海瑞克土压平衡盾构机结构分析

合集下载

盾构机结构详解

盾构机结构详解

盾构机技术讲座一.盾构机结构(EPB总体结构图)盾构是一个具备多种功能于一体的综合性隧洞开挖设备,它集和了盾构施工过程中的开挖、出土、支护、注浆、导向等全部的功能,目前,盾构机已成为地下交通工程及隧道建设施工的首选设备被广泛使用。

其优点如下:1. 不受地面交通、河道、航运、季节、气候等条件的影响。

2. 能够经济合理地保证隧道安全施工。

3. 盾构的掘进、出土、衬砌、拼装等可实行自动化、智能化和施工运输控制信息化。

4. 掘进速度较快,效率较高,施工劳动强度较低。

5. 地面环境不受盾构施工的干扰。

其缺点为:1. 盾构机械造价较高。

2. 在饱和含水的松软地层中施工地表沉陷风险大。

3. 隧道曲线半径过小或埋深较浅时难度较大。

4. 设备的转移、运输、安装及场地布置等较复杂。

盾构作为一种保护人体和设备的护体,其外形(断面形状)随所建的工程要求不同有圆形、双圆形、三圆形、矩形、马蹄形、半圆形等。

(如:人行道方形能最大限度的利用空间、过水洞马蹄形符合流体力学、公路隧道半圆形利用下玄跑车)。

而因圆形断面受力好、圆形盾构设备制造相对简单及成本相对低廉,绝大部分盾构还是采用传统的圆形。

为适应各种不同类型土质及盾构机工作方式的不同,盾构机可分为三种类型、四种模式:三种类型:(1)软土盾构机;(2)硬岩盾构机;(3)混合型盾构机。

四种模式:(4)开胸式;(5)半开胸式(半闭胸式、欠土压平衡式);(6)闭胸式(土压平衡式);(7)气压式。

软土盾构机适应于未固结成岩的软土、某些半固结成岩及全风化和强风化围岩。

刀盘只安装刮刀,无需滚刀。

硬岩盾构机适应于硬岩且围岩层较致密完整,只安装滚刀,不需要刮刀。

混合盾构机适应于以上两种情况,适应更为复杂多变的复合地层。

可同时安装滚刀和刮刀。

气压盾构是在加气压状态下的施工模式,即可用于泥水加压式盾构机,也可用于土压平衡式盾构机。

以下以海瑞克公司在广州地铁使用的典型土压平衡式盾构机为例:盾构机总图总体外形尺寸:?6280X75000mm总质量:520t装机总功率:最大掘进速度:80mm/min第一节:主机结构(盾体及刀盘结构)断面形状:圆形、用钢板成型制成,材料为:S335J2G3。

盾构机结构详解

盾构机结构详解

盾构机技术讲座一.盾构机结构(EPB总体结构图)盾构是一个具备多种功能于一体的综合性隧洞开挖设备,它集和了盾构施工过程中的开挖、出土、支护、注浆、导向等全部的功能,目前,盾构机已成为地下交通工程及隧道建设施工的首选设备被广泛使用。

其优点如下:1. 不受地面交通、河道、航运、季节、气候等条件的影响。

2. 能够经济合理地保证隧道安全施工。

3. 盾构的掘进、出土、衬砌、拼装等可实行自动化、智能化和施工运输控制信息化。

4. 掘进速度较快,效率较高,施工劳动强度较低。

5. 地面环境不受盾构施工的干扰。

其缺点为:1. 盾构机械造价较高。

2. 在饱和含水的松软地层中施工地表沉陷风险大。

3. 隧道曲线半径过小或埋深较浅时难度较大。

4. 设备的转移、运输、安装及场地布置等较复杂。

盾构作为一种保护人体和设备的护体,其外形(断面形状)随所建的工程要求不同有圆形、双圆形、三圆形、矩形、马蹄形、半圆形等。

(如:人行道方形能最大限度的利用空间、过水洞马蹄形符合流体力学、公路隧道半圆形利用下玄跑车)。

而因圆形断面受力好、圆形盾构设备制造相对简单及成本相对低廉,绝大部分盾构还是采用传统的圆形。

为适应各种不同类型土质及盾构机工作方式的不同,盾构机可分为三种类型、四种模式:三种类型:(1)软土盾构机;(2)硬岩盾构机;(3)混合型盾构机。

四种模式:(4)开胸式;(5)半开胸式(半闭胸式、欠土压平衡式);(6)闭胸式(土压平衡式);(7)气压式。

软土盾构机适应于未固结成岩的软土、某些半固结成岩及全风化和强风化围岩。

刀盘只安装刮刀,无需滚刀。

硬岩盾构机适应于硬岩且围岩层较致密完整,只安装滚刀,不需要刮刀。

混合盾构机适应于以上两种情况,适应更为复杂多变的复合地层。

可同时安装滚刀和刮刀。

气压盾构是在加气压状态下的施工模式,即可用于泥水加压式盾构机,也可用于土压平衡式盾构机。

以下以海瑞克公司在广州地铁使用的典型土压平衡式盾构机为例:盾构机总图总体外形尺寸:Φ6280X75000mm总质量:520t装机总功率:1744.6KW最大掘进速度:80mm/min第一节:主机结构(盾体及刀盘结构)断面形状:圆形、用钢板成型制成,材料为:S335J2G3。

张总:海瑞克土压平衡盾构机泡沫系统浅析

张总:海瑞克土压平衡盾构机泡沫系统浅析

海瑞克土压平衡盾构机泡沫系统浅析中铁一局城轨公司张新义1.工作原理概述:在盾构掘进过程中,为了对渣土进行改良设置了渣土改良系统,包括泡沫系统和膨润土系统。

作为土体改良的媒介,泡沫特别适用于坚硬地质的复合地层的盾构掘进。

经泡沫改良后的土体具有如下的性能:➢提供压力稳定的切削面➢足够的柔软性➢低透水性➢减小土体对盾构机的粘着力➢减小摩擦力➢减小驱动力EPB模式下,用泡沫改良的原理是空气和液体的机械混合,在泡沫储存罐里将水和泡沫混合,泡沫通过计量容器泵入泡沫,水来自工业用水,并在管线上加装了流量计。

泡沫本身是一组泡沫桶内空气和液体的机械组合,这两种成分必须经过SPC操作元件的计量后注入泡沫发生器,并且要根据推进速度、所保持的压力以及按有关公式来调整。

在控制室里操作人员可通过操作有关的可控球阀将泡沫通过相关入口注入到刀盘前方、土仓和螺旋输送机,刀盘前有八个泡沫喷嘴,土舱里有四个泡沫喷嘴,螺旋输送机前后两端各有四个泡沫喷嘴。

此外,该泡沫系统还可兼作注水或膨润土用。

2.泡沫系统元件和管路布置2.1系统元件➢1×泡沫储存罐(1m3)➢4×液体控制装置(带有流量计)➢4×空气控制装置(带有流量计)➢4×压力检查表➢4×泡沫发生器➢1×水泵(功率6.3kw,最小额定流量133L/min,额定压力8bar)➢1×泡沫泵(功率0.4kw,额定流量5~300L/h,额定压力9bar)➢4×泡沫压力传感器➢1×操作装置的控制元件➢4×连接回转中心泡沫管➢清洗水切换装置➢膨润土切换装置2.2管路布置泡沫注入管路的布置应该使泡沫达到快速混合搅拌渣土的效果,以免渣土粘结在刀盘和刀具上因此就应在刀盘和掘进工作面设置多个泡沫注入口,一方面可以避免渣土粘结在刀盘或者刀具上,另一方面在渣土输送到螺旋输送机之前渣土能得到最大限度的搅拌。

另外由于接触刀盘和刀具渣土的流动性,更使得泡沫和渣土能够尽快得到混合,同时掘进工作面被泡沫所密封。

海瑞克盾构机电气系统概述

海瑞克盾构机电气系统概述

海瑞克盾构机电气系统概述————————————————————————————————作者:————————————————————————————————日期:海瑞克盾构机电气控制系统概述李剑祥(中铁六局集团有限公司深圳地铁2号线项目部广东深圳 518056)摘要:对海瑞克土压平衡盾构机电气控制系统进行概述,并分别对其配电系统、可编程控制系统和计算机控制及数据采集分析系统三个部分的设计进行总结,以加深对其整个电气控制系统原理的理解。

关键词:电气系统配电系统可编程控制系统计算机控制及数据采集分析系统0 海瑞克盾构机电气系统简介盾构机是一种集机械、液压、电气和自动化控制于一体、专用于地下隧道工程开挖的技术密集型重大工程装备,其技术先进、结构庞大。

如果把机械部分比喻成人的四肢,那么液压系统比喻成人的血液系统,则电气控制系统就是人的神经系统。

当前盾构机电气控制系统均采用世界上最先进、可靠的技术以保证系统稳定可靠地运行。

海瑞克盾构机电气控制系统分为配电系统、可编程控制系统和计算机控制及数据采集分析系统三个部分。

下面对该三个部分进行介绍。

1 配电系统盾构施工是参考工厂式的流程化作业施工,盾构机的配电系统设计原则也是参照工厂供配电原理设计的。

配电系统分为高压系统和低压系统,其用电设备列表如下:序号用电设备设备容量备注1 刀盘驱动945kW2 超挖刀7.5kW3 推进系统75kW4 管片安装机45kW5 螺旋输送机250kW6 皮带输送机22kW7 注浆泵30kW8 砂浆储存罐的搅拌器7.5kW9 液压油过滤泵11kW10 主轴承润滑4kW11 管片吊机2x2kW12 排水泵12kW13 冷却水系统7.5kW14 二次通风机11kW15 空压机110kW16 泡沫系统18kW17 补油泵55 kW18 其他设备75kW总功率1682kW1.1高压系统经过负荷计算,Sj1≈2000kVA,则选择的电压器容量为2000kVA,选择的高压电缆进线为UGP-3×50+1×25,选用的高压环网柜电压等级为12KV,容量为200A,变压器带温度和密封性故障报警。

盾构机结构详解

盾构机结构详解

盾构机技术讲座一.盾构机结构(EPB总体结构图)盾构是一个具备多种功能于一体的综合性隧洞开挖设备,它集和了盾构施工过程中的开挖、出土、支护、注浆、导向等全部的功能,目前,盾构机已成为地下交通工程及隧道建设施工的首选设备被广泛使用。

其优点如下:1. 不受地面交通、河道、航运、季节、气候等条件的影响。

2. 能够经济合理地保证隧道安全施工。

3. 盾构的掘进、出土、衬砌、拼装等可实行自动化、智能化和施工运输控制信息化。

4. 掘进速度较快,效率较高,施工劳动强度较低。

5. 地面环境不受盾构施工的干扰。

其缺点为:1. 盾构机械造价较高。

2. 在饱和含水的松软地层中施工地表沉陷风险大。

3. 隧道曲线半径过小或埋深较浅时难度较大。

4. 设备的转移、运输、安装及场地布置等较复杂。

盾构作为一种保护人体和设备的护体,其外形(断面形状)随所建的工程要求不同有圆形、双圆形、三圆形、矩形、马蹄形、半圆形等。

(如:人行道方形能最大限度的利用空间、过水洞马蹄形符合流体力学、公路隧道半圆形利用下玄跑车)。

而因圆形断面受力好、圆形盾构设备制造相对简单及成本相对低廉,绝大部分盾构还是采用传统的圆形。

为适应各种不同类型土质及盾构机工作方式的不同,盾构机可分为三种类型、四种模式:三种类型:(1)软土盾构机;(2)硬岩盾构机;(3)混合型盾构机。

四种模式:(4)开胸式;(5)半开胸式(半闭胸式、欠土压平衡式);(6)闭胸式(土压平衡式);(7)气压式。

软土盾构机适应于未固结成岩的软土、某些半固结成岩及全风化和强风化围岩。

刀盘只安装刮刀,无需滚刀。

硬岩盾构机适应于硬岩且围岩层较致密完整,只安装滚刀,不需要刮刀。

混合盾构机适应于以上两种情况,适应更为复杂多变的复合地层。

可同时安装滚刀和刮刀。

气压盾构是在加气压状态下的施工模式,即可用于泥水加压式盾构机,也可用于土压平衡式盾构机。

以下以海瑞克公司在广州地铁使用的典型土压平衡式盾构机为例:盾构机总图总体外形尺寸:Φ6280X75000mm总质量:520t装机总功率:1744.6KW最大掘进速度:80mm/min第一节:主机结构(盾体及刀盘结构)断面形状:圆形、用钢板成型制成,材料为:S335J2G3。

盾构机海瑞克结构图解1

盾构机海瑞克结构图解1

AVN-T系列掘进设备
这系列机械具有大功率的切削刀盘,DN1200型号或以上设有刀盘进入舱,适用于长距离和硬岩地质施工。

AVN-D系列掘进设备
适合于不均匀或复杂的地质条件下工作的顶管施工,完全不受地下水的限制。

EPB土压平衡式掘进设备配备有泥渣输送泵的土压平衡式掘进机设备,适应于均匀或软质土壤条件下施工,由DN1400型号开始,配备有大功率泥渣输送泵,具有高效率的掘进施工和直接排出泥渣能力。

机头敞开式掘进设备
视乎地质条件,可以采用挖掘式或钻掘式装置施工,通过皮带输送机进行弃土运输。

这设备仅可以于稳定的底层和无地下水的条件下施工,或与某些特殊情况下,机头敞开式掘进机可以装上压缩空气装置以支撑采挖面使其稳定。

(完整版)海瑞克盾构机技术说明

(完整版)海瑞克盾构机技术说明

目录隧道掘进机的技术说明5.1 概述 (3)5.2 功能(EPB盾构) (4)5.2.1 土料挖掘 / 推进 (5)5.2.2 控制 (6)5.2.3 管环拼装周期 (7)5.3 技术数据/总览 (8)5.4 操作步骤 (16)5.4.1 进入开挖室 (16)5.4.2 人行气闸 (19)准备和注意事项 (19)加压 (21)加压步骤 (22)加压图 (24)通过通道室加压(加压附加人员) (26)附加人员加压图 (27)卸压 (28)卸压步骤: (29)卸压图 (31)对一个人员的紧急卸压图 (33)紧急情况下,通道室和主室内应分别采取的措施 (36)紧急情况卡卡样 (37)5.4.3 将开挖工具送入压力室 (38)5.4.4 拼装管环 (39)5.4.5 回填 (41)通过尾部机壳进行回填 (41)灌浆泵的工作原理 (42)5.4.6 压缩空气供给 (44)工业用空气 (44)压缩空气调节 (45)5.4.7 发泡设备说明 (46)安装设计 (46)设备功能 (47)高压聚合物系统 (47)5.5 隧道掘进机各部件 (48)5.5.1 盾构 (49)概述 (49)前部盾构 (49)中间盾构 (50)尾部机壳 (50)推力缸 (50)盾构关节油缸 (51)5.5.2 人行气闸 (52)5.5.3 刀盘驱动装置 (54)原理 (54)旋转工作机构系统,主轴承 (54)齿轮润滑 (54)密封系统 (55)5.5.4 拼装机 (56)技术说明 (56)支架梁 (56)行走机架 (57)旋转机架 (57)带抓取头的横向行走装置 (58)旋转机架的动力提供 (59)安全设备 (59)5.5.5 螺旋输送机 (60)一般说明 (60)伸缩缸 (60)前部闸阀 (60)前部闸阀 (61)驱动装置 / 密封系统 (62)安全装置 (62)5.5.6 后援装置 (63)一般说明 (63)桥 (64)龙门架1 (65)龙门架2 (66)龙门架3 (68)龙门架4 (69)龙门架5 (71)5.1 概述该设备是一种液压挖掘盾构机,采用土压支护隧道开挖面。

土压平衡式盾构机的组成及工作原理

土压平衡式盾构机的组成及工作原理

土压平衡式盾构机的组成及工作原理随着科学技术日新月异的发展,新事物不断涌现,盾构机的出现虽然有一定时间,但是,盾构机集成了很多现代科技。

大型PLC,各种性能优良的液压泵,各种先进的控制理念都体现在了盾构机上。

我们要去学习和了解它,从而去创新和改造它。

现代盾构掘进机集光、机、电、液、传感、信息技术于一体,具有开挖切削土体、输送土碴、拼装隧道衬砌、测量导向纠偏等功能。

盾构机挖掘主要靠刀盘切削来完成,不同地质刀盘通常配备有不同数量的切刀或滚刀。

为了确保切刀的耐久性,要选择与土质相适应的切刀形状。

刀刃材料通常是以钨碳化合物为主烧结超硬合金。

切刀要合理排列以达到能切削整个掌子面的目的。

地层为岩石或地层中存在大块卵石情况下,安装滚刀是必不可少的,盾构机掘进时刀盘旋转的同时启动推进千斤顶将刀盘压紧岩层,刀盘上的滚刀一边滚动一边破岩,刀盘旋转推力使得滚刀不断滚动前进,从而对整个掌子面的岩石开挖。

刀盘上有仿形刀装置,此装置为液压缸驱动,由切削刀,液压油缸构成,在必要时(如纠偏,转弯)进行盾体外周超挖或余掘。

主驱动系统有两个变量柱塞泵(分别有两个315KW电机,电机分别由两个软启动器驱动),8个液压马达(用来驱动刀盘),补油泵(75KW电机驱动),1/ 5控制泵,恒功率阀块,HBW油脂系统,轴承润滑系统,冷却水系统组成。

1.启动控制泵,缓慢调节控制泵的切断阀(顺时针增大压力),泵输出压力逐步升高,控制泵的安全压力设定为8.0Mpa。

2.启动补油泵,再缓慢调节溢流阀,溢流阀压力升至2.0Mpa。

锁紧补油泵旁路溢流阀和换油流量调节溢流阀锁紧螺母;3.启动冷却水泵(主驱动有8个液压马达,每个液压马达带一个减速器,用来冷却减速器,)。

4.启动润滑油脂系统,HBW系统,齿轮油系统)4.硬件上强制给PLC一个启动信号(不需要启主驱泵)。

选择刀盘旋转方向(即主泵上三位四通换向阀得电情况两个泵需一致),观察两个主泵斜盘变化,变化正常后再按正常程序启动主泵。

浅析海瑞克土压平衡盾构机刀盘电机控制系统

浅析海瑞克土压平衡盾构机刀盘电机控制系统

浅析海瑞克土压平衡盾构机刀盘电机控制系统作者:彭川来源:《城市建设理论研究》2013年第26期摘要:土压力平衡盾构机是工程中重要的一种机械,其刀盘电机的控制系统是土压力平衡盾构机的重要组成部分,Herrenknecht土压力盾构机是目前使用较为广泛的一种土压力盾构机,研究其刀盘电机控制系统的设计应用方面的内容对盾构机的刀盘系统的发展具有重要意义。

文章从Herrenknecht土压力盾构机刀盘控制系统的构成出发,探讨了刀盘控制系统的难点问题以及刀盘电机的逻辑控制。

关键词:海瑞克;土压力盾构机;刀盘电机控制系统;逻辑控制中图分类号:TM3 文献标识码:A1刀盘电机控制系统的构成海瑞克土压力盾构机的刀盘电机控制系统主要由PLC、变频器、人机界面三者组成,在盾构机工作的过程中,操作员通过人机界面来控制刀盘的运行,使得刀盘的工作在设定的范围内,变频器的运转是通过Profibus总线和PLC进行信息的传输的,变频器是对380 V/50 Hz的工频交流电进行变频以此来达到驱动盾构机刀盘运转。

目前因为盾构机的生产核心技术都在欧美等国家的手中,特别是刀盘电机控制系统,研究海瑞克土压力盾构机的刀盘电机控制系统的设计可以为国产盾构机的发展起到积极的推动作用,同时研究海瑞克土压力平衡盾构机刀盘电机控制系统能够促进盾构机控制系统方面的极大发展。

2刀盘电机控制系统的难点问题因为土压力盾构机的体积较大,其中电机设计的设备较多,系统设计繁杂,复杂性较高,刀盘电机在运行的过程中往往会涉及到液压系统、润滑系统、、水系统等辅助型系统。

辅助系统与刀盘电机系统的协调性问题一直是盾构机刀盘电机控制系统设计的难题,若处理不好系统与系统之间的问题,盾构机在使用的过程中,很容易发生崩溃的现象,严重的影响盾构机的正常使用,在工程中,若盾构机发生故障,则会造成较大的损失。

文章从状态机的编程将刀盘电机的运行分成若干个系统,再根据若干子系统的条件进行子程序的设计。

海瑞克土压平衡式盾构机分析

海瑞克土压平衡式盾构机分析
1 掘进中 . 2 控制排土.与 排土速度
当泥土仓和螺旋输送机中 的碴土积累到一定数量时, 开挖面被切下的渣土经刀槽进人泥土仓的阻 力增大, 当泥土仓的土压与开挖面的土压力和地下水的水压力相平衡时, 开挖面 就能保持稳定, 开挖 面对应的地面部分也不致坍坍或隆起, 这时只要保持 从螺旋输送机和泥土仓中 送出去的渣土量与切 输 削下来的流人泥土仓中的 渣土量相平衡时, 开挖工作就能顺利进行。
2 排土机构 . 6 盾构机的 排土机构主要包 括螺旋输送机和皮带输送机。螺旋输送机由 斜盘式变量 轴向柱塞马达驱 动, 皮带输送机由电机驱动。碴土由螺旋输送机从泥土仓中运输到皮带输送机上, 皮带输送机再将碴 土向 后运输至第四节台车的尾部, 落人等候的碴土车的土箱中, 土箱装满后,由 电瓶车牵引沿轨道运 至竖井, 龙门吊 将土箱吊 至地面, 并倒人碴土坑中。 螺旋输送机有前后两个闸 前者关闭可以 门, 使泥土仓和螺旋输送机隔断, 后者可以 停止掘进或 在 维修时关闭, 在整个盾构机断电紧急情况下, 此闸门 也可由 蓄能器贮存的能量自 动关闭,以防止开挖 仓中的水及渣土在压力作 用下进入盾构机。 2 后配套设备 . 7
1 管 拼 . 片 装 3
盾构机掘进一环的距离后, 拼装机操作手操作拼装祖 装单层衬砌管片, 断 使隧道一次成型。
2 盾构机的组成及各组成部分在施工中 ; 的作用
盾构机的 最大直径为6 8 总长6 m 其中 . m, 2 5 , 盾体长8 m, . 后配套设备长5.m 5 6 A重量约46 5 0t , 总配置功率 1 k , 57 最大掘进扭矩 5 k m, 7 W 30 0 N・ 最大推进力为 3 40 , 6 k 最决掘进速度可达 0 N
管片拼装机由 拼装机大梁、 支撑架、 旋转架和拼装头组成。 拼装机大梁用法兰连接在中盾的后支撑架上, 拼装机的支撑架通过左右各两个滚 轮安放在拼装机 大梁上的行走槽中, 一个内圈为齿圈形式外径 3 m 白 珠轴承外圈通过法兰与拼装机支撑架相连, . 嫉 2 内圈通过法兰与旋转架相 连, 拼装头与旋转支架之间 用两个伸缩油缸和一个横梁相连接。 现以 拼装头在正下方位置的情况为例, 来说明拼装机的运动情况。 两个拼装机行 走液压油缸可以 使支撑架、 旋转架、 拼装头在拼装机大梁上沿隧道轴 线方向移动; 安装在支撑架 上的两个斜盘式轴向 柱塞旋转马达, 通过驱动 滚珠轴承的内 齿圈可以 转架和拼装 使旋 头沿隧道圆周方向左右旋转各 20; 00 通过伸缩油缸可以 使拼装头上升或下降; 拼装头在油 缸的作用下又可以实现在水平方向 摆动, 上的 和 在竖直方向上的 摆动以及抓紧和放松管片的功能。 这样在拼装管片时, 就可以 有六个方向的自由 度, 从而可以 使管片准确就位。 拼装手可以 使用有线的或蛋 控的控制器操作管片拼装 用来拼装管片。我们采用的是 1 m 长 机, . 2 的通用管片, 一环管片由 六块管片组成, 它们是三个 标准块、 两块临 块和一块封 顶块。 封顶块可以 有 十个不同的位置, 代表十种不同类型的管环, 通过选 择不同类型的管环就可以使 成型后的隧道轴线与 设计的隧道轴线相拟合。 隧道成型后, 管环之间 及管环的管片之间都装有密封, 用以防 水。 管片之间 及管环之间 都由高强度的 螺栓连接。

土压平衡盾构机主要部件功能描述

土压平衡盾构机主要部件功能描述

土压平衡盾构机主要部件功能描述1 概述土压平衡盾构机的基本组成部分主要有下面几大块,如表3—7所示。

表3-7 土压平衡盾构机主要组成表下面根据这些部件或系统在盾构施工中的不同功能特点来分别进行说明。

2 盾体部分盾体部分由刀盘、前体、中体和盾尾四大部分组成。

(1)刀盘和刀具刀盘是安装在盾构机前面的旋转部分,在支撑掌子面土压的同时进行开挖。

通过在不同形式的刀盘上安装不同的刀具或刀具组合,可以适应不同的地质情况下的施工需要。

在正常的工作环境下,刀盘、刀座和刀盘支承结构能够抵抗单轴抗压强度达到120Mpa的强度,不会出现刀盘变形及非正常的磨损。

刀盘包括焊接结构件和刀架.刀盘表面焊接有耐磨层,圆周区域焊接有三道耐磨条.通过刀盘旋转,挖出的碴土从刀盘的8个开口导入土仓。

刀盘的后部开口向内倾斜,有利于导入碴土.焊接的搅拌臂可以使改良添加剂和碴土在刀盘后面进行充分的搅拌。

刀盘安装在主轴承的内齿圈上,通过6个液压马达驱动。

刀盘设计为双向旋转,其转速可无级调节。

通过刀盘的旋转接头,土质改良用的泡沫、膨润土或水被送到土仓内。

回转中心通过刀盘中心的法兰和刀盘连接。

为了适应不同地质的开挖要求,在刀盘上可以安装滚刀、铲刀、刮刀和齿刀。

刀盘上的刀具均可在刀盘后面进行更换。

(2)盾壳盾壳包括三个主要组件:前体(切口环)、中体(支撑环)和盾尾。

1)前体里面装有支撑主驱动和螺旋输送机的钢结构。

压力隔板将前体的土仓和主舱分离开来。

隔板上面的门可以让人进入土仓进行保养和检查工作。

此外,隔板有几个开口,可以作为碴土改良材料的入口以及作为修理时输电线的接线盒接头。

在前体的隔板上安装有土压传感器用以监测土仓内的土压,以便在土压平衡模式下及时对土仓内的土压进行反馈和调节。

2)中体在中体内布置了推进油缸支座和管片安装机架。

管片安装机支架通过相应的法兰面和管片安装机梁连接起来。

推进缸和连接盾尾的铰接油缸布置在中体。

在中体的盾壳上焊接了带球阀的可在需要时实施超前钻孔的预留孔,当需要时还可以通过这些预留孔注入膨润土等用以减小盾壳与土层的磨擦,或实施临时止水。

海瑞克φ8800mm土压平衡盾构机参数书讲解

海瑞克φ8800mm土压平衡盾构机参数书讲解

海瑞克φ8800mm⼟压平衡盾构机参数书讲解TABLE OF CONTENTSTECHNICAL DATAE D I T I O N 09/2010V E R S I O N 001S -591/592 G U A N G D O N G I N T E R C I T Y R A I L W A Y L O T 3I I - 1D O C U ME N T : 7686-001II. Technical Data1. Tunnel boring machine general. . . . . . . . . . . . . . . . . . . . . . . . . .II - 31.1Tunnel boring machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 31.2Tunnel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II -31.3Segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 42. Shield general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .II - 52.1Steel construction shield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 52.2Tailskin articulation cylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II -52.3Advance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 52.4Man lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 62.5Screw conveyor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 63. Cutting wheel general. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .II - 73.1Steel construction cutting wheel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 74. Drive general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .II - 84.1Main drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 85. Erector general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .II - 95.1Erector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 96. Process technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .II - 106.1Hydraulic system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 106.2Water circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 106.3Ring gap filling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 106.4Regrouting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 116.5Dewatering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 11TABLE OF CONTENTSTECHNICAL DATAE D I T I O N 09/2010V E R S I O N 001S -591/592 G U A N G D O N G I N T E R C I T Y R A I L W A Y L O T 3I I - 2D O C U ME N T : 7686-0016.6Compressed air system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 116.7Compressed air regulating system . . . . . . . . . . . . . .. . . . . . . . . . . . . . . II -116.8Secondary ventilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 126.9Gas detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II -126.10Fire protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 126.11Electric systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 127. Back-up general. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .II - 137.1Steel construction back-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 137.2Segment feeder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II -137.3Back-up belt conveyor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 137.4Segment crane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II -147.5Material crane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 147.6Grease barrel crane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II -157.7Pivot crane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II -157.8Pivot crane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II -157.9Pivot crane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II -167.10Pivot crane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 167.11Ventilation cassette lifting device. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II - 16TUNNEL BORING MACHINE GENERALTECHNICAL DATAE D I T I O N 09/2010V E R S I O N 001S -591/592 G U A N G D O N G I N T E R C I T Y R A I L W A Y L O T 3I I - 3D O C U ME N T : 7686-0011. Tunnel boring machine general1.1Tunnel boring machineTable II - 1: Tunnel boring machine1.2TunnelTable II - 2: TunnelMarking:The rating plate of the system is attached in the TBM control cabin.Machine typeEarth Pressure Balance ShieldInstalled power4000 kVALength TBM + back-upapprox. 88 mWeight TBMapprox. 750 tWorking pressure6.0 barTotal tunnel length4004 m + 4175 mUpward gradient (max.3.5 %Downward gradient (max.3.5 %Curve radius (min.500 mTUNNEL BORING MACHINE GENERALTECHNICAL DATAE D I T I O N 09/2010V E R S I O N 001S -591/592 G U A N G D O N G I N T E R C I T Y R A I L W A Y L O T 3I I - 4D O C U ME N T : 7686-0011.3SegmentsTable II - 3: SegmentsOuter ring diameter8500 mmInner ring diameter7700 mmSegment length1600 mmRing arragnement6 + 1Segment weight (max.10 tSHIELD GENERALTECHNICAL DATAE D I T I O N 09/2010V E R S I O N 001S -591/592 G U A N G D O N G I N T E R C I T Y R A I L W A Y L O T 3I I - 5D O C U ME N T : 7686-0012. Shield general2.1Steel construction shieldTable II - 4: Steel construction shield2.2Tailskin articulation cylinderTable II - 5: Tailskin articulation cylinder2.3AdvanceTable II - 6: AdvanceFront shield (diameter8800 mmFront shield (length2800 mmCentre shield (diameter8785 mmCentre shield (length3000 mmTailskin (diameter8770 mmTailskin (length4100 mmTailskin sealing4 rows of brushesNumber 15Stroke150 mmNominal pulling force6500 kN (at 215 barsNumber of main thrust cylinders19 x 2Stroke2500 mmThrust force (main thrust cylinders70000 kN (at 350 barsSHIELD GENERALTECHNICAL DATAE D I T I O N 09/2010V E R S I O N 001S -591/592 G U A N G D O N G I N T E R C I T Y R A I L W A Y L O T 3I I - 6D O C U ME N T : 7686-0012.4Man lockTable II - 7: Man lock2.5Screw conveyorTable II - 8: Screw conveyorNumber 1Typeparallel lockVolume pre-chamber2430 lNumber of persons pre-chamber2Volume main chamber4170 lNumber of persons main chamber4Working pressure6.0 barsNumber 1Length 15175 mmPower 400 kWSpeed0 - 22.0 1/min Torque (nominal217 kNmBreakaway torque235 kNmCUTTING WHEEL GENERALTECHNICAL DATAE D I T I O N 09/2010V E R S I O N 001S -591/592 G U A N G D O N G I N T E R C I T Y R A I L W A Y L O T 3I I - 7D O C U ME N T : 7686-0013. Cutting wheel general3.1Steel construction cutting wheelTable II - 9: Steel construction cutting wheelBore diameter8830 mmWeight (with tools116 tDisc cutters (1 ring45Disc cutters (center4Diameter disc cutters432 mmTrack pitch90 / 100 mmCutting knives58Centre knife1Buckets 16Wear detection3 sensorsDRIVE GENERALTECHNICAL DATAE D I T I O N 09/2010V E R S I O N 001S -591/592 G U A N G D O N G I N T E R C I T Y R A I L W A Y L O T 3I I - 8D O C U ME N T : 7686-0014. Drive general4.1Main driveTable II - 10: Main driveType electrical Motors 14Power 14 x 160 kWSpeed0 - 4.2 1/min Torque (nominal8121 kNmTorque (overload11369 kNmBreakaway torque12181 kNmMaindrive diameter4000 mmSeal system (inner / outerdouble / fourfoldERECTOR GENERALTECHNICAL DATAE D I T I O N 09/2010V E R S I O N 001S -591/592 G U A N G D O N G I N T E R C I T Y R A I L W A Y L O T 3I I - 9D O C U ME N T : 7686-0015. Erector general5.1ErectorTable II - 11: ErectorDrivehydraulic Weight (erector with main beam71.25 tGrabbing systemvacuum Driveway 2200 mmRotary speed1 / 2 1/min (with / without segmentRotary angle+/- 200°Controlradio panelPROCESS TECHNOLOGYTECHNICAL DATAE D I T I O N 09/2010V E R S I O N 001S -591/592 G U A N G D O N G I N T E R C I T Y R A I L W A Y L O T 3I I - 10D O C U ME N T : 7686-0016. Process technology6.1Hydraulic systemTable II - 12: Hydraulic system6.2Water circuitTable II - 13: Water circuit6.3Ring gap fillingTable II - 14: Ring gap fillingTotal powerapprox. 691 kWTank volume6540 lFlow rate (min.80 m3/h Inflow temperature (max.25°CHose drum2Hose length (effective2 x 40 mMedium grout Pumps2 x KSP12Power (electric motor45 kWTank13 m3PROCESS TECHNOLOGYTECHNICAL DATAE D I T I O N 09/2010V E R S I O N 001S -591/592 G U A N G D O N G I N T E R C I T Y R A I L W A Y L O T 3I I - 11D O C U ME N T : 7686-0016.4RegroutingTable II - 15: Regrouting6.5DewateringTable II - 16: Dewatering6.6Compressed air systemTable II - 17: Compressed air system6.7Compressed air regulating systemTable II - 18: Compressed air regulating systemMedium grout (component Aaccelerator (component BPumps component A: 4 kWcomponent B: 1.5 kWFlow ratecomponent A: 3.5 m3/h component B: 0.6 m3/hTankcomponent A: 3 m3component B: 1 m3Pumps 1Line diameterDN80Power compressor2 x 55 kW1 x 90 kWOperating pressure8 barFlow rate2 x 9.45 m3/min1 x 17.1 m3/minType double air intakePROCESS TECHNOLOGYTECHNICAL DATAE D I T I O N 09/2010V E R S I O N 001S -591/592 G U A N G D O N G I N T E R C I T Y R A I L W A Y L O T 3I I - 12D O C U ME N T : 7686-0016.8Secondary ventilationTable II - 19: Secondary ventilation6.9Gas detectionTable II - 20: Gas detection6.10Fire protectionTable II - 21: Fire protection6.11Electric systemsTable II - 22: Electric systemsPower ventilator37 kWVentilation duct diameterDN800Measured gases2 x CH4 / 1 x O2 / 1 x H2S / 1 x CO / 1 x CO2Fire extinguisher6 x ABC4 x CO2Smoke and heat detectors8Water curtainwithPrimary voltage10000 VSecondary voltage400 / 690 VLine frequency50 HzTransformers2 x 2000 kVABACK-UP GENERALTECHNICAL DATAE D I T I O N 09/2010V E R S I O N 001S -591/592 G U A N G D O N G I N T E R C I T Y R A I L W A Y L O T 3I I - 13 D O C U ME N T : 7686-0017. Back-up general7.1Steel construction back-upTable II - 23: Steel construction general7.2Segment feederTable II - 24: Segment feeder7.3Back-up belt conveyorTable II - 25: Back-up belt conveyorNumber of gantries4Total lengthapprox. 78 mWeight back-upapprox. 255.7 tCapacity 6 + 1Controlcontrol panelWidth of belt800 mmPower 45 kWBelt speed2.5 m /sConveyance rate450 m3/hBACK-UP GENERALTECHNICAL DATAE D I T I O N 09/2010V E R S I O N 001S -591/592 G U A N G D O N G I N T E R C I T Y R A I L W A Y L O T 3I I - 14D O C U ME N T : 7686-0017.4Segment craneTable II - 26: Segment crane7.5Material craneTable II - 27: Material craneDrive electrical Drawing No.2787-006-030-01Grabbing systemvacuum Rated load7.25 tDriveway 20.0 mStroke height3.9 mTravel speed0 - 45.0 m /min Stroke speed0 - 10.0 m /minPosition bridge / gantry 1Drawing No.2787-006-033-00Purpose rail and auxiliary rail layingDrive electrical Rated load1.6 tDriveway 20.0 m (lengthways2.6 m (sidewaysStroke height5.0 mTravel speed0 - 50.0 m /min (lengthways6.0 / 24.0 m /min (sidewaysStroke speed1.5 / 6.0 m /minBACK-UP GENERALTECHNICAL DATAE D I T I O N 09/2010V E R S I O N 001S -591/592 G U A N G D O N G I N T E R C I T Y R A I L W A Y L O T 3I I - 15D O C U ME N T : 7686-0017.6Grease barrel craneTable II - 28: Grease barrel crane7.7Pivot craneTable II - 29: Pivot crane7.8Pivot craneTable II - 30: Pivot cranePosition gantry 2Drawing No.168-06-038-10Drive manual Rated load0.5 tDriveway 2.0 mStroke height3.0 mPosition gantry 2Drawing No.168-06-038-20Purpose B-component tank handlingDrive manual Rated load1.5 tDriveway 2.0 mStroke height3.0 mPosition gantry 2Drawing No.168-06-038-20Purpose Polymer-1 tank handlingDrive manual Rated load1.5 tDriveway2.0 mStroke height3.0 mHERRENKNECHT Tunnelvortriebstechnik BA CK -U P GE NE RA L TECHNICAL DATA 7.9 Pivot crane Position Drawing No. Purpose Drive Rated load Driveway Stroke height gantry 3 168-06-038-20 Polymer tank handling manual 1.5 t 2.0 m 3.0 m Table II - 31: Pivot crane 7.10 Pivot crane Position Drawing No. Purpose Drive Rated load Driveway Stroke height gantry 3 1541-006-038-05 auxiliary rail extension manual 0.75 t 2.5 m 3.0 m Table II - 32: Pivot crane 7.11 Ventilation cassette lifting device Position Drawing No. Drive Rated load Stroke height DOCUMENT: 7686-001 gantry 4 2787-006-034-00 electrical 1.4 t 5.0 m 1.0 / 4.0m/min Table II - 33: Ventilation cassette lifting device Stroke speed EDITION 09/2010 VE R S I O N 0 0 1 S-591/592 GUANGDONG INTERCITY RAILWAY LOT 3 II - 16。

海瑞克盾构机技术说明

海瑞克盾构机技术说明

目录隧道掘进机的技术说明5.1 概述 (3)5。

2 功能(EPB盾构) (4)5.2.1 土料挖掘 / 推进 (5)5。

2.2 控制 (6)5。

2。

3 管环拼装周期 (7)5.3 技术数据/总览 (8)5.4 操作步骤 (16)5。

4。

1 进入开挖室 (16)5。

4。

2 人行气闸 (19)准备和注意事项 (19)加压 (21)加压步骤 (22)加压图 (24)通过通道室加压(加压附加人员) (26)附加人员加压图 (27)卸压 (28)卸压步骤: (29)卸压图 (31)对一个人员的紧急卸压图 (33)紧急情况下,通道室和主室内应分别采取的措施 (36)紧急情况卡卡样 (37)5.4.3 将开挖工具送入压力室 (39)5.4.4 拼装管环 (40)5。

4。

5 回填 (42)通过尾部机壳进行回填 (42)灌浆泵的工作原理 (43)5。

4。

6 压缩空气供给 (45)工业用空气 (45)压缩空气调节 (46)5.4.7 发泡设备说明 (47)安装设计 (47)设备功能 (48)高压聚合物系统 (48)5.5 隧道掘进机各部件 (49)5。

5.1 盾构 (50)概述 (50)前部盾构 (50)中间盾构 (51)尾部机壳 (51)推力缸 (51)盾构关节油缸 (52)5。

5。

2 人行气闸 (53)5.5。

3 刀盘驱动装置 (55)原理 (55)旋转工作机构系统,主轴承 (55)齿轮润滑 (55)密封系统 (56)5。

5.4 拼装机 (57)技术说明 (57)支架梁 (57)行走机架 (58)旋转机架 (58)带抓取头的横向行走装置 (59)旋转机架的动力提供 (60)安全设备 (60)5.5.5 螺旋输送机 (61)一般说明 (61)伸缩缸 (61)前部闸阀 (61)前部闸阀 (62)驱动装置 / 密封系统 (63)安全装置 (63)5。

5.6 后援装置 (64)一般说明 (64)桥 (65)龙门架1 (66)龙门架2 (67)龙门架3 (69)龙门架4 (70)龙门架5 (72)5.1 概述该设备是一种液压挖掘盾构机,采用土压支护隧道开挖面.泥土由刀盘开挖。

(完整版)海瑞克盾构机液压系统说明(附电路图)

(完整版)海瑞克盾构机液压系统说明(附电路图)

一、液压系统元件1液压泵液压泵是液压系统的动力元件,按结构可以分为柱塞泵、齿轮泵、叶片泵,按排量可以分为定量泵、变量泵,按输出出口方向又可以分为单向泵、双向泵。

泵都是由电动机或其他原动机带动旋转,通过这种往复的旋转将油不断地输送到管路中,通过各种阀的作用,控制着执行元件的运行。

在大连地铁盾构机中,螺旋输送机使用一个双向变量泵和一个定量泵,推进系统中使用一个大排量的单向变量泵,管片安装机种使用两个单向变量泵,注浆系统中使用一个单向变量泵,辅助系统使用一个单向变量泵。

a.定量齿轮泵注:右侧油液进入泵内,齿轮旋转带动油液从左侧出口流出,排量是一定的c.定量叶片泵注:转子转动,带动叶片推动油液1、2进油,3、4出油,排量一定d.斜盘式柱塞泵注:斜盘由联轴器带动转动,往复吸油、压油,斜盘角度是可以调控的2液压阀液压阀根据作用可以分为压力控制阀、流量控制阀、方向控制阀。

压力控制阀可以控制液压回路的压力,如当液压回路中压力过大时,溢流阀或卸荷阀打开泄压。

流量控制阀可以控制液压回路中的流量大小,根据流量的不同可以控制执行元件的速度。

方向控制阀主要控制液压回路中液压油的流动方向,由此可以改变液压油缸的伸缩。

各种阀一般安装在靠近泵的油液管路中,相对来说比较集中,便于检查和维修。

a.单向阀注:油液从P1口进入,克服弹簧力推开单向阀的阀芯,经孔隙从p2口流出,油液只能从p1流向p2b.溢流阀注:油从压力口进入,通过阻尼孔进入后腔,克服弹簧压力,推开阀芯,油液从溢流口c.液控单向阀注:x口接压力油时,阀芯将a与b口堵死,当x口接油箱时,若Pa大于Pb,则从a口进油,打开阀芯,流向b口,若Pb大于Pa时,则油液从b 口流向a口,d.插装阀注:控制油路克服弹簧力,接通进出口,该阀一般用于主油路e.减压阀注:主要用于控制出口压力3液压马达液压马达属于液压系统的执行元件,与液压泵的工作原理相反,液压泵是将其他形式的能(如电能、风能)转化为液压油的动能,而液压马达是将液压油的动能转化为机械能,从而实现马达的旋转带动执行元件的转动。

土压平衡盾构结构原理及施工工艺

土压平衡盾构结构原理及施工工艺

土压平衡盾构结构原理及施工工艺
土压平衡盾构结构原理及施工工艺
本文以德国海瑞克公司生产的开挖直径为6400mm的土压平衡盾构为例,对盾构的结构原理和工作原理进行了阐述,并结合中铁五局一公司沈阳地铁四标施工的实际情况对盾构施工工艺及盾构施工中应注意的事项进行了简要的论述.
作者:吴正中作者单位:中铁五局一公司,410117 刊名:中国科技博览英文刊名:ZHONGGUO BAOZHUANG KEJI BOLAN 年,卷(期): 2009 ""(7) 分类号: U45 关键词:土压平衡盾构结构原理施工工艺。

海瑞克土压平衡盾构机结构与分系统功能分析

海瑞克土压平衡盾构机结构与分系统功能分析

海瑞克土压平衡盾构机结构与分系统功能分析作者:刘继刚来源:《城市建设理论研究》2013年第26期摘要:经济水平的提升对交通的要求越来越高,隧道是交通的重要组成部分,进行隧道工程不可缺少的工具就是盾构机,Herrenknecht土压力平衡盾构机在隧道工程中应用的很广泛,研究其结构以及系统功能对隧道工程的发展有着积极意义。

目前土压力平衡盾构机核心技术主要是在欧美等国家,研究Herrenknecht盾构机的结构以及部分的系统功能,解开海瑞克盾构机外衣的同时,能够为国内盾构机的发展提供一定的借鉴。

关键词:海瑞克;盾构机;结构组成;分系统功能中图分类号:U455.43 文献标识码:A1土压平衡盾构机的工作原理土压力盾构机的主要组成部分是变频电机以及刀盘,变频电机控制刀盘的工作,在刀盘工作的同时,盾构机的推进油缸会推动盾构机向前推进,在推进的过程中,刀盘切削下来的土体从开挖仓内排出,由输送皮带上而送到运输土体的服务车上面,最后经过竖井将土体运送到地面上。

在盾构机工作的同时,管片拼装会及时的跟进,同时进行混凝土的浇筑,使得隧道的开挖一次成型。

2 海瑞克土压平衡盾构机的结构组成海瑞克土压力平衡盾构机跟普通的盾构机一样,主要的结构组成有:刀盘、盾体、主驱动、保压人舱、管片拼装机、螺旋排土机构、后配套装置、电气系统、辅助设备,各个结构的协调工作才能够保证隧道开挖的顺利进行。

下面对部分结构做简要的分析并对其功能做简要的介绍。

2.1刀盘刀盘是盾构机的主要直接工作部分,刀盘由多种刀组成:中心滚刀、滚刀、刮刀、边缘刮刀、撕裂刀、中心撕裂刀、周边保护刀,其主要的功能进行切割土体,刀盘的直径较大,随着盾构机的工作,刀盘会有一定的磨损,刀盘的磨损由刮刀进行检测,当刀具磨损到设计值的时候,刮刀中的压力油喷出,压力传感器检测到其中的压力降为0的时候,人机界面上就会显示刀具磨损严重需要更换相应刀具的信息。

刀盘上面的刀具与盾构机的连接方式是螺栓连接,此种设计方式的目的也是便于刀具的更换,刀盘的外侧具有仿形刀,其主要的目的是便于盾构机的转向。

[优秀]海瑞克盾构及TBM介绍PPT资料

[优秀]海瑞克盾构及TBM介绍PPT资料

混合式盾构机:
机械化的施工方法和优化的拖车式物流方式有效节约时间 ; 护板因应地层中的开挖角度而制,从而保证其与隧道掌子面持续接触。
按如缩照果空工 隧 气程道支的掌撑要子。求面,处在作顶于进稳不。架定可的稳在以地定这连层在中的种一,个例砂模水如砾式平硬和岩地 下竖或直密层 ,移实或 开动的平粘混 挖台性上土合 仓来体地 内方中便,层 完进像行小中 全大型, 充量的的AV设 满钻N设孔备 了备作以 悬一业样。混 浮,盾合 液构机式,以盾而泥水构压模式机力工的腔作,模(4而)无式则需工使位用压 衬砌工作在隧道推于进刚分刚完隔成挡而隧板道仍(1然)处后于面盾体,保护悬状浮态下液时使由用压环形缩钢筋气预垫应力(混1凝2土)和管片压进力行支挡护-板即(所2谓)的支“撑衬砌。”。气 气围这压岩是通 /传粘过统土一开矿个挖物空模学气式特压液调无性节法通喷设实备现过爆的(1一和0。+1个渣1)自空土动控气进制,调 仓防节 。止隧设 开道掌备 挖子仓(面1发0(生3+)浆1和液1)喷分自爆隔和动渣挡控土进板制仓后。,面防调止压隧腔道内掌悬子浮面液发之生间浆 除了对加工工艺的的选择压,刀力盘调设计节对隧通道过掘进连起着通重管要作(用5,)进也需行特。别注进意。泥管(9)把新鲜悬浮液输送到开挖 隧可转道实运衬 现 皮砌1带0既机米可位直以于径是掘的仓过防进隧水机道调。性和以的后压每而也配24腔可套小排以系时内泥是统12非之的米管防间的输水,(速6性从度浆)的那则施。里管工,把;(石8格渣)和或栅直排接(1由浆3皮)管带后机(面运7出)开连隧道挖续,仓或冲被内刷装载的连到悬渣通车浮管上运液下送输出方去送,。 出以去避。免通渣 衬砌管片的几何形土状各沉式各积样。。 而用如作果 介在质混的合理土想层土在或质松是稳散含土有定层较的中多使粘地用土这、质种肥状衬土砌或况方淤法泥中,的,泥粘土结如将性会土硬从壤岩从。支或护体密旁实边塌的落。粘性地层中,像小型的AVN
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海瑞克土压平衡式盾构机结构分析[2008-08-07]关键字:盾构机结构分析承担修建深圳地铁—期工程第七标段(华强至岗厦区间内径为5.4m的双线隧道)的施工任务,根据施工地段地层自立条件差,地下水较丰富的特点,购进了两台德国海瑞克公司生产的世界上最先进的土压平衡式盾构机。

这两台盾构机都由西门子公司的S7-PLC自动控制系统控制,配备了机电一体化的液压驱动系统、同步注浆设备、泡沫设备、膨润土设备及SLS-T隧道激光导向设备,并可在地面监控室对盾构机的掘进进行实时监控。

本文将就盾构机的工作原理、盾构机的组成、及各组成部分的功能结合实际施工情况做一简要阐述。

盾构机的工作原理1.盾构机的掘进液压马达驱动刀盘旋转,同时开启盾构机推进油缸,将盾构机向前推进,随着推进油缸的向前推进,刀盘持续旋转,被切削下来的碴土充满泥土仓,此时开动螺旋输送机将切削下来的渣土排送到皮带输送机上,后由皮带输送机运输至渣土车的土箱中,再通过竖井运至地面。

2.掘进中控制排土量与排土速度当泥土仓和螺旋输送机中的碴土积累到一定数量时,开挖面被切下的渣土经刀槽进入泥土仓的阻力增大,当泥土仓的土压与开挖面的土压力和地下水的水压力相平衡时,开挖面就能保持稳定,开挖面对应的地面部分也不致坍坍或隆起,这时只要保持从螺旋输送机和泥土仓中输送出去的渣土量与切削下来的流人泥土仓中的渣土量相平衡时,开挖工作就能顺利进行。

3.管片拼装盾构机掘进一环的距离后,拼装机操作手操作拼装机拼装单层衬砌管片,使隧道—次成型。

盾构机的组成及各组成部分在施工中的作用盾构机的最大直径为6.28m,总长65m,其中盾体长8.5m,后配套设备长56.5m,总重量约406t,总配置功率1577kW,最大掘进扭矩5300kN&#82 26;m,最大推进力为36400kN,最陕掘进速度可达8cm/min。

盾构机主要由9大部分组成,他们分别是盾体、刀盘驱动、双室气闸、管片拼装机、排土机构、后配套装置、电气系统和辅助设备。

1.盾体盾体主要包括前盾、中盾和尾盾三部分,这三部分都是管状简体,其外径是6.25m。

前盾和与之焊在一起的承压隔板用来支撑刀盘驱动,同时使泥土仓与后面的工作空间相隔离,推力油缸的压力可通过承压隔板作用到开挖面上,以起到支撑和稳定开挖面的作用。

承压隔板上在不同高度处安装有五个土压传感器,可以用来探测泥土仓中不同高度的土压力。

前盾的后边是中盾,中盾和前盾通过法兰以螺栓连接,中盾内侧的周边位置装有20个推进油缸,推进油缸杆上安有塑料撑靴,撑靴顶推在后面已安装好的管片上,通过控制油缸杆向后伸出可以提供给盾构机向前的掘进力,这20个千斤顶按上下左右被分成A、B、C、D四组,掘进过程中,在操作室中可单独控制每一组油缸的压力,这样盾构机就可以实现左转、右转、抬头、低头或直行,从而可以使掘进中盾构机的轴线尽量拟合隧道设计轴线。

中盾的后边是尾盾,尾盾通过12个被动跟随的铰接油缸和中盾相连。

这种铰接连接可以使盾构机易于转向。

2.刀盘刀盘是一个带有多个进料槽的切削盘体,位于盾构机的最前部,用于切削土体,刀盘的开口率约为26%,刀盘直径6.28m,也是盾构机上直径最大的部分,一个带四根支撑条幅的法兰板用来连接刀盘和刀盘驱动部分,刀盘上可根据被切削土质的软硬而选择安装硬岩刀具或软土刀具,刀盘的外侧还装有一把超挖刀,盾构机在转向掘进时,可操作超挖刀油缸使超挖刀沿刀盘的径向方向向外伸出,从而扩大开挖直径,这样易于实现盾构机的转向。

超挖刀油缸杆的行程为50mm。

刀盘上安装的所有类型的刀具都由螺栓连接,都可以从刀盘后面的泥土仓中进行更换。

法兰板的后部安装有一个回转接头,其作用是向刀盘的面板上输入泡沫或膨润土及向超挖刀液压油缸输送液压油。

3.刀盘驱动刀盘驱动由螺栓牢固地连接在前盾承压隔板上的法兰上,它可以使刀盘在顺时针和逆时针两个方向上实现0-6.1rpm的无级变速。

刀盘驱动主要由8组传动副和主齿轮箱组成,每组传动副由一个斜轴式变量轴向柱塞马达和水冷式变速齿轮箱组成,其中一组传动副的变速齿轮箱中带有制动装置,用于制动刀盘。

安装在前盾右侧承压隔板上的一台定量螺旋式液压泵驱动主齿轮箱中的齿轮油,用来润滑主齿轮箱,该油路中一个水冷式的齿轮油冷却器用来冷却齿轮油。

4.双室气闸双室气闸装在前盾上,包括前室和主室两部分,当掘进过程中刀具磨损工作人员进入到泥土仓检察及更换刀具时,要使用双室气闸。

在进入泥土仓时,为了避免开挖面的坍坍,要在泥土仓中建立并保持与该地层深度土压力与水压力相适应的气压,这样工作人员要进出泥土仓时,就存在一个适应泥土仓中压力的问题,通过调整气闸前室和主室的压力,就可以使工作人员可以适应常压和开挖仓压力之间的变化。

但要注意,只有通过高压空气检查和受到相应培训有资质的人员,才可以通过气闸进出有压力的泥土仓。

现以工作人员从常压的操作环境下进入有压力的泥土仓为例,来说明双室气闸的作用。

工作人员甲先从前室进入主室,关闭前室和主室之间的隔离门,按照规定程序给主室加压,直到主室的压力和泥土仓的压力相同时,打开主室和泥土仓之间的闸阀,使两者之间压力平衡,这时打开主室和泥土仓之间的隔离门,工作人员甲进入泥土仓。

如果这时工作人员乙也需要进入泥土仓工作,乙就可以先进入前室,然后关闭前室和常压操作环境之间的隔离门,给前室加压至和主室及泥土仓中的压力相同,扣开前室和主室之间的闸阀,使两者之间的压力平衡,打开主室和前室之间的隔离门,工作人员乙进入主室和泥土仓中。

5.管片拼装机管片拼装机由拼装机大梁、支撑架、旋转架和拼装头组成。

拼装机大梁用法兰连接在中盾的后支撑架上,拼装机的支撑架通过左右各两个滚轮安放在拼装机大梁上的行走槽中,一个内圈为齿圈形式外径3.2m的滚珠轴承外圈通过法兰与拼装机支撑架相连,内圈通过法兰与旋转架相连,拼装头与旋转支架之间用两个伸缩油缸和一个横粱相连接。

现以拼装头在正下方位置的情况为例,来说明拼装机的运动情况。

两个拼装机行走液压油缸可以使支撑架、旋转架、拼装头在拼装机大梁上沿隧道轴线方向移动;安装在支撑架上的两个斜盘式轴向柱塞旋转马达,通过驱动滚珠轴承的内齿圈可以使旋转架和拼装头沿隧道圆周方向左右旋转各200度;通过伸缩油缸可以使拼装头上升或下降;拼装头在油缸的作用下又可以实现在水平方向上的摆动,和在竖直方向上的摆动以及抓紧和放松管片的功能。

这样在拼装管片时,就可以有六个方向的自由度,从而可以使管片准确就位。

拼装手可以使用有线的或遥控的控制器操作管片拼装机,用来拼装管片。

我们采用的是1.2m长的通用管片,一环管片由六块管片组成,它们是三个标准块、两块临块和一块封顶块。

封顶块可以有十个不同的位置,代表十种不同类型的管环,通过选择不同类型的管环就可以使成型后的隧道轴线与设计的隧道轴线相拟合。

隧道成型后,管环之间及管环的管片之间都装有密封,用以防水。

管片之间及管环之间都由高强度的螺栓连接。

6.排土机构盾构机的排土机构主要包括螺旋输送机和皮带输送机。

螺旋输送机由斜盘式变量轴向柱塞马达驱动,皮带输送机由电机驱动。

碴土由螺旋输送机从泥土仓中运输到皮带输送机上,皮带输送机再将碴土向后运输至第四节台车的尾部,落入等候的碴土车的土箱中,土箱装满后,由电瓶车牵引沿轨道运至竖井,龙门吊将士箱吊至地面,并倒人碴土坑中。

螺旋输送机有前后两个闸门,前者关闭可以使泥土仓和螺旋输送机隔断,后者可以在停止掘进或维修时关闭,在整个盾构机断电紧急情况下,此闸门也可由蓄能器贮存的能量自动关闭,以防止开挖仓中的水及渣土在压力作用下进入盾构机。

7.后配套设备后配套设备主要由以下几部分组成:管片运输设备、四节后配套台车及其上面安装的盾构机操作所需的操作室、电气部件、液压部件、注浆设备、泡沫设备、膨润土设备、循环水设备及通风设备等。

A.管片运输设备管片运输设备包括管片运送小车、运送管片的电动葫芦及其连接桥轨道。

管片由龙门吊从地面下至竖井的管片车上,由电瓶车牵引管片车至第一节台车前的电动葫芦—方,由电动葫芦吊起管片向前运送到管片小车上,由管制、车再向前运送,供给管片拼装机使用。

B.一号台车及其上的设备一号台车上装有盾构机的操作室及注浆设备。

盾构机操作室中有盾构机操作控制台、控制电脑、盾构机PLC自动控制系统、VMT隧道掘进激光导向系统电脑及螺旋输送机后部出土口监视器。

C.二号台车及其上的设备二号台车上有包含液压油箱在内的液压泵站、膨润土箱、膨润土泵、盾尾密封油脂泵及润滑油脂泵。

液压油箱及液压泵站为刀盘驱动、推进油缸、铰接油缸、管片拼装机、管片运输小车、螺旋输送机、注浆泵等液压设备提供压力油。

泵站上装有液压油过滤及冷却回路,液压油冷却器是水冷式。

盾尾密封油脂泵在盾构机掘进时将盾尾密封油脂由12条管路压送到三排盾尾密封刷与管片之间形成的两个腔室中,以防止注射到管片背后的浆液进入盾体内。

润滑油脂泵将油脂泵送到盾体中的小油脂桶中,盾构机掘进时,4kw电机驱动的小油脂泵将油脂泵送到主驱动齿轮箱、螺旋输送机齿轮箱及刀盘回转接头中。

这些油脂起到两个作用,一个作用是被注入到上述三个组件中唇形密封件之间的空间起到润滑唇形密封件工作区域及帮助阻止赃物进入被密封区域内部的作用,对于螺旋输送机齿轮箱还有另外一个作用,就是润滑齿轮箱的球面轴承。

D.三号台车及其上的设备三号台车上装有两台打气泵、一个1立方米贮气罐、一组配电柜及一台二次风机。

打气泵可提供8Bar的压缩空气并将压缩空气贮存在贮气罐中,压缩空气可以用来驱动盾尾油脂泵、密封油脂泵和气动污水泵,用宋给人闸、开挖室加压,用来操作膨润土、盾尾油脂的气动开关,用来与泡沫剂、水混合形成改良土壤的泡沫,用来8嘞气动工具等。

二次风机由11kW的电机驱动,将由中间井输送至第四节台车位置处的新鲜空气,继续向前泵送至盾体附近,以给盾构机提供良好的通风。

E.四号台车及其上的设备四号台车上装有变压器、电缆卷筒、水管卷筒、风管盒。

铺设在隧道中的两条内径为100mm的水管作为盾构机的进、回水管,将竖井地面的蓄水池与水管卷筒上的水管连接起来,与蓄水池连接的一台高压水泵驱动盾构机用水在蓄水池和盾构机之间循环。

通常情况下,进人盾构机水管卷筒水管的水压控制在5Bar左右。

正常掘进时,进人盾构机水循环系统的水有以下的用途:对掖压油、主驱动齿轮油、空压机、配电柜中的电器部件及刀盘驱动副变速箱具有冷却功能,为泡沫剂的合成提供用水,提供给盾构机及隧道清洁用水。

蓄水池中的水用冷却塔进行循环冷却。

风管盒中装有折叠式的风管,风管与竖井地面上的风肌连接,向隧道中的盾构机里提供新鲜空气。

新鲜空气通过风管被送至第四节台车的位置。

8.电气设备盾构机电气设备包括电缆卷筒、主供电电缆、变压器、配电柜、动力电缆、控制电缆、控制系统、操作控制台、现场控制台、螺旋输送机后部出土口监视器、电机、插座、照明、接地等。

相关文档
最新文档