圆的有关证明及计算
圆的相关证明与计算(复习讲义)(原卷版)-中考数学重难点题型专题汇总
题型五--圆的相关证明与计算(复习讲义)【考点总结|典例分析】考点01圆的有关概念1.与圆有关的概念和性质(1)圆:平面上到定点的距离等于定长的所有点组成的图形.(2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.(3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.(4)圆心角:顶点在圆心的角叫做圆心角.(5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(6)弦心距:圆心到弦的距离.考点02垂径定理及其推论1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.2.推论(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.考点03圆心角、弧、弦的关系1.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.2.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.考点04圆周角定理及其推论1.定理一条弧所对的圆周角等于它所对的圆心角的一半.2.推论(1)在同圆或等圆中,同弧或等弧所对的圆周角相等.(2)直径所对的圆周角是直角.考点05与圆有关的位置关系1.点与圆的位置关系设点到圆心的距离为d.(1)d<r⇔点在⊙O内;(2)d=r⇔点在⊙O上;(3)d>r ⇔点在⊙O 外.判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可.2.直线和圆的位置关系位置关系相离相切相交图形公共点个数0个1个2个数量关系d>r d=r d<r考点06切线的性质与判定1.切线的性质(1)切线与圆只有一个公共点.(2)切线到圆心的距离等于圆的半径.(3)切线垂直于经过切点的半径.利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题.2.切线的判定(1)与圆只有一个公共点的直线是圆的切线(定义法).(2)到圆心的距离等于半径的直线是圆的切线.(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.考点07三角形与圆1.三角形外接圆外心是三角形三条垂直平分线的交点,它到三角形的三个顶点的距离相等.2.三角形的内切圆内心是三角形三条角平分线的交点,它到三角形的三条边的距离相等.1.如图,点,,,,A B C D E 在O 上,,42AB CD AOB =∠=︒,则CED ∠=()A.48︒B.24︒C.22︒D.21︒2.如图,A,B,C 是半径为1的⊙O 上的三个点,若,∠CAB=30°,则∠ABC 的度数为()A.95°B.100°C.105°D.110°3.如图,AB 是⊙O 的直径,AC,BC 是⊙O 的弦,若20A ∠=︒,则B Ð的度数为()A.70°B.90°C.40°D.60°4.如图,Rt ABC 中,90ACB ∠=︒,AC =3BC =.点P 为ABC ∆内一点,且满足22PA PC +2AC =.当PB 的长度最小时,ACP ∆的面积是()A.3B.C.4D.25.如图,已知在⊙O 中, AB BCCD ==,OC 与AD 相交于点E.求证:(1)AD∥BC(2)四边形BCDE 为菱形.6.如图,A,B 是O 上两点,且AB OA =,连接OB 并延长到点C,使BC OB =,连接AC.(1)求证:AC 是O 的切线.(2)点D,E 分别是AC,OA 的中点,DE 所在直线交O 于点F,G,4OA =,求GF 的长.7.如图,Rt ABC 中,90ABC ∠=︒,以点C 为圆心,CB 为半径作C ,D 为C 上一点,连接AD 、CD ,AB AD =,AC 平分BAD ∠.(1)求证:AD 是C 的切线;(2)延长AD 、BC 相交于点E,若2EDC ABC S S = ,求tan BAC ∠的值.8.如图,在O 中,AB 是直径,弦CD AB ⊥,垂足为H ,E 为 BC上一点,F 为弦DC 延长线上一点,连接FE 并延长交直径AB 的延长线于点G ,连接AE 交CD 于点P ,若FE FP =.(1)求证:FE 是O 的切线;(2)若O 的半径为8,3sin 5F =,求BG 的长.9.如图,ABC 是O 的内接三角形,AC 是O 的直径,点D 是 BC的中点,//DE BC 交AC 的延长线于点E .(1)求证:直线DE 与O 相切;(2)若O 的直径是10,45A ∠=︒,求CE 的长.10.如图,已知点C 是以AB 为直径的圆上一点,D 是AB 延长线上一点,过点D 作BD 的垂线交AC 的延长线于点E ,连结CD ,且CD ED =.(1)求证:CD 是O 的切线;(2)若tan 2DCE ∠=,1BD =,求O 的半径.11.如图,AB 是⊙O 的直径,C 为⊙O 上一点,连接AC,CE⊥AB 于点E,D 是直径AB 延长线上一点,且∠BCE=∠BCD.(1)求证:CD 是⊙O 的切线;(2)若AD=8,BE CE=12,求CD的长.12.如图,△ABC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,连结OC,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.13.如图,⊙O的半径OA=6,过点A作⊙O的切线AP,且AP=8,连接PO并延长,与⊙O 交于点B、D,过点B作BC∥OA,并与⊙O交于点C,连接AC、CD.(1)求证:DC∥AP;(2)求AC的长.=CD =DB ,连接AD,过点D作14.如图,AB为⊙O的直径,C、D为⊙O上的两个点,ACDE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)若直径AB=6,求AD的长.15.如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.16.如图,AB为⊙O的直径,C为⊙O上一点,AD与过C点的直线互相垂直,垂足为D,AC 平分∠DAB.(1)求证:DC为⊙O的切线.(2)若AD=3,DC=3,求⊙O的半径.17.如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,过点D作⊙O的切线交AC于点E.(1)求证:DE⊥AC;(2)若⊙O的半径为5,BC=16,求DE的长.。
中考总复习正多边形与圆的有关的证明和计算--知识讲解
中考总复习正多边形与圆的有关的证明和计算--知识讲解【正多边形与圆的有关的证明和计算】一、正多边形的定义与性质:正多边形是指所有边相等、所有角相等的多边形。
正多边形的性质如下:1.所有边相等,所有角相等;2.任意两条边之间的夹角相等;3.对角线相等;4.中心角等于外角。
二、正多边形的内角与外角的关系:1.由正多边形的定义可知,正多边形的内角和为180°(n-2),其中n 为正多边形的边数;2.正多边形的外角和为360°,由此可得正多边形的内角和与外角和之间的关系:内角和=外角和/2三、正多边形的周长和面积的计算:1.正多边形的周长为边长×边数;2.正多边形的面积为面积公式:面积=1/2×边长×边数×正弦(360°/边数)。
四、正多边形内接圆的半径和面积:2.正多边形内接圆的面积等于正多边形面积的一半。
五、正多边形外接圆的半径和面积:1.正多边形外接圆的半径等于正多边形的边长的一半乘以正弦(180°/边数);2.正多边形外接圆的面积等于正多边形边长的平方乘以正弦(360°/边数)乘以1/2六、正多边形的对称轴:正多边形有旋转对称轴和镜像对称轴两类:1.正多边形的旋转对称轴有n条,其中n为正多边形的边数;2.正多边形的镜像对称轴有2n条,其中n为正多边形的边数。
七、圆的性质及计算:1.圆是由一个动点到一个定点的距离保持不变的动点集;2.圆的半径是动点到圆心的距离;3.圆的直径是通过圆心的一条线段,且长度等于半径的两倍;4.圆的周长等于直径的乘以π,即周长=2×半径×π;5.圆的面积等于半径的平方乘以π,即面积=半径×半径×π。
八、正多边形与圆的关系:1.正多边形的内接圆同时是这个正多边形的外接圆,即正多边形的内接圆与外接圆重合;3.正多边形的外接圆的半径等于正多边形的边长的一半乘以正弦(180°/边数);4.正多边形的外接圆的面积等于正多边形边长的平方乘以正弦(360°/边数)乘以1/2;5.正多边形的内接圆和外接圆的关系可以用于计算正多边形的周长和面积。
圆的证明与计算范文
圆的证明与计算范文圆是几何中的基本图形之一,它是平面上所有点与固定点之间距离保持不变的集合。
下面将从不同的角度对圆的性质进行证明,并介绍一些常见的圆的计算方法。
一、圆的性质及证明1.圆的定义证明对于平面上的一个点O以及一个长度r,定义集合E为与O的距离为r的点的集合。
我们要证明E是一个圆。
证明:(1)任意取平面上的一点A,若A∈E,证明OA=r。
假设A∈E,则OA的长度等于A与O的距离,即OA=r。
因此,E是以O为圆心,长度为r的圆。
(2)任意取平面上的一点B,若OB=r,证明B∈E。
假设OB=r,则OB的长度等于B与O的距离,即OB=BO=r。
因此,B∈E。
由(1)和(2)可得,对于平面上的一个点O以及一个长度r,定义集合E为与O的距离为r的点的集合是一个圆。
2.圆心角的证明圆心角是指圆上两条射线所夹的角,它的度数等于弧所对的圆周角的度数。
我们要证明圆心角的度数等于所对弧的度数。
证明:任意取圆上两点A和B,以圆心O为顶点,连接OA和OB两条射线。
延长AO和OB分别与圆交于点C和D,则∠AOB是圆心角,∠ACB是所对弧所对的圆周角。
(1)∠AOB的度数等于所对弧AD的度数。
由于AD是圆上的弧,所以∠ACO是所对弧AD的圆周角。
根据圆周角的性质,∠ACO的度数等于所对弧AD的度数。
(2)∠ACB的度数等于所对弧AD的度数。
同样根据圆周角的性质,∠ACB的度数等于所对弧AD的度数。
由(1)和(2)可得,圆心角∠AOB的度数等于所对弧AD的度数。
通过证明,我们可以得出圆心角的度数等于所对弧的度数这一结论。
二、圆的计算在实际应用中,我们有时需要计算圆的周长、面积以及部分圆的面积。
以下是圆的计算公式:1.周长的计算2.面积的计算3.部分圆的面积的计算对于已知圆的半径r和所对的圆心角θ,部分圆的面积计算公式为:A=(πr²×θ)/360,其中A表示部分圆的面积,r表示半径,θ表示圆心角。
专题25 圆的有关计算与证明(共20道)(解析版)-2023年中考数学真题分项汇编(全国通用)
专题25圆的有关计算与证明(20道)一、填空题1.(2023·江苏徐州·统考中考真题)如图,在O 中,直径AB 与弦CD 交于点 ,2E AC BD=.连接AD ,过点B 的切线与AD 的延长线交于点F .若68AFB ∠=︒,则DEB ∠=°.【答案】66【分析】连接BD ,则有90ADB ∠=︒,然后可得22,68A ABD ∠=︒∠=︒,则44ADE =︒∠,进而问题可求解.【详解】解:连接BD ,如图所示:∵AB 是O 的直径,且BF 是O 的切线,∴90ADB ABF ∠=∠=︒,∵68AFB ∠=︒,∴22A ∠=︒,∴68ABD ∠=︒,∵ 2AC BD=,∴244ADC A ∠=∠=︒,【答案】0.1【分析】由已知求得AB 与而即可得解.【详解】∵2OA OB AOB ==∠,∴22AB =,∵C 是弦AB 的中点,D 在∴延长DC 可得O 在DC 上,∴22CD OD OC =-=-,∴()22222322CD s AB OA-=+=+=,9022360l ππ⨯⨯==,∴30.1l s π-=-≈.故答案为:0.1.【点睛】本题考查扇形的弧长,掌握垂径定理。
弧长公式是关键.二、解答题3.(2023·辽宁盘锦·统考中考真题)如图,ABC 内接于O ,AB 为O 的直径,延长AC 到点G ,使得CG CB =,连接GB ,过点C 作CD GB ∥,交AB 于点F ,交点O 于点D ,过点D 作DE AB ∥.交GB 的延长线于点E .(1)求证:DE 与O 相切.(2)若4AC =,2BC =,求BE 的长.【答案】(1)见详解(2)523【分析】(1)连接OD ,结合圆周角定理,根据CG CB =,可得45CGB CBG ∠=∠=︒,再根据平行的性质45ACD CGB ∠=∠=︒,即有290AOD ACD ∠=∠=︒,进而可得90ODE AOD ∠=∠=︒,问题随之得证;(2)过C 点作CK AB ⊥于点K ,先证明四边形BEDF 是平行四边形,即有BE DF =,求出2225AB AC BC =+=,即有152OD AO OB AB ====,利用三角形函数有2sin 5AC ABC AB ∠==,同理1cos 5ABC ∠=,即可得4sin 5KC BC ABC =⨯∠=,2cos 5KB BC ABC =⨯∠=,进而有35OK OB KB =-=,再证明CKF DOF ∽,可得55445OF OD FK CK ===,即可得55359935OF OK ==⨯=,在Rt ODF △中,有∵AB 为O 的直径,∴90ACB ∠=︒,∴90GCB ∠=︒,∵CG CB =,∴45CGB CBG ∠=∠=︒,∵CD GB ∥,∴45ACD CGB ∠=∠=︒,∴290AOD ACD ∠=∠=︒,即∵DE AB ∥,∴90ODE AOD ∠=∠=︒,∴半径OD DE ⊥,∴DE 与O 相切;(2)过C 点作CK AB ⊥∵CD GB ∥,DE AB ∥,∴四边形BEDF 是平行四边形,∴BE DF =,∵4AC =,2BC =,∴222AB AC BC =+=∴152OD AO OB AB ====,∵CK AB ⊥,∴90CKB ACB ∠=︒=∠,∴在Rt ACB △,2sin 5AC ABC AB ∠==,同理1cos 5ABC ∠=,∵在Rt KCB 中,2CB =,∴4sin 5KC BC ABC =⨯∠=,2cos 5KB BC ABC =⨯∠=,∴35OK OB KB =-=,∵CK AB ⊥,OD AB ⊥,∴OD CK ∥,∴CKF DOF ∽,∴55445OF OD FK CK ===,∴59OF OF FK OF OK ==+,∴55359935OF OK ==⨯=,∴在Rt ODF △中,22523DF OD OF =+=,∴523BE DF ==.【点睛】本题是一道综合题,主要考查了圆周角定理,切线的判定,相似三角形的判定与性质,平行四边形的判定与性质,三角函数以及勾股定理等知识,掌握切线的判定以及相似三角形的判定与性质,是解答本题的关键.4.(2023·江苏南通·统考中考真题)如图,等腰三角形OAB 的顶角120AOB ∠=︒,O 和底边AB 相切于点C ,并与两腰OA ,OB 分别相交于D ,E 两点,连接CD ,CE .(1)求证:四边形ODCE 是菱形;(2)若O 的半径为2,求图中阴影部分的面积.【答案】(1)见解析(2)4233S π=-阴影【分析】(1)连接OC ,根据切线的性质可得60AOC BOC ∠=∠=︒,从而可得ODC 和△OD CD CE OE ===,即可解答;(2)连接DE 交OC 于点F ,利用菱形的性质可得利用勾股定理求出DF 的长,从而求出DE ODCE 的面积,进行计算即可解答.【详解】(1)证明:连接OC ,O 和底边AB 相切于点C ,OC AB ∴⊥,OA OB = ,120AOB ∠=︒,1602AOC BOC AOB ∴∠=∠=∠=︒,OD OC = ,OC OE =,ODC ∴ 和OCE △都是等边三角形,OD OC DC \==,OC OE CE ==,OD CD CE OE ∴===,∴四边形ODCE 是菱形;(2)解:连接DE 交OC 于点F ,四边形ODCE 是菱形,112OF OC ∴==,2DE DF =,90OFD ∠=︒,在Rt ODF 中,2OD =,2222213DF OD OF ∴=-=-=,223DE DF ∴==,∴图中阴影部分的面积=扇形ODE 的面积-菱形ODCE 的面积2120213602OC DE π⨯=-⋅4122332π=-⨯⨯4233π=-,∴图中阴影部分的面积为4233π-.【点睛】本题考查了切线的性质,扇形面积的计算,等腰三角形的性质,菱形的判定与性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.5.(2023·辽宁鞍山·统考中考真题)如图,四边形ABCD 内接于O ,AB 为O 的直径,过点D 作DF BC ⊥,交BC 的延长线于点F ,交BA 的延长线于点E ,连接BD .若180EAD BDF ∠+∠=︒.(1)求证:EF 为O 的切线.∵EAD BDF ∠+∠=∴BDF BAD ∠=∠,∵AB 为O 的直径,∴90ADB ∠=︒,BFD ∠∴BDF DBF ∠+∠=∴DBF ABD ∠=∠,∵OB OD =,∴DBF ABD ∠=∠=∴OD BF ∥,∴90ODE F ∠=∠=又OD 为O 的半径,∴EF 为O 的切线;(2)连接AC ,则:∵AB 为O 的直径,∴90ACB F ∠=︒=∠,∴AC EF ,∴E BAC BDC ∠=∠=∠,在Rt BFE △中,10BE =,2sin sin 3E BDC =∠=,∴220sin 1033BF BE E =⋅=⨯=,设O 的半径为r ,则:,10OD OB r OE BE OB r ===-=-,∵OD BF ∥,∴ODE BFE ∽,∴OD OE BF BE =,即:1020103r r -=,∴4r =;∴O 的半径为4.【点睛】本题考查圆与三角形的综合应用,重点考查了切线的判定,解直角三角形,相似三角形的判定和性质.题目的综合性较强,熟练掌握相关知识点,并灵活运用,是解题的关键.6.(2023·辽宁阜新·统考中考真题)如图,AB 是O 的直径,点C ,D 是O 上AB 异侧的两点,DE CB ⊥,交CB 的延长线于点E ,且BD 平分ABE ∠.(1)求证:DE 是O 的切线.(2)若60ABC ∠=︒,4AB =,求图中阴影部分的面积.【答案】(1)见解析(2)233π-【分析】(1)连接OD ,根据OB OD =,得出OBD ODB ∠=∠.根据BD 平分ABE ∠,得出OBD EBD ∠=∠,则EBD ODB ∠=∠.根据DE CB ⊥得出90EBD EDB ∠+∠=︒,进而得出90ODB EDB ∠+∠=︒,即可求证;(3)连接OC ,过点O 作OF BC ⊥于点F ,通过证明OBC △为等边三角形,得出60BOC ∠=︒,【点睛】本题主要考查了切线的判定,等边三角形的判定和性质,解直角三角形,求扇形面积,解题的关键是掌握经过半径外端切垂直于半径的直线是圆的切线;扇形面积公式7.(2023·黑龙江哈尔滨·统考中考真题)已知ABC 内接于O ,AB 为O 的直径,N 为 AC 的中点,连接ON 交AC 于点H .(1)如图①,求证2BC OH =;(2)如图②,点D 在O 上,连接DB ,DO ,DC ,DC 交OH 于点E ,若DB DC =,求证OD AC ∥;(3)如图③,在(2)的条件下,点F 在BD 上,过点F 作FG DO ⊥,交DO 于点G .DG CH =,过点F 作FR DE ⊥,垂足为R ,连接EF ,EA ,32EF DF =::,点T 在BC 的延长线上,连接AT ,过点T 作TM DC ⊥,交DC 的延长线于点M ,若42FR CM AT ==,,求AB 的长.【答案】(1)见解析(2)见解析(3)213【分析】(1)连接OC ,根据N 为 AC 的中点,易证AH HC =,再根据中位线定理得出结论;(2)连接OC ,先证DOB DOC ≌V V 得BDO CDO ∠=∠,再根据OB OD =得DBO BDO ∠=∠,根据ACD ABD ∠=∠即可得出结论;(3)连接AD ,先证DOB DOC ≌V V ,再证四边形ADFE 是矩形,过A 作AS DE ⊥垂足为S ,先证出FR AS =,再能够证出CAS TCM ≌V V 从而CT AC =,得到等腰直角ACT ,利用三角函数求出AC ,再根据EDF BAC ∠=∠求出BC ,最后用勾股定理求出答案即可.【详解】(1)证明:如图,连接OC ,设2BDC α∠=,BD DC = ,DO DO =DOB DOC \≌V V ,12BDO CDO \Ð=Ð=OB OD = ,DBO \ÐACD ABD a Ð=Ð=Q DO AC \∥;(3)解:连接AD ,FG OD ^Q ,90DGF ∴∠=︒,90CHE ∠=︒ ,DGF CHE \Ð=Ð,FDG ECH Ð=ÐQ ,DG CH =,DGF CHE \≌V V ,DF CE ∴=,AH CH = ,OH AC \^,CE AE DF \==,EAC ECA a Ð=Ð=Q ,2AED EAC ECA a Ð=Ð+Ð=,BDC AED ∴∠=∠,DF AE ∴∥,∴四边形ADFE 是平行四边形,AB 是O 的直径,90ADB ∴∠=︒,∴四边形ADFE 是矩形,90EFD ∴∠=︒,3tan 2EF EDF FD \Ð==,过点A 作AS DE ⊥垂足为S ,sin AS AES AE\Ð=,FR DC ^Q ,sin FR FDR FD\Ð=,FD AE ∥ ,FDR AES \Ð=Ð,sin sin FDR AES \Ð=Ð,FR AS \=,AB 是O 的直径,(1)若图1中两个大圆的直径相等,则璧与环的“肉”的面积之比为;(2)利用圆规与无刻度的直尺,解决下列问题(保留作图痕迹,不写作法).①图2为徐州狮子山楚王墓出土的“雷纹玉环”及其主视图,试判断该件玉器的比例关系是否符合“肉好若一”?②图3表示一件圆形玉坯,若将其加工成玉璧,且比例关系符合“肉倍好”,请画出内孔.【答案】(1)32:27(2)①符合,图见详解;②图见详解【分析】(1)根据圆环面积可进行求解;(2)①先确定该圆环的圆心,然后利用圆规确定其比例关系即可;②先确定好圆的圆心,然后根据平行线所截线段成比例可进行作图.【详解】(1)解:由图1可知:璧的“肉”的面积为()22318ππ⨯-=;环的“肉”的面积为()223 1.5 6.75ππ⨯-=,∴它们的面积之比为8:6.7532:27ππ=;故答案为32:27;(2)解:①在该圆环任意画两条相交的线,且交点在外圆的圆上,且与外圆的交点分别为A 、B 、C ,则分别以A 、B 为圆心,大于12AB 长为半径画弧,交于两点,连接这两点,同理可画出线段AC 的垂直平分线,线段,AB AC 的垂直平分线的交点即为圆心O ,过圆心O 画一条直径,以O 为圆心,内圆半径为半径画弧,看是否满足“肉好若一”的比例关系即可由作图可知满足比例关系为1:2:1的关系;②按照①中作出圆的圆心O ,过圆心画一条直径AB ,过点A 作一条射线,然后以A 为圆心,适当长为半径画弧,把射线三等分,交点分别为C 、D 、E ,连接BE ,然后分别过点C 、D 作BE 的平行线,交AB 于点F 、【点睛】本题主要考查圆的基本性质及平行线所截线段成比例,熟练掌握圆的基本性质及平行线所截线段成比例是解题的关键.9.(2023·辽宁·统考中考真题)的延长线上,且AFE ABC ∠=∠(1)求证:EF 与O (2)若1sin BF AFE =∠,【答案】(1)见解析(2)245BC =∵ =BEBE ,∴EOB ∠∵2CAB EAB ∠=∠,∴CAB EOB ∠=∠,∵AB 是O 的直径,∴90C ∠=︒,∵AFE ABC ∠=∠,∴OFE ABC ∽△△,∴90OEF C ∠=∠=︒,∵OE 为O 半径,∴EF 与O 相切;(2)解:设O 半径为x ,则1=+OF x ,∵AFE ABC ∠=∠,4sin 5AFE ∠=,∴4sin 5ABC ∠=,在Rt OEF △中,90OEF ∠=︒,4sin 5AFE ∠=,∴45OE OF =,即415x x =+,解得4x =,经检验,4x =是所列方程的解,∴O 半径为4,则8AB =,在Rt ABC △中,90C ∠=︒,4sin 5ABC ∠=,8AB =,∴32sin 5A AB C AB C ∠==⋅,∴22245BC AB AC =-=.【点睛】本题考查了圆的切线的判定、圆周角定理、解直角三角形以及相似三角形的判定和性质等知识,熟练掌握圆的相关知识和相似三角形的判定和性质是解题的关键.10.(2023·贵州·统考中考真题)如图,已知O 是等边三角形ABC 的外接圆,连接CO 并延长交AB 于点D ,交O 于点E ,连接EA ,EB .(1)写出图中一个度数为30︒的角:_______,图中与ACD 全等的三角形是_______;(2)求证:AED CEB ∽△△;(3)连接OA ,OB ,判断四边形OAEB 的形状,并说明理由.【答案】(1)1∠、2∠、3∠、4∠;BCD△(2)证明见详解(3)四边形OAEB 是菱形【分析】(1)根据外接圆得到CO 是ACB ∠的角平分线,即可得到30︒的角,根据垂径定理得到90ADC BDC ∠=∠=︒,即可得到答案;(2)根据(1)得到3=2∠∠,根据垂径定理得到5660∠=∠=︒,即可得到证明;(3)连接OA ,OB ,结合5660∠=∠=︒得到OAE △,OBE △是等边三角形,从而得到OA OB AE EB r ====,即可得到证明;【详解】(1)解:∵O 是等边三角形ABC 的外接圆,∴CO 是ACB ∠的角平分线,60ACB ABC CAB ∠=∠=∠=︒,∴1230∠=∠=︒,∵CE 是O 的直径,∴90CAE CBE ∠=∠=︒,∴3430∠=∠=︒,∴30︒的角有:1∠、2∠、3∠、4∠,∵CO 是ACB ∠的角平分线,∴90ADC BDC ∠=∠=︒,56903060∠=∠=︒-︒=︒,在ACD 与BCD △中,∵1290CD CD ADC BDC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴ACD BCD ≌,故答案为:1∠、2∠、3∠、4∠,BCD △;(2)证明:∵56∠=∠,3=230∠∠=︒,∴AED CEB ∽△△;(3)解:连接OA ,OB ,∵OA OE OB r ===,5660∠=∠=︒,∴OAE △,OBE △是等边三角形,∴OA OB AE EB r ====,∴四边形OAEB 是菱形.【点睛】本题考查垂径定理,菱形判定,等边三角形的判定和性质,相似三角形的判定等知识,解题的关键是熟练掌握垂径定理,从而得到相应角的等量关系.11.(2023·湖北鄂州·统考中考真题)如图,AB 为O 的直径,E 为O 上一点,点C 为»EB 的中点,过点C 作CD AE ⊥,交AE 的延长线于点D ,延长DC 交AB 的延长线于点F .(1)求证:CD 是O 的切线;(2)若1DE =,2DC =,求O 的半径长.【答案】(1)证明见解析(2)52【分析】(1)连接OC ,根据弦、弧、圆周角的关系可证DAC CAF ∠=∠,根据圆的性质得OAC OCA ∠=∠,∵点C 为»EB的中点,∴ ECCB =,∴DAC CAF ∠=∠,∵OA OC =,∴OAC OCA∠=∠∵CD AD ⊥,∴90D Ð=°,∵1DE =,2DC =,∴2222215CE CD DE =+=+=,∵D 是 BC的中点,∴ ECCB =,∴EC CB ==5,∵AB 为O 的直径,∴90ACB ∠=︒,∵180DEC AEC ∠+∠=︒,180ABC AEC ∠+∠=︒,∴DEC ABC ∠=∠,∴DEC CBA ∽ ,∴DE CE BC AB=,∴155AB =,∴5AB =,1522AO AB ==∴O 的半径长为52.【点睛】本题考查了切线的判定和性质,勾股定理,相似三角形的判定和性质,正确地作出辅助线是解题的关键.12.(2023·吉林长春·统考中考真题)【感知】如图①,点A 、B 、P 均在O 上,90AOB ∠=︒,则锐角APB ∠的大小为__________度.【探究】小明遇到这样一个问题:如图②,O 是等边三角形ABC 的外接圆,点P 在 AC 上(点P 不与点A 、C 重合),连结PA 、PB 、PC .求证:PB PA PC =+.小明发现,延长PA 至点E ,使AE PC =,连结BE ,通过证明PBC EBA ≌△△,可推得PBE 是等边三角形,进而得证.BA BC ∴=,(SAS)PBC EBA ∴ ≌,∴PB EB =,PBC EBA ∠=∠,60EBA ABP PBC ABP ABC ∴∠+∠=∠+∠=∠=︒,PBE ∴ 是等边三角形,PB PE ∴=,PB PE PA AE PA PC ∴==+=+,即PB PA PC =+;应用:延长PA 至点E ,使AE PC =,连结BE ,四边形ABCP 是O 的内接四边形,180BAP BCP ∴∠+∠=︒.180BAP BAE ∠+∠=︒ ,BCP BAE ∴∠=∠.AB CB = ,(SAS)PBC EBA ∴ ≌,∴PB EB =,PBC EBA ∠=∠,90EBA ABP PBC ABP ABC ∴∠+∠=∠+∠=∠=︒,PBE ∴ 是等腰直角三角形,222PB BE PE ∴+=,222PB PE ∴=,即2PE PB =,PE PA AE PA PC =+=+ ,2PA PC PB ∴+=,22PB PA = ,2224PA PC PA PA ∴+=⨯=,3PC PA ∴=,222233PB PA PC PA ∴==,故答案为:223.【点睛】本题考查了圆周角定理,圆内接四边形对角互补,邻补角,全等三角形的判定和性质,等边三角形、等腰直角三角形的判定和性质,勾股定理解直角三角形;解题的关键是做辅助线构造PBC EBA ≌,进行转换求解.13.(2023·甘肃兰州·统考中考真题)如图,ABC 内接于O ,AB 是O 的直径, BCBD =,DE AC ⊥于点E ,DE 交BF 于点F ,交AB 于点G ,2BOD F ∠=∠,连接BD .(1)求证:BF 是O 的切线;(2)判断DGB 的形状,并说明理由;(3)当2BD =时,求FG 的长.【答案】(1)见解析(2)DGB 是等腰三角形,理由见解析(3)4FG =【分析】(1)连接CO ,根据圆周角定理得出2BOD BOC BAC ∠=∠=∠,根据已知得出F BAC ∠=∠,根据DE AC ⊥得出90AEG ∠=︒,进而根据对等角相等,以及三角形内角和定理可得90FBG AEG ∠=∠=︒,即可得证;(2)根据题意得出 AD AC=,则ABD ABC ∠=∠,证明EF BC ∥,得出AGE ABC ∠=∠,等量代换得出FGB ABD ∠=∠,即可得出结论;(3)根据FGB ABD ∠=∠,AB BF ⊥,设FGB ABD α∠=∠=,则90DBF F α∠=∠=︒-,等边对等角得出DB DF =,则224FG DG DB ===.【详解】(1)证明:如图所示,连接CO ,∵ BCBD =,∴2BOD BOC BAC ∠=∠=∠,∵2BOD F ∠=∠,∴F BAC ∠=∠,∵DE AC ⊥,∴90AEG ∠=︒,∵AGE FGB∠=∠∴90FBG AEG ∠=∠=︒,即AB BF ⊥,又AB 是O 的直径,∴BF 是O 的切线;(2)∵ BCBD =,AB 是O 的直径,∴ AD AC =,BC AC ⊥,∴ABD ABC ∠=∠,∵DE AC ⊥,BC AC ⊥,∵EF BC ∥,∴AGE ABC ∠=∠,又AGE FGB ∠=∠,∴FGB ABD ∠=∠,∴DGB 是等腰三角形,(3)∵FGB ABD ∠=∠,AB BF ⊥,设FGB ABD α∠=∠=,则90DBF F α∠=∠=︒-,(1)求证:DE 是O 的切线;(2)若30C ∠=︒,23CD =,求 BD的长.【答案】(1)见解析(2)43π∵OB OD =,∴B ODB ∠=∠,∵AB AC =,∴B C ∠=∠,∴OD AC ∥,∴ODE DEC ∠=∠。
圆中的相关证明与计算
圆中的相关证明与计算圆是平面上到一个给定点的距离恒定的所有点的集合。
通过研究圆的性质和相关的定理,我们可以了解圆的性质和概念,并可以进行相关的证明和计算。
以下是一些关于圆的相关证明和计算的例子:1.圆的半径与直径的关系证明:首先,我们知道直径是通过圆心并且两端点在圆上的线段。
现在我们要证明直径是半径的两倍。
证明:假设圆的半径为r,直径为d。
根据直径的定义,我们知道直径是通过圆心的,并且它的两个端点在圆上。
所以直径d可以看作是两个半径r的长度相加,即d=r+r=2r。
所以我们可以得出结论:直径等于半径的两倍。
即d=2r。
2.圆周率的计算:周长的计算公式为:C=2πr,其中r为圆的半径。
面积的计算公式为:A=πr^2,其中r为圆的半径。
例如,如果一个圆的半径为5厘米,则它的周长为:C=2π*5=10π≈31.42厘米;面积为:A=π*5^2=25π≈78.54平方厘米。
3.弦和半径的垂直关系证明:在圆中,连接圆周上的两点的线段称为弦。
现在我们要证明如果一个弦与半径相交,那么这个弦就是半径的垂直平分线。
证明:假设在圆中有一个弦AB,如果它与半径OC相交于点M,我们要证明AM=MB。
根据圆的性质,半径OC与弦AB相交于点M,则角OMC是直角,因为OC是半径,所以OM=MC。
又由于弦AB与半径OC相交于点M,所以AM=MC,MB=MC。
综上所述,AM=MB,即弦AB是半径OC的垂直平分线。
通过以上证明和计算,我们可以更深入地了解圆的性质和相关的定理。
圆是几何学中重要的概念之一,它在各种数学和科学领域中都有广泛的应用。
希望以上内容对您有所帮助。
圆中的计算和证明
1、如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连AD。
(1)求证:AD=AN;(2)若AB=24,ON=1,求⊙O的半径。
2、在⊙O中,AB为直径,点C为圆上一点,将劣弧AC沿弦AC翻折交AB于点D,连结CD。
(1)如图1,若点D与圆心O重合,AC=2,求⊙O的半径r;(2)如图2,若点D与圆心O不重合,∠BAC=25°,求出∠DCA的度数。
知识点(圆相关概念和性质)知识点一:垂径定理1.垂径定理:于弦的直径这条弦且这条弦所对的。
2.推论(1):①平分()的垂直于弦且弦所对的;②弦的经过且弦所对的两条弧;③弦所对的一条的直径弦且平分弦所对的另一条弧。
推论(2):圆的两条弦所夹的弧。
知识点二:圆心角、弧、弦、弦心距间的关系1.定理:在或中,相等的圆心角所对的相等,所对的相等,相等。
2.推论:同圆或等圆中,如果①两个相等,②两条相等,③两条相等,④两条弦的中有一组量相等,那么它们所对应的其余各组量都分别相等。
知识点三:圆周角定理及其推论1.定理:在同圆或等圆中,或所对的相等,都等于这条弧所对的的。
2.推论①:同弧或等弧所对的相等;同圆或等圆中,相等的圆周角所对的弧是。
推论②:或所对的是直角;是直角(90°的)所对的弧是,所对的弦是。
推论③:若三角形一边上的中线等于这边的一半,那么这个三角形是。
知识点四:圆内接四边形性质定理1.概念:所有顶点都在同一个圆上的四边形叫做圆内接四边形。
2.定理:圆内接四边形的对角,并且任何一个外角都等于它的。
知识点五:直线与圆的位置关系直线和圆的位置关系相交相切相离公共点个数圆心到直线的距离d与半径r的关系公共点名称直线名称知识点六:圆的切线1.切线的性质(1)切线性质定理:圆的切线垂直于过切点的直径。
拓展:①经过圆心且垂直于切线的直线必经过切点;②经过切点且垂直于切线的直线必经过圆心;③切线与圆只有一个公共点;④圆心到切线的距离等于半径。
第40讲 与圆有关的计算与证明题 课件(共74张ppt) 2024年中考数学总复习专题突破.ppt
复习讲义
(2)若 = 5 , cos ∠ =
4
,求 的长.
5
∘
解: ∵ ∠ = 90∘ , ∴ ∠ + ∠ = 90 .
由(1)知, = 2 = 10 , ∠ = 90∘ ,
∴ ∠ + ∠ = 90∘ .
图3
∴ ∠ = ∠.
4
.
5
∴ cos = cos ∠ =
复习讲义
(2)若 = 10 , = 12 , = 2 ,求 ⊙ 的半径.
思路点拨 由(1)知 ⊥ ,因此可在 Rt △
中利用勾股定理列方程求解.
解: ∵ = , ⊥ , ∴ = =
1
2
= 6.
图1
∴ = 2 − 2 = 102 − 62 = 8.
∴ = 6 .
目录导航
9
第40讲 与圆有关的计算与证明题
复习讲义
2.(2022·鄂尔多斯)如图3,以 为直径的
⊙ 与 △ 的边 相切于点 ,且与 边
交于点 ,点 为 的中点,连接 , ,
.
(1)求证: 是 ⊙ 的切线.
1.(2022·衡阳)如图2, 为 ⊙ 的直径,过圆上一
点 作 ⊙ 的切线 交 的延长线于点 ,过点
作 // 交 于点 ,连接 .
(1)直线 与 ⊙ 相切吗?请说明理由.
图2
目录导航
7
第40讲 与圆有关的计算与证明题
复习讲义
解:直线 与 ⊙ 相切.
, 的点,连接 , ,点 在 的延长线
上,且 ∠ = ∠ ,点 在 的延长线上,
正多边形与圆的有关的证明和计算知识讲解及典型例题解析
正多边形与圆的有关的证明和计算知识讲解及典型例题解析【考纲要求】1.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积;2.结合相关图形性质的探索和证明,进一步培养合情推理能力,发展逻辑思维能力和推理论证的表达能力;通过这一章的学习,进一步培养综合运用知识的能力,运用学过的知识解决问题的能力.【知识网络】【考点梳理】考点一、正多边形和圆1、正多边形的有关概念:(1) 正多边形:各边相等,各角也相等的多边形叫做正多边形.(2)正多边形的中心——正多边形的外接圆的圆心.(3)正多边形的半径——正多边形的外接圆的半径.(4)正多边形的边心距——正多边形中心到正多边形各边的距离.(正多边形内切圆的半径)(5)正多边形的中心角——正多边形每一边所对的外接圆的圆心角.2、正多边形与圆的关系:(1)将一个圆n(n≥3)等分(可以借助量角器),依次连结各等分点所得的多边形是这个圆的内接正多边形.(2)这个圆是这个正多边形的外接圆.(3)把圆分成n(n≥3)等分,经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形.这个圆叫做正n边形的内切圆.(4)任何正n边形都有一个外接圆和一个内切圆,这两个圆是同心圆.3、正多边形性质:(1)任何正多边形都有一个外接圆.(2) 正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心.当边数是偶数时,它又是中心对称图形,它的中心就是对称中心.(3)边数相同的正多边形相似.它们周长的比,边心距的比,半径的比都等于相似比,面积的比等于相似比的平方.(4)任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.要点诠释:(1)正n边形的有n个相等的外角,而正n边形的外角和为360度,所以正n边形每个外角的度数是360n;所以正n边形的中心角等于它的外角.(2)边数相同的正多边形相似.周长的比等于它们边长(或半径、边心距)的比.面积比等于它们边长(或半径、边心距)平方的比.考点二、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】类型一、正多边形有关计算1.图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于.【思路点拨】(1)作AE的垂直平分线交⊙O于C,G,作∠AOG,∠EOG的角平分线,分别交⊙O于H,F,反向延长 FO,HO,分别交⊙O于D,B顺次连接A,B,C,D,E,F,G,H,八边形ABCDEFGH即为所求;(2)由八边形ABCDEFGH是正八边形,求得∠AOD=3=135°得到的长=,设这个圆锥底面圆的半径为R,根据圆的周长的公式即可求得结论.【答案与解析】(1)如图所示,八边形ABCDEFGH即为所求,(2)∵八边形ABCDEFGH是正八边形,∴∠AOD=3=135°,∵OA=5,∴的长=,设这个圆锥底面圆的半径为R,∴2πR=,∴R=,即这个圆锥底面圆的半径为.故答案为:.【总结升华】本题考查了尺规作图,圆内接八边形的性质,弧长的计算,圆的周长公式的应用,会求八边形的内角的度数是解题的关键.举一反三:【变式1】如图是三根外径均为1米的圆形钢管堆积图和主视图,则其最高点与地面的距离是______米.【答案】31+.解析:如图,以三个圆心为顶点等边三角形O1O2O3的高O1C=3,所以AB=AO1+O1C+BC=1313122++=+.【变式2】同一个圆的内接正三角形、正方形、正六边形的边长的比是__________.32::【变式3】一张圆心角为45°的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为2,则扇形纸板和圆形纸板的面积比是()A.5:4 B.5:2 C.:2 D.:【答案】A.【解析】解:如图1,连接OD,∵四边形ABCD是正方形,∴∠DCB=∠ABO=90°,AB=BC=CD=2,∵∠AOB=45°,∴OB=AB=2,由勾股定理得:OD==2,∴扇形的面积是=π;如图2,连接MB、MC,∵四边形ABCD是⊙M的内接四边形,四边形ABCD是正方形,∴∠BMC=90°,MB=MC,∴∠MCB=∠MBC=45°,∵BC=2,∴MC=MB=,∴⊙M的面积是π×()2=2π,∴扇形和圆形纸板的面积比是π÷(2π)=.故选:A.类型二、正多边形与圆有关面积的计算2.(1)如图(a),扇形OAB 的圆心角为90°,分别以OA ,OB 为直径在扇形内作半圆,P 和Q分别表示阴影部分的面积,那么P 和Q 的大小关系是( ).A .P =QB .P >QC .P <QD .无法确定(2)如图(b),△ABC 为等腰直角三角形,AC =3,以BC 为直径的半圆与斜边AB 交于点D ,则图中阴影部分的面积是________.(3)如图(c),△AOB 中,OA =3cm ,OB =1cm ,将△AOB 绕点O 逆时针旋转90°到△A ′OB ′,求AB 扫过的区域(图中阴影部分)的面积.(结果保留π)【思路点拨】 直接使用公式计算阴影部分面积比较困难时,可采用和差法、转化法、方程法等,有时也需要运用变换的观点来解决问题.【答案与解析】解:(1)阴影部分的面积直接求出十分困难,可利用几个图形面积的和差进行计算:2OAB OCA P S S Q =-+扇形半圆2211()42R R Q Q ππ=-+=; (2)(转化法“凑整”)利用BmD CnD S S =弓形弓形,则阴影部分的面积可转化为△ACD 的面积,等于△ABC 面积的一半,答案为94; (3)(旋转法)将图形ABM 绕点O 逆时针旋转到A ′B ′M ′位置,则A OA MOM S S S ''=-阴影扇形扇形2211244OA OM πππ=-=. 【总结升华】求阴影面积的几种常用方 (1)公式法;(2)割补法;(3)旋转法;(4)拼凑法;(5)等积变形法;(6)构造方程法.举一反三:【变式】如图,在△ABC 中,AB =AC ,AB =8,BC =12,分别以AB 、AC 为直径作半圆,则图中阴影部分的面积是( )A .64π127-B .16π32-C .16π247-D .16π127-【答案】解:如图,由AB ,AC 为直径可得AD ⊥BC ,则BD =DC =6.在Rt △ABD 中,228627AD =-=,∴ 211246271612722S ππ⎛⎫=⨯⨯⨯-⨯⨯=-⎪⎝⎭阴影. 答案选D.3.如图所示,A 是半径为2的⊙O 外一点,OA =4,AB 是⊙O 的切线,B 为切点,弦BC ∥OA ,连AC ,求阴影部分的面积.【思路点拨】图中的阴影是不规则图形,不易直接求出,如果连接OB 、OC ,由BC ∥OA ,根据同底等高的三角形面积相等,于是所求阴影可化为扇形OBC 去求解.【答案与解析】解:如图所示,连OB 、OC∵ BC ∥OA .∴ △OBC 和△ABC 同底等高,∴ S △ABC =S △OBC ,∴∵ AB 为⊙O 的切线,∴ OB ⊥AB .∵ OA =4,OB =2,∴ ∠AOB =60°.∵ BC ∥OA ,∴ ∠AOB =∠OBC =60°.∵ OB =OC ,∴ △OBC 为正三角形.∴ ∠COB =60°,∴ 260223603OBC S S ππ⨯===阴影扇形.【总结升华】通过等积替换化不规则图形为规则图形,在等积转化中①可根据平移、旋转或轴对称等图形变换;②可根据同底(等底)同高(等高)的三角形面积相等进行转化.举一反三:【变式】如图所示,半圆的直径AB =10,P 为AB 上一点,点C ,D 为半圆的三等分点,则阴影部分的面积等于________.【答案】 解:连接OC 、OD 、CD .∵ C 、D 为半圆的三等分点,∴ ∠AOC =∠COD =∠DOB =180603=°°. 又∵ OC =OD ,∴ ∠OCD =∠ODC =60°,∴ DC ∥AB ,∴ PCD OCD S S =△△,∴ 2605253606S S ππ===g g 阴影扇形OCD .4.如图,在边长为4的正方形ABCD中,以AB为直径的半圆与对角线AC交于点E.(1)求弧BE所对的圆心角的度数.(2)求图中阴影部分的面积(结果保留π).【思路点拨】(1)连接OE,由条件可求得∠EAB=45°,利用圆周角定理可知弧BE所对的圆心角∠EOB=2∠E AB=90°;(2)利用条件可求得扇形AOE的面积,进一步求得弓形的面积,利用Rt△ADC的面积减去弓的面积可求得阴影部分的面积.【答案与解析】解:(1)连接OE,∵四边形ABCD为正方形,∴∠EAB=45°,∴∠EOB=2∠EAB=90°;(2)由(1)∠EOB=90°,且AB=4,则OA=2,∴S扇形AOE==π,S△AOE=OA2=2,∴S弓形=S扇形AOE﹣S△AOE=π﹣2,又∵S△ACD=AD•CD=×4×4=8,∴S阴影=8﹣(π﹣2)=10﹣π.【总结升华】本题主要考查扇形面积的计算和正方形的性质,掌握扇形的面积公式是解题的关键,注意弓形面积的计算方法.»AB)对应5.将一块三角板和半圆形量角器按图中方式叠放,重叠部分(阴影)的量角器圆弧(的中心角(∠AOB)为120°,AO的长为4cm,求图中阴影部分的面积.【思路点拨】看是否由“规则的”三角形、四边形、圆、扇形、弓形等可求面积的图形,经过怎样的拼凑、割补、叠合而成,这是解决这类题的关键.【答案与解析】阴影部分的面积可看成是由一个扇形AOB 和一个Rt △BOC 组成,其中扇形AOB 的中心角是120°,AO 的长为4,Rt △BOC 中,OB =OA =4,∠BOC =60°,∴ 可求得BC 长和OC 长,从而可求得面积,阴影部分面积=扇形AOB 面积+△BOC 面积=21623cm 3π⎛⎫+ ⎪⎝⎭. 【总结升华】本题是求简单组合图形的面积问题,解答时,常常是寻找这些“不规则的图形”是由哪些“可求面积的、规则的图形”组合而成.举一反三:【变式】如图,矩形ABCD 中,AB =1,2AD =.以AD 的长为半径的⊙A 交BC 于点E ,则图中阴影部分的面积为________.【答案】1224π--. 解析:连接AE ,易证AB =BE =1,∠BAE =45°,所以∠EAD =45°, 所以21112(2)22824ABE ABCD DAE S S S S ππ=--=--=--△阴影矩形扇形.6.如图,AB 是⊙O 的直径,点P 是AB 延长线上一点,PC 切⊙O 于点C ,连接AC ,过点O 作AC 的垂线交AC 于点D ,交⊙O 于点E .已知AB ﹦8,∠P=30°.(1)求线段PC 的长;(2)求阴影部分的面积.【思路点拨】(1)连接OC,由PC为圆O的切线,根据切线的性质得到OC与PC垂直,可得三角形OCP为直角三角形,同时由直径AB的长求出半径OC的长,根据锐角三角函数定义得到tanP为∠P的对边OC与邻边PC的比值,根据∠P的度数,利用特殊角的三角函数值求出tanP的值,由tanP及OC的值,可得出PC 的长;(2)由直角三角形中∠P的度数,根据直角三角形的两个锐角互余求出∠AOC的度数,进而得出∠BOC的度数,由OD与BC垂直,且OC=OB,利用等腰三角形的三线合一得到OD为∠BOC的平分线,可求出∠COD度数为60°,再根据直角三角形中两锐角互余求出∠OCD度数为30°,根据30°角所对的直角边等于斜边的一半,由斜边OC的长求出OD的长,先由∠COD的度数及半径OC的长,利用扇形的面积公式求出扇形COE的面积,再由OD与CD的长,利用直角三角形两直角边乘积的一半求出直角三角形COD 的面积,用扇形COE的面积减去三角形COD的面积,即可求出阴影部分的面积.【答案与解析】解:(1)连接OC,∵PC切⊙O于点C,∴OC⊥PC,∵AB=8,∴OC=12AB=4,又在直角三角形OCP中,∠P=30°,∴tanP=tan30°=OCPC,即PC=433=43;(2)∵∠OCP=90°,∠P=30°,∴∠COP=60°,∴∠A OC=120°,又AC⊥OE,OA=OC,∴OD为∠AOC的平分线,∴∠COE=12∠AOC=60°,又半径OC=4,∴S扇形OCE=26048=3603ππ⨯,在Rt△OCD中,∠COD=60°,∴∠OCD=30°,∴OD=12OC=2,根据勾股定理得:CD=22OC-OD=23,【总结升华】此题考查了切线的性质,含30°角的直角三角形的性质,等腰三角形的性质,锐角三角函数定义,以及扇形的面积公式,遇到已知切线的类型题时,常常连接圆心与切点,利用切线的性质得出垂直,利用直角三角形的性质来解决问题.。
初中三:圆的证明与计算
圆的证明与计算【高频核心考点】1,圆周角定理以及垂径定理,如下图所示∵ AB 为直径且AB ⊥CD∴ CE=DE ,弧BC=弧BD ,弧AC=弧AD 注:运算中主要运用勾股定理。
2,圆的切线长定理,如下图所示∵ PA,PB 为⊙O 的两条切线∴ PA=PB ,且PO 垂直平分AB 同理可证:EC=EA ,FC=FB3,相交弦定理 切割线定理 割线定理结论: PA ·PB=PC ·PD PA 2=PB ·PC PB ·PA=PD ·PC4,切割线延伸: 切割线互垂(角平分线):结论:tan A DB BC CDAD CD AC∠===结论:∠ABD=∠CBD ,DB 2=BC ·BE ,AD 2=AE ·ABOFE DC BA【精题精讲精练】◆例1:《角平分线模型》1,如图,在Rt ABC∆中,90C∠=︒,AD平分BAC∠交BC于点D,O为AB上一点,经过点A,D的O⊙分别交AB,AC于点E,F,连接OF交于点G.(1)求证:BC是O⊙的切线;(2)设AB x=,AF y=,试用含,x y的代数式表示线段AD的长;(3)若8BE=,5sin13B=,求DG的长.2,如图1,在△ABC中,AB=AC,⊙O是△ABC的外接圆,过点C作∠BCD=∠ACB交⊙O于点D,连接AD交BC于点E,延长DC至点F,使CF=AC,连接AF.(1)求证:ED=EC;(2)求证:AF是⊙O的切线;(3)如图2,若点G是△ACD的内心,BC·BE=25,求BC的长.AD【变式练习】已知:如图,△ABC 内接于⊙O ,AB 为直径,∠CBA 的平分线交AC 于点F ,交⊙O 于点D ,DE ⊥AB 于点E ,且交AC 于点P ,连结AD. (1)求证:2AC DE =;(2)若tan∠CBD =12,AP·AC=5,求AC 的长; (3)若65AD =,⊙O 的半径为152,延长DE 交⊙O 于点M ,且DP :DM=1:3,求CM 的长.◆例2:《母子型相似》1,如图,AB 为⊙O 的直径,C,D 为圆上的两点,OC∥BD,弦AD ,BC 相交于点E.(1)求证:弧AC=弧CD ;(2)若CE=1,EB=3,求⊙O 的半径;(3)在(2)的条件下,过点C 作⊙O 的切线,交BA 的延长线于点P,过点P 作PQ∥CB 交⊙O 于F,Q 两点(点F 在线段PQ 上),求PQ 的长。
圆的计算与证明范文
圆的计算与证明范文圆是数学中一种重要的几何形状,由于其特殊的性质和广泛的应用,圆的计算和证明一直是几何学习的重点内容之一、本文将对圆的计算和证明进行详细介绍。
一、圆的定义与性质圆的定义:平面上的一个点集合,到该点距离相等的所有点构成的图形,称为圆。
圆的性质:1.圆上的任意一点到圆心的距离都相等。
2.圆心到圆上任意一点的线段称为半径,圆上任意两点之间的线段称为弦。
3.圆的直径是通过圆心的一条弦,且等于弦长的两倍。
4.圆的周长是圆上任意一段弧长与半径的乘积,即C=2πr,其中C 为周长,r为半径。
5.圆的面积是半径平方乘以π,即A=πr²,其中A为面积,r为半径。
二、圆的计算根据圆的性质,可以进行以下计算:1.已知圆的半径,计算周长和面积。
以半径为4cm的圆为例,周长和面积的计算公式为:C=2πr=2π×4=8π≈25.13cm(取π≈3.14),A=πr²=π×4²=16π≈50.27cm²。
2.已知圆的周长,计算半径和面积。
以周长为10cm的圆为例,半径的计算公式为:r=C/2π=10/(2π)≈1.59cm,面积的计算公式为:A=πr²=π×(1.59)²≈7.97cm²。
3.已知圆的面积,计算半径和周长。
以面积为20cm²的圆为例,半径的计算公式为:r=√(A/π)=√(20/π)≈2.52cm,周长的计算公式为:C=2πr=2π×2.52≈15.86cm。
三、圆的证明1.圆心角的证明圆心角是指圆心所对的弧所对应的角,圆心角的证明如下:(步骤一)连接弧所对应的两条半径。
(步骤二)在弧所对应的两条半径上分别取任意一点,分别连接这两点与圆心的直线。
(步骤三)观察三角形圆心角,可以发现它们是共边共顶点的相似三角形,根据相似三角形的性质可知,它们的对应角相等。
(步骤四)由于圆上任意两点之间的弦所对应的圆心角相等,因此可以得出结论:圆上任意两点之间的弦所对应的圆心角相等。
圆的概念 公式及推导完整版
〖圆的定义〗几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆。
定点称为圆心,定长称为半径。
轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆。
集合说:到定点的距离等于定长的点的集合叫做圆。
〖圆的相关量〗圆周率:圆周长度与圆的直径长度的比叫做圆周率,值是3.14159265358979323846…,通常用π表示,计算中常取3.1416为它的近似值。
圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。
大于半圆的弧称为优弧,小于半圆的弧称为劣弧。
连接圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径。
圆心角和圆周角:顶点在圆心上的角叫做圆心角。
顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。
和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。
扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。
圆锥侧面展开图是一个扇形。
这个扇形的半径成为圆锥的母线。
〖圆和圆的相关量字母表示方法〗圆—⊙半径—r 弧—⌒直径—d扇形弧长/圆锥母线—l 周长—C 面积—S〖圆和其他图形的位置关系〗圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r。
直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。
以直线AB与圆O为例(设OP⊥AB于P,则PO是AB到圆心的距离):AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO<r。
两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交。
两圆圆心之间的距离叫做圆心距。
两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R-r<P<R+r;内切P=R-r;内含P<R-r。
圆的有关性质
圆的有关性质(一)一、内容综述:1.圆的有关概念:(1).圆的对称性:圆是轴对称图形,经过圆心的每一条直线都是它的对称轴,圆有无数条对称轴。
圆是以圆心为对称中心的中心对称图形。
圆还有旋转不变性。
(2).点和圆的位置关系:设圆的半径为r,点到圆心的距离为d,则:点在圆内d<r点在圆上d=r点在圆外d>r2.有关性质:(1)一条弧所对的圆周角等于它所对的圆心角的一半。
(2)同弧或等弧所对的圆周角相等,同圆或等圆中,相等的圆周角所对的弧也相等。
(3)半圆(或直径)所对的圆周角是直角,900的圆周角所对的弦是直径。
(4)圆内接四边形的性质:圆内接四边形的对角互补,并且任何一个外角都等于它的内对角。
3.难点讲解:垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.垂径定理的实质可以理解为:一条直线,如果它具有两个性质:(1)经过圆心;(2)垂直于弦,那么这条直线就一定具有另外三个性质:(3)平分弦,(4)平分弦所对的劣弧,(5)平分弦所对的优弧(如图所示).如果将定理的条件与结论一个换一个或两个换两个,就可得到九个逆命题,并能证明它们都是真命题.教科书把较重要的作为推论l,而其余的作为练习题。
总之,一条直线,如果它五个性质中的任何两个成立,那么它也一定具有其余三个性质.推论1(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧,推论1的实质是:一条直线(如图)(1)若满足:i)经过圆心,ii)平分弦,则可推出:iii)垂直于弦,iv)平分弦所对的劣弧,v)平分弦所对的优弧.(2)若满足:i)垂直于弦,ii)平分弦。
则可推出:iii)经过圆心,iv)平分弦所对的劣弧,v)平分弦所对的优弧.(3)若满足;i)经过圆心,ii)平分弦所对的一条弧,则可推出:iii)垂直于弦,iv)平分弦,v)平分弦所对的另一条弧.推论2圆的两条平行弦所夹的弧相等.如图中,若AB∥CD,则注意:在圆中,解有关弦的问题时,常常需要作“垂直于弦的直径作为辅助线。
圆的概念 公式及推导完整版)
圆公式〖圆的定义〗几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆。
定点称为圆心,定长称为半径。
轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆。
集合说:到定点的距离等于定长的点的集合叫做圆。
〖圆的相关量〗圆周率:圆周长度与圆的直径长度的比叫做圆周率,值是3.14159265358979323846…,通常用π表示,计算中常取3.1416为它的近似值。
圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。
大于半圆的弧称为优弧,小于半圆的弧称为劣弧。
连接圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径。
圆心角和圆周角:顶点在圆心上的角叫做圆心角。
顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。
和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。
扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。
圆锥侧面展开图是一个扇形。
这个扇形的半径成为圆锥的母线。
〖圆和圆的相关量字母表示方法〗圆--⊙半径--r 弧--⌒直径--d 扇形弧长/圆锥母线--l 周长--C 面积--S 〖圆和其他图形的位置关系〗圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r。
直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。
以直线AB与圆O为例(设OP⊥AB于P,则PO是AB到圆心的距离):AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO<r。
两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交。
两圆圆心之间的距离叫做圆心距。
与圆有关的计算和证明——从圆内接三角形说起案例
与圆有关的计算和证明——从圆内接三角形说起案例案例背景:圆是在七年级学习了直线,线段和八年级学习了矩形菱形等多边形的基础上来研究的一种特殊的曲线型封闭图形。
它其实也是常见的几何图形之一,在初中数学中占有非常重要的地位,中考中会专门作为一个大的考点,它与其他几何图形的关联性也较强,常常和点,直线,三角形,多边形融合在一起考察,也常常和相似,二次函数等知识点融合在一起考察。
本节课选取其中一种情况,圆和三角形的关联来探究圆的有关计算和证明。
因为时间有限,所以本节课选取的题目较常见,但涉及到圆中相关定理较全面。
教学过程:一·诗句引入,引出主题首先师生互动,创设宽松的学习氛围“同学们,当你听到小时不识月,呼作白玉盘”,你会联想到我们数学上的什么图形呢?当你听到“海上升明月,天涯共此时”你又会想到什么图形呢?简单的两个问题,将语文和数学紧密的联系在一起,符合新课标中的跨学科教学,让学生感受数学学科与其他学科的融合,体会生活当中的场景,培养孩子们空间直观的能力,提高孩子们数学学科素养,用数学的眼光去观察现实世界。
二·活动探究,层层推进教师出示活动一:如图△ABC内接于⊙O,AD是⊙O的切线,请你用量角器量一量∠DAC和∠B的大小,猜想他们的数量关系,并加以证明。
学生操作:学生动手测量并感知角的关系,孩子们测出两个角的度数都是55°,猜想∠DAC=∠B,下面教师放手让孩子们去证明,教师巡视指导,六分钟后教师展示学生的成果,大部分孩子选择的是构造直径的方式证明,个别学生选择的是连半径,但是在教师巡视过程中,发现连半径的方法缺少△AOC内角和是180°这个知识点,导致未证明完全,于是教师将该学生的学习单投影,借助连半径这个辅助线,教师带领孩子们一起分析接下来的步骤,但是教师的表述不够简洁明朗。
教师活动一的反思:开始就想着设计一条主线串联圆中计算与证明,于是想到圆内接三角形,活动一中涵盖了圆中切线性质定理,并且在证明过程中涉及圆周角定理,一道题涉及的定理比较多,同时在证明过程中需要借助辅助线,可以通过构造直径,也可以连接半径,这两个几何辅助手段也圆中常用辅助线的,可以巩固学生之前所学。
圆的证明与计算 (基本图形)
圆的证明与计算(基本图形)圆的证明与计算是中考中的一类重要的问题,此题完成情况的好坏对解决后面问题的发挥有重要的影响,所以解决好此题比较关键。
一、考点分析:1.圆中的重要定理:(1)圆的定义:主要是用来证明四点共圆.(2)垂径定理:主要是用来证明——弧相等、线段相等、垂直关系,以及中点等等.(3)三者之间的关系定理: 主要是用来证明——弧相等、线段相等、圆心角相等.(4)圆周角性质定理及其推论: 主要是用来证明——直角、角相等、弧相等.(5)切线的性质定理:主要是用来证明——垂直关系.(6)切线的判定定理: 主要是用来证明直线是圆的切线.(7)切线长定理: 线段相等、垂直关系、角相等.2.圆中几个关键元素之间的相互转化:弧、弦、圆心角、圆周角等都可以通过相等来互相转化.这在圆中的证明和计算中经常用到.二、考题形式分析:主要以解答题的形式出现,近几年武汉市中考题的22题的第1问主要是判定切线;第2问主要是与圆有关的计算:①求线段长(或面积);②求线段比;③求角度的三角函数值(实质还是求线段比)。
三、解题方法:1、判定切线的方法:(1)若切点明确,则“连半径,证垂直”。
常见手法有:全等转化;平行转化;直径转化;中线转化等;有时可通过计算结合相似、勾股定理证垂直;(2)若切点不明确,则“作垂直,证半径”。
常见手法:角平分线定理;等腰三角形三线合一,隐藏角平分线;(07武汉)22.(本题8分)如图,等腰三角形ABC中,AC=BC=10,AB=12。
以BC为直径作⊙O交AB于点D,交AC于点G,DF⊥AC,垂足为F,交CB的延长线于点E。
(1)求证:直线EF是⊙O的切线;(2)求sin∠E的值。
(第22题图)(10武汉)22.(本题满分8分) 如图,点O 在∠APB 的平分线上,⊙O 与PA 相切于点C . (1) 求证:直线PB 与⊙O 相切;(2) PO 的延长线与⊙O 交于点E .若⊙O 的半径为3,PC=4.求弦CE 的长.2、与圆有关的计算:计算圆中的线段长或线段比,通常与勾股定理、垂径定理与三角形的全等、相似等知识的结合,形式复杂,无规律性。
中考数学一轮复习专题解析—圆的证明与计算
中考数学一轮复习专题解析—圆的证明与计算复习目标1.了解圆的定义及点与圆的位置关系。
2.掌握圆的基本性质。
3.掌握圆中复杂证明及两圆位置关系中证明。
考点梳理一、圆的有关概念1. 圆的定义如图所示,有两种定义方式:①在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆.固定的端点O叫做圆心,以O为圆心的圆记作①O,线段OA叫做半径;①圆是到定点的距离等于定长的点的集合.2.与圆有关的概念①弦:连接圆上任意两点的线段叫做弦;如上图所示线段AB,BC,AC都是弦.①直径:经过圆心的弦叫做直径,如AC是①O的直径,直径是圆中最长的弦.①弧:圆上任意两点间的部分叫做圆弧,简称弧,如曲线BC、BAC都是①O中的弧,分别记作BC,BAC.①半圆:圆中任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆,如AC是半圆.①劣弧:像BC这样小于半圆周的圆弧叫做劣弧.①优弧:像BAC这样大于半圆周的圆弧叫做优弧.①同心圆:圆心相同,半径不相等的圆叫做同心圆.①弓形:由弦及其所对的弧组成的图形叫做弓形.①等圆:能够重合的两个圆叫做等圆.①等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.⑪圆心角:顶点在圆心的角叫做圆心角,如上图中①AOB,①BOC是圆心角.⑫圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角,如上图中①BAC、①ACB都是圆周角.例1.已知:如图所示,在①O中,弦AB的中点为C,过点C的半径为OD.(1)若AB=23,OC=1,求CD的长;(2)若半径OD=R,①AOB=120°,求CD的长.【答案】解:①半径OD经过弦AB的中点C,①半径OD①AB.(1)①AB=3AC=BC3①OC=1,由勾股定理得OA=2.①CD=OD-OC=OA-OC=1,即CD =1.(2)①OD①AB ,OA =OB , ①①AOD =①BOD .①①AOB =120°,①①AOC =60°. ①OC =OA·cos①AOC =OA·cos60°=12R , ①1122CD OD OC R R R =-=-=.二、圆的有关性质 1.圆的对称性圆是轴对称图形,经过圆心的直线都是它的对称轴,有无数条.圆是中心对称图形,圆心是对称中心,又是旋转对称图形,即旋转任意角度和自身重合. 2.垂径定理①垂直于弦的直径平分这条弦,且平分弦所对的两条弧.①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.如图所示:在图中(1)直径CD ,(2)CD①AB ,(3)AM =MB ,(4)C C A B =,(5)AD BD =.若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三.注意:(1)(3)作条件时,应限制AB 不能为直径. 3.弧、弦、圆心角之间的关系①在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;①在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,它们所对应的其余各组量也相等.4.圆周角定理及推论①圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.①圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.例2.如图所示,AB=AC,O是BC的中点,①O与AB相切于点D,求证:AC与①O相切.【答案】证明:连接OD,作OE①AC,垂足为E,连结OA.①AB与①O相切于点D,①OD①AB.①AB=AC,OB=OC,①①1=①2,①OE=OD.①OD为①O半径,①AC与①O相切.三、与圆有关的位置关系1.点与圆的位置关系如图所示.d表示点到圆心的距离,r为圆的半径.点和圆的位置关系如下表:点与圆的位置关系d与r的大小关系点在圆内d<r点在圆上d=r点在圆外d>r(1)圆的确定:①过一点的圆有无数个,如图所示.①过两点A、B的圆有无数个,如图所示.①经过在同一直线上的三点不能作圆.①不在同一直线上的三点确定一个圆.如图所示.(2)三角形的外接圆经过三角形三个顶点可以画一个圆,并且只能画一个.经过三角形三个顶点的圆叫做三角形的外接圆.三角形外接圆的圆心叫做这个三角形的外心.这个三角形叫做这个圆的内接三角形.三角形的外心就是三角形三条边的垂直平分线交点.它到三角形各顶点的距离相等,都等于三角形外接圆的半径.如图所示.2.直线与圆的位置关系①设r为圆的半径,d为圆心到直线的距离,直线与圆的位置关系如下表.①圆的切线.切线的定义:和圆有唯一公共点的直线叫做圆的切线.这个公共点叫切点.切线的判定定理:经过半径的外端.且垂直于这条半径的直线是圆的切线.友情提示:直线l是①O的切线,必须符合两个条件:①直线l经过①O上的一点A;①OA①l.切线的性质定理:圆的切线垂直于经过切点的半径.切线长定义:我们把圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角.①三角形的内切圆:与三角形各边都相切的圆叫三角形的内切圆,三角形内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形,三角形的内心就是三角形三个内角平分线的交点.3.三角形外心、内心有关知识比较4.圆与圆的位置关系在同一平面内两圆作相对运动,可以得到下面5种位置关系,其中R、r为两圆半径(R≥r).d为圆心距.①相切包括内切和外切,相离包括外离和内舍.其中相切和相交是重点.①同心圆是内含的特殊情况.①圆与圆的位置关系可以从两个圆的相对运动来理解.①“r1-r2”时,要特别注意,r1>r2.四、正多边形和圆1.正多边形的有关概念正多边形的外接圆(或内切圆)的圆心叫正多边形的中心.外接圆的半径叫正多边形的半径,内切圆的半径叫正多边形的边心距,正多边形各边所对的外接圆的圆心角都相等,这个角叫正多边形的中心角,正多边形的每一个中心角都等于360 n °.要点诠释:通过中心角的度数将圆等分,进而画出内接正多边形,正六边形边长等于半径.2.正多边形的性质任何一个正多边形都有一个外接圆和一个内切圆,这两圆是同心圆.正多边形都是轴对称图形,偶数条边的正多边形也是中心对称图形,同边数的两个正多边形相似,其周长之比等于它们的边长(半径或边心距)之比. 3.正多边形的有关计算定理:正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形. 正n 边形的边长a 、边心距r 、周长P 和面积S 的计算归结为直角三角形的计算.360n a n =°,1802sin n a R n =°,180cos n r R n=°, 2222n n a R r ⎛⎫=+ ⎪⎝⎭,n n P n a =,1122n nnn n S a r n P r ==.五、圆中的计算问题 1.弧长公式:180n Rl π=,其中l 为n°的圆心角所对弧的长,R 为圆的半径. 2.扇形面积公式:2360n R S π=扇,其中12S lR =扇.圆心角所对的扇形的面积,另外12S lR =扇.3.圆锥的侧面积和全面积:圆锥的侧面展开图是扇形,这个扇形的半径等于圆锥的母线长,弧长等于圆锥底面圆的周长.圆锥的全面积是它的侧面积与它的底面积的和.1.(2022·四川省宜宾市第二中学校九年级)如图,CD 为O 的直径,弦AB CD ⊥,垂足为E ,1CE =,6AB =,则O 的半径为( )A.3B.4C.5D.无法确定【答案】C【分析】连接OA,由垂径定理得AE=3,设OA=OC=x,根据勾股定理列出方程,进而即可求解.【详解】连接OA,①CD为O的直径,弦AB CD⊥,AB=3,①AE=12设OA=OC=x,则OE=x-1,①()222x x-+=,解得:x=5,13①O的半径为5.故选C.2.(2022·河南九年级期末)如图,AD为①O的直径,6cmAD=,DAC ABC∠=∠,则AC的长度为()A.2B.22C.32D.33【答案】C【分析】连接CD,由圆周角定理可知90∠=∠可知AC CD=,由∠=︒,再根据DAC ABCACD勾股定理即可得出AC的长.【详解】解:连接CD,AD是O的直径,∴∠=︒,ACD90∠=∠,DAC ABC∠=∠,ABC ADC∴∠=∠,DAC ADC∴CD AC=,∴=,AC CD又222AC CD AD+=,22∴=,2AC ADAD=,6∴=AC故选:C.3.(2022·全国九年级课时练习)O的半径为10cm,弦//AB CD.若==,则AB和CD的距离为()AB CD12cm,16cmA.2cm B.14cm C.2cm或14cm D.2cm或10cm 【答案】C【分析】分AB、CD在圆心的同侧和异侧两种情况求得AB与CD的距离.构造直角三角形利用勾股定理求出即可.【详解】当弦AB和CD在圆心异侧时,如图1,过点O作OE①AB于点E,反向延长OE交CD于点F,连接OA,OC,①AB①CD,①OF①CD,①AB=12cm,CD=16cm,①AE=6cm,CF=8cm,①OA=OC=10cm,①在Rt①AOE中,由勾股定理可得;8EO cm,在Rt①COF中,由勾股定理可得:6OF===cm,①EF=OF+OE=8+6=14cm.当弦AB和CD在圆心同侧时,如图2,过点O作OF①CD,垂足为F,交AB于点E,连接OA,OC,①AB①CD,①OE①AB,①AB=12cm,CD=16cm,①AE=6cm,CF=8cm,①OA=OC=5cm,在Rt①AOE中,由勾股定理可得:2222=-=-=cm,1068EO OA AE在Rt①COF中,由勾股定理可得:2222=-=-=cm,OF OC CF1086①EF=OE﹣OF=8﹣6=2cm;故选C.4.(2022·全国九年级课时练习)如图,在ABC中,10,8,6===,经过AB AC BC点C且与边AB相切的动圆与,CB CA分别相交于点E,F,则线段EF长度的最小值是()A.42B.4.75C.5D.4.8【答案】D【分析】设EF的中点为O,①O与AB的切点为D,连接OD,连接CO,CD,则有OD①AB,由勾股定理逆定理知,ABC是直角三角形,OC+OD=EF,而OC+OD≥CD,只有当点O在CD上时,OC+OD=EF有最小值为CD的长,即当点O在直角三角形ABC的斜边AB的高上CD时,EF=CD有最小值,由直角三角形的面积公式知求出CD的长即可.【详解】解:设EF的中点为O,①O与AB的切点为D,连接OD,连接CO,CD,①10,8,6===,AB AC BC①AC2+BC2=AB2,①ABC 是直角三角形,①ACB =90°, ①EF 是①O 的直径, ①OC +OD =EF , ①①O 与边AB 相切, ①OD ①AB , ①OC +OD ≥CD ,即当点O 在直角三角形ABC 的斜边AB 的高上时,OC +OD =EF 有最小值, 此时最小值为CD 的长, ①CD =864.810AC BC AB ⋅⨯==, ①EF 的最小值为4.8. 故选D .5.(2020·沭阳县怀文中学九年级月考)有下列说法:①直径是圆中最长的弦;①等弧所对的弦相等;①圆中90°的角所对的弦是直径;①相等的圆心角对的弧相等;①平分弦的直径垂直于弦;①任意三角形一定有一个外接圆.其中正确的有( ) A .2个 B .3个C .4个D .5个【答案】B 【分析】根据直径的定义对①进行判断;根据圆心角、弧、弦的关系对①①进行判断;根据圆周角定理对①进行判断;根据垂径定理对①进行判断;根据三角形外接圆的定义对①进行判断. 【详解】解:①直径是圆中最长的弦;故①正确,符合题意;①能够重合的弧叫做等弧,等弧所对的弦相等;故①正确,符合题意; ①圆中90°的圆周角所对的弦是直径;故①错误,不符合题意;①在同圆或等圆中,相等的圆心角所对的弧相等;故①错误,不符合题意; ①平分弦(弦不是直径)的直径垂直于弦;故①错误,不符合题意; ①任意三角形一定有一个外接圆;故①正确,符合题意; 其中正确的有①①①, 故选:B .6.(2022·厦门海沧实验中学九年级开学考试)四边形ABCD 中,ACD △是边长为6的等边三角形,ABC 是以AC 为斜边的直角三角形,则对角线BD 的长的取值范围是( ) A .33BD <≤+B .36BD << C .63BD <≤+D .3BD <≤【答案】C 【分析】由①ABC 是以AC 为斜边的直角三角形可知点B 在以AC 为直径的圆上,然后结合点到圆上点的距离求出对角线BD 长度的取值范围. 【详解】①①ABC 是以AC 为斜边的直角三角形, ①点B 在以AC 为直径的圆上,如图中①O ,连接OD 并延长,交①O 于点E 和点B ,①等边①ACD的边长为6,①AC=BE=6,OB=OE=OA=OC=3,OD①AC,①①COD=90°,①OD=2222CD OC-=-=,6333①BD=OD+OB=333+,△是边长为6的等边三角形,ACD当B与,A C重合时,BD最小6=①对角线BD的长度的取值范围为6<BD≤333+.故选:C.7.(2022·河南九年级期末)如图,在ABC∠=︒,30Rt△中,90ACB∠=︒,3ABCAB=,将ABCRt△绕直角顶点C顺时针旋转,当点A的对应点A'落在AB边上时,停止转动,则点B经过的路径长为__.3【分析】首先根据勾股定理计算出BC 长,再根据等边三角形的判定和性质计算出60ACA ∠'=,进而可得60BCB ∠'=,然后再根据弧长公式可得答案.【详解】解:30B ∠=,3AB =,①ACB=90° ①1322AC AB ==,60A ∠=,①22332BC AB AC =-=AC A C =',AA C ∴'是等边三角形, 60ACA ∴∠'=,60BCB ∴∠'=,∴弧长3360321802l ππ⋅⋅==, 故答案为:32π. 8.(2022·河南九年级期末)如图,在ABC 中,90ACB ∠=︒,60B ∠=︒,以AC 为直径做半圆交AB 于点D ,若1BC =,则图中阴影部分的面积为__.3π+【分析】连接OD ,CD ,根据圆周角定理得到90ADC ∠=︒,解直角三角形求得AC =CD OC OD =,32AD =,60COD ∠=︒,然后根据扇形的面积和三角形的面积公式即可得到结论. 【详解】解:连接OD ,CD ,在ABC 中,90ACB ∠=︒,60B ∠=︒, ①9030A B ∠=︒-∠=︒, 又①1BC =, ①22BA BC ==,①AC =AC 为O 的直径,90ADC ∴∠=︒,12OA AC =,又①30A ∠=︒,12CD AC ∴==①32AD , ①30A ∠=︒,260COD A ︒∴∠=∠=,∴阴影部分的面积()()ABC AOD AOD COD COD S S S S S S ∆∆=++--+△半圆扇形扇形 122ABC ACD COD S S S S ⎛⎫=+-+ ⎪⎝⎭△△半圆扇形22601111321222360222ππ⎛⋅ =⨯⋅-+⨯⨯⎪⎝⎭38π+=, 故答案为:38π+.9.(2022·河南九年级期末)如图,在ABC 中,AB BC =,以AB 为直径的①O 交BC 于点D ,交AC 于点F ,过点C 作//CE AB ,且CAD CAE ∠=∠. (1)求证:AE 是①O 的切线; (2)若5AB =,4=AD ,求CE 的长.【答案】(1)见解析;(2)2 【分析】(1)利用平行线的性质,圆的性质和等腰三角形的性质,证明AEC △和ADC 全等即可得到结论;(2)由勾股定理求出2CD =,根据全等三角形的性质可得出答案. 【详解】(1)证明:AB BC =,BAC BCA ∴∠=∠,//CE AB ,BAC ACE ∴∠=∠,ACB ACE ∴∠=∠,在AEC △和ADC 中,CAD CAE AC ACACB ACE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ADC AEC ASA ∴≅△△,ADC E ∴∠=∠, AB 是O 的直径,90ADB ADC ∴∠=∠=︒,90E ∴∠=︒,//AB CE ,180BAE E ∴∠+∠=︒,90BAE ∴∠=︒,AE ∴是O 的切线;(2)解:90ADB ∠=︒,5AB =,4=AD ,3BD ∴==,532CD BC BD ∴=-=-=,①ADC AEC ≅△△,2CE CD ∴==.10.(2022·安庆市第四中学九年级)如图,①O 是①ABC 的外接圆,FH 是①O 的切线,切点为F ,FH ①BC ,连结AF 交BC 于E ,①ABC 的平分线BD 交AF 于D ,连结BF .(1)求证:AF平分①BAC;(2)若EF=4,DE=3,求AD的长.【答案】(1)证明见详解;(2)AD =214.【分析】(1)连结OF,由FH是①O的切线,可得OF①FH,由FH∥BC,可得OF垂直平分BC,根据垂径定理可得BF FC=,根据圆周角性质可得①1=①2即可;(2)根据①ABC的平分线BD,可得①4=①3,可证①FDB=①FBD,可得BF=FD,再证①BFE①①AFB,根据性质可得BF AFFE BF=,再求BF=DF= 7,可求494FA=,即可求AD.【详解】(1)证明:连结OF,①FH是①O的切线,①OF①FH,①FH∥BC,①OF垂直平分BC,①BF FC=,①①1=①2,①AF平分①BAC,(2)解①①ABC 的平分线BD 交AF 于D , ①①4=①3,①1=①2,①①1+①4=①2+①3,①①5=①2,①①1+①4=①5+①3 ,①①FDB =①FBD ,①BF =FD ,在①BFE 和①AFB 中,①①5=①2=①1,①AFB =①EFB , ①①BFE ①①AFB , ①BF AF FE BF=, ①2BF FE FA =⋅, ①2BF FA FE= , ①BF =DF =EF +DE =7,①274944FA ==, ①AD=AF -DF =4974-=214.。
圆的有关证明及计算
2015圆的有关证明及计算1.如图,直线AB与⊙O相切于点A,弦CD∥AB,E,F为圆上的两点,且∠CDE=∠ADF.若⊙O的半径为22,CD=4. 求弦EF的长.2.如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接P A.设P A=x,PB=y.求(x﹣y)的最大值.3.如图,已知AB为⊙O的直径,AB=2,AD和BE是圆O的两条切线,A、B为切点,过圆上一点C作⊙O的切线CF,分别交AD、BE于点M、N,连接AC、CB,若∠ABC=30°,求AM的长.4.如图,⊙O的直径AB为10cm,弦BC为5cm,D、E分别是∠ACB的平分线与⊙O,AB 的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.5.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.6.如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于E、F两点,连结DE,已知∠B=30°,⊙O的半径为12,弧DE的长度为4π.(1)求证:DE∥BC;(2)若AF=CE,求线段BC的长度.7.如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D,连接C D.(1)求证:∠A=∠BCD;(2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与⊙O相切?并说明理由.8.如图,AB是⊙O的直径,过点A作⊙O的切线并在其上取一点C,连接OC交⊙O于点D,BD的延长线交AC于E,连接A D.(1)求证:△CDE∽△CAD;(2)若AB=2,AC=2,求AE的长.9.如图的⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,过点D、A分别作⊙O的切线交于点G,并与AB延长线交于点E.(1)求证:∠1=∠2.(2)已知:OF:OB=1:3,⊙O的半径为3,求AG的长.10.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,线段AB为半圆O的直径,将Rt△ABC 沿射线AB方向平移,使斜边与半圆O相切于点G,得△DEF,DF与BC交于点H.(1)求BE的长;(2)求Rt△ABC与△DEF重叠(阴影)部分的面积.11如图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB于点D,延长DO交⊙O 于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F点,连接PF.(1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π)(2)求证:OD=OE;(3)求证:PF是⊙O的切线.12.如图,点B、C、D都在⊙O上,过C点作CA∥BD交OD的延长线于点A,连接BC,∠B=∠A=30°,BD=2.(1)求证:AC是⊙O的切线;(2)求由线段AC、AD与弧CD所围成的阴影部分的面积.(结果保留π)13.如图,E是长方形ABCD的边AB上的点,EF⊥DE交BC于点F(1)求证:△ADE∽△BEF;(2)设H是ED上一点,以EH为直径作⊙O,DF与⊙O相切于点G,若DH=OH=3,求图中阴影部分的面积(结果保留到小数点后面第一位,≈1.73,π≈3.14).14.如图,⊙O1与⊙O2外切与点D,直线l与两圆分别相切于点A、B,与直线O1、O2相交于点M,且tan∠AM01=,MD=4.(1)求⊙O2的半径;(2)求△ADB内切圆的面积;15.如图,在半径为6cm的⊙O中,点A是劣弧的中点,点D是优弧上一点,且∠D=30°,求证:①OA⊥BC;②BC=6;③sin∠AOB=;④四边形ABOC是菱形.16.如图,在⊙O中,半径OC与弦AB垂直,垂足为E,以OC为直径的圆与弦AB的一个交点为F,D是CF延长线与⊙O的交点.若OE=4,OF=6,求⊙O的半径和CD的长.17.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于E.(1)求证:点E是边BC的中点;(2)求证:BC2=BD•BA;(3)当以点O、D、E、C为顶点的四边形是正方形时,求证:△ABC是等腰直角三角形.18如图,半径为6cm的⊙O中,C、D为直径AB的三等分点,点E、F分别在AB两侧的半圆上,∠BCE=∠BDF=60°,连接AE、BF,求图中两个阴影部分的面积.19.如图,在正方形ABCD中,AD=2,E是AB的中点,将△BEC绕点B逆时针旋转90°后,点E落在CB的延长线上点F处,点C落在点A处.再将线段AF绕点F顺时针旋转90°得线段FG,连接EF,CG.(1)求证:EF∥CG;(2)求点C,点A在旋转过程中形成的,与线段CG所围成的阴影部分的面积.20.如图,AB是⊙O的直径,AF是⊙O切线,CD是垂直于AB的弦,垂足为E,过点C 作DA的平行线与AF相交于点F,CD=,BE=2.求证:(1)四边形FADC是菱形;(2)FC是⊙O的切线.21.如图,已知△ABC是⊙O的内接三角形,AB=AC,点P是的中点,连接PA,PB,PC.(1)如图①,若∠BPC=60°.求证:AC=AP;(2)如图②,若sin∠BPC=,求tan∠PAB的值.22.如图,在Rt△ABC中,∠ACB=90°,点D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,连接DE并延长DE交BC的延长线于点F.(1)求证:BD=BF;(2)若CF=1,cosB=,求⊙O的半径.23.已知直线PD垂直平分⊙O的半径OA于点B,PD交⊙O于点C、D,PE是⊙O的切线,E为切点,连结AE,交CD于点F.(1)若⊙O的半径为8,求CD的长;(2)证明:PE=PF;(3)若PF=13,sinA=,求EF的长.24.如图,OC平分∠MON,点A在射线OC上,以点A为圆心,半径为2的⊙A与OM 相切与点B,连接BA并延长交⊙A于点D,交ON于点E.(1)求证:ON是⊙A的切线;(2)若∠MON=60°,求图中阴影部分的面积.(结果保留π)25.如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.(1)求⊙O的半径OD;(2)求证:AE是⊙O的切线;(3)求图中两部分阴影面积的和.1. 解:连接OA,并反向延长交CD于点H,连接OC,∵直线AB与⊙O相切于点A,∴OA⊥AB,∵弦CD∥AB,∴AH⊥CD,∴CH=CD=×4=2,∵⊙O的半径为,∴OA=OC=,∴OH==,∴AH=OA+OH=+=4,∴AC==2.∵∠CDE=∠ADF,∴=,∴=,∴EF=AC=2.故选B.2.作直径AC,连接CP,得出△APC∽△PBA,利用=,得出y=18x2,所以x﹣y=x﹣18x2=﹣18x2+x=﹣18(x﹣4)2+2,当x=4时,x﹣y有最大值是2.3.解:连接OM,OC,∵OB=OC,且∠ABC=30°,∴∠BCO=∠ABC=30°,∵∠AOC为△BOC的外角,∴∠AOC=2∠ABC=60°,∵MA,MC分别为圆O的切线,∴MA=MC,且∠MAO=∠MCO=90°,在Rt△AOM和Rt△COM中,,∴Rt△AOM≌Rt△COM(HL),∴∠AOM=∠COM=∠AOC=30°,在Rt△AOM中,OA=AB=1,∠AOM=30°,∴tan30°=,即=,解得:AM=.故答案为:4.解答:解:(1)①如图,连接BD,∵AB是直径,∴∠ACB=∠ADB=90°,在RT△ABC中,AC===8,②∵CD平分∠ACB,∴AD=BD,∴Rt△ABD是直角等腰三角形,∴AD=AB=×10=5cm;(2)直线PC与⊙O相切,理由:连接OC,∵OC=OA,∴∠CAO=∠OCA,∵PC=PE,∴∠PCE=∠PEC,∵∠PEC=∠CAE+∠ACE,∵CD平分∠ACB,∴∠ACE=∠ECB,∴∠PCB=∠ACO,∵∠ACB=90°,∴∠OCP=∠OCB+∠PCB=∠ACO+∠OCB=∠ACB=90°,OC⊥PC,∴直线PC与⊙O相切.5.解答:(1)证明:连接O C.∵AC=CD,∠ACD=120°,∴∠A=∠D=30°.∵OA=OC,∴∠2=∠A=30°.∴∠OCD=90°.∴CD是⊙O的切线.(2)解:∵∠A=30°,∴∠1=2∠A=60°.∴S扇形BOC=.在Rt△OCD中,∵,∴.∴.∴图中阴影部分的面积为.解:(1)证明:连接OD、OE,6.解答:∵OD是⊙O的切线,∴OD⊥AB,∴∠ODA=90°,又∵弧DE的长度为4π,∴,∴n=60,∴△ODE是等边三角形,∴∠ODE=60°,∴∠EDA=30°,∴∠B=∠EDA,∴DE∥B C.(2)连接FD,∵DE∥BC,∴∠DEF=90°,∴FD是⊙0的直径,由(1)得:∠EFD=30°,FD=24,∴EF=,又因为∠EDA=30°,DE=12,∴AE=,又∵AF=CE,∴AE=CF,∴CA=AE+EF+CF=20,又∵,∴BC=60.7.(1)证明:∵AC为直径,∴∠ADC=90°,∴∠A+∠DCA=90°,∵∠ACB=90°,∴∠DCB+∠ACD=90°,∴∠DCB=∠A;(2)当MC=MD(或点M是BC的中点)时,直线DM与⊙O相切;解:连接DO,∵DO=CO,∴∠1=∠2,∵DM=CM,∴∠4=∠3,∵∠2+∠4=90°,∴∠1+∠3=90°,∴直线DM与⊙O相切.8.解答:(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠B+∠BAD=90°,∵AC为⊙O的切线,∴BA⊥AC,∴∠BAC=90°,即∠BAD+∠DAE=90°,∴∠B=∠CAD,∵OB=OD,∴∠B=∠ODB,而∠ODB=∠CDE,∴∠B=∠CDE,∴∠CAD=∠CDE,而∠ECD=∠DCA,∴△CDE∽△CAD;(2)解:∵AB=2,∴OA=1,在Rt△AOC中,AC=2,∴OC==3,∴CD=OC﹣OD=3﹣1=2,∵△CDE∽△CAD,∴=,即=,∴CE=.9.解答:(1)证明:连结OD,如图,∵DE为⊙O的切线,∴OD⊥DE,∴∠ODE=90°,即∠2+∠ODC=90°,∵OC=OD,∴∠C=∠ODC,∴∠2+∠C=90°,而OC⊥OB,∴∠C+∠3=90°,∴∠2=∠3,∵∠1=∠3,∴∠1=∠2;(2)解:∵OF:OB=1:3,⊙O的半径为3,∴OF=1,∵∠1=∠2,∴EF=ED,在Rt△ODE中,OD=3,DE=x,则EF=x,OE=1+x,∵OD2+DE2=OE2,∴32+t2=(t+1)2,解得t=4,∴DE=4,OE=5,∵AG为⊙O的切线,∴AG⊥AE,∴∠GAE=90°,而∠OED=∠GEA,∴Rt△EOD∽Rt△EGA,∴=,即=,∴AG=6.10.解答:解:(1)连结OG,如图,∵∠BAC=90°,AB=4,AC=3,∴BC==5,∵Rt△ABC沿射线AB方向平移,使斜边与半圆O相切于点G,得△DEF,∴AD=BE,DF=AC=3,EF=BC=5,∠EDF=∠BAC=90°,∵EF与半圆O相切于点G,∴OG⊥EF,∵AB=4,线段AB为半圆O的直径,∴OB=OG=2,∵∠GEO=∠DEF,∴Rt△EOG∽Rt△EFD,∴=,即=,解得OE=,∴BE=OE﹣OB=﹣2=;(2)BD=DE﹣BE=4﹣=.∵DF∥AC,∴,即,解得:DH=2.∴S阴影=S△BDH=BD•DH=××2=,即Rt△ABC与△DEF重叠(阴影)部分的面积为.解答:(1)解:∵AC=12,∴CO=6,∴==2π;(2)证明:∵PE⊥AC,OD⊥AB,∠PEA=90°,∠ADO=90°在△ADO和△PEO中,,∴△POE≌△AOD(AAS),∴OD=EO;(3)证明:如图,连接AP,PC,∵OA=OP,∴∠OAP=∠OP A,由(1)得OD=EO,∴∠ODE=∠OED,又∵∠AOP=∠EOD,∴∠OP A=∠ODE,∴AP∥DF,∵AC是直径,∴∠APC=90°,∴∠PQE=90°∴PC⊥EF,又∵DP∥BF,∴∠ODE=∠EFC,∵∠OED=∠CEF,∴∠CEF=∠EFC,∴CE=CF,∴PC为EF的中垂线,∴∠EPQ=∠QPF,∵△CEP∽△CAP∴∠EPQ=∠EAP,∴∠QPF=∠EAP,∴∠QPF=∠OP A,∵∠OP A+∠OPC=90°,∴∠QPF+∠OPC=90°,∴OP⊥PF,∴PF是⊙O的切线.解答:(1)证明:连接OC,交BD于E,∵∠B=30°,∠B=∠COD,∴∠COD=60°,∵∠A=30°,∴∠OCA=90°,即OC⊥AC,∴AC是⊙O的切线;(2)解:∵AC∥BD,∠OCA=90°,∴∠OED=∠OCA=90°,∴DE=BD=,∵sin∠COD=,∴OD=2,在Rt△ACO中,tan∠COA=,∴AC =2,∴S阴影=×2×2﹣=2﹣.13.解答:(1)证明:∵四边形ABCD是矩形,∴∠A=∠B=90°.∵EF⊥DE,∴∠DEF=90°.∴∠AED=90°﹣∠BEF=∠EF B.∵∠A=∠B,∠AED=∠EFB,∴△ADE∽△BEF.(2)解:∵DF与⊙O相切于点G,∴OG⊥DG.∴∠DGO=90°.∵DH=OH=OG,∴sin∠ODG==.∴∠ODG=30°.∴∠GOE=120°.∴S扇形OEG==3π.在Rt△DGO中,cos∠ODG===.∴DG=3.在Rt△DEF中,tan∠EDF===.∴EF=3.∴S△DEF=DE•EF=×9×3=,S△DGO=DG•GO=×3×3=.∴S阴影=S△DEF﹣S△DGO﹣S扇形OEG =﹣﹣3π=.9﹣3π≈9×1.73﹣3×3.14=6.15≈6.2∴图中阴影部分的面积约为6.2.14.解答:解:(1)连结O1A、O2B,如图,设⊙O1的半径为r,⊙O2的半径为R,∵⊙O1与⊙O2外切与点D,∴直线O1O2过点D,∴MO2=MD+O2D=4+R,∵直线l与两圆分别相切于点A、B,∴O1A⊥AB,O2B⊥AB,∵tan∠AM01=,∴∠AM01=30°,在Rt△MBO2中,MO2=O2B=2R,∴4+R=2R,解得R=4,即⊙O2的半径为4; (2)∵∠AM02=30°, ∴∠MO2B=60°, 而O2B=O2D ,∴△O2BD 为等边三角形, ∴BD=O2B=4,∠DBO2=60°, ∴∠ABD=30°, ∵∠AM01=30°, ∴∠MO1A=60°, 而O1A=O1D ,∴∠O1AD=∠O1DA ,∴∠O1AD=∠MO1A=30°, ∴∠DAB=60°, ∴∠ADB=180°﹣30°﹣60°=90°, 在Rt △ABD 中,AD=BD=4,AB=2AD=8,∴△ADB 内切圆的半径===2﹣2,∴△ADB 内切圆的面积=π•(2﹣2)2=(16﹣8)π;15.解答: 解:∵点A 是劣弧的中点,OA 过圆心, ∴OA ⊥BC ,故①正确;∵∠D=30°, ∴∠ABC=∠D=30°, ∴∠AOB=60°, ∵点A 是点A 是劣弧的中点,∴BC=2CE , ∵OA=OB ,∴OB=OB=AB=6cm , ∴BE=AB •cos30°=6×=3cm ,∴BC=2BE=6cm ,故B 正确; ∵∠AOB=60°, ∴sin ∠AOB=sin60°=,故③正确;∵∠AOB=60°,∴AB=OB,∵点A是劣弧的中点,∴AC=OC,∴AB=BO=OC=CA,∴四边形ABOC是菱形,故④正确.故选B.16.解答:解:∵OE⊥AB,∴∠OEF=90°,∵OC为小圆的直径,∴∠OFC=90°,而∠EOF=∠FOC,∴Rt△OEF∽Rt△OFC,∴OE:OF=OF:OC,即4:6=6:OC,∴⊙O的半径OC=9;在Rt△OCF中,OF=6,OC=9,∴CF==3,∵OF⊥CD,∴CF=DF,∴CD=2CF=6.17.证明:(1)如图,连接O D.∵DE为切线,∴∠EDC+∠ODC=90°;∵∠ACB=90°,∴∠ECD+∠OCD=90°.又∵OD=OC,∴∠ODC=∠OCD,∴∠EDC=∠ECD,∴ED=EC;∵AC为直径,∴∠ADC=90°,∴∠BDE+∠EDC=90°,∠B+∠ECD=90°,∴∠B=∠BDE,∴ED=D B.∴EB=EC,即点E为边BC的中点;(2)∵AC为直径,∴∠ADC=∠ACB=90°,又∵∠B=∠B∴△ABC∽△CDB,∴,∴BC2=BD•BA;(3)当四边形ODEC为正方形时,∠OCD=45°;∵AC为直径,∴∠ADC=90°,∴∠CAD=∠ADC﹣∠OCD=90°﹣45°=45°∴Rt△ABC为等腰直角三角形.18.解答:解:如图作△DBF的轴对称图形△HAG,作AM⊥CG,ON⊥CE,∵△DBF的轴对称图形△HAG,∴△ACG≌△BDF,∴∠ACG=∠BDF=60°,∵∠ECB=60°,∴G、C、E三点共线,∵AM⊥CG,ON⊥CE,∴AM∥ON,∴==,在RT△ONC中,∠OCN=60°,∴ON=sin∠OCN•OC=•OC,∵OC=OA=2,∴ON=,∴AM=2,∵ON⊥GE,∴NE=GN=GE,连接OE,在RT△ONE中,NE===,∴GE=2NE=2,∴S△AGE=GE•AM=×2×2=6,∴图中两个阴影部分的面积为6,故答案为6.19.解答:(1)证明:在正方形ABCD中,AB=BC=AD=2,∠ABC=90°,∵△BEC绕点B逆时针旋转90°得到△ABF,∴△ABF≌△CBE,∴∠FAB=∠ECB,∠ABF=∠CBE=90°,AF=EC,∴∠AFB+∠FAB=90°,∵线段AF绕点F顺时针旋转90°得线段FG,∴∠AFB+∠CFG=∠AFG=90°,∴∠CFG=∠FAB=∠ECB,∴EC∥FG,∵AF=EC,AF=FG,∴EC=FG,∴四边形EFGC是平行四边形,∴EF∥CG;(2)解:∵AD=2,E是AB的中点,∴FE=BE=AB=×2=1,∴AF===,由平行四边形的性质,△FEC≌△CGF,∴S△FEC=S△CGF,∴S阴影=S扇形BAC+S△ABF+S△FGC﹣S扇形FAG,=+×2×1+×(1+2)×1﹣,=﹣.20.解答:证明:(1)连接OC,∵AB是⊙O的直径,CD⊥AB,∴CE=DE=CD=×4=2,设OC=x,∵BE=2,∴OE=x﹣2,在Rt△OCE中,OC2=OE2+CE2,∴x2=(x﹣2)2+(2)2,解得:x=4,∴OA=OC=4,OE=2,∴AE=6,在Rt△AED中,AD==4,∴AD=CD,∵AF是⊙O切线,∴AF⊥AB,∵CD⊥AB,∴AF∥CD,∵CF∥AD,∴四边形FADC是平行四边形,∴▱FADC是菱形;(2)连接OF,∵四边形FADC是菱形,∴FA=FC,在△AFO和△CFO中,,∴△AFO≌△CFO(SSS),∴∠FCO=∠FAO=90°,即OC⊥FC,∵点C在⊙O上,∴FC是⊙O的切线.21.解答:解:(1)∵∠BPC=60°,∴∠BAC=60°,∵AB=AC,∴△ABC为等边三角形,∴∠ACB=∠ABC=60°,∴∠APC=∠ABC=60°,而点P是的中点,∴∠ACP=∠ACB=30°,∴∠PAC=90°,∴tan∠PCA==tan30°=,∴AC=PA;(2)过A点作AD⊥BC交BC于D,连结OP交AB于E,如图,∵AB=AC,∴AD平分BC,∴点O在AD上,连结OB,则∠BOD=∠BAC,∵∠BPC=∠BAC,∴sin∠BOD=sin∠BPC==,设OB=25x,则BD=24x,∴OD==7x,在Rt△ABD中,AD=25x+7x=32x,BD=24x,∴AB==40x,∵点P是的中点,∴OP垂直平分AB,∴AE=AB=20x,∠AEP=∠AEO=90°,在Rt△AEO中,OE==15x,∴PE=OP﹣OD=25x﹣15x=10x,在Rt△APE中,tan∠PAE===,即tan∠PAB的值为.22.解答:(1)证明:连接OE,∵AC与圆O相切,∴OE⊥AC,∵BC⊥AC,∴OE∥BC,又∵O为DB的中点,∴E为DF的中点,即OE为△DBF的中位线,∴OE=BF,又∵OE=BD,则BF=BD;(2)解:设BC=3x,根据题意得:AB=5x,又∵CF=1,∴BF=3x+1,由(1)得:BD=BF,∴BD=3x+1,∴OE=OB=,AO=AB﹣OB=5x﹣=,∵OE∥BF,∴∠AOE=∠B,∴cos∠AOE=cosB,即=,即=,解得:x=,则圆O的半径为=.23.解答:解:(1)连接OD,∵直线PD垂直平分⊙O的半径OA于点B,⊙O的半径为8,∴OB=OA=4,BC=BD=CD,∴在Rt△OBD中,BD==4,∴CD=2BD=8;(2)∵PE是⊙O的切线,∴∠PEO=90°,∴∠PEF=90°﹣∠AEO,∠PFE=∠AFB=90°﹣∠A,∵OE=OA,∴∠A=∠AEO,∴∠PEF=∠PFE,∴PE=PF;(3)过点P作PG⊥EF于点G,∴∠PGF=∠ABF=90°,∵∠PFG=∠AFB,∴∠FPG=∠A,∴FG=PF•sinA=13×=5,∵PE=PF,∴EF=2FG=10.24.解答:(1)证明:过点A作AF⊥ON于点F,∵⊙A与OM相切与点B,∴AB⊥OM,∵OC平分∠MON,∴AF=AB=2,∴ON是⊙A的切线;(2)解:∵∠MON=60°,AB⊥OM,∴∠OEB=30°,∴AF⊥ON,∴∠FAE=60°,在Rt△AEF中,tan∠FAE=,∴EF=AF•tan60°=2,∴S阴影=S△AEF﹣S扇形ADF=AF•EF﹣×π×AF2=2﹣π.25.解答:解:(1)∵AB与圆O相切,∴OD⊥AB,在Rt△BDO中,BD=2,tan∠BOD==,∴OD=3;(2)连接OE,∵AE=OD=3,AE∥OD,∴四边形AEOD为平行四边形,∴AD∥EO,∵DA⊥AE,∴OE⊥AC,又∵OE为圆的半径,∴AC为圆O的切线;(3)∵OD∥AC,∴=,即=,∴AC=7.5,∴EC=AC﹣AE=7.5﹣3=4.5,∴S阴影=S△BDO+S△OEC﹣S扇形FOD﹣S扇形EOG=×2×3+×3×4.5﹣=3+﹣=.。
圆的证明与计算计算线段和半径的长度
一、中点的联想1.如图,已知AB为半圆O的直径,AC,AD为弦,且AD平分∠BAC.(1)若∠ABC=28°,求∠CBD的度数;(2)若AB=6,AC=2,求AD的长.2.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,OD交AC于点E,AD=CD.(1)求证:OD∥BC;(2)若AC=10,DE=4,求BC的长.3.如图、AB是⊙O的直径,点C、D在⊙O上,BD平分∠ABC,过D作DE⊥BC、交BC延长线于E.(1)求证:DE是⊙O的切线;(2)若CE=2,DE=5,求⊙O的半径.4.如图,AB是半圆O的直径,D是的中点,DE⊥AB于点E,AC交DE于点F.(1)求证:∠DAF=∠ADF;(2)若CD=2,半圆O的半径为5,求BC的长.5.如图,AB是⊙O的直径,C是的中点,CE⊥AB于E,BD交CE于点F,(1)求证:CF=BF;(2)若CD=12,AC=16,求⊙O的半径和CE的长.6.如图,AB为⊙O的直径,C是⊙O上的一点,连接AC,BC.D是的中点,过D作DE⊥AB于点E,交BC于点F.(1)求证:BC=2DE;(2)若AC=6,AB=10,求DF的长.7.如图1,AB是半圆O的直径,AC是一条弦,D是上一点,DE⊥AB于点E,交AC于点F,连接BD交AC于点G,且AF=FG.(1)求证:点D平分;(2)如图2所示,延长BA至点H,使AH=AO,连接DH.若点E是线段AO的中点.求证:DH是⊙O的切线.8.已知:如图,⊙O的半径为5,P为⊙O外一点,PB、PD与⊙O分别交于点A、B和点C、D,且PO平分∠BPD.(1)求证:CB=AD;(2)当P A=1,∠BPO=45°时,求弦AB的长.9.如图,以△ABC的一边AB为直径的半圆与其它两边AC,BC的交点分别为D,E,且.(1)试判断△ABC的形状,并说明理由;(2)已知半圆的半径为5,BC=12,求BD的长.10.如图,以△ABC的边AB为直径作⊙O,交BC于点D,过点D的切线DE⊥AC于点E.(1)求证:AB=AC;(2)若AB=10,BD=8,求DE的长.11.已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.(1)求证:AB=AC;(2)若AB=4,BC=2,求CD的长.(3)若BC=5,CD=3,求AB的长.12.如图,△ABC内接于⊙O,AD与BC是⊙O的直径,延长线段AC至点G,使AG=AD,连接DG交⊙O于点E,EF∥AB交AG于点F.(1)求证:EF与⊙O相切.(2)若EF=2,AC=4,求扇形OAC的面积.13.如图,AB是⊙O的直径,B是的中点,弦AC、DB的延长线交于点E,弦AD、CB的延长线交于点F.(1)求证:BE=BF;(2)若BD=3,CE=4,求⊙O的直径.14.如图,AB、AC是⊙O的两条弦,且AB=AC,点D是的中点,连接并延长BD、CD,分别交AC、AB的延长线于点E、F.(1)求证:DF=DE;(2)若BD=6,CE=8,求⊙O的半径.15.如图,在Rt△ABC中,∠C=90°,BD是∠ABC的平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)判断直线AC与⊙O的位置关系,并说明理由;(2)若BE=16,CD=15,求⊙O的半径.16.已知:△ABC中,以AB为直径的⊙O交边AC,BC于点D,E,且点E为BC边的中点.(1)求证:AC=AB;(2)若BE=2,AD=6,求⊙O半径长.17.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,过点C作CE⊥AD交AD的延长线于点E,延长EC,AB交于点F,∠ECD=∠BCF.(1)求证:CE为⊙O的切线;(2)若DE=1,CD=3,求⊙O的半径.18.如图△ABC中,∠C=90°,∠ABC的平分线BE交AC于点E,过点E作EF⊥BE于E点,EF与AB交于F点,△BEF的外接圆⊙O与BC交于D点.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB,垂足为H,若CD=1,EH=3,求BE长.19.如图,在Rt△ABC中,∠C=90°,点O在AC上,以OA为半径的半圆O交AB于点D,交AC于点E,过点D作半圆O的切线DF,交BC于点F.(1)求证:BF=DF;(2)若AC=4,BC=3,CF=1,求半圆O的半径长.20.如图,一块等腰三角形钢板的底边长为80cm,腰长为50cm.(1)求能从这块钢板上截得的最大圆的半径;(2)用一个圆完整覆盖这块钢板,这个圆的最小半径是多少cm?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015圆的有关证明及计算1.如图,直线AB与O O相切于点A,弦CD // AB,E,F为圆上的两点,且/ CDE= / ADF .若O 0的半径为2j2 , CD=4.求弦EF的长.2.如图,直线I与半径为4的O 0相切于点A, P是O 0上的一个动点(不与点A重合),过点P作PB丄I,垂足为B,连接PA.设PA=x, PB=y.求(X- y)的最大值.3.如图,已知AB为O 0的直径,AB=2, AD和BE是圆0的两条切线,A、B为切点,过圆上一点C作O 0的切线CF,分别交AD、BE于点M、N,求AM的长.4.如图,O O的直径AB为10cm,弦BC为5cm, D、E分别是/ ACB的平分线与O 0, AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与O 0的位置关系,并说明理由.P5.如图,点D在O O的直径AB的延长线上,点C在O O上,AC=CD , / ACD=120 °(1)求证:CD是O O的切线;(2)若O O的半径为2,求图中阴影部分的面积.6.如图,O O与RtA ABC的斜边AB相切于点D,与直角边AC相交于E、F两点,连结DE , 已知/ B=30 ° O O的半径为12,弧DE的长度为4 n求证:DE // BC;(2) 若AF=CE,求线段BC的长度.7.如图,在RtA ABC中,/ ACB=90 °以AC为直径作O O交AB于点D,连接CD .(1)求证:/ A=/ BCD ;(2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与O O相切?并说明理由.8.如图,AB 是O O 的直径,过点A 作O O 的切线并在其上取一点 C ,连接0C 交O O 于点(1)求证:△ CDEsA CAD ;(2)若 AB=2 , AC=2#2,求 AE 的长.9.如图的O 0中,AB 为直径,0C 丄AB ,弦CD 与0B 交于点F ,10.如图,在RtAABC 中,/ BAC=90 ° AB=4, AC=3,线段 AB 为半圆 0的直径,将RtAABC沿射线AB 方向平移,使斜边与半圆 0相切于点G ,得△ DEF , DF 与BC 交于点H .(1)求BE 的长;(2)求RtAABC 与^ DEF 重叠(阴影)部分的面积.D ,BD 的延长线交 AC 于E ,连接AD . 切线交于点 G ,并与AB 延长线交于点E .(1)求证:(2)已知: 0F : 0B=1 : 3,0 0的半径为3,求AG 的长.过点D 、A 分别作O 0的E11如图,O O 是^ ABC 的外接圆,AC 是直径,过点0作OD 丄AB 于点D ,延长DO 交O O/ B=/A=30° BD=2/5 .(1)求证:AC 是O O 的切线;(2)求由线段AC 、AD 与弧CD 所围成的阴影部分的面积.(结果保留 n13.如图,E 是长方形 ABCD 的边AB 上的点,EF 丄DE 交BC 于点F (1)求证:△ ADE sA BEF ;(2)设H 是ED 上一点,以EH 为直径作O O , DF 与O O 相切于点求图中阴影部分的面积(结果保留到小数点后面第一位,于点 P ,过点P 作PE 丄AC 于点E ,作射线DE 交BC 的延长线于若/ POC=60°, AC=12,求劣弧PC 的长;(结果保留 n(2) 求证: OD=OE ;求证: PF 是O O 的切线.12.如图,点 B 、C 、D 都在O O 上,过C 点作CA // BD 交OD 的延长线于点 A ,连接BC,FG ,若 DH=OH=3,CF14.如图,O 01与O 02外切与点D,直线I与两圆分别相切于点相交于点M,且tan / AM01= 3 , MD=W3.(1)求O 02的半径;A、B,与直线01、02(2)求△ ADB内切圆的面积;15.如图,在半径为6cm的O 0中,点A是劣弧BC的中点,点D是优弧BC上一点,且/ D=30 °求证:① 0A 丄BC;② BC=6站5;3sin/ A0B=^;2④四边形AB0C是菱形.16.如图,在O 0中,半径0C与弦AB垂直,垂足为E,以0C为直径的圆与弦AB的一个交点为F, D是CF延长线与O 0的交点.若0E=4, 0F=6,求O 0的半径和CD的长.17.如图,在 RtAABC 中,/ ACB=90 °以AC 为直径的O O 与AB 边交于点 D ,过点D 作O O 的切线,交BC 于E . (2)求证:BC 2=BD^BA ;(3)当以点0、D 、E 、C 为顶点的四边形是正方形时,求证:△ ABC 是等腰直角三角形.18如图,半径为6cm 的O 0中,C 、D 为直径AB 的三等分点,点 E 、F 分别在AB 两侧的半圆上,/ BCE = / BDF=60°,连接AE 、BF ,求图中两个阴影部分的面积.(1)求证:点E 是边BC 的中点;19.如图,在正方形 ABCD 中,AD=2, E 是AB 的中点,将 △ BEC 绕点B 逆时针旋转90后,点E 落在CB 的延长线上点F 处,点C 落在点A 处•再将线段AF绕点F 顺时针旋转90。
得线段FG ,连接EF , CG . (1)求证:EF // CG ;(2)求点C ,点A 在旋转过程中形成的 EE ,竄与线段CG 所围成的阴影部分的面积.BC20.如图,AB 是O O 的直径,AF 是O O 切线,CD 是垂直于AB 的弦,垂足为 E ,过点C 作DA 的平行线与 AF 相交于点F ,CD= 仏,BE=2 .求证: (1) 四边形FADC 是菱形; (2) FC 是O O 的切线.Rt △ ABC 中,/ ACB=90 °点D 是AB 边上一点,以 BD 为直径的O O 与边 E ,连接DE 并延长DE 交BC 的延长线于点 F .A BD=BF ;(2)若 CF=1 , cosB=-,求O O 的半径.521.如图,已知 △ ABC 是O O 的内接三角形,AB=AC ,点P 是AB 的中点, PC .(1)如图①, (2)如图②, 若/ BPC=60 ° 求证:AC=d^AP ; 若曲BPC嗤,求曲PAB的值.22.如图,在 AC 相切于点 (1)求证: PA , PB ,23.已知直线PD垂直平分O O的半径OA于点B, PD交O O于点C、D, PE是O O的切线,E为切点,连结AE,交CD于点F.(1)若O O的半径为8,求CD的长;(2)证明:P E=PF;(3)若PF=13, sinA=JL,求EF 的长.1324.如图,OC平分/ MON,点A在射线OC上,以点A为圆心,半径为2的O A与OM 相切与点B,连接BA并延长交O A于点D,交ON于点E.(1)求证:ON是O A的切线;(2)若/ MON=60 °求图中阴影部分的面积.(结果保留n)c25.如图,在RtAABC中,/ A=90 ° O是BC边上一点,以O为圆心的半圆与AB边相切9 D,与AC、BC 边分别交于点E、F、G,连接OD,已知BD=2 , AE=3 , tan/ BOD^. 于点3 求O O的半径OD ; 求证:AE是O O的切线;求图中两部分阴影面积的和.3.1. 解:连接0A ,并反向延长交 CD 于点H ,连接0C , •••直线AB 与O 0相切于点 A , ••• 0A 丄 AB ,•/弦 CD // AB ,••• AH 丄 CD ,••• CH = CD = >4=2,VO 0的半径为,••• 0A=0C=, ••OH=j0C2 -C H 2=,•• AH = 0A+0H=+=4,••A C =J AH 5CH 2=2任. .•/ CDE= / ADF ,•••亦=亦, •••亦扳,••• EF=AC=2V^. 故选B .2.作直径AC ,连接CP ,得出"PC~ PBA ,利用詈墙,得出咒X 2,所以x -y =x1 21 2 1 2 -一x=--x+x=--(X -4) +2,当 x=4 时,X - y 有最大值是 2.8 8 8 解:连接0M , 0C ,• • OB=OC ,且/ ABC=30°••/ BCO= / ABC=30°,•••/ AOC 为^ BOC 的外角,•••/ AOC=2 / ABC=60° ,••• MA , MC 分别为圆O 的切线,••• MA=MC ,且/ MAO = / MCO=90°在 RtAAOM 和 RtA COM 中,HA=]™COM=om••• Rt AAOM 也 RtA COM ( HL ),•••/ AOM= / COM = / AOC=30° ,在 RtAAOM 中,OA=AB=1 , / AOM =30°tan30°=—,即迪=塑,DCFA B解:(1)①如图,连接BD ,解得:AM =^ .3故答案为:並30 EOA 3 14.解•••/ ACB= / ADB=90° ,在 RTA ABC 中,AC=J AB 2 -B C TE - 6 3②••• CD 平分/ ACB ,••• AD=BD ,答: •/ AB 是直径,••• RtA ABD 是直角等腰三角形, ••• AD=^AB=^x 10=5V^cm ;2 2(2)直线PC 与O O 相切,•/ OC=OA , •••/ CAO= / OCA , •/ PC=PE , •••/ PCE= / PEC, •// PEC= / CAE+Z ACE, •/ CD 平分Z ACB ,ACE= Z ECB,P CB= Z ACO,OCP= Z OCB+ Z PCB= Z ACO+ Z OCB= Z ACB=90°, OC 丄 PC ,•/ AC=CD , Z ACD=120° , • Z A=Z D=30°.•/ OA=OC , • Z 2= Z A=30° .• Z OCD=90° .•••Z A CB=90°,5.解答: •••直线PC 与O O 相切.(1)证明:连接OC .•••△ ODE 是等边三角形,••• CD 是O O 的切线.•••/ 1=2 / A=60° .• S兀 X 2^ 2兀…S 扇形BOC= ---------------------- 二 --- . 3603 在 Rg OCD 中,•••浩tan60•沐呦为ex CD 詁X 2X275二2毎 •••图中阴影部分的面积为 2血-空.3••• OD 丄 AB , •/ ODA =90° , 又•.•弧DE 的长度为4n •…n^X12• • n =60 ,•••/ B=/ EDA, ••• DE // BC.6.解 解:(1)证明:连接 OD 、OE ,答:••• OD 是O O 的切(2)连接FD,•••/ DEF=90° ,••• FD是O 0的直径,由(1)得:/ EFD=30° , FD=24,••• EF= 12^5,又因为/ EDA=30° DE=12,••• AE^/S,又••• AF=CE,.・. AE=CF,••• CA=AE+EF + CF=20V^,又••• tanZABC二tan30° 二器gp D G O••• BC=60.7. (1)证明:••• AC为直径, •••/ ADC =90° ,•••/ A+ / DCA=90° ,•// ACB=90° ,•••/ DCB+Z ACD=90° , •••/ DCB=/ A;(2)当MC = MD (或点M是BC的中点)时,直线DM与O O 相切;解:连接DO ,•/ DO = CO,•/ DM=CM , • / 4= / 3,•// 2+ / 4=90° ,•••/ 1+ / 3=90° ,•••直线DM与O O相切.C8.解答:(1)证明:••• AB是O O的直径, •••/ ADB =90° ,•••/ B+ / BAD=90° , •••AC为O O的切线, ••• BA 丄AC, •••/BAC=90° ,即/ BAD + / DAE=90° ,•••/ B= / CAD , •/ OB=OD, •••/ B= / ODB ,而/ ODB = / CDE ,而/ ECD=/ DCA,•••/ B= / CDE ,•••/ CAD=/ CDE ,•••/ C+ / 3=90° ,•••/ 2= / 3,(2)解:••• AB=2 ,••• OA=1,在 RtAAOC 中,AC=^2,• OC =&"+肿=3, ••• CD=OC — 0D=3— 1=2 , •/△ CDE CAD ,即丑,CE 2•••DE 为O O 的切线,••• OD 丄 DE ,•••/ ODE=9O ° 即/ 2+/ ODC=9O ° •/ OC=OD ,•••/ C= / ODC ,•••/ 2+ / C=90° ,而 OCX OB ,• / 1 = / 3,9. 解答:(1) 证明:连结OD , 如图,(2)解:••• OF: OB=1: 3,0 O 的半径为••• OF=1 ,•// 1 = / 2,••• EF=ED,在RtA ODE 中,OD=3, DE=x,贝U EF=x,2 2 2••• OD +DE =OE ,••• 32+t2= (t+1) 2,解得t=4,• - DE=4, OE=5,••• AG为O O的切线,••• AG 丄AE,•••/ GAE=90° ,而/ OED= / GEA,••• Rt A EODs RtA EGA,•.理=更,即JL=,AG AE AG 3+5••• AG=6.10.解解:(1)连结OG,如图,答:•// BAC=90° AB =4, AC=3 ,•- B C=VAB%c2=5,••• RtAABC沿射线AB方向平移,使斜边与半3,OE=1 + x ,E••• CO=6,圆 O 相切于点G ,得△ DEF ,••• AD=BE , DF=AC=3, EF=BC=5, / EDF=/ BAC=90°••• EF 与半圆O 相切于点 G , ••• OG 丄 EF ,••• AB=4,线段AB 为半圆O 的直径, ••• OB=OG=2 ,•// GEO= / DEF ,••• Rt A EOGs RtA EFD ,•••匹=卫5,即 燮=2,解得OE=^, EF DF 5 33••• BE=OE - OB 』-2=星;3 34 8(2) BD=DE - BE=4--=-.3 3•/ DF // AC ,J-PH 二 BD 即世375访 石肓,解得:DH=2 •• S 阴影=S -BD 煜BD”H 气冷艺, 解答: (1)解:••• AC=12,••• PC 丄 EF , (2)证明:••• PE 丄AC , OD 丄AB ,/ PEA=90° / ADO=90° 在^ ADO 和△PEO 中,^Z ADO =Z PEO■ ZAOD=ZPOE , .0A=0C•••△ POE N AOD ( AAS ),由(1 得 OD=EO , •••/ ODE = / OED ,又•••/ AOP= / EOD ,•••/ OPA=/ ODE , ••• AP // DF , •/ AC 是直径, •••/ APC=90° , •••/ PQE=90°又••• DP // BF ,•••/ ODE = / EFC ,•// OED = / CEF ,••• OD = EO•••/ OAP = / OPA, PC ,•••/ CEF = / EFC , ••• CE = CF, •••PC为EF的中垂线, •••/ EPQ = / QPF ,•••/ EPQ = / EAP, •••/ QPF=/ EAP,•••/ QPF=/ OPA,•// OPA+/ OPC=90° , • / QPF+ /OPC=90° ,••• OP 丄PF ,••• PF是O O的切线.解答:(1)证明:连接OC,交BD于E,•// B=30° / B=r / COD ,2•••/ COD =60° ,•••/ A=30° , • / OCA=90° , 即OC丄AC,••• AC是O O的切线;(2)解:••• AC// BD , / OCA=9O°,•••/ OED = / OCA=90° , •••DE=i BD=d5,2•/ sin / COD=^,OD在RtAACO 中,tan/ COA仝,OC••• OD=2,••• AC=2V5,2•S阴影4 5-驾汁會号13.解 (1)证明:•••四边形ABCD是矩形,答: •••/ A= / B=90° .•/ EF 丄DE,•••/ AED=90° -/ BEF= / EFB .•// A= / B,/ AED= / EFB ,:.△ ADE S' BEF .(2)解:••• DF与O O相切于点G,•••OG 丄DG.• / DGO =90° .•/ DH =OH=OG,nr••• sin / ODG =—CD•••/ ODG =30° .• / GOE=120° .需32• S扇形OEG=120360在Rt' DGO 中,cosZ ODGDO 6 2• DG=3V5 •在RtA DEF 中,tanZ EDF=^=翌迟•DE 9 3•EF=3j^ ••S^DEF=DE?EF=X9 X3j5=空至,2S A DGO=DG?GO=•乙• S 阴影=S A DEF—S A DGO— S扇形OEG27^3 価3= -- -- -- - —3 n2 2=.^1 — 3 n〜9 X 1.733 >3.14=6.15•••图中阴影部分的面积约为6214.解解:(1)连结01A、02B,如图,设Q O1的半径为r, O 02的半径为R, 答:VO 01 与O 02外切与点D ,•直线0102过点D,•M02=MD+02D=4 VS+R,V直线I与两圆分别相切于点A、B,•01A 丄AB , 02B 丄AB ,VtanZAM01= 3 ,•/ AMO1=30 ,在RtA MB02 中,MO2=O2B=2R ,•^3+R=2R,解得R=^3,即Q O2的半径为W 3;(2)vZ AM02=30 , :•/ MO2B=60 , 而 O2B=O2D ,•:△ O2BD 为等边三角形, •: BD=O2B=^3,/ DBO2=60 , :•/ ABD=30 , vZ AM01=30 , :•/ MO1A=60 , 而 O1A=O1D ,:.Z O1AD= Z O1DA ,:.Z O1AD= 2Z MO1A=3° , :.Z DAB=60 ,:.Z ADB=180 - 30° - 60° =90° ,在 RtA ABD 中,AD=I 5.解解:•••点A 是劣弧BC 的中点,OA 过圆心, 答: :.OAI BC,故①正确;vZ D=30° ,:.Z ABC=Z D=30° , :.Z AOB=60 ,v 点A 是点A 是劣弧BC 的中点, :.BC=2CE v OA=OB :.OB=OB=AB=6cm:.BE=ABCos30 °6X ^=3^3 cm, •: BC=2BE=^cm,故 B 正确; vZ AOB=60 ,•: sin / AOB=sin60° 23 BD=4, AB=2AD=8 ,AD+BD - AB 4+4^3 - 8=2^^ - 2,2 = 2?(^3 — 2) 2= (16 — ^3) n;:.△ ADB 内切圆的半径:.△ ADB 内切圆的面积 =n D故③正确;•••Z AOB=60, ••• AB=OB•••点A 是劣弧奁的中点,••• AC=OC••• AB=BO=OC=CA•••四边形ABOd 菱形, 故④正确.16.解答: • Z OEF=90° , •/ 0C 为小圆的直径, • Z OFC=90° ,而/ EOF = / FOC ,••• RtA OEF S Rt△ OFC , ••• OE : OF = OF : OC ,即卩 4: 6=6: OC , •••O O 的半径 OC=9 ;在 RtA OCF 中,OF=6, OC=9, • CF=J OC 2 - 0^2=3^"^, •/ OF 丄 CD ,••• CF=DF , ••• CD=2CF=^5 •17.证明:(1)如图,连接 OD.T DE 为切线,•/ EDC + / ODC=90 ° •// ACB=90° •••/ ECD + Z OCD=90° .又T OD=OC ,• / ODC=/ OCD , •••/ EDC= / ECD ,••• ED=EC;T AC 为直径,•••/ ADC=90° , • Z BDE+ Z EDC=90° Z B+Z ECD=90° Z -Z B= Z BDE , •• ED=DB.解:••• 0E 丄 AB••• EB=EC,即点E为边BC的中点;(2)v AC 为直径,•/ ADC=/ACB=90° 又:L B= / B •••△ ABCsA CDB,•理县,••• BC2_BD?BA;BC BD(3)当四边形ODEC为正方形时,/ OCD=45° •/ AC为直径,•••/ADC_90° , •/ CAD_ / ADC -/ OCD_90° - 45° 45°••• RtA ABC为等腰直角三角形.18.解答:解:如图作△ DBF的轴对称图形△ HAG,作AM丄CG , ON丄CE,•/△ DBF的轴对称图形△ HAG,•••/ ACG_/ BDF _60° , •••/ ECB_60° ,••• G、C、E三点共线, •/ AM 丄CG , ON 丄CE, ••• AM // ON ,ON OC I在RTAONC 中,/ OCN_60° ,••• ON_sin/ OCN?OC_•/ OC^OA_2,••• ON W S ,••• AM _^3,•/ ON 丄GE, ••• NE=GN=iGE,2连接OE,19.解答: 在RTAONE 中,NE=&E2-QN33,••• GE=2NE=2 负,••• AGE=3G E?AM=1 X2V3=^L1,2 2•••图中两个阴影部分的面积为6届,故答案为6伍•(1 )证明:在正方形ABCD 中,AB=BC=AD=2 , / ABC=90° ,•••△ BEC绕点B逆时针旋转90°得到△ ABF ,•••△ ABF ◎△ CBE,•••/ FAB= / ECB,/ ABF= / CBE=90 , AF=EC ,•••/ AFB+ / FAB=90 ,•••线段AF绕点F顺时针旋转90°得线段FG,•••/ AFB+ / CFG= / AFG=90 ,•••/ CFG= / FAB= / ECB ,••• EC // FG ,•/ AF=EC , AF=FG ,••• EC=FG ,•••四边形EFGC是平行四边形,••• EF // CG ;(2)解:••• AD=2 , E 是AB 的中点,_! \:.FE=BE= 2A B=2X2=1 ,由平行四边形的性质,△ FEC◎△ CGF ,••• £△ FEC=SA CGF ,••• S 阴影=S 扇形BAC+S △ ABF+S △ FGC - S 扇形FAG ,90•兀-CV E)21360 +2x2 X1 +㊁X( 1+2)5 KX1-36020.解答:证明:(1)连接OC,•/ AB是O O的直径,CD丄AB ,丄\••• CE=DE= 2C D= 2 W^=2V5,设OC=x,•/ BE=2 ,••• OE=x - 2,OC2=OE2+CE2 , 在Rt△ OCE 中,:.x2= (x -2)解得:••• OA=OC=4 ,OE=2 ,••• AE=6 ,x=4,在Rt△ AED 中,A D XE+DEJM^,••• AD=CD ,•/ AF是O O切线,••• AF 丄AB ,•/ CD 丄AB ,••• AF // CD ,•/ CF // AD ,•••四边形FADC是平行四边形,••• ? FADC是菱形;(2)连接OF,•••四边形FADC是菱形,••• FA=FC ,在^ AFO和^ CFO中,FA=FC;0F=0Fwoe,•••△ AFOCFO (SSS),•••/ FCO= / FAO=90 ,即OC丄FC,•••点C在O O上,••• FC是O O的切线.解:(1 )•••/ BPC=60° ,21.解答:•••/ BAC=60 ,•/ AB=AC ,:.△ ABC为等边三角形,•••/ ACB= / ABC=60 ,•••/ APC= / ABC=60 ,而点P是AB的中点,•••/ ACP= 2/ACB=30 ,•••/ PAC=90 ,PA 並••• tan/ PCA= AC=tan30 °= 3 ,AC W S PA;(2)过A点作AD丄BC交BC于D,连结0P交AB于E,如图,•/ AB=AC ,••• AD 平分BC ,•••点0在AD上,连结0B,则/ BOD= / BAC ,•// BPC= / BAC ,24 BD• sin / BOD=sin / BPC= 25=OB,设OB=25x,则BD=24x ,••• 0D^^^-BD<7x,在Rt△ ABD 中,AD=25x+7x=32x , BD=24x ,AB= V A D^+BD 2=40x ,•.•点p是AB的中点,• OP垂直平分AB ,2• AE= 2A B=20X,/ AEP= / AEO=90 ,在Rt△ AEO 中,O E R A O^— A国"=15x ,••• PE=0P- 0D=25x - 15x=10x ,PE IQx 1在Rt△ APE 中,tan/ PAE=AE=20X=2,2即tan/ PAB的值为2.(1)证明:连接0E,••• AC与圆0相切,••• 0E 丄AC ,•/ BC 丄AC ,••• 0E // BC ,22.解答:••• OE=2BF ,又••• 0为DB的中点,• E为DF的中点,即0E为^DBF的中位线,••• CD=2BD=8 養;••• CD=2BD=8 養;1又••• OE =E BD , 贝U BF=BD ;(2) 解:设BC=3x ,根据题意得:AB=5x ,又••• CF=1 ,•• BF=3x+1 , (1)得:BD=BF , •• BD=3x+1 ,•/ OE // BF ,•••/ AOE= / B ,OE 3••• cos /AOE=cosB ,即 02 5,J解得:x=^,3K +1 5则圆O 的半径为 2 =2解:(1)连接OD ,•••直线PD 垂直平分O O 的半径OA 于点B,O O 的半径为8,••• 0B= 2O A=4 , BC=BD= 2cD , •••在 Rt △ OBD 中,BD=U 。