根与系数的关系-初中数学习题集含答案

合集下载

专题根与系数的关系含答案

专题根与系数的关系含答案

专题:一元二次方程根的判别式和根与系数的关系例1.已知关于x的方程mx2-2m-1x+m-2=0.1当m取何值时;方程有两个不相等的实数根;2若x1、x2为方程的两个不等实数根;且满足x12+x22-x1x2=2;求m的值.例2.已知关于x的方程x2-4mx+4m2-9=0.1求证:此方程有两个不相等的实数根;2设此方程的两个根分别为x1;x2;其中x1<x2.若2x1=x2+1;求m的值.例3.已知关于x的方程mx2+4-3mx+2m-8=0m>0.1求证:方程有两个不相等的实数根;2设方程的两个根分别为x1、x2x1<x2;若n=x2-x1-m;且点B m;n在x轴上;求m的值..例4.已知关于x的一元二次方程:x2-2m+1x+m2+5=0有两个不相等的实数根.1求m的取值范围;2若原方程的两个实数根为x1、x2;且满足x12+x22=|x1|+|x2|+2x1x2;求m的值.例5.已知关于x的方程x2-2k+1x+4k-=0.1求证:无论k取什么实数值;这个方程总有实数根;2能否找到一个实数k;使方程的两实数根互为相反数若能找到;求出k 的值;若不能;请说明理由.3当等腰三角形ABC的边长a=4;另两边的长b、c恰好是这个方程的两根时;求△ABC的周长.训练1.已知关于x的方程mx2-m+2x+2=0m≠0.1求证:方程总有两个实数根;2已知方程有两个不相等的实数根α;β;满足+=1;求m的值.2.已知一元二次方程x2-2x+m=01若方程有两个实数根;求m的范围;2若方程的两个实数根为x1和x2;且x1+3x2=3;求m的值.3若方程的两个实数根为x1和x2;且x12-x22=0;求m的值.3.已知关于x的方程x2+m-3x-m2m-3=01证明:无论m为何值方程都有两个实数根;2是否存在正数m;使方程的两个实数根的平方和等于26 若存在;求出满足条件的正数m的值;若不存在;请说明理由.4.已知关于x的一元二次方程x2-6x-k2=0k为常数.1求证:方程有两个不相等的实数根;2设x1、x2为方程的两个实数根;且2x1+x2=14;试求出方程的两个实数根和k的值.5.已知关于x的方程x2-2k-3x+k2+1=0有两个不相等的实数根x1、x2.1求k的取值范围;2若x1、x2满足|x1|+|x2|=2|x1x2|-3;求k的值.6.已知关于x的一元二次方程x2-m-2x+m-3=01求证:无论m取什么实数时;这个方程总有两个不相等的实数根;2如果方程的两个实数根为x1;x2;且2x1+x2=m+1;求m的值.7.已知关于x的一元二次方程a-1x2-5x+4a-2=0的一个根为x=3.1求a的值及方程的另一个根;2如果一个等腰三角形底和腰不相等的三边长都是这个方程的根;求这个三角形的周长.8.设x1;x2是关于x的一元二次方程x2+2ax+a2+4a-2=0的两实根;当a为何值时;x12+x22有最小值最小值是多少专题:一元二次方程根的判别式和根与系数的关系例1.解:1∵方程有两个不相等的实数根;例2.∴△=b2-4ac=-2m-12-4mm-2=4m+1>0;例3.解得:m>-;∵二次项系数≠0;∴m≠0;例4.∴当m>-且m≠0时;方程有两个不相等的实数根;例5.2∵x1、x2为方程的两个不等实数根;例6.∴x1+x2=;x1x2=;例7.∴x12+x22-x1x2=x1+x22-3x1x2=2-=2;例8.解得:m1=+1;m2=-+1舍去;∴m=+1.例9.例10.解:1∵△=-4m2-44m2-9=36>0;例11.∴此方程有两个不相等的实数根;例12.2∵x==2m±3;例13.∴x1=2m-3;x2=2m+3;例14.∵2x1=x2+1;∴22m-3=2m+3+1;例15.∴m=5.例16.例17.解:1∵△=4-3m2-4m2m-8;例18.=m2+8m+16=m+42例19.又∵m>0∴m+42>0即△>0例20.∴方程有两个不相等的实数根;例21.2∵方程的两个根分别为x1、x2x1<x2;例22.∴x1+x2=-;x1x2=;例23.n=x2-x1-m;且点B m;n在x轴上;例24.∴x2-x1-m=-m=-m=0; 例25.解得:m=-2;m=4;例26.∵m>0;∴m=4.例27..解:1∵方程x2-2m+1x+m2+5=0有两个不相等的实数根;例28.∴△=-2m+12-4m2+5=8m-16>0;解得:m>2.例29.2∵原方程的两个实数根为x1、x2;例30.∴x1+x2=2m+1;x1x2=m2+5.例31.∵m>2;例32.∴x1+x2=2m+1>0;x1x2=m2+5>0;例33.∴x1>0、x2>0.例34.∵x12+x22=-2x1x2=|x1|+|x2|+2x1x2;例35.∴4m+12-2m2+5=2m+1+2m2+5;即6m-18=0;例36.解得:m=3.例37.例38.证明:1∵△=2k+12-16k-=2k-32≥0;例39.∴方程总有实根;例40.解:2∵两实数根互为相反数;例41.∴x1+x2=2k+1=0;解得k=-0.5;例42.3①当b=c时;则△=0;例43.即2k-32=0;∴k=;例44.方程可化为x2-4x+4=0;∴x1=x2=2;而b=c=2;∴b+c=4=a不适合题意舍去;例45.②当b=a=4;则42-42k+1+4k-=0;例46.∴k=;例47.方程化为x2-6x+8=0;解得x1=4;x2=2;例48.∴c=2;C△ABC=10;例49.当c=a=4时;同理得b=2;∴C△ABC=10;例50.综上所述;△ABC的周长为10.例51.训练1.1证明:∵方程mx2-m+2x+2=0m≠0是一元二次方程;∴△=m+22-8m=m2+4m+4-8m=m2-4m+4=m-22≥0;∴方程总有两个实数根;2解:∵方程有两个不相等的实数根α;β;∴由根与系数的关系可得α+β=;αβ=;∵+=1;∴==1;解得m=0;∵m≠0;∴m无解.2.解:1∵方程x2-2x+m=0有两个实数根;∴△=-22-4m≥0;解得m≤1;2由两根关系可知;x1+x2=2;x1x2=m;解方程组;解得;∴m=x1x2=×=;3∵x12-x22=0;∴x1+x2x1-x2=0;∵x1+x2=2≠0;∴x1-x2=0;∴方程x2-2x+m=0有两个相等的实数根;∴△=-22-4m=0;解得m=1.3.1证明:∵关于x的方程x2+m-3x-m2m-3=0的判别式△=m-32+4m2m-3=9m-12≥0;∴无论m为何值方程都有两个实数根;2解:设方程的两个实数根为x1、x2;则x1+x2=-m-3;x1×x2=-m2m-3;令x12+x22=26;得:x1+x22-2x1x2=m-32+2m2m-3=26;整理;得5m2-12m-17=0;解这个方程得;m=或m=-1;所以存在正数m=;使得方程的两个实数根的平方和等于26.4.1证明:在方程x2-6x-k2=0中;△=-62-4×1×-k2=4k2+36≥36;∴方程有两个不相等的实数根.2解:∵x1、x2为方程的两个实数根;∴x1+x2=6①;x1x2=-k2;∵2x1+x2=14②;联立①②成方程组;解之得:;∴x1x2=-k2=-16;∴k=±4.5.解:1∵原方程有两个不相等的实数根;∴△=-2k-32-4k2+1=4k2-12k+9-4k2-4=-12k+5>0;解得:k<;2∵k<;∴x1+x2=2k-3<0;又∵x1x2=k2+1>0;∴x1<0;x2<0;∴|x1|+|x2|=-x1-x2=-x1+x2=-2k+3;∵|x1|+|x2|=2|x1x2|-3;∴-2k+3=2k2+2-3;即k2+k-2=0;∴k1=1;k2=-2;又∵k<;∴k=-2.6.解:1∵△=m-22-4×m-3=m-32+3>0;∴无论m取什么实数值;这个方程总有两个不相等的实数根;2解:x1+x2=m-2;2x1+x2=x1+x1+x2=m+1;∴x1=m+1+2-m=3;把x1代入方程有:9-3m-2+m-3=0解得m=.7.解:1将x=3代入方程中;得:9a-1-15+4a-2=0;解得:a=2;∴原方程为x2-5x+6=x-2x-3=0;解得:x1=2;x2=3.∴a的值为2;方程的另一个根为x=2.2结合1可知等腰三角形的腰可以为2或3;∴C=2+2+3=7或C=3+3+2=8.∴三角形的周长为8或7.8..解:∵△=2a2-4a2+4a-2≥0;∴又∵x1+x2=-2a;x1x2=a2+4a-2.∴x12+x22=x1+x22-2x1x2=2a-22-4.设y=2a-22-4;根据二次函数的性质.∵∴当时;x12+x22的值最小.此时;即最小值为.。

关于根与系数关系的题及答案

关于根与系数关系的题及答案

一、基本知识原理设一元二次方程ax2+bx+c=0(a≠0)的两个根分别为x1 ,x2 ,则有根与系数的关系:x1 +x2 = -(b/a);x1 x2 =c/a ;根与方程的关系:ax12+bx1+c=0 ,ax22+bx2+c=0 。

二、解题方法与策略对于中考数学中这种常见填空题型,出题方式一般是,条件中直接告诉方程有两个根,但通常不会告诉这两个根的具体值,就算你用求根公式可以解出根的具体值,看起来非常繁琐,也不利于求解。

所以,对于这种题目我们的解题方法与策略是:(1)运用根与系数的关系,先求出方程两个根的和与积;(2)对方程进行适当变形,使二次项转化为一次项或常数;或对所求代数表达式进行适当的变形,使其变为含有两根的和或积的形式;(3)代入两个根的和与积,或者代入根与方程的关系,进行计算,问题便迎刃而解。

三、例题详解例1、已知a,b是一元二次方程x2﹣2x﹣2020=0的两个根,则a2+2b﹣3的值等于解:由题意可知:a2﹣2a=2020,(对方程进行适当的变形,使高次项转化为一次项或常数)由根与系数的关系可知:a+b=2,(根据方程求出两个根的和)∴原式=a2﹣2a+2a+2b﹣3 (对所求代数表达式进行适当的变形,使表达式中含有两根之和的形式;)=2020+2(a+b)﹣3=2020+2×2﹣3=2021例2、一个直角三角形的两条直角边的长度恰好是方程2x2-8x+7=0的两个根,则这个直角三角形的斜边长是.例4、已知关于x的方程x2-4x+k-1=0的两根之差等于6,那么k .解:设方程的两根为a、b,∴a+b=4 , ab = k-1(a﹣b)2=(a+b)2﹣4ab = 42 -4(k-1)=36解得:k=-4例5、设m、n是一元二次方程x2-2018x+1=0的两个实数根,则代数式2017m2+2018n2-2018n-2017×20182 的值为()解:由已知得m+n = 2018 , mn=1(先求出方程两个根的和与积)m2+n2 =(m+n)2 -2mn = 20182 -2 (利用和与积化简高次项为常数)∴2017m2+2018n2-2018n-2017×20182 (对所求代数表达式进行适当的变形)= 2017(m2+n2) + n2 -2018n-2017×20182= 2017( 20182 -2)-1-2017×20182= -4035。

初中数学一元二次方程根与系数的关系专项训练题一(附答案详解)

初中数学一元二次方程根与系数的关系专项训练题一(附答案详解)

初中数学一元二次方程根与系数的关系专项训练题一(附答案详解)1.若x=1是一元二次方程)0(02≠=++a c bx ax 的根,则判别式△=b 2-4ac 和完全平方式M=2)2(b a +的关系是( )A .△=MB .△>MC .△<MD .大小关系不能确定2.我们知道,一元二次方程x 2=﹣1没有实数根,即不存在一个实数的平方等于﹣1.若我们规定一个新数“i”,使其满足i 2=﹣1(即方程x 2=﹣1有一个根为i ).并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有i 1=i ,i 2=﹣1,i 3=i 2•i=(﹣1)•i=﹣i ,i 4=(i 2)2=(﹣1)2=1,从而对于任意正整数n ,我们可以得到i 4n+1=i 4n •i=(i 4)n •i=i ,同理可得i 4n+2=﹣1,i 4n+3=﹣i ,i 4n =1.那么i+i 2+i 3+i 4+…+i 2012+i 2013的值为( )A .0B .iC .﹣1D .13.我们已探究过一元二次方程的根与系数有如下关系:方程()的两个根是,,则,,若,是一元二次方程的两个根,则的值等于___________.4.阅读材料:设一元二次方程(≠0)的两根为,,则两根与方程的系数之间有如下关系:+=-,·=.根据该材料完成下列填空: 已知,是方程的两根,则(1)+= ,; (2)()()= . 5.如果是一元二次方程的一个根,是一元二次方程的一根,那么的值是________. 6.已知如下一元二次方程:第1个方程: 01232=-+x x ;第2个方程: 01452=-+x x ;第3个方程: 01672=-+x x ; ⋯⋯按照上述方程的二次项系数、一次项系数、常数项的排列规律,则第8个方程为 ;第n (n 为正整数)个方程为 ,其两个实数根为 . 7.已知,,满足,,则关于的一元二次方程的根是________. 8.设是一元二次方程的两个实数根,且,则a =__________. 9.阅读:一元二次方程的根,与系数存在下列关系:,;理解并完成下列各题:若关于的方程的两根为、.求和;求.10.如果21,x x 分别是一元二次方程a 2x +b x +c =0(a ≠0)的两根,请你解决下列问题: (1)推导根与系数的关系:21x x +=-a b , 21x x =ac(2)已知1x ,2x 是方程2x -4x +2=0的两个实根,利用根与系数的关系求221)(x x -的值; (3)已知sin a ,cos a (0090a <<)是关于x 的方程22x -0)13(=++m x 的两个根,求角a 的度数.11.阅读理解:若x 1,x 2是关于x 的一元二次方程ax 2+bx+c=0(a≠0)的两个根,则方程的两个根x 1,x 2和系数a ,b ,c 有如下关系:x 1+x 2=﹣b a ,x 1•x 2=ca,我们把它们称为一元二次方程的根与系数关系定理.问题解决:请你参考根与系数关系定理,解答下列问题:(1)若关于x 的方程x 2+3x+a=0有一个根为﹣1,则另一个根为 .(2)求方程2x2﹣3x=5的两根之和,两根之积.12.如果一元二次方程的两根为、,那么就有:,;人们称之为韦达定理,即根与系数的关系.如:的两根为、,则,.(1)如果方程的两根为、,且满足,,则________,________;(2)已知、是关于的方程的两实根,求的最大值.13.若,是关于的一元二次方程的两个根,则方程的两个根,和系数,,有如下关系:,,把它们称为一元二次方程根与系数关系定理,请利用此定理解答一下问题:已知,是一元二次方程的两个实数根.(1)是否存在实数,使成立?若存在,求出的值,若不存在,请你说明理由;(2)若,求的值和此时方程的两根.答案: 1.A解:把x=1代入)0(02≠=++a c bx ax 得a+b+c=0. 即b=-a-c ,△△=b 2-4ac=(-a-c )2-4ac=a 2-2ac+c2=(a-c )2,M=(2a+b )2=(2a-a-c )2=(a-c )2, 则△=M . 2.B 解:3.-2解:△x 1,x 2是一元二次方程x 2﹣4x +2=0的两个根,△x 1+x 2=4,x 1•x 2=2,△(x 1﹣2)(x 2﹣2)=x 1•x 2﹣2(x 1+x 2)+4=2﹣2×4+4=﹣2. 故答案为:-2. 4.(1)2011,2012;(2)2解:(1)根据题意得m+n=2012,mn=2013; (2)△m ,n 是方程x 2-2012x+2013=0的两根, △m 2-2012m+2013=0,n 2-2012n+2013=0, △m 2-2012m=-2013,n 2-2012n=-2013,△(m 2-2013m+2014)(n 2-2013n+2014)=(-m-2013+2014)(-n-2013+2014) =(-m+1)(-n+1)=mn-(m+n )+1=2013-2012+1=2. 5.0或3解:△a 是一元二次方程x 2−3x +m =0的一个根,−a 是一元二次方程x 2+3x −m =0的一个根, △a 2−3a +m =0△,a 2−3a −m =0△,+△,得2(a 2−3a )=0, △a =或 故选:或 6.17x 2+16x-1=0,(2n+1)x 2+2nx-1=0,x 1=-1,1212+=n x 解:由题意得第8个方程为17x 2+16x-1=0,第n (n 为正整数)个方程为(2n+1)x 2+2nx-1=0[]01)12()1(=-++x n x ,解得x 1=-1,1212+=n x .7.; 解:△,△△-△得: 3a=b ,c=2a , △ax 2+bx+c=0, △x==,△x 1==-1,x 2==-2;故答案为:x 1=-1;x 2=-2.8.8解:△x 1,x 2是一元二次方程x 2+5x-3=0的两个根, △x 2+5x 2-3=0,x 1x 2=-3, △2x 1(x 22+6x 2-3)+a=3, △2x 1x 2+a=3,△-6+a=3,△a=8,故答案是:8. 9.,;.解:△关于的方程的两根为、,△,;.10.(1)推导过程;(2)8;(3)30°或60°.解:(1)因为1x ,2x 是方程20(0)ax bx c a ++=≠的两根,所以224(40)2b b ac x b ac a-±-=-≥,即2142b b ac x a-+-=,2224(40)2b b ac x b ac a---=-≥∴1x +2x =242b b ac a -+-+242b b ac a ---=ba -;1x 2x =242b b ac a -+-×242b b ac a -+-=c a(2)△x 1,x 2是方程x 2-4x+2=0的两根, △x 1+x 2=4,x 1•x 2=2,△(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=42-4×2=8; (3)由题意得,31sin cos 2a a ++=,sin cos 2m a a = △2423sin cos 4a a ++=() 即 1+23122m ⨯=+ △32m =△原方程变为22x -3(31)02x ++=,解这个方程得:112x =,232x = ∴1sin 2a =或3sin 2a =即030=a 或060a = 答:a 的值是30°或60° 11.(1)﹣2(2)x 1+x 2=32,x 1x 2=﹣52解:(1)设一元二次方程的两根为x 1,x 2,且x 1=﹣1, 则根据一元二次方程根与系数的关系, 得﹣1+x 2=﹣3, 解得:x 2=﹣2. 故答案是:﹣2.(2)解:原方程可以转化为:2x 2﹣3x ﹣5=0, △a =2,b =﹣3,c =﹣5,△b 2﹣4ac =(﹣3)2﹣4×2×(﹣5)=49>0, △方程有两个不相等的实数根, 设方程的两个实数根分别x 1,x 2,则 x 1+x 2=32,x 1x 2=﹣52. 12.(1)(2)解:(1)由韦达定理得,,解得m=4,n=-1;(2)△、是关于的方程的两实根,△,,△=.△的最大值是.13.(1)存在,12(2),;,解:(1)存在.△,是一元二次方程的两个实数根,△且,△的取值范围为且,根据根与系数的关系得,,△,△,△,△;(2)△,△,即,△,解得,,当时,原方程变形为,解得,;当时,原方程变形为,解得,.。

初中根与系数的关系复习题 附答案

初中根与系数的关系复习题  附答案

10.已知关于 x 的方程(m-2)x2-(m-1)x+m=0. (1)请你选取一个合适的整数 m,使方程有两个有理数根,并求出这两个根; (2)当 m>0,且 m2-2m<0 时,讨论方程的实数根的情况.
11.(2013•平谷区一模)已知关于 m 的一元二次方程 2x2+mx-1=0. (1)判定方程根的情况; (2)设 m 为整数,方程的两个根都大于 -1 且小于
b a a b
3 ,那么它的另一个根是为
3
是关于 x 的方程 x2-4x+c=0 的一个根,则 c 的值是
7.已知关于 x 的方程 2x2-mx-6=0 的一个根 2,则 m=
,另一个根为
8.若 x1,x2 是方程 3x2-|x|-4=0 的两根,则
x1 x 2 1 的值 x1 x 2
9.方程 x2-3x+1=0 中的两根分别为 a 、b,则代数式 a 2-4 a -b 的值为
2
2
18.已知 x1,x2 是方程 x2-2x-2=0 的两实数根,不解方程求下列各式的值: (1)
2 2 x1 x 2

(2)
1 1 x1 x 2
19. 已知关于 x 的方程 x
2
x2 的积是两根和的两倍, ①求 m 的值; (2m 3) x m 2 6 0 的两根 ,求 a b 的值.
23.要在一个长 10m,宽 8m 的院子中沿三边辟出宽度相等的花圃,使花圃的面积等于院子面积的 30%, 试求这花圃的宽度.
24.某电热器经过两次降价后,利润由 20 元降到 5 元,已知降价前该产品的利润率是 25%,解答下列问 题: (1)求这种电热器的进价; (2)求经过两次降价后的售价; (3)求每次降价的平均降价率?(精确到 1%)

根与系数关系经典习题

根与系数关系经典习题

一.填空题X2—7X+ 2 = 0的两个根,那么Xi+X2=1.如果%、%是方程2 2 22 .一元二次方程x2-3x-5 = 0的两根分别为x i、X2,那么X i +X2的值是o3 .假设方程X2 -2X+k =0的两根的倒数和是8,那么卜二.3二.选择题1 .以下方程中,两实数根之和等于2的方程是〔〕I / _ ----- .A. x2+2x-3=0B.x2-2x + 3 = 0C. 2x2-2x-3=0D. 3x2-6X+1=02 .如果一元二次方程X2 +3x-2 =0的两个根为Xp x2,那么X1+x2与X1X2的值分别为〔〕A. 3, 2B. -3, -2C. 3, -2D. -3, 23 .如果方程2x2 -6x+3=0的两个实数根分别为X、",那么X1X2的值是〔〕A. 3B. -3C. - 3D. 3—2 24.如果X、X2是方程X2-3X+1 = 0的两个根,那么二十1的值等于〔〕X1 X2A. - 3B. 3C. 1D. - 13 325 .关于x的方程x -〔k+2〕x+6-k-0有两个相等的正实数根,那么k的值是〔〕■■, I ;A. 2B. - 10C. 2 或-10D. 2 V?\ \ '1\ V'"一二一:6 .假设方程x2 -8x+m = 0两实数根的平方差为16,那么m的值等于〔〕I i y「'J I1A. 3B. 5C. 15D. - 157 .如果%、X2是两个不相等的实数,且满足X12 - 2x1 = 1 , x22 -2x2=1,那么X1X2等于〔〕A. 2B. -2C. 1D. - 18 .对于任意实数m,关于x的方程〔m2+1〕x2-2mx + 〔m2+4〕 = 0一定〔〕A.有两个正的实数根B.有两个负的实数根C.有一个正实数根、一个负实数根D.没有实数根三.解做题1 .关于x的方程x2-〔k-1〕x + k+1 =0的两上实数根的平方和等于4,求实数k的值.2 .一元二次方程x2-2x+m-1=0〔1〕当m取何值时,方程有两个不相等的实数根?(2)设x1、乂2是方程的两个实数根,且满足x12+x1x2 = 1 ,求m的值.2 1 23 .关于x的万程x -(k+1)x+ —k +1=04(1) k取什么值时,方程有两个实数根?(2)如果方程的两个实数根x1、x2满足|x"= x2 ,求k的值.4 .关于x的一元二次方程ax2+ x - a = 0(a 0 0)(1)求证:对于任意非零实数a,该方程包有两个异号的实数根;(2)设x1、乂2是方程的两个实数根,假设|x1| + |x2|=4,求a的值. I / ---------- .一元二次方程根与系数的关系知识考点:掌握一元二次方程根与系数的关系,并会根据条件和根与系数的关系不解方程确定相关的方程和未知的系数值.精典例题:2【例1】关于x的万程2x +kx — 4 =10的一个根是一2,那么方程的另一根是;k =.分析:设另一根为x1,由根与系数的关系可建立关于x1和k的方程组,解之即得.一5答案:一,—12【例2】x1、x2是方程2x2—3x—5=0的两个根,不解方程,求以下代数式的值:,八 2 , 2 | 2 」-2 -(1)x1 +x2(2) |x1 -x2(3) x1 +3x2-3x2a 1 I ,1 J2 2 . . 2 1略解:(1) x1 +x2 =(x1+x2) —2x1x2=7 一4-i 匚Z~~T2 I c 1(2) x1 -x2= 4(x1 +x2) -4x1x2= 3一2,2 2 2 1 _ _ 1(3)原式=(x〔+x2)+(2x2 -3x2) = 7 — + 5 = 12 —4 4【例3】关于x的方程x2 +2(m +2)x +m2 -5 =0有两个实数根,并且这两个根的平方和比这两个根的积大16,求m的值.2 2分析:有实数根,那么0,且x1 +x2 = x1x2 +16 ,联立解得m的值.略解:依题意有:.__ __ _ ______ 9由①②③解得:m = —1或m = -15 ,又由④可知m >4m = 一15 舍去,故m = -1探索与创新:【问题一】x1、x2是关于x的一元二次方程4x2+4(m—1)x+m2 = 0的两个非零实数根,问:*1与*2能否同号?欢送阅读假设能同号请求出相应的 m 的取值范围;假设不能同号,请说明理由.1 ,12略解:由△ = -32m +16)0得 mW —.x 1+x 2= -m +1, x 1 x 2= — m >02 4X 1与x 2可能同号,分两种情况讨论:X1 + X 2 > 0 - 一,解得m < 1且m ,0 x 1x 2 > 0±4,又 k <0:存在整数k 的值为一2、一3、- 5A,有两个相等的实数根 B.有两个不相等的实数根2,假设方程kX 2—6X + 1 = 0有两个不相等的实数根,那么k 的取值范围是1 1 3 .设X 1、X 2是万程3X 2+ 4X —5=0的两根, X 1 X 2⑵假设 X1 <0, X 2 < 0, X + X 2 < 0 那么1 X 1X 2 0 … - 1,一 ,解得m > 1与m 0 —相矛盾 2 综上所述:当 m < 1且m ,0时,方程的两根同号. 2 2 一 . 【问题一】X 1、X 2是一元二次方程4kX —4kX +k +1 = 0的两个实数根. (1) . ... .. ..................................................... 3 是否存在头数k ,使〔2X 1 -X 2〕〔X 1 —2X 2〕=——成立?假设存在,求出k 的值;假设不存在,请说明理由. 2 (2) 求使 '+至_ 2的值为整数的实数 k 的整数值. X 2 X 1 略解: (1)由 k ,0和0= k <0 d k 1 X 1 +X 2 =1, X 1X 2 = -------------------- 4k 2 人 • • (2x 1 - X 2)(X 1 -2x 2)= 2(X 1 X 2) - 9X 1X 2 ..9 .一 k =—,而 k <0 5 :不存在: ⑵X1 X 2 十红 _2=(X 1 +X 2)2 .4 4 … 4 —,要使— --------- 的值为整数,而k 为整数,k+1只能取土 1、±2、 X 1 X 1X 2 C .只有一个实数根D.没有实数根 (1)假设 X1 >0, X 2 >0, 那么〕 次方程X 2 -2x -1 =0的根的情况为〔4 .关于 x 的方程 2x 2 + (n2 —9)x+m+ 1=0,当 m=时,两根互为倒数;当m=时,两根互为相反数. 5 .假设X i =$3-2是二次方程x 2+ ax+1 = 0的一个根,那么a=,该方程的另一个根X 2 =. 6 .设 x i, x 2是方程 2x 2+ 4x —3=0 的两个根,那么(x i+1)(x 2+1)=, x ; + x 22=, 1 1 、2一 十 — —? (x 1 — x 2) _.x 1 x 27 .当c= ___________ 时,关于x 的方程2x 2+8x+c = 0有实数根.(填一个符合要求的数即可)I / --------- -- .8 .关于x 的方程x 2—(a + 2)x+a - 2b = 0的判另1J 式等于0,且x=g ■是方程的根,那么a + b 的值 为.9 .a, b 是关于x 的方程x 2-(2k+1)x+k(k+1) =0的两个实数根,那么a 2+b 2的最小值是10 .a , P 是关于x 的一元二次方程x 2 +(2m+3)x + m 2 =0的两个不相等的实数根,且满足11 .................. 一 = -1,那么m 的值是() a P D . -3 或 1X, & ,那么 x ;x 2 +x 1x 22 的值是( D . —1 312.(泸州)假设关于x 的一元二次方程x 2.-2x+m=0没有实数根,那么实数 m 的取值范围是(A . m<l跟踪练习:一、填空题:2 — 11 1、设x 1、x 2是方程x — 4x +2=0的两根,那么① + = x 1 x2 一、一一 22、以方程2x 2 -x -4 = 0的两根的倒数为根的一元二次方程是23、万程x -mx +45 =0的两实根差的平万为144,那么m =.4、方程x 2 —3x+m=0的一个根是1,那么它的另一个根是 , m 的值是2 26、x 1、x 2是方程x 2 -3x +1 =0的两根,那么4x 1 +12x 2 +11的值为.A . 3 或—1B . 3C . 1 11. 一元二次方程x 2 -3x+1=0的两个根分别是1A. 3 B . -3 C .— 3 [② x 1 -x 2 [③国 +1)(x 2+1)=欢送阅读二、选择题:21、如果万程x十mx =1的两个实根互为相反数,那么m的值为〔〕A、0B、一1C、1D、± 12 「b f -小小…、2、ab,0,方程ax +bx +c = 0的系数满足一i =ac,那么万程的两根之比为〔〕<2;A、0 : 1B、1 : 1C、1 : 2D、2 : 32 24、菱形ABCD的边长是5,两条对角线交于O点,且AO、BO的长分别是关于x的万程:x +〔2m — 1〕x + m +3 = 0的根, 那么m的值为〔〕A、- 3B、5C、5 或—3D、—5或3三、解做题:、一21、证实:方程x2—1997x+1997 =0无整数根. 2 22、关于x的方程x +3x+a =0的两个实数根的倒数和等于3,关于x的方程〔k —1〕x +3x —2a = 0有实根,且k为k -1正整数,求代数式--------- 的值.k -22 23、关于x的万程x -〔1 -2a〕x +a -3 = 0 ……①有两个不相等的实数根,且关于x的万程2x2——2x+2a —1=0……②没有实数根,问:a取什么整数时,方程①有整数解?. . … 2 一. 八 2 一一4、关于x的万程x — 2〔m+1〕x+m —3=0〔D当m取何值时,方程有两个不相等的实数根?2 〔2〕设x「x2是万程的两根,且〔x1 +x2〕-〔x1 + x2〕-12 = 0 ,求m的值.i 产J F 1 I , I\ \ xI . F ;、一. 2 ........... 一.. .、一.. .、2 _ ____ __ 5、关于x的方程kx +〔2k —1〕x+k —1 =0只有整数根,且关于y的一元二次方程〔k—1〕y — 3y + m = 0的两个实\ \ . । \ 卜二二一二’ 数根为y1、y2.〔1〕当k为整数时,确定k的值.I I 2 2〔2〕在〔1〕的条件下,假设m = 2,求y1 +y2的值. 2 26、X I、x2是关于x的一元二次方程4x +4〔m-1〕x + m =0的两个非零实根,问:x1、x2能否同号?假设能同号,请求出相应m的取值范围;假设不能同号,请说明理由.7 .设关于x的方程kx2—〔2卜+1伙+卜=0的两实数根为X I、X2,,假设上+也=17,求k的值. x2x1 48 .关于x的一元二次方程x2m -1 〕x+m+2 = 0 .〔1〕假设方程有两个相等的实数根,求m的值;(2)假设方程的两实数根之积等于m2—9m+2,求“希百的值.-J/-。

中考数学专题 根与系数的关系_答案

中考数学专题  根与系数的关系_答案

专题 根与系数的关系例1. 152s ≥-且3,5s s ≠-≠ 例2. C 提示: 设三根为121,,x x ,则121x x -< 例3. 设223,A βα=+223,B αβ=+ 31004A B += ①A B -= ② 解由① ②联立的 方程组得1(4038A =-例 4. 0,s ≠Q 故第一个等式可变形为211()99()190,s s ++= 又11,,st t s ≠∴Q 是一元二次方程 299190x x ++=的两个不同实根, 则1199,19,t t s s +=-=g 即199,19.st s t s +=-=故41994519st s s st s++-+==- 例5. (1) 当a b =时, 原式=2; 当a b ≠时, 原式=-20, 故原式的值为2或-20(2) 由方程组得232,326(6),x y a z x y z az +=-=-+g 易知3,2x y 是一元二次方程22()6(6)0t a z t z az --+-+=的两个实数根,0∴∆≥, 即2223221440z az a -+-≤,由z 为实数知,22'(22)423(144)0,a a ∆=--⨯⨯-≥解得a ≥故正实数a的最小值为(3) xy 与x y +是方程217660m m -+=的两个实根,解得11,6x y xy +=⎧⎨=⎩或6,()xy 11.x y +=⎧⎨=⎩舍原式=()()222222212499x y x y xy x y +-++=. 例6 解法一:∵ac <0,2=40b ac ∆->,∴原方程有两个异号实根,不妨设两个根为x 1,x 2,且x 1<0<x 2,由韦达定理得x 1+ x 2=b a -,12cx x a =,由0=,得0b ca a +=,)12120x x x ++=,解得2x =假设2x ,由10x <推得3-不成立,故2x 假设21x ≥,1,由10x <推得10x ,矛盾.故21x <,综上所述21x <.解法二:设()2f x ax bx c =++,由条件得)b =,得)3355f a c a c=++=-++=,()1f a b c a a c⎤=++=-⎦.若a>0,0c<,则0f<,()10f>;若a<0,0c>,则0f>,()10f<.∴0ac<时,总有()10f f.<,故原方程必1之间.A级1.3 2.2 3.-2 m>2 0<m≤183提示:12x->,22x->与124x x+->,124x x⋅>不等价.4.100134016-提示:由条件得2n na b n+=+,22n na b n⋅=-,则()()()2221n na b n n--=-+,则()()211112221na b n n⎛⎫=--⎪--+⎝⎭.5.C 6.C 7.A 8.A 9.提示:(1)()2=2120m∆-+>(2)2124mx x=-≤0,m=4或m=0.10.(1)43k->且0k≠(2)存在k=4 11.由题意得2m n=,224840n m n--+<.当n=1时,m=2;当n=2时,m=4.12.设方程两根为1x,2x,则1212,.x x mnx x m n+=⎧⎨=+⎩∵m,n,1x,2x均为正整数,设121x x≥≥,1m n≥≥,则()1212x x x x mn m n+-=-+,即有()()()()1211112x x m n--+--=,则()()()()12112,1,0,110,1,2.x xm n⎧--=⎪⎨--=⎪⎩∴123,2,5,2,2,1,5,2,3,1,2,2.xxmn=⎧⎪=⎪⎨=⎪⎪=⎩故5,2,3,1;2; 2.m m mn n n===⎧⎧⎧⎨⎨⎨===⎩⎩⎩B级1.0 提示:由条件得21130x x+-=,22230x x+-=,∴2113x x=-,2223x x=-,∴()3211111111333343x x x x x x x x=-=-+=-+=-,∴原式=()()121212434319431241944x x x x x x---+=--++=++.又∵121x x+=-,∴原式=0.2.853.5 4.638-提示:()2=240a∆-+>,原式=2963632488a⎛⎫----⎪⎝⎭≤.5.D 6.C 7.B 8.B 9.()231αβαβ+-=,由根与系数关系得()241a b ab+-=,即()21a b-=,a -b =1.又由0∆≥得()2316a b ab +≥,从而()24a b +≤.由a -b =1,()24a b +≤,得满足条件的整数点对(a ,b )是(1,0)或(0,-1). 104447αβ+=,662248p αβαβ-==-,()2244227q αβαβαβ-==-.11.a +b =3,c +d =4,ab =1,cd =2,a +b +c +d =7,222219a b c d +++=.(1)原式=()()()()7a a b c d a b c d d a b c d d a b c aa b c d a b c b c d+++-+++++-+++=-++++++…+77777.b c d b c d M c d a d a b a b c +-+-+-=-++++++ (2)原式=()()()()2222a a b c d a b c d d a b c d d a b c b c da b c+++-+++++-+++=++++…+()()22227774968M a b c d M --+++=-.12.(1)m =. (2)原式=()()()22212121221212352312122m x x x x x x m m m x x x x ⎡⎤+-+⎛⎫⎣⎦=-+=-- ⎪-++⎝⎭.∵11m -≤≤,∴当m =-1时,22121211mx mx x x +--的最大值为10. 13.设20x ax b ++=的两根分别为,αβ(其中,αβ为整数且αβ≤),则方程20x cx a ++=的两根分别为1,1αβ++,又∵,(1)(1)a a αβαβ+=-++=,两式相加,得2210αβαβ+++=,即(2)(2)3αβ++=,从而2123αβ+=⎧⎨+=⎩,或2321αβ+=-⎧⎨+=-⎩,解得12αβ=-⎧⎨=⎩,或53αβ=-⎧⎨=-⎩,∴012a b c =⎧⎪=-⎨⎪=-⎩,或8156a b c =⎧⎪=⎨⎪=⎩,∴3a b c ++=-或29.。

初中数学一元二次方程根与系数的关系专项训练题三(附答案详解)

初中数学一元二次方程根与系数的关系专项训练题三(附答案详解)

初中数学一元二次方程根与系数的关系专项训练题三(附答案详解)1.先阅读,再回答问题:如果x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根,那么x1+x2,x1x2与系数a,b,c的关系是:x1+x2=-,x1x2=.例如:若x1,x2是方程2x2-x-1=0的两个根,则x1+x2=-=-=,x1x2===-.若x1,x2是方程2x2+x-3=0的两个根,(1)求x1+x2,x1x2(2)求+的值.(3)求(x1-x2)22.如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根为另一个根的2倍,那么称这样的方程为“倍根方程”.例如,一元二次方程x2﹣6x+8=0的两个根是2和4,则方程x2﹣6x+8=0就是“倍根方程”.(1)若一元二次方程x2﹣3x+c=0是“倍根方程”,则c=;(2)若(x﹣2)(mx﹣n)=0(m≠0)是“倍根方程”,求代数式4m2﹣5mn+n2的值;(3)若关于x的一元二次方程ax2+bx+c=0(a≠0)是“倍根方程”,求a,b,c之间的关系.3.已知关于的一元二次方程.若是此方程的一个根,求的值和它的另一个根;若方程有两个不相等的实数根,试判断另一个关于的一元二次方程的根的情况.4.已知关于的一元二次方程.若方程有实数根,求的取值范围;如果是满足条件的最大的整数,且方程一根的相反数是一元二次方程的一个根,求的值及这个方程的另一根.5.根据下列命题完成以下问题。

(命题)若、是关于的一元二次方程的两个实数根,则有,。

〖问题1〗若、是关于的一元二次方程的两个实数根,则有____________,___________。

〖问题2〗若、是一元二次方程的两个实数根,则有____________,___________。

〖问题3〗甲、乙两同学解同一道一元二次方程时,甲看错了一次项系数,得两根为2和7,乙看错了常数项,得两根为1和-10。

初中数学一元二次方程根与系数关系专项练习题4(附答案详解)

初中数学一元二次方程根与系数关系专项练习题4(附答案详解)

(2)关于 x 的一元二次方程 kx2+(k﹣1)x﹣3=0 有一个根为 3,求 k 的值及另一个根.
26.己知:负整数 a 是关于 x 的方程 x2 2bx a 0 的一个根. (1)则 a 2b = __________. ( 2 )当 2a b 3 的值是非负数时,试说明方程 (a b)x2 2(m 1)x m(m 2) 0
28.已知一元二次方程 x2 2x m 1 0 .
1 若方程有两个实数根,求 m 的范围; 2 若方程的两个实数根为 x1 , x 2 ,且 x1 3x2 2m 8 ,求 m 的值.
29.已知关于 x 的方程 x2+(2m+1)x+m2+2=0 有两个不相等的实数根,试判断直线 y =(2m-3)x-4m+7 能否经过点 A(-2,4),并说明理由.
【分析】
根据根与系数的关系即可得出 α+β 的值.
【详解】
∵一元二次方程 x2﹣3x=1,即 x2﹣3x﹣1=0 的两个实数根为 α,β,
∴α+β=3.
故选 A. 【点睛】 本题考查了根与系数的关系:若 x1,x2 是一元二次方程 ax2+bx+c=0(a≠0)的两根,则 x1+x2=
﹣ ,x1•x2= .
8.定义运算:a⋆ b=2ab.若 a,b 是方程 x2+x-m=0(m>0)的两个根,则(a+1)⋆ a -(b+1)⋆ b
的值为( )
A.0 B.2 C.4m D.-4m
9.若关于 x 的一元二次方程 x2 mx m 4 0 有一根为 0,则 m 的值为
A.4
B. 4
C.2
D. 2
10.若关于 x 的一元二次方程 2x2 4x m 0 有两个相等实数根,则 m 的值是( )

根与系数关系例题附答案

根与系数关系例题附答案

根与系数关系专练学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知α,β方程x 2+3x ﹣8=0的两个实数根,则为x 1、x 2,则α2+β2的值为( ) A .﹣7 B .25 C .17 D .1【答案】B 【分析】根据韦达定理可得α+β=-3,αβ=-8,再根据完全平方公式变形即可求解. 【详解】解:∵α,β方程x 2+3x ﹣8=0的两个实数根, ∴α+β=-3,αβ=-8,∴α2+β2=(α+β)2-2αβ=9+16=25, 故选:B . 【点睛】本题主要考查根与系数的关系,若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,则x 1+x 2=−b a,x 1x 2=c a .2.一元二次方程240x kx +-=的一个根是1x =-,则另一个根是( ) A .4 B .-1 C .-3 D .-2【答案】A 【分析】设方程的另一个根为m ,由根与系数的关系即可得出关于m 的一元一次方程,解之即可得出结论. 【详解】解:设方程的另一个根为m , 则有m ×(-1)=-4, 解得:m =4. 故选:A . 【点睛】本题考查了根与系数的关系以及解一元一次方程,牢记两根之积等于ca是解题的关键.3.已知,m n 是方程2310x x +-=的两根,则24m m n ++的值为( )A .2-B .2C .3-D .4【答案】A 【分析】,m n 是方程2310x x +-=的两根,则有2310m m +-=,3m n +=-,将原式变形代入求解即可. 【详解】解:∵,m n 是方程2310x x +-=的两根 ∴2310m m +-=,3m n +=- ∴231m m +=∴22+4+=3=132m m n m m m n +++-=- 故选:A 【点睛】本题考查一元二次方程根与系数的关系,以及方程解的定义,根据所对应的代数式进行适当的变形是解题关键.4.若x 1,x 2是一元二次方程x 2+x ﹣1=0的两根,则x 12﹣2017x 1﹣2018x 2的值为( ) A .2020 B .2019 C .2018 D .2017【答案】B 【分析】根据一元二次方程的解的定义可得21110x x +-=,根与系数的关系求得12x x +1=-,代入求解即可. 【详解】x1,x 2是一元二次方程x 2+x ﹣1=0的两根,∴21110x x +-=,12x x +1=-,()()2111220181201812019x x x x ∴=+-+=-⨯-=原式.故选B . 【点睛】本题考查了一元二次方程的定义,根与系数的关系,掌握以上知识是解题的关键. 5.已知实数a ,b 满足a ≠b ,且a 2-4a =b 2-4b =2,则a 2+b 2的值为( ) A .16 B .20 C .25 D .30【答案】B 【分析】根据题意可得则,a b 为2x 4x 2-=的两根,进而根据一元二次方程根与系数的关系以及完全平方公式的变形求值即可. 【详解】242a a -=,242b b -=,则,a b 为2x 4x 2-=的两根 2420x x --=, 4,2a b ab ∴+==-,()222216420a b a b ab ∴+=+-=+=,故选B 【点睛】本题考查了一元二次方程根的定义,一元二次方程根与系数的关系,完全平方公式的变形求值,理解,a b 为2x 4x 2-=的两根是解题的关键.6.等腰三角形三边长分别为a 、b 、4,且a 、b 是关于x 的一元二次方程x 2﹣12x +k +2=0的两根,则k 的值为( ) A .30 B .34或30C .36或30D .34【答案】D 【分析】分三种情况讨论,①当a =4时,②当b =4时,③当a=b 时;结合一元二次方程根与系数的关系即可求解; 【详解】解:当4a =时,440448b -=<<+=时,a b 、是关于x 的一元二次方程21220x x k -++=的两根, 412b ∴+=, 8b ∴=不符合;当4b =时,440448a -=<<+=,a b 、是关于x 的一元二次方程21220x x k -++=的两根, 412a ∴+=,8a ∴=不符合;当a b =时,a b 、是关于x 的一元二次方程21220x x k -++=的两根, 1222a b ∴==, 6a b ∴==,236k ab ∴+==,34k ∴=; 故选D . 【点睛】本题考查一元二次方程根与系数的关系;根据等腰三角形的性质进行分类讨论,结合一元二次方程根与系数的关系和三角形三边关系进行解题是关键. 7.方程2x 2+(k +1)x -6=0的两根和是-2,则k 的值是( ) A .k =3 B .k =- 3 C .k =0 D .k =1【答案】A 【分析】设方程22(1)60x k x ++-=的两根分别为1x ,2x ,则由题意得12122k x x ++=-=-,解方程即可. 【详解】解:设方程22(1)60x k x ++-=的两根分别为1x ,2x , ∵方程22(1)60x k x ++-=的两根之和是-2, ∴12122k x x ++=-=-, ∴3k =, 故选A . 【点睛】本题主要考查了一元二次方程根与系数的关系,解题的关键在于能够熟练掌握一元二次方程根与系数的关系. 8.点(),A a b 在反比例函数9y x=上的点图象上,且a ,b 是关于的一元二次方程260x x m -+=的两根,则点A 坐标是( )A .(1,9)B .92,2⎛⎫⎪⎝⎭C .(3,3)D .(-3,-3)【答案】C 【分析】根据点(),A a b 在反比例函数9y x=上的点图象上,可得9ab = ,再利用一元二次方程根与系数的关系,可得ab m =,从而得到9m = ,然后解出方程,即可求解. 【详解】解:∵点(),A a b 在反比例函数9y x=上的点图象上, ∴9ab = ,∵a ,b 是关于的一元二次方程260x x m -+=的两根, ∴ab m =, ∴9m = ,∴方程260x x m -+=为2690x x -+=, 解得:123x x == , 即3a b == , ∴点A 坐标是()3,3 . 故选:C 【点睛】本题主要考查了反比例函数的性质,一元二次方程根与系数的关系,熟练掌握反比例函数的性质,一元二次方程根与系数的关系是解题的关键.二、填空题9.设a ,b 是方程x 2+x ﹣2021=0的两个实数根,则a 2+2a +b 的值为____. 【答案】2020 【分析】由于a 2+2a +b =(a 2+a )+(a +b ),故根据方程的解的意义,求得(a 2+a )的值,由根与系数的关系得到(a +b )的值,即可求解. 【详解】解:∵a ,b 是方程x 2+x −2021=0的两个实数根, ∴a 2+a −2021=0,即a 2+a =2021,a +b =ba-=−1,∴a 2+2a +b =a 2+a +a +b =2021−1=2020, 故答案为:2020. 【点睛】本题综合考查了一元二次方程的解的定义及根与系数的关系,要正确解答本题还要能对代数式进行恒等变形.10.若方程x 2﹣3x +1=0的两根是x 1,x 2,则x 1(1+x 2)+x 2的值为___. 【答案】4 【分析】根据根与系数的关系可得出x 1+x 2=3、x 1x 2=1,将其代入x 1(1+x 2)+x 2=(x 1+x 2)+x 1x 2中即可求出结论. 【详解】解:∵方程x 2﹣3x +1=0的两根是x 1,x 2, ∴x 1+x 2=3,x 1x 2=1,∴x 1(1+x 2)+x 2=x 1+x 1x 2+x 2=(x 1+x 2)+x 1x 2=3+1=4. 故答案为:4. 【点睛】本题考查了根与系数的关系,牢记两根之和等于-b a、两根之积等于ca 是解题的关键.11.设a ,b 是方程x 2+x ﹣2021=0的两个实数根,则(a +1)(b +1)的值为_______. 【答案】-2021 【分析】首先根据一元二次方程根与系数的关系得出1,2021a b ab +=-=-,然后整体代入求解即可. 【详解】∵a ,b 是方程x 2+x ﹣2021=0的两个实数根, 1,2021a b ab ∴+=-=-,()()()()1112021112021a b ab a b ∴++=+++=-+-+=-,故答案为:-2021. 【点睛】本题主要考查代数式求值,掌握一元二次方程根与系数的关系是关键.12.已知方程3x 2﹣x ﹣1=0的两根分别是x 1和x 2,则x 1+x 2﹣x 1x 2的值为_________. 【答案】23【分析】根据一元二次方程的解的定义以及根与系数的关系可得x 1+x 2=13,x 1x 2=13-,再将它们代入x 1+x 2﹣x 1x 2,计算即可. 【详解】解:∵方程3x 2﹣x ﹣1=0的两根分别是x 1和x 2,∴x 1+x 2=13,x 1x 2=13-,∴x 1+x 2﹣x 1x 2=13﹣1()3-=23.故答案为:23.【点睛】本题考查了根与系数的关系:x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=﹣b a,x 1•x 2=ca .将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.也考查了一元二次方程的解的定义.13.设x 1,x 2是方程2x 2+3x ﹣4=0的两个实数根,则4x 12+4x 1﹣2x 2的值为 ______. 【答案】11 【分析】先根据一元二次方程根的定义得到2x 12=﹣3x 1+4,则4x 12+4x 1﹣2x 2化为﹣2(x 1+x 2)+8,再根据根与系数的关系得到x 1+x 2=﹣32,然后利用整体代入的方法计算.【详解】解:∵x 1是方程2x 2+3x ﹣4=0的根, ∴2x 12+3x 1﹣4=0, ∴2x 12=﹣3x 1+4,∴4x 12+4x 1﹣2x 2=2(﹣3x 1+4)+4x 1﹣2x 2=﹣2(x 1+x 2)+8, ∵x 1,x 2是方程2x 2+3x ﹣4=0的两个实数根, ∴x 1+x 2=﹣32,∴4x 12+4x 1﹣2x 2=﹣2(x 1+x 2)+8=﹣2×(﹣32)+8=11.故答案为:11. 【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根,则12bx x a +=-,12c x x a=.14.设α、β是方程x 2+2x ﹣2021=0的两根,则α2+3α+β的值为______. 【答案】2019 【分析】先根据一元二次方程的解的定义得到α2+2α-2021=0,则α2+2α=2021,于是α2+3α+β可化为2021+α+β,再利用根与系数的关系得到α+β=-2,然后利用整体代入的方法计算求解即可. 【详解】解:根据题意知,α2+2α﹣2021=0,即α2+2α=2021. 又∵α+β=﹣2.所以α2+3α+β=α2+2α+(α+β)=2021﹣2=2019. 故答案是:2019. 【点睛】此题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,1212,b cx x x x a a+=-=,也考查了一元二次方程的解.解题的关键是熟练掌握一元二次方程的解以及根与系数的关系.三、解答题15.已知关于x 的方程240x x m -+=的一个根为2+ (1)求m 的值及方程的另一个根; (2)设方程的两个根为1x ,2x ,求20212022121x xx +的值.【答案】(1)m =1,(2)4 【分析】(1)设方程的另一个根为a ,则由根与系数的关系得:a ,(a =m ,求出即可.(2)根据一元二次方程根与系数的关系得到x 1+x 2=4,x 1•x 2=1,根据积的乘方把原式变形,代入计算即可. 【详解】解:(1)设方程的另一个根为a ,则由根与系数的关系得:a ,(a =m ,解得:a m =1,即m =1,方程的另一个根为 (2)x 1,x 2是方程x 2-4x +1=0的两个根, 则x 1+x 2=4,x 1•x 2=1,∴x 12021x 22022+x 1=(x 1x 2)2021x 2+x 1=x 2+x 1=4. 【点睛】本题考查的是一元二次方程根与系数的关系、完全平方公式的应用,x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=ba -,x 1x 2=c a ,反过来也成立.16.已知关于x 的方程221(2)04x m x m --+=有两个不相等的实数根x 1,x 2.(1)求m 的取值范围;(2)是否存在实数m ,使方程的两个实数根互为相反数?如果存在,求出m 的值;如果不存在,说明理由.【答案】(1)m <1;(2)不存在;理由见解析. 【分析】(1)由题意根的判别式大于0即可求解;(2)根据互为相反数的两数和等于0得方程,求解并判断即可. 【详解】解:(1)∵关于x 的方程221(2)04x m x m --+=有两个不相等的实数根,∴Δ=(m -2)2-2144m ⨯ >0即:4-4m >0 m <1(2)由题意,x 1+x 2=()214m ---=4m -8, 若方程两实数根互为相反数,则4m -8=0, 解得,m =2, 因为m <1,所以m =2时,原方程没有实数根,所以不存在实数,使方程两实数根互为相反数. 【点睛】本题考查了一元二次方程根的判别式、根与系数的关系.(2)易错,只关注求m 的值而忽略m 的范围.17.定义:若关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的两个实数根为12,x x (12x x <),分别以12,x x 为横坐标和纵坐标得到点M (12,x x ),则称点M 为该一元二次方程的奇特点. (1)若方程为x 2=3x ,写出该一元二次方程的奇特点M 的坐标;(2)若关于x 的一元二次方程x 2﹣(2m +1)x +2m =0(m <0)的奇特点为M ,过点M 向x 轴和y 轴作垂线,两垂线与坐标轴恰好围成一个正方形,求m 的值; (3)是否存在b ,c ,使得不论k (k ≠0)为何值,关于x 的一元二次方程x 2+bx +c =0的奇特点M 始终在直线y =3kx ﹣2(k ﹣2)上,若存在请算出b ,c 的值,若不存在请说明理由.【答案】(1)()0,3 ;(2)12m =- ;(3)存在,148,33b c ==【分析】(1)先解出一元二次方程,再根据奇特点M 的定义,即可求解;(2)先解出一元二次方程,再根据奇特点M 的定义,可得奇特点M 的坐标为()2,1m ,再由过点M 向x 轴和y 轴作垂线,两垂线与坐标轴恰好围成一个正方形,可得到关于m 的方程,解出即可;(3)将直线解析式变形,可得直线过定点2,43⎛⎫⎪⎝⎭,从而得到一元二次方程x 2+bx +c =0的两个根为122,43x x == ,即可求解.【详解】解:(1)23x x = ,整理得: 230x x -=,即()30x x -=,解得:120,3x x == , ∴奇特点M 的坐标为()0,3 ; (2)x 2﹣(2m +1)x +2m =0, ∴()()210x m x --= , 解得:122,1x m x == , ∵m <0, ∴21m < ,∴奇特点M 的坐标为()2,1m ,∵过点M 向x 轴和y 轴作垂线,两垂线与坐标轴恰好围成一个正方形, ∴21m -= ,解得:12m =- ;(3)存在,理由如下:∵()()322324y kx k k x =--=-+ ,∴当320x -= ,即23x =时,4y = , ∴直线y =3kx ﹣2(k ﹣2)过定点2,43⎛⎫⎪⎝⎭ ,∵一元二次方程x 2+bx +c =0的奇特点M 始终在直线y =3kx ﹣2(k ﹣2)上,一元二次方程x 2+bx +c =0的两个根为122,43x x == , ∴224,433b c +=-⨯= , 解得:148,33b c == . 【点睛】 本题主要考查了一元二次方程根与系数的关系,正方形的性质,一次函数的性质,理解新定义是解题的关键.18.已知方程2x ﹣(m ﹣3)x ﹣3m =0有一个根为4,求它的另一个根.【答案】﹣3【分析】直接把4代入方程即可求得m 的值,然后利用根与系数关系求另一个根即可.【详解】解:把4代入已知方程得:24﹣4(m ﹣3)﹣3m =0,解得m =4,∴两根之积为﹣3m =﹣12,∴另一个根为:﹣12÷4=﹣3.【点睛】本题考查了一元二次方程根的定义,根与系数关系定理,熟练掌握根与系数关系定理是解题的关键.19.利用根与系数的关系,求下列方程的两根之和、两根之积:(1)(31)10x x --=; (2)(25)(1)7x x x ++=+.【答案】(1)1213x x +=,1213x x =-;(2)123x x +=-,121x x =-. 【分析】将原式整理为一元二次方程一般式,然后根据根与系数的关系:1212,b c x x x x a a+=-⋅=,求解即可.【详解】解:(1)原式整理为:2310x x --=,∴3,1,1a b c ==-=-, ∴1213b x x a +=-=,1213c x x a ⋅==-; (2)原式整理为:2310x x +-=,∴1,3,1a b c ===-, ∴123b x x a +=-=-,121c x x a⋅==-. 【点睛】本题考查了一元二次方程根与系数的关系,熟知一元二次方程根与系数的关系是解题的关键.20.求下列方程两个根的和与积:(1)25100x x --=; (2)22710x x ++=;(3)23125x x -=+; (4)(1)37x x x -=+.【答案】(1)125x x +=,x x ⋅=-1210;(2)1272x x +=-,1212x x ⋅=;(3)1223x x +=,122x x ⋅=-;(4)124x x +=,x x ⋅=-127 【分析】(1)直接根据根与系数的关系求解;(2)直接根据根与系数的关系求解;(3)先把方程化为一般式为23260x x --=,然后根据根与系数的关系求解; (4)先把方程化为一般式为2470x x --=,然后根据根与系数的关系求解.【详解】解:(1)设方程的两根为1x ,2x ,则125x x +=,x x ⋅=-1210 .(2)设方程的两根为1x ,2x ,则1272x x +=-,1212x x ⋅=. (3)原方程化为23260x x --=,设方程的两根为1x ,2x ,则1223x x +=,122x x ⋅=-. (4)原方程化为2470x x --=,设方程的两根为1x ,2x ,则124x x +=,x x ⋅=-127.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=−b a,x 1x 2=c a . 21.根据一元二次方程的根与系数的关系,求下列方程两个根12,x x 的和与积: (1)26150x x --=(2)23790x x +-=(3)2514x x -=【答案】(1)12126,15x x x x +==-;(2)12127,33x x x x +=-=-;(3)121251,44x x x x +== 【分析】(1)根据如果一元二次方程20ax bx c ++=的两根为,1x 和2x ,那么12b x x a +=-,12c x x a=进行求解即可得到答案; (2)根据如果一元二次方程20ax bx c ++=的两根为,1x 和2x ,那么12b x x a +=-,12c x x a=进行求解即可得到答案; (3)根据如果一元二次方程20ax bx c ++=的两根为,1x 和2x ,那么12b x x a +=-,12c x x a=进行求解即可得到答案. 【详解】解:(1)∵26150x x --=,∴1a =,6b =-,15c =-, ∴126b x x a +=-=,1215c x x a==-; (2)∵23790x x +-=,∴3a =,7b =,9c =-, ∴1273b x x a +=-=-,123c x x a==-; (3)∵2514x x -=,即24510x x -+=∴4a =,5b =-,1c =, ∴1254b x x a +=-=,1214c x x a ==. 【点睛】本题主要考查了一元二次方程根与系数的关系,解题的关键在于能够熟练掌握一元二次方程根于系数的关系.22.已知1x ,2x 是一元二次方程22210x x m -++=的两个实数根.(1)求实数m 的取值范围;(2)如果1x ,2x 满足不等式2121246()x x x x +>+,且m 为整数,求m 的值.【答案】(1)12m;(2)1-或0 【分析】(1)由题意得一元二次方程判别式Δ≥0,进而求解.(2)由根与系数的关系用含m 的代数式表示12x x +与12x x ⋅,进而求解.【详解】解:(1)方程22210x x m -++=有两个实数根,∴Δ0,即2(2)42(1)0m --⨯+, 解得12m , ∴实数m 的取值范围是12m; (2)1x ,2x 是一元二次方程22210x x m -++=的两个实数根,121x x ∴+=,121(1)2x x m ⋅=+,2121246()x x x x +>+,2146(1)12m ∴+⨯+>, 解得2m >-, 12m 且m 为整数, m ∴的值为1-或0.【点睛】本题考查一元二次的判别式及根与系数的关系,解题关键是掌握一元二次方程根的情况与Δ的关系,掌握12b x x a +=-,12c x x a=. 23.已知关于x 的方程 (k 2+1)x 2+(2k 2+1)x +k 2−1=0.(1)证明:无论k 取何值,方程都有两个不相等的实数根;(2)是否存在实数k ,使方程两实数根互为相反数?如果存在,求出k 的值,如不存在,说明理由.【答案】(1)见解析;(2)不存在符合条件的实数k ,理由见解析【分析】(1)根据方程各项的系数结合根的判别式即可得出Δ=4k 2+5>0,由此可得出无论k 为何值,方程总有两个不相等的实数根;(2)设方程(k 2+1)x 2+(2k 2+1)x +k 2−1=0的两根分别为x 1、x 2,利用根与系数的关系结合x 1、x 2互为相反数,可得出关于k 的方程,解之即可求出k 值,再由(1)中k 的取值范围,即可得出不存在符合条件的k 值.【详解】(1)证明:Δ=(2k 2+1)2-4×(k 2+1)×(k 2-1) =4k 4+4k 2+1-4k 4+4=4k 2+5,∴k 2+1>0,4k 2+5>0,∴无论k 为何值,这个方程总有两个不相等的实数根;(2)不存在符合条件的实数k ,理由如下:设方程(k 2+1)x 2+(2k 2+1)x +k 2−1=0的两根分别为x 1、x 2,由根与系数关系得:x 1+x 2=-22211k k ++. ∵x 1、x 2互为相反数,∴x 1+x 2=0,即-222101k k +=+, ∵k 2≥0,∴2k 2+1≥1,∴不存在符合条件的k 值.【点睛】本题考查了根与系数的关系、一元二次方程的定义、相反数以及根的判别式,解题的关键是:(1)根据非负数的性质得到根的判别式Δ>0,方程有两个不相等的实数根;(2)根据根与系数的关系结合x 1、x 2互为相反数,求出k 值.24.关于x 的方程2210x x k -++=的两个实数根是1x ,2x .(1)求k 的取值范围;(2)若k 为整数,且满足12124x x x x +-<,求k 的值.【答案】(1)0k ≤;(2)2k =-,1-,0【分析】(1)根据“方程2210x x k -++=有两个实数根,”可得0∆≥,即可求解;(2)根据“k 为整数,且满足12124x x x x +-<,”可得3k >-,结合(1)0k ≤,即可求解.【详解】解:(1)∵方程2210x x k -++=有两个实数根,∴0∆≥,即()244410b ac k -=-+≥,解得0k ≤;(2)∵122x x +=,121x x k =+,∴214k --<,由(1)0k ≤,可得30k -<≤,∵k 为整数,∴2k =-,1-,0.【点睛】本题主要考查了一元二次方程的根的判别式,根与系数的关系,熟练掌握一元二次方程的根的判别式24b ac ∆=-,根与系数的关系12b x x a+=-,12c x x a =是解题的关键.。

初中数学一元二次方程根与系数关系专项练习题(附答案详解)

初中数学一元二次方程根与系数关系专项练习题(附答案详解)

初中数学一元二次方程根与系数关系专项练习题(附答案详解)1.若一个关于x 的一元二次方程的两个根分别是数据2,4,5,4,3,5,5的众数和中位数,则这个方程是( )A .x 2﹣7x+12=0B .x 2+7x+12=0C .x 2﹣9x+20=0D .x 2+9x+20=02.关于x 的方程kx 2+2x ﹣1=0有两个实数根,则k 的取值范围是( )A .k≥1B .k≥﹣1C .k≥1且k≠0D .k≥﹣1且k≠03.若m ,n 是方程2250x x --=两根,则()()22m m m n -+的值为( ) A .5 B .10 C .5- D .10-4.已知x 1,x 2是一元二次方程x 2-6x- 15=0的两个根,则x 1+x 2等于( )A .-6B .6C .-15D .155.在数轴上用点B 表示实数b .若关于x 的一元二次方程x 2+bx +1=0有两个相等的实数根,则( )A .2OB = B .2OB >C .2OB ≥D .2OB <6.若方程x 2 +x-1 = 0的两实根为α、β,那么下列说法不正确的是( ) .A .α+β=-1B .αβ=-1C .11+αβ=1D .α2+β2=1 7.已知x 1,x 2是关于x 的方程x 2+bx ﹣3=0的两根,且满足x 1+x 2﹣3x 1x 2=5,那么b 的值为( )A .4B .﹣4C .3D .﹣38.下列关于x 的一元二次方程中,有两个不相等的实数的是( ).A .2x +2 =0B .2x +x-1=0C .2x +x+3=0D .42x -4x+1=0. 9.已知关于x 的一元二次方程x 2+mx +n =0的两个实数根分别为x 1=-2,x 2=4,则m ,n 的值分别为()A .m =-2,n =8B .m =-2,n =-8C .m =2,n =-8D .m =2,n =8 10.已知α,β是方程2201610x x ++=的两个根,则()()221201812018ααββ++++的值为( ) A .1 B .2 C .3 D .411.已知1x ,2x 分别是一元二次方程260x x --=的两个实数根,则12x x +=________.12.已知,,a b c 是等腰ABC ∆的三条边,其中2b =,如果 ,a c 是关于y 的一元二次方程 260y y n -+=的两个根,则n 的值是__.13.已知a 、b 是一元二次方程2410x x --=的两根,则a +b =_____.14.有一个一元二次方程,它的一个根 x 1=1,另一个根-2<x 2<0. 请你写出一个符合这样条件的方程:_________.15.已知方程 x 2﹣4x+3=0 的两根分别为 x 1、x 2,则 x 1+x 2=______.16.已知x 1,x 2是一元二次方程x 2﹣3x ﹣2=0的两实数根,则1132x ++2132x +的值是_____.17.已知x 1,x 2是关于x 的方程x 2-(2m -2)x +(m 2-2m )=0的两根,且满足x 1•x 2+2(x 1+x 2)=-1,那么m 的值为( )A .1-或3B .3-或1C .3-D .118.设一元二次方程2230x x --=的两个实数根为x 1,x 2,则x 1+x 1x 2+x 2等于( ). A .1 B .-1 C .0 D .319.已知方程x 2+kx ﹣6=0有一个根是2,则k =_____,另一个根为_____.20.求作一个方程,使它的两个根分别是4-和3,这个方程的一般式是________. 21.关于x 的一元二次方程226250x x p p -+-+=的一个根为2。

初中数学一元二次方程根与系数关系专项复习题(附答案详解)

初中数学一元二次方程根与系数关系专项复习题(附答案详解)

初中数学一元二次方程根与系数关系专项复习题(附答案详解)1.已知关于x 的一元二次方程2210ax x --=有两个不相等的实数根,则二次项系数a 的取值范围是( ) A .1a >-B .2a >-C .1a >且0a ≠D .1a >-且0a ≠2.若关于x 的一元二次方程x 2-2x+k=0有两个不相等的实数根,那么k 的取值范围是( )A .k <1B .k≠0C .k >1D .k <03.一元二次方程ax 2+x ﹣2=0有两个不相等实数根,则a 的取值范围是( ) A .a 18<B .a= 18-C .a 18>-且a≠0 D .a 18> 且a≠0 4.下列方程中,两根是﹣2和﹣3的方程是( ) A .x 2﹣5x+6=0 B .x 2﹣5x ﹣6=0 C .x 2+5x ﹣6=0 D .x 2+5x+6=05.关于x 的一元二次方程260x mx +-=的一个根是3,则另一个根是( ) A .-1B .1C .-2D .26.已知方程x 2+2x-1=0,则此方程( )A .无实数根B .两根之和为2C .两根之积为-1D .有一个根为21+7.已知方程x 2﹣4x +k =0有一个根是﹣1,则该方程的另一根是( ) A .1B .0C .﹣5D .58.已知关于x 的一元二次方程x 2-6x +k +1=0的两个实数根是x 1,x 2,且x +x =24,则k 的值是(). A .8B .-7C .6D .59.关于x 的方程的022=+-a ax x 两个根的平方和5是,则a 的值是( )A .-1或5B . 1C .5D .-110.已知一元二次方程2310x x -+=的两根是1x 、2x ,则12x x +的值是( ) A .3B .1C .3-D .1-11.若方程25320x x --=的两个实数根为,m n ,则11m n+的值为__________. 12.若方程x 2+(m+1)x ﹣2n=0的两根分别为2和﹣5,则m=_____,n=_____. 13.已知a ,b 是一元二次方程220180x x --=的两个实数根,则22________a a b--=;14.方程2x2+4x﹣1=0的两根为x1,x2,则x1+x2=____.15.若关于x的方程的两根互为倒数,则= .16.如果一元二次方程2x2﹣5x+m=0有两个实数根,那么实数m的取值范围为_____.17.写出一个二次项系数为2,一个根比1大,另一个根比1小的一元二次方程__________.18.若-2是一元二次方程x2―2x―a=0的一个根,则a的值为____.19.若关于的方程有两个相等的实数根,则k的值为▲ . 20.如果方程x2﹣2x+m=0的两实根为a,b,且a,b,1可以作为一个三角形的三边之长,则实数m的取值范围是___________________.21.已知关于的方程.(1)若该方程有两个不相等的实数根,求实数的取值范围;(2)若该方程的一个根为1,求的值及该方程的另一根.22.已知关于x的一元二次方程x2+(2m+3)x+m2=0有两个不相等的实数根,(1)求m的取值范围(2)若α,β是方程的两个实数根,且满足11αβ+=﹣1,求m的值.23.阅读材料:材料1 若一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2则x1+x2=﹣ba,x1x2=ca.材料2 已知实数m,n满足m2﹣m﹣1=0,n2﹣n﹣1=0,且m≠n,求n mm n+的值.解:由题知m,n是方程x2﹣x﹣1=0的两个不相等的实数根,根据材料1得m+n=1,mn =﹣1,所以222()2121n m m n m n mn m n mn mn ++-++===-=﹣3. 根据上述材料解决以下问题:(1)材料理解:一元二次方程5x 2+10x ﹣1=0的两个根为x 1,x 2,则x 1+x 2= ,x 1x 2= .(2)类比探究:已知实数m ,n 满足7m 2﹣7m ﹣1=0,7n 2﹣7n ﹣1=0,且m ≠n ,求m 2n +mn 2的值:(3)思维拓展:已知实数s 、t 分别满足19s 2+99s +1=0,t 2+99t +19=0,且st ≠1.求41st s t++的值.24.已知关于x 的一元二次方程(k ﹣1)x 2+(2k+1)x+k =0. (1)依据k 的取值讨论方程解的情况.(2)若方程有一根为x =﹣2,求k 的值及方程的另一根.25.已知关于x 的方程230x x a ++=①的两个实数根的倒数和等于3,且关于x 的方程2(1)320k x x a -+-=②有实数根,又k 为正整数,求代数式2216k k k -+-的值.26.已知关于的一元二次方程x 2-4x +k +1=0(1)若=-1是方程的一个根,求k 值和方程的另一根;(2)设x 1,x 2是关于x 的方程x 2-4x +k +1=0的两个实数根,是否存在实数k ,使得x 1x 2>x 1+x 2成立?请说明理由.27.已知关于x 的一元二次方程2104x x m -+=有两个实数根. ()1若m 为正整数,求此方程的根.()2设此方程的两个实数根为a 、b ,若2221y ab b b =-++,求y 的取值范围.28.已知关于x 的一元二次方程x 2+(4m+1)x+2m-1=O . (1)求证:不论m 为任何实数,方程总有两个不相等的实数根; (2)若方程两根为x 1、x 2,且满足12111+?=2x x ,求m 的值.29.关于的一元二次方程(1)求证:方程有两个不相等的实数根; (2)为何整数时,此方程的两个根都为正整数.30.已知关于x的一元二次方程01)1(22=-+++k x k kx 有两个实数根,求k 的取值范围.参考答案1.D【解析】【分析】由关于x的一元二次方程ax2-2x-1=0有两个不相等的实数根,即可得判别式△>0且二次项系数a≠0,继而可求得a的范围.【详解】∵一元二次方程ax2-2x-1=0有两个不相等的实数根,∴△=(-2)2-4×a×(-1)>0,且a≠0,解得:a>-1且a≠0,故选D.【点睛】此题考查了一元二次方程根的判别式的知识.此题比较简单,注意掌握一元二次方程有两个不相等的实数根,即可得△>0.2.A【解析】∵关于x的一元二次方程x2−2x+k=0有两个不相等的实数根,∴△=(−2)2−4k>0,解得:k<1.故选:A.3.C【解析】【分析】根据已知得出b2-4ac=12-4a•(-2)>0,求出即可.【详解】∵一元二次方程ax2+x-2=0有两个不相等实数根,∴b2-4ac=12-4a•(-2)>0,解得:a>-18且a≠0,故选:C.【点睛】本题考查了根的判别式的应用,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)的根的判别式是b 2-4ac ,当b 2-4ac >0时,方程有两个不相等的实数根,当b 2-4ac=0时,方程有两个相等的实数根,当b 2-4ac <0时,方程没有实数根. 4.D . 【解析】试题分析:设两根是﹣2和﹣3的方程为:x 2+ax+b=0,根据根与系数的关系,可得(﹣2)+(﹣3)=﹣a=5,(﹣2)×(﹣3)=b=6,故方程为:x 2+5x+6=0.故选D . 考点:根与系数的关系. 5.C 【解析】 【分析】设该一元二次方程的另一根为t ,则根据根与系数的关系得到36t =-,由此易求t 的值. 【详解】解:设关于x 的一元二次方程260x mx +-=的另一个根为t ,则36t =-, 解得2t =-. 故选:C . 【点睛】本题考查了根与系数的关系.若二次项系数为1,常用以下关系:1x ,2x 是方程20x px q ++=的两根时,12x x p +=-,12x x q =,反过来可得12()p x x =-+,12q x x =,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数. 6.C . 【解析】试题解析:A 、△=22-4×1×(-1)=8>0,则该方程有两个不相等的实数根.故本选项错误; B 、设该方程的两根分别是α、β,则α+β=-2.即两根之和为2,故本选项错误; C 、设该方程的两根分别是α、β,则αβ=-1.即两根之积为-1,故本选项正确;D 、根据求根公式1=-±1-+1-.故本选项错误; 故选C .考点:1.根与系数的关系;2.根的判别式.【解析】 【分析】利用根与系数的关系,即可求出. 【详解】设该方程的另一根为m , 利用根与系数的关系:12b x x a+=- 得:m ﹣1=4, 解得:m =5. 故选:D . 【点睛】本题考查一元二次方程的解的定义以及根数系数的关系,熟练掌握相关知识点是解题关键. 8.D 【解析】 【分析】根据一元二次方程根与系数的关系,即韦达定理进行作答. 【详解】 由韦达定理,即,x 1·x 2=.而x +x =24=()2-2 x 1·x 2=36-2(k +1),解出k =5.所以,答案选D. 【点睛】本题考查了一元二次方程根与系数的关系,即韦达定理的运用,熟练掌握一元二次方程根与系数的关系,即韦达定理是本题解题关键. 9.D 【解析】试题分析:设,αβ是方程022=+-a ax x 的两个根,则,2a a αβαβ+==,又225αβ+=,所以22()245a a αβαβ+-=-=,解得a =-1或5,当a=-1时,9=V >0,当a=5时,16=-V <0,所以a=5不合题意舍去,所以选:D . 考点:根与系数的关系.【解析】 【分析】根据根与系数的关系得到x 1+x 2=3,即可得出答案. 【详解】解:∵x 1、x 2是一元二次方程x 2−3x+1=0的两个根, ∴x 1+x 2=3, 故选A.. 【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=b a -,x 1x 2=c a. 11.32-【解析】 【分析】因为方程25320x x --=的两个实数根为m 、n ,所以32,55m n mn +==-,而11m n +=m nnm +,将所得的式子代入计算即可. 【详解】解:∵方程25320x x --=的两个实数根为m 、n ,∴32,55m n mn +==-, ∴11m n +=m n n m +=3525-=32-.故答案为32-.【点睛】本题考查的是一元二次方程的根与系数的关系,对于此类题目,一般的思路和方法是先写出两根之和与两根之积,再将所求的式子变形成两根和与积的形式,整体代入求解. 12. 2 5【解析】∵方程x 2+(m+1)x ﹣2n=0的两根分别为2和﹣5,∴由一元二次方程“根与系数的关系”可得:2+(﹣5)=﹣(m+1),2×(﹣5)=﹣2n,解得:m=2,n=5.故答案为2,5.13.2017【解析】【分析】先根据一元二次方程解的定义得到a2=a+2018,所以a2-2a-b化简为-(a+b)+2018,再利用根与系数的关系得到a+b=1,然后利用整体代入的方法计算.【详解】∵a为方程x2-x-2018=0的根,∴a2-a-2018=0,即a2=a+2018,∴a2-2a-b=a+2018-2a-b=-(a+b)+2018,∵a、b是一元二次方程x2-x-2018=0的两个实数根,∴a+b=1,所以原式=-1+2018=2017.故答案是:2017.【点睛】考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-ba,x1x2=ca.也考查了一元二次方程解的定义.14.﹣2 【解析】试题解析:根据一元二次方程根与系数的关系可得:x1+x2=4-=-2 2.15.-1.【解析】试题分析:设已知方程的两根分别为m,n,由题意得:m与n互为倒数,即mn=1,由方程有解,得到,解得:,又mn=,∴=1,解得:=1(舍去)或=-1,则=-1.故应填为:-1.考点:根与系数的关系.点评:此题要求熟练掌握一元二次方程ax 2+bx+c=0(a ≠0),当b 2-4ac≥0时,方程有解,然后利用韦达定理得出,.16.m≤258【解析】 【分析】此题根据方程有实数根,可得25420,m -⨯≥解这个不等式即可得出答案. 【详解】解:关于x 的一元二次方程2250x x m -+=有两个实数根,由一元二次方程根的判别式,得25420,m -⨯≥解得:25.8m ≤ 故答案为:25.8m ≤ 【点睛】一元二次方程根的判别式:△>0时,一元二次方程有两个不等实根; △=0时,一元二次方程有两个相等实根; △<0时,一元二次方程没有实根; △≥0时,方程有实数根.17.2240x x -=(答案不唯一) 【解析】 【分析】根据题意可设一根为2,另一根为0,再计算出2+0=2,2×0=0,然后根据根与系数的关系写出新方程,再把二次项系数化为2即可. 【详解】解:设一根为2,另一根为0, ∵2+0=2,2×0=0,∴以2和0为根的一元二次方程可为x 2-2x=0, 当二次项系数为2时,方程变形为2x 2-4x=0. 故答案为2240x x -=. 【点睛】本题考查了根与系数的关系:若x 1,x 2是方程ax 2+bx+c=0的两根时,12bx x a +=-,12c x x a=. 18.8【解析】解析:把x=-2代入方程得:4+4-a=0, 解得:a=8.考点:一元二次方程的解. 19.8 【解析】若一元二次方程有两个相等的实数根,则根的判别式△=b 2-4ac=0,建立关于k 的等式,求出k 的值.解:由题意知方程有两相等的实根, ∴△=b 2-4ac=36-4k-4=0, 解得k=8. 20.34<m≤1. 【解析】 【分析】若一元二次方程有两根,则根的判别式△=b 2-4ac≥0,建立关于m 的不等式,求出m 的取值范围.再根据根与系数的关系和三角形中三边的关系来再确定m 的取值范围,最后综合所有情况得出结论. 【详解】∵方程x 2-2x+m=0的两实根为a ,b , ∴有△=4-4m≥0, 解得:m≤1,由根与系数的关系知:a+b=2,a•b=m , 若a ,b ,1可以作为一个三角形的三边之长, 则必有a+b >1与|a-b|<1同时成立,故只需(a-b )2<1即可, 化简得:(a+b )2-4ab <1,把a+b=2,a•b=m 代入得:4-4m <1, 解得:m >34, ∴34<m≤1, 故本题答案为:34<m≤1. 【点睛】主要考查一元二次方程的根的判别式与根的关系和一元二次方程根与系数的关系、三角形中三边的关系. 21.(1);(2)的值是,该方程的另一根为.【解析】试题分析:(1)利用根的判别式列出不等式求解即可; (2)利用根与系数的关系列出有关的方程(组)求解即可.试题解析:(1)∵b 2﹣4ac=22﹣4×1×(a ﹣2)=12﹣4a >0, 解得:a <3, ∴a 的取值范围是a <3;(2)设方程的另一根为x 1,由根与系数的关系得:111x 21x 2a +=-⎧⎨⋅=-⎩,解得:11x 3a =-⎧⎨=-⎩, 则a 的值是﹣1,该方程的另一根为﹣3.22.(1)m >﹣34;(2)m =3. 【解析】 【分析】(1)根据方程有两个相等的实数根可知△>0,求出m 的取值范围即可; (2)根据根与系数的关系得出α+β与αβ的值,代入代数式进行计算即可. 【详解】(1)∵关于x 的一元二次方程x 2+(2m +3)x +m 2=0有两个不相等的实数根,∴△>0,即△=(2m +3)2﹣4m 2>0,解得m >﹣34; (2)∵α,β是方程的两个实数根, ∴α+β=﹣(2m +3),αβ=m 2. ∵211(23)1m mαβαβαβ+-++===-, ∴﹣(2m +3)=﹣m 2,解得m 1=3,m 2=﹣1(舍弃). ∴m =3. 【点睛】考查的是根与系数的关系,熟知x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=﹣b a ,x 1x 2=ca是解答此题的关键. 23.(1)-2,-15;(2)﹣17;(3)﹣15.【解析】 【分析】(1)直接利用根与系数的关系求解;(2)把m 、n 可看作方程7x 2﹣7x ﹣1=0,利用根与系数的关系得到m +n =1,mn =﹣17,再利用因式分解的方法得到m 2n +mn 2=mn (m +n ),然后利用整体的方法计算;(3)先把t 2+99t +19=0变形为19•(1t )2+99•1t +1=0,则把实数s 和1t可看作方程19x 2+99x +1=0的两根,利用根与系数的关系得到s +1t =﹣9919,s •1t =119,然后41st s t ++变形为s +4•s t +1t,再利用整体代入的方法计算. 【详解】解:(1)x 1+x 2=﹣105=﹣2,x 1x 2=﹣15;故答案为﹣2;﹣15;(2)∵7m 2﹣7m ﹣1=0,7n 2﹣7n ﹣1=0,且m ≠n , ∴m 、n 可看作方程7x 2﹣7x ﹣1=0, ∴m +n =1,mn =﹣17,∴m2n+mn2=mn(m+n)=﹣17×1=﹣17;(3)把t2+99t+19=0变形为19•(1t)2+99•1t+1=0,实数s和1t可看作方程19x2+99x+1=0的两根,∴s+1t=﹣9919,s•1t=119,∴41st st++=s+4•st+1t=﹣9919+4×119=﹣15.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣ba,x1x2=ca.也考查了解一元二次方程.24.(1)k>﹣18且k≠1时,原方程有两个不相等的实数根;k=﹣18时,原方程有两个相等的实数根;k<﹣18时,原方程没有实数根;(2)k=6,方程的另一根为﹣35.【解析】【分析】(1)根据方程的系数可得出根的判别式△=8k+1,进而可得出方程解得情况;(2)将x=﹣2代入原方程可求出k值,再利用两根之和等于ba-及方程的一根为x=﹣2,可求出方程的另一根.【详解】解:(1)a=k﹣1,b=2k+1,c=k,∵△=b2﹣4ac=(2k+1)2﹣4×(k﹣1)×k=8k+1,∴当k>﹣18且k≠1时,原方程有两个不相等的实数根;当k=﹣18时,原方程有两个相等的实数根;当k<﹣18时,原方程没有实数根.(2)将x=﹣2代入原方程,得:(k﹣1)×(﹣2)2+(2k+1)×(﹣2)+k=0,解得:k=6,∴原方程为5x2+13x+6=0,∴方程的另一根为x =﹣135﹣(﹣2)=﹣35. 【点睛】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根”;(2)代入x=-2求出k 值. 25.0. 【解析】 【分析】由于关于x 的方程x 2+3x +a =0的两个实数根的倒数和等于3,利用根与系数的关系可以得到关于a 的方程求出a ,又由于关于x 的方程(k -1)x 2+3x -2a =0有实数根,分两种情况讨论,该方程可能是一次方程、有可能是一元二次方程,又k 为正整数,利用判别式可以求出k ,最后代入所求代数式计算即可求解. 【详解】解:设方程①的两个实数根分别为x 1、x 2则12123940x x x x a a +-⎧⎪⎨⎪-≥⎩V=== , 由条件,知12121211x x x x x x ++==3, 即33a -=,且94a ≤, 故a =-1,则方程②为(k -1)x 2+3x +2=0,Ⅰ.当k -1=0时,k =1,x =23-,则22106k k k -=+-.Ⅱ.当k -1≠0时,∆=9-8(k -1)=17-6-8k ≥0,则178k ≤, 又k 是正整数,且k≠1,则k =2,但使2216k k k -+-无意义.综上,代数式2216k k k -+-的值为0【点睛】本题综合考查了根的判别式和根与系数的关系,在解方程时一定要注意所求k 的值与方程判别式的关系.要注意该方程可能是一次方程、有可能是一元二次方程, 26.(1)k=" -6" ,方程的另一根是5. (2)不存在.理由见解析. 【解析】试题分析:(1)把已知的根代入原方程,求出k ,然后根据根与系数的关系,求得另一根; (2)根据一元二次方程的跟的判别式求出k 的范围,然后再根据根与系数的关系表示出x 1+x 2=4,x 1·x 2=k +1,根据已知的不等式求出k 的范围,从判断是否存在. 试题解析:(1)k="-6" ,方程的另一根是5. ( 2 ) 不存在.理由:由题意得Δ=16-4(k +1)≥0,解得k≤3. ∵x 1,x 2是一元二次方程的两个实数根, ∴x 1+x 2=4,x 1x 2=k +1, 由x 1x 2>x 1+x 2得k +1>4, ∴k >3,∴不存在实数k 使得x 1x 2>x 1+x 2成立.考点:一元二次方程根的判别式,根与系数的关系 27.()11m =,1212x x ==.()724y ≤. 【解析】 【分析】(1)根据方程的系数结合根的判别式,即可得出114m 1m 04=-⨯=-≥V ,由此吉可求得m 的取值范围,根据m 为正整数,可得出m 的值,将m 代入原方程求出x 的值即可; (2)根据根与系数的关系以及一元二次方程根的定义可得1ab m 4=,21b b m 04-+=,由此可得3y m 14=+,根据m 的取值范围进行求解即可. 【详解】()1∵一元二次方程21x x m 04-+=有两个实数根,∴114m 1m 04=-⨯=-≥V , ∴m 1≤.∵m 为正整数, ∴m 1=,当m 1=时,此方程为21x x 04-+=, ∴此方程的根为121x x 2==; ()2∵此方程的两个实数根为a 、b ,∴1ab m 4=,21b b m 04-+=, ∴()22113y ab 2b 2b 1ab 2b b 1m 2m 1m 1444⎛⎫=-++=--+=--+=+ ⎪⎝⎭, ∵()4m y 13=-, 又∵m 1≤, ∴()4m y 113=-≤, ∴y 的取值范围为7y 4≤. 【点睛】本题考查了一元二次方程根的判别式、根与系数的关系、一元二次方程的根等,综合性较强,正确理解题意,熟练运用相关知识是解题的关键. 28.(1)相交线;(2)m=110-. 【解析】 【分析】(1)要证明方程总有两个不相等的实数根,那么只要证明△>0即可; (2)首先利用根与系数的关系可以得到x 1+x 2,x 1x 2,接着利用根与系数的关系得到关于m 的方程,解方程即可解决问题. 【详解】(1)证明:因为一元二次方程x 2+(4m+1)x+2m-1=O 的根的判别式 △=(4m+1)2-4(2m-1)=16m 2+8m+1-8m+4=16m 2+5.因为不论m 取何值时,m 2≥0,所以16m 2+5总大于0,即不论m 为任何实数,方程总有两个不相等的实数根;(2)因为方程两根为x 1、x 2,所以x 1+x 2=-(4m+1),x 1x 2=2m -1, 因为12111+=,2x x 所以121212x x x x +=,所以()411212m m -+=-,所以m=110-.【点睛】本题考查了一元二次方程根的判别式及根与系数的关系,掌握(1) △>0,方程有两个不相等的实数根;(2) △=0,方程有两个相等的实数根;(3) △<0,方程没有实数根,是解答本题的关键. 29.(1)证明见解析;(2)2或3. 【解析】试题分析:(1)表示出根的判别式,得到根的判别式大于0,进而确定出方程总有两个不相等的实数根;(2)由(1)得到方程有两个不相等的实数根,利用求根公式表示出方程的两根:x 1=,x 2=1,要使原方程的根是整数,必须使得x 1==1+为正整数,则m-1=1或2,进而得出符合条件的m 的值.解:(1)∵△=b 2-4ac=(-2m )2-4(m-1)(m+1)=4>0, ∴方程有两个不相等的实数根; (2)由求根公式,得x=, ∴x 1==,x 2==1;∵m 为整数,且方程的两个根均为正整数, ∴x 1==1+,必为正整数,∴m-1=1或2, ∴m=2或m=3.考点:根的判别式;一元二次方程的定义. 30.k≥-13且k≠0. 【解析】试题分析:若一元二次方程有两不等实数根,则根的判别式△=b 2-4ac≥0,建立关于k 的不等式,求出k 的取值范围.还要注意二次项系数不为0. 试题解析:∵a=k ,b=2(k+1),c=k-1,∴△=[2(k+1)]2-4×k×(k-1)=12k+4≥0,解得:k≥-13,∵原方程是一元二次方程,∴k≠0.所以:k的取值范围为:k≥-13且k≠0.考点:根的判别式.。

初中数学一元二次方程根与系数的关系练习题含答案

初中数学一元二次方程根与系数的关系练习题含答案

初中数学一元二次方程根与系数的关系练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 如果关于x的一元二次方程x2+px+q=0的两根分别为x1=3,x2=1,那么这个一元二次方程是()A.x2+3x+4=0B.x2+4x−3=0C.x2−4x+3=0D.x2+3x−4=02. 一元二次方程x2−2x+b=0的两根分别为x1,x2,则x1+x2等于( )A.−2B.bC.2D.−b3. 若x1,x2是一元二次方程2x2−7x+5=0的两根,则x1+x2−x1x2的值是()A.1B.6C.−1D.−64. 若关于x的一元二次方程kx2−3x+1=0的两根之积为4,则这个方程的两根之和为( )A.3 4B.−34C.12D.−125. 下列方程中两个实数根的和等于2的方程是()A.2x2−4x+3=0B.2x2−2x−3=0C.2y2+4y−3=0D.2t2−4t−3=06. 王刚同学在解关于x的方程x2−3x+c=0时,误将−3x看作+3x,结果解得x1=1,x2=−4,则原方程的解为()A.x1=−1,x2=−4B.x1=1,x2=4C.x1=−1,x2=4D.x1=2,x2=37. 已知x1,x2是方程x2=2x+1的两个根,则1x1+1x2的值为()A.−12B.2 C.12D.−28. x1,x2是关于x的一元二次方程x2−mx+m−2=0的两个实数根,是否存在实数m使1x1+1x2=0成立?则正确的结论是()9. 设方程x2−4x−1=0的两个根为x1与x2,则x1x2的值是()A.−4B.−1C.1D.010. 若2,3是方程x2+px+q=0的两实根,则x2−px+q可以分解为()A.(x−2)(x−3)B.(x+1)(x−6)C.(x+1)(x+5)D.(x+2)(x+3)11. 设x1,x2是方程5x2−3x−2=0的两个实数根,则1x1+1x2的值为________.12. 若关于x的方程x2+3x+k=0的一个根是1,则另一个根是________.13. 一元二次方程x2−4x+2=0的两根分别为x1,x2,则x12−4x1+2x1x2的值为________.14. 已知α,β是一元二次方程x2+x−2=0的两个实数根,则α+β−αβ的值是________.15. 如果m,n是两个不相等的实数,且满足m2−m=3,n2−n=3,那么代数式2n2−mn+2m+2009=________.16. 一元二次方程x2−4x+2=0的两根为x1,x2,则x12−4x1+2x1x2的值为________.17. 若m,n是方程x2+3x−2019=0的两个实数根,则m2+4m+n的值为________.18. 设方程x2+3x−4=0的两个实数根为x1,x2,求1x1+1x2=________.19. 试写出一个以−1,−3为两根的一元二次方程________.20. 已知,α、β是关于x的一元二次方程x2+4x−1=0的两个实数根,则α+β的值是________.21. 已知关于x的方程x2+5x−c=0一根为2,求另一根及c的值.x1+x2+12√x1x2.(1)当a≥0时,求y的取值范围;(2)当a<0时,比较y与−a2+3a−9的大小,并说明理由.23. 已知x1、x2是方程x2+6x+3=0的两实数根,求x2x1+x1x2的值.24. 已知a,b是关于x的方程x2+2x−3=0的两个实数根.求a+b与ab的值.25. 已知实数a,b是方程x2−x−1=0的两根,求ba +ab的值.26. 已知x1,x2是一元二次方程x2−3x−1=0的两根,不解方程求下列各式的值.(1)x12+x22;(2)1x1+1x2.27. 已知方程x2+4x−2=0的两个实数根分别为x1,x2,试求:(1)x12+x22;(2)1x12+1x22.28. 在一元二次方程x2−2ax+b=0中,若a2−b>0,则称a是该方程的中点值.(1)方程x2−8x+3=0的中点值是________;(2)已知x2−mx+n=0的中点值是3,其中一个根是2,求mn的值.29. 关于r的一元二次方程x2−4x−k−3=0的两个实数根是x1,x2(1)已知k=2(2)若x=3x试求上的值30. 已知关于x的一元二次方程x2−(2m−2)x+(m2−2m)=0的两实数根分别为x1,x2.(1)求x1−x2的值;(2)若x12+x22=10,求m的值.31. 阅读材料:已知实数m,n满足m2−m−1=0,n2−n−1=0,求nm +mn的值.解:由题知m,n是方程x2−x−1=0的两个不相等的实数根,根据根与系数关系得m+n=1,mn=−1,所以nm +mn=m2+n2mn=(m+n)2−2mnmn=1+2−1=−3.根据上述材料解决以下问题:(1)一元二次方程5x2+10x−1=0的两个根为x1,x2,则x1+x2=_______,x1x2=_______;(2)类比探究:已知m,n满足7m2−7m−1=0,7n2−7n−1=0,求m2n+mn2的值;(3)思维拓展:已知p,q满足p2=9p−6,3q2=9q−2,求p2+9q2的值.32. 已知x1,x2是一元二次方程x2−2x−3=0的两个实数根,则x1+x2=________.33. 阅读材料:如果x1,x2是一元二次方程ax2+bx+c=0的两根,那么有x1+x2=−ba ,x1x2=ca.这是一元二次方程根与系数的关系,我们利用它可以用来解题,例x1,x2是方程x2+6x−3=0的两根,求x12+x22的值.解法可以这样:∵x1+x2=−6,x1x2=−3,则x12+x22=(x1+x2)2−2x1x2=(−6)2−2×(−3)=42.请你根据以上解法解答下题:已知x1,x2是方程x2−4x+2=0的两根,求:(1)1x1+1x2的值;(2)(x1−x2)2的值.34. 已知关于x的方程x2+x+a−1=0有一个根是1,求a的值及方程的另一个根.35. 设一元二次方程x2−6x+3=0的两根为x1和x2,求x2x1+x1x2的值.36. 若x1,x2是方程x2+2x−2007=0的两个根,试求下列各式的值:(1)x12+x22;(2)1x1+1x2;(3)(x1−5)(x2−5);(4)|x1−x2|.37. 先阅读,再回答问题:如果x1、x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根,那么x1+x2,x1x2与系数a、b、c的关系是:x1+x2=−ba ,x1x2=ca,例如:若x1、x2是方程2x2−x−1=0的两个根,则x1+x2=−ba =−−12=12,x1x2=c a =−12=−12.若x1、x2是方程2x2+x−3=0的两个根.(1)求x1+x2,x1x2;(2)求x2x1+x1x2的值.38. 阅读材料:如果x1,x2是一元二次方程ax2+bx+c=0的两根,那么有x1+x2=−ba ,x1x2=ca.这是一元二次方程根与系数的关系,我们利用它可以用来解题,例x1,x2是方程x2+6x−3=0的两根,求x12+x22的值.解法可以这样:∵x1+x2=−6,x1x2=−3,则x12+x22=(x1+x2)2−2x1x2=(−6)2−2×(−3)= 42.请你根据以上解法解答下题:已知x1,x2是方程x2+x−1=0的两根,求:(1)1x1+1x2的值;(2)(x1−x2)2的值.(3)试求x22−x12的值.39. 已知关于x的一元二次方程ax2+bx+c=0的两根分别为x、x,有如下结论:3x2−x−2019=0的两根分别为x1、x2,求(x1+2)(x2+2)的值.40. 韦达定理:若一元二次方程ax2+bx+c=0(a≠0)的两根分别为x1、x2,则x1+x2=−ba ,x1⋅x2=ca,阅读下面应用韦达定理的过程:若一元二次方程−2x2+4x+1=0的两根分别为x1、x2,求x12+x22的值.解:该一元二次方程的△=b2−4ac=42−4×(−2)×1=24>0由韦达定理可得,x1+x2=−ba =−4−2=2,x1⋅x2=ca=1−2=−12x12+x22=(x1+x2)2−2x1x2=22−2×(−1 2 )=5然后解答下列问题:(1)设一元二次方程2x2+3x−1=0的两根分别为x1,x2,不解方程,求x12+x22的值;(2)若关于x的一元二次方程(k−1)x2+(k2−1)x+(k−1)2=0的两根分别为α,β,且α2+β2=4,求k的值.参考答案与试题解析初中数学一元二次方程根与系数的关系练习题含答案一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 1.【答案】 C【考点】根与系数的关系 【解析】由根与系数的关系求得p ,q 的值. 【解答】解:方程两根分别为x 1=3,x 2=1,则x 1+x 2=−p =3+1=4,x 1x 2=q =3 ∴ p =−4,q =3,∴ 原方程为x 2−4x +3=0. 故选C . 2. 【答案】 C【考点】根与系数的关系 【解析】根据“一元二次方程x 2−2x +b =0的两根分别为x 1和x 2”,结合根与系数的关系,即可得到答案. 【解答】解:根据题意得: x 1+x 2=−−21=2.故选C . 3.【答案】 A【考点】根与系数的关系 【解析】首先利用韦达定理计算,再代入求值即可. 【解答】解:由题可知, x 1+x 2=72,x 1x 2=52, 所以x 1+x 2−x 1x 2=72−52=1. 故选A .【答案】C【考点】根与系数的关系【解析】设出两根,利用根已悉数的关系,构造方程,解出即可. 【解答】解:设两根分别为x1,x2,由根与系数的关系可知,x1+x2=3k ,x1x2=1k=4,∴k=14,∴x1+x2=3k=3×4=12.故选C.5.【答案】D【考点】根与系数的关系【解析】利用判别式对A进行判断;根据根与系数的关系对B、C、D进行判断.【解答】解:A、△=(−4)2−4×2×3<0,方程没有实数解,所以A选项错误;B、两个实数根的和等于1,所以B选项错误;C、两个实数根的和等于−2,所以C选项错误;D、两个实数根的和等于2,所以D选项正确.故选D.6.【答案】C【考点】根与系数的关系【解析】利用根与系数的关系求得c的值;然后利用因式分解法解原方程即可.【解答】依题意得关于x的方程x2+3x+c=0的两根是:x1=1,x2=−4.则c=1×(−4)=−4,则原方程为x2−3x−4=0,整理,得(x+1)(x−4)=0,解得x1=−1,x2=4.7.【答案】D根与系数的关系【解析】先把方程化为一般式得x2−2x−1=0,根据根与系数的关系得到x1+x2=−2,x1⋅x2=−1,再把原式通分得x1+x2x1x2,然后利用整体思想进行计算.【解答】解:方程化为一般式得x2−2x−1=0,根据题意得x1+x2=2,x1⋅x2=−1,∴原式=x1+x2x1x2=2−1=−2.故选D.8.【答案】A【考点】根与系数的关系【解析】先由一元二次方程根与系数的关系得出,x1+x2=m,x1x2=m−2.假设存在实数m使1x1+1x2=0成立,则x1+x2⋅=0,求出m=0,再用判别式进行检验即可.【解答】解:∵x1,x2是关于x的一元二次方程x2−mx+m−2=0的两个实数根,∴x1+x2=m,x1x2=m−2.假设存在实数m使1x1+1x2=0成立,则x1+x2x1x2=0,∴mm−2=0,∴m=0.当m=0时,方程x2−mx+m−2=0即为x2−2=0,此时Δ=8>0,∴m=0符合题意.故选A.9.【答案】B【考点】根与系数的关系【解析】关于x的一元二次方程ax2+bx+c=0(a≠0)根与系数的关系为:x1+x2=−ba,x1⋅x2=ca.【解答】解:a=1,c=−1,所以x1⋅x2=ca =−11=−1.【答案】 D【考点】根与系数的关系 【解析】本题考查了根与系数的关系这一知识点. 【解答】解:根据根与系数的关系可得p =−(2+3)=−5,q =2×3=6. 因此x 2+5x +6=(x +2)(x +3). 故选D .二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 11. 【答案】−32【考点】根与系数的关系 【解析】根据根与系数的关系得到x 1+x 2、x 1x 2的值,然后将所求的代数式进行变形并代入计算即可. 【解答】解:∵ 方程x 1,x 2是方程5x 2−3x −2=0的两个实数根, ∴ x 1+x 2=35,x 1x 2=−25, ∴1x 1+1x 2=x 1+x 2x 1x 2=35−25=−32.故答案为:−32. 12.【答案】 −4【考点】根与系数的关系 【解析】设方程的两根分别为x 1,x 2,则由根与系数关系得,x 1+x 2=−3,由x 1=1可得x 2=−4. 【解答】解:根据题意,设方程的两根分别为x 1,x 2,令x 1=1, 则由根与系数关系得,x 1+x 2=−3, ∵ x 1=1, ∴ x 2=−4. 故答案为:−4. 13.【答案】 2【解析】本题考查了根与系数的关系以及一元二次方程的解,牢记两根之和等于−b,两根之积a .根据根与系数的关系及一元二次方程的解可得出x12−4x1=−2,x1x2=2,将等于ca其代入所求式子中即可求出结论.【解答】解:根据题意得,x12−4x1=−2,x1x2=2,x12−4x1+2x1x2=−2+4=2.故答案为:2.14.【答案】1【考点】根与系数的关系【解析】据根与系数的关系α+β=−1,αβ=−2,求出α+β和αβ的值,再把要求的式子进行整理,即可得出答案.【解答】解:∵α,β是方程x2+x−2=0的两个实数根,∴α+β=−1,αβ=−2,∴α+β−αβ=−1+2=1.故答案为:1.15.【答案】2020【考点】根与系数的关系【解析】由于m,n是两个不相等的实数,且满足m2−m=3,n2−n=3,可知m,n是x2−x−3=0的两个不相等的实数根.则根据根与系数的关系可知:m+n=2,mn=−3,又n2=n+3,利用它们可以化简2n2−mn+2m+2015=2(n+3)−mn+2m+2015=2n+6−mn+2m+2015=2(m+n)−mn+2021,然后就可以求出所求的代数式的值.【解答】解:由题意可知:m,n是两个不相等的实数,且满足m2−m=3,n2−n=3,所以m,n是x2−x−3=0的两个不相等的实数根,则根据根与系数的关系可知:m+n=1,mn=−3,又n2=n+3,则2n2−mn+2m+2009=2(n+3)−mn+2m+2009=2n+6−mn+2m+2009=2(m+n)−mn+2015=2×1−(−3)+2015=2+3+2015=2020.故答案为:2020.16.【答案】2【考点】根与系数的关系【解析】根据根与系数的关系及一元二次方程的解可得出x12−4x1=−2、x1x2=2,将其代入x12−4x1+2x1x2中即可求出结论.【解答】∵一元二次方程x2−4x+2=0的两根为x1、x2,∴x12−4x1=−2,x1x2=2,∴x12−4x1+2x1x2=−2+2×2=2.17.【答案】2016【考点】根与系数的关系【解析】此题暂无解析【解答】解:∵m,n是方程x2+3x−2019=0的两个根,∴m2+3m=2019,m+n=−3,∴m2+4m+n=m2+3m+(m+n)=2019−3=2016.故答案为:2016.18.【答案】34【考点】根与系数的关系【解析】根据根与系数的关系得到x1+x2=−3,x1⋅x2=−4,再变形1x1+1x2得到x1+x2x1x2,然后利用代入法计算即可.【解答】解:∵一元二次方程x2+3x−4=0的两根是x1,x2,∴x1+x2=−3,x1⋅x2=−4,∴1x1+1x2=x1+x2x1x2=−3−4=34.故答案为:34.19.【答案】x 2+4x +3=0 【考点】根与系数的关系 【解析】根据根与系数的关系:两根之和=−ba,两根之积=ca,首先写出两根之和,再写出两根之积,可直接得到方程. 【解答】解:∵ −1+(−3)=−4,(−1)×(−3)=3, ∴ 方程为:x 2+4x +3=0, 故答案为:x 2+4x +3=0. 20.【答案】 −4【考点】根与系数的关系 【解析】 此题暂无解析 【解答】 此题暂无解答三、 解答题 (本题共计 20 小题 ,每题 10 分 ,共计200分 ) 21.【答案】解:设另一根为x 1,则{x 1+2=−5,2x 1=−c,解得{x 1=−7,c =14,∴ 另一根为−7,c 的值为14. 【考点】根与系数的关系 【解析】 暂无 【解答】解:设另一根为x 1,则{x 1+2=−5,2x 1=−c,解得{x 1=−7,c =14,∴ 另一根为−7,c 的值为14. 22. 【答案】解:(1)14x 2+(a −2)x +a 2=0,∵ △=(a −2)2−4×14×a 2≥0,∴ a ≤1,根据题意得x 1+x 2=−4(a −2),x 1x 2=4a 2, ∵ 0≤a ≤1,∴ y =−4(a −2)+a =−3a +8∴5≤y≤8;(2)当a<0时,y=−4(a−2)−a=−5a+8,y−(−a2+3a−9)=−5a+8+a2−3a+9=(a−4)2+1,∵(a−4)2+1>0,∴y>−a2+3a−9.【考点】根与系数的关系【解析】(1)先把方程化为一般式得到14x2+(a−2)x+a2=0,再利用判别式得到a≤1,根据根与系数的关系得到y=−4(a−2)+a=−3a+8,然后计算当0≤a≤1时对应的y的范围;(2)当a<0时,y=−4(a−2)−a=−5a+8,然后利用求差法比较大小.【解答】解:(1)14x2+(a−2)x+a2=0,∵△=(a−2)2−4×14×a2≥0,∴a≤1,根据题意得x1+x2=−4(a−2),x1x2=4a2,∵0≤a≤1,∴y=−4(a−2)+a=−3a+8∴5≤y≤8;(2)当a<0时,y=−4(a−2)−a=−5a+8,y−(−a2+3a−9)=−5a+8+a2−3a+9=(a−4)2+1,∵(a−4)2+1>0,∴y>−a2+3a−9.23.【答案】解:∵x1、x2是方程x2+6x+3=0的两实数根,∴由韦达定理,知x1+x2=−6,x1⋅x2=3,∴x2x1+x1x2=x1⋅x2˙=(−6)2−2×33=10,即x2x1+x1x2的值是10.【考点】根与系数的关系【解析】利用根与系数的关系求得x1+x2=−6,x1⋅x2=3,然后将其代入整理后的所求的代数式求值.【解答】解:∵x1、x2是方程x2+6x+3=0的两实数根,∴由韦达定理,知x1+x2=−6,x1⋅x2=3,∴x2x1+x1x2=x1⋅x2˙=(−6)2−2×33=10,即x2x1+x1x2的值是10.24.【答案】解:a+b=−21=−2,ab=−31=−3.【考点】根与系数的关系【解析】此题暂无解析【解答】解:a+b=−21=−2,ab=−31=−3.25.【答案】解:∵实数a,b是方程x2−x−1=0的两根,∴a+b=1,ab=−1,∴ba +ab=b2+a2ab=(a+b)2−2abab=−3.【考点】根与系数的关系【解析】根据根与系数的关系得到a+b=1,ab=−1,再利用完全平方公式变形得到ba +ab=b2+a2 ab =(a+b)2−2abab,然后利用整体代入的方法进行计算.【解答】解:∵实数a,b是方程x2−x−1=0的两根,∴a+b=1,ab=−1,∴ba +ab=b2+a2ab=(a+b)2−2abab=−3.26.【答案】解:(1)∵x1,x2是一元二次方程x2−3x−1=0的两根,∴x1+x2=3,x1x2=−1,∴x12+x22=(x1+x2)2−2x1x2=32−2×(−1)=11.(2)1x1+1x2=x1+x2x1x2=3−1=−3.【考点】根与系数的关系【解析】无无【解答】解:(1)∵x1,x2是一元二次方程x2−3x−1=0的两根,∴x1+x2=3,x1x2=−1,∴x12+x22=(x1+x2)2−2x1x2=32−2×(−1)=11.(2)1x 1+1x 2=x 1+x 2x 1x 2=3−1=−3.27.【答案】解:(1)∵ x 1,x 2是x 2+4x −2=0的两个实数根, ∴ x 1+x 2=−4,x 1x 2=−2, x 12+x 22=(x 1+x 2)2−2x 1x 2 =(−4)2−2×(−2) =16+4 =20.(2)由(1)得,x 1+x 2=−4,x 1x 2=−2, 1x 12+1x 22 =x 12+x 22x 12x 22=20(−2)2=5.【考点】根与系数的关系 【解析】(1)将原式变形为(x 1+x 2)2−2x 1x 2,然后代入计算即可; (2)将原式变形为含有x 1+x 2和x 1x 2,然后代入计算即可. 【解答】解:(1)∵ x 1,x 2是x 2+4x −2=0的两个实数根, ∴ x 1+x 2=−4,x 1x 2=−2, x 12+x 22=(x 1+x 2)2−2x 1x 2 =(−4)2−2×(−2) =16+4 =20.(2)由(1)得,x 1+x 2=−4,x 1x 2=−2, 112+122 =x 12+x 22x 12x 22=202=5. 28. 【答案】 4(2)∵ m2=3,∴ m=6,把x=2代入x2−mx+n=0得4−6×2+n=0,解得n=8,∴ mn=6×8=48.【考点】根与系数的关系【解析】此题暂无解析【解答】解:(1)在方程x2−8x+3=0中,a=4,b=3,∴a2−b=42−3=13>0,符合题意,∴ a=4是该方程的中点值.故答案为:4.(2)∵m=3,2∴ m=6,把x=2代入x2−mx+n=0得4−6×2+n=0,解得n=8,∴ mn=6×8=48.29.【答案】(1)−1;(2)k=−6.【考点】根与系数的关系【解析】(1)当k=2时,方程为:x2−4x−2−3=0,即x2−4x−5=0,所以可得:x1+x2= 4,x1×x2=−5,代入即可求得代数式的值;(2)先求得x2=1,x1=3,再代入求得答案.【解答】解:(1)当k=2时,方程为:x2−4x−2−3=0,即x2−4x−5=0,所以可得:x1+x2=4,x1×x2=−5,所以x1+x2+x1×x2=4−5=−1;(2)x1+x2=4,x1=3x2,即3x2+x2=4,解得:x2=1,所以x1=3,即:x1x2=−k−3=3,解得:k=−6.30.【答案】解:(1)∵x1,x2是方程x2−(2m−2)x+(m2−2m)=0的两实数根,x1+x2=2m−2,x1x2=m2−2m.(x1−x2)2=x12+x22−2x1x2=(x1+x2)2−2x1x2−2x1x2=(x1+x2)2−41x1x2=(2m−2)2−4(m2−2m)=4m2−8m+4−4m2+8m=4.x1−x2=±2,即x1−x2的值为2或−2.(2)∵x12+x22=10,∴(x1+x2)2−2x1x2=10,∴(2m−2)2−2(m2−2m)=10,4m2−8m+4−2m2+4m=10,m2−2m−3=0,∴m1=3, m2=−1即m的值为3或−1.【考点】根与系数的关系【解析】(1)根据方程根的个数结合根的判别式,可得出关于m的一元一次不等式,解不等式即可得出结论;(2)根据方程的解析式结合根与系数的关系找出x1+x2=−2,x1⋅x2=2m,再结合完全平方公式可得出x12+x22=(x1+x2)2−2x1⋅x2,代入数据即可得出关于关于m的一元一次方程,解方程即可求出m的值,经验值m=−1符合题意,此题得解.【解答】解:(1)∵x1,x2是方程x2−(2m−2)x+(m2−2m)=0的两实数根,x1+x2=2m−2,x1x2=m2−2m.(x1−x2)2=x12+x22−2x1x2=(x1+x2)2−2x1x2−2x1x2=(x1+x2)2−41x1x2=(2m−2)2−4(m2−2m)=4m2−8m+4−4m2+8m=4.x1−x2=±2,即x1−x2的值为2或−2.(2)∵x12+x22=10,∴(x1+x2)2−2x1x2=10,∴(2m−2)2−2(m2−2m)=10,4m2−8m+4−2m2+4m=10,m2−2m−3=0,∴m1=3, m2=−1即m的值为3或−1.【答案】−2;−15(2)∵7m2−7m−1=0,7n2−7n−1=0,∴m,n可看作方程7x2−7x−1=0的两个根,∴m+n=1,mn=−17,∴m2n+mn2=mn(m+n)=−17×1=−17.(3)∵p,q满足p2=9p−6,3q2=9q−2,∴9q2=27q−6,即(3q)2=9⋅(3q)−6,∴p,3q可看作方程x2−9x+6=0的两个根,∴p+3q=9,p⋅(3q)=6,∴原式=(p+3q)2−6pq=92−6×2=69 .【考点】根与系数的关系【解析】(1)直接利用根与系数的关系求解;(2)把m、n可看作方程7x2−7x−1=0,利用根与系数的关系得到m+n=1,mn=−17,再利用因式分解的方法得到m2n+mn2=mn(m+n),然后利用整体的方法计算;(3)把p、3q可看作方程x2−9x+6=0的两个根,利用根与系数的关系得到p+3q=9,p⋅(3q)=6,再利用配方法得到p2+9q2=(p+3q)2−6pq,然后利用整体的方法计算;【解答】解:(1)x1+x2=−105=−2,x1x2=−15.故答案为:−2;−15.(2)∵7m2−7m−1=0,7n2−7n−1=0,∴m,n可看作方程7x2−7x−1=0的两个根,∴m+n=1,mn=−17,∴m2n+mn2=mn(m+n)=−17×1=−17.(3)∵p,q满足p2=9p−6,3q2=9q−2,∴9q2=27q−6,即(3q)2=9⋅(3q)−6,∴p,3q可看作方程x2−9x+6=0的两个根,∴p+3q=9,p⋅(3q)=6,∴原式=(p+3q)2−6pq=92−6×2=69 .32.【答案】【考点】根与系数的关系【解析】本题考查一元二次方程根与系数的关系.关于一元二次方程ax2+bx+c=0(a≠0),当方程有两根据x1、x2,则x1+x2=−ba ,x1⋅x2=ca.据此求解即可.【解答】解:x1+x2=−ba =−−21=2.故答案为:2.33.【答案】解:(1)∵x1+x2=4,x1x2=2,∴1x1+1x2=x1+x2x1x2=42=2.(2)(x1−x2)2=(x1+x2)2−4x1x2=42−4×2=8.【考点】根与系数的关系【解析】根据一元二次方程ax2+bx+c=0的根与系数关系即韦达定理可得x1+x2−ba=4,x1x2=ca=2,把代数式变形成与两根之和和两根之积有关的式子,代入两根之和与两根之积,求得代数式的值.【解答】解:(1)∵x1+x2=4,x1x2=2,∴1x1+1x2=x1+x2x1x2=42=2.(2)(x1−x2)2=(x1+x2)2−4x1x2=42−4×2=8.34.【答案】解:将x=1代入方程x2+x+a−1=0得1+1+a−1=0,解得a=−1,方程为x2+x−2=0,解得x1=−2,x2=1.所以另一个根为−2.【考点】根与系数的关系【解析】将x=1代入方程x2+x+a−1=0可得a的值,再将a的值代回方程,解方程得出另一个根.【解答】解:将x=1代入方程x2+x+a−1=0得1+1+a−1=0,解得a=−1,方程为x2+x−2=0,解得x1=−2,x2=1.所以另一个根为−2.解:根据题意得x 1+x 2=6,x 1x 2=3, 所以x 2x 1+x 1x 2=x 12+x 22x 1x 2=(x 1+x 2)2−2x 1x 2x 1x 2=62−2×33=10.【考点】根与系数的关系 【解析】根据根与系数的关系得到x 1+x 2=6,x 1x 2=3,再利用通分和完全平方公式把x 2x 1+x 1x 2变形为(x 1+x 2)2−2x 1x 2x 1x 2,然后利用整体代入的方法计算.【解答】解:根据题意得x 1+x 2=6,x 1x 2=3, 所以x 2x 1+x 1x 2=x 12+x 22x 1x 2=(x 1+x 2)2−2x 1x 2x 1x 2=62−2×33=10.36.【答案】解:∵ x 1,x 2是方程x 2+2x −2007=0的两个根,∴ x 1+x 2=−2,x 1⋅x 2=−2007.(1)x 12+x 22=(x 1+x 2)2−2x 1⋅x 2=(−2)2−2×(−2007)=4018;(2)1x 1+1x 2=x 1+x 2⋅=−2−2007=22007;(3)(x 1−5)(x 2−5)=x 1⋅x 2−5(x 1+x 2)+25=−2007−5×(−2)+25=−1972; (4)|x 1−x 2|=√(x 1−x 2)2=√(x 1+x 2)2−4x 1⋅x 2=√(−2)2−4×(−2007)=4√502.【考点】根与系数的关系 【解析】由一元二次方程根与系数的关系可得x 1+x 2=−2,x 1⋅x 2=−2007.(1)将x 12+x 22变形为(x 1+x 2)2−2x 1⋅x 2,再代入计算即可求得结果; (2)将1x 1+1x 2变形为x 1+x 2⋅,再代入计算即可求得结果;(3)将(x 1−5)(x 2−5)变形为x 1⋅x 2−5(x 1+x 2)+25,再代入计算即可求得结果; (4)将|x 1−x 2|变形为√(x 1+x 2)2−4x 1⋅x 2,再代入计算即可求得结果. 【解答】解:∵ x 1,x 2是方程x 2+2x −2007=0的两个根,∴ x 1+x 2=−2,x 1⋅x 2=−2007.(1)x 12+x 22=(x 1+x 2)2−2x 1⋅x 2=(−2)2−2×(−2007)=4018;(2)1x 1+1x 2=x 1+x 2⋅=−2−2007=22007;(3)(x 1−5)(x 2−5)=x 1⋅x 2−5(x 1+x 2)+25=−2007−5×(−2)+25=−1972; (4)|x 1−x 2|=√(x 1−x 2)2=√(x 1+x 2)2−4x 1⋅x 2=√(−2)2−4×(−2007)=4√502.解:(1)∵ x 1、x 2是方程2x 2+x −3=0的两个根, ∴ x 1+x 2=−12,x 1⋅x 2=−32; (2)原式=(x 1+x 2)2−2x 1x 2x 1x 2=(−12)2−2×(−32)−32 =−136.【考点】根与系数的关系 【解析】(1)直接利用根与系数的关系解答即可;(2)通分变形后,整体代入(1)中的数值得出答案即可. 【解答】 解:(1)∵ x 1、x 2是方程2x 2+x −3=0的两个根, ∴ x 1+x 2=−12,x 1⋅x 2=−32; (2)原式=(x 1+x 2)2−2x 1x 2x 1x 2=(−12)2−2×(−32)−32 =−136.38.【答案】解:(1)∵ x 1,x 2是方程x 2+x −1=0的两根, ∴ x 1+x 2=−1,x 1x 2=−1, 则1x 1+1x 2=x 1+x 2x 1x 2=−1−1=1;(2)(x 1−x 2)2=(x 1+x 2)2−4x 1x 2=1+4=5;(3)x 22−x 12=(x 2−x 1)(x 2+x 1)当x 1<x 2时,x 22−x 12=√5×(−1)=−√5, 当x 1>x 2时,x 22−x 12=−√5×(−1)=√5.【考点】根与系数的关系 【解析】(1)由根与系数的关系可得x 1+x 2=−1,x 1x 2=−1,将其代入到1x 1+1x 2=x 1+x 2x 1x 2即可得;(2)将x 1+x 2=−1,x 1x 2=−1代入到(x 1−x 2)2=(x 1+x 2)2−4x 1x 2即可得;(3)根据x 22−x 12=−(x 12−x 22),结合(2)中结果即可得.【解答】解:(1)∵ x 1,x 2是方程x 2+x −1=0的两根, ∴ x 1+x 2=−1,x 1x 2=−1, 则1x 1+1x 2=x 1+x 2x 1x 2=−1−1=1;(2)(x 1−x 2)2=(x 1+x 2)2−4x 1x 2=1+4=5;(3)x 22−x 12=(x 2−x 1)(x 2+x 1)当x 1<x 2时,x 22−x 12=√5×(−1)=−√5, 当x 1>x 2时,x 22−x 12=−√5×(−1)=√5.39. 【答案】由一元二次方程的根与系数的关系得到x 1+x 2=13,x 1⋅x 2=−673, (x 1+2)(x 2+2)=x 1⋅x 2+2(x 1+x 2)+4 =−673+2×13+4 =−66813.【考点】根与系数的关系 【解析】根据一元二次方程的根与系数的关系得到x 1+x 2=13,x 1⋅x 2=−673,再将(x 1+2)(x 2+2)变形为x 1⋅x 2+2(x 1+x 2)+4代入计算即可求解. 【解答】由一元二次方程的根与系数的关系得到x 1+x 2=13,x 1⋅x 2=−673, (x 1+2)(x 2+2)=x 1⋅x 2+2(x 1+x 2)+4 =−673+2×13+4 =−66813.40.【答案】 解:(1)∵ 一元二次方程的△=b 2−4ac =32−4×2×(−1)=17>0, 由根与系数的关系得:x 1+x 2=−32,x 1⋅x 2=−12,∴ x 12+x 22=(x 1+x 2)2−2x 1x 2=(−32)2−2×(−12)=134;(2)由根与系数的关系知:α+β=k 2−1k−1=−k −1,αβ=(k−1)2k−1=k −1,α2+β2=((α+β)2−2αβ=(k +1)2−2(k −1)=k 2+3 ∴ k 2+3=4, ∴ k =±1, ∵ k −1≠0 ∴ k ≠1, ∴ k =−1,将k =−1代入原方程:−2x 2+4=0, △=32>0,∴ k =−1成立, ∴ k 的值为−1. 【考点】根与系数的关系 【解析】(1)先根据根与系数的关系得到x 1+x 2=−32,x 1⋅x 2=−12,再利用完全平方公式变形得到x 12+x 22=(x 1+x 2)2−2x 1x 2,然后利用整体代入的方法计算即可;(2)根据一元二次方程(k −1)x 2+(k 2−1)x +(k −1)2=0的两根分别为α,β,求出两根之积和两根之和的关于k 的表达式,再将α2+β2=4变形,将表达式代入变形后的等式,解方程即可.【解答】 解:(1)∵ 一元二次方程的△=b 2−4ac =32−4×2×(−1)=17>0, 由根与系数的关系得:x 1+x 2=−32,x 1⋅x 2=−12,∴ x 12+x 22=(x 1+x 2)2−2x 1x 2=(−32)2−2×(−12)=134;(2)由根与系数的关系知:α+β=k 2−1k−1=−k −1,αβ=(k−1)2k−1=k −1,α2+β2=((α+β)2−2αβ=(k +1)2−2(k −1)=k 2+3 ∴ k 2+3=4, ∴ k =±1, ∵ k −1≠0∴ k ≠1, ∴ k =−1,将k =−1代入原方程:−2x 2+4=0, △=32>0,∴ k =−1成立, ∴ k 的值为−1.。

人教版初中数学《根与系数的关系题型汇总》专题突破含答案解析

人教版初中数学《根与系数的关系题型汇总》专题突破含答案解析

专题04 根与系数的关系题型汇总 一、单选题1.(2021·上海)已知方程220x mx ++=的一个根是1,则它的另一个根是( )A .1B .2C .2-D .3-【答案】B 【分析】设方程的另一个根为x 1,根据两根之积等于c a ,即可得出关于x 1的方程,解之即可得出结论. 【详解】解:设方程的另一个根为x 1, 根据题意得:1×x 1=2,则x 1=2.故选:B .【点睛】 本题考查了根与系数的关系、一元二次方程的解以及解一元一次方程,牢记一元二次方程ax 2+bx+c=0(a≠0)的两根之积等于c a是解题的关键. 2.(2020·成都市三原外国语学校九年级期中)一元二次方程230x x --=的两根分别为1x 、2x ,则12x x +的值为( )A .-1B .1C .-3D .3【答案】B【分析】根据一元二次方程的根与系数的关系12b x x a +=-解答并作出选择. 【详解】∵一元二次方程230x x --=的两根分别为1x 、2x ,∵由韦达定理,得121x x =+∵B 选项是正确的.故选:B【点睛】本题考查了一元二次方程的根与系数的关系.在利用韦达定理时,一定要弄清楚12x x +=b a -中a b 、的意义. 3.(2020·广州市真光中学九年级月考)设α,β是一元二次方程240x x +=的两个根,则α+β的值是( ).A .-4B .4C .0D .1【答案】A 【分析】直接利用根与系数的关系求解.【详解】解:α,β是一元二次方程240x x +=的两个根,∴α+β4=-, 故选A .【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=﹣b a ,x 1x 2=c a . 4.(2020·江苏)已知x 1、x 2是一元二次方程x 2-5x+6=0的两个实数根,则x 1+x 2=( )A .5B .6C .-5D .-6 【答案】A【分析】直接根据一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系计算即可.【详解】解:根据题意得12551b x x a -+=-=-=, 故选:A【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系,熟记定理的内容是解题的关键. 5.(2021·河南九年级专题练习)若关于x 的一元二次方程2x 2x m 0-+=有实数根,则实数m 的取值范围是( )A .1m <B .1mC .1mD .m 1≥ 【答案】B【分析】因为一元二次方程有实数根,所以2=40b ac ∆-≥ ,即可解得. 【详解】∵一元二次方程2x 2x m 0-+=有实数根∵2=4=4-40b ac m ∆-≥解得1m故选B 【点睛】 本题考查一元二次方程根的判别式,掌握方程根的个数与根的判别式之间关系是解题关键.6.(2021·安徽亳州·八年级期末)若x 1、x 2是方程x 2-2x -3=0的两根,则x 1+x 2+x 1x 2的值是( ) A .1B .-1C .5D .-5【答案】B 【分析】先利用根与系数的关系式求得x 1+x 2=2,x 1x 2=-3,再整体代入求解即可. 【详解】解:∵x 1、x 2是方程x 2-2x -3=0的两个根∵x 1+x 2=-b a =2,x 1x 2=c a =-3 ∵x 1+x 2+2x 1x 2=2-3=-1.故选B.【点睛】本题考查了一元二次方程根与系数的关系.掌握根与系数的关系式:x 1+x 2=-b a,x 1x 2=c a 是解答本题的关键. 7.(2021·山东八年级期中)已知a ,b 是关于x 的一元二次方程22(23)0x m x m +++=的两个不相等的实数根,且满足111a b+=-,则m 的值是( ) A .﹣3或1B .3或﹣1C .3D .1 【答案】C【分析】根据一元二次方程根与系数的关系,计算出,a b ab +再代入分式计算,即可求得m .【详解】解:由根与系数的关系得: 2(23),a b m ab m +=-+=,111a b a b ab+∴+==-, 即223m m +=,解得:3m =或1m =-,而当1m =-时,原方程22(23)41430m m ∆=+-=-=-<,无实数根,不符合题意,应舍去,∵ 3m =故选C .【点睛】本题考查一元二次方程中根与系数的关系应用,求得结果后需进行检验是顺利解题的关键.8.(2021·浙江)若,m n 是方程220180x x --=的两个根,则代数式()()222201822018m m n n ---++的值为( ) A .2018B .2017C .2016D .2015【答案】A【分析】根据根与系数的关系得出m +n =1,mn =-2018,根据一元二次方程解的定义得出220180m m --=,220180n n --=,求出222018m m m --=-,222018n n n -++=,代入求出即可. 【详解】解:∵m ,n 是方程220180x x --=的两个根,∵m +n =1,mn =-2018,220180m m --=,220180n n --=,∵222018m m m --=-,()22220182018n n n n n n -++=----=,∵()()222201822018m m n n ---++=2018mn -=,故选:A .【点睛】本题考查了根与系数的关系和一元二次方程解的定义,能根据题意求出m +n =1,mn =-2018,220180m m --=,220180n n --=是解此题的关键.9.(2021·四川南充·中考真题)已知方程2202110x x -+=的两根分别为1x ,2x ,则2122021x x -的值为( ) A .1 B .1- C .2021 D .2021-【分析】根据一元二次方程解的定义及根与系数的关系可得21120211x x =-,121x x ⋅=,再代入通分计算即可求解. 【详解】∵方程2202110x x -+=的两根分别为1x ,2x ,∵211202110x x -+=,121x x ⋅=,∵21120211x x =-, ∵2122021x x -=21202112021x x --=1222220011222x x x x x -⋅-=22202112021x x ⨯--=22x x -=-1. 故选B .【点睛】本题考查了一元二次方程解的定义及根与系数的关系,熟练运用一元二次方程解的定义及根与系数的关系是解决问题的关键.10.(2021·河南九年级一模)定义新运算“a b *”:对于任意实数a ,b ,都有()()2a b a b a b =+--*,例如43(43)(43)2725=+--=-=*.若2x k x *=(k 为实数)是关于x 的方程,则它的根的情况为( ) A .有一个实数根B .有两个相等的实数根C .有两个不相等的实数根D .没有实数根【答案】C 【分析】 根据新定义,得()()2*=+--x k x k x k ,转化成一元二次方程,利用根的判别式判断即可.【详解】∵()()2a b a b a b =+--*,∵22()()22*=+--=--x k x k x k x k ,∵2x k x *=变形为22220---=x x k ,∵∵=222(2)41(2)448--⨯--=++k k=2412+k >0,∵原方程有两个不相等的实数根,故选C .本题考查了新定义问题,一元二次方程根的判别式,准确理解新定义,灵活运用根的判别式是解题的关键. 11.(2021·杭州市建兰中学)如果关于x 的一元二次方程ax 2+bx +c =0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,其中正确的有( )个. ①方程x 2+5x +6=0是倍根方程:②若pq =2,则关于x 的方程px 2+4x +q =0是倍根方程;③若(x ﹣3)(mx +n )=0是倍根方程,则18m 2+15mn +2n 2=0;④若方程ax 2+bx +c =0是倍根方程,且3a +b =0,则方程ax 2+bx +c =0的一个根为1A .1B .2C .3D .4【答案】B 【分析】①解得方程后即可利用倍根方程的定义进行判断;②已知条件2pq =,然后解方程240px x q ++=即可得到正确的结论.③根据(3)()0x mx n -+=是倍根方程,且且13x =,2n x m =-,得到32n m =-,或6n m =-,从而得到320m n +=,60m n +=,进而得到2218152(32)(6)0m mn n m n m n ++=++=正确;④利用“倍根方程”的定义进行解答.【详解】解:①解方程2560x x ++=得:12x =-,23x =-,∴方程2560x x ++=不是倍根方程,故①错误;②2pq =,解方程240px x q ++=得:122x p-+=,222x p --=, 122x x ∴≠,故②错误; ③(3)()0x mx n -+=是倍根方程,且13x =,2n x m=-, ∴32n m =-,或6n m =-, 320m n ∴+=,60m n +=,2218152(32)(6)0m mn n m n m n ∴++=++=,故③正确;④方程20ax bx c ++=是倍根方程,∴设122x x =,123x x ∴+=,2223x x ∴+=,21x ∴=,故④正确.故选:B . 【点睛】本题考查了一元二次方程的解,根与系数的关系,根的判别式,反比例函数图形上点的坐标特征,正确的理解“倍根方程”的定义是解题的关键.12.(2021·全国)已知关于x 的方程220x bx c ++=的根为12x =-,23x =,则+b c 的值是( ) A .-10B .-7C .-14D .-2【答案】C 【分析】根据一元二次方程根与系数的关系分别求出b ,c 的值即可得到结论. 【详解】解:∵关于x 的方程220x bx c ++=的根为12x =-,23x =, ∵121222b c x x x x +=-=, ∵232322b c -+=--⨯=,,即b=-2,c=-12 ∵21214b c +=--=-.故选:C .【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x 1,x 2,则x 1+x 2=-b a,x 1•x 2=c a. 第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.(2021·山东九年级期末)若1x ,2x 是一元二次方程2101110100x x -+=的两个实数根,则1212x x x x ++=__________.【答案】2021 【分析】利用一元二次方程的根与系数的关系求得12x x +,12x x ⋅的值,并将其代入所求的代数式求值即可. 【详解】解:∵1x ,2x 是一元二次方程2101110100x x -+=的两个实数根,∵121011x x +=,121010x x ⋅=,∵1212101110102021x x x x ++=+=.故答案为:2021. 【点睛】本题主要考查了一元二次方程的根与系数的关系,熟练掌握若1x ,2x 是一元二次方程()200++=≠ax bx c a 的两个实数根,则12b x x a +=-,12c x x a⋅=是解题的关键. 14.(2021·江苏)若关于x 的一元二次方程250x x m ++=的一个根为2-,则另一个根为________.【答案】3-【分析】根据一元二次方程根与系数的关系,代入求解即可【详解】设另一个根为2x ,根据根与系数的关系有:12b x x a+=- 即225x -+=-解得:23x =-故答案为3-【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键. 15.(2021·四川省内江市第六中学九年级三模)若1x ,2x 是方程2420200x x --=是方程的两个实数根,则代数式211222x x x -+的值等于___________.【答案】2028【分析】根据一元二次方程的解的概念和根与系数的关系得出21142020x x -=,124x x +=,代入原式=221112111242242x x x x x x x x -++=-++()计算可得. 【详解】解:∵1x ,2x 是方程2420200x x --=的两个实数根,∵124x x +=,211420200x x --=,即21142020x x -=,则原式=21112422x x x x -++=2111242x x x x -++()=202024+⨯=20208+=2028.故答案为:2028. 【点睛】本题主要考查根与系数的关系,解题的关键是掌握1x ,2x 是一元二次方程()200++=≠ax bx c a 的两根时,12b a x x +=-,12x a x c =. 16.(2021·浙江嘉兴一中)设一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,则两根与方程系数之间有如下关系:x 1+x 2=b a -,x 1•x 2=c a.已知x 1,x 2是方程x 2﹣2x ﹣1=0的两实数根,则(x 1﹣3)(x 2﹣3)=________.【答案】2【分析】先将代数式化简,再根据一元二次方程根与系数的关系求得1212,x x x x +⋅的值,代入求解即可【详解】x1,x 2是方程x 2﹣2x ﹣1=0的两实数根,12122,1x x x x ∴+=⋅=-,(x1﹣3)(x 2﹣3)12123()9x x x x =-++∴原式1329792=--⨯+=-+=故答案为:2 【点睛】 本题考查了一元二次方程根与系数的关系,掌握一元二次方程根与系数的关系是解题的关键. 17.(2021·江苏南通市·南通田家炳中学九年级其他模拟)设α,β是一元二次方程2370x x +-=的两个根,则24ααβ++=________.【答案】4 【分析】由,αβ是一元二次方程2370x x +-=的两个根,得出23,37αβαα+=-+=,再把24ααβ++变形为23αααβ+++,即可求出答案. 【详解】解:∵,αβ是一元二次方程2370x x +-=的两个根,∵23,370αβαα+=-+-=,∵237αα+=,∵2243734ααβαααβ++=+++=-=,故答案为:4. 【点睛】本题主要考查了一元二次方程根与系数的关系、整体代入思想,属于计算综合题型,解题的关键是整体代换思想,即将原方程中含未知数的部分看作一个整体.一元二次方程20(a 0)++=≠ax bx c 的根与系数的关系为:1212,b c x x x x a a+=-⋅=. 18.(2021·四川九年级一模)已知关于x 的一元二次方程()212022-++=m mx m x 有两个不等的实数根1x ,2x .若12112+=m x x ,则m 的值为______. 【答案】2【分析】根据根的判别式先求出“∵”的值,再根据根与系数的关系得出x 1+x 2=2(m +2),x 1•x 2=m ,变形后代入,即可求出答案.【详解】解:∵()22424022m m b ac m =-=+-⨯⨯>,且0m ≠,∵1m >-,且0m ≠,∵12x x 、是方程()212022-++=m mx m x 有两个实数根, ∵()1222m x x m ++=,121x x =, ∵12112+=m x x , ∵12122x x m x x +=,即()222m m m+=, 整理得:220m m --=,解得:1221m m ==-,. ∵1m >-,且0m ≠,∵2m =.故答案为:2.【点睛】本题考查了解一元二次方程,一元二次方程根的判别式,根与系数的关系等知识点,能熟记知识点的内容是解此题的关键.19.(2021·河北)若ab ,且2410a a -+=,2410b b -+=,则(1)a b +的值为______;(2)221111a b +++的值为_____.【答案】4 1【分析】(1)根据题意,a ,b 是一元二次方程2410x x -+=的两个不相等的实数根,利用根与系数关系定理求解即可;(2)变形2410a a -+=,2410b b -+=得214a a +=,214b b +=,化简后,利用(1)的结论计算即可.【详解】(1)∵a b ,且2410a a -+=,2410b b -+=, ∵a ,b 是一元二次方程2410x x -+=的两个不相等的实数根,∵a +b =4,故答案为:4;利用根与系数关系定理求解即可;(2)∵2410a a -+=,2410b b -+=,∵214a a +=,214b b +=, ∵221111a b +++=1111()44a b a b ab ++⨯=⨯, ∵a b ,且2410a a -+=,2410b b -+=, ∵a ,b 是一元二次方程2410x x -+=的两个不相等的实数根,∵a +b =4,ab =1,∵221111a b +++=144⨯=1, 故答案为:1.【点睛】本题考查了一元二次方程根的定义,一元二次方程根与系数关系定理,熟练构造一元二次方程,灵活运用根与系数关系定理是解题的关键.三、解答题20.(2020·渝中·重庆市实验学校)已知关于 的一元二次方程 x 2+2x +2k -4 = 0有两个不相等的实数根. (1)求 k 的取值范围;(2)若 k 为正整数,且该方程的根都是整数,求方程的根.【答案】(1)k <52 ;(2)当2k =时,120,2x x ==. 【分析】(1)根据判别式的意义得到24b ac ∆=->0,然后解不等式即可得到k 的范围; (2)先确定整数k 的值为1或2,然后把k=1或k=2代入方程得到两个一元二次方程,然后解方程,确定方程的整数解即可.【详解】解:(1)因为x 2+2x +2k -4 = 0有两个不相等的实数根,所以24b ac ∆=->0,即2241(24)k -⨯⨯->0,所以8k <20,解得:k <52 (2)因为k <52且k 为正整数, 所以k =l 或2, 当k =l 时,方程化为2220x x +-=,∵=12,此方程无整数根;当k =2时,方程化为220x x += 解得120,2x x ==,所以k =2,方程的有整数根为120,2x x ==.【点睛】本题考查了根的判别式:一元二次方程20ax bx c ++=(a≠0)的根与24b ac ∆=-有如下关系:当∵>0时,方程有两个不相等的两个实数根;当∵=0时,方程有两个相等的两个实数根;当∵<0时,方程无实数根.同时考查了不等式的正整数解及解一元二次方程,掌握基础是关键.21.(2019·河南九年级期中)已知关于x 的一元二次方程:2(2)(3)0x x p ---=.(1)小明说:“不论p 取任何实数,该方程都有两个不相等的实数根.”他的说法正确吗?为什么? (2)若方程:2(2)(3)0x x p ---=的两个实数根α,β满足:111αβ+=,请求出P 的值.【答案】(1)小明的说法正确;(2)p 的值为±1【分析】(1)表示出根的判别式,配方后得到根的判别式大于0,进而确定出方程总有两个不相等的实数根;(2)利用根与系数的关系可以得到5αβ+=,26p αβ=-,再把111a β+=进行变形可得265p -=,然后代入计算即可求解.【详解】解:(1)方程2(2)(3)0x x p ---=可化为22560x x p -+-=,∵()22(5)416p ∆=-⨯⨯-2225244140p p =-+=+>,∵对于任意实数p ,方程都有两个不相等实数根,小明的说法正确,(2)方程22560x x p -+-=由根与系数的关系得:5αβ+=,26p αβ=-∵111a β+=, ∵1a a ββ+= ∵2516p=-,变形得265p -= ∵1p =±,即p 的值为±1.【点睛】此题考查了根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.22.(2020·湖北九年级其他模拟)关于x 的一元二次方程()23220x k x k ---+=.(1)求证:方程总有两个实数根;(2)若方程的两根分为1x 、2x ,且12122x x x x ++=,求k 的值.【答案】(1)见解析;(2)-3 【分析】(1)利用根的判别式大于等于0即可证明;(2)根据根与系数的关系得到121223,2x x x x k k +=-=+-,然后代入12122x x x x ++=中即可求出k 的值. 【详解】解:(1)22224[(3)]41(22)21(1)0b ac k k k k k -=---⨯⨯-+=++=+≥∵方程总有两个实数根;(2)根据根与系数的关系有,121223,2x x x x k k +=-=+-,∵1212(3)(22)2x x x x k k ++=-+-+=解得3k =- 【点睛】本题主要考查一元二次方程根的判别式和根与系数的关系,掌握一元二次方程根的判别式和根与系数的关系是解题的关键.23.(2021·招远市教学研究室八年级期末)已知关于x 的一元二次方程230kx x +-=有两个不相等的实数根. (1)求实数k 的取值范围;(2)设方程两个实数根分别为1x ,2x ,且满足()212124x x x x ++⋅=,求k 的值.【答案】(1)112k >-且0k ≠;(2)14k =. 【分析】(1)根据一元二次方程根的判别式和一元二次方程的定义求解即可;(2)根据一元二次方程根与系数的关系求解即可.【详解】解:(1)∵方程有两个不相等的实数根,∵0>且0k ≠,即()21430k -⨯->且0k ≠, 解得112k >-且0k ≠;(2)由根与系数的关系可得121x x k +=-,123x x k ⋅=-, 由题意可得2134k k⎛⎫--= ⎪⎝⎭,即24310k k +-=, ∵()()411k k -+解得14k =或1k =-,经检验可知:114k =,21k =-都是原分式方程的解.由(1)可知112k >-且0k ≠ ∵14k =.【点睛】本题主要考查了解分式方程,解一元二次方程,一元二次方程的定义,一元二次方程根与系数的关系,解题的关键在于能够熟练掌握相关知识进行求解.24.(2021·广西八年级期中)已知关于x 的方程2220x x a ++-=.(1)若该方程有两个不相等的实数根,求a 的取值范围:(2)若该方程的一个根为2-,求方程的另一个根.【答案】(1)3a <;(2)0.【分析】(1)根据一元二次方程根的判别式列不等式求解即可;(2)根据根与系数的关系列式解答即可【详解】解:(1)∵方程有两个不相等的实数根.∵2241(2)0a ∆=-⨯⨯->,即4120a -+>,解得3a <;答:a 的取值范围是3a <;(2)设方程的另一个根是2x ,由根与系数的关系得:2221x -+=- 解之得20x =答:方程的另一个根是0.【点睛】本题主要考查了一元二次方程根的判别式、一元二次方程根与系数的关系等知识点,一元二次方程根的情况与判别式∵的关系:(1)∵>0时,方程有两个不相等的实数根;(2)∵=0时,方程有两个相等的实数根;(3)∵<0时,方程没有实数根.25.(2021·呼和浩特市回民区教育局教科研室九年级二模)已知关于x的一元二次方程x2-5x+6=p(p+1)(1)试证明:无论p取何值,此方程总有两个实数根(2)若原方程的两根x1,x2满足x12+x22-x1x2=3p2+1,求p值.【答案】(1)见解析;(2)-2【分析】(1)将原方程变形为一般式,根据方程的系数结合根的判别式,即可得出Δ=(2p+1)2≥0,由此即可证出:无论p取何值此方程总有两个实数根;(2)根据根与系数的关系可得出x1+x2=5、x1x2=6-p2-p,结合x12+x22-x1x2=3p2+1,即可求出p值.【详解】(1)证明:原方程可变形为x2-5x+6-p2-p=0.∵Δ=(-5)2-4(6-p2-p)=25-24+4p2+4p=4p2+4p+1=(2p+1)2≥0,∵无论p取何值此方程总有两个实数根;(2)∵原方程的两根为x1、x2,∵x1+x2=5,x1x2=6-p2-p.又∵x12+x22-x1x2=3p2+1,∵(x1+x2)2-3x1x2=3p2+1,∵52-3(6-p2-p)=3p2+1,∵25-18+3p2+3p=3p2+1,∵3p=-6,∵p=-2.【点睛】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当∵≥0时,方程有两个实数根”;(2)根据根与系数的关系结合x 12+x 22-x 1x 2=3p 2+1,求出p 值.26.(2021·湖北黄石八中九年级三模)已知关于x 的一元二次方程2()323x m x m -+=-有两个实数根x 1,x 2. (1)求m 的取值范围;(2)若方程的两根满足22211270x x x x ⋅--+=,求m 的值. 【答案】(1)34m ≤-;(2)1m =-. 【分析】将原方程变形为一般式.(1)由方程有两个实数根结合根的判别式,即可得出430m ∆=--≥,解之即可得出结论;(2)由根与系数的关系可用m 表示出12x x +和12x x ,利用已知条件可得到关于m 的方程,则可求得m 的值. 【详解】解:原方程可变形为22(23)230x m x m m --+-+=.(1)原方程有两个实数根,∴()()2223423430m m m m ∆=----+=--≥⎡⎤⎣⎦, 解得:34m ≤-. (2)方程的两实根分别为1x 与2x , 1223x x m ∴+=-,21223x x m m ⋅=-+,22211270x x x x ⋅--+=,223(23)(23)70m m m ∴-+--+=,即2(3)160m --+=.解得11m =-,27m =,34m ≤-, 1m ∴=-.【点睛】本题主要考查根与系数的关系及判别式,由根的情况得到判别式的符号是解题的关键.27.(2021·湖南师大附中梅溪湖中学八年级期末)已知关于x 的一元二次方程x 2+2x +2k ﹣4=0有两个不相等的实数根.(1)求k 的取值范围;(2)当k =1时,设方程的两根分别为x 1,x 2,求x 12+x 22的值;(3)若k 为正整数,且该方程的根都是整数,求k 的值.【答案】(1)52k <;(2)8;(3)2 【分析】(1)根据方程有两个不相等的实数根得到0∆>,求出k 的取值范围即可;(2)把x =1代入方程,求出121222x x x x +==-,-,进而求出2212x x +的值; (3)首先求出方程的根为152x k ±-=-,且根为整数,则52k ﹣为完全平方数,结合k 的取值范围即可求出k 的值.【详解】解:(1)∵一元二次方程22240x x k ++-=有两个不相等的实数根,∵()2241242080k k ∆⨯⨯=--=->,解得52k <; (2)当1k =时,方程为2220x x +-=, 解得121222x x x x +==-,-,则()22212121228x x x x x x +=+-=.(3)∵k 为正整数,且52k <, ∵k =1或2.根据一元二次方程根的公式可得方程的根为152x k ±-=-又根为整数,∵52k -为完全平方数,∵2k =.【点睛】本题考查的是二次函数根与系数的关系,掌握二次函数根与系数的公式是解决本题的关键.28.(2020·北京汇文中学)阅读:对于两个不等的非零实数a 、b ,若分式x a x b x(-)(-)的值为零,则x a =或x b =. 又因为2()()()()x a x b x a b x ab ab x a b x x x---++==+-+,所以关于x 的方程ab x a b x +=+有两个解,分别为12,x a x b ==. 应用上面的结论解答下列问题:(1)方程p x q x +=的两个解分别为121,4x x =-=,则p =_____;q =________; (2)方程34x x+=的两个解中较大的一个为_______; (3)关于x 的方程222221n n x n x +-+=+的两个解分别为1212x x x x (<)、,则1x =_____,2x =_____. 【答案】(1)-4,3;(2)3;(3)122122n n x x -+==, 【分析】 (1)根据定义得到p=12x x ,q=12x x +,然后代入121,4x x =-=即可求解;(2)方程34x x+=的两个解根据公式可以解出; (3)要将原式构造成题目中的形式,首先将方程左右两端+1,将右端变形为()()21n n ++-,然后将()21x +当做题目中的x ,整体代入求解,最后解两个一元一次方程即可.【详解】(1)由题意得:p=12x x ,q=12x x +∵方程的解为121,4x x =-=∵p=12·4x x =-,q=123x x +=; (2)由题意得:123x x =,124x x +=∵()1143x x -=,解得11x =或3∵当11x =时,23x =;当13x =时,21x =∵较大的解为3(3)∵222221n n x n x +-+=+ ∵22212121n n x n x +-++=++ ∵()()()()21212121n n x n n x +-++=++-+∵211x n +=-或 212x n +=+∵22n x -=或 12n x += ∵12x x <∵122122n n x x -+==,. 【点睛】此题涉及的知识点是分式的综合应用,解一元二次方程,整体代入法解方程,难度较大,解题时先搞清楚规律,把握已知的结论是解本题的关键.。

初中数学一元二次方程根与系数的关系专项训练题二(附答案详解)

初中数学一元二次方程根与系数的关系专项训练题二(附答案详解)

初中数学一元二次方程根与系数的关系专项训练题二(附答案详解)1.阅读材料:如果,是一元二次方程的两根,那么有,.这是一元二次方程根与系数的关系,我们利用它可以用来解题,例,是方程的两根,求的值.解法可以这样:∵,,则.请你根据以上解法解答下题:已知,是方程的两根,求:的值;的值.试求的值.2.细心的小明发现,一元二次方程ax2+bx+c=0(a≠0)根与系数之间的“秘密”关系.(1)当x=1时有a+b+c=0,当x=﹣1时有a﹣b+c=0.若9a+c=3b,求x;(2)若2a+b=0,3a+c=0,写出满足条件的一个一元二次方程,并求另一个根;(3)当老师写出方程2x2﹣3x﹣1=0,要求不解方程判断根的情况时,小明立即回答,有两个不相等的实数根.据此,你能根据一元二次方程系数a、b、c的符号以及相互之间的数量关系,写出一些关于一元二次方程ax2+bx+c=0(a≠0)根与系数之间的规律吗?请写一写(至少两条).3.法国数学家弗朗索瓦·韦达于1615年在著作《论方程的识别与订正》中建立了方程根与系数的关系,由于韦达最早发现代数方程的根与系数之间有这种关系,人们把这个关系称为韦达定理.它的内容如下:在一元二次方程中,它的两根、有如下关系:,.韦达定理还有逆定理,它的内容如下:如果两数和满足如下关系:,,那么这两个数和是方程的根.通过韦达定理的逆定理,我们就可以利用两数的和积关系构造一元二次方程.例如:,,那么和是方程的两根.请应用上述材料解决以下问题: (1)已知是两个不相等的实数,且满足,,求的值.(2)已知实数,满足,,求的值.4.设x 1,x 2是方程2x 2+4x -3=0的两个根,利用根与系数的关系,求下列各式的值: (1)(x 1-x 2)2; (2)(x 1+21x )(x 2+11x ).5.已知一元二次方程ax 2+bx +c=0(a≠0)中的两根为请你计算x 1+x 2=____________, x 1·x 2=____________. 并由此结论解决下面的问题:(1)方程2x 2+3x -5=0的两根之和为______,两根之积为______.(2)方程2x 2+mx +n=0的两根之和为4,两根之积为-3,则m=______,n=______. (3)若方程x 2-4x +3k=0的一个根为2,则另一根为______.(4)已知x 1,x 2是方程3x 2-2x -2=0的两根,不解方程,用根与系数的关系计算代数式的值.,24,221a acb b x x -±-=xx 2111+6.请阅读下列材料:若是关于的一元二次方程的两个根,则方程的两个根和系数有如下关系:.我们把它们称为根与系数关系定理.如果设二次函数的图象与x轴的两个交点为.利用根与系数关系定理我们又可以得到A、B两个交点间的距离为:请你参考以上定理和结论,解答下列问题:设二次函数的图象与x轴的两个交点为,抛物线的顶点为,显然为等腰三角形。

初中数学一元二次方程解法根与系数关系练习题(附答案)

初中数学一元二次方程解法根与系数关系练习题(附答案)

初中数学一元二次方程解法根与系数关系练习题一、单选题1.一元二次方程293x x -=-的解是( )A.3x =B.4x =-C.123,4x x ==-D.123,4x x ==2.直角三角形两条直角边长的和是7,面积是6,则斜边长是()B.5D.73.一元二次方程220x x -=的两根分别为1x 和2x ,则12x x 为( )A.2-B.1C.2D.0@A.2m =±B.2m =C.2m =-D.2m ≠±5.若a ,β为方程22510x x --=的两个实数根,则2235a a ββ++的值为( )A.13-B.12C.14D.15A.2B. 1-C.2或1-D.不存在7.已知关于x 的一元二次方程2(1)2(1)0a x bx a ++++=有两个相等的实数根,下列判断正确的是( )A.1一定不是关于x 的方程20x bx a ++=的根B.0一定不是关于x 的方程20x bx a ++=的根C.1和1-都是关于x 的方程20x bx a ++=的根D.1和1-不都是关于x 的方程20x bx a ++=的根》8.关于x 的一元二次方程2(1)320a x x -+-=有实数根,则a 的取值范围是( )A.18a >- B.18a ≥- C. 18a >-且1a ≠ D. 18a ≥-且1a ≠ 9.一个正方体的表面展开图如图所示,已知正方体相对两个面上的数值相同,且不相对两个面上的数值不相同,则“★”面上的数为( )A.1B.1或2C.2D.2或310.定义一种新运算:()a b a a b =-♣.例如,434(43)4=⨯-=♣.若23x =♣,则x 的值是( )A.3x =B.1x =-C.123,1x x ==D.123,1x x==-二、解答题@11.已知关于x 的一元二次方程2(1)210m x mx m --++=.(1)求方程的根;(2)当m 为何整数时,此方程的两个根都为正整数?12.阅读材料:把形如2ax bx c ++ (,,a b c 为常数)的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即2222()a ab b a b ±+=±. 例如:222213(1)3,(2)2,(2)24x x x x x -+-+-+是224x x -+的三种不同形式的配方,即“余项”分别是常数项、一次项、二次项.请根据阅读材料解决下列问题: (1)仿照上面的例子,写出242x x -+的三种不同形式的配方;)(2)已知2223240a b c ab b c ++---+=,求a b c ++的值.三、填空题14.关于x 的方程2()0a x m b ++=的解是12x =-,21x =(a ,m ,b 均为常数,0a ≠),则方15.若关于x 的一元二次方程220mx x m ++=的两根之积为-1,则m 的值为 .16.小明设计了一个魔术盒,当任意实数对(,)a b 进入其中时,会得到一个新的实数223a b -+.若17.已知关于x 的方程260x x k -+=的两根分别是12,x x ,且满足12113x x +=,则k = .参考答案<1.答案:C解析:方程293x x -=-变形为(3)(3)(3)0x x x +-+-=,将方程左边因式分解得(3)(4)0x x -+=,所以123,4x x ==-.2.答案:B解析:设其中一条直角边的长为x ,则另一条直角边的长为7x -,由题意,得1(7)62x x -=,解得1234x x ==,5=.故选B3.答案:D解析:∵一元二次方程220x x -=的两根分别为1x 和2x ,{∴120x x =.故选:D .4.答案:B方程,故2m =5.答案:B解析:a β,为方程22510x x --=的两个实数根,故251251022a a ββββ+==---=,,,从而2521ββ=-222225123523212()1211222a a a a a a ββββββ⎛⎫⎛⎫∴++=++-=+--=---= ⎪ ⎪⎝⎭⎝⎭. 6.答案:A^解析:由题意得0m ≠,2(2)44404m m m m ⎡⎤∆=-+-=+>⎣⎦,解得1m >-且0m ≠. 121212211414m x x m m x x x x +++=== 解得1221m m ==-,(舍去),所以m 的值为2.7.答案:D解析:关于x 的一元二次方程2(1)2(1)0a x bx a ++++=有两个相等的实数根, 2210(2)4(1)0a b a +≠⎧∴⎨∆=-+=⎩ 1b a ∴=+或(1)b a =-+.当1b a =+时,有10a b -+=,此时1-是方程20x bx a ++=的根;当(1)b a =-+时,有10a b ++=,此时1是方程20x bx a ++=的根.10a +≠,1(1)a a ∴+≠-+'1∴和1-不都是关于x 的方程20x bx a ++=的根.当0a =时,0是关于x 的方程20x bx a ++=的根.综上,D 正确.8.答案:D解析:根据一元二次方程的定义和根的判别式的意义得到1a ≠且234(1)(2)0a ∆=--⋅-≥,然后求出两个不等式解集的公共部分即可. 9.答案:C解析:正方体的平面展开图共有六个面,其中面“2x ”与面“32x -”相对,面“★”与面“1x +”相对.因为相对两个面上的数值相同,,所以232x x =-,解得1x =或2x =.又因为不相对两个面上的数值不相同,当2x =时,2324x x +=-=,所以x 只能为1,即12x =+=★.10.答案:D解析:23,(2)3x x x =∴-=♣整理,得2230x x --=,因式分解,得(3)(1)0x x -+=,30x ∴-=或10x +=,$123,1x x ∴==-.故选D.11.答案:(1)解:根据题意,得1m ≠1,2,1a m b m c m =-=-=+224(2)4(1)(1)4b ac m m m ∴∆=-=---+=(2)12(1)1m m x m m --±∴==-- 则121,11m x x m +==-(2)由(1),知112111m x m m +==+--. 方程的两个根都为正整数,21m ∴-是正整数, ^11m ∴-=或12m -=,解得2m =或3.即m 为2或3时,此方程的两个根都为正整数。

专题根与系数的关系含答案

专题根与系数的关系含答案

数的关系含文档编制序号:IKK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]专题:一元二次方程根的判别式和根与系数的关系例1.已知关于X的方程也左-(2z5-l)x+m-2=().(1)当也取何值时,方程有两个不相等的实数根;(2)若益、Ah为方程的两个不等实数根,且满足盘疔2,求也的值. 例2.已知关于X的方程f -4血Y+4力-9二0.(1)求证:此方程有两个不相等的实数根;(2)设此方程的两个根分别为益,X],其中Xi<X2.若2為二上+1,求?也的值.例3.已知关于X的方程zttY「+ (4-3也)屮2矿8二0 (7»>0).(1)求证:方程有两个不相等的实数根;(2)设方程的两个根分别为広、xz(爲<圧),若rrxdm,且点B (也,27?)在X轴上,求也的值.例4.已知关于A■的一元二次方程:x'-2 (盼1)卅力+5二0有两个不相等的实数根.(1)求也的取值范围;(2)若原方程的两个实数根为益、X],且满足盘+应'二|益| + |则+2爲疋,求也的值.例5.已知关于X的方程(2A+1)卅4 (以)=0.(1)求证:无论A取什么实数值,这个方程总有实数根;(2)能否找到一个实数使方程的两实数根互为相反数?若能找到,求出 *的值;若不能,请说明理由.(3)当等腰三角形ABC的边长沪4,另W边的长方、C恰好是这个方程的两根时,求△AEC的周长.训练,1.已知关于A■的方程血(加*2)屮2二0 5工0).(1)求证:方程总有两个实数根;(2)已知方程有W个不相等的实数根a , P,满足-+-=1,求也的值.2.已知一元二次方程(1)若方程有两个实数根,求也的范围;(2)若方程的两个实数根为X】和也,且及+3疔3,求加的值.(3)若方程的两个实数根为和血且盘-应‘二0,求加的值.3. 已知关于/的方程;f+(.01-3) x-m (2Z 9-3) =0(1) 证明:无论也为何值方程都有两个实数根;(2) 是否存在正数血使方程的两个实数根的平方和等于26?若存在,求 出满足条件的正数刃的值;若不存在,请说明理由.4. 已知关于龙的一元二次方程-6尸F 二0 (A ■为常数).(1) 求证:方程有两个不相等的实数根;(2) 设益、疋为方程的两个实数根,且2馅+XF 14,试求出方程的两个实数 根和k 的值.5. 已知关于左的方程+-(2肛3)屮F+1二0有两个不相等的实数根為、X :.(1) 求*的取值范围:(2) 若益、必满足\xi.\ + \xz\=2 X 必-3,求A 的值.6. 己知关于/的一元二次方程yL (277-2 ) A+4zr3=02(1) 求证:无论也取什么实数时,这个方程总有两个不相等的实数根;(2) 如果方程的两个实数根为益,血 且2xi+Ai :二卅1,求也的值.7. 已知关于龙的一元二次方程(旷1) Y-5卅4旷2二0的一个根为A =3.(1)求臼的值及方程的另一个根;(2)如果一个等腰三角形(底和腰不相 等)的三边长都是这个方程的根,求这个三角形的周长• 8.设為,应是关于X 的一元二次方程Z+2$x+才+4旷2二0的两实根,当盘为何 值时,*1+石有最小值最小值是多少专题:一元二次方程根的判别式和根与系数的关系/. A=Z/-4a<?=[- (2zzrl) ]'-4z9 (矿2)二4硏1>0,解得:加>7,T 二次项系数H0, •••azHO,/・•・当血>冷且也H0时,方程有两个不相等的实数根;—2 — 9X1+X2=- - ,X\X2 ~-:Xi, 例1. 解:(1)・・・方程有两个不相等的实数根,例2. 例3. 例5. (2)・・51、疋为方程的两个不等实数根,( Xi+Xz ) 2-3乂疋=( ~ —— 2,例& 解得J 位处(舍去);:解:(1)•••△= (-4加)2-4 (4力-9) =36>0, 例10.二此方程有两个不相等的实数根;例H.例12.•••為=2也-3,必=2加"3,例13. A 2 (2沪3) =2时3+1,例14.例15.解:(1):•△= (4-3刃)--4/n(2/3-8),例16.二力+8肘 16=(血4)■例17.乂T加>0・・・(时4) '>0即△>()例18.•••方程有两个不相等的实数根;例19.(2) V方程的两个根分别为X】.疋(拓V疋),例20.7— $ 0 —a /. Xi+X2=-- , XiX:=例21.77=上-X1-切,且点B (刃,n)在X轴上,例22.例23.解得J沪-2,沪4,例24.例25.•解:(1)T方程Y-2 (於1) W+5=0有两个不相等的实数根,例26.•••△=[-2 (加4) ]M (力+5) =8矿 16>0,解得:7Z?>2. 例27.(2) V原方程的两个实数根为屋、d例28./. &+必=2 (於 1),X\X手金+5.例29.例30.•••&+疋=2 (M1) >0,益尼=2卄5>0,例31.X2>Q.2 + F - 4 2 工)—><口-异0证明:(1) •••△= (2A+1) -16 (4® = (243) '20,•\Xi+X2=2k+l=Qt 解得 A=-0. 5;方程可化为y-4x+4=0,/.X I =X2=2»而b=c=2, •:決c=4二a 不适合题意 舍去:例42.②当 Ka=4,贝 1J4L4 (2A+1) +4 (4彳)=0,c=a=4时,同理得辰2, •••C AABC =10,综上所述,△ABC 的周长为10. 训练 1. (1)证明;T 方程血;-(加"2)屮2=0 (也工0)是一元二次方程, •:△二(时2) L8/ZF 力+4卅4-8沪加-4肘4=(矿2) 'NO, •:方程总有两个实数根:(2)解:T 方程有两个不相等的实数根a , P, •:由根与系数的关系可得a+B=上,aP=A+2丁二子 1,例32. */ 打+卅=(2 + 抡二 I Xi ; +:卫 I +2*必,例33. A4 (zzr^l ) '-2 (力+5) =2 (研1) +2 (力+5),即 6zzrl8=0, 例34.例35.例36. •••方程总有实根;例37. 解:(2) V 两实数根互为相反数, 例38. 例39. (3)①当d=c 时,则△=(), 例40. 即(243) -=0, : 例41. 例43. ・・・碍,例44. 方程化为Y-6A +8=0,解得益=4,必二2,例45. ««c^2» C AAK ^ 10,例46.2•解:(1) V方程Y-2卅沪0有两个实数根,•••△= (-2 )二4心0,(2)由两根关系可知,X1+疋=2,X'XFiB、2 + 2=2解方程组;+ 5 2= 3 解得[•5^ 7 5••/ZFX片?X 話;(3)*/Xi-Xz-^»/. (X1+X2) (X1-X2) =0, T X I+X2=2 HO, •: Xi-x:=0,•••方程左-2屮ZZF O有两个相等的实数根,/. A= (-2) 2-4/ZF O,解得/n=i.3. (1)证明J T关于/的方程Y+ (矿3) x-m (2沪3) =0的判别式^=(沪 3) '+4刃(2矿3) =9 (zrl) -$0, •••无论刃为何值方程都有两个实数根;(2)解:设方程的两个实数根为XI. XA 则Xi+X2=-(沪3) , X1X xF-iB (2zzr 3), 令屛+疋2=26,得;(xi+js^) '-2x^2=(沪3) "+2/ff (2矿3) =26, 整理,得5力T2/zrl7=0,解这个方程得, Zff= ¥或沪T,所以存在正数沪#,使得方程的两个实数根的平方和等于26.4.(1)证明:在方程 Y-6尸应0 中,△= (-6) MXIX=4"+36N36,•:方程有两个不相等的实数根.(2)解:*2为方程的两个实数根,•:益+疋二6①,X\X亍一丘,联立①②成方程组{/:+二寫解之得: 1 = 82= -2'•"必二一斤二-⑹/.A=±4,5•解:(1) V原方程有两个不相等的实数根,•:△二[- (2^-3) ]M (j^+l) =4J^-12対9-4F-4A12A+5>0, 解得:备(2)•:Xi+&=243 VO,乂 Tx昂=A^+l>0,•: ! xj +1 xj =-Xi-A5=-( X1+X2) =-2k+3,T I xj +1X』=21X1X21 -3•••-2奸3=2p+2-3,即/c+k-2=Q.•:血=1,妒一2,:冷一2・6•解:(1) •••△= (zr2) MX (妇3)=(沪3) -+3>0.•:无论刃取什么实数值,这个方程总有两个不相等的实数根;2 加+疋=A^+ (xi+xz) =/zrH,把必代入方程有:9-3 (沪2) +”3=07•解:(1)将#3代入方程中,得:9 (旷1) -15+4旷2=0, 解得J a=2.•:原方程为*・-5屮6二(#2)(尸3) =0, 解得 J -¥1=2, X2=3.••,的值为2,方程的另一个根为A=2・(2)结合(1)可知等腰三角形的腰可以为2或3, AC=2+2+3=7或C=3+3+2=& •••三角形的周长为S或7.8..«-: VA=(2a)M(aM^2)丸,二三乂 T Xi+x2=-2a, X必二£+4a-2./. Xi'+-^'= (Xi+Xz) '-2x必=2 (旷2) 2-4 •设尸2 (旷2) =4,根据二次函数的性质•V <22当=£时,*』+疋2的值最小.此时f+討2(^-4=2,即最小值为右。

完整版一元二次方程根与系数关系附答案

完整版一元二次方程根与系数关系附答案

一元二次方程根与系数的关系〔附答案〕评卷人得分一 .选择题〔共6小题〕1.关丁x的一元二次方程3x2+4x-5=0,下歹0说法正确的选项是〔〕A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定2.关丁x的一元二次方程x2+2x - m=0有实数根,贝U m的取值范围是〔A. m> - 1B. m>- 1C. m< - 1D. m< - 13.关丁x的一元二次方程x2+3x - 1=0的根的情况是〔〕A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定4.设x〔、x2是一元二次方程2x2- 4x- 1=0的两实数根,那么x12+x22的值是〔A. 2B. 4C. 5D. 65.假设a、6是一元二次方程x2 - 5x- 2=0的两个实数根,贝U a+6的值为〔A. - 5B. 5C. - 2D.56.关丁x的方程x2- 4x+c+1=.有两个相等的实数根,贝U常数c的值为〔A. - 1B. 0C. 1D. 3评卷人得分二.填空题〔共1小题〕7.假设关丁x的一元二次方程x2-3x+a=0 〔a^0〕的两个不等实数根分别为p, q, 且p2-pq+q2=18,那么丑产的值为.P Q评卷人得分三.解做题(共8小题)8 .关丁x 的方程x2- (2k+1) x+k2+1=0.(1)假设方程有两个不相等的实数根,求k的取值范围;(2)假设方程的两根恰好是一个矩形两邻边的长,且k=2,求该矩形的对角线L 的长.9 .关丁x的方程x2+ax+a - 2=0.(1)假设该方程的一个根为1,求a的值;(2)求证:不管a取何实数,该方程都有两个不相等的实数根.10.关丁x的一元二次方程(x- m) 2 - 2 (x-m) =0 (m为常数).(1)求证:不管m为何值,该方程总有两个不相等的实数根;(2)假设该方程一个根为3,求m的值.11.关丁x的一元二次方程x2-x+a- 1=0.(1)当a=- 11时,解这个方程;(2)假设这个方程有两个实数根x〔,x2,求a的取值范围;(3)假设方程两个实数根x〔,x2满足[2+x1 (1 - x〔)][ 2+x2 (1 - x2)] =9,求a的值. 12.x〔,x2是关丁x的一元二次方程4kx2 - 4kx+k+1= 0的两个实数根.(1)是否存在实数k,使(2x1 - x2) (x1 - 2x2)=-音成立?假设存在,求出k的值;假设不存在,说明理由;(2)求使打+挡-2的值为整数的实数k的整数值;七(3)假设k=- 2,入机,试求入的值.s213.关丁x的方程(k+1) x2 - 2 (k- 1) x+k=0有两个实数根x〔,x2.(1)求k的取值范围;(2)假设x〔+x2=x1x2+2,求k 的值.14.关丁x 的方程x2 - 2 (m+1) x+m2-3=0.(1)当m取何值时,方程有两个不相等的实数根?(2)设x1、x2是方程的两根,且x12+x22=22+x1x2,求实数m的值.15.关丁x的一元二次方程x2-2x+m- 1=0有两个实数根x i、X2.(1)求m的取值范围;(2)假设x/+x22=6x i x2,求m 的值.参考答案与试题解析一 .选择题〔共6小题〕1.关丁x的一元二次方程3x2+4x-5=0,以下说法正确的选项是〔〕A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定【解答】解::A =42 - 4X 3X 〔 - 5〕 =76>0,方程有两个不相等的实数根.应选:B.2.关丁x的一元二次方程x2+2x - m=0有实数根,贝U m的取值范围是〔A. m> - 1B. m> - 1C. m< - 1D. m< - 1【解答】解:•.•关丁x的一元二次方程x2+2x- m=0有实数根,. =22- 4X 1X〔 - m〕 =4+4m>0,解得:m>-1.应选:A.3.关丁x的一元二次方程x2+3x - 1=0的根的情况是〔〕A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定【解答】解:a=1, b=3, c=T,. =b2- 4ac=32- 4X 1X 〔 - 1〕 =13>0,方程有两个不相等的实数根.应选:A.4.设x〔、x2是一元二次方程2x2-4x- 1=0的两实数根,那么x12+x22的值是〔A. 2B. 4C. 5D. 6【解答】解:x〔、x2是一元二次方程2x2- 4x- 1=0的两实数根,X I+X2=2, XlX2=-—, 2•• X i2+X22=〔X1+X2〕2—2X I X2=22— 2X 〔—=5.2应选:C.5 .假设a、6是一元二次方程X2 - 5X- 2=0的两个实数根,贝U a+6的值为〔〕A. - 5B. 5C. - 2D.5【解答】解::a、6是一元二次方程X2- 5X- 2=0的两个实数根,•■-计 6 =5应选:B.6.关丁X的方程X2-4X+C+1= 0有两个相等的实数根,贝U常数c的值为〔〕A. - 1B. 0C. 1D. 3【解答】解:•.•关丁X的方程X2-4X+C+1= 0有两个相等的实数根, = 〔- 4〕2 -4X 1X 〔C+1〕 =12-4C=0,解得:C=3.应选:D.二.填空题〔共1小题〕7.假设关丁X的一元二次方程X2-3x+a=0 〔a^0〕的两个不等实数根分别为p, q, 且p2-pq+q2=18,那么■的伯为-5 .p q【解答】解:..•关丁X的一元二次方程X2 - 3x+a=0〔a冬0〕的两个不等实数根分别为p、q,••• p+q=3, pq=a,. p2-pq+q2= 〔p+q〕2-3pq=18,即 9 -3a=18,••a=- 3,•,- pq=- 3,2 2 j -..早4^=些1祟=—5.p Q PQ pq -3故答案为:-5.三.解做题(共8小题)8.关丁x 的方程x2- (2k+1) x+k2+1=0.(1)假设方程有两个不相等的实数根,求k的取值范围;(2)假设方程的两根恰好是一个矩形两邻边的长,且k=2,求该矩形的对角线L 的长.【解答】解:(1):方程x2- (2k+1) x+k2+1= 0有两个不相等的实数根,. =[ - (2k+1) ]2-4X 1X (k2+1) =4k-3>0,. . k> 里. 4(2)当k=2时,原方程为x2-5x+5=0,设方程的两个为m、n,m+n=5, mn=5,-父2板皿=^^9.关丁x的方程x2+ax+a - 2=0.(1)假设该方程的一个根为1,求a的值;(2)求证:不管a取何实数,该方程都有两个不相等的实数根.【解答】(1)解:将x=1代入原方程,得:1+a+a-2=0,解得:a:. 2(2)证实:△ =a2 — 4 (a— 2) = (a— 2) 2+4..• (a-2) 2>0,(a-2) 2+4>0,即/\> 0,•••不管a取何实数,该方程都有两个不相等的实数根.10.关丁x的一元二次方程(x- m) 2 - 2 (x-m) =0 (m为常数).(1)求证:不管m为何值,该方程总有两个不相等的实数根;(2)假设该方程一个根为3,求m的值.【解答】(1)证实:原方程可化为x2- (2m+2) x+m2+2m=0,a=1, b=- ( 2m+2), c=m2+2m,. =b2 - 4ac=[ - (2m+2) ] 2- 4 (m2+2m) =4> 0,•••不管m为何值,该方程总有两个不相等的实数根.(2)解:将x=3代入原方程,得:(3-m) 2-2 (3 - m) =0,解得:m i=3, m2=1.m的值为3或1.11 .关丁x的一元二次方程x2-x+a- 1=0.(1)当a=- 11时,解这个方程;(2)假设这个方程有两个实数根x〔,x2,求a的取值范围;(3)假设方程两个实数根x〔,支满足[2+x1 (1 - x〔)][ 2+x2 (1 - x2)] =9,求a的值.【解答】解:(1)把a=- 11代入方程,得x2-x- 12=0,(x+3) (x- 4) =0,x+3=0 或x- 4=0,x〔 = — 3, x?=4;(2)方程有两个实数根X], 3 •••△ »0,即(一1)2-4X 1X (a— 1) >0,解得a<|-;(3) L X], X?是方程的两个实数根,x乂] +己一 1二0,入:-耳2+日一1二.,.• [ 2+x1 (1 — x〔)][ 2+x2 (1 — x2)] =9,•• [2+工]-工1勺[2+区2“2勺=9,把:, I :. [- •-代入,得:[2+a- 1][ 2+a- 1]=9,即(1+a) 2=9,解得a=- 4, a=2 (舍去),所以a的值为-412 .x1, x2是关丁x的一元二次方程4kx2 - 4kx+k+1= 0的两个实数根.(1)是否存在实数k,使(2xi - x?) (xi - 2x2)=-—成立?假设存在,求出k的值;2假设不存在,说明理由;(2)求使旦+竺-2的值为整数的实数k的整数值;翌们(3)假设k=- 2,入兰!,试求入的值.x2【解答】解:(1) x1> x2是一元二次方程4kx2- 4kx+k+1= 0的两个实数根,x1 +x2=1 , x1 x2=*' 1 ,(2x1 - x2)( x1 - 2x2)=2x12- 4x1x2 - x1x2+2x22=2(x1+x2)2 - 9x1x2 =2X 12 - 9X J E±!=24k4k假设2一丝虫_ =-兰成立4k 2解上述方程得,k=',5. △ =16k2-4X4k (k+1) =- 16k>0,. kv 0, • k=,' 5'矛盾,...不存在这样k的值;幻2& 之) ~2x 1 Xn (Xi + Xn) 2+Xi Xni(2)原式= ------------------- 2= ----------------------------- 2= -------------------------- 4=-X I X 2 S J X 2寿,•.•k+1=1 或—1,或2,或—2,或4,或-4解得k=0或-2, 1, - 3, 3, - 5.kv 0.. .k=— 2, —3 或—5;Y(3) k=— 2,入二,x i+X2=1,x2入2+X2 = 1, X2 —, X i --------------- ,人+1 A+l 5, , X1X2」' I-X1X2一一、4k 8. * J(X+1)2 8'入=3 3血.13.关丁X的方程(k+1) X2 - 2 (k- 1) X+k=0有两个实数根Xi, X2.(1)求k的取值范围;(2)假设X1+X2=X1X2+2,求k 的值.【解答】解:(1) 关丁X的方程(k+1) X2- 2 (k-1) X+k=0有两个实数根,[A=[-2(k-l)]2-4k(k+l)>0 解得:k<-且k^- 1.3(2) 关丁X 的方程(k+1) X2- 2 (k- 1) X+k=0 有两个实数根X1? X2.中1), X1X2 =<^-.•,- X1 +X2=Zk+1 ' k+1X1 +X2=X1 X2+2,即2d)=上+2,I 1:+解得:k=- 4,经检验,k= - 4是原分式方程的解, • • k=— 4.14.关丁X的方程X2 - 2 (m+1) X+m2- 3=0.(1)当m取何值时,方程有两个不相等的实数根?(2)设X1、X2是方程的两根,且X12+X22=22+X1X2,求实数m的值.【解答】解:(1) △=[ - 2 (m+1) ]2-4 (m2-3) =8m+16,当方程有两个不相等的实数根时,那么有△>0,即8m+16>0,解得m>-2;(2)根据一元二次方程根与系数之间的关系,得x1+x2=2 (m+1), x i x2=m2 - 3,x12+x22=22+x i x2= (x1 +x2) 2 - 2x1x2,. .[2 (m+1) ] - 2 (m2-3) =6+ (m2-3),化简,得m2+8m - 9=0,解得m=1或m=- 9 (不合题意,舍去),实数m的值为1 .15.关丁x的一元二次方程x2-2x+m- 1=0有两个实数根x〔、x2.(1)求m的取值范围;(2)假设x『+x22=6x1x2,求m 的值.【解答】解:(1)..•方程有两个实数根,. » 0,即(-2) 2-4 (m- 1) >0,解得m< 2;(2)由根与系数的关系可得x〔+x2=2, xg=m- 1,.. 2 2 -x1 +x2 =6x1x2,•,- (x〔+x2)2- 2x〔x2=6x1x2,即(x〔+x2)2=8x1x2,•,- 4=8 (m- 1),解得m=1.5.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页(共 8 页)
(2)若方程有一个根是 0,求此时方程的另一个根. 12.(2019•怀柔区模拟)已知关于 x 的一元二次方程 x2 (2k 1)x k 2 2k 0 有两个实数根 x1 , x2 . (1)求实数 k 的取值范围. (2)是否存在实数 k ,使得 x1x2 x12 x22 16 成立?若存在,请求出 k 的值;若不存在,请说明理由.
C. x1 1 , x2 4 D. x1 2 , x2 3
二.填空题(共 6 小题)
4.(2018 秋•海淀区校级期中)对于方程 x2 px 4 0 ①与方程 x2 5x q 0 ②,已知方程②的一个根比方程①的
较大根大 2,方程②的另一个根比方程①的较小根小 2,则 q .
第 2 页(共 8 页)
根与系数的关系(北京习题集)(教师版)
参考答案与试题解析
一.选择题(共 3 小题)
1.(2018 秋•海淀区校级期中)已知 xy 1 ,且有 3x2 2018x 9 0 及 9 y2 2018y 3 0 ,则 xy 的值为 ( ) x2 y2
A. 1 2018
则 c 1 (4) 4 ,
则原方程为 x2 3x 4 0 , 整理,得
难点.
2.(2017•西城区校级自主招生) x1 , x2 是方程 x2 x k 0 的两个实根,若恰 x12 x1x2 x22 2k 2 成立, k 的值为 (
)
A. 1
B. 1 或 1 2
C. 1 2
D. 1 或 1 2
【分析】根据一元二次方程的根与系数的关系得到,两根之和与两根之积,再根据 x12 x1x2 x22 (x1 x2 )2 x1x2 代
根与系数的关系(北京习题集)(教师版)
一.选择题(共 3 小题)
1.(2018
秋•海淀区校级期中)已知
xy
1 ,且有 3x2
2018x
9
0
及 9 y2
2018 y
3
0
,则
xy x2 y2
的值为 ( )
A. 1 2018
B.2018
C.3
D. 3 10
2.(2017•西城区校级自主招生) x1 , x2 是方程 x2 x k 0 的两个实根,若恰 x12 x1x2 x22 2k 2 成立, k 的值为 (
9.(2016 春•海淀区期末)写出一个以 0,1 为根的一元二次方程 .
三.解答题(共 3 小题) 10.(2020•东城区校级模拟)已知关于 x 的一元二次方程 x2 (2a 2)x 2a 1 0 . (1)求证:不论 a 取何实数,该方程都有两个实数根: (2)若该方程两个根 x1 , x2 满足 x12 x22 0 ,求 a 的值 11.(2019•海淀区一模)关于 x 的一元二次方程 ax2 2ax c 0 . (1)若方程有两个相等的实数根,请比较 a 、 c 的大小,并说明理由;
5 .( 2017 秋 • 海 淀 区 校 级 期 中 ) 已 知 x1 , x2 是 方 程 x2 x 9 0 两 个 实 数 根 , 代 数 式 x13 7x22 3x2 66 的 值 为 .
6.(2016 春•东城区校级期中)方程 2x2 (k 1)x 4 0 的一个根是 2,那么另一根是 , k . 7.(2016 春•大兴区期末)写出一个同时满足下列两个条件的一元二次方程 . (1)二次项系数是 1 (2)方程的两个实数根异号. 8.(2016 春•丰台区校级月考)已知方程 x2 3x 2 0 的两根为 x1 、 x2 ,则 x1 x2 , x12 x22 .
A. x1 1 , x2 4 B. x1 1 , x2 4
C. x1 1 , x2 4 D. x1 2 , x2 3
【分析】利用根与系数的关系求得 c 的值;然后利用因式分解法解原方程即可.
【解答】解:依题意得 关于 x 的方程 x2 3x c 0 的两根是: x1 1 , x2 4 .
)
A. 1
B. 1 或 1 2
C. 1 2
D. 1 或 1 2
3.(2016 春•西城区校级期中)王刚同学在解关于 x 的方程 x2 3x c 0 时,误将 3x 看作 3x ,结果解得 x1 1 ,
x2 4 ,则原方程的解为 ( )
A. x1 1 , x2 4 B. x1 1 , x2 4
入已知条件中,求得 k 的值.
【解答】解:根据根与系数的关系,得 x1 x2 1 , x1x2 k .
又 x12 x1x2 x22 2k 2 ,
则 (x1 x2 )2 x1x2 2k 2 , 即1 k 2k2 ,第 3Fra bibliotek页(共 8 页)
解得 k 1或 1 . 2
当 k 1 时,△ 1 2 0 ,方程没有实数根,应舍去. 2
取 k 1. 故选: A . 【点评】注意:利用根与系数的关系求得的字母的值一定要代入原方程,看方程是否有实数根.
3.(2016 春•西城区校级期中)王刚同学在解关于 x 的方程 x2 3x c 0 时,误将 3x 看作 3x ,结果解得 x1 1 ,
x2 4 ,则原方程的解为 ( )
B.2018
C.3
D. 3 10
【分析】把 9 y2 2018y 3 0 两边都除以 y2 ,得 3 ( 1 )2 2018g1 9 0 ,从而知 x 、 1 是 3x2 2018x 9 0 的两
y
y
y
根,根据韦达定理可得答案.
【解答】解:Q 9 y2 2018y 3 0 ,
3 ( 1 )2 2018g1 9 0 ,
y
y
则 x 、 1 是 3x2 2018x 9 0 的两根, y
xg1 x 3 , yy
Q x2 y2 x y 3 1 10 , xy y x 3 3
xy 3 , x2 y2 10
故选: D .
【点评】本题考查了根与系数的关系.根据已知条件得到 x 、 1 是关于 x 的方程 3x2 2018x 9 0 的两根是解题的 y
相关文档
最新文档