高中数学必修二同步练习题库:空间几何体的结构(选择题:较难)
高中数学人教课标实验A版必修2第一章《空间几何体的结构》同步练习(附答案)
《空间几何体的结构》同步练习一、考点分析三视图是新课程改革中出现的内容,是新课程高考的热点之一,几乎每年都考,同学们要予以足够的重视.在高考中经常以选择、填空题的形式出现,属于基础或中档题,但也要关注三视图以提供信息为目的,出现在解答题中.这部分知识主要考查学生的空间想象能力与计算求解能力.二、典型例题知识点一:柱、锥、台、球的结构特征例1.下列叙述正确的是()①有两个面平行,其余各面都是平行四边形的几何体叫棱柱.②两个底面平行且相似,其余各面都是梯形的多面体是棱台.③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.④直角三角形绕其一条边旋转得到的旋转体是圆锥.⑤直角梯形以它的一条垂直于两底边的腰所在的直线为旋转轴,其余三边旋转形成的面围成的旋转体叫圆台.⑥用一个平面去截圆锥,底面和截面之间的部分是圆台.⑦通过圆锥侧面上一点,有无数条母线.⑧以半圆的直径所在直线为旋转轴,半圆面旋转一周形成球体.A.①②③④⑤⑥⑧B.①③④⑦⑧C.①②⑤⑧D.⑤思路分析:遇到概念判断问题,一定要在理解透彻相关概念的基础上,仔细分析,如果判断它是正确的,必须能紧扣定义,而不是模棱两可地去作判断;如果判断它是错误的,只需找到一个反例即可.解答过程:如图所示,由图(1)可知①是错误的;由图(2)可知②③是错误的;由图(3)可知④是错误的;由图(4)可知⑥是错误的.因为通过圆锥侧面上一点和圆锥的顶点只能连一条射线,所以“通过圆锥侧面上一点,有无数条母线.”是错误的,即⑦是不正确的.以半圆的直径所在直线为旋转轴,半圆旋转一周形成的应该是球面,半圆面旋转一周形成的才是球体.所以⑧是错误的.所以只有⑤是正确的.故应选D.解题后的思考:在作判断的时候没有严格的根据定义进行多角度分析,而是只抓住定义中的某一点就作出判断,容易导致错误.知识点二:组合体例2.如图,下列组合体是由哪几种简单几何体组成的?解答过程:(1)由一个三棱锥和一个四棱锥组成,为左右结构(2)由两个三棱锥组成,为上下结构(3)由圆锥和圆台组成,为上下结构知识点三:柱、锥的侧面展开图例3.小明在一个正方体盒子的每个面都写有一个字母,分别是:A、B、C、D、E、F,其平面展开图如图所示,那么在该正方体盒子中,和“A”相对的面所写的字母是哪一个?思路分析:在每个格子中标明你所想象的面的位置,如将A 格标明“上”,将B格标明“前”等等.解答过程:为字母“E”解题后的思考:本题突出考查了学生将正方体各面展开图复原为正方体的空间想象能力.例4.如图所示,为一个封闭的立方体,在它的六个面上标出A ,B ,C ,D ,E ,F 这六个字母,现放成下面三种不同的位置,所看见的表面上的字母已标明,则字母A ,B ,C 对面的字母分别是( )A .D ,E ,FB .F ,D ,EC .E ,F ,D D .E ,D ,F思路分析:本题处理方法比较灵活,要将几个图结合起来一起分析.解答过程:由(1)(2)两个图知,A 与B ,C ,D 相邻,结合第(3)个图知,B ,C 与F 共顶点,所以A 的对面为F ,同理B ,C 的对面分别为D ,E ,故选择B .解题后的思考:本题考查推理能力以及空间想象能力.也可先结合图(1)(3)进行判断.例5.用长和宽分别是π3和π的矩形硬纸卷成圆柱的侧面,求圆柱的底面半径?思路分析:要注意哪条边是圆柱的母线,哪条边是圆柱底面的圆周.解答过程:设圆柱底面圆的半径为r ,由题意可知矩形长为底面圆的周长时,r ππ23=,解得23=r .矩形宽为底面圆的周长时,r ππ2=,解得21=r .故圆柱的底面半径为23或21.解题后的思考:本题学生经常会丢解,即主观认为只有图中所示的情况,即以π3作为底面周长,而忽视了它也可作为母线这种情况.知识点四 旋转体中的有关计算例6. 一个圆台的母线长cm 12,两底面面积分别为24cm π和225cm π,求:(1)圆台的高;(2)截得此圆台的圆锥的母线长.思路分析:通过作截得此圆台的圆锥的轴截面,构造直角三角形与相似三角形求解.解答过程:(1)作OA H A ⊥1242=∴=r r ππ 5252=∴=R R ππ3=∴AH153312221=-=∴H A(2)11O VA ∆ 与O VA ∆相似 AO O A VA VA 111=∴20=∴VA解题后的思考:通过构造旋转体的轴截面,将立体问题转化为平面问题.例7.已知球的两个平行截面的面积分别为π5和π8,且距离为3,求这个球的半径.思路分析:两截面的相互位置可能出现两种情况,一种是在球心O 的同侧,另一种是在球心O 的异侧.解答过程:(1)当两截面在球心O 的同侧时,如图所示,设这两个截面的半径分别为21,r r ,球心O 到截面的距离分别为21,d d ,球的半径为R .8,5,8,522212221==∴=⋅=⋅r r r r ππππ .又222221212d r d r R +=+= ,321222221=-=-∴r r d d ,即3))((2121=+-d d d d .又321=-d d ,⎩⎨⎧=+=-∴,1,32121d d d d 解得⎩⎨⎧-==.1,221d d又∴>,02d 这种情况不成立.(2)当两截面在球心O 的异侧时,321=+d d , 由上述解法可知3))((2121=+-d d d d ,⎩⎨⎧=-=+∴,1,32121d d d d 解得⎩⎨⎧==.1,221d d 3452121=+=+=∴d r R .综上所述,这个球的半径为3.解题后的思考:同学们要注意不要只对同侧的情况进行讨论,而忽略对另一种位置关系的讨论.知识点五:画几何体的三视图例8.画出如图所示的三棱柱的三视图.思路分析:在正视图中,中间的竖线看不到,应画成虚线;侧视图是从左侧看三棱柱投射到竖直的正对着的平面上的正投影,所以不是三棱柱的一个侧面,而应该是过底面正三角形的一条高线的矩形.解答过程:解题后的思考:画三视图的时候要做到“长对正、宽相等、高平齐”,还要注意实线与虚线的区别.知识点六:三视图中的推测问题例9.根据下列三视图,说出各立体图形的形状.思路分析:三视图是从三个不同的方向看同一物体得到的三个视图.正视图反映物体的主要形状特征,主要体现物体的长和高,不反映物体的宽.而俯视图和正视图共同反映物体的长相等.侧视图和俯视图共同反映物体的宽相等.据此就不难得出该几何体的形状.解答过程:(1)圆台;(2)正四棱锥;(3)螺帽.解题后的思考:三视图的画法里要注意“长对正”,“高平齐”,“宽相等”,另外,还要熟悉基本空间几何体的三视图.知识点七:直观图的还原与计算问题例10.已知△A′B′C′是水平放置的边长为a 的正三角形ABC 的斜二测水平直观图,那么△A′B′C′的面积为_________.思路分析:先根据题意,画出直观图,然后根据△A′B′C′直观图的边长及夹角求解.解答过程:如图甲、乙所示的实际图与直观图.a OC C O a AB B A 4321,==''==''.在图乙中作C′D′⊥A′B′于D′,则a C O D C 8622=''=''.所以2166862121a a a D C B A S C B A =⨯⨯=''⋅''='''∆.故填2166a . 解题后的思考:该题求直观图的面积,因此应在直观图中求解,需先求出直观图的底和高,然后用三角形面积公式求解.本题旨在考查同学们对直观图画法的掌握情况.例11.如图所示,正方形O′A′B′C′的边长为cm 1,它是水平放置的一个平面图形的直观图,则原图形的周长是____________.思路分析:先根据题意,由直观图画出原图形解答过程:逆用斜二测画法的规则画出原图如下图所示,由BC//OA 且BC=OA ,易知OABC 为平行四边形.在上图中,易求O′B′=2,所以OB =22.又OA =1,所以在Rt △BOA 中,31)22(22=+=AB .故原图形的周长是)cm (8)13(2=+⨯,应填cm 8.解题后的思考:该题考查的是直观图与原图形之间的关系,及逆用斜二测画法的规则.。
高中数学必修二同步练习题库:空间点、线、面的位置关系(选择题:较难)
空间点、线、面的位置关系(选择题:较难)1、如图所示,将等腰直角沿斜边上的高折成一个二面角,此时,那么这个二面角大小是()A.90° B.60° C.45° D.30°2、设是正方体的对角面(含边界)内的点,若点到平面、平面、平面的距离相等,则符合条件的点()A.仅有一个 B.有有限多个 C.有无限多个 D.不存在3、已知异面直线a,b成70°角,A为空间中一点,则过A且a,b都成55°的平面个数有()A.1 B.2 C.3 D.44、如图所示,正方体的棱长为1,分别是棱的中点,过直线的平面分别与棱交于,设,,给出以下四个命题:①②当且仅当时,四边形的面积最小;③四边形周长,,则是奇函数;④四棱锥的体积为常函数;其中正确命题的个数为()A.1个 B.2个 C.3个 D.4个5、如图,点是正方形外的一点,过点作直线,记直线与直线,的夹角分别为,,若,则满足条件的直线()A.有1条 B.有2条 C.有3条 D.有4条6、已知棱长为l的正方体中,E,F,M分别是AB、AD、的中点,又P、Q分别在线段上,且,,设面面MPQ=,则下列结论中不成立的是( )A. 面ABCDB. ACC. 面MEF与面MPQ垂直D. 当x变化时,是定直线7、矩形ABCD中,,,将△ABC与△ADC沿AC所在的直线进行随意翻折,在翻折过程中直线AD与直线BC成的角范围(包含初始状态)为()A. B.C. D.8、把边长为2的正方形沿对角线折起,使得平面平面,则异面直线所成的角为()A.120° B.30° C.90° D.60°9、在正方体中,是中点,点在线段上,直线与平面所成的角为,则的取值范围是()A. B. C. D.10、在正方体中,分别为的中点,则异面直线与所成角的余弦值为()A. B. C. D.11、矩形中,,,将与沿所在的直线进行随意翻折,在翻折过程中直线与直线成的角范围(包含初始状态)为()A. B. C. D.12、如图,已知,是的中点,沿直线将折成,所成二面角的平面角为,则()A. B.C. D.13、四棱锥的底面是一个正方形,平面,,是棱的中点,则异面直线与所成角的余弦值是()A. B. C. D.14、如图,在正三棱柱ABC-A1B1C1中,若AB=BB1,则AB1与C1B所成的角的大小为()A.60° B.90°C.105° D.75°15、已知正四棱锥的侧棱长与底面边长都相等,是的中点,则所成的角的余弦值为()A. B. C. D.16、已知三棱锥的底面是以为斜边的等腰直角三角形,,则三棱锥的外接球的球心到平面的距离是()A. B.1 C. D.17、已知在直三棱柱中,,,则直线与夹角的余弦值为( )A. B. C. D.18、在正方体中,若是的中点,则异面直线与所成角的大小是()A. B. C. D.19、如图在一个二面角的棱上有两个点,,线段分别在这个二面角的两个面内,并且都垂直于棱,,则这个二面角的度数为()A. B. C. D.20、如图,等边三角形的中线与中位线相交于,已知是△绕旋转过程中的一个图形,下列命题中,错误的是( )A.动点在平面上的射影在线段上B.恒有平面⊥平面C.三棱锥的体积有最大值D.异面直线与不可能垂直参考答案1、A2、A3、A4、C5、D6、C7、C8、D9、A10、C11、C12、A13、B14、B15、C16、A17、A18、D19、B20、D【解析】1、试题分析:连接,则为等边三角形,设,则,所以,故选A.考点:1、平面与平面的位置关系;2、二面角的求法.【易错点晴】本题考查的是平面与平面的位置关系、二面角的求法,属于难题;二面角问题先要找出二面角,从两个平面的交线入手,找出从一个点出发的垂直于两平面交线的两条直线,此即为二面角的平面角;在三角形内,求出该平面角即可.2、解:与平面距离相等的点位于平面上;与平面距离相等的点位于平面上;与平面距离相等的点位于平面上;据此可知,满足题意的点位于上述平面,平面,平面的公共点处,结合题意可知,满足题意的点仅有一个.本题选择A选项.点睛:本题考查点到平面的距离,利用点到直线的距离将平面问题类比到空间中点到面的距离,据此找到满足题意的点是否存在即可.3、过作,设直线确定的平面为,∵异面直线成角,∴直线确所成锐角为.设过点的平面与所成的角相等,该平面的垂线与直线都成角,过只能作一条这样的垂线,故此时符合条件的平面只有一个.选A4、①连结,则由正方体的性质可知,平面,所以,所以正确.②因为,四边形的对角线是固定的,所以要使面积最小,则只需的长度最小即可,此时当为棱的中点时,即时,此时长度最小,对应四边形的面积最小.所以②正确.③因为,所以四边形是菱形.函数为偶函数,故③不正确.④连结,则四棱锥则分割为两个小三棱锥,它们以为底,以分别为顶点的两个小棱锥.因为三角形的面积是个常数.到平面的距离是个常数,所以四棱锥的体积为常函数,所以④正确.故选C.【点睛】本题考查空间立体几何中的面面垂直关系以及空间几何体的体积公式,本题把立体几何问题和函数进行的有机的结合,综合性较强,设计巧妙,对学生的解题能力要求较高.5、∵故可知;由于平移不改变两直线的夹角,故题目可以转化为过点的直线与直线,的夹角为的直线有多少条;记直线,的夹角为,可以求得,故,故,即,故,,故过点的直线与直线,的夹角为的直线有4条,分别在这两直线夹角及补角的平分面上故选:D6、连接BD,,显然平面,而,连接HG,则所以AC⊥BD,又HG//L//BD,故AC⊥,只有当时,平面MEF⊥平面MPQ,无论x怎么变化,定是直线故选C点睛:考察立体几何中线面得关系,要熟悉线面,面面之间关系得判定定理,然后再逐一分析即可7、初始状态直线与直线成的角为,翻折过程中当时, 直线与直线成的角为直角,因此直线与直线成的角范围为,选C.8、过作,交于,连结,则是的中点,,以为原点,为轴,为轴,为轴,建立空间直角坐标系,,,,,,,设异面直线、所成的角为,则,所以.所以异面直线、所成的角为.故选9、试题分析:由题意得,分别以为轴建立空间直角坐标系,则,平面的法向量,所以,故选A. 考点:直线与平面所成的角,【方法点晴】本题主要考查了直线与平面所成角的求解和空间几何体的结构特征,着重考查了学生的空间想象能力和推理与运算能力,其中准确计算是解答本题的关键,也是本题的一个易错点,属于中的试题,本题的解答中,分别以为轴建立空间直角坐标系,求解平面的法向量是解答本题的关键.10、试题分析:由题意可得又考点:异面直线所成角11、初始状态直线与直线成的角为,翻折过程中当时, 直线与直线成的角为直角,因此直线与直线成的角范围为,选C.12、试题分析:①当时,;②当时,如图,点投影在上,,连结,易得,,即综上所述,,故选A.考点:二面角的平面角及求法.【易错点晴】本题考查空间角的大小比较,注意解题方法的积累,属于中档题.与二面角有关的问题,主要是转化为其平面角,利用平面角的关系,将空间问题转化为平面问题来解决,该题的关键是分类讨论,按空间中的可能情况予以分类,准确的分类是解决问题的前提.13、试题分析:如图:取的中点为,连接,,是的中点,所以是的中位线,故,因此就是异面直线与所成的角,由于,且平面,四边形是正方形,所以,,连接交于,则,平面,易知:从而,在中,由,得是以为直角的直角三角形,所以,即异面直线与所成的角的余弦值为.故选B.考点:异面直线所成的角.14、试题分析:不妨设,则,所以直线与所成的角为.考点:数量积判断两个平面向量的垂直关系;异面直线所成的角.15、试题分析:设的交点为,连接,则为所成的角或其补角;设正四棱锥的棱长为,则,所以,故C为正确答案.考点:异面直线所成的角.16、试题分析:因为三棱锥的底面是以为斜边的等腰直角三角形,,在面内的射影为中点,平面,上任意一点到的距离相等.,,在面内作的垂直平分线,则为的外接球球心.,,,,即为到平面的距离,故选A.考点:球内接多面体;点到面的距离的计算.【思路点晴】本题考查点到面的距离的计算及球内接多面体问题及学生分析解决问题的能力,解答此类问题时要充分认识球内接多面体的性质,其中确定SHC与平面ABC的距离是关键,本题解答中根据三棱锥S-ABC的底面是以AB为斜边的等腰直角三角形,SA=AB=SC,可得S在面ABC上的射影为AB中点H,SH平面ABC,在面SHC内SC的垂直平分线MO与SH交于O,则O为SABC的外接球球心,OH为O与平面ABC的距离,由此可得到结论.17、试题分析:分别取的中点为,则,为异面直线与所成的角或其补角.可求得,.故A正确.考点:异面直线所成的角.【方法点睛】本题主要考查异面直线所成的角问题,难度一般.求异面直线所成角的步骤:1平移,将两条异面直线平移成相交直线.2定角,根据异面直线所成角的定义找出所成角.3求角,在三角形中用余弦定理或正弦定理或三角函数求角.4结论.18、试题分析:如图,作交的延长线于点,连接,因为,所以,所以(或其补角)是异面直线与所成角.设正方体的棱长为1,在中,,,,所以,.故选D.考点:异面直线所成的角.【名师点睛】异面直线所成的角:a、b是两条异面直线,经过空间任意一点O,分别引直线a′∥a,b′∥b,则a′和b′所成的锐角(或直角)叫做异面直线a和b所成的角,其取值范围是:0°<θ≤90°.求解方法如下:解法一:平移法:根据定义,通过平移,找到异面直线所成的角θ;解含有θ的三角形,求出角θ的大小.平移的具体途径有:中位线、补形法等.解法二:向量法:设异面直线l1,l2的方向向量分别为,则l1与l2所成的角θ满足cos θ=.19、试题分析:设所求二面角的大小为,则,因为,所以而依题意可知,所以所以即所以,而,所以,故选B.考点:1.二面角的平面角;2.空间向量在解决空间角中的应用.20、试题分析:由于.所以平面.经过点作平面ABC的垂线垂足在AF上.所以A选项正确.由A可知B选项正确.当平面垂直于平面时,三棱锥的体积最大,所以C正确.因为,设.所以,当时,.所以异面直线与可能垂直.所以D选项不正确.考点:1.线面位置关系.2.面面的位置关系.3.体积公式.4.异面直线所成的角.5.空间想象力.。
最新人教版高中数学必修2课时同步测题(全册 共236页 附解析)
最新人教版高中数学必修2课时同步测题(全册共236页附解析)目录1.1 空间几何体的结构1.1.1 棱柱、棱锥、棱台的结构特征1.1.2 圆柱、圆锥、圆台、球、简单组合体的结构特征1.2 空间几何体的三视图和直观图1.2.1 中心投影与平行投影1.2.2 空间几何体的三视图1.2.3 空间几何体的直观图1.3 空间几何体的表面积与体积1.3.1 柱体、锥体、台体的表面积与体积1.3.2 球的体积和表面积章末复习课第一单元评估验收卷(一)第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.1.1 平面第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.1.2 空间中直线与直线之间的位置关系2.1.3 空间中直线与平面之间的位置关系2.1.4 平面与平面之间的位置关系2.2 直线、平面平行的判定及其性质2.2.1 直线与平面平行的判定2.2.2 平面与平面平行的判定2.2.3 直线与平面平行的性质2.2.4 平面与平面平行的性质2.3 直线、平面垂直的判定及其性质2.3.1 直线与平面垂直的判定2.3.2 平面与平面垂直的判定2.3.3 直线与平面垂直的性质2.3.4 平面与平面垂直的性质章末复习课第二单元评估验收卷(二)第三章直线与方程3.1 直线的倾斜角与斜率3.1.1 倾斜角与斜率3.1.2 两条直线平行与垂直的判定3.2 直线的方程3.2.1 直线的点斜式方程3.2.2 直线的两点式方程第一章空间几何体1.1 空间几何体的结构1.1.1 棱柱、棱锥、棱台的结构特征A级基础巩固一、选择题1.下列几何体中棱柱有()A.5个B.4个C.3个D.2个解析:由棱柱的定义及几何特征,①③为棱柱.答案:D2.对有两个面互相平行,其余各面都是梯形的多面体,以下说法正确的是()A.棱柱B.棱锥C.棱台D.一定不是棱柱、棱锥解析:根据棱柱、棱锥、棱台的特征,一定不是棱柱、棱锥.答案:D3.下列图形经过折叠可以围成一个棱柱的是()解析:A、B、C、中底面多边形的边数与侧面数不相等.答案:D4.由5个面围成的多面体,其中上、下两个面是相似三角形,其余三个面都是梯形,并且这些梯形的腰延长后能相交于一点,则该多面体是()A.三棱柱B.三棱台C.三棱锥D.四棱锥解析:根据棱台的定义可判断知道多面体为三棱台.答案:B5.某同学制作了一个对面图案均相同的正方形礼品盒,如图所示,则这个正方体礼品盒的表面展开图应该为(对面是相同的图案)()解析:其展开图是沿盒子的棱剪开,无论从哪个棱剪开,剪开的相邻面在展开在图中可以不相邻,但未剪开的相邻面在展开图中一定相邻,又相同的图案是盒子相对的面,展开后绝不能相邻.答案:A二、填空题6.如图所示,正方形ABCD中,E,F分别为CD,BC的中点,沿AE,AF,EF将其折成一个多面体,则此多面体是________.解析:折叠后,各面均为三角形,且点B、C、D重合为一点,因此该多面体为三棱锥(四面体).答案:三棱锥(四面体)7.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为________cm.解析:由题设,该棱柱为五棱柱,共5条侧棱.所以每条侧棱的长为605=12(cm).答案:128.①有两个面互相平行,其余各面都是平行四边形的几何体的侧棱一定不相交于一点,故一定不是棱台;②两个互相平行的面是平行四边形,其余各面是四边形的几何体不一定是棱台;③两个互相平行的面是正方形,其余各面是四边形的几何体一定是棱台.其中正确说法的个数为________.解析:①正确,因为具有这些特征的几何体的侧棱一定不相交于一点,故一定不是棱台;②正确;③不正确,当两个平行的正方形完全相等时,一定不是棱台.答案:29.根据如图所示的几何体的表面展开图,画出立体图形.解:图①是以ABCD为底面,P为顶点的四棱锥.图②是以ABCD和A1B1C1D1为底面的棱柱.其图形如图所示.B级能力提升1.如图所示,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定解析:如图所示,倾斜小角度后,因为平面AA1D1D∥平面BB1C1C,所以有水的部分始终有两个平面平行,而其余各面都易证是平行四边形(水面与两平行平面的交线)因此呈棱柱形状.答案:A2.一个正方体的六个面上分别标有字母A,B,C,D,E,F,下图是此正方体的两种不同放置,则与D面相对的面上的字母是________.解析:由图知,标字母C的平面与标有A、B、D、E的面相邻,则与D面相对的面为E面,或B面,若B面与D面相对,则A面与B面相对,这时图②不可能,故只能与D面相对的面上字母为B.答案:B3.如图所示,M是棱长为2 cm的正方体ABCD-A1B1C1D1的棱CC1的中点,求沿正方体表面从点A到点M的最短路程.解:若以BC为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为2 cm,3 cm,故两点之间的距离是13 cm.若以BB1为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为1,4,故两点之间的距离是17 cm.故沿正方体表面从点A到点M的最短路程是13 cm.第一章空间几何体1.1 空间几何体的结构1.1.2 圆柱、圆锥、圆台、球、简单组合体的结构特征A级基础巩固一、选择题1.下列几何体中是旋转体的是()①圆柱②六棱锥③正方体④球体⑤四面体A.①和⑤B.①C.③和④D.①和④解析:圆柱、球体是旋转体,其余均为多面体.答案:D2.如图所示的简单组合体的结构特征是()A.由两个四棱锥组合成的B.由一个三棱锥和一个四棱锥组合成的C.由一个四棱锥和一个四棱柱组合成的D.由一个四棱锥和一个四棱台组合成的解析:这个8面体是由两个四棱锥组合而成.答案:A3.下图是由哪个平面图形旋转得到的()解析:图中几何体由圆锥、圆台组合而成,可由A中图形绕图中虚线旋转360°得到.答案:A4.如图所示的几何体是从一个圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得到的.现用一个平面去截这个几何体,若这个平面平行于底面,那么截面图形为()解析:截面图形应为图C所示的圆环面.答案:C5.用一张长为8、宽为4的矩形硬纸卷成圆柱的侧面,则相应圆柱的底面半径是()A.2 B.2πC.2π或4πD.π2或π4解析:如图所示,设底面半径为r,若矩形的长8恰好为卷成圆柱底面的周长,则2πr=8,所以r=4π;同理,若矩形的宽4恰好为卷成圆柱的底面周长,则2πr=4,所以r=2π.所以选C.答案:C二、填空题6.等腰三角形绕底边上的高所在的直线旋转180°,所得几何体是________.解析:结合旋转体及圆锥的特征知,所得几何体为圆锥.答案:圆锥7.给出下列说法:①圆柱的母线与它的轴可以不平行;②圆锥的顶点、圆锥底面圆周上任意一点及底面圆的圆心三点的连线,都可以构成直角三角形;③在圆台的上、下两底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.其中正确的是____________(填序号).解析:由旋转体的形成与几何特征可知①③错误,②④正确.答案:②④8.如图是一个几何体的表面展成的平面图形,则这个几何体是__________.答案:圆柱三、解答题9.如图所示的物体是运动器材——空竹,你能描述它的几何特征吗?解:此几何体是由两个大圆柱、两个小圆柱和两个小圆台组合而成的.10.如图所示,用一个平行于圆锥SO底面的平面截这个圆锥,截得圆台上、下底面的半径分别2 cm和5 cm,圆台的母线长是12 cm,求圆锥SO的母线长.解:如图,过圆台的轴作截面,截面为等腰梯形ABCD,由已知可得上底半径O1A=2 cm,下底半径OB=5 cm,且腰长AB=12 cm.设截得此圆台的圆锥的母线长为l,则由△SAO1∽△SBO,可得l-12 l=25,所以l=20 cm.故截得此圆台的圆锥的母线长为20 cm.B级能力提升1.如图所示的平面中阴影部分绕中间轴旋转一周,形成的几何体形状为()A.一个球体B.一个球体中间挖出一个圆柱C.一个圆柱D.一个球体中间挖去一个长方体解析:外面的圆旋转形成一个球,里面的长方形旋转形成一个圆柱.所有形成的几何为一个球体挖出一个圆柱.答案:B2.一个半径为5 cm的球,被一平面所截,球心到截面圆心的距离为4 cm,则截面圆面积为__________cm2.解析:如图所示,过球心O作轴截面,设截面圆的圆心为O1,其半径为r.由球的性质,OO1⊥CD.在Rt△OO1C中,R=OC=5,OO1=4,则O1C=3,所以截面圆的面积S=π·r2=π·O1C2=9π.答案:9π3.如图,底面半径为1,高为2的圆柱,在A点有一只蚂蚁,现在这只蚂蚁要围绕圆柱由A点爬到B点,问蚂蚁爬行的最短距离是多少?解:把圆柱的侧面沿AB剪开,然后展开成为平面图形——矩形,如图所示,连接AB′,即为蚂蚁爬行的最短距离.因为AB=A′B′=2,AA′为底面圆的周长,且AA′=2π×1=2π.所以AB′=A′B′2+AA′2=4+(2π)2=21+π2,所以蚂蚁爬行的最短距离为21+π2.第一章空间几何体1.2 空间几何体的三视图和直观图1.2.1 中心投影与平行投影1.2.2 空间几何体的三视图A级基础巩固一、选择题1.以下关于投影的叙述不正确的是()A.手影就是一种投影B.中心投影的投影线相交于点光源C.斜投影的投影线不平行D.正投影的投影线和投影面垂直解析:平行投影的投影线互相平行,分为正投影和斜投影两种,故C错.2.如图所示,水平放置的圆柱形物体的三视图是()答案:A3.如图,在直角三角形ABC,∠ACB=90°,△ABC绕边AB 所在直线旋转一周形成的几何体的正视图为()解析:由题意,该几何体是两个同底的圆锥组成的简单组合体,且上部分圆锥比底部圆锥高,所以正视图应为选项B.答案:B4.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是()A.球B.三棱锥C.正方体D.圆柱解析:球的三视图都是圆;三棱锥的三视图都是全等的三角形;正方体的三视图都是正方形;圆柱的底面放置在水平面上,则其俯视图是圆,正视图是矩形,故几何体不可能是圆柱.5.一个四棱锥S-ABCD,底面是正方形,各侧棱长相等,如图所示,其正视图是一等腰三角形,其腰长与图中等长的线段是()A.AB B.SBC.BC D.SE解析:正视图的投影面应是过点E与底面ABCD垂直的平面,所以侧棱SB在投影面上的投影为线段SE.答案:D二、填空题6.下列几何体各自的三视图中,有且仅有两个视图相同的是________(填序号).①正方体②圆锥③三棱台④正四棱锥解析:在各自的三视图中,①正方体的三个视图都相同;②圆锥有两个视图相同;③三棱台的三个视图都不同;④正四棱锥有两个视图相同.所以满足仅有两个视图相同的是②④.答案:②④7.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为:①长方形;②正方形;③圆.其中满足条件的序号是________.答案:②③8.下图中的三视图表示的几何体是________.解析:根据三视图的生成可知,该几何体为三棱柱.答案:三棱柱三、解答题9.根据三视图(如图所示)想象物体原形,指出其结构特征,并画出物体的实物草图.解:由俯视图知,该几何体的底面是一直角梯形;由正视图知,该几何体是一四棱锥,且有一侧棱与底面垂直.所以该几何体如图所示.10.画出图中3个图形的指定视图.解:如图所示.B级能力提升1.如图所示为一个简单几何体的三视图,则其对应的实物图是()答案:A2.已知正三棱锥V-ABC的正视图、俯视图如图所示,它的侧棱VA=2,底面的边AC=3,则由该三棱锥得到的侧视图的面积为________.解析:正三棱锥V-ABC的侧视图不是一个等腰三角形,而是一个以一条侧棱、该侧棱所对面的斜高和底面正三角形的一条高构成的三角形,如侧视图所示(其中VF是斜高),由所给数据知原几何体的高为3,且CF=3 2.故侧视图的面积为S=12×32×3=334.答案:33 43.如图所示的是某两个几何体的三视图,试判断这两个几何体的形状.解:①由俯视图知该几何体为多面体,结合正视图和侧视图知,几何体应为正六棱锥.②由几何体的三视图知该几何体的底面是圆,相交的一部分是一个与底面同圆心的圆,正视图和侧视图是由两个全等的等腰梯形组成的.故该几何体是两个圆台的组合体.第一章空间几何体1.2 空间几何体的三视图和直观图1.2.3 空间几何体的直观图A级基础巩固一、选择题1.关于斜二测画法所得直观图,以下说法正确的是()A.等腰三角形的直观图仍是等腰三角形B.正方形的直观图为平行四边形C.梯形的直观图不是梯形D.正三角形的直观图一定为等腰三角形解析:由直观图的性质知B正确.答案:B2.利用斜二测画法画边长为3 cm的正方形的直观图,正确的是图中的()解析:正方形的直观图应是平行四边形,且相邻两边的边长之比为2∶1.答案:C3.如图,用斜二测画法画一个水平放置的平面图形为一个正方形,则原来图形的形状是()解析:直观图中正方形的对角线为2,故在平面图形中平行四边形的高为22,只有A项满足条件,故A正确.答案:A4.已知两个圆锥,底面重合在一起,其中一个圆锥顶点到底面的距离为2 cm,另一个圆锥顶点到底面的距离为3 cm,则其直观图中这两个顶点之间的距离为()A.2 cm B.3 cm C.2.5 cm D.5 cm解析:因为这两个顶点连线与圆锥底面垂直,现在距离为5 cm,而在直观图中根据平行于z轴的线段长度不变,仍为5 cm.答案:D5.若一个三角形采用斜二测画法,得到的直观图的面积是原三角形面积的()A.24B.2倍 C.22 D.2倍解析:底不变,只研究高的情况即可,此结论应识记.答案:A二、填空题6.如图所示,△A′B′C′是△ABC的水平放置的直观图,A′B′∥y轴,则△ABC是________三角形.解析:由于A′B′∥y轴,所以在原图中AB∥y轴,故△ABC为直角三角形.答案:直角7.已知△ABC的直观图如图所示,则△ABC的面积为________.解析:△ABC中,∠A=90°,AB=3,AC=6,所以S=12×3×6=9.答案:98.如图所示,水平放置的△ABC的斜二测直观图是图中的△A′B′C′,已知A′C′=6,B′C′=4,则AB边的实际长度是_______.解析:在原图中AC=6,BC=4×2=8,∠AOB=90°,所以AB=62+82=10.答案:10三、解答题9.如图所示,已知水平放置的平面图形的直观图是一等腰直角三角形ABC,且AB=BC=1,试画出它的原图形.解:(1)在如图所示的图形中画相应的x轴、y轴,使∠xOy=90°(O与A′重合);(2)在x轴上取C′,使A′C′=AC,在y轴上取B′,使A′B′=2AB;(3)连接B′C′,则△A′B′C′就是原图形.10.画出底面是正方形、侧棱均相等的四棱锥的直观图(棱锥的高不做具体要求).解:画法:(1)画轴.画Ox轴、Oy轴、Oz轴,∠xOy=45°(135°),∠xOz=90°,如图.(2)画底面.以O为中心在xOy平面内,画出底面正方形的直观图ABCD.(3)画顶点.在Oz轴上截取OP,使OP的长度是四棱锥的高.(4)成图.顺次连接PA、PB、PC、PD,并擦去辅助线,得四棱锥的直观图.B级能力提升1.水平放置的△ABC有一边在水平线上,它的斜二测直观图是正△A′B′C′,则△ABC为()A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能解析:如下图所示,斜二测直观图还原为平面图形,故△ABC 是钝角三角形.答案:C2.如图,Rt△O′A′B′是一平面图形的直观图,直角边O′B′=1,则这个平面图形的面积是________.解析:因为O′B=1,所以O′A′=2,所以在Rt△OAB中,∠AOB=90°,OB=1,OA=2 2.所以S△AOB=12×1×22= 2.答案:23.如图是一个空间几何体的三视图,试用斜二测画法画出它的直观图.解:根据三视图可以想象出这个几何体是六棱台.(1)画轴.如图①,画x轴、y轴、z轴,使∠xOy=45°,∠xOz =90°.(2)画两底面,由三视图知该几何体为六棱台,用斜二测画法画出底面正六边形ABCDEF,在z轴上截取OO′,使OO′等于三视图中的相应高度,过O′作Ox的平行线O′x′,Oy的平行线O′y′,利用O′x与O′y′画出底面正六边形A′B′C′D′E′F′.(3)成图.连接A′A,B′B,C′C,D′D,E′E,F′F,整理得到三视图表示的几何体的直观图,如图②.第一章空间几何体1.3 空间几何体的表面积与体积1.3.1 柱体、锥体、台体的表面积与体积A级基础巩固一、选择题1.轴截面是正三角形的圆锥称作等边圆锥,则等边圆锥的侧面积是底面积的( )A .4倍B .3倍 C.2倍D .2倍解析:设轴截面正三角形的边长为2a ,所以S 底=πa 2,S 侧=πa ·2a =2πa 2,因此S 侧=2S 底. 答案:D2.如图所示,ABC A ′B ′C ′是体积为1的棱柱,则四棱锥C -AA ′B ′B 的体积是( )A.13B.12C.23D.34解析:因为V C A ′B ′C ′=13V 柱=13,所以V C AA ′B ′B =1-13=23.答案:C3.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的全面积为( )A .3πB .33πC .6πD .9π解析:由于圆锥的轴截面是等边三角形,所以2r =l , 又S 轴=12×l 2×sin 60°=34l 2=3,所以l =2,r =1.所以S圆锥表=πr2+πrl=π+2π=3π.故选A.答案:A4.(2015·课标全国Ⅰ卷)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依恒内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图所示,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放米约有()A.14斛B.22斛C.36斛D.66斛解析:由l=14×2πr=8得圆锥底面的半径r=16π≈163,所以米堆的体积V=14×13πr2h=14×2569×5=3209(立方尺),所以堆放的米有3209÷1.62≈22(斛).答案:B5.已知正方体的8个顶点中,有4个为侧面是等边三角形的一三棱锥的顶点,则这个三棱锥与正方体的表面积之比为()A.1∶ 2 B.1∶ 3C.2∶ 2 D.3∶ 6解析:棱锥B′ ACD′为适合条件的棱锥,四个面为全等的等边三角形,设正方体的边长为1,则B′C=2,S△B′AC=3 2.三棱锥的表面积S 锥=4×32=23,又正方体的表面积S 正=6. 因此S 锥∶S 正=23∶6=1∶ 3. 答案:B 二、填空题6.若一个圆台的正视图如图所示,则其侧面积为________.解析:由正视图可知,该圆台的上、下底面圆的半径分别为1,2,其高为2,所以其母线长l =⎝ ⎛⎭⎪⎫4-222+22=5, 所以S 侧=π(1+2)×5=35π. 答案:35π7.下图是一个空间几何体的三视图,这个几何体的体积是________.解析:由图可知几何体是一个圆柱内挖去一个圆锥所得的几何体,V =V 圆柱-V 圆锥=π×22×3-13π×22×3=8π.答案:8π8.(2015·福建卷)某几何体的三视图如图所示,则该几何体的表面积等于________.解析:由三视图知,该几何体是直四棱柱,底面是直角梯形,且底面梯形的周长为4+ 2.则S侧=8+22,S底=2×(1+2)2×1=3.故S表=S侧+S底=11+2 2.答案:11+22三、解答题9.已知圆柱的侧面展开图是长、宽分别为2π和4π的矩形,求这个圆柱的体积.解:设圆柱的底面半径为R,高为h,当圆柱的底面周长为2π时,h=4π,由2πR=2π,得R=1,所以V圆柱=πR2h=4π2.当圆柱的底面周长为4π时,h=2π,由2πR=4π,得R=2,所以V圆柱=πR2h=4π·2π=8π2.所以圆柱的体积为4π2或8π2.10.一个正三棱柱的三视图如图所示(单位:cm),求这个正三棱柱的表面积与体积.解:由三视图知直观图如图所示,则高AA′=2 cm,底面高B′D′=23cm ,所以底面边长A ′B ′=23×23=4(cm).一个底面的面积为12×23×4=43(cm 2).所以表面积S =2×43+4×2×3=24+83(cm 2), V =43×2=83(cm 3).所以表面积为(24+83)cm 2,体积为83(cm 3).B 级 能力提升1.某几何体的三视图如图所示,俯视图是由一个半圆与其直径组成的图形,则此几何体的体积是( )A.203π B.103π C .6πD.163π 解析:该几何体的上方是以2为底面圆的半径,高为2的圆锥的一半,下方是以2为底面圆的半径,高为1的圆柱的一半,其体积为V =π×22×12+12×13π×22×2=2π+43π=103π.答案:B2.(2015·江苏卷)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为__________.解析:底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱的总体积为13π×52×4+π×22×8=196π3.设新的圆锥和圆柱的底面半径为r ,则13π·r 2×4+π·r 2×8=28π3r 2=196π3,解得r =7.答案:73.某几何体的三视图如图所示(单位:cm),求该几何体的体积.解:由三视图知,该几何体是一个四棱柱与一个四棱锥的组合体. V 四棱柱=23=8,V 四棱锥=13×22×2=83.故几何体的体积V =V 四棱柱+V 四棱锥=8+83 =323(cm 3).第一章 空间几何体 1.3 空间几体的表面积与体积 1.3.2 球的体积和表面积A 级 基础巩固一、选择题1.若一个球的体积扩大到原来的27倍,则它的表面积扩大到原来的( )A .3倍B .3 3 倍C .9倍D .9 3 倍解析:由V ′=27 V ,得R ′=3R ,R ′R=3则球的表面积比S ′∶S =⎝ ⎛⎭⎪⎫R ′R 2=9. 答案:C2.把3个半径为R 的铁球熔成一个底面半径为R 的圆柱,则圆柱的高为( )A .RB .2RC .3RD .4R 解析:设圆柱的高为h ,则πR 2h =3×43πR 3,所以h =4R . 答案:D3.如图所示,是某几何体的三视图,则该几何体的体积为( )A .9π+42B .36π+18 C.92π+12 D.92π+18解析:由三视图可知该几何体是一个长方体和球构成的组合体,其体积V=43π⎝⎛⎭⎪⎫323+3×3×2=92π+18.答案:D4.设长方体的长、宽、高分别为2a,a,a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa2解析:设该球的半径为R,所以(2R)2=(2a)2+a2+a2=6a2,即4R2=6a2.所以球的表面积为S=4πR2=6πa2.答案:B5.下图是一个几何体的三视图,根据图中数据,可得几何体的表面积是()A.4π+24 B.4π+32C.22πD.12π解析:由三视图可知,该几何体上部分为半径为1的球,下部分为底边长为2,高为3的正四棱柱,几何体的表面积为4π+32.答案:B二、填空题6.将一钢球放入底面半径为3 cm 的圆柱形玻璃容器中,水面升高4 cm ,则钢球的半径是________.解析:圆柱形玻璃容器中水面升高4cm ,则钢球的体积为V =π×32×4=36π,即有43πR 3=36π,所以R =3.答案:3 cm7.两个球的表面积之差为48π,它们的大圆周长之和为12π,则这两个球的半径之差为________.解析:由题意设两球半径分别为R 、r (R >r ),则:⎩⎪⎨⎪⎧4πR 2-4πr 2=48π2πR +2πr =12π即⎩⎪⎨⎪⎧R 2-r 2=12R +r =6.,所以R -r =2. 答案:28.已知某几何体的三视图如图所示,则该几何体的体积为________.解析:由三视图可知几何体为组合体,上方是半径为1的球,下方是长方体,其底面是边长为2的正方形,侧棱长为4,故其体积V =43×π×13+2×2×4=16+4π3. 答案:16+4π3三、解答题9.某组合体的直观图如图所示,它的中间为圆柱形,左右两端均为半球形,若图中r =1,l =3,试求该组合体的表面积和体积.解:组合体的表面积S =4πr 2+2πrl =4π×12+2π×1×3=10π. 因为圆柱的体积V 圆柱=πr 2l =π×12×3=3π,又两个半球的体积2V 半球=43πr 3=43π, 因此组合体的体积V =3π+43π=133π. 10.如图,一个圆柱形的玻璃瓶的内半径为3 cm ,瓶里所装的水深为8 cm ,将一个钢球完全浸入水中,瓶中水的高度上升到8.5 cm ,求钢球的半径.解:设球的半径为R ,由题意可得43πR 3=π×32×0.5, 解得:R =1.5 (cm),所以所求球的半径为1.5 cm.B 级 能力提升1.用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( )A.8π3B.82π3 C .82π D.32π3解析:截面面积为π,则该小圆的半径为1,设球的半径为R ,则R 2=12+12=2,所以R =2,V =43πR 3=82π3.答案:B2.边长为42的正方形ABCD 的四个顶点在半径为5的球O 的表面上,则四棱锥O -ABCD 的体积是________.解析:因为正方形ABCD 外接圆的半径r =(42)2+(42)22=4.又因为球的半径为5, 所以球心O 到平面ABCD 的距离d =R 2-r 2=3,所以V O ABCD =13×(42)3×3=32. 答案:323.体积相等的正方体、球、等边圆柱(轴截面为正方形的圆柱)的表面积分别是S 1,S 2,S 3,试比较它们的大小.解:设正方体的棱长为a ,球的半径为R ,等边圆柱的底面半径为r ,则S 1=6a 2,S 2=4πR 2,S 3=6πr 2.由题意知,43πR 3=a 3=πr 2·2r , 所以R =334πa ,r =312πa , 所以S 2=4π⎝⎛⎭⎪⎪⎫334πa 2=4π·3916π2a 2=336πa 2, S 3=6π⎝⎛⎭⎪⎪⎫312πa 2=6π·314π2a 2=354πa 2, 所以S 2<S 3.又6a 2>3312πa 2=354πa 2,即S 1>S 3. 所以S 1,S 2,S 3的大小关系是S 2<S 3<S 1.章末复习课[整合·网络构建][警示·易错提醒]1.台体可以看成是由锥体截得的,易忽视截面与底面平行且侧棱(母线)延长后必交于一点.2.空间几何体不同放置时其三视图不一定相同.3.对于简单组合体,若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,易忽视虚线的画法.4.求组合体的表面积时:组合体的衔接部分的面积问题易出错.5.由三视图计算几何体的表面积与体积时,由于几何体的还原不准确及几何体的结构特征认识不准易导致失误.6.易混侧面积与表面积的概念.专题1空间几何体的三视图与直观图三视图是立体几何中的基本内容,能根据三视图识别其所表示的立体模型,并能根据三视图与直观图所提供的数据解决问题.主要考查形式:(1)由三视图中的部分视图确定其他视图;(2)由三视图还原几何体;(3)三视图中的相关量的计算.其中(3)是本章的难点,也是重点之一,解这类题的关键是准确地将三视图中的数据转化为几何体中的数据.[例1](1)若一个正三棱柱的三视图如图所示,则这个正三棱柱的高和底面边长分别为()A.2,23B.22,2C.4,2D.2,4(2)(2016·全国Ⅲ卷)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+36 5 B.54+18 5 C.90 D.81解析:(1)由三视图的画法规则知,正视图与俯视图长度一致,正视图与侧视图高度一致,俯视图与侧视图宽度一致.所以侧视图中2为正三棱柱的高,23为底面等边三角形的高,所以底面等边三角形边长为4.(2)由三视图可知,该几何体的底面是边长为3的正方形,高为6,侧棱长为35,则该几何体的表面积S=2×32+2×3×35+2×3×6=54+18 5.故选B.答案:(1)D(2)B。
高中数学必修二第一章《空间几何体》单元练习题(含答案)
高中数学必修二第一章《空间几何体》单元练习题(30分钟50分)一、选择题(每小题3分,共18分)1.斜四棱柱的侧面是矩形的面最多有( )A.0个B.1个C.2个D.3个2.所给三视图表示的简单组合体的结构特征是( )A.由圆柱和圆锥组成B.由圆柱和棱锥组成C.由棱柱和圆锥组成D.由圆台和圆锥组成3.一个四面体的三视图如图所示,则该四面体的表面积是( )A.1+B.2+C.1+2D.24.圆柱的轴截面是正方形,面积是S,则它的侧面积是( )A.SB.πSC.2πSD.4πS5.若圆台两底面周长的比是1∶4,过高的中点作平行于底面的平面,则圆台被分成两部分的体积比是 ( )A.B.C.1D.6.如图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为,则该几何体的俯视图可以是 ( )二、填空题(每小题4分,共12分)7.圆柱形容器内盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是 cm.8.在三棱柱ABC-A 1B 1C 1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M,N,P 分别是AB,BC,B 1C 1的中点,则三棱锥P-A 1MN 的体积是 .9.用一张4×8(cm 2)的矩形硬纸卷成圆柱的侧面,接头忽略不计,则轴截面面积是 cm 2.三、解答题(每小题10分,共20分)10.已知四棱锥P-ABCD,其三视图和直观图如图,求该四棱锥的体积.11.如图所示,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器厚度,则球的体积是多少?高中数学必修二第一章《空间几何体》单元练习题(30分钟50分)一、选择题(每小题3分,共18分)1.斜四棱柱的侧面是矩形的面最多有( )A.0个B.1个C.2个D.3个【解析】选C.根据棱柱的结构特征不可能有奇数个,因此最多2个.2.所给三视图表示的简单组合体的结构特征是( )A.由圆柱和圆锥组成B.由圆柱和棱锥组成C.由棱柱和圆锥组成D.由圆台和圆锥组成【解析】选A.由三视图可知此组合体的上方是圆柱,下方是圆锥,故选A.3.(2015·安徽高考)一个四面体的三视图如图所示,则该四面体的表面积是( )A.1+B.2+C.1+2D.2【解析】选B.由该四面体的三视图可知,该四面体的直观图如图所示:其中侧面PAC⊥底面ABC,且△PAC≌△BAC,由三视图中所给数据可知PA=PC=AB=BC=,取AC的中点O,连接PO,BO,则在Rt△POB中,PO=BO=1,可得PB=,所以S=2××2+×2×2=2+.4.(2015·西安高一检测)圆柱的轴截面是正方形,面积是S,则它的侧面积是( )A.SB.πSC.2πSD.4πS【解析】选B.设圆柱底面半径为r,则S=4r2,S侧=2πr·2r=4πr2=πS.5.若圆台两底面周长的比是1∶4,过高的中点作平行于底面的平面,则圆台被分成两部分的体积比是( )A. B. C.1 D.【解析】选D.设上、下底半径分别为r1,r2,过高中点的圆面半径为r0,由题意得r2=4r1,r0=r1,所以==.6.(2015·威海高一检测)如图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为,则该几何体的俯视图可以是( )【解析】选C.当俯视图为A中正方形时,几何体为棱长为1的正方体,体积为1;当俯视图为B中圆时,几何体为底面半径为,高为1的圆柱,体积为;当俯视图为C 中三角形时,几何体为三棱柱,且底面为直角边长为1的等腰直角三角形,高为1,体积为;当俯视图为D 中扇形时,几何体为圆柱的,且体积为. 二、填空题(每小题4分,共12分)7.圆柱形容器内盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是 cm.【解析】设球的半径为rcm,则πr 2×8+πr 3×3=πr 2×6r.解得r=4. 答案:48.(2015·四川高考)在三棱柱ABC-A 1B 1C 1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M,N,P 分别是AB,BC,B 1C 1的中点,则三棱锥P-A 1MN 的体积是 .【解析】V=××=.答案:9.用一张4×8(cm 2)的矩形硬纸卷成圆柱的侧面,接头忽略不计,则轴截面面积是 cm 2.【解析】以4为高卷起,则2πr=8,所以2r=,所以轴截面面积为cm 2;若以8为高卷起,则2πR=4,所以2R=,所以轴截面面积为cm 2.答案:三、解答题(每小题10分,共20分)10.已知四棱锥P-ABCD,其三视图和直观图如图,求该四棱锥的体积.【解析】由三视图知底面ABCD为矩形,AB=2,BC=4.顶点P在面ABCD内的射影为BC中点E,即棱锥的高为2,则体积V P-ABCD=S ABCD×PE=×2×4×2=.11.如图所示,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器厚度,则球的体积是多少?【解析】设球半径为Rcm,根据已知条件知正方体的上底面与球相交所得截面圆的半径为4cm,球心到截面的距离为(R-2)cm,所以由42+(R-2)2=R2,得R=5,所以球的体积V=πR3=π×53=(cm3).。
必修二-1.1空间几何体的结构同步练习和详细答案
1.1 空间几何体的结构柱、锥、台、球的结构特征知识总结:1.下列几何体是棱柱的有()图2A.5个B.4个C.3个D.2个2.下列几个命题中,①两个面平行且相似,其余各面都是梯形的多面体是棱台;②有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台;③各侧面都是正方形的四棱柱一定是正方体;④分别以矩形两条不等的边所在直线为旋转轴,将矩形旋转,所得到的两个圆柱是两个不同的圆柱.其中正确的有__________个.()A.1B.2C.3D.43.下列命题中正确的是()A.以直角三角形的一直角边为轴旋转所得的旋转体是圆锥B.以直角梯形的一腰为轴旋转所得的旋转体是圆台C.圆柱、圆锥、圆台都有两个底面D.圆锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥底面圆的半径4.一个无盖的正方体盒子展开后的平面图,如图14所示,A、B、C是展开图上的三点,则在正方体盒子中∠ABC=____________.图145.有一粒正方体的骰子每一个面有一个英文字母,如图16所示.从3种不同角度看同一粒骰子的情况,请问H反面的字母是___________.图166.长方体AC1的长、宽、高分别为3、2、1,从A到C1沿长方体的表面的最短距离为. 【变式训练】如图10所示,已知正三棱柱ABC—A1B1C1的底面边长为1,高为8,一质点自A点出发,沿着三棱柱的侧面绕行两周..到达A1点的最短路线的长为_________.图10图11 图127.正方体的截平面不可能...是①钝角三角形;②直角三角形;③菱形;④正五边形;⑤正六边形.下述选项正确的是:()A.①②⑤B.①②④C.②③④D.③④⑤8.圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积等于392 cm2,母线与轴的夹角是45°,求这个圆台的高、母线长和底面半径.9.如图21,甲所示为一几何体的展开图.图21(1)沿图中虚线将它们折叠起来,是哪一种几何体?试用文字描述并画出示意图.(2)需要多少个这样的几何体才能拼成一个棱长为6 cm的正方体?请在图乙棱长为6 cm的正方体ABCD—A1B1C1D1中指出这几个几何体的名称.简单组合体的结构特征知能训练1.请描述如图1所示的组合体的结构特征.图12.如图2所示,一个圆环绕着同一个平面内过圆心的直线l旋转180°,想象并说出它形成的几何体的结构特征.图23.连接正方体的相邻各面的中心(所谓中心是指各面所在正方形的两条对角线的交点),所得的一个几何体是几面体?并画图表示该几何体.4.已知如图4所示,梯形ABCD中,AD∥BC,且AD<BC,当梯形ABCD绕BC所在直线旋转一周时,其他各边旋转围成的一个几何体,试描述该几何体的结构特征.图45.如图7所示,已知梯形ABCD中,AD∥BC,且AD<BC,当梯形ABCD绕AD所在直线旋转一周时,其他各边旋转围成的一个几何体,试描述该几何体的结构特征.图76.如图10,说出下列物体可以近似地看作由哪几种几何体组成?图107.图11是一个奖杯,可以近似地看作由哪几种几何体组成?图111.1 空间几何体的结构柱、锥、台、球的结构特征1、分析:棱柱的结构特征有三方面:有两个面互相平行;其余各面是平行四边形;这些平行四边形面中,每相邻两个面的公共边都互相平行.当一个几何体同时满足这三方面的结构特征时,这个几何体才是棱柱.很明显,几何体②④⑤⑥均不符合,仅有①③符合.答案:D2、分析:①中两个底面平行且相似,其余各面都是梯形,并不能保证侧棱会交于一点,所以①是错误的;②中两个底面互相平行,其余四个面都是等腰梯形,也有可能两底面根本就不相似,所以②不正确;③中底面不一定是正方形,所以③不正确;很明显④是正确的.答案:A3、分析:以直角梯形垂直于底的腰为轴,旋转所得的旋转体才是圆台,所以B不正确;圆锥仅有一个底面,所以C不正确;圆锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥的母线长,所以D不正确.很明显A 正确. 答案:A4、分析:如图15所示,折成正方体,很明显点A 、B 、C 是上底面正方形的三个顶点, 则∠ABC=90°.图15答案:90°5、分析:正方体的骰子共有6个面,每个面都有一个字母,从每一个图中都看到有公共顶点的三个面,与标有S 的面相邻的面共有四个,由这三个图,知这四个面分别标有字母H 、E 、O 、p 、d ,因此只能是标有“p”与“d”的面是同一个面,p 与d 是一个字母;翻转图②,使S 面调整到正前面,使p 转成d ,则O 为正下面,所以H 的反面是O. 答案:O6、解:如图3,在长方体ABCD —A 1B 1C 1D 1中,AB=3,BC=2,BB 1=1. 如图4所示,将侧面ABB 1A 1和侧面BCC 1B 1展开, 则有AC 1=261522=+,即经过侧面ABB 1A 1和侧面BCC 1B 1时的最短距离是26;如图5所示,将侧面ABB 1A 1和底面A 1B 1C 1D 1展开,则有AC 1=233322=+,即经过侧面ABB 1A 1和底面A 1B 1C 1D 1时的最短距离是23;如图6所示,将侧面ADD 1A 1和底面A 1B 1C 1D 1展开,则有AC 1=522422=+,即经过侧面ADD 1A 1和底面A 1B 1C 1D 1时的最短距离是52. 由于23<52,23<26,所以由A 到C 1在正方体表面上的最短距离为23.【变式】分析:将正三棱柱ABC —A 1B 1C 1沿侧棱AA 1展开,其侧面展开图如图11所示,则沿着三棱柱的侧面绕行两周..到达A 1点的最短路线的长就是图11中AD+DA 1.延长A 1F 至M ,使得A 1F=FM ,连接DM ,则A 1D=DM ,如图12所示.则沿着三棱柱的侧面绕行两周..到达A 1点的最短路线的长就是图12中线段AM 的长.在图12中,△AA 1M 是直角三角形,则AM=222121)111111(8++++++=+M A AA =10.分析:正方体的截平面可以是锐角三角形、等腰三角形、等边三角形,但不可能是钝角三角形、直角三角形(证明略);对四边形来讲,可以是梯形(等腰梯形)、平行四边形、菱形、矩形,但不可能是直角梯形(证明略);对五边形来讲,不可能是正五边形(证明略);对六边形来讲,可以是六边形(正六边形). 答案:B8、分析:这类题目应该选取轴截面研究几何关系.解:圆台的轴截面如图17, 设圆台上、下底面半径分别为x cm 和3x cm ,延长AA 1交OO 1的延长线于S. 在Rt △SOA 中,∠ASO=45°,则∠SAO=45°.所以SO=AO=3x.所以OO 1=2x. 又21(6x+2x )·2x=392,解得x=7, 所以圆台的高OO 1=14 cm ,母线长l=2OO 1=214cm ,而底面半径分别为7 cm 和21 cm, 即圆台的高14 cm ,母线长214cm ,底面半径分别为7 cm 和21 cm.9、答案:(1)有一条侧棱垂直于底面且底面为正方形的四棱锥,如图22甲所示.图22(2)需要3个这样的几何体,如图22乙所示.分别为四棱锥:A 1—CDD 1C 1,A 1—ABCD ,A 1—BCC 1B 1.简单组合体的结构特征1、解:图1(1)是由一个圆锥和一个圆台拼接而成的组合体;图1(2)是由一个长方体截去一个三棱锥后剩下的部分得到的组合体; 图1(3)是由一个圆柱挖去一个三棱锥剩下的部分得到的组合体. 2、【变式】答案:一个大球内部挖去一个同球心且半径较小的球.3、解:如图3(1),正方体ABCD —A 1B 1C 1D 1,O 1、O 2、O 3、O4、O5、O 6分别是各表面的中心.由点O 1、O 2、O 3、O 4、O 5、O 6组成了一个八面体,而且该八面体共有6个顶点,12条棱.该多面体的图形如图3(2)所示.4、解:如图5所示,旋转所得的几何体是两个圆锥和一个圆柱拼接成的组合体.5、答案:如图8所示,旋转所得的几何体是一个圆柱挖去两个圆锥后剩余部分而成的组合体.6、答案:图10(1)中的几何体可以看作是由一个圆柱和一个圆锥拼接而成;图10(2)中的螺帽可以近似看作是一个正六棱柱中挖掉一个圆柱构成的组合体.7、答案:奖杯的底座是一个正棱台,底座的上面是一个正四棱柱,奖杯的最上 部,在正棱柱上底面的中心放着一个球.。
高一数学必修2__1.1空间几何体的结构(练习题)
必修2 1.1空间几何体的结构(练习题)一、选择题1.在棱柱中()A.只有两个面平行 B.所有的棱都平行C.所有的面都是平行四边形 D.两底面平行,且各侧棱也互相平行2.将图1所示的三角形线直线l旋转一周,可以得到如图2所示的几何体的是哪一个三角形()3.若一个平行六面体的四个侧面都是正方形,则这个平行六面体是()A.正方体 B.正四棱锥C.长方体D.直平行六面体4.下面命题中,正确的是()①底面是正方形,侧面都是等腰三角形的棱锥是正四棱锥;②对角线相等的四棱柱必是直棱柱;③底面边长相等的直四棱柱为正四棱柱;④四个面都是全等的三角形的几何体是正四面体5.如图一个封闭的立方体,它6个表面各标出1、2、3、4、5、6这6个数字,现放成下面3个不同的位置,则数字l、2、3对面的数字是()A.4、5、6 B.6、4、5 C.5、4、6 D.5、6、46.如图,能推断这个几何体可能是三棱台的是()A.A1B1=2,AB=3,B1C1=3,BC=4B.A1B l=1,AB=2,B l C l=1.5,BC=3,A1C1=2,AC=3C.A l B l=1,AB=2,B1C l=1.5,BC=3,A l C l=2,AC=4D.AB=A1B1,BC=B1C1,CA=C1A17.有下列命题(1)在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;(2)圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;(3)在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;(4)圆柱的任意两条母线所在的直线是互相平行的.其中正确的是()A.(1)(2) B.(2)(3) C.(1)(3) D.(2)(4)8.下列命题中错误的是()A.圆柱的轴截面是过母线的截面中面积最大的一个B.圆锥的轴截面是所有过顶点的截面中面积最大的一个C.圆台的所有平行于底面的截面都是圆D.圆锥所有的轴截面是全等的等腰三角形9.一个三棱锥四个面中,是直角三角形的最多有()A.1个 B.2个 C.3个 D.4个10.图,这是一个正方体的表面展开图,若把它再折回成正方体后,有下列命题:①点H与点C重合;②点D与点M与点R重合;③点B与点Q重合;④点A与点S重合.其中正确命题的序号是_______________.(注:把你认为正确的命题的序号都填上)11.高为H的水瓶中注水,注满为止,如果注水量V与水深h的函数关系的图象如图所示,那么水瓶的形状是_______________.三、解答题12.察以下几何体的变化,通过比较,说出他们的特征.13.一个圆锥截成圆台,已知圆台的上下底面半径的比是1∶4,母线长为10cm,求圆锥的母线长__________.。
高中数学必修2(人教A版)第一章几何空间体1.1知识点总结含同步练习及答案
描述:例题:描述:高中数学必修2(人教A版)知识点总结含同步练习题及答案第一章 空间几何体 1.1 空间几何体的结构一、学习任务认识柱、锥、台、球及其简单组合体的结构特征,能运用这些结构特征描述现实生活中简单物体的结构.二、知识清单典型空间几何体空间几何体的结构特征 组合体展开图 截面分析三、知识讲解1.典型空间几何体空间几何体的概念只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.2.空间几何体的结构特征多面体由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点;连接不在同一个面上的两个顶点的线段叫做多面体的对角线.按多面体的面数可把多面体分为四面体、五面体、六面体.其中,四个面均为全等的正三角形的四面体叫做正四面体.旋转体由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.这条定直线叫做旋转体的轴.棱柱的结构特征一般地,有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱(prism).棱柱中,两个互相平行的面叫做底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的用一个平行于棱锥底面的平面去截棱锥,得到两个几何体,一个是______,另一个是______.解:棱锥;棱台.⋯⋯余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的顶点.底面是三角形、四边形、五边形的棱柱分别叫做三棱柱、四棱柱、五棱柱,可以用表示底面各顶点的字母或一条对角线端点的字母表示棱柱,如下图的六棱柱可以表示为棱柱或棱柱 .侧棱与底面不垂直的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱;底面是平行四边形的棱柱叫做平行六面体;侧棱与底面垂直的平行六面体叫做直平行六面体.棱锥的结构特征一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥(pyramid).这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.底面是三角形、四边形、五边形的棱锥分别叫做三棱锥、四棱锥、五棱锥其中三棱锥又叫四面体.棱锥也用表示顶点和底面各顶点的字母或者用表示顶点和底面一条对角线端点的字母来表示,如下图的四棱锥表示为棱锥 或者棱锥 .棱锥的底面是正多边形,且它的顶点在过底面中心且与底面垂直的直线上,这个棱锥叫做正棱锥.正棱锥各侧面都是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做棱锥的斜高.⋯⋯⋯⋯ABCDEF−A′B′C′D′E′F′DA′⋯⋯⋯⋯S−ABCD S−AC棱台的结构特征用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台(frustum of a pyramid).原棱锥的底面和截面分别叫做棱台的下底面和上底面;其他各面叫做棱台的侧面;相邻两侧面的公共边叫做棱台的侧棱;两底面的距离叫做棱台的高.由正棱锥截得的棱台叫做正棱台,正棱台的各个侧面都是全等的等腰梯形,这些等腰梯形的高叫做棱台的斜高.圆柱的结构特征以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱(circular cylinder).旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线.圆锥的结构特征以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥(circular cone).圆台的结构特征例题:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台(frustum of a cone).棱台与圆台统称为台体.球的结构特征以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球(solid sphere).半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径.球常用表示球心的字母 表示.O下列命题中,正确的是( )A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱长相等,侧面是平行四边形解:D如图(1),满足 A 选项条件,但不是棱柱;对于 B 选项,如图(2),构造四棱柱,令四边形 是梯形,可知 ,但这两个面不能作为棱柱的底面;C选项中,若棱柱是平行六面体,则它的底面是平行四边形.ABCD−A1B1C1D1ABCD面AB∥面DCB1A1C1D1若正棱锥的底面边长与侧棱长相等,则该棱锥一定不是( )A.三棱锥 B.四棱锥 C.五棱锥 D.六棱锥解:D如下图,正六边形 中,,那么正六棱锥中,,即侧棱长大于底面边长.ABCDEF OA=OB=⋯=AB S−ABCDEF SA>OA=AB描述:3.组合体简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成.如图所示的几何体中,是台体的是( )A.①② B.①③ C.③ D.②③解:C利用棱台的定义求解.①中各侧棱的延长线不能交于一点;②中的截面不平行于底面;③中各侧棱的延长线能交于一点且截面与底面平行.有下列四种说法:①圆柱是将矩形旋转一周所得的几何体;②以直角三角形的一直角边为旋转轴,旋转所得几何体是圆锥;③圆台的任意两条母线的延长线,可能相交也可能不相交;④半圆绕其直径所在直线旋转一周形成球.其中错误的有( )A.个 B. 个 C. 个 D. 个解:D圆柱是矩形绕其一条边所在直线旋转形成的几何体,故①错;以直角三角形的一条直角边所在直线为轴,旋转一周,才能构成圆锥,②错;圆台是由圆锥截得,故其任意两条母线延长后一定交于一点,③错;半圆绕其直径所在直线旋转一周形成的是球面,故④错误.1234例题:描述:4.展开图空间形体的表面在平面上摊平后得到的图形,是画法几何研究的一项内容.描述图中几何体的结构特征.解:图(1)所示的几何体是由两个圆台拼接而成的组合体;图(2)所示的几何体是由一个圆台挖去一个圆锥得到的组合体;图(3)所示的几何体是在一个圆柱中间挖去一个三棱柱后得到的组合体.下图中的几何体是由哪个平面图形旋转得到的( )解:D)不在同一平面内的有______对.3内.解:C描述:例题:5.截面分析截面用平面截立体图形所得的封闭平面几何图形称为截面.平行截面、中截面与立体图形底面平行的截面称为平行截面,等分立体图形的高的平行截面称为中截面.轴截面包含立体图形的轴线的截面称为轴截面.球截面球的截面称为球截面.球的任意截面都是圆,其中通过球心的截面称为球的大圆,不过球心的截面称为球的小圆.球心与球的截面的圆心连线垂直于截面,并且有 ,其中 为球的半径, 为截面圆的半径, 为球心到截面的距离.+=r 2d 2R 2R r d 下面几何体的截面一定是圆面的是( )A.圆台 B.球 C.圆柱 D.棱柱解:B如图所示,是一个三棱台 ,试用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.解:如图,过 ,, 三点作一个平面,再过 ,, 作一个平面,就把三棱台分成三部分,形成的三个三棱锥分别是 ,,.ABC −A ′B ′C ′A ′B C A ′B C ′ABC −A ′B ′C ′−ABC A ′−B B ′A ′C ′−BC A ′C ′如图,正方体 中,,, 分别是 ,, 的中点,那么正方体中过点 ,, 的截面形状是( )A.三角形 B.四边形 C.五边形 D.六边形ABCD −A 1B 1C 1D 1P Q R AB AD B 1C 1P QR作截面图如图所示,可知是六边形.ii)若两平行截面在球心的两侧,如图(2)所示,则 解:四、课后作业 (查看更多本章节同步练习题,请到快乐学)答案:1.如图,能推断这个几何体可能是三棱台的是 .A .B .C .D .C ()=2,AB =3,=3,BC =4A 1B 1B 1C 1=1,AB =2,=1.5,BC =3,=2,AC =3A 1B 1B 1C 1A 1C 1=1,AB =2,=1.5,BC =3,=2,AC =4A 1B 1B 1C 1A 1C 1AB =,BC =,CA =A 1B 1B 1C 1C 1A 1答案:2. 纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标" "的面的方位是 .A .南B .北C .西D .下B △()3. 向高为 的水瓶中注水,注满为止,如果注水量 与水深 的函数关系的图象如图所示,那么水瓶的形状是.A .H V h ()高考不提分,赔付1万元,关注快乐学了解详情。
[人教版]高中数学必修2第一章_空间几何体练习试题和答案(全)
第一章空间几何体空间几何体的结构一、选择题1、下列各组几何体中是多面体的一组是()A 三棱柱四棱台球圆锥B 三棱柱四棱台正方体圆台C 三棱柱四棱台正方体六棱锥D 圆锥圆台球半球2、下列说法正确的是()A 有一个面是多边形,其余各面是三角形的多面体是棱锥B 有两个面互相平行,其余各面均为梯形的多面体是棱台C 有两个面互相平行,其余各面均为平行四边形的多面体是棱柱D 棱柱的两个底面互相平行,侧面均为平行四边形3、下面多面体是五面体的是()A 三棱锥B 三棱柱C 四棱柱D 五棱锥4、下列说法错误的是()A 一个三棱锥可以由一个三棱锥和一个四棱锥拼合而成B 一个圆台可以由两个圆台拼合而成C 一个圆锥可以由两个圆锥拼合而成D 一个四棱台可以由两个四棱台拼合而成5、下面多面体中有12条棱的是()A 四棱柱B 四棱锥C 五棱锥D 五棱柱6、在三棱锥的四个面中,直角三角形最多可有几个()A 1 个B 2 个C 3个D 4个二、填空题7、一个棱柱至少有————————个面,面数最少的棱柱有————————个顶点,有—————————个棱。
8、一个棱柱有10个顶点,所有侧棱长的和为60,则每条侧棱长为————————————9、把等腰三角形绕底边上的高旋转1800,所得的几何体是——————10、水平放置的正方体分别用“前面、后面、上面、下面、左面、右面”表示。
图中是一个正方体的平面展开图,若图中的“似”表示正方体的前面,“锦”表示右面,“程”表示下面。
则“祝”“你”“前”分别表示正方体的—————祝你前程似锦三、解答题:11、长方体ABCD —A 1B 1C 1D 1中,AB =3,BC =2,BB 1=1,由A 到C 1在长方体表面上的最短距离为多少AA 1B 1BCC 1D 1D12、说出下列几何体的主要结构特征(1)(2)(3)空间几何体的三视图和直观图一、选择题1、两条相交直线的平行投影是( ) A 两条相交直线 B 一条直线C 一条折线D 两条相交直线或一条直线 2、如图中甲、乙、丙所示,下面是三个几何体的三视图,相应的标号是( )① 长方体 ② 圆锥 ③ 三棱锥 ④ 圆柱 A ②①③ B ①②③ C ③②④ D ④③②正视图侧视图俯视图 正视图 侧视图 俯视图 正视图 侧视图 俯视图甲 乙 丙3、如果一个几何体的正视图和侧视图都是长方形,则这个几何体可能是( )A 长方体或圆柱B 正方体或圆柱C 长方体或圆台D 正方体或四棱锥 4、下列说法正确的是( )A 水平放置的正方形的直观图可能是梯形B 两条相交直线的直观图可能是平行直线C 平行四边形的直观图仍然是平行四边形D 互相垂直的两条直线的直观图仍然互相垂直5、若一个三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的( ) A 21倍 B42倍 C 2倍 D 2倍 6、如图(1)所示的一个几何体,,在图中是该几何体的俯视图的是( )(1) 二、选择题7、当圆锥的三视图中的正视图是一个圆时,侧视图与俯视图是两个全等的———————三角形。
高二数学同步单元练习(必修2) 专题01 空间几何体的结构(AB卷) Word版含解析
(测试时间:120分钟满分:150分)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列图形中,不是三棱柱的展开图的是()答案:C2.有两个面平行的多面体不可能是()A.棱柱B.棱锥C.棱台D.以上都错解析:选B棱柱、棱台的上、下底面是平行的,而棱锥的任意两面均不平行.3.关于棱柱,下列说法正确的是()A.只有两个面平行B.所有的棱都相等C.所有的面都是平行四边形D.两底面平行,侧棱也互相平行4.正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有()A.20 B.15C.12 D.10解析:选D从正五棱柱的上底面1个顶点与下底面不与此点在同一侧面上的两个顶点相连可得2条对角线,故共有5×2=10条对角线.5.下列命题中正确的是()A.用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台B.两个底面平行且相似,其余各面都是梯形的多面体是棱台C.棱台的底面是两个相似的正方形D.棱台的侧棱延长后必交于一点解析:选D A中的平面不一定平行于底面,故A错;B中侧棱不一定交于一点;C中底面不一定是正方形.6.观察如图的四个几何体,其中判断不正确的是()A.①是棱柱B.②不是棱锥C.③不是棱锥D.④是棱台解析:结合棱柱、棱锥、棱台的定义可知①是棱柱,②是棱锥,④是棱台,③不是棱锥,故B错误.答案:B7.纸质的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一条棱将正方体剪开,外面朝上展平得到右侧的平面图形,则标“△”的面的方位是()A.南B.北C.西D.下答案:B8.如图,在三棱台A'B'C'-ABC中,截去三棱锥A'-ABC,则剩余部分是()A.三棱锥B.四棱锥C.三棱柱D.三棱台解析:剩余部分是四棱锥A'-BCC'B'.答案:B9.棱锥的侧面和底面可以都是()A.三角形B.四边形C.五边形D.六边形解析:三棱锥的侧面和底面均是三角形.答案:A10.在下列四个平面图形中,每个小四边形皆为正方形,其中可以沿相邻正方形的公共边折叠围成一个正方体的图形是()解析:动手将四个选项中的平面图形折叠,看哪一个可以折叠围成正方体即可.答案:C11.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定形状.答案:A12.用一个平面去截四棱锥,不可能得到()A.棱锥B.棱柱C.棱台D.四面体解析:根据棱椎的特点,侧棱不平行,所以肯定得不到棱柱答案:B第Ⅱ卷(共90分)二、填空题(本大题共4小题,每题5分,满分20分,将答案填在答题纸上)13.面数最少的棱柱为________棱柱,共有________个面围成.解析:棱柱有相互平行的两个底面,其侧面至少有3个,故面数最少的棱柱为三棱柱,共有五个面围成.答案:三 514.如图,M是棱长为2 cm的正方体ABCD-A1B1C1D1的棱CC1的中点,沿正方体表面从点A 到点M的最短路程是________ cm.答案:1315.侧棱垂直于底面的棱柱叫做直棱柱.侧棱不垂直于底面的棱柱叫做斜棱柱.底面是正多边形的直棱柱叫做正棱柱.底面是平行四边形的四棱柱叫做平行六面体.侧棱与底面垂直的平行六面体叫做直平行六面体.底面是矩形的直平行六面体叫做长方体.棱长都相等的长方体叫做正方体.请根据上述定义,回答下面的问题:(1)直四棱柱________是长方体;(2)正四棱柱________是正方体.(填“一定”、“不一定”、“一定不”)解析:根据上述定义知:长方体一定是直四棱柱,但是直四棱柱不一定是长方体;正方体一定是正四棱柱,但是正四棱柱不一定是正方体.答案:(1)不一定(2)不一定16.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为cm.解析:n棱柱有2n个顶点,因为此棱柱有10个顶点,所以此棱柱为五棱柱.又棱柱的侧棱都相等,五条侧棱长的和为60 cm,可知每条侧棱长为12 cm.答案:12三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.观察下列四张图片,结合所学知识说出这四个建筑物主要的结构特征.18.给出两块正三角形纸片(如图所示),要求将其中一块剪拼成一个底面为正三角形的三棱锥模型,另一块剪拼成一个底面是正三角形的三棱柱模型,请设计一种剪拼方案,分别用虚线标示在图中,并作简要说明.解:如图(1)所示,沿正三角形三边中点连线折起,可拼得一个底面为正三角形的三棱锥.如图(2)所示,正三角形三个角上剪出三个相同的四边形,其较长的一组邻边边长为三角形边长的14,有一组对角为直角,余下部分按虚线折成,可成为一个缺上底的底面为正三角形的三棱柱,而剪出的三个相同的四边形恰好拼成这个底面为正三角形的棱柱的上底. 19.按下列条件分割三棱台ABC-A 1B 1C 1(不需要画图,各写出一种分割方法即可). (1)一个三棱柱和一个多面体; (2)三个三棱锥.20.正三棱台的上、下底面边长及高分别为1,2,2,则它的斜高是多少? 解析:如图,MF=OF-O'E=. 在Rt △EMF 中,∵EM=2, ∴EF=.所以斜高是21.如图,在棱锥A-BCD中,截面EFG平行于底面,且AE∶AB=1∶3,已知△DBC的周长是18,求△EFG的周长.解:由已知得EF∥BD,FG∥CD,EG∥BC,∴△EFG∽△BDC.∴.又,∴.∴△EFG的周长=18×=6.22.如图,在长方体ABCD-A1B1C1D1中,AB=3,BC=4,A1A=5,现有一只甲壳虫从A出发沿长方体表面爬行到C1来获取食物,试画出它的最短爬行路线,并求其路程的最小值.(测试时间:120分钟满分:150分)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.观察如图所示的4个几何体,其中判断正确的是( )A.①是棱台 B.②是圆台C.③是棱锥 D.④不是棱柱2.下列关于母线的叙述正确的是( )①在圆柱上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;③在圆台上、下底面的圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.A.①② B.②③C.①③ D.②④D ①③中两点的连线可能不在侧面上,因此不一定是母线;②中两点的连线符合母线的条件;④中圆柱任意一条母线与圆柱的轴所在的直线平行,因此圆柱的任意两条母线所在的直线是互相平行的.3.下列判断正确的是( )A.棱柱中只能有两个面互相平行B.底面是正方形的直四棱柱是正四棱柱C.底面是正六边形的棱台是正六棱台D.底面是正方形的四棱锥是正四棱锥B A错误,比如四棱柱;B正确;C错误,还应满足正棱台上下底面中心的连线垂直于底面;D错误,还应满足顶点在底面的投影为底面的中心.4.若一正方体沿着表面几条棱裁开放平得到如图L112所示的展开图,则在原正方体中( )A.AB∥CD B.AB∥EFC.CD∥GH D. AB∥GHC 折回原正方体如图所示,则C与E重合,D与B重合,显然CD∥GH.5.如图所示的四个长方体中,由如图所示的纸板折成的是( )D 根据纸板的折叠情况及特殊面的阴影部分可以判断正确选项是D.6.给出下列三个命题:①底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱;②直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是( )A.0 B.1 C.2 D.37.如图所示,若Ω是长方体ABCDA1B1C1D1被平面EFGH截去几何体EFGHB1C1后得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EH∥A1D1,则下列结论中不正确的是( )A.EH∥FG B.四边形EFGH是矩形C.Ω是棱柱 D.Ω是棱台D 根据棱台的定义(侧棱的延长线必交于一点,即棱台可以还原成棱锥)可知,几何体Ω不是棱台.8.下列命题正确的是( )A.矩形的平行投影一定是矩形B.梯形的平行投影一定是梯形C.两条相交直线的投影可能平行D.一条线段中点的平行投影仍是这条线段投影的中点9.如图所示的一个几何体,哪一个是该几何体的俯视图( )答案:C10.如图所示,下列几何体各自的三视图中,有且仅有两个视图相同的是( )A.①② B.①③ C.①④ D.②④D11.一个长方体去掉一个小长方体,所得几何体的正视图与侧视图分别如图所示,则该几何体的俯视图为( )答案:C12.如图所示的正方体中,M、N分别是AA1、CC1的中点,作四边形D1MBN,则四边形D1MBN在正方体各个面上的正投影图形中,不可能出现的是( )答案:D第Ⅱ卷(共90分)二、填空题(本大题共4小题,每题5分,满分20分,将答案填在答题纸上)13.关于如图所示的几何体的正确说法为________.(填序号)图L116①这是一个六面体;②这是一个四棱台;③这是一个四棱柱;④这是一个被截去一个三棱柱的四棱柱①③④由图易知①③④正确.14.一个无盖的正方体盒子展开后的平面图如图L117所示,A,B,C是展开图上的三点,则在正方体盒子中∠ABC=________.15.下列说法中错误的是__________.(填序号)①圆柱的轴截面是过母线的截面中面积最大的;②球的所有截面中过球心的截面的面积最大;③圆台的所有平行于底面的截面都是圆面;④圆锥的所有轴截面都是全等的等腰直角三角形.④根据旋转体的定义可知,圆锥的所有轴截面是全等的等腰三角形.16.若一个三棱柱的三视图如图所示,则这个三棱柱的高(两底面之间的距离)和底面边长分别是________和________.答案:2 4解析三棱柱的高同侧视图的高,侧视图的宽度恰为底面正三角形的高,故底边长为4.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在下面图形中,图(b)是图(a)中实物画出的正视图和俯视图,你认为正确吗?如果不正确,请找出错误并改正,然后画出侧视图(尺寸不作严格要求).18.如图是截去一角的长方体,画出它的三视图.解该图形的三视图如图所示.19.如图,螺栓是棱柱和圆柱的组合体,画出它的三视图.解该物体是由一个正六棱柱和一个圆柱组合而成的,正视图反映正六棱柱的三个侧面和圆柱侧面,侧视图反映正六棱柱的两个侧面和圆柱侧面,俯视图反映该物体投影后是一个正六边形和一个圆(中心重合).它的三视图如图所示.20.用小立方体搭成一个几何体,使它的正视图和俯视图如图所示,搭建这样的几何体,最多要几个小立方体?最少要几个小立方体?解由于正视图中每列的层数即是俯视图中该列的最大数字,因此,用的立方块数最多的情况是每个方框都用该列的最大数字,即如图①所示,此种情况共用小立方块17块.而搭建这样的几何体用方块数最少的情况是每列只要有一个最大的数字,其他方框内的数字可减少到最少的1,即如图②所示,这样的摆法只需小立方块11块.21.有两个面互相平行,其余各面都是平行四边形的几何体是棱柱吗?备特征③.22.如图所示,四边形ABCD绕边AD所在的直线EF旋转,其中AD∥BC,AD⊥CD.当点A选在射线DE上的不同位置时,形成的几何体大小、形状不同,比较其不同点.(测试时间:120分钟满分:150分)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列说法正确的是()A.矩形的平行投影一定是矩形B.梯形的平行投影一定是梯形C.两条相交直线的平行投影可能平行D.若一条线段的平行投影是一条线段,则中点的平行投影仍为这条线段投影的中点答案:D2.在一个几何体的三视图中,正视图和俯视图如图,则相应的侧视图可以为()解析:此空间几何体是由一个半圆锥和一个三棱锥拼接而成的一个简单组合体,由其正视图和俯视图可知其相应的侧视图可为D.答案:D3.(2016山西大同一中高二月考)如果用表示1个立方体,用表示2个立方体叠加,用表示3个立方体叠加,那么如图中由7个立方体摆成的几何体,从正前方观察,可画出平面图形是()解析:由题意和图可知,左边和右边各为1个正方体,用表示;当中为3个正方体,用表示;上面为2个正方体,用表示.故选B.答案:B4.(2016山西太原五中高二月考)一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为①长方形;②直角三角形;③圆;④椭圆.其中正确的是()A.①B.②C.③D.④解析:其俯视图若为圆,则正视图中的长度与侧视图中的宽度应一样,由图中可知其正视图与侧视图的宽度不一样,因此其俯视图不可能是圆.故选C.答案:C5.(2016安徽蚌埠一中高二期中)已知正六棱柱的底面边长和侧棱长均为2 cm,其三视图中的俯视图如图所示,则其侧视图的面积是()A.4 cm2B.2 cm2C.8 cm2D.4 cm2答案:A6.关于几何体的三视图,下列说法正确的是( )A.正视图反映物体的长和宽B.俯视图反映物体的长和高C.侧视图反映物体的高和宽D.正视图反映物体的高和宽答案:C 由三视图的特点可知选项C正确.7.在原来的图形中,两条线段平行且相等,则在直观图中对应的两条线段( )A.平行且相等 B.平行不相等C.相等不平行 D.既不平行也不相等答案:A 由斜二测画法规则知平行性是不变的,长度的变化在平行时相同,故仍平行且相等.8.一个几何体的三视图如图L121所示,这个几何体可能是一个( )A.三棱锥B.底面不规则的四棱锥C.三棱柱D.底面为正方形的四棱锥答案:C 根据三视图,几何体为一个倒放的三棱柱.9.如图是水平放置的三角形的直观图,D′是△A′B′C′中B′C′边的中点,A′B′,A′D′,A′C′三条线段对应原图形中的线段AB,AD,AC,那么( )A.最短的是ACB.最短的是ABC.最短的是ADD.无法确定谁最短10.如图L123所示,已知四边形ABCD的直观图是一个边长为1的正方形,则原图形的周长为( )A.2 2 B.6 C.8 D.4 2+2图L123图L12411.图L124为水平放置的正方形ABCO,在直角坐标系中点B的坐标为(2,2),则用斜二测画法画出的正方形的直观图中,点B′到O′x′轴的距离为( )A.12B.22C. 1D.2答案:B 因为BC垂直于x轴,所以在直观图中B′C′的长度是1,且与O′x′轴的夹角是45°,所以B′到O′x′轴的距离是22.12.用斜二测画法画出的某平面图形的直观图如图L125所示,AB平行于y′轴,BC,AD平行于x′轴.已知四边形ABCD的面积为2 2 cm2,则原平面图形的面积为( )图L125A.4 cm2B.4 2 cm2C.8 cm2D.8 2 cm2答案:C 依题意可知∠BAD=45°,则原平面图形为直角梯形,且上下底边的长分别与BC,AD相等,高为梯形ABCD的高的2 2倍,所以原平面图形的面积为8 cm2.第Ⅱ卷(共90分)二、填空题(本大题共4小题,每题5分,满分20分,将答案填在答题纸上)13.太阳光线与地面成60°的角,照射在地面上的一个皮球上,皮球在地面上的投影长是10,则皮球的直径是.解析:直径d=10sin 60°=15.答案:1514.在棱长为1的正方体ABCD-A1B1C1D1中,对角线AC1在六个面上的正投影长度总和是.解析:正方体的对角线AC1在各个面上的正投影是正方体各个面上的对角线,因而其长度都为,所以所求总和为6.答案:615.一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的.(填入所有可能的几何体前的编号)①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥;⑥圆柱.答案:①②③⑤16.(2012·杭州检测)如图Rt△O′A′B′是一平面图形的直观图,直角边O′B′=1,则这个平面图形的面积是________.解析:∵O′B′=1,∴O′A′=2,∴在Rt△OAB中,∠AOB=90°,OB=1,OA=22,∴S △AOB =12×1×22= 2.答案: 2三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 一个水平放置的平面图形的斜二测直观图是直角梯形ABCD ,如图所示,∠ABC =45°,AB =AD =1,DC ⊥BC ,原平面图形的面积为________.答案:2+2218.画出下列几何体的三视图.解:几何体的三视图如图所示:19.如图,该几何体是由一个长方体木块锯成的. (1)判断该几何体是否为棱柱;(2)画出它的三视图.解:(1)是棱柱.因为该几何体的前、后两个面互相平行,其余各面都是矩形,而且相邻矩形的公共边都互相平行.(2)该几何体的三视图如图.20.如图是某圆锥的三视图,求其底面积和母线长.21.已知正三棱锥VABC的正视图、侧视图和俯视图如图L1215所示.(1)画出该三棱锥的直观图;(2)求出侧视图的面积.图L1215解:(1)三棱锥的直观图如图所示. (2)根据三视图间的关系可得BC =2 3. 由俯视图可知三棱锥底面三角形的高为2 3×32=3. ∵三棱锥的高在底面上的投影是底面的中心,且其到点A 的距离为底面△ABC 高的23,∴底面中心到点A 的距离为23×3=2,∴侧视图中VA =42-22=2 3,∴S △VBC =12×2 3×2 3=6.22.如图所示,画出水平放置的四边形OBCD 的直观图.。
《1.1 空间几何体的结构》(同步训练)高中数学必修2_人教A版_2024-2025学年
《1.1 空间几何体的结构》同步训练(答案在后面)一、单选题(本大题有8小题,每小题5分,共40分)1、下列几何体中,哪一个是多面体?A、球体B、圆柱C、正方体D、圆锥2、在正方体的一个顶点上,有一个顶点到该顶点所在面的相邻三面的交线所形成的三角形,其内角和是多少?A. 180°B. 270°C. 360°D. 540°3、在长方体的长、宽、高分别为2cm、3cm、4cm的情况下,该长方体的对角线长度是:A. 5cmB. 7cmC. 9cmD. 10cm4、一个圆锥的底面半径为3cm,高为4cm,则其体积为()。
A、12π cm³B、24π cm³C、36π cm³D、48π cm³5、已知正方体ABCD-A1B1C1D1中,点E为棱CC1的中点,点F为棱A1B1上的一点,且BF=BB1,如果AE与EF垂直,则∠EFB=()A.30°B.45°C.60°D.90°6、已知正方体ABCD-A1B1C1D1的棱长为a,则体对角线A1D的长度为:A、√3aB、2√3aC、√6aD、√2a7、一个直三棱柱的底面是一个直角三角形,其中两个直角边的长度分别为3和4,斜边为5。
该直三棱柱的体积是多少?A. 6B. 12C. 18D. 248、正方体的所有棱长均为2厘米,该正方体的对角线长为()A、2√3 厘米B、4√2 厘米C、4√3 厘米D、6√3 厘米二、多选题(本大题有3小题,每小题6分,共18分)1、下列关于空间几何体的说法正确的是()A. 圆柱是由两个平行的圆形底面和一个曲面侧面组成的立体图形。
B. 棱锥的所有侧棱相交于一点,这一点叫做顶点。
C. 球体可以看作是一个半圆绕着它的直径所在的直线旋转一周形成的立体图形。
D. 棱台的上下底面不一定平行。
2、在下列各对几何体中,哪些是全等的关系?A. 正方体和长方体B. 正四面体和正六面体C. 球和圆柱D. 正方体和正方体的一个面E. 正四面体和正方体的一个面3、一个圆柱的底面半径为2,高为4,则该圆柱的侧面积和体积分别为()。
人教版高中数学必修二专题01空间几何体的结构A卷含解析
(测试时间:120分钟满分:150分)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列图形中,不是三棱柱的展开图的是()答案:C2.有两个面平行的多面体不可能是()A.棱柱B.棱锥C.棱台D.以上都错解析:选B棱柱、棱台的上、下底面是平行的,而棱锥的任意两面均不平行.3.关于棱柱,下列说法正确的是()A.只有两个面平行B.所有的棱都相等C.所有的面都是平行四边形D.两底面平行,侧棱也互相平行4.正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有()A.20 B.15C.12 D.10解析:选D从正五棱柱的上底面1个顶点与下底面不与此点在同一侧面上的两个顶点相连可得2条对角线,故共有5×2=10条对角线.5.下列命题中正确的是()A.用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台B.两个底面平行且相似,其余各面都是梯形的多面体是棱台C.棱台的底面是两个相似的正方形D.棱台的侧棱延长后必交于一点解析:选D A中的平面不一定平行于底面,故A错;B中侧棱不一定交于一点;C中底面不一定是正方形.6.观察如图的四个几何体,其中判断不正确的是()A.①是棱柱B.②不是棱锥C.③不是棱锥D.④是棱台解析:结合棱柱、棱锥、棱台的定义可知①是棱柱,②是棱锥,④是棱台,③不是棱锥,故B错误.答案:B7.纸质的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一条棱将正方体剪开,外面朝上展平得到右侧的平面图形,则标“△”的面的方位是()A.南B.北C.西D.下答案:B8.如图,在三棱台A'B'C'-ABC中,截去三棱锥A'-ABC,则剩余部分是()A.三棱锥B.四棱锥C.三棱柱D.三棱台解析:剩余部分是四棱锥A'-BCC'B'.答案:B9.棱锥的侧面和底面可以都是()A.三角形B.四边形C.五边形D.六边形解析:三棱锥的侧面和底面均是三角形.答案:A10.在下列四个平面图形中,每个小四边形皆为正方形,其中可以沿相邻正方形的公共边折叠围成一个正方体的图形是()解析:动手将四个选项中的平面图形折叠,看哪一个可以折叠围成正方体即可.答案:C11.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定形状.答案:A12.用一个平面去截四棱锥,不可能得到()A.棱锥B.棱柱C.棱台D.四面体解析:根据棱椎的特点,侧棱不平行,所以肯定得不到棱柱答案:B第Ⅱ卷(共90分)二、填空题(本大题共4小题,每题5分,满分20分,将答案填在答题纸上)13.面数最少的棱柱为________棱柱,共有________个面围成.解析:棱柱有相互平行的两个底面,其侧面至少有3个,故面数最少的棱柱为三棱柱,共有五个面围成.答案:三 514.如图,M是棱长为2 cm的正方体ABCD-A1B1C1D1的棱CC1的中点,沿正方体表面从点A 到点M的最短路程是________ cm.答案:1315.侧棱垂直于底面的棱柱叫做直棱柱.侧棱不垂直于底面的棱柱叫做斜棱柱.底面是正多边形的直棱柱叫做正棱柱.底面是平行四边形的四棱柱叫做平行六面体.侧棱与底面垂直的平行六面体叫做直平行六面体.底面是矩形的直平行六面体叫做长方体.棱长都相等的长方体叫做正方体.请根据上述定义,回答下面的问题:(1)直四棱柱________是长方体;(2)正四棱柱________是正方体.(填“一定”、“不一定”、“一定不”)解析:根据上述定义知:长方体一定是直四棱柱,但是直四棱柱不一定是长方体;正方体一定是正四棱柱,但是正四棱柱不一定是正方体.答案:(1)不一定(2)不一定16.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为cm.解析:n棱柱有2n个顶点,因为此棱柱有10个顶点,所以此棱柱为五棱柱.又棱柱的侧棱都相等,五条侧棱长的和为60 cm,可知每条侧棱长为12 cm.答案:12三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.观察下列四张图片,结合所学知识说出这四个建筑物主要的结构特征.18.给出两块正三角形纸片(如图所示),要求将其中一块剪拼成一个底面为正三角形的三棱锥模型,另一块剪拼成一个底面是正三角形的三棱柱模型,请设计一种剪拼方案,分别用虚线标示在图中,并作简要说明.解:如图(1)所示,沿正三角形三边中点连线折起,可拼得一个底面为正三角形的三棱锥.如图(2)所示,正三角形三个角上剪出三个相同的四边形,其较长的一组邻边边长为三角形边长的14,有一组对角为直角,余下部分按虚线折成,可成为一个缺上底的底面为正三角形的三棱柱,而剪出的三个相同的四边形恰好拼成这个底面为正三角形的棱柱的上底. 19.按下列条件分割三棱台ABC-A 1B 1C 1(不需要画图,各写出一种分割方法即可). (1)一个三棱柱和一个多面体; (2)三个三棱锥.20.正三棱台的上、下底面边长及高分别为1,2,2,则它的斜高是多少? 解析:如图,MF=OF-O'E=. 在Rt △EMF 中,∵EM=2, ∴EF=.所以斜高是21.如图,在棱锥A-BCD中,截面EFG平行于底面,且AE∶AB=1∶3,已知△DBC的周长是18,求△EFG的周长.解:由已知得EF∥BD,FG∥CD,EG∥BC,∴△EFG∽△BDC.∴.又,∴.∴△EFG的周长=18×=6.22.如图,在长方体ABCD-A1B1C1D1中,AB=3,BC=4,A1A=5,现有一只甲壳虫从A出发沿长方体表面爬行到C1来获取食物,试画出它的最短爬行路线,并求其路程的最小值.附赠材料答题六注意:规范答题不丢分提高考分的另一个有效方法是减少或避免不规范答题等非智力因素造成的失分,具体来说考场答题要注意以下六点: 第一,考前做好准备工作。
2023年高一下数学必修二《空间几何体》测试试卷及答案解析
2023年高一下数学必修二《空间几何体》测试试卷一.选择题(共18小题)1.如图几何体中不是柱体的有()A.1个B.2个C.3个D.4个2.下列说法中正确的是()A.棱柱的侧面可以是三角形B.正方体和长方体都是特殊的四棱柱C.所有的几何体的表面都能展成平面图形D.棱柱的各条棱都相等3.在侧棱长为3的正三棱锥P﹣ABC中,∠APB=∠BPC=∠CPA=40°过点A作截面AEF与PB、PC侧棱分别交于E、F两点,则截面的周长最小值为()A.4B.2C.10D.94.如图,在三棱台ABC﹣A1B1C1中,截去三棱锥A1﹣ABC,则剩余部分是()A.三棱锥B.四棱锥C.三棱柱D.五棱锥5.球O的半径为1,该球的一小圆O1上两点A、B的球面距离为,OO1=,则∠AO1B =()A.B.C.D.π6.若长方体的一个顶点上三条棱长分别是1、2、2,且它的八个顶点都在同一球面上,则这个球的表面积是()A.6πB.9πC.3πD.12π7.如图,是几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A.5B.6C.7D.88.下列光线所形成的投影不是中心投影的是()A.太阳光线B.台灯的光线C.手电筒的光线D.路灯的光线9.如图所示,E、F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是如图中的()A.四个图形都正确B.只有②③正确C.只有④错误D.只有①②正确10.如图所示的水平放置的平面图形的直观图,所表示的图形ABCD是()A.任意梯形B.直角梯形C.任意四边形D.平行四边形11.如图是水平放置的△ABC按“斜二测画法”得到的直观图,其中B′O′=C′O′=,A′O′=,那么△ABC的面积是()A.B.C.D.312.若某几何体的三视图如图所示,则这个几何体的直观图可以是()A.B.C.D.13.△OAB的直观图△O′A′B′如图所示,且O′A′=O′B′=2,则△OAB的面积为()A.1B.2C.4D.814.若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于()A.10cm3B.20cm3C.30cm3D.40cm315.如图所示四个几何体中,几何体只有正视图和侧视图相同的是()A.①②B.①③C.①④D.②④16.从长32cm,宽20cm的矩形薄铁板的四角剪去相等的正方形,做一个无盖的箱子,若使箱子的容积最大,则剪去的正方形边长为()A.4cm B.2cm C.1cm D.3cm17.若一个圆锥侧面展开图是面积为2π的半圆面,则该圆锥底面的面积为()A.πB.2πC.3πD.4π18.在棱长为1的正方体ABCD﹣A1B1C1D1中,E为线段B1C的中点,F是棱C1D1上的动点,若点P为线段BD1上的动点,则PE+PF的最小值为()A.B.C.D.二.填空题(共4小题)19.下面三视图的实物图形的名称是20.下列物品:①探照灯;②车灯;③太阳;④月亮;⑤台灯中,所形成的投影是中心投影的是.(填序号)21.某由圆柱切割获得的几何体的三视图如图所示,其中俯视图是中心角为60°的扇形,则该几何体的侧面积为.22.某几何体的三视图如图所示,其中俯视图是半径为4的圆面的四分之一,则该几何体的体积为.三.解答题(共5小题)23.已知如图:四边形ABCD是矩形,BC⊥平面ABE,且AE=EB=BC=2,点F为CE上一点,且BF⊥平面ACE.(1)求证:AE∥平面BFD;(2)求多面体ABCDE的表面积.24.长方体A1B1C1D1﹣ABCD中,AB=AD=2,A1A=2,M为棱C1C的中点,C1D与D1C交于点N,求证:AM⊥A1N.25.有一盛满水的圆柱形容器,内壁底面半径为5,高为2.将一个半径为3的玻璃小球缓慢浸没与水中.(1)求圆柱体积;(2)求溢出水的体积.26.如图,平行四边形ABCD中,BD=2,AB=2,AD=4,将△BCD沿BD折起到△EBD的位置,使平面EBD⊥平面ABD.(I)求证:AB⊥DE(Ⅱ)求三棱锥E﹣ABD的侧面积.27.如图所示,在长方体ABCD﹣A1B1C1D1中,AB=BC=1,BB1=2,连接A1C,BD.(1)求三棱锥A1﹣BCD的体积(2)求证:BD⊥平面A1AC.2023年高一下数学必修二《空间几何体》测试试卷参考答案与试题解析一.选择题(共18小题)1.如图几何体中不是柱体的有()A.1个B.2个C.3个D.4个【分析】可知柱体分为棱柱和圆柱,从而可判断哪些图形不是柱体,即得出不是柱体的个数.【解答】解:①是三棱柱,②的上下两个平面不平行,不是三棱柱,③是四棱柱,④是圆柱,⑤是四棱柱,⑥是四棱台,⑦三棱锥;∴不是柱体的为②⑥⑦,共3个.故选:C.【点评】考查柱体的定义,以及棱柱和圆柱的定义,棱锥的定义.2.下列说法中正确的是()A.棱柱的侧面可以是三角形B.正方体和长方体都是特殊的四棱柱C.所有的几何体的表面都能展成平面图形D.棱柱的各条棱都相等【分析】从棱柱的定义出发判断A、B、D的正误,找出反例否定C,即可推出结果.【解答】解:棱柱的侧面都是四边形,A不正确;正方体和长方体都是特殊的四棱柱,正确;所有的几何体的表面都能展成平面图形,球不能展开为平面图形,C不正确;棱柱的各条棱都相等,应该为侧棱相等,所以D不正确;故选:B.【点评】本题考查棱柱的结构特征,考查基本知识的熟练情况,是基础题.3.在侧棱长为3的正三棱锥P﹣ABC中,∠APB=∠BPC=∠CPA=40°过点A作截面AEF与PB、PC侧棱分别交于E、F两点,则截面的周长最小值为()A.4B.2C.10D.9【分析】将三棱锥的侧面展开,则截面的周长最小值的最小值,即可转化为求AA1的长度,解三角形PAA1,即可得到答案.【解答】解:将三棱锥的侧面A展开,如图,则图中∠APA1=120°,AA1为所求,由余弦定理可得AA1=,故选:D.【点评】本题考查的知识点是棱锥的结构特征,其中将三棱锥的侧面展开,将空间问题转化为平面上两点间距离问题,是解答本题的关键.4.如图,在三棱台ABC﹣A1B1C1中,截去三棱锥A1﹣ABC,则剩余部分是()A.三棱锥B.四棱锥C.三棱柱D.五棱锥【分析】画出图形,根据图形和四棱锥的结构特征,即可得出剩余几何体是什么图形.【解答】解:如图所示,三棱台A′B′C′﹣ABC中,沿A′BC截去三棱锥A′﹣ABC,剩余部分是四棱锥A′﹣BCC′B′.故选:B.【点评】本题考查了空间几何体结构特征的应用问题,是基础题目.5.球O的半径为1,该球的一小圆O1上两点A、B的球面距离为,OO1=,则∠AO1B =()A.B.C.D.π【分析】由题意知应先求出AB的长度,在直角三角形AOB中由余弦定理可得AB=1,由此知三角形AO1B的三边长,由此可以求出∠AO1B的值.【解答】解:由题设知OO1=,OA=OB=1,在圆O1中有O1A=O1B=,又A,B两点间的球面距离为,由余弦定理,得:AB=1,在三角形AO1B中由勾股定理可得:∠AO1B=,故选:B.【点评】本题的考点是球面距离及相关计算,其考查背景是球内一小圆上两点的球面距,对空间想象能力要求较高,此类题是一个基本题型,属于基础题.6.若长方体的一个顶点上三条棱长分别是1、2、2,且它的八个顶点都在同一球面上,则这个球的表面积是()A.6πB.9πC.3πD.12π【分析】长方体的对角线的长度,就是外接球的直径,求出直径即可求出表面积.【解答】解:由题意得,此问题是球内接长方体,所以可得长方体的对角线长等于球的直径,即,所以,所以求得表面积为.故选:B.【点评】本题考查球的表面积,球的内接体,考查计算能力和空间想象力,是基础题.7.如图,是几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A.5B.6C.7D.8【分析】根据俯视图可知这个几何体,底面是4个小正方体,根据主视图及左视图,可知里面上方有两个小正方体,从而可得结论.【解答】解:根据俯视图可知这个几何体,底面是4个小正方体,根据主视图及左视图,可知里面上方有两个小正方体,故共有6个小正方体.故选:B.【点评】本题考查三视图还原几何体,考查学生分析解决问题的能力,属于基础题.8.下列光线所形成的投影不是中心投影的是()A.太阳光线B.台灯的光线C.手电筒的光线D.路灯的光线【分析】利用中心投影和平行投影的定义即可判断出.【解答】解:A.太阳距离地球很远,我们认为是平行光线,因此不是中心投影.B.台灯的光线是由台灯光源发出的光线,是中心投影;C.手电筒的光线是由手电筒光源发出的光线,是中心投影;D.路灯的光线是由路灯光源发出的光线,是中心投影.综上可知:只有A不是中心投影.故选:A.【点评】本题考查了中心投影和平行投影的定义,属于基础题.9.如图所示,E、F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是如图中的()A.四个图形都正确B.只有②③正确C.只有④错误D.只有①②正确【分析】按照三视图的作法:上下、左右、前后三个方向的射影,四边形的四个顶点在三个投影面上的射影,再将其连接即可得到三个视图的形状,按此规则对题设中所给的四图形进行判断即可.【解答】解:因为正方体是对称的几何体,所以四边形BFD1E在该正方体的面上的射影可分为:自上而下、自左至右、由前及后三个方向的射影,也就是在面ABCD、面ABB1A1、面ADD1A1上的射影.四边形BFD1E在面ABCD和面ABB1A1上的射影相同,如图②所示;四边形BFD1E在该正方体对角面的ABC1D1内,它在面ADD1A1上的射影显然是一条线段,如图③所示.故②③正确故选:B.【点评】本题考查简单空间图形的三视图,考查根据作三视图的规则来作出三个视图的能力,三视图是高考的新增考点,不时出现在高考试题中,应予以重视.10.如图所示的水平放置的平面图形的直观图,所表示的图形ABCD是()A.任意梯形B.直角梯形C.任意四边形D.平行四边形【分析】由直观图可知,BC,AD两条边与横轴平行且不等,边AB与纵轴平行,得到AB与两条相邻的边之间是垂直关系,而另外一条边CD不和上下两条边垂直,得到平面图形是一个直角梯形.【解答】解:根据直观图可知,BC,AD两条边与横轴平行且不等,边AB与纵轴平行,∴AB⊥AD,AB⊥BC,∴平面图形ABCD是一个直角梯形,故选:B.【点评】本题考查平面图形的直观图,考查有直观图得到平面图形,考查画直观图要注意到两条坐标轴之间的关系.11.如图是水平放置的△ABC按“斜二测画法”得到的直观图,其中B′O′=C′O′=,A′O′=,那么△ABC的面积是()A.B.C.D.3【分析】′O′=C′O′=,A′O′=,直接计算△ABC即可.【解答】解:因为B′O′=C′O′=,A′O′=,所以△ABC的面积为=.故选:C.【点评】本题考查斜二测画法中原图和直观图面积之间的关系,属基本运算的考查.12.若某几何体的三视图如图所示,则这个几何体的直观图可以是()A.B.C.D.【分析】根据已知中的三视图,结合三视图中有两个三角形即为锥体,有两个矩形即为柱体,有两个梯形即为台体,将几何体分解为简单的几何体分析后,即可得到答案.【解答】解:由已知中三视图的上部分有两个矩形,一个三角形故该几何体上部分是一个三棱柱下部分是三个矩形故该几何体下部分是一个四棱柱故选:A.【点评】本题考查的知识点是由三视图还原实物图,考查学生的识图能力,比较基础.13.△OAB的直观图△O′A′B′如图所示,且O′A′=O′B′=2,则△OAB的面积为()A.1B.2C.4D.8【分析】由斜二测画法还原出原图,求面积.【解答】解:由斜二测画法可知原图应为:其面积为:S==4,故选:C.【点评】本题考查直观图与平面图形的画法,注意两点:一是角度的变化;二是长度的变化;考查计算能力.14.若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于()A.10cm3B.20cm3C.30cm3D.40cm3【分析】由三视图知几何体为直三棱柱削去一个三棱锥,且三棱柱的高为5,底面是直角三角形,两直角边长分别为3、4,代入体积公式计算.【解答】解:由三视图知几何体为直三棱柱削去一个三棱锥,且三棱柱的高为5,底面是直角三角形,两直角边长分别为3、4,∴几何体的体积V=×3×4×5﹣××4×5=20(cm3),故选:B.【点评】本题考查了由三视图求几何体的体积,解题的关键是由三视图判断几何体的形状及数据所对应的几何量.15.如图所示四个几何体中,几何体只有正视图和侧视图相同的是()A.①②B.①③C.①④D.②④【分析】分别根据四个几何体的三视图进行判断.【解答】解:①正方体的正视图,侧视图和俯视图都是正方形,不满足条件.②圆锥的正视图为三角形,侧视图为三角形,俯视图为圆,满足条件.③三棱台的正视图为等腰梯形,侧视图为梯形,但正视图和侧视图不相同,不满足条件.④正四棱锥的正视图和侧视图为相同的三角形,俯视图为正方形,满足条件.故选:D.【点评】本题主要考查三视图的识别和判断,要求熟练掌握常见空间几何体的三视图,比较基础.16.从长32cm,宽20cm的矩形薄铁板的四角剪去相等的正方形,做一个无盖的箱子,若使箱子的容积最大,则剪去的正方形边长为()A.4cm B.2cm C.1cm D.3cm【分析】设剪去的正方形的边长为xcm,(0<x<10),箱子的容积V=(32﹣2x)(20﹣2x)•x=4(x3﹣26x2+160x),V′=12(x﹣4)(x﹣),由此利用导数性质能求出若使箱子的容积最大,则剪去的正方形边长为4cm.【解答】解:设剪去的正方形的边长为xcm,(0<x<10),则做成的无盖的箱子的底是长为(32﹣2x)cm,宽为(20﹣2x)cm的矩形,箱子的高为xcm,∴箱子的容积V=(32﹣2x)(20﹣2x)•x=4(x3﹣26x2+160x),V′=12(x﹣4)(x﹣),当0<x<10时,V′=0只有一个解x=4,在x=4附近,V′是左正右负,∴V有x=4处取得极大值即为最大值,∴若使箱子的容积最大,则剪去的正方形边长为4cm.故选:A.【点评】本题考查棱柱体积的求法及应用,是中档题,解题时要注意导数性质的合理运用.17.若一个圆锥侧面展开图是面积为2π的半圆面,则该圆锥底面的面积为()A.πB.2πC.3πD.4π【分析】通过侧面展开图的面积.求出圆锥的母线,底面的半径,求出圆锥底面的面积.【解答】解:由题意一个圆锥的侧面展开图是面积为2π的半圆面,因为4π=πl2,所以l=2,半圆的弧长为2π,圆锥的底面半径为2πr=2π,r=1,所以圆锥底面的面积为π,故选:A.【点评】本题考查旋转体的条件的求法,侧面展开图的应用,考查空间想象能力,计算能力.18.在棱长为1的正方体ABCD﹣A1B1C1D1中,E为线段B1C的中点,F是棱C1D1上的动点,若点P为线段BD1上的动点,则PE+PF的最小值为()A.B.C.D.【分析】连接BC1,得出点P、E、F在平面BC1D1中,问题转化为在平面内直线BD1上取一点P,求点P到定点E的距离与到定直线的距离的和的最小值问题,利用平面直角坐标系,求出点E关于直线BD1的坐标即可.【解答】解:连接BC1,则BC1∩B1C=E,点P、E、F在平面BC1D1中,且BC1⊥C1D1,C1D1=1,BC1=,如图1所示;在Rt△BC1D1中,以C1D1为x轴,C1B为y轴,建立平面直角坐标系,如图2所示;则D1(1,0),B(0,),E(0,);设点E关于直线BD1的对称点为E′,∵BD1的方程为x+=1①,∴k EE=﹣=,′∴直线EE′的方程为y=x+②,由①②组成方程组,解得,直线EE′与BD1的交点M(,);所以对称点E′(,),∴PE+PF=PE′+PF≥E′F=.故选:D.【点评】本题考查了空间几何体中距离和的计算问题,解题的关键是把空间问题转化为平面问题解答,是难题.二.填空题(共4小题)19.下面三视图的实物图形的名称是四棱锥【分析】只看正视图或侧视图可以判断几何体可能是柱体或锥体,结合俯视图,即可判断几何体的形状.【解答】解:只看正视图或侧视图可以判断几何体可能是柱体或锥体,由正视图和侧视图可以判断几何体是锥体,结合俯视图,几何体是四棱锥.故答案为:四棱锥.【点评】本题是基础题,考查常见几何体的三视图复原几何体的特征,考查空间想象能力.20.下列物品:①探照灯;②车灯;③太阳;④月亮;⑤台灯中,所形成的投影是中心投影的是①②⑤.(填序号)【分析】利用中心投影和平行投影的定义即可判断出.【解答】解:探照灯、车灯、台灯的光线是由源发出的光线,是中心投影;太阳、月亮距离地球很远,我们认为是平行光线,因此不是中心投影.故答案为:①②⑤.【点评】本题考查了中心投影和平行投影的定义,属于基础题.21.某由圆柱切割获得的几何体的三视图如图所示,其中俯视图是中心角为60°的扇形,则该几何体的侧面积为12+2π.【分析】三视图中长对正,高对齐,宽相等;由三视图想象出直观图,一般需从俯视图构建直观图,该几何体已知由圆柱切割获得.【解答】解:由题意,圆柱的底面半径为2,高为3;则曲面面积为:×2×3=2π,其他两个侧面为矩形,边长为2,3.故面积为2×3×2=12.故该几何体的侧面积为:12+2π.故答案为:12+2π.【点评】三视图中长对正,高对齐,宽相等;由三视图想象出直观图,一般需从俯视图构建直观图,本题考查了学生的空间想象力,识图能力及计算能力.22.某几何体的三视图如图所示,其中俯视图是半径为4的圆面的四分之一,则该几何体的体积为16π.【分析】由已知中的三视图可得:该几何体是一个以俯视图为底面的柱体,代入柱体体积公式,可得答案.【解答】解:由已知中的三视图可得:该几何体是一个以俯视图为底面的柱体,其底面面积S==4π,高h=4,故几何体的体积V=Sh=16π,故答案为;16π【点评】本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.三.解答题(共5小题)23.已知如图:四边形ABCD是矩形,BC⊥平面ABE,且AE=EB=BC=2,点F为CE上一点,且BF⊥平面ACE.(1)求证:AE∥平面BFD;(2)求多面体ABCDE的表面积.【分析】(1)线面平行转化证明线线平面即可.记AC∩BD=M,连FM,则M为AC的中点;证明FM∥AE,可证AE∥平面BFD;(2)多面体ABCDE的表面积各面的面积之和.根据题设各边长计算即可.【解答】(1)证明:如图,记AC∩BD=M,连FM,则M为AC的中点;而BF⊥平面ACE,∴BF⊥CE,在△BCE中,∵BE=BC,∴F为CE的中点;从而FM是△ACE的中位线,所以FM∥AE,又FM⊂平面DBF,AE⊄平面DBF,∴AE∥平面BFD;(2)由题意:由BF⊥平面ACE,∴AE⊥BF;∵BC⊥平面ABE,∴AE⊥BC,AE⊥平面BEC,AE⊥BE,因此△ABE为直角三角形,所以,而,所以△CDE为正三角形.所以多面体ABCDE的表面积S ABCD+S△ESC+S△CFD+S AEFD=.【点评】本题考查了线面平行的证明和多面体ABCDE的表面积的计算.属于基础题.24.长方体A1B1C1D1﹣ABCD中,AB=AD=2,A1A=2,M为棱C1C的中点,C1D与D1C交于点N,求证:AM⊥A1N.【分析】两条异面直线垂直的证明,通过平行相交,求角是90°即可.或者是建立空间直角坐标系,用向量进行计算.【解答】解法一:解:由题意:M为棱C1C的中点,C1D与D1C交于点N,即N是C1D,D1C的中点.取A1B1的中点E,连接ME,MN.∵CD,A1AB,AB=CD.∴平面MNA1E是平行四边形,则有A1N;所以:AM与A1N所成的角是∠AME.取A1A的中点F,连接NF,由A1B1C1D1﹣ABCD是长方体:∴A1FN是直角三角形,A1F=A1A=,FN==∴A1N=EM=AE=AM=在△AME中,∵AE2=AM2+EM2,∴△AME是直角三角形,∠AME=90°,即AM与A1N所成的角是90°.故AM⊥A1N,得证.解法二:解:以A为原点,以为正交基底建立空间直角坐标系,∵AB=AD=2,A1A=2,M为棱C1C的中点,C1D与D1C交于点N,即中点.则有A(0,0,0),,,∴,,∵,∴AM⊥A1N【点评】本题考查了两条异面直线垂直的证明,常用方法是通过平行相交,求角是90°即可.或者证明其中一条直线垂直另外一条直线所在的平面.或者是建立空间直角坐标系,用向量进行计算.属于基础题.25.有一盛满水的圆柱形容器,内壁底面半径为5,高为2.将一个半径为3的玻璃小球缓慢浸没与水中.(1)求圆柱体积;(2)求溢出水的体积.【分析】(1)利用圆柱的体积公式求圆柱体积;(2)利用球的体积公式求溢出水的体积.【解答】解:(1)∵内壁底面半径为5,高为2,∴圆柱体积V=π•52•2=50π;(2)溢出水的体积=•=12π.【点评】本题着重考查了球体积公式和圆柱体积公式等知识,考查学生的计算能力,属于基础题.26.如图,平行四边形ABCD中,BD=2,AB=2,AD=4,将△BCD沿BD折起到△EBD的位置,使平面EBD⊥平面ABD.(I)求证:AB⊥DE(Ⅱ)求三棱锥E﹣ABD的侧面积.【分析】(Ⅰ)利用面面垂直,证明线面垂直转化为线线垂直.证明AB⊥BD,在证明AB⊥平面EBD,可得AB⊥DE(Ⅱ)三棱锥E﹣ABD的侧面积等于三面之和,由(1)可得ED⊥平面ABCD,可求三个面的面积.【解答】解:(Ⅰ)证明:由题意:AB=2,BD=2,AD=4,∵AB2+BD2=AD2∴AB⊥BD;∵平面EBD⊥平面ABD,平面EBD∩平面ABD=BD,∴AB⊥平面EBD.∵DE⊆平面EBD,∴AB⊥DE.(Ⅱ)由(Ⅰ)可知AB⊥BD,∵CD∥AB,∴CD⊥BD,从而DE⊥BD.在三角形DBE中,∵DB=,DE=CD=AB=2.∴又∵AB⊥平面EBD,EB⊂平面EBD,∴AB⊥BE.∵BE=BC=AD=4,∴.又∵DE⊥BD,平面EBD⊥平面ABD,∴DE⊥平面ABD,而DE⊂平面ABD,DE⊥AD.∴综上,三个面之和为三棱锥E﹣ABD的侧面积,即为8+2.【点评】本题考查了面面垂直转化为线面垂直来证明线线垂直.以及侧面积的计算.属于基础题.27.如图所示,在长方体ABCD﹣A1B1C1D1中,AB=BC=1,BB1=2,连接A1C,BD.(1)求三棱锥A1﹣BCD的体积(2)求证:BD⊥平面A1AC.【分析】(1)以BCD为棱锥的底面,则AA1为棱锥的高,代入棱锥的体积公式计算即可;(2)连结AC,由底面正方形可知BD⊥AC,由AA1⊥平面ABCD可知AA1⊥BD,故而BD⊥平面A1AC.【解答】解:(1)在长方体ABCD﹣A1B1C1D1中,∵A1A⊥平面ABCD,即A1A是三棱锥A1﹣BCD的高,∵AA1=BB1=2,AB=BC=1,∴.∴.证明:(2)连结AC,∵A1A⊥平面ABCD,BD⊂平面ABCD,∴A1A⊥BD.又AB=BC,∴矩形ABCD是正方形,∴BD⊥AC,∵AC⊂平面A1AC,A1A⊂平面A1AC,A1A∩AC=A,∴BD⊥平面A1AC.【点评】本题考查了长方体的结构特征,线面垂直的判定,棱锥的体积计算,属于基础题.。
高中数学必修二同步练习题库:空间几何体的结构(简答题:一般)
空间几何体的结构(简答题:一般)1、如图,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化了并流入杯中,会溢出杯子吗?请用你的计算数据说明理由。
(冰、水的体积差异忽略不计)2、如图,平面为圆锥的轴截面,为底面圆的圆心,为母线的中点,为底面圆周上的一点,求该圆锥的侧面积;若直线与所成的角为,求的长.3、如图所示,在直三棱柱中,底面是等腰三角形,且斜边,侧棱,点为的中点,点在线段上,(1)求证:不论取何值时,恒有;(2)当为何值时,面.4、在三棱柱中,已知,,点在底面的投影是线段的中点.(1)证明:在侧棱上存在一点,使得平面,并求出的长;(2)求三棱柱的侧面积.5、如图所示,设计一个四棱锥形冷水塔塔顶,四棱锥的底面是正方形,侧面是全等的等腰三角形,已知底面边长为2m,高为m,制造这个塔顶需要多少面积的铁板?6、如图,在四棱锥中,底面ABCD为边长为的正方形,(Ⅰ)求证:(Ⅱ)若E,F分别为PC,AB的中点,平面求直线PB与平面PCD所成角的大小.7、为了做好“双十一”促销活动,某电商打算将进行促销活动的礼品盒重新设计.方案如下:将一块边长为10的正方形纸片ABCD剪去四个全等的等腰三角形△SEE′,△SFF′,△SGG′,△SHH′,再将剩下的阴影部分折成一个四棱锥形状的包装盒S-EFGH,其中A,B,C,D重合于点O,E与E′重合,F与F′重合,G与G′重合,H与H′重合(如图所示).(1)求证:平面SEG⊥平面SFH;(2)当AE=时,求二面角E-SH-F的余弦值.8、如图,在三棱锥中,平面平面,为等边三角形,且,、分别为、的中点;(1)求证:;(2)求三棱锥的体积.9、(本小题满分14分)如图,已知四棱锥中,底面为矩形,侧棱,,,为侧棱的中点.(1)求异面直线与所成角的余弦值;(2)求二面角的余弦值.10、(本小题满分10分)如图,在直三棱柱中,已知,,,点,分别在棱,上,且,,.(1)当时,求异面直线与所成角的大小;(2)当直线与平面所成角的正弦值为时,求的值.11、(本小题满分12分)如图1,平面四边形ABCD关于直线AC对称,,,,把△ABD沿BD折起(如图2),使二面角为直二面角.如图2,(Ⅰ)求AD与平面ABC所成的角的余弦值;(Ⅱ)求二面角的大小的正弦值.12、如图,在直三棱柱(侧棱和底面垂直的棱柱)中,平面侧面,,,且满足.(1)求证:;(2)求点的距离;(3)求二面角的平面角的余弦值.13、如图,在四棱锥中,底面是直角梯形,垂直于和,侧棱平面,且.(1)求与成角;(2)求面与面所成的锐二面角的余弦值.14、(12分)如图,在直三棱柱中,,,求与侧面所成的角.15、如图是一个圆锥与其侧面展开图,已知圆锥的底面半径是2,母线长是6.(1)求这个圆锥的高和其侧面展开图中∠ABC的度数;(2)如果A是底面圆周上一点,从点A拉一根绳子绕圆锥侧面一圈再回到A点,求这根绳子的最短长度.16、(本题满分15分)如图,平面⊥平面,其中为矩形,为梯形,∥,,.(1)求异面直线与所成角的大小;(2)若二面角的平面角的余弦值为,求的长.17、如图,在梯形中,,,,四边形为矩形,平面平面,.(Ⅰ)求证:平面;(Ⅱ)设点为中点,求二面角的余弦值.18、如图,在边长为a的正方体中,M、N、P、Q分别为AD、CD、、的中点.(1)求点P到平面MNQ的距离;(2)求直线PN与平面MPQ所成角的正弦值.19、(本小题10分)如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为正方形,PA=AB =2,M, N分别为PA, BC的中点.(Ⅰ)证明:MN∥平面PCD;(Ⅱ)求MN与平面PAC所成角的正切值.20、(本小题满分12分)如图,在多面体ABCDEF中, ABCD为菱形,,EC面ABCD, FA面ABCD,G为BF的中点,若EG//面ABCD.(Ⅰ)求证:EG面ABF;(Ⅱ)若,求二面角B-EF-D 的余弦值.21、(12分)在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,且AC =" AD" =" CD" =" DE" =2,AB =1.(1)请在线段CE上找到点F的位置,使得恰有直线BF∥平面ACD,并证明你的结论;(2)求多面体ABCDE的体积.22、如图,在斜三棱柱中,是的中点,⊥平面,,.(Ⅰ)求证:;(Ⅱ)求二面角的余弦值.23、如图,在底面为平行四边形的四棱锥中,,平面,且,点是的中点.(1)求证:;(2)求二面角的大小.P24、如图,点为斜三棱柱的侧棱上一点,交于点,交于点.(1) 求证:;(2) 在任意中有余弦定理:.拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明25、已知四棱锥P-ABCD,底面ABCD为矩形,侧棱PA⊥平面ABCD,其中BC=2AB=2PA=6,M、N为侧棱PC上的两个三等分点(1)求证:AN∥平面 MBD;(2)求异面直线AN与PD所成角的余弦值;(3)求二面角M-BD-C的余弦值.26、如图,几何体中,四边形为菱形,,,面∥面,、、都垂直于面,且,为的中点,为的中点.(1)求证:为等腰直角三角形;(2)求二面角的余弦值.27、如图,在直三棱柱ABC﹣A1B1C1(侧棱和底面垂直的棱柱)中,平面A1BC⊥侧面A1ABB1,AB=BC=AA1=3,线段AC、A1B上分别有一点E、F且满足2AE=EC,2BF=FA1.(1)求证:AB⊥BC;(2)求点E到直线A1B的距离;(3)求二面角F﹣BE﹣C的平面角的余弦值.28、已知四棱锥的底面为直角梯形,,底面,且,,是的中点.(1)证明:面面;(2)求与所成的角的余弦值;(3)求二面角的正弦值.29、如图,在直三棱柱中-A BC中,AB AC, AB=AC=2,=4,点D是BC的中点.(1)求异面直线与所成角的余弦值;(2)求平面与所成二面角的正弦值.30、如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,点E、F分别在棱BB1、CC1上,且BE=BB1,C1F=CC1.(1)求异面直线AE与A1 F所成角的大小;(2)求平面AEF与平面ABC所成角的余弦值.31、如图平面SAC⊥平面ACB,ΔSAC是边长为4的等边三角形,ΔACB为直角三角形,∠ACB=90,BC=,求二面角S-AB-C的余弦值.32、如图,在矩形中,,点在边上,点在边上,且,垂足为,若将沿折起,使点位于位置,连接,得四棱锥.(1)求证:平面平面;(2)若,直线与平面所成角的大小为,求直线与平面所成角的正弦值.33、如图,四棱锥P-ABCD中,底面ABCD为正方形,DA⊥面ABP,AB=1,PA=2,∠PAB=600,E为PA的中点,F为PC上不同于P、C的任意一点.(1)求证:PC∥面EBD(2)求异面直线AC与PB间的距离(3)求三棱锥E-BDF的体积.34、用一个平行于圆锥底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3cm,求圆台的母线长.35、在斜三棱柱中,侧面平面,,为中点.(1)求证:;(2)求证:平面;(3)若,,求三棱锥的体积.36、如图,在四棱锥中,,是等边三角形,平面平面,已知,,.(1)设是上一点,求证:平面平面;(2)求四棱锥的体积.37、已知半径为的球内有一个内接正方体(即正方体的顶点都在球面上).(1)求此球的体积;(2)求此球的内接正方体的体积;(3)求此球的表面积与其内接正方体的全面积之比.38、已知几何体的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.(1)求异面直线与所成角的余弦值;(2)求二面角的正弦值;(3)求此几何体的体积的大小39、如图,四边形与均为菱形,设与相交于点,若,且.(1)求证:;(2)求二面角的余弦值.40、如图所示的几何体ABCDFE中,△ABC,△DFE都是等边三角形,且所在平面平行,四边形BCED 是边长为2的正方形,且所在平面垂直于平面ABC.(Ⅰ)求几何体ABCDFE的体积;(Ⅱ)证明:平面ADE∥平面BCF;41、如图,在底面为平行四边形的四棱柱中,底面,,,.(1)求证:平面平面;(2)若,求四棱锥的体积.42、如图,已知矩形中,,,将矩形沿对角线把折起,使移到点,且在平面上的射影恰好在上.(1)求证:;(2)求证:平面平面;(3)求三棱锥的体积.43、如图,已知四棱锥平面,底面为直角梯形,,且,.(1)点在线段上运动,且设,问当为何值时,平面,并证明你的结论;(2)当面,且,求四棱锥的体积.44、如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧面PAD是正三角形,且平面PAD⊥底面ABCD.(1)求证:AB⊥平面PAD(2)求直线PC与底面ABCD所成角的大小;(3)设AB=1,求点D到平面PBC的距离.45、有一个正四棱台形状的油槽,可以装油,假如它的两底面边长分别等于和,求它的深度为多少?46、(本小题8分)如图,点为斜三棱柱的侧棱上一点,交于点,交于点.(1) 求证:;(2) 在任意中有余弦定理:. 拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式(只写结论,不必证明)47、(本小题满分12分)如图,直三棱柱中,,分别为的中点,,二面角的大小为.(Ⅰ)证明:;(Ⅱ)求与平面所成的角的大小.48、(满分12分)设底面边长为的正四棱柱中,与平面所成角为;点是棱上一点.(1)求证:正四棱柱是正方体;(2)若点在棱上滑动,求点到平面距离的最大值;(3)在(2)的条件下,求二面角的大小.49、如图示,边长为4的正方形与正三角形所在平面互相垂直,M、Q分别是PC,AD的中点。
2020年高二数学同步单元练习(必修2) 专题01 空间几何体的结构(B卷) Word版含解析
(测试时间:120分钟满分:150分)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.观察如图所示的4个几何体,其中判断正确的是( )A.①是棱台 B.②是圆台C.③是棱锥 D.④不是棱柱2.下列关于母线的叙述正确的是( )①在圆柱上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;③在圆台上、下底面的圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.A.①② B.②③C.①③ D.②④D ①③中两点的连线可能不在侧面上,因此不一定是母线;②中两点的连线符合母线的条件;④中圆柱任意一条母线与圆柱的轴所在的直线平行,因此圆柱的任意两条母线所在的直线是互相平行的.3.下列判断正确的是( )A.棱柱中只能有两个面互相平行B.底面是正方形的直四棱柱是正四棱柱C.底面是正六边形的棱台是正六棱台D.底面是正方形的四棱锥是正四棱锥B A错误,比如四棱柱;B正确;C错误,还应满足正棱台上下底面中心的连线垂直于底面;D错误,还应满足顶点在底面的投影为底面的中心.4.若一正方体沿着表面几条棱裁开放平得到如图L112所示的展开图,则在原正方体中( )A.AB∥CD B.AB∥EFC.CD∥GH D. AB∥GHC 折回原正方体如图所示,则C与E重合,D与B重合,显然CD∥GH.5.如图所示的四个长方体中,由如图所示的纸板折成的是( )D 根据纸板的折叠情况及特殊面的阴影部分可以判断正确选项是D.6.给出下列三个命题:①底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱;②直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是( )A.0 B.1 C.2 D.37.如图所示,若Ω是长方体ABCDA1B1C1D1被平面EFGH截去几何体EFGHB1C1后得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EH∥A1D1,则下列结论中不正确的是( )A.EH∥FG B.四边形EFGH是矩形C.Ω是棱柱 D.Ω是棱台D 根据棱台的定义(侧棱的延长线必交于一点,即棱台可以还原成棱锥)可知,几何体Ω不是棱台.8.下列命题正确的是( )A.矩形的平行投影一定是矩形B.梯形的平行投影一定是梯形C.两条相交直线的投影可能平行D.一条线段中点的平行投影仍是这条线段投影的中点9.如图所示的一个几何体,哪一个是该几何体的俯视图( )答案:C10.如图所示,下列几何体各自的三视图中,有且仅有两个视图相同的是( )A.①② B.①③ C.①④ D.②④D11.一个长方体去掉一个小长方体,所得几何体的正视图与侧视图分别如图所示,则该几何体的俯视图为( )答案:C12.如图所示的正方体中,M、N分别是AA1、CC1的中点,作四边形D1MBN,则四边形D1MBN在正方体各个面上的正投影图形中,不可能出现的是( )答案:D第Ⅱ卷(共90分)二、填空题(本大题共4小题,每题5分,满分20分,将答案填在答题纸上)13.关于如图所示的几何体的正确说法为________.(填序号)图L116①这是一个六面体;②这是一个四棱台;③这是一个四棱柱;④这是一个被截去一个三棱柱的四棱柱①③④由图易知①③④正确.14.一个无盖的正方体盒子展开后的平面图如图L117所示,A,B,C是展开图上的三点,则在正方体盒子中∠ABC=________.15.下列说法中错误的是__________.(填序号)①圆柱的轴截面是过母线的截面中面积最大的;②球的所有截面中过球心的截面的面积最大;③圆台的所有平行于底面的截面都是圆面;④圆锥的所有轴截面都是全等的等腰直角三角形.④根据旋转体的定义可知,圆锥的所有轴截面是全等的等腰三角形.16.若一个三棱柱的三视图如图所示,则这个三棱柱的高(两底面之间的距离)和底面边长分别是________和________.答案:2 4解析三棱柱的高同侧视图的高,侧视图的宽度恰为底面正三角形的高,故底边长为4.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在下面图形中,图(b)是图(a)中实物画出的正视图和俯视图,你认为正确吗?如果不正确,请找出错误并改正,然后画出侧视图(尺寸不作严格要求).18.如图是截去一角的长方体,画出它的三视图.解该图形的三视图如图所示.19.如图,螺栓是棱柱和圆柱的组合体,画出它的三视图.解该物体是由一个正六棱柱和一个圆柱组合而成的,正视图反映正六棱柱的三个侧面和圆柱侧面,侧视图反映正六棱柱的两个侧面和圆柱侧面,俯视图反映该物体投影后是一个正六边形和一个圆(中心重合).它的三视图如图所示.20.用小立方体搭成一个几何体,使它的正视图和俯视图如图所示,搭建这样的几何体,最多要几个小立方体?最少要几个小立方体?解由于正视图中每列的层数即是俯视图中该列的最大数字,因此,用的立方块数最多的情况是每个方框都用该列的最大数字,即如图①所示,此种情况共用小立方块17块.而搭建这样的几何体用方块数最少的情况是每列只要有一个最大的数字,其他方框内的数字可减少到最少的1,即如图②所示,这样的摆法只需小立方块11块.21.有两个面互相平行,其余各面都是平行四边形的几何体是棱柱吗?备特征③.22.如图所示,四边形ABCD绕边AD所在的直线EF旋转,其中AD∥BC,AD⊥CD.当点A选在射线DE上的不同位置时,形成的几何体大小、形状不同,比较其不同点......................................使用本文档删除后面的即可致力于打造全网一站式文档服务需求,为大家节约时间文档来源网络仅供参考欢迎您下载可以编辑的word文档谢谢你的下载本文档目的为企业和个人提供下载方便节省工作时间,提高工作效率,打造全网一站式精品需求!欢迎您的下载,资料仅供参考!(本文档收集于网络改编,由于文档太多,审核难免疏忽,如有侵权或雷同,告知本店马上删除)。
高中数学 空间几何体的结构试题 必修2 试题(共8页)
其中,真命题的编号为
3.〔2021〕如图,在直三棱柱 的中点,沿棱柱的外表从 两点的最短途径的长度为
4.〔2021〕多面体上,位于同一条棱两端(liǎnɡduān)的顶点称为相邻.如图,正方体的一个顶点A在平面 内,其余顶点在 的同侧,正方体上与顶点A相邻的三个顶点到 的间隔分别为1,2和4,P是其余四个顶点中的一个,那么P到平面 的间隔可能是
其中正确的选项是〔〕
A.〔1〕〔2〕B.〔2〕〔3〕C.〔1〕〔3〕D.〔2〕〔4〕
6.以下命题中错误的选项是〔〕
A.圆柱的轴截面是过母线的截面中面积最大的一个
B.圆锥的轴截面是所有过顶点的截面中面积最大的一个
C.圆台的所有平行于底面的截面都是圆
D.圆锥所有的轴截面是全等的等腰三角形
7.图1是由图2中的哪个平面图旋转而得到的〔〕
二、填空题
8如图,长方体ABCD—A1BlClD1中,AD=3,AAl=4,AB=5,那么(nàme)从A点沿外表到Cl的最短间隔为______.
9在三棱锥S—ABC中,SA=SB=SC=1,∠ASB=∠ASC=∠BSC=30°,如图,一只蚂蚁从点A出发沿三棱锥的外表爬行一周后又回到A点,那么蚂蚁爬过的最短路程为_____.
13.解:画三棱锥可分三步完成
第一步:画底面——画一个三角形;
第二步:确定顶点——在底面外任一点;
第三步:画侧棱——连结顶点与底面三角形各顶点.
画四棱可分三步完成(wán chéng)
第一步:画一个四棱锥;
第二步:在四棱锥一条侧棱上取一点,从这点开场,顺次在各个面内画与底面对应线段平行的线段;
第三步:将多余线段擦去.
D.AB=A1B1,BC=B1C1,CA=C1A1
高中数学必修二同步练习题库:空间几何体的结构(选择题:较易)
空间几何体的结构(选择题:较易)1、如图所示,在单位正方体的面对角线上存在一点使得最短,则的最小值为A. B. C. D.2、下列判断正确的是()A.棱柱中只能有两个面可以互相平行 B.底面是正方形的直四棱柱是正四棱柱C.底面是正六边形的棱台是正六棱台 D.底面是正方形的四棱锥是正四棱锥3、以下对于几何体的描述,错误的是()A.以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球B.一个等腰三角形绕着底边上的高所在直线旋转180º形成的封闭曲面所围成的图形叫做圆锥C.用平面去截圆锥,底面与截面之间的部分叫做圆台D.以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱4、下列说法正确的是:()A.圆台是直角梯形绕其一边旋转而成;B.圆锥是直角三角形绕其一边旋转而成;C.圆柱不是旋转体;D.圆台可以看作是平行底面的平面截一个圆锥而得到5、用一个平面去截一个正四棱柱,截法不同,所得截面形状不一定相同,在各种截法中,边数最多的截面的形状为()A.四边形 B.五边形 C.六边形 D.八边形6、以下四个命题:①在圆柱的上、下两底面的圆周上各取一点,则这两点的连线是圆柱的母线;②圆锥的顶点与底面圆周上任意一点的连线是圆锥的母线;③圆台上、下圆周上各取一点,则两点的连线是圆台的母线;④圆柱的任意两条母线相互平行.其中正确的是( )A.①② B.②③ C.①③ D.②④7、右图几何体是由下边的哪一个平面图形旋转而形成的( )8、如图,已知正三角形的三个顶点都在表面积为的球面上,球心到平面的距离为2,点是线段的中点,过点作球的截面,则截面面积的最小值是()A. B. C. D.9、正方形绕某一条对角线所在直线旋转一周,所得几何体是()A.圆柱 B.圆锥C.圆台 D.两个圆锥10、将一个等腰梯形绕着它的较长的底边所在直线旋转一周,所得的几何体包括()A.一个圆台、两个圆锥 B.两个圆台、一个圆柱C.两个圆台、一个圆锥 D.一个圆柱、两个圆锥11、下列命题中正确的个数是()①由五个面围成的多面体只能是三棱柱;②用一个平面去截棱锥便可得到棱台;③仅有一组对面平行的五面体是棱台;④有一个面是多边形,其余各面是三角形的几何体是棱锥.A.0个 B.1个C.2个 D.3个12、若正棱锥底面边长与侧棱长相等,则该棱锥一定不是()A.三棱锥 B.四棱锥 C.五棱锥 D.六棱锥13、下列命题中正确的是()A.用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台B.两个底面平行且相似,其余各面都是梯形的多面体是棱台C.棱台的底面是两个相似的正方形D.棱台的侧棱延长后必交于一点14、在底面为正方形的长方体上任意选择个顶点,则以这个顶点为顶点构成的几何形体可能是:①矩形;②不是矩形的平行四边形;③有三个面为直角三角形,一个面为等腰三角形的四面体;④每个面都是等腰三角形的四面体;⑤毎个面都是直角三角形的四面体.则其中正确结论的序号是()A.①③④⑤ B.①②④⑤C.①②③⑤ D.①②③④15、如图所示的几何体是由一个圆柱挖去一个以圆柱上底面为底面,下底面圆心为顶点的圆锥而得到的组合体,现用一个竖直的平面去截这个组合体,则截面图形可能是()A.(1)(2) B.(1)(3)C.(1)(4) D.(1)(5)16、截一个几何体,各个截面都是圆面,则这个几何体一定是()A.圆柱 B.圆锥 C.球 D.圆台17、图1是由哪个平面图形旋转得到的()18、用一个平面去截一个几何体,得到的截面是一个圆面,这个几何体可能是()A.圆锥 B.圆柱 C.球体 D.以上都可能19、下列结论正确的是()A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线20、用一个平面去截正方体,对于截面的边界,有以下图形:①钝角三角形;②直角梯形;③菱形;④正五边形;⑤正六边形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间几何体的结构(选择题:较难)1、如右图,在长方体中,=11,=7,=12,一质点从顶点A射向点,遇长方体的面反射(反射服从光的反射原理),将次到第次反射点之间的线段记为,,将线段竖直放置在同一水平线上,则大致的图形是()2、在正方体中,为棱上一动点,为底面上一动点,是的中点,若点都运动时,点构成的点集是一个空间几何体,则这个几何体是()A.棱柱 B.棱台 C.棱锥 D.球的一部分3、已知正方体的棱长为2,其表面上的动点到底面的中心的距离为,则线段的中点的轨迹长度为()A. B. C. D.4、在三棱锥中,底面是边长为 2 的正三角形,顶点在底面上的射影为的中心,若为的中点,且直线与底面所成角的正切值为,则三棱锥外接球的表面积为()A. B. C. D.5、《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥为鳖臑,平面,,,三棱锥的四个顶点都在球的球面上,则球的表面积为()A. B. C. D.6、已知点、在半径为的球表面上运动,且,过作相互垂直的平面、,若平面、截球所得的截面分别为圆、圆,则()A.长度的最小值是2 B.的长度是定值C.圆面积的最小值是 D.圆、的面积和是定值7、已知四面体P-ABC中,PA=4,AC=2,PB=BC=2,PA⊥平面PBC,则四面体P-ABC的外接球半径为()A.2 B.2 C.4 D.48、如图是一个底面半径为1的圆柱被平面截开所得的几何体,截面与底面所成的角为,过圆柱的轴的平面截该几何体所得的四边形为矩形,若沿将其侧面剪开,其侧面展开图形状大致为()A. B.C. D.9、棱柱有个对角面,则棱柱的对角面个数为()A. B. C. D.10、在直四棱柱中,底面为菱形,分别是的中点,为的中点且,则的面积的最大值为()A. B.3 C. D.11、三棱锥中,平面,,是边长为2的等边三角形,则该几何体外接球的表面积为()A. B. C. D.12、正四面体的棱长为4,为棱的中点,过作此正四面体的外接球的截面,则截面面积的最小值是()A. B. C. D.13、在菱形中,,将沿折起到的位置,若二面角的大小为,三棱锥的外接球球心为,的中点为,则A.1 B.2 C. D.14、在菱形中,,,将沿折起到的位置,若二面角的大小为,三棱锥的外接球球心为,的中点为,则()A.1 B.2 C. D.15、祖暅是南北朝时代的伟大科学家,5世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积都相等,那么这两个几何体的体积一定相等.现有以下四个几何体:图①是从圆柱中挖出一个圆锥所得的几何体;图②、图③、图④分别是圆锥、圆台和半球,则满足祖暅原理的两个几何体为()A.①② B.①③ C.②④ D.①④16、如图,有一个水平放置的透明无盖的正三棱柱容器,其中侧棱长为,底面边长为,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时,测得水深为,如果不计容器的厚度,则球的表面积为( )A. B.C. D.17、《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥为鳖臑, ⊥平面, ,,三棱锥的四个顶点都在球的球面上, 则球的表面积为A. B. C. D.18、如图,等边三角形的中线与中位线相交于,已知是△绕旋转过程中的一个图形,下列命题中,错误的是()A.动点在平面上的射影在线段上B.恒有平面⊥平面C.三棱锥的体积有最大值D.异面直线与不可能垂直19、如图,已知正方体的上、下底面中心分别为M、N,点P在线段BC1上运动,记,且点P到直线MN的距离记为,则的图象大致为()20、如图,是正方体对角线上一动点,设的长度为,若的面积为,则的图象大致是()21、在正方体中,为棱上一动点,为底面上一动点,是的中点,若点都运动时,点构成的点集是一个空间几何体,则这个几何体是A.棱柱 B.棱台 C.棱锥 D.球的一部分22、如图,正方体的棱长为,以顶点A为球心,2为半径作一个球,则图中球面与正方体的表面相交所得到的两段弧长之和等于( )A. B. C. D.23、已知矩形ABCD的面积为8,当矩形ABCD周长最小时,沿对角线AC把△ACD折起,则三棱锥D-ABC外接的球表面积等于().A.8π B.16π C.48π D.不确定的实数24、已知三棱柱ABC-A1B1C1的侧棱与底面垂直,体积为,底面是边长为的正三角形.若P为底面A1B1C1的中心,则PA与平面ABC所成角的大小为 ().A. B. C. D.25、如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为m,n,那么m+n等于().A.8 B.9 C.10 D.1126、如图,正四棱柱中,,,分别在上移动,且始终保持平面,设,,则函数的图象大致是27、一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是()A.; B.; C.; D..28、在三棱锥A—BCD中,侧棱AB、AC、AD两两垂直,△ABC、△ACD、△ADB的面积分别为、、.则三棱锥A—BCD的外接球的体积为A. B. D.29、半径为的球的直径垂直于平面,垂足为,是平面内边长为的正三角形,线段、分别与球面交于点、,那么、两点间的球面距离是(A)(B)(C)(D)30、在正四棱锥S-ABCD中,侧面与底面所成的角为,则它的外接球半径R与内切球半径之比为()A.5 B. C.10 D.31、在正四棱锥S-ABCD中,侧面与底面所成的角为,则它的外接球半径R与内切球半径之比为()A.5 B. C.10 D.32、长方体的一个顶点三条棱长分别为1,2,3,该长方体的顶点都在同一个球面上,则这个球的表面积为(s=4)()A. B.14 C.56 D.9633、已知三棱锥的底面是边长为2正三角形,侧面均为等腰直角三角形,则此三棱锥的体积为()A. B. C. D.34、设球的半径是1,、、是球面上三点,已知到、两点的球面距离都是,且二面角的大小是,则从点沿球面经、两点再回到点的最短距离是()A. B.C. D.35、一个长方体共一顶点的三个面的面积分别是,这个长方体对角线的长是()36、在一个棱长为4的正方体内,你认为能放入几个直径为1的球()A.64 B.65 C.66 D.6737、下面的集合中三个元素不可能分别是长方体(一只“盒子”) 的三条外对角线的长度(一条外对角线就是这盒子的一个矩形面的一条对角线) 是( )A.. B.. C.. D..38、正方体的截平面不可能是: (1) 钝角三角形 (2) 直角三角形 (3) 菱形 (4) 正五边形 (5) 正六边形;下述选项正确的是: ( )A. (1)(2)(5) B. (1)(2)(4) C. (2)(3)(4) D. (3)(4)(5)39、连结球面上两点的线段称为球的弦. 半径为4的球的两条弦AB、CD的长度分别等于和,、分别为、的中点,每两条弦的两端都在球面上运动,有下面四个命题:①弦、可能相交于点②弦、可能相交于点③的最大值为5 ④的最小值为1其中真命题为A.①③④B.①②③C.①②④D.②③④40、四面体的六条棱长分别为,且知,则 .、;、;、;、.参考答案1、C2、A3、B4、D5、C6、B7、A8、A9、A10、B11、D12、A13、B14、B15、D16、B17、C18、D19、A20、A21、A22、A23、B24、B25、A26、C27、B28、A29、A30、D31、D32、B33、C34、选C.35、D36、C37、B38、B39、40、.【解析】1、试题分析:因为,所以延长交于,过作垂直于在矩形中分析反射情况:由于,第二次反射点为在线段上,此时,第三次反射点为在线段上,此时,第四次反射点为在线段上,由图可知,选C.考点:空间想象能力2、由题意知:当在处,在上运动时,的轨迹为过的中点,在平面内平行于线段(靠近),当在处,在上运动时,的轨迹为过的中点,在平面内平行于线段(靠近),当在处,在上运动时,的轨迹为过的中点,在平面内平行于线段(靠近),当在处,在上运动时,的轨迹为过的中点,在平面内平行于线段(靠近),当在处,在上运动时,的轨迹为过的中点,在平面内平行于线段(靠近),当在处,在上运动时,的轨迹为过的中点,在平面内平行于线段(靠近),同理得到:在处,在上运动,在处,在上运动;在处,在处,在上运动,都在上运动的轨迹,进一步分析其它情形即可得到的轨迹为棱柱体,故选A.3、动点的轨迹是以为球心,以为半径的球面,球面与平面的交点轨迹是以中点为圆心,以为半径的半圆,对应中点的轨迹是以为半径的半圆,长度为,由于球面同时与面、面、面都相交,交的轨迹长度为,故选B.4、∵定点A在底面BCD上的射影为三角形BCD的中心,而且底面BCD是正三角形,∴三棱锥A﹣BCD是正三棱锥,∴AB=AC=AD,令底面三角形BCD的重心(即中心)为P,∵底面BCD为边长为2的正三角形,DE是BC边上的高,∴DE=,∴PE=,DP=∵直线AE与底面BCD所成角的正切值为2,即∴AP=,∵AD2=AP2+DP2(勾股定理),∴AD=2,于是AB=AC=AD=BC=CD=DB=2,∴三棱锥为正四面体,构造正方体,由面上的对角线构成正四面体,故正方体的棱长为,∴正方体的对角线长为,∴外接球的半径为.∴外接球的表面积=4πr2=6π.故选D.点睛:设几何体底面外接圆半径为,常见的图形有正三角形,直角三角形,矩形,它们的外心可用其几何性质求;而其它不规则图形的外心,可利用正弦定理来求.若长方体长宽高分别为则其体对角线长为;长方体的外接球球心是其体对角线中点.找几何体外接球球心的一般方法:过几何体各个面的外心分别做这个面的垂线,交点即为球心. 三棱锥三条侧棱两两垂直,且棱长分别为,则其外接球半径公式为: .5、由题可知,底面为直角三角形,且,则,则球的直径,则球的表面积选C6、如图所示,过作互相垂直的平面、平面,则,,,因为分别是的中点,所以,故选B.7、由题意,已知面所以,由勾股定理得到,即为等边三角形,为等腰三角形,等边三角形所在的小圆的直径,那么,四面体的外圆球直径,所以,,故选.【方法点睛】本题主要考查三棱锥外接球半径的求法,属于难题.要求外接球的表面积和体积,关键是求出求的半径,求外接球半径的常见方法有:①若三条棱两垂直则用(为三棱的长);②若面(),则(为外接圆半径);③可以转化为长方体的外接球;④特殊几何体可以直接找出球心和半径.8、截面方程为 ,截面在轴截面上的投影为圆,沿剪开起展开图不可能是B、C、D.选A.9、增加一条侧棱与其不相邻的条侧棱形成个对角面,而过与其相邻的两条侧棱的截面原来为侧面,现在也形成了一个对角面,故共增加了个对角面,所以选A.10、由直四棱柱中,底面为菱形,分别是的中点,为的中点且,可得为等腰三角形,设,则,因为,由余弦定理得,可得,的面积为等于的,的面积的最大值为,故选B.【方法点睛】本题主要考查空间想象能力,余弦定理及函数的值域的求法,属于难题.求函数值域的常见方法有①配方法:若函数为一元二次函数,常采用配方法求函数求值域,其关键在于正确化成完全平方式,并且一定要先确定其定义域;②换元法:常用代数或三角代换法,用换元法求值域时需认真分析换元参数的范围变化;③不等式法:借助于基本不等式求函数的值域,用不等式法求值域时,要注意基本不等式的使用条件“一正、二定、三相等”;④单调性法:首先确定函数的定义域,然后准确地找出其单调区间,最后再根据其单调性求凼数的值域,⑤图像法:画出函数图像,根据图像的最高和最低点求最值,本题首先将原题转换为函数值域为再应用方法①解答的.11、设三角形和三角形的中心分别为,是球心,连接交于,则是平行四边形,外接球半径所以表面积为故选D.12、将四面体放置在正方体中,如图所示,可得正方体的外接球就是四面体的外接球,因为正四面体的棱长为4,所以正方体的棱长为,可得外接球的半径满足,即,又为的中点,过作其外接球的截面,当截面到球心的距离最大时,此时截面圆的面积最小,此时球心到截面的距离等于正方体棱长的一半,可得截面圆的半径为,得到截面圆的面积的最小值为,故选A.13、因为在菱形中,的中点为,所以 ,则 ,所以为二面角的平面角,,由于,所以为等边三角形,若外接圆的圆心为,则平面,在等边中,,可以证明,所以,又,所以 ,在中,,选B.点睛: 本题主要考查了四棱锥的外接球问题, 属于中档题. 本题思路: 由二面角的定义求出,确定外接圆的圆心位置,由球的截面圆的性质得到平面,利用,求出的长度.14、因为在菱形中,的中点为,所以 ,则 ,所以为二面角的平面角,,由于,所以为等边三角形,若外接圆的圆心为,则平面,在等边中,,可以证明,所以,又,所以 ,在中,,选B.点睛: 本题主要考查了四棱锥的外接球问题, 属于中档题. 本题思路: 由二面角的定义求出,确定外接圆的圆心位置,由球的截面圆的性质得到平面,利用,求出的长度.15、设截面与底面的距离为,则①中截面内圆半径为,则截面圆环的面积为;②中截面圆的半径为,则截面圆的面积为;③中截面圆的半径为,则截面圆的面积为;②中截面圆的半径为,则截面圆的面积为,所以①④中截面的面积相等,故选D.16、由题意得,设求和三棱柱的上底面的三个焦点分别为,设截面圆的半径为,因为上底面是边长为的正三角形,则,设求的半径为,根据球的性质可得,所以球的表面积为,故选B。