(完整)七年级数学频数分布表和频数分布直方图练习题

合集下载

7.4频数分布表和频数分布直方图

7.4频数分布表和频数分布直方图

(2)视力在4.9及4.9以
上的同学占调查学生的比
频 60

()
例为_3_/8__ ;
名 50
(3)如果视力在第1,2,3 40
组范围内均属视力不良,那 30
么该校约共有_1_25_0_名学 20
生视力不良,应给予治疗、 矫正。
10
第3组
第2组 第1组
第4组 第5组 视力
3.95 4.25 4.55 4.85 5.15 5.45
()
才艺展示
1.一次统计七年级若干名学生每分跳绳次数的频数分布直方图如图. 请根据这个直方图回答下面的问题:
(1)参加测试的总人数是多少? 15人
(2)自左至右最后一组的频数、频率分别是多少?
频数是3
频率是0.2
(3)数据分组时,组距是多少?
组距是25次


七年级若干名学生每分跳绳次数的频数分布 直方图
合计
20 ___2_5__
30 10 5 100
3.每年的6月6日是全国的爱眼日,让我们行动起来, 爱护我们的眼睛!某校为了做好全校2000名学生的眼 睛保健工作,对学生的视力情况进行一次抽样调查, 如图,是利用所得数据绘制的频数分布直方图。请你 根据此图提供的信息,回答下列问题:
(1)本次调查共抽测了__16_0 _名学生;
82.5; 82.5~87.5; 87.5~92.5)
解: 20名学生每分脉搏跳动次数的频数分布表
组别(次) 67.5~72.5 72.5~77.5 77.5~82.5 82.5~87.5 87.5~92.5
频数 2 4 9 3 2
20名学生每分脉搏跳动次数的频数分布直方图

数 10

七年级数学第十章第2节《直方图》单元训练题 (16)(含答案解析)

七年级数学第十章第2节《直方图》单元训练题 (16)(含答案解析)

第十章第2节《直方图》单元训练题 (16)一、单选题1.小丽抛一枚硬币10次,其中有6次正面朝上,则反面朝上的频数是( ) A .6B .0.6C .4D .0.42.某异地扶贫搬迁学生定点学校七年级共有1000人,为了了解这些学生的视力情况,从中抽查了20名学生的视力,对所得数据进行整理.若数据在4.8~5.1这一小组的频率为0.3,则可估计该校七年级学生视力在4.8~5.1范围内的人数有( ) A .600人B .300人C .150人D .30人3.某校为了给八年级学生定制一套校服,从500名八年级学生中,随机抽取100名学生,测得他们的身髙数据,得到一个样本,则这个样本数据的平均数、中位数、众数、方差四个统计量中,服装厂最感兴趣的是( ) A .平均数B .中位数C .众数D .方差4.一组数据共60个,分为6组,第1至第4组的频数分别为6,8,9,11,第5组的频率为0.20,则第6组的频数为( ) A .11B .13C .14D .155.为了解某市九年级男生的身高情况,随机抽取了该市100名九年级男生,他们的身高()cm x 统计如下:根据以上结果,全市约有3万男生,估计全市男生的身高不高于180cm 的人数是( ) A .28500B .17100C .10800D .15006.九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是( )A.70%B.80%C.86%D.92%7.如图为某地区今年3月的日平均气温频数直方图(直方图中每一组包括前一个边界值,不包括后一个边界值),则在下列结论中,其中错误的结论是()A.该地区3月日平均气温在18℃以上(含18℃)共有10天B.该直方图的组距是4(℃)C.该地区3月日平均气温的最大值至少是22℃D.组中值为8℃的这一组的频数为3.频率为0.18.班级共有40名学生,在一次体育抽测中有8人不合格,那么不合格人数的频率为()A.0.2 B.0.25 C.0.55 D.0.8二、解答题9.某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年的月均用水量(单位:吨),并将调查数据进行了如下整理:4.72.13.12.35.22.87.34.34.86.74.55.16.58.92.24.53.23.24.53.53.53.53.64.93.73.85.65.55.96.25.73.94.04.07.03.79.54.26.43.54.54.54.65.45.66.65.84.56.27.5(1)把上面的频数分布表和频数分布直方图补充完整;(2)请你用频数分布直方图.......计算这50个家庭去年的月均用水量的平均数和中位数(各组的实际数据用该组的组中值表示);若该小区有2000个家庭,请你用频数分布直方图.......得到的数据估计该小区月均用水总量;(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使60%的家庭收费不受影响,你觉得家庭月均用水量标准应该定为多少?为什么?10.为了解七年级学生的身体素质情况,体育老师对该年级部分学生进行了一分钟跳绳次数的测试,并把测试成绩绘制成如图所示的频数表和频数直方图(每组含前一个边界值,不含后一个边界值).某校七年级部分学生一分钟跳绳次数测试的频数表(1)参加测试的学生有多少人?(2)求a,b的值,并把频数直方图补充完整.(3)若该年级共有320名学生,估计该年级学生一分钟跳绳次数不少于120次的人数.11.我市对参加2020年中考的4000名初中毕业生进行了一次视力抽样调查,并根据统计数据,制作了如图所示的统计表和统计图.4.3 4.6x<x<4.6 4.9x<4.95.25.2 5.5x<请根据有信息回答下列问题:(1)求抽样调查的人数;(2)a=,b=,m=;(3)补全频数分布直方图;(4)若视力在4.9以上(含4.9)均属正常,则视力正常的人数占被统计人数的百分比是;根据上述信息估计我市2020年中考的初中毕业生视力正常的学生大约有多少人.12.为了解某校七年级学生的身高情况,随机抽取该校男生、女生进行抽样调量,已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:身高情况分组表(单位:cm)x<155160x<160165x<165170x<170175根据图表提供的信息,回答下列问题:(1)样本中,男生人数为_____人,男生身高类别C的组中值为_______男生身高类别B的频率为_______;(2)样本中,女生身高在E组的人数为______人,女生组别D的频数所对应的扇形圆心角为_________;x<之间的学生约有多少人?(3)已知该校共有男生400人,女生380人,请估计身高在16017013.为了解2020年全国中学生创新能力大赛中竞赛项目“知识产权”笔试情况,随机抽查了部分参赛同学的成绩整理并制作了不完整的频数分布表.7080x<x<8090x90100请根据图表提供的信息,解答下列问题:(1)在表中:a =_____;b =_____;c =_______; (2)请补全频数分布直方图;(3)若将抽取的成绩绘制成扇形统计图,请计算成绩在“90100x ≤≤”所在扇形的圆心角的度数. 14.为讴歌抗击新冠肺炎的白衣战士,某校举行了“新时代最可爱的人”征文比赛,已知每篇参赛征文成绩记a 分(60100)a ,组委会统计了他们比赛的成绩,并根据成绩绘制了如下不完整的两幅统计图表:7080a <8090a 90100a(1)参加征文比赛的共有______人,m =______,n =______; (2)补全图中的频数分布直方图;a<”所对应扇形的圆心角度数为多少?(3)若将比赛成绩绘制成扇形统计图,则成绩为“809015.某学校为了了解疫情期间学生在家体育锻炼情况,从全体学生中随机抽取若干学生进行调查,以下是根据调查数据绘制的统计图表的一部分,根据信息回答下列问题:某校学生疫情期间在家锻炼情况的扇形统计图:(1)本次调查共人;(2)抽查结果中,B组有人;(3)在抽查得到的数据中,中位数位于组(填组别);(4)若该校共有学生2400人,则估计平均每日锻炼超过20分钟的学生有人.16.2020年10月15日,中共中央国务院发布《关于全面加强和改进新时代学校体育工作的意见》,对新时代体育教育做了顶层设计和全面部署.某校面对全体学生发出了“发展体育运动,健身报效祖国”的活动倡议,调查小组对本校学生每周运动的时间做了抽样问卷调查,过程如下:(1)收集、整理数据:调查小组利用如下左图所示的调查问卷随机调查50名同学,得到他们最近一周内参加体育锻炼总时间的数据如下表所示:将上述数据整理在如下的统计表中,请你将表格补充完整:(2)描述数据:根据上面的统计表,补全频数直方图和扇形统计图;(3)问题解决:已知该校共有1000人,根据上述信息估计该校全体学生最近一周参加锻炼总时长不足2小时的约为多少人?(4)分析数据:根据以上数据的特点,写出一条你发现的结论;17.为了解中考英语人机对话日常训练情况,某市从某校九年级学生中随机抽取了部分学生进行了一次英语人机对话测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是_______人.∠的度数是_____,请把图2条形统计图补充完整.(2)图1中α(3)今年该市九年级大约有学生20000名,如果全部参加这次中考英语人机对话测试,请估计不及格的人数为多少人.18.某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查.问卷调查的结果分为A.“非常了解”、B.“比较了解”、C.“基本了解”、D.“不太了解”四个等级,划分等级后的数据整理成如下表格和频数分布直方图.根据以上信息,请回答下列问题:(1)表中a=________,b=________;(2)请补全频数分布直方图;(3)若该校有学生1800人,请根据调查结果估计这些学生中“不太了解”垃圾分类知识的人数.19.某校对本校的5000名学生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:(1)在频数分布表中,a的值为,b的值为,将频数分布直方图补充完整;(2)小明说“我的视力情况是此次抽样调查所得数据的中位数”小明的视力情况应在什么范围内?(3)若视力在4.9以上(含4.9)均属正常,请估计该校学生中视力正常的大约有多少人?x<4.3 4.6x<4.6 4.9x<4.95.2x<5.2 5.520.为推动实施健康中国战略,树立国家大卫生、大健康概念.手机APP也推出了多款键康运动软件,如“微信运动”.这种激励运动的形式被越来越多的人关注和喜爱.某兴趣小组随机调查了我市k名教师某日“微信运动”中的步数情况,统计整理并绘制了如下不完整的统计图表:。

七年级数学下册《直方图》练习题及答案(人教版)

七年级数学下册《直方图》练习题及答案(人教版)

七年级数学下册《直方图》练习题及答案(人教版)4.已知数据其中无理数出现的频率是()A.20%B.40%C.60%D.80%4050次的人数最多不足30次的人数有次的人数占7.如图是某校九年级部分男生做俯卧撑的成绩(次数)进行整理后,分成五组,画出的频率分布直方图,已知从左到右前4个小组的频率分别是0.05,0.15,0.25,0.30,第五小组的频数为25,若合格成绩为20,那么此次统计的样本容量和本次测试的合格率分别是().A.100,55%B.100,80%C.75,55%D.75,80%8.一次数学测试,将全班45名学生的成绩(得分为整数)进行整理后分成5组,绘制了频数分布直方图(如图,每组含最小值不含最大值),通过此图读出的信息,不正确的是()A.小明同学考了70分,他的成绩划在了60﹣70组B.70﹣80分数段中共有10名同学C.如果80分及以上为优秀,本次考试的优秀率为60%D.本次考试没有50分以下的同学9.在英文词组was a sunny in park中,字母n出现的频率是()A.0.2B.0.3C.0.13D.0.2210.某次数学测验,抽取部分同学的成绩(得分为整数)整理制成频数分布直方图,如图所示.根据图示信息,下列描述不正确的是()A.共抽取了50人B.90分以上的有12人C.80分以上的所占的百分比是60%D.60.5~70.5分这一分数段的频数是12三、解答题16.市环保部门为了解城区某一天18:00时噪声污染情况,随机抽取了城区部分噪声测量点这一时刻的测量数据进行统计,把所抽取的测量数据分成A、B、C、D、E五组,并将统计结果绘制了两幅不完整的统计图表.根据以上信息解决下列问题:(1)在统计表中,m=__________,n=__________,并补全直方图;(2)扇形统计图中“E组”所对应的圆心角的度数是__________度;(3)若该校共有964名学生,如果听写正确的个数少于24个定为不合格,请你估计这所学校本次比赛听写不合格的学生人数.18.为贯彻落实习总书记关于“传承和弘扬中华优秀传统文化”的重要讲话精神,2018年5月27日我市举办了第二届湖南省青少年国学大赛永州复赛,本次比赛全市共有近200所学校4.6万名学生参加.经各校推荐报名、县区初赛选拔、市区淘汰赛的层层选拔,推选出优秀的学生参加全省的总决赛,下面是某县初赛时选手成绩的统计图表(部分信息未给出).1.A2.C3.D4.B5.D6.D7.B8.A9.A11.1512.0.313.8014.50人15. 20 0.3125.16.(1)12、6;(2)72;(3)260个17.(1)30 20% (2)72;(3)48218. 【详解】(1)解:由表可知:105120x ≤<的频数和频率分别为15、0.3 ∴本次调查的人数为:150.350÷=10500.2m ∴=÷=500.420n =⨯=故答案为0.2,20(2)解:由(1)知,20n =补全完整的频数分布直方图如右图所示;(3)解:成绩不低于120分为优秀,则本次测试的优秀率():0.40.1100+⨯%50=% 答:本次测试的优秀率是50%.。

[数学]-7.4 频数分布表与频数分布直方图(原卷版)

[数学]-7.4 频数分布表与频数分布直方图(原卷版)

7.4 频数分布表与频数分布直方图同步培优讲练综合1.组距:把所有数据分成若干组,每个小组的两个端点之间的距离(组内数据的取值范围).2.频数分布表:把各个组别中相应的频数分布用表格的形式表示出来,所得表格就是频数分布表.频数分布表能清楚地反映一组数据的大小分布情况.将一批数据分组,一般数据越多,分的组也越多.当数据在100个以内时,按照数据的多少,常分成5~12组.在分组时,要灵活确定组距,使所分组数合适,一般组数为的整数部分+1.组距(2)制作频数分布表的一般步骤:①计算最大值与最小值的差;②决定组距和组数;③确定分点;④列频数分布表.3.频数分布直方图根据频数分布表,用横轴表示各分组数据、纵轴表示各组数据的频数,绘制条形统计图.这样的条形统计图,直观地呈现了频数的分布特征和变化规律,称为频数分布直方图.4.画频数分布直方图的步骤(1)计算最大值与最小值的差;(2)决定组距与组数;(3)列频数分布表;(4)画频数分布直方图.5. 频数分布直方图与条形图的联系与区别(1)联系:它们都是用矩形来表示数据分布情况的;当矩形的宽度相等时,都是用矩形的高来表示数据分布情况的;频数分布直方图是特殊的条形统计图.(2)区别:①由于分组数据具有连续性,频数分布直方图中各“条形”之间通常是连续排列,中间没有间隙,而条形图中各“条形”是分开排列的,中间有一定的间隙;②条形统计图用横向指标表示考察对象的类别,用纵向指标表示不同对象的数量. 频数分布直方图横向指标表示考察对象数据的变化范围,用纵向指标表示相应范围内数据的频数.一、组距【例1】一个样本最大值为143,最小值为50,取组距为10,则可以分成 组.【例2】一组数据的最大值与最小值的差为2.8 cm,若取组距为0.4 cm,应将该数据分为 组.二、 频数分布直方图【例1】某校为了解学生参与“凤城悦读”的情况,随机抽取了50名学生,并统计他们平均每天的课外阅读时间t (单位:)min ,然后利用所得数据绘制成如图不完整的统计图表: 课外阅读时间频数分布表:根据图表中提供的信息,回答下列问题: (1)a = ,b = ; (2)将频数分布直方图补充完整;(3)若全校有1200名学生,估计该校有多少名学生平均每天的课外阅读时间不少于50min ?【例2】小文同学统计了他所在小区部分居民每天微信阅读的时间,绘制了直方图.得出了如下结论:①样本中每天阅读微信的时间没人超过1小时,由此可以断定这个小区的居民每天阅读微信时间超过1小时的很少;②样本中每天微信阅读不足20分钟的人数大约占16%;③选取样本的样本容量是60;④估计所有居民每天微信阅读35分钟以上的人数大约占总居民数的一半左右.其中正确的是()A.①②③B.①②④C.①③④D.②③④【例3】为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使50%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是()①每人乘坐地铁的月均花费最集中的区域在80~100元范围内;②每人乘坐地铁的月均花费的平均数范围是40~60元范围内;③每人乘坐地铁的月均花费的中位数在60~100元范围内;④乘坐地铁的月均花费达到80元以上的人可以享受折扣.A.①②④B.①③④C.③④D.①②三、综合应用(与条形统计图、扇形图的结合)【例1】为了了解春节晚会群众喜爱节目类型(“歌舞类”、“语言类”、“戏曲类”、“其他”)情况,对某地区的部分群众的喜爱节目类型做了调查,其中每人只能填选一项,现根据调查情况绘制了如图直方图和扇形统计图.请根据图中信息解答下列问题:(1)此次调查中一共调查了多少人?(2)求所调查的群众中,喜爱“戏曲”的人数,并补全直方图的空缺部分;(3)若该地区共有人口360万人,估计该地区喜爱“语言类”约有多少人.【例2】某校为了解九年级学生休息日时每天学习的时长情况,随机抽取了n名九年级学生进行调查,据调查每名学生休息日时每天学习时长都少于5小时.该校将所收集的数据分组整理,绘制了如图所示的频数分布直方图和扇形统计图.根据图中信息,解答下列问题:(1)在这次调查活动中,采取的调查方式是.(填写“全面调查”或“抽样调查”)(2)求n的值.(3)若该校九年级共有450名学生,请估计该校休息日时每天学习时长在3≤t<4范围的学生人数.3≤t<43≤t<4【例3】为了得到一种零件的加工精度,从中抽出40个进行检测,其尺寸数据如下(单位:cm):161 165 164 166 160 158 163162 168 159 147 170 167 151164 159 152 159 149 172 162157 162 169 156 164 163 157163 165 173 159 157 169 165154 153 163 168 169将数据适当分组,并绘制相应的频数分布直方图,图中所反映出这种零件的尺寸在哪个范围内的最多?1.某校组织部分学生参加安全知识竞赛,并将成绩整理后绘制成频数分布直方图,图中从左至右前四组的百分比分别是4%,12%,40%,28%,第五组的频数是8.则:①参加本次竞赛的学生共有100人;②第五组的百分比为16%;③成绩在70-80分的人数最多;④80分以上的学生有14人.其中正确的有( )A.1个B.2个C.3个D.4个2.某校在举办的“优秀小作文”评比活动中,共征集到小作文若干篇,对小作文评比的分数(分数均为整数)整理后,画出如图所示的频数分布直方图.已知从左到右5个小长方形的高的比为1∶3∶7∶6∶3,如果分数大于或等于80分以上的小作文有72篇,那么这次评比中共征集到的小作文有篇.3、三台县某中学“五.四”青年节举行了“班班有歌声”歌咏比赛活动.比赛聘请了10位教师和10位学生担任评委,其中甲班的得分情况如统计表和统计图.老师评委评分统计表:学生评委评分折线统计图师生评委评分频数分布直方图(1)补全频数分布直方图.(2)计分办法规定:老师评委、学生评委的评分各去掉一个最高分、一个最低分,并且按教师、学生各占60%、40%的方法计算各班最后得分,知甲班最后得分94.4分,试求统计表中的x.4、扬州市“五个一百工程”在各校普遍开展,为了了解某校学生每天课外阅读所用的时间情况,从该校学生中随机抽取了部分学生进行问卷调查,并将结果绘制成如下不完整的频数分布表和频数分布直方图.每天课外阅读时间t/h 频数频率0<t≤0.5 240.5<t≤1 36 0.31<t≤1.5 0.41.5<t≤2 12 b合计 a 1根据以上信息,回答下列问题:(1)表中a= ,b= ;(2)请补全频数分布直方图;(3)若该校有学生1200人,试估计该校学生每天课外阅读时间超过1h的人数5、为了掌握八年级数学考试卷的命题质量与难度系数,命题组教师赴外地选取一个水平相当的八年级班级进行预测,将考试成绩的分布情况进行处理分析,制成如下图表(成绩得分均为整数):组别成绩分组频数A 47.5-59.5 2B 59.5-71.5 4C 71.5-83.5 aD 83.5-95.5 10E 95.5-107.5 bF 107.5-120 6图7-4-7根据图表中提供的信息解答下列问题:(1)在频数分布表中,a= ,b= ;在扇形统计图中,m= ,n= .(2)补全频数分布直方图.(3)已知全区八年级共有200个班(平均每班有40人),用这份试卷进行检测,108分及以上为优秀,预计优秀的人数约为人,72分及以上为及格,预计及格的人数约为人.。

人教版数学七年级下册 10 2 直方图同步练习(含解析)

人教版数学七年级下册 10 2 直方图同步练习(含解析)

第十章数据的收集、整理与描述10.2直方图基础过关全练知识点频数分布直方图1.(2022浙江金华中考)观察如图所示的频数分布直方图,其中99.5~124.5这一组的频数为( )20名学生每分钟跳绳次数的频数分布直方图A.5B.6C.7D.82.【新独家原创】“安全重于泰山,生命高于一切!”某校为强化师生安全意识,组织了安全知识竞赛活动.七年级(1)班将安全知识竞赛的成绩整理后绘制成直方图(每一组含前一个边界值,不含后一个边界值),图中从左至右前四组的百分比分别是4%、12%、40%、28%,第五组的频数是8,下列结论错误的是( )A.80分及以上的学生有14名B.该班有50名同学参赛C.成绩在70~80分的人数最多D.第五组的百分比为16%3.【教材变式·P150T1变式】小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了如图所示的频数分布直方图(每一组含前一个边界值,不含后一个边界值).根据图中信息,下列说法错误的是( )A.这栋居民楼共有居民125人B.每周使用手机支付在28~35次的人数最多的人每周使用手机支付在35~42次C.有15D.每周使用手机支付少于21次的有15人4.(2021重庆长寿期末)在一个样本中有50个数据,它们分别落在5个组内,已知第一、二、三、四、五组数据的个数分别为3,9,17,x,6,则第四组的频数为.5.【主题教育·中华优秀传统文化】【新独家原创】汉字是世界上使用时间最久、范围最广、人数最多的文字之一,汉字的创制和应用不仅推进了中华文化的发展,还对世界文化的发展产生了深远的影响.某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有人.6.(2022福建厦门九中期末)新修订的《北京市生活垃圾管理条例》于2020年5月1日正式施行.新修订的分类标准将生活垃圾分为厨余垃圾、有害垃圾、其他垃圾和可回收物四类,为了促使居民更好地了解垃圾分类知识,小明所在的小区随机抽取了50名居民进行线上垃圾分类知识测试.将参加测试的居民的成绩进行收集、整理,绘制成不完整的频数分布表和频数分布直方图.a.线上垃圾分类知识测试成绩频数分布表如下:b.线上垃圾分类知识测试成绩频数分布直方图如下:c.成绩在80≤x<90这一组的成绩分别为80,81,82,83,83,85,86,86,87,88,88,89.根据以上信息,回答下列问题:(1)本次抽样调查的样本容量为,表中m的值为;(2)请补全频数分布直方图;(3)小明居住的社区大约有居民2 000人,若测试成绩为80分及以上为良好,那么估计小明所在的社区成绩良好的人数为; (4)若给测试成绩的前十五名颁发“垃圾分类知识小达人”奖章,已知居民A的得分为88分,请问居民A是否可以领到“垃圾分类知识小达人”奖章?能力提升全练7.(2021上海中考,4,★★☆)商店准备确定一种包装袋来包装大米,经市场调查后,作出如图所示的统计图,请问选择什么样的包装最合适( )A.2 kg/包B.3 kg/包C.4 kg/包D.5 kg/包8.(2020浙江温州中考,14,★☆☆)某养猪场对200头生猪的质量进行统计,得到频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在77.5 kg及以上的生猪有头.9.【主题教育·生命安全与健康】(2022内蒙古包头中考,20,★★☆)2022年3月28日是第27个全国中小学生安全教育日.某校为调查本校学生对安全知识的了解情况,从全校学生中随机抽取若干名学生进行测试,测试后发现所有测试的学生成绩均不低于50分.将全部测试成绩x(单位:分)进行整理后分为五组(50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100),并绘制成如下的频数直方图.测试成绩频数直方图请根据所给信息,解答下列问题:(1)在这次调查中,一共抽取了名学生;(2)若测试成绩为80分及以上为优秀,请你估计全校960名学生对安全知识的了解情况为优秀的学生人数;(3)为了进一步做好学生安全教育工作,根据调查结果,请你为学校提一条合理化建议.素养探究全练10.【数据观念】(2022浙江温州中考)为了解某校400名学生在校午餐所需的时间,抽查了20名学生在校午餐所花的时间,由图示分组信息得:A ,C ,B ,B ,C ,C ,C ,A ,B ,C ,C ,C ,D ,B ,C ,C ,C ,E ,C ,C.某校被抽查的20名学生在校午餐所花时间的频数表(1)请填写频数表,并估计这400名学生午餐所花时间在C 组的人数; (2)在既考虑学生午餐用时需求,又考虑食堂运行效率的情况下,校方准备在15分钟,20分钟,25分钟,30分钟中选择一个作为午餐时间,你认为应选择几分钟为宜?说明理由.分组信息A 组:5<x ≤10B 组:10<x ≤15C 组:15<x ≤20D 组:20<x ≤25E 组:25<x ≤30注:x (分钟)为午餐时间!答案全解全析基础过关全练1.D由直方图可得,99.5~124.5这一组的频数是20-3-5-4=8,故选D.2.A该班参赛的学生有8÷(1-4%-12%-40%-28%)=50(名),故选项B 正确;80分及以上的学生有50×28%+8=22(名),故选项A错误;成绩在70~80分的人数最多,故选项C正确;第五组的百分比为8÷50×100%=16%,故选项D正确.故选A.3.D3+10+15+22+30+25+20=125(人),所以这栋居民楼共有居民125人,选项A正确;从题中频数分布直方图上可以看出,每周使用手机支付在28~35次的人数最多,选项B正确;每周使用手机支付在35~42次的人数所占的比例为25125=15,选项C正确;每周使用手机支付少于21次的有3+10+15=28(人),选项D错误.故选D.4.答案15解析由各组频数之和等于样本容量可得3+9+17+x+6=50,解得x=15,故答案为15.5.答案90解析由直方图可得,成绩为“优良”(80分及以上)的学生有60+30=90(人),故答案为90.6.解析(1)由题意可得,本次抽样调查的样本容量为50,表中m的值为50-3-9-12-8=18.(2)补全的频数分布直方图如图所示.=800(人).(3)2 000×12+850故估计小明所在的社区成绩良好的人数为800.(4)由题意可得,居民A是第10名或者第11名,故居民A可以领到“垃圾分类知识小达人”奖章.能力提升全练7.A由题图知1.5~2.5这组的人数最多,因此取1.5~2.5范围内的数据2(kg/包),故选A.8.答案140解析由频数直方图可得,质量在77.5 kg及以上的生猪有90+30+20=140(头).9.解析(1)4+6+10+12+8=40(名).故答案为40.(2)960×12+8=480(人),40故优秀的学生人数约为480.(3)通过多种形式,提高安全意识,结合校内、校外具体活动,提高避险能力(答案不唯一).素养探究全练10.解析(1)频数表填写如表所示.某校被抽查的20名学生在校午餐所花时间的频数表正正12×400=240(名).20∴估计这400名学生午餐所花时间在C组的有240名.(2)答案不唯一,如:选择20分钟,有18人能按时完成用餐,占比90%,可以鼓励最后两位同学适当加快用餐速度.。

《频数分布表和频数分布直方图》课后练习

《频数分布表和频数分布直方图》课后练习

《频数分布表和频数分布直方图》课后练习一、选择题:1. 一个容量为80的样本最大值为141,最小值为50,取组距为10, 则可以分成( ).A. 10 组B. 9 组C. 8 组D. 7 组2. 已知在一个样本中,50 个数据分别落在5 个组内, 第一、二、三、五组数据频数分别为2、8、15、5,则第四组数据的频数和频率分别为( )A.25 .50%B. 20 。

50%C. 20.40%D.25.40%3. 下列说法正确的是( )A. 样本的数据个数等于频数之和B. 扇形统计图可以告诉我们各部分的数量分别是多少C. 如果一组数据可以用扇形统计图表示,那么它一定可以用频数分布直方图表示•D. 将频数分布直方图中小长方形上面一边的一个端点顺次连结起来, 就可以得到频数折线图.4. 在1000个数据中,用适当的方法抽取50 个作为样本进行统计,频数分布表中54.5~57.5 这一组的频率为0.12,那么估计总体数据落在54.5~57.5 之间的约有( )A. 120 个B. 60 个C. 12 个D. 6 个5. 在样本的频数分布直方图中,有11个小长方形,若中间一个长方形的面积等于其他10个小长方形面积的和的四分之一,且样本数据有160个,则中间一组的频数为( )A. 0.2B. 32C. 0.25D. 40二、填空题:6. 对某班同学的身高进行统计( 单位:厘米),频数分布表中165.5~170.5 这一组学生人数是12,频率为0.25,则该班共有_____ 名同学.7. 为了帮助班上的两名贫困学生解决经济困难,班上的20 名学生捐出了息的零化钱,他们捐款数如下:( 单位:元) 19,20,25,30,24,23,25, 29,27,27,28,28,26,27,21,30,20,19,22,20. 班主任老师准备将这组数据制成频数分布直方图,以表彰他们的爱心. 制图时先计算最大值与最小值的差是___,若取组距为2,则应分成_______ 组; 若第一组的起点定为18.5. 则在26.5~28.5 范围内的频数为三.解答题:8.2003年中考结束后,某市从参加中考的12000名学生中抽取200名学生的数学成绩(考生得分均为整数,满分120分)进行统计,评估数学考试情况,经过整理得到如下频数分布直方图,请回答下列问题:(1)此次抽样调查的样本容量是____ ;(2)补全频数分布直方图⑶若成绩在72分以上(含72分) 为及格,请你评估该市考生数学成绩的及格率与数学考试及格人数。

人教版七年级数学下册第十章数据的收集、整理与描述第二节直方图习题(含答案) (63)

人教版七年级数学下册第十章数据的收集、整理与描述第二节直方图习题(含答案) (63)

人教版七年级数学下册第十章数据的收集、整理与描述第二节直方图复习试题(含答案)某校未为了解学生每天参加体育锻炼的时间情况,随机选取该校的部分学生进行调查.以下是根据调查结果绘制的统计图表的一部分.根据以上信息,解答下列问题:(1)被调查的学生中,每天参加体育锻炼的时间不少于90min的有_____人,这些学生数占被调查总人数的百分比为_____%,每天参加体育锻炼的时间不足60min的有_____人;(2)被调查的学生总数为_____人,统计表中m的值为_____,统计图中n 的值为_____,被调查学生每天参加体育锻炼时间的中位数落在_____组;(3)该校共有960名学生,根据调查结果,估计该校每天参加体育锻炼的时间不少于60min的学生数.【答案】(1)18,15,30(2)120,42,25,C(3)720【解析】【分析】(1)根据统计图表中的信息即可得到结论;(2)根据统计图表中的信息列式计算即可;(3)根据题意列式计算即可得到结论.【详解】解:(1)被调查的学生中,每天参加体育锻炼的时间不少于90min的有18人,这些学生数占被调查总人数的百分比为15%,每天参加体育锻炼的时间不足60min的有12+18=30人;故答案为18,15,30;(2)被调查的学生总数为18÷15%=120人,统计表中m的值为120﹣12﹣18﹣30﹣18=42,统计图中n的值为×100%×100=25,被调查学生每天参加体育锻炼时间的中位数落在C组;故答案为120,42,25,C;(3)960×=720,答:估计该校每天参加体育锻炼的时间不少于60min的学生数为720人.【点睛】本题考查了频(数)率分布直方图:频率分布表列出的是在各个不同区间内取值的频率,频率分布直方图是用小长方形面积的大小来表示在各个区间内取值的频率.直角坐标系中的纵轴表示频率与组距的比值,即小长方形面积=组距×频数组距=频率.②各组频率的和等于1,即所有长方形面积的和等于1.也考查了用样本估计总体.32.为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?(4)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.【答案】(1)12;(2)补充频数分布直方图见解析; (3)本次测试的优秀率是0.44;(4)小宇与小强两名男同学分在同一组的概率是16.【解析】试题分析:(1)用总人数减去第1、2、3、5组的人数,即可求出a 的值; (2)根据(1)得出的a 的值,补全统计图;(3)用成绩不低于40分的频数乘以总数,即可得出本次测试的优秀率; (4)用A 表示小宇,B 表示小强,C 、D 表示其他两名同学,画出树状图,再根据概率公式列式计算即可.试题解析:(1)表中a 的值是:a=50-4-8-16-10=12; (2)根据题意画图如下:(3)本次测试的优秀率是12100.4450+=.答:本次测试的优秀率是0.44;(4)用A表示小宇,B表示小强,C、D表示其他两名同学,根据题意画树状图如下:共有12种情况,小宇与小强两名男同学分在同一组的情况有4种,则小宇与小强两名男同学分在同一组的概率是41.123考点:1.频数(率)分布直方图;2.频数(率)分布表;3.列表法与树状图法.33.为积极创建全国文明城市,某市对某路口的行人交通违章情况进行了20天的调查,将所得数据绘制成如下统计图(图2不完整):请根据所给信息,解答下列问题:(1)第7天,这一路口的行人交通违章次数是多少次;这20天中,行人交通违章6次的有多少天;(2)请把图2中的频数直方图补充完整;(温馨提示:请画在答题卷相对应的图上)(3)通过宣传教育后,行人的交通违章次数明显减少.经对这一路口的再次调查发现,平均每天的行人交通违章次数比第一次调查时减少了4次,求通过宣传教育后,这一路口平均每天还出现多少次行人的交通违章.【答案】(1)8,5;(2)图像见解析;(3)3次. 【解析】 【分析】(1)直接根据折线统计图可读出数据; (2)求出8次的天数,补全图形即可;(3)求出这20天的平均数,然后再算出交通违章次数即可. 【详解】解:(1)第7天,这一路口的行人交通违章次数是8次; 这20天中,行人交通违章6次的有5天; (2)补全的频数直方图如图所示:(3)第一次调查,平均每天行人的交通违章次数为:536574859320⨯+⨯+⨯+⨯+⨯=7(次)∵7-4=3(次)∵通过宣传教育后,这一路口平均每天还出现3次行人的交通违章. 【点睛】本题考查折线统计图,频数分布直方图.34.现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):请根据以上信息,解答下列问题:(1)写出的值并补全频数分布直方图;(2)本市约有名教师,用调查的样本数据估计日行走步数超过步(包含步)的教师有多少名?(3)若在名被调查的教师中,选取日行走步数超过步(包含步的两名教师与大家分享心得,求被选取的两名教师恰好都在步(包含步)以上的概率.【答案】(1)0.16,0.24,10,2;补图见解析;(2)11340;(3)【解析】试题分析:(1)根据频率=频数÷总数可得答案;(2)用样本中超过12000步(包含12000步)的频率之和乘以总人数可得答案;(3)画树状图列出所有等可能结果,根据概率公式求解可得.试题解析:(1)a=8÷50=0.16,b=12÷50=0.24,c=50×0.2=10,d=50×0.04=2,补全频数分布直方图如下:(2)37800×(0.2+0.06+0.04)=11340,答:估计日行走步数超过12000步(包含12000步)的教师有11340名;(3)设16000≤x<20000的3名教师分别为A、B、C,20000≤x<24000的2名教师分别为X、Y,画树状图如下:由树状图可知,被选取的两名教师恰好都在20000步(包含20000步)以上的概率为.考点:列表法与树状图法;用样本估计总体;频数(率)分布表;频数(率)分布直方图.35.养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)【答案】(1)作图见解析;(2)C;(3)1020.【解析】试题分析:(1)先根据A区间人数及其百分比求得总人数,再根据各区间人数之和等于总人数、百分比之和为1求得C区间人数及D区间百分比可得答案;(2)根据中位数的定义求解可得;(3)利用样本估计总体思想求解可得.试题解析:(1)本次调查的总人数为10÷5%=200,则20~30分钟的人数为200×65%=130(人),D项目的百分比为1﹣(5%+10%+65%)=20%,补全图形如下:(2)由于共有200个数据,其中位数是第100、101个数据的平均数,则其中位数位于C区间内,故答案为:C;(3)1200×(65%+20%)=1020(人).答:估计这个年级学生中约有1020人一天早锻炼的时间不少于20分钟.考点:频数(率)分布直方图;用样本估计总体;扇形统计图;中位数.36.随若移动终端设备的升级换代,手机已经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况(选项:A .和同学亲友聊天;B.学习;C.购物;D.游戏;E.其它),端午节后某中学在全校范围内随机抽取了若干名学生进行调査,得到如下图表(部分信息未给出):根据以上信息解答下列问题:(1)这次被调查的学生有多少人?(2)求表中m,n,p的值,并补全条形统计图;(3)若该中学约有名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?并根据以上调査结果,就中学生如何合理使用手机给出你的一条建议.【答案】(1)50人;(2)0.2;10;20.补图见解析;(3)400人.【解析】【分析】【详解】(1)从C可以看出:5÷0.1=50(人)答:这次被调查的学生有50人;=0.2,n=0.2×50=10,p=0.4×50=20(2)m=1050补全图形如图所示:(3)800×(0.1+0.4)=800×0.5=400(人)答:全校学生中利用手机购物或玩游戏的共有400人建议:中学生使用手机要多用于学习.考点:频数、频率、统计图实际应用37.为了解某个某个季度的气温情况,用适当的抽样方法从该地这个季度中抽取30天,对每天的最高气温(单位:)进行调查,并将所得的数据按照,,,,分成五组,得到如图频率分布直方图.(1)求这30天最高气温的平均数和中位数(各组的实际数据用该组的组中值代表);(2)每月按30天计算,各组的实际数据用该组的组中值代表,估计该地这个季度中最高气温超过(1)中平均数的天数;(3)如果从最高气温不低于的两组内随机选取两天,请你直接写出这两天都在气温最高一组内的概率.【答案】(1)这30天最高气温的平均数为20.4℃;中位数为22℃;(2)该地这个季度中最高气温超过(1)中平均数的天数为48天;(3)这两天都在气温最高一组内的概率为.【解析】试题分析:(1)根据30天的最高气温总和除以总天数,即可得到这30天最高气温的平均数,再根据第15和16个数据的位置,判断中位数;(2)根据30天中,最高气温超过(1)中平均数的天数,即可估计这个季度中最高气温超过(1)中平均数的天数;(3)从6天中任选2天,共有15种等可能的结果,其中两天都在气温最高一组内的情况有6种,据此可得这两天都在气温最高一组内的概率.试题解析:(1)这30天最高气温的平均数为:=20.4℃;℃中位数落在第三组内,℃中位数为22℃;(2)℃30天中,最高气温超过(1)中平均数的天数为16天,℃该地这个季度中最高气温超过(1)中平均数的天数为×90=48(天);(3)从6天中任选2天,共有15种等可能的结果,其中两天都在气温最高一组内的情况有6种,故这两天都在气温最高一组内的概率为=.考点:1.列表法与树状图法;2.用样本估计总体;3.频数(率)分布直方图;4.加权平均数;5.中位数.38.为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动,学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:请根据图表信息回答下列问题:(1)频数分布表中的a= ,b= ;(2)将频数分布直方图补充完整;(3)学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,请你估计该校2000名学生中评为“阅读之星”的有多少人?【答案】(1)25;0.10;(2)补图见解析;(3)200人.【解析】【分析】(1)由阅读时间为0<t≤2的频数除以频率求出总人数,确定出a与b的值即可;(2)补全条形统计图即可;(3)由阅读时间在8小时以上的百分比乘以2000即可得到结果.【详解】解:(1)根据题意得:2÷0.04=50(人),则a=50﹣(2+3+15+5)=25;b=5÷50=0.10;故答案为25;0.10;(2)阅读时间为6<t≤8的学生有25人,补全条形统计图,如图所示:(3)根据题意得:2000×0.10=200(人),则该校2000名学生中评为“阅读之星”的有200人.【点睛】此题考查了频率(数)分布表,条形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.39.随着社会的发展,私家车变得越来越普及,使用节能低油耗汽车,对环保有着非常积极的意义,某市有关部门对本市的某一型号的若干辆汽车,进行了一项油耗抽样实验:即在同一条件下,被抽样的该型号汽车,在油耗1L的情况下,所行驶的路程(单位:km)进行统计分析,结果如图所示:(注:记A为12~12.5,B为12.5~13,C为13~13.5,D为13.5~14,E为14~14.5)请依据统计结果回答以下问题:(1)试求进行该试验的车辆数;(2)请补全频数分布直方图;(3)若该市有这种型号的汽车约900辆(不考虑其他因素),请利用上述统计数据初步预测,该市约有多少辆该型号的汽车,在耗油1L的情况下可以行驶13km以上?【答案】(1)30;(2)作图见解析;(3)660.【解析】试题分析:(1)根据C所占的百分比以及频数,即可得到进行该试验的车辆数;(2)根据B的百分比,计算得到B的频数,进而得到D的频数,据此补全频数分布直方图;(3)根据C,D,E所占的百分比之和乘上该市这种型号的汽车的总数,即可得到结果.试题解析:(1)进行该试验的车辆数为:9÷30%=30(辆);(2)B:20%×30=6(辆),D:30﹣2﹣6﹣9﹣4=9(辆),补全频数分布直方图如下:(3)900×=660(辆).答:该市约有660辆该型号的汽车,在耗油1L的情况下可以行驶13km以上.考点:频数(率)分布直方图;用样本估计总体;扇形统计图.40.某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了如下不完整的统计图表.身高分组频数频率152≤x<155 3 0.06155≤x<158 7 0.14158≤x<161 m 0.28161≤x<164 13 n164≤x<167 9 0.18167≤x<170 3 0.06170≤x<173 1 0.02根据以上统计图表完成下列问题:(1)统计表中m= ,n= ,并将频数分布直方图补充完整;(2)在这次测量中两班男生身高的中位数在:范围内;(3)在身高≥167cm的4人中,甲、乙两班各有2人,现从4人中随机推选2人补充到学校国旗护卫队中,请用列表或画树状图的方法求出这两人都来自相同班级的概率.【答案】(1) 14,0.26.补图见解析;(2) 161≤x<164.(3).【解析】试题分析:(1)设总人数为x人,则有=0.06,解得x=50,再根据频率公式求出m,n.画出直方图即可;(2)根据中位数的定义即可判断;(3)画出树状图即可解决问题;试题解析:(1)设总人数为x人,则有=0.06,解得x=50,℃m=50×0.28=14,n==0.26.频数分布直方图:(2)观察表格可知中位数在161≤x<164内,(3)将甲、乙两班的学生分别记为甲1、甲2、乙1、乙2树状图如图所示:所以P(两学生来自同一所班级)=.考点:列表法与树状图法;频数(率)分布表;频数(率)分布直方图;中位数.。

频数分布表和频数分布直方图

频数分布表和频数分布直方图

在列频数分布表时,如果组距为2,
那么应分成___组,32.5~34.5这组的频数为_____
2、对某班同学的身高进行统计(单位:厘 米),频数分布表中165.5~170.5这一组学 生人数是12,频率是0.25,则该班共有____名 学生.
随堂练习
江涛同学统计了他家10月份的长途电话清单,并按通话 时间画出直方图: 通话次数 25 25
扇形统计图的优点是什么? 什么是频数?
某班一次数学测验成绩如下:
63 84 91 53 69 81 61 69 91 78 75 81
81 67 76 81 79 94 61 69 89 70 70 87
88 86 90 88 85 67 71 82 87 75 53 65 74 77 87 95
(2)通话时间不足10分钟的有多少次?
(3)哪个时间范围的通话最多?哪个时间范围的通话少?
3、 2003年中考结束后,某市从参加中考的12000名 学生中抽取200名学生的数学成绩(考生得分均为整数, 满分120分)进行统计,评估数学考试情况,经过整理 得到如下频数分布直方图, 60 学生人数 60 请回答下列问题: 50 (1)此次抽样调查 40 的样本容量是_____
视力 3.95~4.25
4.25~4.55
频数 2
频率 0.04
6
23
18
0.12
0.46 0.36
4.55~4.85 4.85~5.15
5.15~5.45
合计
1
50
0.02
1.00
(1)、请你把上表补充完整; (2)、请你根据频数分布表,画出频数分布直方图
如果视力在4.85以下就属于不正常范围,
如何制作频数分布表?

人教七年级数学下册-直方图(附习题)

人教七年级数学下册-直方图(附习题)

频数
组距
组距
等距分组时,各小长方 形的面积与高的比是常数.
频数的大小 身高
画等距分组的频数分布直方图时,为了画 图与看图的方便、通常直接用小长方形的高表 示频数.
频数 思 考
通过频数分布直方图,你能发 现数据的分布有什么规律吗?
思考
对“问题”中的数据,如果取组距为 2 cm,那么数据应分成几组?如何选出需 要的 40 名同学?如果取组距为 4 cm 呢? 结合 5 种不同分组选出需要的 40 名同学 的情况,说明哪种分组最合适.
(4)
(5)这个班每分钟跳 绳次数在100-120的学 生最多(还有很多结 论,同学自己观察).
4. 一个面粉批发商统计了前 48 个星期的销售量 (单位:t):
24.4 19.1 22.7 20.4 21.0 21.6 22.8 20.9 21.8 18.6 24.3 20.5 19.7 23.5 21.6 19.8 20.3 22.4 20.2 22.3 21.9 22.3 21.4 19.2 23.5 20.5 22.1 22.7 23.2 21.7 21.1 23.1 23.4 23.3 21.0 24.1 18.5 21.5 24.4 22.6 21.0 20.0 20.7 21.5 19.8 19.1 19.1 22.4
4
180≤ x< 200
1
次数
60≤ x<
80
80≤x <100
100≤ x<Hale Waihona Puke 120120≤ x<
140
140≤ x<
160
160≤ x<
180
180≤ x<
200
频数 2 4 21 13 8
4
1

(完整)频数分布表和频数分布图

(完整)频数分布表和频数分布图

频数分布表与频数分布图频数是指某一随机事件在n次试验中出现的次数。

各种随机事件在n次试验中出现的次数分布就称为频数分布。

对一批数据,将其频数分布用表格的形式表示出来就构成了频数分布表。

(1)编制频数分布表的步骤编制频数分布表是数据整理的基本方法,下面我们结合一个实例来说明频数分布表的编制步骤。

例1.一次物理测验之后,某班48位同学的成绩如下.86 77 63 78 92 72 66 87 75 83 74 47 83 81 76 82 97 69 82 88 7167 65 75 70 82 77 86 60 93 71 80 76 78 57 95 78 64 79 82 68 7473 84 76 79 86 68;根据这一成绩编制频数分布表,其具体步骤是:①求全距(用R表示)。

全距是原始数据中的最大值与最小值之差,即R=max{xi}-min{xi}。

式中R是全距,max{xi}为这批数据中的最大数,min{xi}为这批数据中的最小数.在本例中,max{xi}=97,min{xi}=47,因此R=97—47=50.②定组数(用K表示)。

根据全距决定组数(K)。

组数就是对这批数据分组的个数。

一般而言,组数以10组为宜,多至20组,少至5组。

若组数太多,便会失去实行分组化繁为简的作用;若组数太少,又会引起计算结果的失真。

组数与数据的个数有关,若数据多时,要分10组以上;数据少时,可分5—10组。

③定组距(用i表示)。

组距就是每一个组内包含的间距,即组距(i)是指每个小组的组上限(即组的终点值)与组下限(即组的起点值)之间的距离.显然,在一批数据中,组距一般是相同的.组数与组距有关,组距越小,则组数越多;组距越大,则组数越少.根据上面的讨论,我们得到全距R、组距i、组数K三者之间的关系即i=或K=根据上式,由全距R、组距i决定组数时,将全距R除以组距后取整数即得组数i。

在本例中,全距R=50,若取组距i=5,则组数K=10.④列组限。

直方图练习题

直方图练习题

直方图练习题直方图是一种常用的统计图表,它用矩形条表示数据的频数或频率分布。

通过直方图,我们可以直观地了解数据的分布情况。

本文将通过几个练习题来帮助读者提高直方图的解读和绘制的能力。

练习题一:下面是某班级学生的考试成绩分布情况,请根据这些数据绘制出直方图。

分数区间频数60-70 470-80 880-90 1290-100 6解答:为了绘制直方图,我们需要将横轴分为不同的分数区间,并且每个区间的宽度一致。

然后,根据频数绘制相应高度的矩形。

首先,我们将横轴分为四个等宽的区间:60-70、70-80、80-90和90-100。

然后,根据频数绘制矩形。

分数区间60-70对应的频数为4,因此绘制4个高度相同的矩形;分数区间70-80对应的频数为8,绘制8个高度相同的矩形;分数区间80-90对应的频数为12,绘制12个高度相同的矩形;分数区间90-100对应的频数为6,绘制6个高度相同的矩形。

练习题二:某商店连续7天的销售额如下,请根据这些数据绘制出直方图。

星期一:4000元星期二:3000元星期三:5000元星期四:6000元星期五:2000元星期六:3500元星期日:4500元解答:为了绘制直方图,我们需要将横轴标记为七个星期几,并以相同的宽度绘制矩形。

首先,我们将横轴标记为星期一至星期日。

然后,根据销售额数据绘制相应高度的矩形。

星期一的销售额为4000元,绘制一个高度为4000的矩形;星期二的销售额为3000元,绘制一个高度为3000的矩形;星期三的销售额为5000元,绘制一个高度为5000的矩形;星期四的销售额为6000元,绘制一个高度为6000的矩形;星期五的销售额为2000元,绘制一个高度为2000的矩形;星期六的销售额为3500元,绘制一个高度为3500的矩形;星期日的销售额为4500元,绘制一个高度为4500的矩形。

练习题三:一份调查显示了某城市不同年龄段人群的就业率分布情况,请根据这些数据绘制出直方图。

七年级数学(下)第十章《直方图》练习题含答案

七年级数学(下)第十章《直方图》练习题含答案

七年级数学(下)第十章《直方图》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.在频数分布直方图中A.横轴必须从0开始,纵轴不受这个限制B.纵轴必须从0开始,横轴不受这个限制C.横轴与纵轴都必须从0开始D.横轴与纵轴都不必从0开始【答案】B【解析】由于在频数分布直方图中,小长方形面积=组距×频数可知,纵轴必须从0开始,横轴不受这个限制,故选B.2.绘制频数分布直方图时,各小长方形面积占全体小长方形总面积的百分比刚好等于相应各组的A.组距B.平均值C.频数D.频率【答案】D3.为了绘制一批数据的频率分布直方图,首先要算出这批数据的变化范围,数据的变化范围是指数据的A.最大值B.最小值C.最大值与最小值的差D.个数【答案】C【解析】根据频率直方图的是将数据将参量的数值范围等分为若干区间,统计该参量在各个区间上出现的频率,并用矩形条的长度表示频率的大小.即是按照数据的大小按序排列,故选C.4.小杰调查了本班同学体重情况,画出了频数分布直方图,那么下列结论不正确的是A.全班总人数为45人B.体重在50千克~55千克的人数最多C.最大值与最小值的差为25 D.体重在60千克~65千克的人数占全班总人数的1 9【答案】C5.有40个数据,其中最大值为35,最小值为14,若取组距为4,则应该分的组数是A.4 B.5 C.6 D.7【答案】C【解析】∵最大值为35,最小值为14,∴在样本数据中最大值与最小值的差为35-14=21,又∵组距为4,∴应该分的组数=21÷4=5.25,∴应该分成6组,故选C.二、填空题:请将答案填在题中横线上.6.如图,一项统计数据的频数分布直方图中,如果直方图关于第三组的小长方形呈轴对称图形(坐标轴忽略不计),那么,落在110~130这一组中的频数是__________.【答案】300【解析】如果直方图关于第三组的小长方形呈轴对称图形,则110~130这一组与第二组频数应相等,故答案为:300.7.在1000个数据中,用适当的方法抽取50个作为样本进行统计.在频数分布表中,54.5~57.5这一组的频率为0.12,那么这1000个数据中落在54.5~57.5之间的数据约有__________个.【答案】120【解析】1000×0.12=120,故答案为:120.三、解答题:解答应写出文字说明、证明过程或演算步骤.8.为增强学生体质,各学校普遍开展了阳光体育活动.某校为了了解全校1000名学生每周课外体育活动时间的情况,随机调查了其中的50名学生,对这50名学生每周课外体育活动时间x(单位:小时)进行了统计,根据所得数据绘制了一幅不完整的统计图,并知道每周课外体育活动时间在6≤x <8的学生人数占24%.根据以上信息及统计图解答下列问题:(1)本次调查属于__________调查,样本容量是__________;(2)请补全频数分布直方图中空缺的部分;(3)估计全校学生每周课外体育活动时间不少于6小时的人数.【解析】(1)抽样;50.(2)50×24%=12,50-(5+22+12+3)=8,∴抽取的样本中,活动时间在2≤x <4的学生有8名,活动时间在6≤x <8的学生有12名.因此,可补全直方图如图:(3)1000×12350=300(人). 答:估计全校学生每周课外体育活动时间不少于6小时的人数约为300人.。

频率分布直方图大题 -完整获奖版

频率分布直方图大题 -完整获奖版

1、某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50),[50,60),…[80,90),[90,100].(Ⅰ)求频率分布图中a的值;(Ⅱ)估计该企业的职工对该部门评分不低于80的概率;(Ⅲ)从评分在[40,60)的受访职工中,随机抽取2人,求此2人评分都在[40,50)的概率.2、名学生某次数学考试成绩(单位:分)的频数分布直方图如下: (Ⅰ)求频数直方图中a的值;(Ⅱ)估计这20名学生所在班级在本次数学考试中的平均成绩;(Ⅲ)从成绩在[50,70)的学生中人选2人,求这2人的成绩都在[60,70)中的概率.频率/组距成绩(分)3a2a3、为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得数据整理后,画出频率分布直方图如图所示,已知图中从左到右前三个小组的频率分别是,,,第一小组的频数为5.(1)求第四小组的频率;(2)参加这次测试的学生人数是多少?(3)估计在这次测试中,学生跳绳次数的中位数、众数、平均数。

10.在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如图所示),已知从左到右各长方形高的比为2∶3∶4∶6∶4∶1,第三组的频数为12,请解答下列问题:(1)本次活动共有多少件作品参加评比?(2)哪组上交的作品数量最多?有多少件?(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率高?11.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图,图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?18、初三两个班电脑参赛成绩(均为整数)整理后分成五组,绘出频率分布直方图,从左到右一、三、四、五小组的频率分别是, , , ,第二小组的频数是40。

人教版七年级数学下册直方图 典型例题(考点)讲解+练习(含答案).doc

人教版七年级数学下册直方图 典型例题(考点)讲解+练习(含答案).doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】直方图知识讲解责编:康红梅【学习目标】1. 会制作频数分布表,理解频数分布表的意义和作用;2. 会画频数分布直方图,理解频数分布直方图的意义和作用.【要点梳理】要点一、组距、频数与频数分布表的概念1.组距:每个小组的两个端点之间的距离(组内数据的取值范围).2.频数:落在各小组内数据的个数.3.频数分布表:把各个类别及其对应的频数用表格的形式表示出来,所得表格就是频数分布表.要点诠释:(1)求频数分布表的一般步骤:①计算最大值与最小值的差;②决定组距和组数;③确定分点;④列频数分布表;(2)频数之和等于样本容量.(3)频数分布表能清楚、确切地反映一组数据的大小分布情况,将一批数据分组,一般数据越多,分的组也越多,当数据在100个以内时,按数据的多少,常分成5~12组,在分组时,要灵活确定组距,使所分组数合适,一般组数为最大值-最小值组距的整数部分+1.要点二、频数分布直方图1.频数分布直方图:是以小长方形的面积来反映数据落在各个小组内的频数的大小,直方图由横轴、纵轴、条形图三部分组成.(1)横轴:直方图的横轴表示分组的情况(数据分组);(2)纵轴:直方图的纵轴表示频数;(3)条形图:直方图的主体部分是条形图,每一条是立于横轴之上的一个长方形、底边长是这个组的组距,高为频数.2.作直方图的步骤:(1)计算最大值与最小值的差;(2)决定组距与组数;(3)列频数分布表;(4)画频数分布直方图.要点诠释:(1)频数分布直方图简称直方图,它是条形统计图的一种.(2)频数分布直方图用小长方形的面积来表示各组的频数分布,对于等距分组的数据,可以用小长方形的高直接表示频数的分布.【:数据的描述 369923 直方图和条形图的联系与区别:】3.直方图和条形图的联系与区别:(1)联系:它们都是用矩形来表示数据分布情况的;当矩形的宽度相等时,都是用矩形的高来表示数据分布情况的;(2)区别:由于分组数据具有连续性,直方图中各矩形之间通常是连续排列,中间没有空隙,而条形图中各矩形是分开排列,中间有一定的间隔;直方图是用面积表示各组频数的多少,而条形图是用矩形的高表示频数.要点三、频数分布折线图频数分布折线图的制作一般都是在频数分布直方图的基础上得到的,具体步骤是:首先取直方图中每一个长方形上边的中点;然后再在横轴上取两个频数为0的点(直方图最左及最右两边各取一个,它们分别与直方图左右相距半个组距);最后再将这些点用线段依次连接起来,就得到了频数分布折线图.【典型例题】类型一、组距、频数与频数分布表的概念1. (1)对某班50名学生的数学成绩进行统计,90~99分的人数有10名,这一分数段的频数为_____.(2)有60个数据,其中最小值为140,最大值为186,若取组距为5,则应该分的组数是________.【答案】(1)10 (2)10.【解析】解:(1)利用频数的定义进行分析;(2)利用组数的计算方法求解.【总结升华】组数的确定方法是,设数据总数目为n,一般地,当n≤50时,则分为5~8组;当50≤n<100.则分为8~12组较为合适,组数等于最大值与最小值的差除以组距所得商的整数部分加1.举一反三:【变式】(2015•大庆模拟)将100个数据分成①~⑧组,如下表所示:组号①②③④⑤⑥⑦⑧频数 4 8 12 24 18 7 3那么第④组的频率为()A.24 B.26 C.0.24 D.0.26【答案】C.解:根据表格中的数据,得第④组的频数为100﹣(4+8+12+24+18+7+3)=24,其频率为24:100=0.24.类型二、频数分布表或直方图2.(2015•黄石)九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是.【思路点拨】利用合格的人数即50﹣4=46人,除以总人数即可求得.【答案】92%.【解析】解:该班此次成绩达到合格的同学占全班人数的百分比是×100%=92%.故答案是:92%.【总结升华】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.【:数据的描述369923 例1】举一反三:【变式】如图是某校九年级部分男生做俯卧撑的成绩(次数)进行整理后,分成五组,画出的频率分布直方图,已知从左到右前4个小组的频率分别是0.05,0.15,0.25,0.30,第五小组的频数为25,若合格成绩为20,那么此次统计的样本容量和本次测试的合格率分别是().A.100,55% B.100,80% C.75,55% D.75,80%【答案】B.类型三、频数分布折线图3.抽样检查40个工件的长度,收集到如下一组数据(单位:cm):23.26 23.27 23.52 23.51 23.43 23.42 23.54 23.55 23.6623.67 23.31 23.30 23.27 23.28 23.41 23.40 23.55 23.5623.44 23.43 23.38 23.39 23.63 23.64 23.54 23.56 23.4623.44 23.48 23.46 23.50 23.53 23.55 23.46 23.44 23.4523.47 23.49 23.50 23.46试列出这组数据的频数分布表.画出频数分布直方图和频数折线圈.【思路点拨】利用频数分布直方图画频数折线图时,折线图的两个端点要与横轴相交,其方法是在直方图的左右两边各延伸一个假想组,并将频数折线两端连接到轴两端假想组的组中点,就形成了频数折线图.【答案与解析】解:列频数分布表如下:根据上表,画出频数分布直方图;连接各小长方形上面一条边的中点及横轴上距直方图左右相距半个组距的两个频数为0的点得到频数折线图(如图所示).【总结升华】本例分组采用了“每组端点比数据多一位小数”,即第一组的起点比数据的最小值再小一点的方法.体会这种分组方法的优势,对我们今后的学习很有帮助.类型四、综合应用4. 低碳发展是今年深圳市政府工作报告提出的发展理念,近期,某区与某技术支持单位合作,组织策划了该区“低碳先锋行动”,开展低碳测量和排行活动,根据调查数据制作了频数分布直方图(每组均含最小值,不含有最大值)和扇形统计图,下图中从左到右各长方形的高度之比为2:8:9:7:3:1.(1)已知碳排放值5≤x<7(千克/平方米·月)的单位有16个,则此次行动共调查了________个单位;(2)在图②中,碳排放值5≤x<7(千克/平方米·月)部分的圆心角为_________度;(3)小明把图①中碳排放值1≤x<2的都看成1.5,碳排放值2≤x<3的都看成2.5,依此类推,若每个被检查单位的建筑面积均为10000平方米,则按小明的办法,可估算碳排放值x≥4(千克/平方米·月)的被检单位一个月的碳排放总值约为________吨.【思路点拨】(1)先算出碳排放值在5≤x<7范围内所对应的比例,再求一共调查了多少个单位;(2)由碳排放值在5≤x<7范围内所占的比例,可计算出圆心角度数;(3)先计算碳排放值4≤x<5的单位、碳排放值5≤x<6的单位,碳排放值6≤x<7的单位个数,再算出碳排放值x≥4(千克/平方米·月)的被检单位一个月的碳排放总值.【答案与解析】解:(1)16÷430=120(个),故填120;(2)4÷30×360°=48°,故填48;(3)碳排放值x≥4(千克/平方米·月)的被检单位是第4,5,6组,分别有28个、12个、4个单位,10000×(28×4.5+12×5.5+4×6.5)÷1000=10×(126+66+26)=2180(吨).所以,碳排放值x≥4(千克/平方米·月)的被检单位一个月的碳排放总值约为2180吨.【总结升华】解答本题的关键是将直方图提供的信息转化为频数分布表.这种“转化”过程对解题大有帮助,值得学习和借鉴.举一反三:【变式】 (山东德州)2011年5月9日至14日,德州市订共有35000余名学生参加中考体育测试,为了了解九年级男生立定跳远的成绩,从某校随机抽取了50名男生的测试成绩,根据测试评分标准,将他们的得分按优秀、良好、及格、不及格(分别用A、B、C、D表示)四个等级进行统计,并绘制成下面的扇形图和统计表:请你根据以上图表提供的信息,解答下列问题:(1)m=________,n=________,x=________,y=________;(2)在扇形图中,C等级所对应的圆心角是________度;(3)如果该校九年级共有500名男生参加了立定跳远测试,那么请你估计这些男生成绩等级达到优秀和良好的共有多少人?【答案】解:(1)20,8,0.4,0.16; (2)57.6;(3)由上表可知达到优秀和良好的共有19+20=39(人),500×3939050(人).初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。

人教版七年级下知识点试题精选-频数(率)分布表

人教版七年级下知识点试题精选-频数(率)分布表

七年级下册频数(率)分布表一.选择题(共20小题)1.为了了解小学生的素质教育情况,某县在全县各小学共抽取了200名五年级学生进行素质教育调查,将所得数据整理后,画出频率分布直方图(如图).已知图中从左到右前4个小组的频率分别为0.04,0.12,0.16,0.4,则第5小组的频数为()A.62 B.54 C.58 D.562.一个样本的样本容量是90,极差是70,分组时取组距为10,则应分成()A.10组B.9组 C.8组 D.7组3.某校为了了解学生在校午餐所需的时间,抽查了20名同学在校午餐所需的时间,获得如下数据(单位:分):10,12,15,10,16,18,19,18,20,34,22,25,20,18,18,20,15,16,21,16.若将这些数据分为6组,则组距是()A.4分 B.5分 C.6分 D.7分4.某校为了解初三年级全体男生的身体发育情况,从中对20名男生的身高进行了测量(测量结果均为整数,单位:cm),将所得数据整理后,列出频数分布表如图所示,那么下面三个结论中正确的是()①这次抽样分析的样本是20名学生;②频数分布表中的数据a=0.30;③身高在167cm以上(包括167cm)的男生有9人.A.①②③B.②③C.①③D.①②5.为了了解某校学生的身体发育状况,抽查了该校100名高中男生的体重情况,根据所得画出样本的频率分布直方图(如图所示).根据此图,估计该校2000名高中男生中,体重大于70.5kg的人数为()A.300 B.360 C.420 D.4506.为了绘制一批数据的频率分布直方图,首先要算出这批数据的变化范围,数据的变化范围是指数据的()A.最大值B.最小值C.最大值与最小值的差D.个数7.如图,表示某地区各年龄层人口的累积百分率,其资料自0岁开始,每10岁为一组.根据此图,判断下列关于此地居民的叙述,何者正确?()A.可能有100岁的老人B.21~80岁之间的居民占五成以上的比例C.30岁以上的人数比20岁以下的人数少D.居民年龄在40~60岁之间的人口累积百分率是50%8.在频数分布折线图中,各点在横轴和纵轴上对应的数据分别表示()A.组边界,频率B.组边界,频数C.组中值,频率D.组中值,频数9.班主任张老师为了了解学生课堂发言情况,对前一天本班男、女生的发言次数进行了统计,并绘制成如下频数分布折线图(如图).根据图中,发言次数是4次的男生、女生分别有()A.4人,6人B.4人,2人C.2人,4人D.3人,4人10.将某样本数据分析整理后分成8组,且组距为5,画频数分布折线图时,求得某组的组中值恰好为18.则该组是()A.10.5~15.5 B.15.5~20.5 C.20.5~25.5 D.25.5~30.511.有40个数据,其中最大值为35,最小值为12,若取组距为4,则应分为()A.4组 B.5组 C.6组 D.7组12.如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是()A.5~10元B.10~15元C.15~20元D.20~25元13.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:则通话时间不超过15min的频率为()A.0.1 B.0.4 C.0.5 D.0.914.体育老师对八年级(2)班学生“你最喜欢的体育项目是什么?(只写一项)”的问题进行了调查,把所得数据绘制成如图所示的折线统计图.由图可知,最喜欢篮球的学生的频率是()A.16% B.24% C.30% D.40%15.考察50名学生的年龄,列频数分布表时,这些学生的年龄落在5个小组中,第一、二、三、五组的数据个数分别是2,8,15,5,则第四组的频率是()A.20 B.0.4 C.0.6 D.3016.超速行驶是交通事故频发的主要原因之一,交警部门统计某日7:00﹣9:00经过高速公路某测速点的汽车的速度,得到如下频数分布折线图,若该路段汽车限速110km/h,则超速行驶的汽车有()A.20辆B.60辆C.70辆D.80辆17.2015年12月25日,由叙永县委宣传部、叙永县教育局联合举办的“叙永县第二十一届中学生读好书故事演讲比赛”在县青少年宫举行.李老师为了解该县某校学生每周阅读课外书籍的时间,随机抽取并统计了该校40名学生的阅读情况,如表所示,则阅读时间不少于4h的人数占统计人数的()A.12.5% B.40% C.50% D.60%18.为了了解本校八年级学生的体能情况,随机抽查了其中30名学生,测试了1min仰卧起坐次数,并绘制如图所示的频数直方图,请根据图中的信息,计算仰卧起坐次数在25∽30次的百分比是()A.40% B.30% C.20% D.10%19.某次考试中,某班级的数学成绩统计图如下,下列说法错误的是()A.得分在90~100分之间的人数最少B.该班的总人数为40C.及格(≥60分)人数是26D.得分在70~80分之间的人数最多20.频数分布直方图的纵轴表示()A.B.C.D.二.填空题(共20小题)21.为了更好的刻画数据的总体的规律,我们还可以在得到的频数分布直方图上,,得到图.22.画频数分布折线图时,常在直方图两侧的横轴边上,各虚设一个组(组距不变),分别取,并用折线连结.23.一个样本的容量是80,分成若干小组画频数分布直方图,某组对应的频率是0.2,则该组有个数据.24.如图是某校八年级部分同学跳高测试成绩的频数分布折线图(折线图中每一组包括前一个边界值,不包括后一个边界值),从图中可知:频数最大的这组组中值是m;跳高成绩低于1.25m有人.25.已知全班同学他们有的步行,有的骑车,还有的乘车上学,根据已知信息完成下表.26.为了直观衡量各个数据出现的频繁程度,我们可以画或.27.某一频数分布表中,共分5个组,各小组的频数比为2:4:6:5:3,且第三小组的频数为30,则各小组的频数和为.28.在对25个数据进行整理的频数分布表中,各组的频数之和等于,各组的频率之和等于.29.在对1000个数据进行整理的频数分布表中,各组的频数之和等于.30.为了解某校初三年级学生一次数学测试成绩的情况,从近450名九年级学生中,随机抽取50名学生这次数学测试的成绩,通过数据整理,绘制如下统计表(给出部分数据,除[90,100]组外每组数据含最低值,不含最高值):根据上表的信息,估计该校初三年级本次数学测试的优良率(80分及80分以上)约为(填百分数).31.今年重庆市教委重新恢复了将体考成绩纳入联招总成绩这一政策.某中学为了了解该校下届初三学生的体能情况,抽取了若干名学生在单位时间内进行引体向上测试,将所得数据整理后,画出频数分布直方图(如图所示),图中从左到右依次为第1、2、3、4、5组.若次数在5次(含5次)以上为达标,则这次测试的达标率为.32.在30个数据中,最小值是31,最大值为98,若取组距为8,可将这些数据分成组.33.下面的频数分布折线图分别表示我国A市与B市在2014年4月份的日平均气温的情况,记该月A市和B市日平均气温是8℃的天数分别为a天和b天,则a+b=.34.为了解我市某学校“书香校园”的建设情况,检查组在该校随机抽取40名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图的频数直方图(每小组的时间值包含最小值,不包含最大值),根据图中信息估计该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分数约等于.35.初中生的视力状况受到全社会的广泛关注.某市有关部门对全市3万名初中生视力状况进行了一次抽样调查,下面是利用所得的数据绘制的频数分布直方图(长方形的高表示该组人数),根据图中所提供的信息回答下列问题:本次调查共抽测了名学生.在这个问题中的样本指.如果视力在4.9~5.1(含4.9、5.1)均属正常,那么全市有初中生的视力正常.36.频数分布折线图能直观地反映数据的.37.利用频数分布直方图画频数折线图时,若组距为4,第一个小组的范围是138≤x<142,最后一个小组的范围是154≤x<158,则折线上最左边的点的坐标是,最右边的点的坐标是.38.已知一个样本容量为50,在频数分布直方图中,各小长方形的高比为2:3:4:1,那么第二组的频数是.39.对200个数据进行统计,频率分布表中50~60这一组的频率是0.18,那么落在这一组的数据个数为个.40.如图,一次数学测试后,老师将全班学生的成绩整理后绘制成频数分布直方图,若72分及以上成绩为及格,由图得出该班这次测试成绩的及格率是%.三.解答题(共10小题)41.下表是我国一段时间内全国确诊“非典”病例每天新增的人数与天数的频率统计表(按人数分组).(1)填写本统计表中未完成的空格;(2)在统计这段时期中,每天新增的确诊病例人数在80人以下的天数共有多少天?42.为了解九年级女生的身高(单位:cm)情况,某中学对部分九年级女生身高进行了一次测量,所得数据整理后列出了频数分布表,并画了部分频数分布直方图(图、表如图):根据以上图表,回答下列问题:(1)M=,m=,N=,n=;(2)补全频数分布直方图.(3)若九年级有300名女生,则身高在157.5~161.5范围约有多少人?43.某校初一(7)班40个同学每10人一组,每人做10次抛掷两枚硬币的实验,想看看“出现两个正面”的频率是否会逐渐稳定下来,得到了下面40个实验结果.(1)累计每个学生的实验结果,完成下面的“出现两个正面”的频数、频率随抛掷次数变化统计表.(2)按(1)中的统计表绘制频率随着试验次数变化的折线图.44.为了了解初中毕业年级400名学生的视力,某校抽取了一部分学生的视力做为样本,进行数据处理,得到如下频率分布表:(1)请在频率分布表中填写上未完成的数据;(2)若视力不超过4.85的都需要矫正,试估计该校毕业年级400名学生中约有多少名学生的视力需要矫正?45.为了解某校八年级学生每天干家务活的平均时间,小颖同学在该校八年级每班随机调查5名学生,统计这些学生2015年3月每天干家务活的平均时间(单位:min ),绘制成如下统计表(其中A 表示0~10min ;B 表示11~20min ;C 表示21~30min ,时间取整数): (1)统计表中的a= ;b= ;c= .(2)从上表的“频数”、“百分比”两列数据中选择一列,用适当的统计图表示. (3)该校八年级共有240学生,求每天干家务活的平均时间在11~20min 的学生人数.46.为了增强学生的法制观念,学校举办了一次法制知识竞赛.现将全校500名参赛学生的竞赛成绩(得分取整数)进行随机抽样,并绘制出统计得到的频率分布表和频率分布直方图的一部分.(1)补全频率分布表;(2)补全频率分布直方图,图中梯形ABCD的面积是;(3)估计参赛学生中成绩及格(不低于60分)的人数有多少人?47.2010年4月,为迎接玉溪中心城区创建“全国卫生城市”,增强同学们的卫生意识,我区某中学举行了一次“创卫知识竞赛”,共有900名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)进行统计.(1)请你根据所学知识补全表格(2)绘制频数分布直方图.48.2014年1月24日新闻网报道,我国将在2015年全面实行阶梯水价,某市为了节约生活用水,计划制定居民统一用水量标准,然后根据标准,实行阶梯水价.相关部门对居民2013年全年月平均用水量进行调查,得到如下数据:(1)本次调查中月平均用水量超过2吨的居民有多少?月平均用水量不足1吨的居民占所调查居民的百分之多少?(2)整理数据时,如果组距取0.5,应该分几组?(3)当地政府希望让80%左右居民的月均用水量低于制定的月用水量标准,根据上述调查结果,你认为月用水量标准(取整数)定位多少吨较为合适?49.某学校为了了解本校学生采用何种方式上网查找所需要的学习资源,随机抽取部分学生了解情况,并将统计结果绘制成频数分布表及频数分布直方图.上网查找学习资源方式频数分布表(1)频数分布表中a,b的值:a=;b=;(2)补全频数分布直方图;(3)若全校有1000名学生,估计该校利用搜索引擎上网查找学习资源的学生有多少名?50.有大小两个转盘,其中黑色区域都是中心角为90°的扇形,为了探究指针落在黑色区域的频率,甲乙两人分别转动两转盘,记录下表(A:指针落在大转盘的黑色区域频数;B:大转盘中的频率;C:指针落在小转盘的黑色区域频数;D:小转盘中相应频率)(1)将B、D两空格填写完整;(2)分别绘出指针落在大小转盘中黑色区域的频率折线图;(3)比较25次与50次的大小频率之差及200与225次之间大小转盘两频率之差;(4)从(3)中频率之差及折线统计图中的变化趋势,你能总结出什么规律?七年级下册频数(率)分布表参考答案与试题解析一.选择题(共20小题)1.为了了解小学生的素质教育情况,某县在全县各小学共抽取了200名五年级学生进行素质教育调查,将所得数据整理后,画出频率分布直方图(如图).已知图中从左到右前4个小组的频率分别为0.04,0.12,0.16,0.4,则第5小组的频数为()A.62 B.54 C.58 D.56【分析】用整体1减去前4个小组的频率,得出第5小组的频率,再根据总人数,即可得出第5小组的频数.【解答】解:∵前4个小组的频率分别为0.04,0.12,0.16,0.4,∴第5小组的频率是:1﹣0.04﹣0.12﹣0.16﹣0.4=0.28,∵共有200名学生,∴第5小组的频数为200×0.28=56(名);故选:D.【点评】此题考查了频数分布直方图,根据频率=,求出第5小组的频数是本题的关键,解题时要把总频率看做整体1来进行解答.2.一个样本的样本容量是90,极差是70,分组时取组距为10,则应分成()A.10组B.9组 C.8组 D.7组【分析】根据组数=(最大值﹣最小值)÷组距计算,注意小数部分要进位.【解答】解:在样本数据中极差是70,分组时取组距为10,那么由于=7,故可以分成8组.故选C.【点评】本题考查的是组数的计算,属于基础题,只要根据组数的定义“数据分成的组的个数称为组数”来解即可.3.某校为了了解学生在校午餐所需的时间,抽查了20名同学在校午餐所需的时间,获得如下数据(单位:分):10,12,15,10,16,18,19,18,20,34,22,25,20,18,18,20,15,16,21,16.若将这些数据分为6组,则组距是()A.4分 B.5分 C.6分 D.7分【分析】找出20名学生在校午餐所需的时间的最大值与最小值,求出最大值﹣最小值,除以6即可得到组距.【解答】解:根据题意得:(34﹣10)÷6=4(分),则组距为4分.故选A.【点评】此题考查了频数(率)分布表,弄清题意是解本题的关键.4.某校为了解初三年级全体男生的身体发育情况,从中对20名男生的身高进行了测量(测量结果均为整数,单位:cm),将所得数据整理后,列出频数分布表如图所示,那么下面三个结论中正确的是()①这次抽样分析的样本是20名学生;②频数分布表中的数据a=0.30;③身高在167cm以上(包括167cm)的男生有9人.A.①②③B.②③C.①③D.①②【分析】根据频数之和等于总人数,各个小组的频率之和是1可知.【解答】解:由频率分布表知,这次抽样分析的样本是20名学生的身高,故①错误;频率分布表中的数据a=1﹣0.15﹣0.10﹣0.25﹣0.20=0.30,故②正确;身高167cm以上(包括167cm)的男生数应落在166.5﹣171.5段和171.5﹣176.5段内,两段有5+4=9人,故③正确.故选B.【点评】由频率的意义可知,各个小组的频率之和是1,同时每小组的频率=小组的频数÷总人数.5.为了了解某校学生的身体发育状况,抽查了该校100名高中男生的体重情况,根据所得画出样本的频率分布直方图(如图所示).根据此图,估计该校2000名高中男生中,体重大于70.5kg的人数为()A.300 B.360 C.420 D.450【分析】由图可知,体重大于70.5kg的频数共计18人,占到样本的18%,乘以总体2000即可解答.【解答】解:被抽查的该校100名高中男生中,有(0.09×2×100)=18人体重大于70.5kg;由此估计该校2000名高中男生中,体重大于70.5kg的人数为=360人.故选B.【点评】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.6.为了绘制一批数据的频率分布直方图,首先要算出这批数据的变化范围,数据的变化范围是指数据的()A.最大值B.最小值C.最大值与最小值的差D.个数【分析】频率直方图是按照数据从小到大的顺序排列,包括所有的数据,即数据的变化范围是指数据的最大值和最小值的差.【解答】解:根据频率直方图的是将数据将参量的数值范围等分为若干区间,统计该参量在各个区间上出现的频率,并用矩形条的长度表示频率的大小.即是按照数据的大小按序排列,故选C.【点评】本题主要考查频率直方图的定义及学生对其的准备理解.7.如图,表示某地区各年龄层人口的累积百分率,其资料自0岁开始,每10岁为一组.根据此图,判断下列关于此地居民的叙述,何者正确?()A.可能有100岁的老人B.21~80岁之间的居民占五成以上的比例C.30岁以上的人数比20岁以下的人数少D.居民年龄在40~60岁之间的人口累积百分率是50%【分析】根据图象可以看出各年龄段的人口积累百分率,这样可以得到各年龄段的百分率.【解答】解:利用图象可知:累计百分率从90岁以上达到100%,由此得出不可能存在100岁以上的老人,故A不正确;20岁以下的居民已经超过60%,∴21~80岁之间的居民不可能超过五成以上,故B不正确,由以上可得30岁以上的人数,也绝对不可能超过20岁以下的人数,故C正确,由图象可知,在40~60岁之间的人口累积百分率也不可能超过50%,D不正确.故选:C.【点评】此题主要考查了利用图象得到正确信息,体现了数学中的数形结合思想.8.在频数分布折线图中,各点在横轴和纵轴上对应的数据分别表示()A.组边界,频率B.组边界,频数C.组中值,频率D.组中值,频数【分析】根据频数分布折线图中,横轴和纵轴上对应的数据表示的意义作答.【解答】解:在频数分布折线图中,各点在横轴和纵轴上对应的数据分别表示组中值,频数.故选D.【点评】解本题要懂得频率分布直分图的意义,了解频率分布直分图是一种以频数为纵向指标的条形统计图.9.班主任张老师为了了解学生课堂发言情况,对前一天本班男、女生的发言次数进行了统计,并绘制成如下频数分布折线图(如图).根据图中,发言次数是4次的男生、女生分别有()A.4人,6人B.4人,2人C.2人,4人D.3人,4人【分析】根据频数分布折线图,找出发言次数是4次所对应的男女生的人数即可得解.【解答】解:根据图象,发言次数是4次的男生有4人,女生有2人.故选:B.【点评】本题考查读频数分布折线图的能力,根据横坐标发言4次找出纵坐标对应的男女生的人数即可,比较简单.10.将某样本数据分析整理后分成8组,且组距为5,画频数分布折线图时,求得某组的组中值恰好为18.则该组是()A.10.5~15.5 B.15.5~20.5 C.20.5~25.5 D.25.5~30.5【分析】设该组的最小值为x,则最大值为x+5,根据该组的组中值为18列出方程,求解即可.【解答】解:设该组的最小值为x,则最大值为x+5,由题意,得x+x+5=18×2,解得x=15.5,x+5=15.5+5=20.5,即该组是15.5~20.5.故选:B.【点评】本题考查了频数分布折线图,理解组中值的定义是解题的关键.11.有40个数据,其中最大值为35,最小值为12,若取组距为4,则应分为()A.4组 B.5组 C.6组 D.7组【分析】根据组数=(最大值﹣最小值)÷组距计算即可,注意小数部分要进位.【解答】解:∵在样本数据中最大值与最小值的差为35﹣12=23,又∵组距为4,∴组数=23÷4=5.75,∴应该分成6组.故选:C.【点评】本题考查的是组数的计算,属于基础题,只要根据组数的定义“数据分成的组的个数称为组数”来解即可.12.如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是()A.5~10元B.10~15元C.15~20元D.20~25元【分析】根据图形所给出的数据直接找出捐款人数最多的一组即可.【解答】解:根据图形所给出的数据可得:捐款额为15~20元的有20人,人数最多,则捐款人数最多的一组是15﹣20元.故选:C.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.13.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:则通话时间不超过15min的频率为()A.0.1 B.0.4 C.0.5 D.0.9【分析】用不超过15分钟的通话时间除以所有的通话时间即可求得通话时间不超过15分钟的频率.【解答】解:∵不超过15分钟的通话次数为20+16+9=45次,通话总次数为20+16+9+5=50次,∴通话时间不超过15min的频率为=0.9,故选D.【点评】本题考查了频数分布表的知识,解题的关键是了解频率=频数÷样本容量,难度不大.14.体育老师对八年级(2)班学生“你最喜欢的体育项目是什么?(只写一项)”的问题进行了调查,把所得数据绘制成如图所示的折线统计图.由图可知,最喜欢篮球的学生的频率是()A.16% B.24% C.30% D.40%【分析】从图中可知总人数为50人,其中最喜欢篮球的有20人,根据频率的计算公式进行计算即可.【解答】解:读图可知:共有(4+12+6+20+8)=50人,其中最喜欢篮球的有20人,故频率最喜欢篮球的频率=20÷50=0.4.故选:D.【点评】本题考查读频数分布折线图和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,同时考查频率、频数的关系.15.考察50名学生的年龄,列频数分布表时,这些学生的年龄落在5个小组中,第一、二、三、五组的数据个数分别是2,8,15,5,则第四组的频率是()A.20 B.0.4 C.0.6 D.30【分析】根据题意可得:第四小组的频数是50﹣(2+8+15+5)=20,再代入公式即可求得频率.【解答】解:∵第一、二、三、五组的数据个数分别是2,8,15,5,∴第四组的频数是50﹣(2+8+15+5)=20,第四小组的频率为:=0.4.故选:B.【点评】本题是对频率、频数灵活运用的综合考查,各小组频数之和等于数据总和,各小组频率之和等于1.16.超速行驶是交通事故频发的主要原因之一,交警部门统计某日7:00﹣9:00经过高速公路某测速点的汽车的速度,得到如下频数分布折线图,若该路段汽车限速110km/h,则超速行驶的汽车有()A.20辆B.60辆C.70辆D.80辆【分析】根据图中的信息,找到符合条件的数据,再进一步计算即可.【解答】解:根据所给出的折线统计图可得:超过限速110km/h的有:60+20=80(辆).故选D.【点评】本题考查读频数分布折线图的能力和利用统计图获取信息的能力,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.17.2015年12月25日,由叙永县委宣传部、叙永县教育局联合举办的“叙永县第二十一届中学生读好书故事演讲比赛”在县青少年宫举行.李老师为了解该县某校学生每周阅读课外书籍的时间,随机抽取并统计了该校40名学生的阅读情况,如表所示,则阅读时间不少于4h的人数占统计人数的()A.12.5% B.40% C.50% D.60%【分析】用阅读时间不少于4小时的人数除以抽取的学生数即可.【解答】解:∵阅读时间t满足4≤t<6的人数为:40﹣5﹣11﹣4=20(人),∴阅读时间不少于4h的人数占统计人数的百分比为:×100%=60%,故选:D.【点评】此题考查了频数分布表及用样本估计总体的知识,解题的关键是读懂频数分布表,找出课外阅读时间不少于4小时的人数.18.为了了解本校八年级学生的体能情况,随机抽查了其中30名学生,测试了1min仰卧起坐次数,并绘制如图所示的频数直方图,请根据图中的信息,计算仰卧起坐次数在25∽30次的百分比是()A.40% B.30% C.20% D.10%【分析】根据题意和统计图中的数据可以得到仰卧起坐次数在25∽30次的百分比,从而可以解答本题.【解答】解:由题意可得,仰卧起坐次数在25∽30次的百分比是:×100%=40%,故选A.【点评】本题考查频数(率)分布直方图,解答本题的关键是明确题意,求出相应的百分比,利用数形结合的思想解答.19.某次考试中,某班级的数学成绩统计图如下,下列说法错误的是()。

第9章统计专题3 频率分布直方图常考题型专题练习——【含答案】

第9章统计专题3 频率分布直方图常考题型专题练习——【含答案】

1频率分布直方图【知识总结】 1.频率分布直方图(1)纵轴表示频率组距,即小长方形的高=频率组距;(2)小长方形的面积=组距×频率组距=频率;(3)各个小方形的面积总和等于1 . 2.频率分布表的画法第一步:求极差,决定组数和组距,组距=极差组数;第二步:分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间; 第三步:登记频数,计算频率,列出频率分布表. 3. 频率分布直方图中的常见结论(1)众数的估计值为最高矩形的中点对应的横坐标.(2)平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.(3)中位数的估计值的左边和右边的小矩形的面积和是相等的.2【巩固练习】1、随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36. 根据上述数据得到样本的频率分布表如表所示.分组 频数 频率[25,30] 3 0.12(30,35] 5 0.20(35,40] 8 0.32(40,45] n 1 f 1(45,50] n 2 f 2(1)确定样本频率分布表中n 1,n 2,f 1和f 2的值;(2)根据上述频率分布表,画出样本频率分布直方图和频率分布折线图. 【答案】(1) n 1=7,n 2=2,f 1=0.28,f 2=0.08 (2)见解析【解析】(1)由所给数据知,落在区间(40,45]内的有7个,落在(45,50]内的有2个,故1n =7,2n =2,所以f 1=125n =725=0.28,f 2=225n =225=0.08. (2)样本频率分布直方图和频率分布折线图如图所示.32. 为了了解某校高三美术生的身体状况,抽查了部分美术生的体重,将所得数据整理后,作出了如图所示的频率分布直方图.已知图中从左到右的前3个小组的频率之比为1∶3∶5,第2个小组的频数为15,则被抽查的美术生的人数是( )A .35B .48C .60D .75【答案】C【解析】设被抽查的美术生的人数为n ,因为后2个小组的频率之和为(0.0375+0.0125)×5=0.25,所以前3个小组的频率之和为0.75.又前3个小组的频率之比为1∶3∶5,第2个小组的频数为15,所以前3个小组的频数分别为5,15,25,所以n =515250.75++=60.故选:C.3、某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为若低于60分的人数是15人,则该班的学生人数是( )A .B .C .D.【答案】B【解析】根据频率分布直方可知成绩低于60分的有第一、二组数据,在频率分布直方图中,对应矩形的高分别为0.005,0.01,每组数据的组距为20,则成绩低于60分的频率P=(0.005+0.010)×20=0.3.又因为低于60分的人数是15人,所以该班的学生人数是15÷0.3=50.本题选择B选项.4、某校初三年级有400名学生,随机抽查了40名学生测试1分钟仰卧起坐的成绩(单位:次),将数据整理后绘制成如图所示的频率分布直方图.用样本估计总体,下列结论正确的是( )4A.该校初三学生1分钟仰卧起坐的次数的中位数为25B.该校初三学生1分钟仰卧起坐的次数的众数为24C.该校初三学生1分钟仰卧起坐的次数超过30的人数约有80D.该校初三学生1分钟仰卧起坐的次数少于20的人数约为8[解析] 第一组数据的频率为0.02×5=0.1,第二组数据的频率为0.06×5=0.3,第三组数据的频率为0.08×5=0.4,∴中位数在第三组内,设中位数为25+x,则x×0.08=0.5-0.1-0.3=0.1,∴x=1.25,∴中位数为26.25,故A错误;第三组数据所在的矩形最高,第三组数据的中间值为27.5,∴众数为27.5,故B错误;1分钟仰卧起坐的次数超过30的频率为0.2,∴超过30次的人数为400×0.2=80,故C正确;1分钟仰卧起坐的次数少于20的频率为0.1,∴1分钟仰卧起坐的次数少于20的人数为400×0.1=40,故D错误.故选C.[答案] C5、某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表日用[)0,0.1[)0.1,0.2[)0.2,0.3[)0.3,0.4[)0.4,0.5[)0.5,0.6[)0.6,0.756水量频数132 49 26 5使用了节水龙头50天的日用水量频数分布表日用水量[)0,0.1[)0.1,0.2 [)0.2,0.3 [)0.3,0.4 [)0.4,0.5 [)0.5,0.6频数151310165(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:7(2)估计该家庭使用节水龙头后,日用水量小于30.35m 的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)【答案】(1)直方图见解析;(2)0.48;(3)347.45m . 【解析】(1)频率分布直方图如下图所示:(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于30.35m 的频率为0.20.110.1 2.60.120.050.48⨯+⨯+⨯+⨯=;因此该家庭使用节水龙头后日用水量小于30.35m 的概率的估计值为0.48; (3)该家庭未使用节水龙头50天日用水量的平均数为()110.0510.1530.2520.3540.4590.55260.6550.4850x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=. 该家庭使用了节水龙头后50天日用水量的平均数为8()210.0510.1550.25130.35100.45160.5550.3550x =⨯+⨯+⨯+⨯+⨯+⨯=. 估计使用节水龙头后,一年可节省水()()30.480.3536547.45m -⨯=.6、某电视台为宣传本省,随机对本省内1565~岁的人群抽取了n 人,回答问题“本省内著名旅游景点有哪些”统计结果如图表所示(1)分别求出a b x y 、、、的值;(2)从第234、、组回答正确的人中用分层抽样的方法抽取6人,求第234、、组每组各抽取多少人?(3)指出直方图中,这组数据的中位数是多少(取整数值)?【答案】(1)5a =,27b =,0.9x =,0.2y =;(2)2人,3人,1人;(3)42【解析】(1)由已知第4组人数为9250.36=,∴251000.02510n ==⨯,9由频率分布直方图得第一组人数为:1000.011010⨯⨯=,100.55a =⨯=,第二组人数为:1000.021020⨯⨯=,180.920x ==, 第三组人数为:1000.031030⨯⨯=,300.927b =⨯=,第五组人数为:1000.0151015⨯⨯=,30.215x ==. (2)第2、3、4组回答正确人数分别18、27、9,共54人,设第234、、组分别抽取,,x y z 人,则65418279x y z===,解得2,3,1x y z ===. (3)第1、2组频率和为0.10.20.3+=,第4、5组频率和为0.250.150.4+=,第3组频率为0.3,设中位数为m ,则350.50.3100.3m --=,241423m =≈. ∴中位数为42.7、某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图.10(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数.【答案】(1)0.0075x =;(2)众数是230,中位数为224. 【解析】(1)由直方图的性质可得(0.0020.00950.0110.01250.0050.0025)201x ++++++⨯=,∴0.0075x =.(2)月平均用电量的众数是2202402302+=, ∵(0.0020.00950.011)200.450.5++⨯=<, 月平均用电量的中位数在[220,240)内,设中位数为a ,由(0.0020.00950.011)200.0125(220)0.5a ++⨯+⨯-=,可得224a =, ∴月平均用电量的中位数为2248、为参加学校的“我爱古诗词”知识竞赛,小王所在班级组织了一次古诗词知识测试,并将全班同学的分数(得分取正整数,满分为100分)进行统计,以下是根据这次测试成绩制作的不完整的频率分布表和频率分布直方图.频率分布表组别分组频数频率1 [50,60) 9 0.182 [60,70) a3 [70,80) 20 0.404 [80,90) 0.085 [90,100] 2 b合计 1请根据以上频率分布表和频率分布直方图,回答下列问题:(1)求出a,b,c,d的值;(2)老师说:“小王的测试成绩是全班同学成绩的中位数”,那么小王的测试成绩在什么范围内.1112【答案】(1) a =15,b =0.04,c =0.03,d =0.004 (2) 70≤x <80 【解析】(1)样本容量为9÷0.18=50,50×0.08=4, 所以a =50-9-20-4-2=15,b =2÷50=0.04,c =15÷50÷10=0.03,d =0.04÷10=0.004.(2)因为样本容量为50,则样本的中位数是第25,26个数据的平均数, 而第25,26个数据均位于70≤x <80范围内, 所以小王的测试成绩在70≤x <80范围内.9、某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[)50,60,[)60,70,[)70,80,[)80,90,[]90,100.分数段[)50,60[)60,70[)70,80[)80,90:x y1∶12∶13∶44∶513(1)求图中a 的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x )与数学成绩相应分数段的人数(y )之比如下表所示,求数学成绩在[)50,90之外的人数. 【答案】(1)0.005a =;(2)73(分);(3)10.【解析】(1)由频率分布直方图知(20.020.030.04)101a +++⨯=,解得0.005a =. (2)由频率分布直方图知这100名学生语文成绩的平均分为550.00510650.0410750.0310850.0210950.0051073⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=(分).(3)由频率分布直方图知语文成绩在[)50,60,[)60,70,[)70,80,[)80,90各分数段的人数依次为:0.005101005,0.041010040,0.031010030,0.021010020⨯⨯=⨯⨯=⨯⨯=⨯⨯=由题中给出的比例关系知数学成绩在上述各分数段的人数依次为1455,4020,3040,2025234⨯=⨯=⨯=.故数学成绩在[50,90)之外的人数为100(5204025)10-+++=.10.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:质量指标值分[75,85) [85,95) [95,105) [105,115) [115,125) 组频数 6 26 38 22 8(I)在答题卡上作出这些数据的频率分布直方图:(II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?14【答案】(1)见解析;(2)平均数100,方差为104;(3)不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.【解析】(1)直方图如图,(2)质量指标值的样本平均数为x=⨯+⨯+⨯+⨯+⨯=.800.06900.261000.381100.221200.08100质量指标值的样本方差为22222s=-⨯+-⨯+⨯+⨯+⨯=.(20)0.06(10)0.2600.38100.22200.08104(3)质量指标值不低于95的产品所占比例的估计值为++=,0.380.220.080.68由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.11、从某企业生产的某种产品中随机抽取100件,测量这些产品的某项质量指标,由测量1516结果得到如下频数分布表:质量指标值分组[)75,85[)85,95[)95,105[)105,115[)115,125频数62638228()1在图中作出这些数据的频率分布直方图;()2估计这种产品质量指标值的平均数、中位数(保留2位小数);()3根据以上抽样调査数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?【答案】(1)直方图见解析;(2)平均数100,中位数99.74;(3)不能. 【解析】()1由已知作出频率分布表为:质量指标值分组[)75,85 [)85,95 [)95,105 [)105,115 [)115,12517频数 6 26 38 22 8频率0.06 0.26 0.38 0.22 0.08由频率分布表作出这些数据的频率分布直方图为:()2质量指标值的样本平均数为:800.06900.261000.381100.221200.08100x =⨯+⨯+⨯+⨯+⨯=,[)75,95内频率为:0.060.260.32+=,∴中位数位于[)95,105内,设中位数为x ,则0.50.260.06951099.740.38x --=+⨯≈,∴中位数为99.74.()3质量指标值不低于95 的产品所占比例的估计值为0.380.220.080.68++=.由于该估计值小于0.8,故不能认为该企业生产的这种产品“质量指标值不低于95 的产品至少要占全部产品80%的规定.18。

频数分布表和直方图练习题

频数分布表和直方图练习题

频数分布表和直方图练习题1. 2019年3月教育局对某校七年级学生进行体质监测共收集了200名学生的体重,并绘制成了频数分布直方图,从左往右数每个小长方形的长度之比为2:3:4:1,其中第三组的频数为( )A.80人B.60人C.20人D.10人2. 小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了直方图.根据图中信息,下列说法:①这栋居民楼共有居民140人②每周使用手机支付次数为28∼35次的人数最多③有1的人每周使用手机支付的次数在35∼42次5④每周使用手机支付不超过21次的有15人其中正确的是()A.①②B.②③C.③④D.④3. 某班将安全知识竞赛成绩整理后绘制成直方图,图中从左至右前四组的百分比分别是4%、12%、40%、28%,第五组的频数是8,下列结论错误的是()A.该班有50名同学参赛B.第五组的百分比为16%C.成绩在70∼80分的人数最多D.80分以上的学生有14名4. (3分)某学校为了了解八年级学生的体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25∼30之间的频率为________.5. 某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5∼46.5;B:46.5∼53.5;C:53.5∼60.5;D:60.5∼67.5;E:67.5∼74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是________,并补全频数分布直方图;(2)C组学生的频率为________,在扇形统计图中D组的圆心角是________度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?6. 2011年我市体卫站对某校九年级学生体育测试情况进行调研,从该校360名九年级学生中抽取了部分学生的成绩(成绩分为A、B、C三个层次)进行分析,绘制了频数分布表与频数分布直方图(如图),请根据图表信息解答下列问题:(1)补全频数分布表与频数分布直方图;(2)如果成绩为A等级的同学属于优秀,请你估计该校九年级约有多少人达到优秀水平?7. 某校一学生社团参加数学实践活动,和交警一起在金山大道入口用移动测速仪监测一组汽车通过的时速(千米/小时),在数据整理统计,绘制频数直方图的过程中,不小心墨汁将表中数据污染(见下表),请根据下面不完整的频数分布表和频数分布直方图,解答问题:(注:50∼60指时速大于等于50千米/小时而小于60千米/小时,其他类同)(1)请用你所学的数学统计知识,补全频数分布直方图.(2)如果此地汽车时速不低于80公里即为违章,求这组汽车的违章频率.(3)如果请你根据调查数据绘制扇形统计图,那么时速在70∼80范围内的车辆数所对应的扇形圆心角的度数是________.8. 每年的3月22日为联合国确定的“世界水日”,某社区为了宣传节约用水,从本社区1000户家庭中随机抽取部分家庭,调查他们每月的用水量,并将调查的结果绘制成如下两幅尚不完整的统计图(每组数据包括右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是________;(2)补全频数分布直方图,求扇形图中“6吨−−9吨”部分的圆心角的度数;(3)如果自来水公司将基本月用水量定为每户每月12吨,不超过基本月用水量的部分享受基本价格,超出基本月用水量的部分实行加价收费,那么该社会用户中约有多少户家庭能够全部享受基本价格?。

《直方图》同步练习题含答案

《直方图》同步练习题含答案

《直方图》同步练习题含答案知识点:1.整理数据列表法,划记法(正字法)2.直方图(两个数据之间没有间隙)直观形象显示各组数据频数分布,反映频数间差距。

(数据分布情形)频数分布直方图① 组距:每个小组两个端点之间的距离② 组数:组数②频数:数据显现的次数 ③频率:频数与数据总数的比同步练习1.下表是对某班50名学生如何到校问题进行的一次调查结果,依照表中已知数据填表: 频数 所占比例步行 9骑自行车 28坐公共汽车 20%其他 3 身高/m 1.40 1.45 1.49 1.54 1.57 1.60 1.62 1.68 1.72 1.78 人数/人1 3 4 6 11 15 9 6 32 (2)身高最高、最低的分别是_____m 、_____m ,他们分别有____人,_____人;最高的与最低的相差______m.3.(63 84 91 53 69 81 61 69 91 7875 81 80 67 76 81 79 94 61 6989 70 70 87 81 86 90 88 85 6771 82 87 75 87 95 53 65 74 77解:1、求极差:最高分 ,最低分 。

极差:=d 。

分组6050<≤x 7060<≤x 8070<≤x 9080<≤x 10090<≤x4题图(每组含最低分数,但不含最高分数)分数/分(2)绘制频数折线图.4.某中学部分同学参加全国初中数学竞赛,取得了优异的成绩.指导老师统计了所有参赛同学的成绩(成绩差不多上整数,试题满分为120分),同时绘制了频率分布直方图(如图).请回答:(1)该中学参加本次数学竞赛的有多少名同学?(2)假如成绩在90分以上(含90分)的同学获奖,那么该中学参赛同学的获奖率是多少?(3)图中还提供了其他信息,例如该中学没有获得满分的同学等.请再写出两条信息.10.2《直方图》同步练习题(1)答案:1.10 ;18% ; 56% ; 6 %2.(1)60 ;1.60 ;15 ; (2)1.78 ;1.40 ;2 ; 1 ;0.383. 94 ; 53 ; 41 ;略4.32 ;43.75% ;80到90分的人数最多;80到90分的人数的百分比为25%。

7.4 频数分布表和频数分布直方图 分层练习 原卷版

7.4 频数分布表和频数分布直方图 分层练习 原卷版

7.4 频数分布表和频数分布直方图分层练习考查题型一从频数分布表、频数分布直方图中获取信息解决实际问题1.某面粉厂准备确定面粉包装袋的规格,市场调查员小李随机选择三家超市进行调查,收集三家超市一周的面粉销售情况,并整理数据、做出如图所示的统计图,则该面粉厂应选择面粉包装袋的规格为()A.2kg/包B.3kg/包C.4kg/包D.5kg/包2.“共享单车”为人们提供了一种经济便捷、绿色低碳的共享服务,成为城市交通出行的新方式,小文对他所在小区居民当月使用“共享单车”的次数进行了抽样调查,并绘制成了如图所示的频数分布直方图(每一组含前一个边界值,不含后一个边界值),则下列说法正确的是()A.小文一共抽样调查了20人B.样本中当月使用“共享单车”40~50次的人数最多C.样本中当月使用“共享单车”不足30次的人数有14人D.样本中当月使用次数不足30次的人数多于50~60次的人数3.体育委员统计了全班女生立定跳远的成绩,列出频数分布表如下:已知跳远距离1.8米以上为优秀,则该班女生获得优秀的频率为_ .4.为了参加全校各年级之间的广播体操比赛,七年级准备从63名同学中挑选身高相差不多的40名学生参加比赛.根据这63名学生身高x(cm)的频数分布直方图(每组数据含最小值,不含最大值),分析可得参加比赛的学生身高x的合理范围是_ .5.如图是八年级某班50名学生身高(精确到1cm)的频数分布直方图(每组包含最小值,不包含最大值),从左起第一、二、三、四个小长方形的高的比是1:3:5:1,则身高在170cm 及170cm以上的学生的人数为.考查题型二列频数分布表、绘制频数分布直方图1.对频数分布直方图的下列认识,不正确的是()A.每小组条形图的横宽等于这组的组距B.每小组条形图的纵高等于这组的频数C.每小组条形图的面积等于这组的频率D.所有小组条形图的个数等于数据分组整理的组数2.南京某校八年级体育课上,体育老师统计了全班同学60秒跳绳的次数,发现跳绳次数最多的同学是185个,跳绳次数最少的同学是140个,为了分析数据需要列频数分布表,规定组距为6,那么组数是()A.6B.7C.8D.93.为了解某校学生每周课外阅读时间的情况,随机抽取该校a名学生进行调查,获得的数据整理后绘制成统计表如下:表中4≤x<6组的频数b满足25≤b≤35.下面有四个推断:①表中a的值为100;②表中c的值可以为0.31;③这a名学生每周课外阅读时间的中位数一定不在6~8之间;④这a名学生每周课外阅读时间的平均数不会超过6.所有合理推断的序号是______________.4.2022年12月4日是我国第22个“法制宣传日”,我校举行了主题“学法,知法,懂法,守法”的普法知识竞赛.为了了解本次知识竞赛成绩的分布情况,从参赛学生中随机抽取了150名学生的初赛成绩进行统计,得到如下两幅不完整的统计图表.(1)表中a=___________,b=___________;(2)请补全频数分布直方图:(3)若80分以上为优秀,该校现有1200名学生,请你估计我校成绩优秀的学生有多少名?(4)结合以上信息,请你给该校关于普法方面提出一条合理化的建议.考查题型三综合频数分布直方图(频数分布表)与扇形统计图获取需要的信息1.“俭以养德”是中华民族的优秀传统,时代中学为了对全校学生零花钱的使用进行正确引导,随机抽取50名学生,对他们一周的零花钱数额进行了统计,并根据调查结果绘制了不完整的频数分布表和扇形统计图,如图所示:组别零花钱数额x/元频数一x≤10二10<x≤1512三15<x≤2015四20<x≤25a五x>255关于这次调查,下列说法正确的是()A.总体为50名学生一周的零花钱数额B.五组对应扇形的圆心角度数为36°C.在这次调查中,四组的频数为6D.若该校共有学生1500人,则估计该校零花钱数额不超过20元的人数约为1200人2.小周是一位运动达人,他通过佩戴智能手环来记录自己一个月(30天)的每日行走步数(单位:千步),并绘制成右面的统计图.根据统计图提供的信息,下列推断不合理...的是()A.每日行走步数为4~8千步的天数占这个月总天数的10%B.每日行走步数为8~12千步的扇形圆心角是108°C.小周这个月超过一半的天数每日行走步数不低于12000步D.小周这个月行走的总步数不超过324千步3.为了更好地开展全民健身,建设健康中国,某社区随机抽取了若干居民,对其健身情况进行抽样调查.将被调查的居民每天的健身时间t(min)分为5组,绘制如下的不完整的健身时间频数分布表和扇形统计图.根据上述信息,解答下列问题:(1)在扇形统计图中,C组对应的圆心角为直角,频数分布表中a的值是______;(2)在频数分布表中,m的值为______,在扇形统计图中,A组的圆心角为______;(3)在本次统计中,中位数落在______组;(4)若该社区共有3万人,利用本次抽样调查的结果,可估计该社区锻炼时间不少于45分钟的人数为______万人.4.菲尔兹奖是国际上有崇高声誉的一个数学奖项.晓刚统计了连续几年共20位菲尔兹奖得主的年龄,整理并绘制成如下统计图.根据以上图表,解答下列问题:(1)m=_____________,n=_____________,并补全频数分布直方图;(2)在扇形统计图中,获奖年龄在B组的人数约占获奖总人数的_____________%,C组的圆心角度数为_____________°;(3)根据统计图描述这些数学家获得菲尔兹奖时年龄的分布特征.1.唐同学去年暑假随爸爸去成都大熊猫繁殖基地看熊猫,发现整个基地的熊猫都未出熊猫内室,当天的温度有33度,他了解到熊猫的外出活动与室外温度有关,因此通过一年(以365天计算)的观察,对熊猫“花花”外出活动时的温度(以0℃至40℃为监测温度区间)进行了调查,并制作了如下图所示的频数分布表与直方图:请根据图表提供的信息,解答下列问题:(1)在频数分布表中,求出a=______,b=______;并补全频数直方图.(2)熊猫最喜欢外出活动时的温度区间为______;(3)成都的全年每个月的平均温度如下表:你认为哪个月看熊猫最合适,为什么?2.区政府想了解某镇的经济状况,用简单随机抽样的方法,在130户家庭中抽取20户调查过去一年的收入(单位:万元),结果如下:1.3,1.7,2.4,1.1,1.4,1.6,1.6,2.7,2.1,1.5,0.9,3.2,1.3,2.1,2.6,2.1,1.0,1.8,2.2,1.8(1)将上述数据进行分组整理,列出频数分布表,请补充;(2)根据频数分布表绘制频数分布直方图和扇形统计图,请补全;(3)求扇形统计图中百分比最大部分所对应的扇形的圆心角的度数;(4)如果把年收入低于1.3万元的视为“低收入家庭”,试估计该镇“低收入家庭”的户数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图3
数学: 12.3频数分布表和频数分布直方图
一、选择题
1、( 0 7 湖州)如图1是某班全体学生外出时乘车、步行、骑车的人数分布直方图和扇形分布图(两图都不完整),则下列结论中错误的是( ) A.该班总人数为50人 B.步行人数为30人
C.骑车人数占总人数的20%
D.乘车人数是骑车人数的2.5倍 2、(08温州)体育老师对九年级(1)班学生“你最喜欢的体育项目是什么?(只写一项)”的问题进行了调查,把所得数据绘制成频数分布直方图(如图2).由图可知,最喜欢篮球的频率是( ) A .0.16 B .0.24 C .0.3
3、 (07义乌) 每年的6月6日是全国的爱眼日,让我们行动起来,爱护我们的眼睛!某校为了做好全校2000
名学生的眼睛保健工作,对学生的视力情况进行一次抽样调查,下图3是利用所得数据绘制的频数分布直方图(视力精确到0.1). 请你根据此图提供的信息,回答下列问题: (1)本次调查共抽测了 名学生;
(2)视力在4.9及 4.9以上的同学约占全校学生比例为多
少?
(3)如果视力在第1,2,3组范围内(视力在4.9以下)均属视力不良,应给予治疗、矫正.请计算该校视力不良学生约有多少名?
4、(08宁德) “五
一”期间,新华商场贴出促销海报,内容
如图4.在商场活动期间,王莉和同组同学随机调查了部分参与活动的顾客,统计了200
人次的摸奖情况,绘制成如图 5的频数分布直方图.
(1)补齐频数分布直方图;
(2)求所调查的200人次摸奖的获奖率;
(3)若商场每天约有2000人次摸奖,请估算商场一天送出的购物券总金额是多少元?
5、(08湛江)为了了解某校2000名学生参加环保知识竞赛的成绩,从中抽取了部分学生的竞赛成绩(均为整
数),整理后绘制成如下的频数分布直方图(如图8),请结合图形解答下列问题. (1) 指出这个问题中的总体. (2) 求竞赛成绩在79.5
~89.5这一小组的频率. (3) 如果竞赛成绩在90分以上(含90分)的同学可获得奖励,请估计全校约有多少人获得奖励.
“五一”大派送为了回馈广大顾客,本商场在4
月30日至5月6日期间
举办有奖购物活动.每购
买100元的商品,就有一
次摸奖的机会,奖品为 一等奖:50元购物券
二等奖:20元购物券
三等奖:5元购物券 图4
购物券
人次 图5
5
15 10 20
25
乘车 步行 骑车 步行 30%
乘车50% 骑车 图1
九年级(1)班学生最喜欢体育项目的频数分布直方图 频数(人)
24
20 16 12 8 4
O
4 12 6 20 8
体育项目 羽毛球 乒乓球 跳绳 篮球 其它 图2
6、(08西宁)中考体育测试中,1分钟跳绳为自选项目.某中学九年级共有50名女同学选考1分钟跳绳,根据测试评分标准,将她们的成绩进行统计后分为A B C D ,,,四等,并绘制成下面的频数分布表(注:6~7的意义为大于等于6分且小于7分,其余类似)和扇形统计图(如图9).
频数分布表
等级 分值 跳绳(次/1分钟) 频数
A
9~10 150~170 4
8~9 140~150 12 B 7~8 130~140 17
6~7 120~130 m
C
5~6 110~120 0
4~5 90~110 n D
3~4 70~90 1 0~3 0~70 0
(1)求m n ,的值;
(2)在抽取的这个样本中,请说明哪个分数段的学生最多?
请你帮助老师计算这次1分钟跳绳测试的及格率(6分以上含6分为及格).
7、(08湘潭市)某县七年级有15000名学生参加安全应急预案知识竞赛活动,为了了解本次知识竞赛的成绩分布情况,从中抽取了400名学生的得分(得分取正整数,满分100分)进行统计:
请你根据不完整的频率分布表. 解答下列问题: (1)补全频率分布表; (2)补全频数分布直方图;
(3
59.5~69.5分评为“C ”, 69.5~89.515000名学生中约有多少人评为“D ”?如果A ”、“B ”、“C ”、“D ”哪一个等级8、(08常州) , 所得数):
图8
图9 扇形统计图
成绩(分)
49.5 59.5 69.5 79.5 89.5 100.5
图10
图11
根据以上图表,回答下列问题:
(1)M=_______,m=_______,N=_______,n=__________; (2)补全频数分布直方图. 9、(08泰州)为了增强环境保护意识,6月5日“世界环境日”当天,在环保局工作人员指导下,若干名“环保小卫士”组成的“控制噪声污染”课题学习研究小组,抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位:dB ),将调查的数据进行处理(设所测数据是正整数),得频数分布表如下:
组 别 噪声声级分组 频 数 频 率 1 44.5——59.5 4
0.1 2 59.5——74.5 a
0.2 3 74.5——89.5 10
0.25
4 89.5——104.
5 b
c
5 104.5——119.5
6 0.15 合 计
40
1.00
根据表中提供的信息解答下列问题:
(1)频数分布表中的a =________,b =________,c =_________; (2)补充完整频数分布直方图;
(3)如果全市共有200个测量点,那么在这一时刻噪声声级小于75dB 的测量点约有多少个?
10、(08台州)八年级(1)班开展了为期一周的“孝敬父母,帮做家务”社会活动,并根据学生帮家长做家务的时间来评价学生在活动中的表现,把结果划分成A B C D E ,,,,五个等级.老师通过家长调查了全班50名学生在这次活动中帮父母做家务的时间,制作成如下的频数分布表和扇形统计图. 学生帮父母做家务活动时间频数分布表 等级 帮助父母做家务时间
(小时)
频数
A B 10 C D E
(1)求a b ,的值;
(2)根据频数分布表估计该班学生在这次社会活动中帮父母做家务的平均时间; (3)该班的小明同学这一周帮父母做家务2小时,他认为自己帮父母做家务的时间比班级里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计量说明理由.
参考答案
1、B ;
2、D ;
3、解:(1)由条形统计图可得,本次调查共抽测学生人数为:10+20+30+40+60=160
分组 频数 频率 145.5~149.5 3 0.05 149.5~153.5 9 0.15 153.5~157.5 15 0.25 157.5~161.5 18 n 161.5~165.5 9 0.15 165.5~169.5
m 0.10 合计
M N
图12 B A
E D
C 40% (第22题)
学生帮父母做家务活动评价等级分布扇形统计图
(2)视力在4.9及4.9以上的人数为40+20=60(人),所占的比例为:6031608
= (3)视力在第1,2,3组的人数在样本中所占的比例为1005
1608
=. ∴该校视力不良学生约有
5
200012508
⨯=(人).
4、解:⑴获得20元购物劵的人次:200-(122+37+11)=30(人次). 补齐频数分布直方图,如图所示:
⑵摸奖的获奖率:
%39%10020
78=⨯. ⑶675.6200
501120305370122=⨯+⨯+⨯+⨯=x .
6.675×2000=13350(元)
估计商场一天送出的购物券总金额是13350元.
5、 解: (1) 总体是某校2000名学生参加环保知识竞赛的成绩.
(2)1515
0.256912151860
==++++ 答:竞赛成绩在79.5~89.5这一小组的频率为0.25.
(3)9
200030069121518
⨯=++++
答:估计全校约有300人获得奖励.
6、解:(1)根据题意,得50(412171)16m n +=-+++=;
171006450m
+⨯=%%. 则161732
m n m +=⎧⎨+=⎩①②
解之,得15
1
m n =⎧⎨
=⎩
(2)7~8分数段的学生最多
及格人数412171548=+++=(人),及格率48
1009650
=
⨯=%% 答:这次1分钟跳绳测试的及格率为96%. 7. 解:(1)略; (2)略 ;
(3)150000.05750⨯=(人) B 的频率为0.20.310.51+=,大于A 、C 、D 的频率,故这名学生评为B 等的可能性最大.
8、略
9、(1)a=8,b=12,c=0.3.(每对一个给1分) (2)略
(3)算出样本中噪声声级小于75dB 的测量点的频率是0.3 0.3×200=60
∴在这一时噪声声级小于75dB 的测量点约有60个. 10、略
购物券
人次 30。

相关文档
最新文档