统计学方差分析(1)
统计学方差分析
(1)平方和的计算
C = T2/nk (T为总和,n为处理数,k为重复数) 总平方和SS T = ∑x2–C
处理间平方和SS t= ∑ Ti2– C
处理内平方和SSe =SST - SSt
(2)自由度的计算
dfT = nk-1 总自由度dfT
dft = k-1 处理间自由度(dft)
dfe = dfT - dft = k(n-1) 处理内自由度(dfe)
(3) 方差的计算
处理间方差st2 = SSt/ dft
处理内方差se2 = Sse/dfe
(4) 显著性F检验
F = st2 /se2
F < F0.05 P >0.05 接受Ho 处理间差异不显著 F > F0.05 P <0.05 否定Ho 处理间差异显著 F > F0.01 P <0.01 否定Ho 处理间差异极显著
多重比较
最小显著差数法(LSD 法,实质是成组t 检验。
)
在F 检验显著的前提下,先计算出显著水平为α的最小显著差数 LSD α,然后将任意两个处理平均数的差数的绝对值与其比较。
若 |X1-X2| >LSD α 时,则 X1 与 X2在α水平上差异显著;反之,则在α水平上差异不显著。
组内观察次数不等 ()()()1022--∑∑∑=k n n n i i i n 02022 21n s s n s s e x x e x ==-或。
完全随机设计的方差分析(1)
.
21
.
22
方差分析(Analysis of variance,ANOVA)
方差分析的定义
又叫变量分析,是英国著名统计学家R . A . Fisher于20世纪提出的。它是用以检验两个或多个 均数间差异的假设检验方法。它是一类特定情况下 的统计假设检验,或者说是平均数差异显著性检验 的一种引伸。为纪念Fisher,以F命名,故方差分析 又称F检验 。
1.特点 单因素方差分析是按照完全随机设计的原则将处理 因素分为若干个不同的水平,每个水平代表一个样本,只 能分析一个因素对试验结果的影响及作用。其设计简单, 计算方便,应用广泛,是一种常用的分析方法,但其效率 相对较低。该设计中的总变异可以分出两个部分,
•
即SS总=SS组间+SS组内。
2.常用符号及其意义
.
29
end
第一节 完全随机设计资料的方差分析
完全随机设计:(completely random design)是采
用完全随机化的分组方法,将全部试验对象分配到g个
处理组(水平组),各组分别接受不同的处理,试验 结束后比较各组均数之间的差别有无统计学意义,推 论处理因素的效应。
.
30
end
第一节 完全随机设计资料的方差分析
离均差平方和 X2
总体方差 样本方差
2 X 2
N
S2XX2X2X2/n
n1
n1
方差—随机变量离散的重要衡量方法
.
13
试验指标(experimental index): 为衡量试验
结果的好坏和处理效应的高低,在实验中具体 测定的性状或观测的项目称为试验指标。常用 的试验指标有:身高、体重、日增重、酶活性、 DNA含量等等。
统计学之方差分析
使用Python的方差分析库(如SciPy)进行方差分析,如 “scipy.stats.f_oneway()”。
查看结果
Python将输出方差分析的结果,包括F值、p值、效应量等。
THANKS FOR WATCHING
感谢您的观看
详细描述
独立性检验可以通过卡方检验、相关性检验 等方法进行。如果数据不独立,需要考虑数 据的相关性和因果关系等因素,以避免误导 的分析结果。
06 方差分析的软件实现
SPSS软件实现
导入数据
将数据导入SPSS软件中,选择正确的数 据类型和格式。
查看结果
SPSS将输出方差分析的结果,包括F值、 p值、效应量等。
03 方差分析的步骤
数据准备
01
02
03
收集数据
收集实验或调查所需的数 据,确保数据来源可靠、 准确。
数据筛选
对异常值、缺失值等进行 处理,确保数据质量。
数据分组
根据研究目的,将数据分 成不同的组或处理水平。
建立模型
确定因子
确定影响因变量的自变量或因子。
建立模型
根据因子和因变量的关系,建立合适的方差分析模型。
统计学之方差分析
目 录
• 方差分析简介 • 方差分析的数学原理 • 方差分析的步骤 • 方差分析的应用场景 • 方差分析的注意事项 • 方差分析的软件实现
01 方差分析简介
方差分析的定义
• 方差分析(ANOVA)是一种统计技术,用于比较两个或多个 组(或类别)的平均值差异是否显著。它通过对总体平均值的 假设检验来进行数据分析,以确定不同条件或处理对观测结果 是否有显著影响。
执行方差分析
在SPSS的“分析”菜单中选择“比较均值” 或“一般线性模型”中的“单变量”,然 后选择需要进行方差分析的变量。
统计学中的方差分析方法
统计学中的方差分析方法统计学是现代社会中最重要的学科之一,它基于大量的数据和数学模型,研究人类社会和自然环境中各种现象和规律。
其中,方差分析是统计学中最基本的分析方法之一,它常常被用来分析各种因素对某个变量的影响。
在本文中,我们将详细介绍方差分析方法的基本原理和应用。
一、方差分析的基本原理方差分析是利用方差的性质分析多组数据之间的差异或相似性的方法。
它是以方差分解为基础的,通过对总方差、组间平方和和组内平方和的分解,来度量实验因素对实验变量的影响。
在具体的研究过程中,我们通常将所研究的因素分为不同的组别,并在每个组别中测量实验变量的值,随后运用方差分析方法来分析不同组别之间的差异。
在方差分析中,我们通常采用F检验法来判断差异的显著性。
通过计算F值并与临界值进行比较,得出数据是否符合研究假设的结果。
如果F值大于临界值,则说明差异是显著的,反之则说明差异不显著。
F检验法在实际应用中非常广泛,适用于大多数实验设计和数据类型。
二、方差分析的应用方差分析方法可以用于各种不同类型的数据分析,如一元方差分析、双因素方差分析、三因素方差分析等等。
下面我们将分别介绍它们的应用。
1. 一元方差分析一元方差分析是指只有一个自变量和一个因变量的分析方法,也就是说只有一个因素影响一个变量。
一元方差分析通常用于分析实验组与对照组之间的差异或者不同处理方式对实验结果的影响等。
例如,我们要研究不同肥料对作物产量的影响,我们可以将实验分成几组,每组采用不同的肥料,最后对产量进行测量。
接着通过方差分析法来比较每组之间产量的差异,最后确定哪种肥料更适合提高作物产量。
2. 双因素方差分析双因素方差分析是指有两个自变量和一个因变量的分析方法,也就是说有两个因素对一个变量产生影响。
双因素方差分析通常用于研究两种或多种因素的交互效应。
例如,我们要研究不同机器和不同操作员对产品质量的影响,我们可以先在不同机器上制造同种产品,然后再让不同的操作员进行操作。
统计学方差分析练习题与答案一
(20分)一研究者为了研究市场环境对企业战略行为的影响对MBA学员做了一个模拟实验。
60名学员每人管理一个企业,以利润最大化为目标模拟经营。
模拟一段时间后,市场环境发生变化。
学员随机分为3组,其中第一组为对照组,第二组市场环境转变为恶性竞争,第三组市场环境为合作竞争。
在新环境下继续模拟。
研究者收集了每个学员在市场环境变化前后的市场份额和利润率数据,形成两个分析指标:
Y1: 环境变化后市场份额/环境变化前市场份额*100(Y1=100意味着环境变化前后市场份额无变化)
Y2: 环境变化后利润率/环境变化前利润率*100(Y2=100意味着环境变化前后该企业利润无变化)
然后,对这两个指标做多响应变量方差分析,并做LSD多重均值比较。
研究者还担心MBA学员工作经历不同可能影响分析结果,特别设计了一个反映工作经历的指标EXP,作为协变量。
SPSS输出结果如下。
请回答下列问题:
(1)解释以下各输出图表的含义
(2)从输出结果中你能得出什么结论?。
统计学方差分析
统计学方差分析方差分析(Analysis of Variance,缩写为ANOVA)是一种常用的统计学方法,广泛应用于数据分析中。
它的主要目的是用于比较多个样本群体之间的均值是否存在显著差异。
通过方差分析,可以确定因素对于不同组之间的差异程度有无显著影响。
方差分析的基本原理是将数据进行分解,并据此计算各部分之间的均方差(mean square),然后通过比较这些均方差的比值,得出各部分对总体的贡献程度,并进行显著性检验。
在方差分析中,数据通常被分为几个不同的组别,每个组别称为一个因素(factor)。
每个因素可以有不同的水平(level),例如性别因素可以有男和女两个水平。
而一个水平下的所有观测值构成一个处理(treatment)或条件(condition)。
方差分析的基本模型是一种线性模型,假设因变量与自变量之间存在线性关系。
对于单因素方差分析,它的模型可以表示为:Y=μ+α+ε其中,Y表示因变量,μ表示总体的平均值,α表示组别之间的差异,ε表示组内误差。
方差分析的目标是判断组别之间的差异(α)与组内误差(ε)的比值是否显著。
方差分析的核心思想是通过计算均方差,评估不同因素水平之间的差异是否显著。
均方差是方差与其自由度的比值,用于度量数据的离散程度。
通过计算组间均方差(MSTr)和组内均方差(MSE),我们可以得出F值,进而进行显著性检验。
F值是组间均方差与组内均方差的比值F = (MSTr / dfTr) / (MSE / dfE)其中,dfTr表示组间自由度,dfE表示组内自由度。
在统计学中,F值与显著性水平相关。
当F值大于显著性水平对应的临界值时,我们可以拒绝原假设,认为组别之间存在显著差异。
否则,我们不能拒绝原假设,即组别之间的差异不显著。
方差分析不仅可以应用于单因素情况,还可以扩展到多因素情况。
多因素方差分析可以用于研究多个自变量对因变量的影响,并评估这些自变量之间是否存在交互作用。
统计学中的方差分析方法
统计学中的方差分析方法方差分析(Analysis of Variance,简称ANOVA)是统计学中常用的一种假设检验方法,用于比较两个或更多个样本均值是否存在差异。
它通过分析不同组之间的方差来评估组内和组间的变异情况,进而得出结论。
一、方差分析的基本思想方差分析基于以下两个基本假设:1. 原假设(H0):各总体均值相等,即样本所来自的总体没有差异;2. 备择假设(H1):各总体均值不相等,即至少存在一个样本来自于与其他样本不同的总体。
二、一元方差分析(One-way ANOVA)一元方差分析适用于只有一个自变量的情况,它将样本根据自变量分为两个或多个组,然后比较这些组之间的均值差异。
下面以一个简单的案例来说明一元方差分析。
假设我们要研究三种不同肥料对植物生长的影响,我们将随机选取三个试验区,分别施用A、B和C三种不同的肥料,每个试验区都观察到了相应植物的生长情况(例如植物的高度)。
我们的目标是通过方差分析来判断这些不同肥料是否对植物的生长有显著的影响。
在执行一元方差分析之前,我们首先需要验证方差齐性的假设。
如果各组样本的方差相等,我们就可以继续使用方差分析进行比较。
常用的方差齐性检验方法有Bartlett检验和Levene检验。
在通过方差齐性检验后,我们可以进行一元方差分析。
分析结果将提供两个重要的统计量:F值和P值。
F值表示组间均方与组内均方的比值,P值则表示了接受原假设的概率。
如果P值较小,则说明组间的差异是显著的,我们可以拒绝原假设,接受备择假设,即不同肥料对植物生长有显著影响。
三、多元方差分析(Two-way ANOVA)多元方差分析适用于有两个以上自变量的情况,分析对象的均值差异可以归因于两个或多个自变量的相互作用。
这种分析方法常用于研究两个或多个因素对实验结果的影响情况。
以品牌和价格对手机销量的影响为例,我们假设品牌和价格是两个自变量,手机销量是因变量。
我们可以将样本分成不同的组合,比如将不同品牌的手机按不同的价格段进行分类。
统计学中的方差分析
统计学中的方差分析在统计学中,方差分析(Analysis of Variance,简称ANOVA)是一种常用的数据分析方法,用于比较两个或更多个样本均值之间的差异。
它可以帮助研究人员确定这些差异是否是由于随机变异导致的,或者是否存在其他因素对样本均值产生显著影响。
方差分析的基本理念是将总体方差分解为不同来源的方差,以评估各个因素对总体方差的影响程度。
一般情况下,将总体方差分解为组内方差和组间方差两部分。
组内方差反映了同一组内个体之间的差异程度,而组间方差则反映了不同组之间的差异程度。
方差分析的数学模型可以通过以下公式表示:$$Y_{ij} = \mu + \alpha_i + \epsilon_{ij}$$其中,$Y_{ij}$表示第i组中第j个个体的观测值,$\mu$为总体均值,$\alpha_i$为第i组的固定效应,$\epsilon_{ij}$为误差项。
通过方差分析可以检验组间因素($\alpha_i$)对于总体均值是否具有显著影响。
在进行方差分析之前,需要满足以下几个前提条件:1. 独立性:样本观测值彼此之间应独立,即每个观测值的产生不会受到其他观测值的影响。
2. 正态性:每个组内的观测值应呈正态分布,这样才能保证方差分析的结果准确性。
3. 方差齐性:每个组内的观测值应具有相同的方差,即不同组之间的方差应该相等。
方差分析有两种常见的类型:单因素方差分析和多因素方差分析。
单因素方差分析适用于只有一个自变量(或因素)的情况下,用于比较不同水平(或处理)之间的均值差异。
例如,一个研究人员想要比较不同药物治疗方法对疾病恢复时间的影响,可以使用单因素方差分析。
多因素方差分析适用于具有两个或更多个自变量(或因素)的情况。
它可以帮助研究人员分析多个因素之间的相互作用效应。
例如,一个研究人员想了解不同年龄、性别和教育程度对于工资水平的影响,可以使用多因素方差分析。
方差分析的结果可以通过计算统计量F值来判断不同因素对于总体均值的显著影响。
应用统计学8-方差分析(1)
Yi = µi + ε i
( 8-1)
其中, μi 纯属Ai作用的结果,称为在Ai条件下Yi的真值(也称为在 Ai条件下Yi的理论平均). εi 是试验误差(也称为随机误差)。
2 ε ~ N ( 0 , σ ) 且相互独立,则 Yi ~ N ( µ i , σ 2 ) 假定 i
且也是相互独立的
第八章
第八章
方差分析
8. 2 单因素试验的方差分析
数学模型和数据结构 参数点估计 分解定理 自由度 显著性检验 多重分布与区间估计
第八章
方差分析
8. 2. 1 数学模型和数据结构
在单因素试验中,为了考察因素A的k个水平A1, A2, …, Ak对Y的影响(如k 种型号对维修时间的影响),设想在固定的 条件Ai下作试验。所有可能的试验结果组成一个总体Yi (i=1, 2, …, k),它是一个随机变量,可以把它分解为两部分
第八章
方差分析
8. 2. 2 参数点估计
2 , , , , µ α α α σ 估计参数 1 2 k 和
估计方法:最小二乘法
最小偏差平方和原则:使观测值与真值的偏差平方和 达到最小
第八章
偏差平方和
方差分析
8. 2. 2 参数点估计
2 S ε = ∑∑ ε ij = ∑∑ (Yij − µ i ) 2 = ∑∑ (Yij − µ − α i ) 2 i =1 j =1 k m
eij = Yij − Y i
第八章
最小二乘估计量
方差分析
8. 2. 2 参数点估计
ˆ =Y µ ˆ i = Yi − Y α µ ˆ i = Yi
可以证明,这三个估计量均为参数μ、 αi和μi的无偏估计量
方差分析(ANOVA)1
Dunnet 检验方法,证实性检验,常用于多 个试验组与一个对照组间的比较。
单因素方差分析
例1 在肾缺血再灌注过程的研究中,将36只雄性大鼠随机等 分成三组,分别为正常对照组、肾缺血60分组和肾缺血60 分再灌注组,测得各个体的NO数据见数据文件no.sav,试 问各组的NO平均水平是否相同?
P2,45=3.20-3.21<8.87,本次F值处于F界值之 外,说明组间均方组内均方比值属于小概率 事件,因此拒绝H0,接受H1,三个总体均 数不等或不全相等
方差分析的关键条件
第一、各组服从正态分布! 第二、各组符合方差齐性! 第三、独立性
方差齐性检验
Bartlett检验法 Levene F 检验 最大方差与最小方差之比<3,初步认为方
H0:三个总体均数相等,即三组工作人员 的体重指数总体均数相等
H1:三个总体均数不等或不全相等 a=0.05
(2)计算检验统计量F值
变异来源
组间 组内 总变异
SS 自由度(df)
MS
143.406 363.86 507.36
2
71.703
45
8.09
47
F 8.87
(3)确定p值,作出统计推断
18~岁 21.65 20.66
… … 18.82 16 22.07 8.97
30~岁 27.15 28.58
… … 23.93 16 25.94 8.11
45~60岁 20.28 22.88 … … 26.49 16 25.49 7.19
一、方差分析的基本思想
思想来源: 观察值总变异可以分解为组间变异和组内变异
变异程度除与离均差平方和的大小有关外, 还与其自由度有关,由于各部分自由度不相等, 因此各部分离均差平方和不能直接比较,须将 各部分离均差平方和除以相应自由度,其比值
田间统计第5章_方差分析(第1节)
在计算处理内平方和时,kn个离均差
( xij xi ) 要受k个条件的约束,即
(x
j 1
n
ij
xi ) 0 (i=1,2,…,k)
故处理内自由度为资料中观测值的总个数
减 k ,即 kn - k 。 处理内自由度记为 dfe
dfe=kn-k=k(n-1)
因为
nk 1 (k 1) (nk k ) (k 1) k (n 1)
F 分布密度曲线是随自由度df1、df2的
变化而变化的一簇偏态曲线,其形态随着df1、 df2的增大逐渐趋于对称,如图3-15所示。
特点:1、F分布的平均数μ F=1; 2、取值范围[0,+∞]; 3、只有一尾概率,右尾概率; 4、F分布是一组曲线系,当V1、V2都 趋近于+∞时,F分布趋于对称分布。
(二)、F检验
用 F 值出现概率的大小推断一个总
体方差是否大于另一个总体方差的方法
称为F检验(F-test)。F检验是一尾检验。
对于单因素完全随机设计试验资料的方差
分析:
无效假设H0:μ1=μ2=…=μk
备择假设HA:各μi不全相等 或 假设 H0:σt2=σe2 对 HA:σt2﹥σe2, F=MSt / MSe,也就是要判断处理间均方
j
Hale Waihona Puke LSDa t a ( dfe ) S xi x j
t ( df e ) 为在F 检验中误差项自由度下,显著水平
为α的临界t 值, S x x 为均数差数标准误, i j
S xi x j
2MS e / n
MS e 为F 检验中的误差均方,n为各处理的重复数。
当显著水平α=0.05和0.01时,从t 值表中查出
统计学——方差分析概念和方法
统计学——方差分析概念和方法方差分析是一种用于比较两个或多个样本均值之间差异的统计分析方法。
它主要用于分析一个因变量和一个或多个自变量之间的关系,并判断这些自变量对因变量的影响是否存在显著差异。
方差分析主要包括以下几个概念和方法:1.因变量和自变量:方差分析中,我们首先需要明确研究的因变量和自变量。
因变量是我们感兴趣的变量,我们想要比较的两个或多个样本均值;而自变量是我们认为对因变量有影响的变量,可以是类别变量(如性别、教育程度等)或连续变量(如年龄、收入等)。
2.假设检验:在进行方差分析之前,我们需要假设样本均值之间没有显著差异,即为零假设(H0)。
然后,我们通过方差分析来检验零假设是否成立。
3.方差分析的类型:根据自变量的个数和类型的不同,方差分析可以分为单因素方差分析、多因素方差分析和混合方差分析。
单因素方差分析适用于只有一个自变量的情况,多因素方差分析适用于含有多个自变量的情况,而混合方差分析适用于自变量同时包含类别变量和连续变量的情况。
4.方差分析表:方差分析表是用来总结方差分析结果的常用工具。
在方差分析表中,我们可以看到组间方差(组间均方)、组内方差(组内均方)、总体方差(总体均方)以及统计量F值。
通过比较F值与给定的显著性水平,我们可以判断不同样本均值之间是否存在显著差异。
5.假设检验的步骤:进行方差分析时,需要按照以下几个步骤进行假设检验:a.建立假设:H0(样本均值没有显著差异)和H1(至少有一组样本的均值存在显著差异);b.计算各个组的均值;c.计算组间方差和组内方差;d.计算统计量F值;e.判断结果:通过比较F值和临界值来判断是否拒绝零假设。
6. 方差分析的扩展:在方差分析中,我们可以进行一些扩展的分析,如多重比较和建模。
多重比较是用来判断哪些组之间存在显著差异,常用的方法有Tukey法、Duncan法和Scheffe法等。
建模则是通过增加其他变量(如交互效应)来更好地解释因变量的变化。
方差分析1审计学审计学
课程名称:统计学
1.方差分析的定义
2.方差分析解决什么问题(举例)
3.方差分析的思路
4.方差分析在实践中有什么用处
1.检验多个总体均值是否相等
⏹通过分析数据的误差判断各总体均值是否相等
2.研究分类型自变量对数值型因变量的影响
⏹一个或多个分类型自变量
⏹一个数值型因变量
某饮料生产企业研制出一种新型饮料.饮料的颜色共有四种: 例
橘黄色、粉色、绿色和无色透明。
这四种饮料的营养含量、味道、价格、包装等可能影响销售量的因素全部相同。
现从地理位置相似、经营规模相仿的五家超市上收集了该种饮料的销售情况。
超市饮料销售额(单位:万元)
•传统方法:两两均值相等的检验
•从方差分析的目的看,是要检验四种颜色的饮料的销售均值是否相等,我们可用方差比较的方法来判断。
饮料的颜色是否对销售量产生影响?
在其他条件相同的情况下,上述问题就归结为一个检验问题,即:检验饮料颜色对销售量是否有影响?
单因素的方差分析
分析一个变量时One-Way ANOVA
多因素的方差分析
Univariate
分析多个变量时,称为多元方差分析
Multivariate
☐分析一个定性变量对定量变量的影响
☐两个定量变量间,也可数据转化应用方差分析☐数据分析中最常用的分析工具
☐应用注意数据的要求
谢谢观看。
统计学第八章 单因素方差分析(1)
称为处理平方 处理平方 和,记为 SSA
总平方和SST=处理平方和SSA+误差平方和SSe
即, ( y ij − y •• ) = n∑ ( y i • − y •• ) + ∑∑ ( y ij − y i• ) 2 ∑∑
2 i =1 j =1 i =1 i =1 j =1 a n 2 a a n
i =1 j =1
a
n
= n∑ ( y i• − y •• ) + 2∑ [( y i• − y •• )∑ ( y ij − y i• )] + ∑∑ ( y ij − y i • )
2 i =1 i =1 j =1 i =1 j =1
a
a
n
a
n
j =1
∑ ( y ij − y i • ) = 0
换句话说,采用两两t检验法,要进行45次t检验,程序太繁琐。
原因(2):检验的I 型错误增大,从而检验的 可靠性低
a = 2 时, H 0 只有一个,即
µ 1= µ 2
a = 3 时, H 0 有 3 个,即 µ 1= µ 2, µ 2= µ 3, µ 1= µ 3
a = 5时,H 0 有10个,即µ1=µ 2,µ 2=µ3, , µ 4=µ5 L
二、方差分析的几个概念
1、方差分析(analysis of variance):将试验数据的总变异分 解成不同来源的变异,从而评定不同来源的变异相对重要性 的一种统计方法。 2、试验指标(experiment index):为衡量试验结果的好坏或 处理效应的高低,在试验中具体测定的性状或观测的项目。 3、试验因素(experiment factor):试验中所研究的影响试验 指标的因素:单因素、双因素或多因素试验。 4、因素水平(level of factor):因素的具体表现或数量等级。
经济学第七章 统计学方差分析1
一、方差分析概述
方差分析中的常用术语
1. 因素(Factor) 因素是指所要研究的变量,它可能对因变量产生影响。
如果方差分析只针对一个因素进行,称为单因素方差分析。 如果同时针对多个因素进行,称为多因素方差分析。
2. 水平(Level) 水平指因素的具体表现,如销售的四种方式就是因素
的不同取值等级。有时水平是人为划分的,比如质量被评 定为好、中、差。
3. 单元(Cell) 单元指因素水平之间的组合。如销售方式一下有五种
不同的销售业绩,就是五个单元。
一、方差分析概述
4. 元素(Element) 元素指用于测量因变量的最小单位。一个单元里可以
只有一个元素,也可以有多个元素。例7.1中各单元中只有 一个元素。
5. 均衡(Balance) 如果一个试验设计中任一因素各水平在所有单元格中
观测值j 水平i
1
2
……
k
水平1
x11
x12
……
x1k
因 水平2 素
x 21
x 22
……
x2k
A
┋
┋
┋
┋
┋
水平r
x r1
xr2
……
x rk
二、单因素方差分析
单因素方差分析的数据结构(不均衡试验)
观测值j 水平i
水平1
因 水平2 素
A
┋
水平r
1
2
x11
x12
x 21
x 22
┋
┋
x r1
xr2
……
nk
出现的次数相同,且每个单元格内的元素数相同,则称该 试验是为均衡,否则,就被称为不均衡。不均衡试验中获 得的数据在分析时较为复杂。例7.1是均衡的。 6. 交互作用(Interaction)
方差分析1
3、方差分析的原理 在上述假定条件下,判断颜色对销售量是否有显著 影响,实际上也就是检验具有同方差的四个正态总体 的均值是否相等的问题。
如果四个总体的均值相等,可以期望四个样本的均 值也会很接近。 四个样本的均值越接近,我们推断四个总体均值相 等的证据也就越充分。 样本均值越不同,我们推断总体均值不同的证据就 越充分。
首先,提出如下假设: H0: 1 = 2 = 3 = 4 如果原假设成立(四种颜色饮料销售的均值都 相等、没有系统误差)这意味着每个样本都来自均 值为、方差为2的同一正态总体,有充分证据表明 颜色因素对分店的日营业额没有实质性影响
f(X)
1 2 3 4
X
备择假设:H1: i (i=1,2,3,4)不全相等 如果备择假设成立(即至少有一个总体的均值是不同 的、有系统误差)这意味着四个样本分别来自均值不 同的四个正态总体,有充分证据说明颜色因素对日营 业额有显著影响。
(2)水平(level) ——又称处理(treatment) 因子在实验中的不同状态或因素的具体表现称为 水平。如例中橘黄色、粉色、绿色和无色四种颜色就是因 素的水平。 水平有质的不同和量的差异两种情况。
例1,所要研究的因素为性别,这个因素就可以分为男和 女两个不同的水平。 例2,要研究不同教材所产生的学习效果是否有显著性差 异,可以从四所学校同一个年级中各抽取一组学生,每组学生 用一种教材进行教学,然后比较各组学生学习成绩的高低。 例3,按IQ分数的高低把被试分成高智商、智商中等和低 智商三个水平。 例4,按考试成绩高低把学生分为高成就、成绩中等和低 成就三个水平。
应用统计
方差分析
方差分析简称ANOV, ANOVA 由英国统计学家 R.A.Fisher首创,为纪 念Fisher,以F命名, 故方差分析又称 F 检 验 (F test)。用于 推断多个总体均数有无 差异
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试验设计问题
试验设计模型可以说就是回归模型的一 种。试验设计问题本身有很大一部分是 如何设计试验,使得人们有可能用最少 的资源得到最好的结果。
这里,我们不打算详细讨论如何设计试 验,而把主要精力放在试验设计数据的 方差分析和建立线性模型上。
可编辑ppt
4
方差分析
方差分析(analysis of variance, ANOVA)是分析各个自变量对因变 量影响的一种方法。
ANOVA
WEIGHT
Between Groups Within Groups
Total
Sum of Squares
20538.698
Df Mean Square F Sig. 3 6846.233 157.467 .000
652.159
15
21190.858 18
43.477
该表说明各饲料之间有显著不同.
Mean Lower Bound
Upper Bound
Minim Maxim um um
A 5 133.36 6.80794 3.04460 124.9068 141.8132 125.3 143.1
B 5 152.04 6.95723 3.11137 143.4015 160.6785 143.8 162.7
可编辑ppt
14
方差分析表的说明:
(比较一元总体的) ANOVA
WEIGHT(重量)
Between Groups(处理)
Sum of
Df
Mean
F Sig.
Squares(平方和)
自由 度
Square(均方)
SSB
P-1 MSB=SSB/(p-1)
F=
P(F>Fa)
MSB/MSE
Within Groups
C 5 189.72 6.35035 2.83996 181.8350 197.6050 182.8 198.6
D 4 220.78 6.10594 3.05297 211.0591 230.4909 212.3 225.8
Tot 19 171.52 al
34.31137
7.87157 154.9730
A 133.8
B 151.2
饲料 C
193.4
D 225.8
125.3
149.0
185.3224.6143.1162.7
182.8
220.4
128.9
143.8
188.5
212.3
135.7
153.5
198.6
均值A= 133.36 均值B= 152.04 可编辑p均pt 值C=189.72
均值D= 2920.78
统计学
─从数据到结论
可编辑ppt
1
第九章 方差分析
可编辑ppt
2
试验设计问题
一个养蟹户要遇到许多影响生产的因素 或因子(factor),如水温,饲料, 水质等。
要想稳定高产,就要进行各种因素的不 同水平(level)的搭配(组合)试验。
这里的“水平”就是一个因素可能取的 值。如有三种饲料,那饲料因素就有三 个水平。而如果水温有四种水平,则水 温和饲料就有12种可编辑可ppt 能的搭配。 3
i 1
i 1j 1
其中, SST 有自由度 n-1, SSB有自由度 p-1,
SSE 有自由度 n-p,在正态分布的假设下, 如
果各组增重均值相等(零假设), 则
FMSBSSB/(p1) MSE SSE/(np)
有自由度为 p-1 和n-p 的F 可编辑ppt 分布.
13
由SPSS可以得到方差分析表:
A 133.8
B 151.2
饲料 C
193.4
D 225.8
125.3
149.0
185.3
224.6
143.1
162.7
182.8
220.4
128.9
143.8
188.5
212.3
135.7
153.5
可编辑ppt 198.6
7
SPSS中的 数据形式
可编辑ppt
8
饲料例子(继续):
饲料(fodder)为自变量(单因子),重量 增加(weight) 为因变量(一个数量变 量) (SPSS计算机数据形式有所不同)
可编辑ppt
188.0481 125.3 225.8
10
四种饲料的箱图
240
220
200
180
160
140
120
100
N=
5
A
f odder
8
5
5
B
C
四种饲料的均值图
240
4
220
D
200
180
Me an o f WEI GH T
160
140
120
可编辑ppt
A
B
fodder
C
11
D
线性模型:
m y iji ij, i 1 ,...,p , j 1 ,...,n i
对数据的描述性输出(SPSS)
(ANOVA-CONTRASTS/POST HOC-LSD,T2/OPTION-DES.,HOMO./MEAN PLOT)
Descriptives WEIGHT
N Mean
Std.
Deviation
Std. Error
95% Confidence Interval for
(误差)
Total(总和)
SSE SST
n-p MSE=SSE/(n-p) n-1
这里n 为观测值数目p 为水平数,Fa
满足 P(F>Fa)=a.这是自由度为 p-1
和n-p 的 F-分布的概率 可编辑ppt
15
Test of Homogeneity of Variances (A robust test)
模型中的假定:
m y i1 ,y i2 ,...,y in i N (i, 2 ),i 1 ,...,p
m m 涉及的检验: H : =…= 0 可编辑ppt
1
p12
公式:总平方和=组间平方和+组内平方和
p
p n i
S S T S S B S S E n i(yi y)2 (y ij yi)2
然后用各自变量的贡献和随机误差的贡献进 行比较(F检验),以判断该自变量的不同水 平是否对因变量的变化有显著贡献。输出就
是F-值和检验的一些p-值。
下面看一个例子。
可编辑ppt
6
单因素方差分析回顾
饲料比较数据, n=19头猪, 用p=4种 饲料喂养一段时间后的重量增加问题: 四种饲料是否不同?
Levene Statistic df1 df2 Sig.
这里的自变量就是定性变量的因子及 可能出现的称为协变量(covariate) 的定量变量。
分析结果是由一个方差分析表表示的。
可编辑ppt
5
方差分析
原理为:把因变量的值随着自变量的不同取 值而得到的变化进行分解,使得每一个自变 量都有一份贡献,最后剩下无法用已知的原 因解释的则看成随机误差的贡献。