10个不同字母中取出 5个字母的所有排的个
数。
从8个不同数字中取出4 个数字的所有排列的个
数。
从n个不同元素中取出m 个元素的所有排列的个
数。
03
CHAPTER
组合的计算方法
组合的公式
组合的公式:C(n,k) = n! / (k!(n-k)!)
"!"表示阶乘,即n! = n * (n-1) * ... * 3 * 2 * 1。
3
排列组合在计算机科学中的应用
计算机科学中,排列组合用于算法设计和数据结 构分析。
排列与组合的未来发展
排列与组合理论的发展方向
随着数学和其他学科的发展,排列与组合理论将不断发展和完善,出现更多新 的公式和定理。
排列与组合的应用前景
随着科学技术的发展,排列与组合的应用领域将更加广泛,特别是在计算机科 学、统计学和信息论等领域的应用将更加深入。
在计算排列和组合时,使用的 公式和方法也不同。
02
CHAPTER
排列的计算方法
排列的公式
01
02
03
排列的公式
P(n, m) = n! / (n-m)!, 其中n是总的元素数量, m是需要选取的元素数量 。
排列的公式解释
表示从n个不同元素中取 出m个元素的所有排列的 个数。
排列的公式应用
适用于计算不同元素的排 列组合数,例如计算从n 个不同数字中取出m个数 字的所有排列的个数。
该公式用于计算从n 个不同元素中选取k 个元素(不放回)的 组合数。
组合的计算方法
直接使用组合公式进行计算。 当n和k较大时,需要注意计算的复杂性和准确性。
可以使用数学软件或在线工具进行计算。

排列组合的ppt课件免费

排列组合的ppt课件免费

题目2:从7个不同元素 中取出4个元素的组合数 ,其中某特定元素可以 不被取出。
答案1:$A_{7}^{4} A_{6}^{3} = 7 times 6 times 5 times 4 - 6 times 5 times 4 = 336$
答案2:$C_{7}^{4} C_{6}^{3} = frac{7 times 6 times 5 times 4}{4 times 3 times 2 times 1} - frac{6 times 5 times 4}{3 times 2 times 1} = 28$
排列组合问题的变种与拓展
排列组合问题的变种
如“带限制的不同元素的排列组合” 、“重复元素的排列组合”等,需要 进一步拓展学生的思路。
拓展方法
通过变种问题的解析,引导学生深入 思考排列组合问题,并掌握其变化规 律,为解决更复杂的问题打下基础。
04
CATALOGUE
排列组合的数学原理
排列组合的数学原理简介
数学教育的核心
排列组合是数学教育中的 重要内容,对于培养学生 的数学素养和解决问题的 能力具有重要意义。
解决排列组合问题的方法与技能
乘法原理
加法原理
乘法原理是解决排列组合问题的基础,通 过将各个独立事件的产生概率相乘,可以 计算出复合事件的产生概率。
加法原理用于计算具有互斥性的事件的概 率,通过将各个互斥事件的产生概率相加 ,可以得到总的产生概率。
解析方法
通过实例演示和讲授,帮助学生理解排列组合的基本概念和计算方法,同时引导 学生思考如何解决实际问题。
实际问题的排列组合解决方案
实际问题的排列组合
如“安排会议”、“排定演出节目单”、“安排生产计划” 等,需要结合具体情境进行分析。

排列组合ppt课件

排列组合ppt课件
排列组合基本公式 • 排列组合的应用 • 排列组合的扩展知识 • 练习题与答案解析
01
排列组合基本概念
排列的定义
排列的定义
从n个不同元素中取出m个元素( m≤n),按照一定的顺序排成一列, 称为从n个不同元素中取出m个元素的 排列。
组合公式推导
根据乘法原理,组合数等 于从n个不同元素中取出m 个元素的排列数除以这m 个元素的全排列数。
组合公式证明
通过数学归纳法证明组合 公式。
排列组合公式的推导与证明
排列组合公式的推导
通过数学归纳法和乘法原理,逐步推导出排列和组合的公式。
排列组合公式的证明
通过数学归纳法和反证法,证明排列和组合公式的正确性。
机器学习
03
在机器学习中,排列组合用于描述样本空间和事件发生的可能
性,例如在朴素贝叶斯分类器中。
在统计学中的应用
概率分布
在统计学中,排列组合用于描述概率分布和随机事件的组合数量 ,例如在二项分布、多项分布等概率分布中。
统计推断
在统计推断中,排列组合用于计算样本数据的可能性和置信区间 ,例如在贝叶斯推断和参数估计中。
从n个不同元素中取出m个元素的所有组合方式。
排列组合在概率论中的应用
总结词
排列组合在概率论中有广泛的应用,它们是概率论中的基本概念之一。
详细描述
在概率论中,排列组合被广泛应用于各种概率模型和随机事件的计算中。例如,在计算随机事件的概率时,可以 使用排列组合来计算样本空间的大小和基本事件的数量。在计算条件概率时,可以使用排列组合来计算条件事件 的基本事件的数量。此外,在概率分布的计算中,排列组合也起着重要的作用。
3
组合的特性
组合无方向性,即顺序不影响组合的唯一性。

组合数学课件--第一章:排列与组合

组合数学课件--第一章:排列与组合

1.3:排列与组合
1、排列的定义:设A={a1,a2,…,an}是n个不 同的元素的集合,任取A中r个元素按顺序排成一 列,称为从A中取r个的一个排列,r满足0≤r≤n。
(1) (2) (3) (…) (r)
从n个不同的球中取一个球放在第一个盒子中, 从余下的n-1个球中取一个球放在第二个盒子中, ………………………………… 从余下的n-(r-1)个球中取一个放在第r个盒子中。 根据乘法法则: 19 P(n,r)=n(n-1)…(n-r+1)=n!/(n-r)!
p2
2 a2
... pm
2 am
C (2a1 1,1) C (2a2 1,1) ... C (2am 1,1)
34
练习题
1.13、有n个不同的整数,从中取出两组来, 要求第1组的最小数大于另一组的最大数。 设取的第一组数有a个,第二组有b个,
要求第一组数中最小数大于第二组中最大的, 即只要取出一组m个数(设m=a+b),从大到小 取a个作为第一组,剩余的为第二组。 此时方案数为C(n,m)。 从m个数中取第一组数共有m-1中取法。 (m-1)C(n,m)
17
1.2 一一对应 1 2 5 任给一个序列B{b1,b2,b3,…,bn-2} 1、从A找到最小的不属于B的元素,设为a1,与b1连 接,从A中去掉a1,从B中去掉b1. 2、重复以上过程只到B为空,A中剩余两个 3、连接剩余的两个顶点。
*
18
树的顶点集合为12345
3 4
这棵树对应序列(2,3,2)
****
2
(4)哪些最优?
选用教材
组合数学
(第四版) 卢开澄 卢华明 著
清华大学出版社

《排列与组合自》课件

《排列与组合自》课件
组合可以看作排列的一个特例
当一个组合中的元素都是相邻的时候,这个组合可以看作是 一个排列。
05
排列与组合的扩展知识
排列与组合的数学原理
排列的定义
从n个不同元素中取出m个元素(m≤n),按照一定的顺 序排成一列,称为从n个元素中取出m个元素的排列。
排列的计算公式
$A_{n}^{m} = n(n-1)(n-2)...(n-m+1)$
03
组合的计算方法
组合的公式
组合的公式
C(n,k) = n! / (k!(n-k)!)
组合公式的推导
通过数学归纳法证明组合公式。
组合公式的应用
利用组合公式计算从n个不同元素中取出k个元素 的组合数。
组合的实例
01
02
03
组合实例1
从5个不同的人中选出3个 人组成一个小组,有多少 种不同的选法?
用P(n,m)表示从n个不同元素中取出m个元 素的排列数。
排列的计算公式
P(n,m)=n×(n-1)×…×(n-m+1)
排列的特性
与元素的顺序有关,与元素的取出方式有 关。
组合的定义
组合的定义
从n个不同元素中取出m个元素(m≤n) ,不考虑顺序,称为从n个不同元素中取
出m个元素的组合。
组合的计算公式
《排列与组合》PPT课件
目录
• 排列与组合的定义 • 排列的计算方法 • 组合的计算方法 • 排列与组合的区别与联系 • 排列与组合的扩展知识
01
排列与组合的定义
排列的定义
排列的定义
排列的表示
从n个不同元素中取出m个元素(m≤n), 按照一定的顺序排成一列,称为从n个不同 元素中取出m个元素的排列。

排列与组合ppt课件

排列与组合ppt课件

C34C11A22
C24C22
A
2 2
A22
)=84种.
探究提高 排列、组合综合题目,一般是将符合 要求的元素取出(组合)或进行分组,再对取出的 元素或分好的组进行排列.其中分组时,要注意 “平均分组”与“不平均分组”的差异及分类的标 准. 知能迁移3 已知10件不同产品中有4件是次品,现 对它们进行一一测试,直至找出所有4件次品为止. (1)若恰在第5次测试,才测试到第一件次品,第 十次才找到最后一件次品,则这样的不同测试方法 数是多少? (2)若恰在第5次测试后,就找出了所有4件次品, 则这样的不同测试方法数是多少?
女生或没有女生,故可用间接法进行,
∴有 C152 C15 C74 C57=596种选法. (5)分三步进行:
第一步:选1男1女分别担任两个职务为 C17·C15 ;
第二步:选2男1女补足5人有
C
2 6
·
C14
种;
第三步:为这3人安排工作有
A
3 3
.
由分步乘法计数原理共有
C17 C15 C62 C14 A33 =12 600种选法.
列数公式即可.但要看清是全排列还是选排列;有
限制条件的排列问题,常见类型是“在与不在”、
“邻与不邻”问题,可分别用相应方法.
解 (1)从7个人中选5个人来排列,

A
5 7
=7×6×5×4×3=2
520种.
(2)分两步完成,先选3人排在前排,有 A种37方法,
余下4人排在后排,有 种A方44法,故共有
所以共有2
C
4 8
+
C83
=196种选法.
9分
方法二 间接法:
从10人中任选5人有C150种选法.

高中数学排列与组合 PPT课件 图文

高中数学排列与组合 PPT课件 图文

例2 求证:
(1 )C m n 1 C m n 1 C m n 1 C m n 1 1 ;
(2 )C m n 1 C m n 1 2 C m n C m n 2 1 .
( 2)
Cm1 n

Cm1 n

2Cmn
(1) (Cmn C1 mnC1 mn )Cmn(1CmnCmnC11 mn 1)
abd bad dab adb bda dba
acd cad dac
你发现a了dc cda dca 什么b?cd cbd dbc
bdc cdb dcb
不写出所有组合,怎样才能知道组合的种数?
A 求3可 分 两 步 考 虑 :
求4P
3 4
可分两步考虑:
C 第 一 步 ,3( 4 ) 个 ; 4
A 第 二 步 ,3( 6 ) 个 ; 3
组合定义: 一般地,从n个不同元素中取出m(m≤n)个 元素并成一组,叫做从n个不同元素中取出m个元素的一 个组合.
共同点: 都要“从n个不同元素中任取m个元素”
不同点: 排列与元素的顺序有关, 而组合则与元素的顺序无关.
概念理解
思考一:ab与ba是相同的排列还是相同的组合?为什么? 思考二:两个相同的排列有什么特点?两个相同的组合呢?
的组合数 C
m n

第2步,求每一个组合中m个元素的全排列数A
m n

根据分步计数原理,得到: AnmCnmAm m
因此:C n mA A m n m mnn 1 n2 m !nm 1
这里m、nN,*且 mn,这个公式叫做组合
数公式.
概念讲解 从 n 个不同元中取出m个元素的排列数

第一章排列和组合

第一章排列和组合

31551 1234567
31551 2—3 1234567
1551 134567
⑦⑥
1—3
551 4—5 14567
51 1567
| 6 |4 ②—1 ③—2 ①—5 ⑤—3 ④
5—6 1 1—5
在组合计数时往往借助于一一对应实现模型转换。
比如要对A集合计数,但直接计数有困难,于是可 设法构造一易于计数的B,使得A与B一一对应。
2004深研
组合数学 第1章
25
1.3 模型转换——一一对应
例 在8名选手之间进行淘汰赛,最后产生 一名冠军,问要举行几场比赛?
9名选手?100名选手?
不含0小于10000的正整数有 9+92 +93 +94 =(9 5 -1)/(9-1)=7380个
含0小于10000的正整数有: 9999-7380=2619个
2004深研
组合数学 第1章
24
1.3 模型转换——一一对应
“一一对应”概念是一个在计数中极为基本的概念。 一一对应既是单射又是满射。
2004深研
组合数学 第1章
23
1.2 加法法则和乘法法则
例:求小于10000的含0的正整数的个数
注意:“含0”和“含1”不可直接套用。 0019含1但不含0。 (有许多类似的隐含的规定,要特别留神。)
解: 不含0的1位数有9 个,2位数有92 个, 3位数有93 个,4位数有94 个
(—nn-—r!)!
2004深研
组合数学 第1章
12
1.1 排列与组合——圆排列
从n个中取r个的圆排列的排列数
Q(n,r) = P(n,r) / r , 2≤r≤n
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
★〇〇〇★ 共有 (5 4) ( 20 19 18) P (5,2) P ( 20,3) 136800 种图案。
20位有7位代表,B单位有3位代表,排在 一列合影,要求 B 单位的人排在一起,问有多少 种不同的排列方案? 解 B单位的某一排列作为一个元素参加单位 A进 行排列,可得 8! 种排列。 B单位的3人共有 3!个排列, 故共有 8!3! 排列方案。
解 能整除n的正整数可以写为如下形式:
7 11 13 , 0 a1 3, 0 a2 2, 0 a1 4 故能整除n的正整数的个数为
4 3 5 60
a1 a2 a3
2018/10/11
8
1.1 基本计数法则
例 1.9 求从 a,b,c,d,e 这 5个字母中取 6个所组成的字符 串个数。要求 (1)第 1 个和第 6个字符必为子音字符; (2) 每一字符串必有两个母音字符,且两个母音字母 不相邻;(3) 相邻的两个子音字符必不相同。 解 符合要求的字符串有以下几种模式:
例1.6 求布尔函数 f ( x1 , x2 , , xn )的数目。
解 自变量 ( x1 , x2 , , xn ) 可能取值的个数为 设取值为 a1, , a
2n
2
n
则n个变元的布尔函数有
a1 a
f
个。
2n
2 22
2n
2018/10/11
7
1.1 基本计数法则

例 1.8 n 7 3 112 134 ,求能整除n的正整数 的个数。
2018/10/11 2
1.1基本计数法则

1.1 基本计数法则

加法法则:设事件A有m种产生方式,事件B有 n种产生方式,则“事件A或事件B”有m+n种产 生方式。
例. 一位学生想选修一门数学课程或一门生物 课程。若有4门数学课程和3门生物课程,则该 学生有4+3=7种不同的选课方式。

2018/10/11
2018/10/11 10
1.2 一一对应


定理( Cayley ) n 个有标号的顶点的树的数目等 n 2 n 于 。 例1.12 给定下列树
3 7 6
2
1
5
4
可得序列: 3,1,5,5,1。反之从序列3,1,5,5,1也可以构 造出上述树。
2018/10/11 11
1.3 排列
定义:从n个不同的元素中,取出r个按次序排成 一列,称为从这 n个元素中取 r个的一个排列,其 排列数记为 P ( n, r ) . 由定义显然有 (1) P ( n, r ) 0, ( r n) (2) P ( n,1) n, ( n 1)

n! P ( n, r ) n( n 1)( n r 1) , 0! 1 ( n r )!
当r=n时有, P ( n, n) n ( n 1)2 1 n!
2018/10/11 12
1.3 排列
例 1.13 由 5 种颜色的星状物, 20 种不同的花排成 如下的图案:两边是星状物,中间是 3 朵花,问 共有多少种这样的图案? 解 图案的形状为
2018/10/11 5
1.1 基本计数法则
例1.4 求长度为n的二元码的数目。 解 长度为n的二元码的形式为
a1a2 an , ai {0,1}, i 1, 2, , n
由乘法法则,长度为n的二元码的数目为
2 2 22 2n
2018/10/11
6
1.1 基本计数法则

2018/10/11
14
1.3 排列


例1.15 若例1.14中A单位的两人排在两端,B单位 的3人不能相邻,问有多少种不同的排列方案? 解 共有 7!(6 5 4) 604800 种方案。
2018/10/11
15
1.3 排列
例1.16 求20000到70000之间的偶数中由不同的数 字所组成的5位数的个数。 解 设所求的数的形式为 abcde 其中 2 a 6, e {0,2,4,6,8} (1)若 a {2, 4, 6 } ,这时e有4种选择,有 3 4 P (8,3) 4032 (2)若 a {3,5} ,这时e有5种选择,有
第1章 排列与组合
组合数学

组合数学是研究离散结构的存在、计数、分析和 优化的一门学科。 应用领域: 计算机科学、概率论、社会科学、生 物科学、信息论等。 参考书:


1. R.A.Rrualdi. Introductory Combinatorics
组合数学 机械工业出版社
2. 孙淑玲 许胤龙. 组合数学引论 中国科学技术大 学出版社
4
1.1 基本计数法则
例 1.3 求比 10000 小的正整数中含有数字 1 的数的 个数。
解 比10000小的正整数可以写为
a1a2a3a4 , 0 ai 9
的形式。
共有104-1=9999个
其中不含1的正整数有 94-1=6560个
所求正整数的个数为 9999-6560=3439个。
3
1.1基本计数法则

乘法法则:设事件A有m种产生方式,事件B有 n种产生方式,则“事件A与事件B”有mn种产 生方式。 例1.1 设一个符号由两个字符组成,第1个字符 由a,b,c,d,e组成,第2个字符由1,2,3组成,则由 乘法法则,该符号有5 3 15 种方式。

2018/10/11

所求的字符串个数为:3 23 33 648 个。
2018/10/11 9
1.2 一一对应
例 设某地的街道把城市分割成矩形方格,每个 方格叫做它的块。某甲从家中出发上班,向东要 走过m块,向北要走过n块,问某甲上班的路径有 多少条? y 解 问题可划为求右图从点 (m,n) (0,0)到(m,n)的路径数: 每一条从点(0,0)到(m,n)的路径与 一个由m个x和n个y的排列相对应 x (0,0) 所求路径数为: C ( m n, m)
2 5 P (8,3) 3360 共有 4032 3360 7392 个。
相关文档
最新文档