初中数学命题与证明的技巧及练习题含答案(1)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学命题与证明的技巧及练习题含答案(1)

一、选择题

1.下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是()

A.1 B.2 C.3 D.4

【答案】A

【解析】

【分析】

根据点到直线的距离,线段的性质,弧、弦、圆心角之间的关系以及垂径定理判断即可.【详解】

①直线外一点到这条直线的垂线段,叫做点到直线的距离;假命题;

②两点之间线段最短;真命题;

③相等的圆心角所对的弧相等;假命题;

④平分弦的直径垂直于弦;假命题;

真命题的个数是1个;

故选:A.

【点睛】

考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.

2.下列命题中逆命题是假命题的是()

A.如果两个三角形的三条边都对应相等,那么这两个三角形全等

B.如果a2=9,那么a=3

C.对顶角相等

D.线段垂直平分线上的任意一点到这条线段两个端点的距离相等

【答案】C

【解析】

【分析】

首先写出各命题的逆命题(将每个命题的题设与结论调换),然后再证明各命题的正误.因为相等的角不只是对顶角,所以此答案是假命题,继而得到正确答案.

【详解】

解:A、逆命题为:如果两个三角形全等,那么这两个三角形的三条边都对应相等.是真命题;

B、逆命题为:如果a=3,那么a2=9.是真命题;

C、逆命题为:相等的角是对顶角.是假命题;

D、逆命题为:到线段两个端点的距离相等的点在这条线段垂直平分线上.是真命题.

故选C.

【点睛】

此题考查了命题与逆命题的关系.解题的关键是找到各命题的逆命题,再证明正误即可.

3.已知:ABC ∆中,AB AC =,求证:90O B ∠<,下面写出可运用反证法证明这个命题的四个步骤:

①∴180O A B C ∠+∠+∠>,这与三角形内角和为180O 矛盾,②因此假设不成立.∴90O B ∠<,③假设在ABC ∆中,90O B ∠≥,④由AB AC =,得90O B C ∠=∠≥,即180O B C ∠+∠≥.这四个步骤正确的顺序应是( )

A .③④②①

B .③④①②

C .①②③④

D .④③①②

【答案】B

【解析】

【分析】

根据反证法的证明步骤“假设、合情推理、导出矛盾、结论”进行分析判断即可.

【详解】

题目中“已知:△ABC 中,AB=AC ,求证:∠B <90°”,用反证法证明这个命题过程中的四个推理步骤:

应该为:(1)假设∠B ≥90°,

(2)那么,由AB=AC ,得∠B=∠C ≥90°,即∠B+∠C ≥180°,

(3)所以∠A+∠B+∠C >180°,这与三角形内角和定理相矛盾,

(4)因此假设不成立.∴∠B <90°,

原题正确顺序为:③④①②,

故选B .

【点睛】

本题考查反证法的证明步骤,弄清反证法的证明环节是解题的关键.

4.下列命题是真命题的个数是( ).

①64的平方根是8±;

②22a b =,则a b =;

③三角形三条内角平分线交于一点,此点到三角形三边的距离相等;

④三角形三边的垂直平分线交于一点.

A .1个

B .2个

C .3个

D .4个

【答案】C

【解析】

【分析】

分别根据平方根、等式性质、三角形角平分线、线段垂直平分线性质进行分析即可.

【详解】

①64的平方根是8±,正确,是真命题;

②22a b =,则不一定a b =,可能=-a b ;故错误;

③根据角平分线性质,三角形三条内角平分线交于一点,此点到三角形三边的距离相等;是真命题;

④根据三角形外心定义,三角形三边的垂直平分线交于一点,是真命题;

故选:C

【点睛】

考核知识点:命题的真假.理解平方根、等式性质、三角形角平分线、线段垂直平分线性质是关键.

5.下列三个命题:①对顶角相等;②全等三角形的对应边相等;③如果两个实数是正数,它们的积是正数.它们的逆命题成立的个数是( )

A.0个 B.1个 C.2个 D.3个

【答案】B

【解析】【分析】把一个命题的条件和结论互换就得到它的逆命题,再把逆命题进行判断即可.

【详解】①对顶角相等的逆命题是相等的角是对顶角,逆命题错误;

②全等三角形的对应边相等的逆命题是对应边相等的两个三角形全等,正确;

③如果两个实数是正数,它们的积是正数的逆命题是如果两个数的积为正数,那么这两个数也是正数,逆命题错误,也可以有都是负数,

所以逆命题成立的只有一个,

故选B.

【点睛】本题考查了互逆命题,真命题与假命题,真命题要运用相关知识进行推导,假命题要通过举反例来进行否定.

6.下列语句中真命题有( )①点到直线的垂线段叫做点到直线的距离;②内错角相等;③两点之间线段最短;④过一点有且只有一条直线与已知直线平行;⑤在同一平面内,若两条直线都与第三条直线垂直,则这两条直线互相平行.

A.5个B.4个C.3个D.2个

【答案】D

【解析】

【分析】

利用点到直线的距离的定义、平行线的性质、线段公理等知识分别判断后即可确定正确的选项.

【详解】

解:①点到直线的垂线段的长度叫做点到直线的距离,故错误,是假命题;

②两直线平行,内错角相等,故错误,是假命题;

③两点之间线段最短,正确,是真命题;

④过直线外一点有且只有一条直线与已知直线平行,错误,是假命题;

⑤在同一平面内,若两条直线都与第三条直线垂直,那么这两条直线互相平行,正确,是真命题.真命题有2个,故选D.

相关文档
最新文档