力学_6(质点力学习题课)
力学习题第二章质点动力学(含答案)
第二章质点动力学单元测验题一、选择题1.如图,物体A和B的质量分别为2kg和1kg,用跨过定滑轮的细线相连,静止叠放在倾角为θ=30°的斜面上,各接触面的静摩擦系数均为μ=0.2,现有一沿斜面向下的力F作用在物体A上,则F至少为多大才能使两物体运动.A.3.4N;B.5.9N;C.13.4N;D.14.7N答案:A解:设沿斜面方向向下为正方向。
A、B静止时,受力平衡。
A在平行于斜面方向:F m g sin T f f 0A12B在平行于斜面方向:1sin0f mg TB静摩擦力的极值条件:f1m gcos,Bf m m g2(B A)cos联立可得使两物体运动的最小力F min满足:F min (m B m A)g sin (3m B m A )g cos=3.6N2.一质量为m的汽艇在湖水中以速率v0直线运动,当关闭发动机后,受水的阻力为f=-kv,则速度随时间的变化关系为A.vkt=v e m;B.v=-tktv em0;C.v=v+kmt;D.v=v-kmt答案:B解:以关闭发动机时刻汽艇所在的位置为原点和计时零点,以v0方向为正方向建立坐标系.牛顿第二定律:dvma mkvdt整理:d vvkmdt积分得:v=-v ektm3.质量分别为m和m(12m m)的两个人,分别拉住跨在定滑轮(忽略质量)21上的轻绳两边往上爬。
开始时两人至定滑轮的距离都是h.质量为m的人经过t1秒爬到滑轮处时,质量为m的人与滑轮的距离为2m m1m-m11; C.1(h gt2)2h gt12A.0;B.h+; D.(+)m m2m2222答案:D解:如图建立坐标系,选竖直向下为正方向。
设人与绳之间的静摩擦力为f,当质量为m的人经过t秒爬到滑轮处时,质量为m的人与滑轮的距离为h',对二者12分别列动力学方程。
对m:1f mg m am11m11dvm1dt对m:2f mg m am22m22dvm2dt将上两式对t求积分,可得:fdt m gt m vm11m11dym1 dtfdt m gt m vm22m22dym2 dt再将上两式对t求积分,可得:1fdt m gt 0m h221121fdt m gt m hm h222222m m1由上两式联立求得:h'21(h gt2).m224.一质量为m的物体以v0的初速度作竖直上抛运动,若受到的阻力与其速度平方成正比,大小可表示为f=kmgv2,其中k为常数。
力学习题课PPT课件
1.如图,两小球质量相等,均为m,开始时外力使劲度 系数为k的弹簧压缩某一距离x,然后释放,将小球m1投 射出去,并于静止的小球m2发生弹性碰撞,碰后m2沿半 径为R的圆轨道上升,达到A点恰与圆环脱离,A与竖直
线所成角q = 60°,忽略一切摩擦力。试求弹簧被压缩的
距离x等于多少?
解: 过程I,发射m1,机械能守恒。 kx2 2 mu120 2
过程III,泥球-板向下运动,泥球-板-弹簧-地球机械 能守恒,弹性势能零点在原长处、重力势能零点在 板的平衡位置。
1 2
k x02
1 2
(m
M
)u 2
1 2
k ( x0
x)2
(m
M
)gx
m
四式联立有,x mg (1 1
2kh )
h
f M
k
(M m)g
G10
3.一质量为m的子弹,水平射入悬挂着的静止砂袋中, 如图所示.砂袋质量为M,悬线长为l.为使砂袋能在竖 直平面内完成整个圆周运动,子弹至少应以多大的速度 射入?
解: 过程I,子弹-砂袋发生完全非弹性碰撞,动量守恒。
mu0 (m M )u1
过程II,轨道运动,遵循牛顿运动定律和机械能守 恒。以最低点为势能零点,在最高点有,
m M g N m M u 2
R
1 2
m
M
u12
2m
M
gR
1 2
m
M
u
2
m
NG O l M
mgR(1
c osq
)
1 2
mu 2
6.质点力学习题课
v = u − v′ = u − 2gl (1− cosϕ)
以地面为参考系,对系统(小球与地球) 以地面为参考系,对系统(小球与地球)应用功能 原理, 原理,则摆线对小球作的总功为
1 2 1 2 A = mv − mu + mgl (1 − cosϕ) 2 2 = − mu 2 gl (1 − cosϕ )
(2 )
= acosωti + bsinωtj × − mωasinωti + mωbcosωtj 2 2 = mωab cos ωtk − (− m ω ab sin ω t k )
(
L = r × mv
)(
)
= mωabk
i a cosωt
j k bsinωt 0
−ωa sinωt ωbcosωt 0
2 2
[
(
)
](
(
)
)
t 的时间内, t r 在 >0 的时间内,当 = 2时, ⋅ a = 0 υ ⋅ a = 2 i − 2 tj ⋅ − 2 j = 4 t 所以, t 的时间内, 所以,在 > 0 的时间内, ⋅ a ≠ 0. υ
[
](
)
)
(
)
(
)(
牛顿定律部分
牛顿定律部分
1.如图所示,用一斜向上的力F (与水平成300 角),将一重为G 的木块压靠在竖直壁面上,如果不论用怎样大的力F都不能使 木块向上滑动,则说明木块与壁面间的静摩擦系数µ的大小为:
υ 船,岸 = ui + Vj V = V0 x
t
x=
∫ y = ∫ vdt = ∫
0 t
udt = ut
t
质点力学练习题(C1练习册)
力学练习题(一)学习目标1. 掌握描述质点运动和运动变化的物理量——位置矢量、位移、速度、加速度,理解这些物理量的矢量性、瞬时性和相对性。
2. 理解运动方程的物理意义及作用,掌握运用运动方程确定质点的位置、位移、速度和加速度的方法,以及已知质点运动的加速度和初始条件求速度、运动方程的方法。
一、 选择题1. 一运动质点在某瞬时位于位矢(,)r x y 的端点处,对其速度的大小有四种意见,即(1)d d r t ;(2)d d r t ;(3)d d s t ;(4 ) A 只有(1)(2)正确 B 只有(2)正确 C 只有(2)(3)正确 D 只有(3)(4)正确2. 一小球沿斜面向上运动,其运动方程为245t t S -+=(SI ),则小球运动到最高点的时刻是( )。
A t = 4s.B t = 2s.C t = 8s.D t = 5s.3.一质点在平面上运动,已知质点位置矢量的表示式为j bt i at r 22+=(其中a 、b 为常量) 则该质点作( )。
A 匀速直线运动. B 变速直线运动. C 抛物线运动. D 一般曲线运动. 4.下列说法哪一条正确?( )A 加速度恒定不变时,物体运动方向也不变.B 平均速率等于平均速度的大小.C 不管加速度如何,平均速率表达式总可以写成2/)(21v v v +=D 运动物体速率不变时,速度可以变化.二、 填空题1.质点p 在一直线上运动,其坐标x 与时间t 有如下关系: x = A sin ω t (SI ) A为常数)(1)任意时刻t 时质点的加速度 a =___________________;(2)质点速度为零的时间t =___________________________。
2.一人自原点出发,25s 内向东走30m ,又10s 内向南走10m ,再15s 内向正西北走18m ,设X 轴指向正东,Y 轴指向正北,求在这50s 内,(1)位移r ∆= ;(2)平均速度v = ;(3)平均速率v = 。
质点力学习题与参考解答
【郑重说明】《理论力学》课程的习题及解答方面的参考书很多,学习者可以通过各种形式阅读与学习,按照学院对教学工作的要求,为了满足学习者使用不同媒体学习的实际需要,通过各种渠道收集、整理了部分习题及参考解答,仅供学习者学习时参考。
由于理论力学的题目解答比较灵活,技巧性也比较强,下面这些解答不一定是最好的方法,也可能会存在不够完善的地方,希望阅读时注意之。
学习理论力学课程更重要的是对物理概念的掌握与理解,学习处理问题的思想与方法,仅盲目的做题目或者阅读现成的答案,很难达到理想的结果。
质点动力学思考题与习题及参考解答思考题(1) 有一质量为m 的珠子, 沿一根置于水平面内的铁丝滑动, 采用自然坐标法描述. 珠子受重力g m W=, 铁丝施与的约束力b Nb n Nn t Nt Ne F e F e F F ++=.t Nt e F 即为滑动摩擦力f F, 设动摩擦因数为μ. 试判断下列各式正误: (1) mg F f μ=; (2) Nb f F F μ= (3)Nn f F F μ=;(4) 22Nb Nnf F F F +=μ(2) 用极坐标系描述单摆的运动. 某甲如思考题(2图(a)规定θ角正向, 得到动力学方程θθsin mg ml -= ; 某乙如思考题(2图(b)规定θ角正向, 则得到θθsin mg ml += . 你认为谁的做法正确?(a) (b)思考题(2图(3) 质量为m 的质点, 由静止开始自高处自由落下. 设空气阻力f F与速度成正比, 比例系数为k . 某甲建立竖直向上的坐标如思考题(3图(a), 得到方程为y k mg y m+-=. 某乙建立竖直向下的坐标如思考题(3图(b), 得到方程为y k mg y m-=.他们列出的方程对吗?(a) (b)思考题(3(4)有人认为: 用极坐标系讨论质点的平面运动时, 如果0≡r F , 则沿径向动量守恒,==rm p r 常量;若0≡θF , 则沿横向动量守恒. 这种看法对吗? (5) 试判断以下二论断是否正确:(1) 若质点对固定点O 的角动量守恒, 则对过O 点的任意固定轴的角动量守恒. (2) 若质点对固定轴的角动量守恒, 则对该轴上任一固定点的角动量守恒.(6) 一质点动量守恒, 它对空间任一固定点的角动量是否守恒? 如质点对空间某一固定点角动量守恒, 该质点动量是否守恒?(7) 当质点做匀速直线运动时, 其动量是否守恒? 角动量是否守恒?(8) 在固定的直角坐标系Oxyz 中, 质量为m 的质点的速度k v j v i v v z y x++=, 所受合力为k F j F i F F z y x ++=. 能否将质点的动能定理r F mv d )21(d 2⋅=向x 轴方向投影而得出分量方程x F mv x x d )21(d 2= 该方程是否正确?思考题解答(1) 仅(4)式正确.(2) 甲正确. 乙错在角度不可以定义为从动线指向定线.(3) 乙的方程正确. 甲错在空气阻力亦应为yk -,y 取负值,y k -取正值. (4) 仅对固定方向才有动量守恒的分量形式. 径向和横向均不是空间固定方向. (5) (1)对;(2)错. (6) 一质点动量守恒,则对空间任一固定点角动量守恒. 质点对空间某一固定点角动量守恒,其动量不一定守恒.(7) 质点作匀速直线运动时,其动量和角动量均守恒.(8) 动能定理是标量方程,不可能投影而得出分量方程. 但xF mv x d )21(d 2=是正确的. 仿照动能定理的导出,用x t v x d d =乘牛顿第二定律的x 分量方程x xF t v m=d d 即可证明.质点动力学习题及参考解答【1】研究自由电子在沿x 轴的振荡电场中的运动. 已知电场强度i t E E)cos(0ϕω+=,ϕω,,0E 为常量. 电子电量为e -, 质量为m . 初始时, 即当0=t 时i x r00=, i v v 00=. 忽略重力及阻力, 求电子的运动学方程.【解】力为时间的函数,积分两次可得)cos(200ϕωω+++=t m eE t V X x ,其中ϕωcos 2000m eE x X -=,ϕωsin 00m eE v V +=.【2】 以很大的初速度0v自地球表面竖直上抛一质点, 设地球无自转并忽略空气阻力, 求质点能达到的最大高度. 已知地球半径为R , 地球表面处重力加速度为g .【解】以地心O 为原点,建立x 轴经抛出点竖直向上. 质点受万有引力沿x 轴负方向. 所以2x GMm xm -= . 因为2R GMmmg =,故g R GM 2=. 故有22x g R x -= . 做变换)2(d d d d d d d d 2x x x x x t x x x x ===,则x x g R x d )2(d 222-= . 积分并用0=t 时R x =,0v x = 定积分常数,得到 )11()(212202R x g R v x -=- . 质点达最大高度时H R x +=,0=x,可求出 1220)21(2--=Rg v g v H .三点讨论:(1)令∞=H ,对应Rg v 20=为第二宇宙速度.(2)若Rg v 220<<,则回到重力场模型所得结果. (3)题中不考虑地球自转及空气阻力,均不大合理,试进一步讨论之.【3】 将质量为m 的质点竖直上抛, 设空气阻力与速度平方成正比, 其大小22gv mk F R =.如上抛初速度为0v , 试证该质点落回抛出点时的速率2201v k v v +=.【解】质点运动微分方程为(Oy 轴竖直向上);上升阶段22y g mk mg y m--=,下降阶段22y g mk mg ym +-=. 【4】向电场强度为E 、磁感应强度为B 的均匀稳定电磁场中入射一电子. 已知B E⊥, 电子初速0v 与E 和B 均垂直, 如题4图所示. 试求电子的运动规律. 设电子电量为e -.题4图【解】令m eB=ω,电子运动微分方程为y xω-=, (1) m eEx y-= ω, (2)0=z . (3)对(2)式求导,利用(1)式得02=+y yω,解出)sin(αω+=t A y . 0=t 时0=y 故0=α,由t A y ωωcos = ,且0=t 时m eBv Ee y0+-= ,故B Bv E A 0+-=,则t B Bv E y ωsin 0+-= . 积分得)cos 1()(20t m eB eB Bv E m y -+-=. 代入(1)式积分可得t m eB eB Bv E m t B E x sin )(20--=.【5】 旋轮线如题5图所示, 可理解为一半径为a 的圆轮在直线上做无滑滚动时轮缘上一点P 的轨迹, 其参数方程为)sin (ϕϕ+=a x , )cos 1(ϕ-=a y . 在重力场中, 设y 轴竖直向上, 一质点沿光滑旋轮线滑动, 试证质点运动具有等时性(绕O 点运动周期与振幅无关).题5图【解】(旋轮线是如图圆轮在直线AB 上作无滑滚动时P 点的轨迹,曲线上P 点切线方向即为轮上P 点速度方向. 因无滑,0P 为瞬心,故P 点切线与P P 0垂直,因此可知P 点切线与x 轴夹角为2ϕ. )以曲线最低点(0=ϕ)为自然坐标原点,弧长正方向与t e 一致. 质点运动微分方程为2sinϕmg s m -= .对曲线参数方程求微分,得ϕϕd )cos 1(d +=a x 和ϕϕd sin d a y =,所以ϕϕd 2cos 2d d d 22a y x s =+=,积分并用0=ϕ时0=s 定积分常数,得2sin 4ϕa s =. 代入质点运动微分方程消去ϕ,得到4=+s a gs ,s 作简谐振动而具有等时性. 其解为)cos(0αω+=t A s ,a g40=ω与振幅无关.【6】 一小球质量为m , 系在不可伸长的轻绳之一端, 可在光滑水平桌面上滑动. 绳的另一端穿过桌面上的小孔, 握在一个人的手中使它向下做匀速运动, 速率为a , 如题【6图所示. 设初始时绳是拉直的, 小球与小孔的距离为R , 其初速度在垂直绳方向上的投影为0v . 试求小球的运动规律及绳的张力.题6图【解】小球运动微分方程为T F r r m -=-)(2θ , (1) 0)2(=+θθr r m , (2)a r-= . (3) 由(3)式求出at R r -=,代入(2)式求出)/(0at R t v -=θ,再由(1)式求出3220)(at R R mv F T -=.【7】 一质量为m 的珠子串在一半径为R 的铁丝做成的圆环上, 圆环水平放置. 设珠子的初始速率为0v , 珠子与圆环间动摩擦因数为μ, 求珠子经过多少弧长后停止运动 (根据牛顿第二定律求解).【解】珠子的运动微分方程为2b 2n d d N N F F t v m+-=μ, (1)n 2/N F mv =ρ, (2)mg F N -=b 0, (3)R =ρ(约束方程). (4)把(2)、(3)、(4)式代入(1)式,作变换sv t v d /)21(d d d 2=,可求出]/)ln[()2/(224020Rg g R v v R s ++=μ.【8】 质量为m 的小球沿光滑的、半长轴为a 、半短轴为b 的椭圆弧滑下, 此椭圆弧在竖直平面内且短轴沿竖直方向. 设小球自长轴端点开始运动时其初速度为零. 求小球达到椭圆弧最低点时对椭圆弧的压力 (根据牛顿第二定律求解). 【解】以椭圆最低点为自然坐标原点O ,弧长正方向指向小球初始位置,θ为切向与水平方向的夹角,小球的运动微分方程为θsin mg vm -= , (1) θρcos /2mg F mv N -=. (2)Oy 竖直向上,将s y d /d sin =θ代入(1)式得s y g s v v d /d d /d -=,积分可求出小球达最低点时gb v 22=. 由轨道方程22x a a by --=求出当0=x 时0='y ,2/a b y ='',由公式可求出22/32)1(1a b y y ='+''=ρ. 再由(2)式求出0=θ时)/21(/cos 22a b mg mv mg F N +=+=ρθ.【9】 力1F 和2F分别作用在长方体的顶角A 和B 上, 长方体的尺寸和坐标系如题【9图所示. 试计算1F 和2F对原点O 及3个坐标轴的力矩.题9图【解】11bF M x =,11aF M y -=,01=z M ,2222/b a bcF M x +=,2222/b a acF M y +-=,02=z M .【10】 已知质量为0m 的质点做螺旋运动, 其运动学方程为t r x ωcos 0=, t r y ωsin 0=,kt z =,k r ,,0ω为常量. 试求: (1)t 时刻质点对坐标原点的角动量;(2) t 时刻质点对过),,(c b a P 点, 方向余弦为),,(n m l 的轴的角动量.【解】由运动学方程求出→v ,根据定义即可求出→→→→→→++--=⨯=k r m j t t t r km i t t t r km v r m L ωωωωωωω200000000)sin (cos )cos (sin ,)]cos ()sin )([(]cos )()sin ([000000),,(a t r k t r c kt m m t r c kt b t r k l m L n m l -+-----=ωωωωωω)sin cos (00200t br t ar r n m ωωωωω--+.【11】 如题【11图所示, 质量为m 的小球安装在长为l 的细轻杆的A 端, 杆的B 端与轴21O O 垂直地固连. 小球在液体中可绕21O O 轴做定轴转动, 轴承1O 和2O 是光滑的. 转动中小球所受液体阻力与角速度成正比, ωαm F R =,α为常量. 设初始角速度为0ω,试求经多少时间后, 角速度减小为初始值的一半,以及在这段时间内小球所转圈数.(忽略杆的质量及所受阻力.)题 11图【解】由对21O O 轴的角动量定理ωαωm l ml t -=)(d d2,积分可得lt /0e αωω-=,求出α/)2ln (l t =. 将角动量定理化为l /d d θαω-=,积分可以求得αωαωθπ4/)r a d (2/00l l ==(圈)【12】 质量为m 的质点沿椭圆轨道运动, 其运动学方程为kt a x cos =, kt b y sin = (k b a ,,为常量). 用两种方法计算质点所受合力在0=t 到k t 4π=时间内所做的功.【解】(1)由动能定理)(4121212222122b a mk mv mv W -=-=.(2)用曲线积分算⎰⎰+=⋅=→→2121)d d (y ym x x m r d F W ,把轨道参数方程kt b y kt a x sin ,cos ==代入,则曲线积分化为对t 的积分,可得同样结果.【13】 试用动能定理求解7题.【解】珠子的动能定理为sF F mv N N d )21(d 2b 2n 2--=μ,参见3.7提示【14】 有一小球质量为m , 沿如题【14图所示的光滑的水平的对数螺旋线轨道滑动. 螺旋线轨道方程为θa e r r -=0, a 为常数. 已知当极角0=θ时,小球初速为0v . 求轨道对小球的水平约束力N F 的大小. (用角动量及动能定理求解, 图中δ为θe 与v 方向间夹角,a =δtg.)题14图【解】因机械能守恒,小球动能不变,因此0v v =.过O 点作z 轴竖直向上(垂直纸面向外),质点对z 轴的角动量δcos rmv L z =. 质点所受对z 轴力矩δsin N z rF M -=. 由对z 轴的角动量定理得δδsin )cos (d d0N rF rmv t -=.由于θθθθθ ar ar t r r v a r -=-===-e d d d d 0,θθ r v =. 故a v v r =-=θδtan . 将它代入角动量定理方程,得到N N arF rF rmv -=-=δtan 0 . 而δδsin sin 0v v v r r -=-== ,所以θδδδa N a r mv a r mv ar mv ar mv F e 11tan 1tan sin 2020220222020+=+=+==.【15】 已知质点所受力F 的3个分量为z a y a x a F x 131211++=,z a y a x a F y232221++=, z a y a x a F z 333231++=,系数)3,2,1,(=j i a ij 都是常量. 这些ij a 满足什么条件时与力F相关的势能存在? 在这些条件被满足的条件下, 计算其势能.【解】当0=⨯∇→F 时势能存在,要求311332232112,,a a a a a a ===. 以原点为势能零点,则)222(21132312233222211xz a zy a xy a z a y a x a V +++++-=.【16】 一带有电荷q 的质点在电偶极子的场中所受的力为3c o s 2r pq F r θ=,3sin r pq F θθ=,p 为偶极距, r 为质点到偶极子中心的距离.试证此力场为有势场.【解】)/cos (d d d )d d (d 2r pq r F r F e r e r F r F r r θθθθθ-=+=+⋅=⋅→→→→→,故为有势场 【17】 如题17图所示, 自由质点在Oxy 平面内运动, 静止中心A 和B 均以与距离成正比的力吸引质点M , 比例系数为k . 试证明势能存在并求出质点的势能.v题【17图【解】y ky x kx y ky ky x b x k b x k r F d 2d 2d )(d )]()([d --=--+--+-=⋅→→)](d [22y x k +-=.故势能存在. 以O 为势能零点,则)(22y x k V +=.【18】 试用机械能守恒定律求解8题.【解】根据机械能守恒定律,以椭圆弧最低点为势能零点,mgbmv =221,可知gb v 2=,参见3.8提示.【20】 将质量为m 的质点竖直抛上于有阻力的媒质中。
习题课-质点力学
d 2s v2 dv v2 v ˆ ˆ ˆ a = 2 τˆ + n = τˆ + n = aττˆ + an n dt R dt R
角加速度
dω β= dt v v
aτ = β R an = ω R
2
3. 运动学两类问题的求解 已知质点的运动方程,求质点的状态 微分 已知质点的运动方程,求质点的状态—微分 已知质点的状态,求质点的运动方程 积分 已知质点的状态,求质点的运动方程—积分 三 注意区分
t1
v v 1 dA = F ⋅ dr = dEk Ek = mv 2
Aab = ∫
rb ra
力的空间积累效应
2 v v F ⋅ dr = Ekb − Eka
uu d L v M= u v dtv v L=r×p
第三定律
v v v v v v Fij + Fji = 0, ri × Fij + rj × Fji = 0
dx 2 v= = 9t − 6t dt
d2x a = 2 = 9 − 12t dt
从上式可见质点开始时沿x 正向运动, 从上式可见质点开始时沿 正向运动,而加 速度在0.75s后反向,所以运动有折返。正确的解 后反向, 速度在 后反向 所以运动有折返。 法是找到运动折返的时刻。 法是找到运动折返的时刻。 dx v=0 即 =0 由 dt x1.5 = xmax t = 1.5s 得 x1 所以 x2 X1.5
dω = 2dt
∫θ
t
θ + 75
dθ = ∫
t +5
t
2tdt
∫
ω
0
d ω = ∫ 2dt
0
75 = (t + 5)2 − t 2
力学习题课
H H'
S u2t , H gt2 2 S u2 2H g 2 v2 碰撞为弹性碰撞, mu12 2 mu2 2 u1 u2
S 2 H H H H
S
取最大值时, H H 2
牛顿定律计算题
1.有一条单位长度质量为l的匀质细绳,开始时盘绕在 光滑的水平桌面上。现以一恒定的加速度竖直向上提绳, 当提起的高度为 y 时,作用在绳端的力为多少?若以一 恒定速度竖直向上提绳时,仍提到 y 高度,此时作用在 绳端的力又是多少? 解:此题为变质量问题
2 1
3. 在一水平放置的质量为m、长度为l的均匀细杆上, 套着一质量也为m的套管B(可看作质点),套管用细线 拉住,它到竖直的光滑固定轴OO'的距离为l/2,杆和 套管所组成的系统以角速度w0绕OO'轴转动,如图. 若 在转动过程中细线被拉断,套管将沿着杆滑动.在套管 滑动过程中,该系统转动的角速度w与套管离轴的距离 x的函数关系为_______________.(已知杆本身对OO' 轴的转动惯量为ml2/3)
2 解: 过程I,发射m1,机械能守恒。 kx2 2 mu10 2
过程II,弹性碰撞,动量守恒、机械能守恒。
m1 m2 m u20 u10
过程III,轨道运动。遵循牛 顿运动定律和机械能守恒。
m1 x
A 60° O
N
m2
G
2 2 过程I, kx2 2 mu10
过程II,
过程III,
1 2 1 1 2 kx 0 (m M )u k ( x0 x) 2 (m M ) gx 2 2 2
mg 2kh (1 1 ) 四式联立有, x k (M m) g
质点力学习题
2
12.当一列火车以 36km/h 的速率向东行 当一列火车以 驶时,相对与地面匀速竖直下落雨滴 在列 驶时 相对与地面匀速竖直下落雨滴 ,在列 车的窗子上形成的雨迹与竖直方向成 30°角。(1) 雨滴相对于地面的水平分速 角 有多大?相对于列车的水平分速有多大? 有多大?相对于列车的水平分速有多大? (2) 雨滴相对于地面的速率如何?相对于 雨滴相对于地面的速率如何? 列车的速率如何? 列车的速率如何? 解:(1) 根据 v雨对地 = v雨对车 + v车对地 )
解:( )当链条下落x时, 1
摩擦力f = − µN = − µ (L − x )mg / L
l−a
a
摩擦力的功: f = ∫ fdx W
dr (C ) dt
( D)
dx + dy dt dt
2
2
[D]
5.用一根细线吊一重物,重物质量为 5kg, 用一根细线吊一重物, 用一根细线吊一重物 , 重物下再系一根同样的细线( 重物下再系一根同样的细线(细线只能经 的拉力)。 )。现在突然用力向下拉 受 70N 的拉力)。现在突然用力向下拉 一下下面的线。 一下下面的线。设此力最在值为 50N,则 , (A)下面的线先断。 下面的线先断。 下面的线先断 (B)上面的线先断。 上面的线先断。 上面的线先断 (C)两根线一起断。 两根线一起断。 两根线一起断 (D)两根线都不断。 两根线都不断。 两根线都不断 [D]
(A) 3i + 3 j, (C) − 3i − 3 j, (B) − 3i + 3 j, (D) 3i − 3 j,
[ B ]
4.一运动质点在某瞬时位于矢径 (x,y) 的 一运动质点在某瞬时位于矢径r 一运动质点在某瞬时位于矢径 端点处, 端点处,其速度大小为 dr dr ( B) ( A) dt dt
大学物理章质点动力学习题答案
大学物理章质点动力学习题答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第二章 质点动 力学2-1一物体从一倾角为30的斜面底部以初速v 0=10m·s 1向斜面上方冲去,到最高点后又沿斜面滑下,当滑到底部时速率v =7m·s 1,求该物体与斜面间的摩擦系数。
解:物体与斜面间的摩擦力f =uN =umgcos30物体向斜面上方冲去又回到斜面底部的过程由动能定理得220112(1)22mv mv f s -=-⋅物体向斜面上方冲到最高点的过程由动能定理得2010sin 302mv f s mgh f s mgs -=-⋅-=-⋅-2(2)(31)s g u ∴=-把式(2)代入式(1)得,()222200.1983u v v=+2-2如本题图,一质量为m 的小球最初位于光滑圆形凹槽的A 点,然后沿圆弧ADCB 下滑,试求小球在C 点时的角速度和对圆弧表面的作用力,圆弧半径为r 。
解:小球在运动的过程中受到重力G 和轨道对它的支持力T .取如图所示的自然坐标系,由牛顿定律得22sin (1)cos (2)t n dv F mg mdt v F T mg m R αα=-==-=由,,1ds rd rd v dt dt dt vαα===得代入式(), A 并根据小球从点运动到点C 始末条件进行积分有,习题2-2Ao BrDCT902n (sin )m cos 3cos '3cos ,e v vdv rg d v vrv mg mg rmg αααωααα=-===+==-=-⎰⎰得则小球在点C 的角速度为=由式(2)得 T 由此可得小球对园轨道得作用力为T T 方向与反向2-3如本题图,一倾角为θ的斜面置于光滑桌面上,斜面上放一质量为m 的木块,两者间摩擦系数为μ,为使木块相对斜面静止,求斜面的加速度a 应满足的条件。
解:如图所示()1212min max sin ,cos cos sin (1)sin cos 2(1)(2)(sin cos )(cos sin )(sin cos )()(cos sin )1(2)(1)(sin cos )(cos sin )(sin cos a a a a N mg ma ma mg uN m a ma u g u a u g u g tg u a u utg u g u a u g u a θθθθθθθθθθθθθθθθθθθθθ==∴-==±==⨯+-=+--∴==++-⨯+=-+∴=得,得,)()(cos sin )1()()11g tg u u utg g tg u g tg u a utg utg θθθθθθθθθ+=---+∴≤≤+- 2-4如本题图,A 、B 两物体质量均为m ,用质量不计的滑轮和细绳连接,并不计摩擦,则A 和B 的加速度大小各为多少 。
质点和刚体力学 习题
(3)Q vx = 2t ∴ v=
vy = 12t 3 4t 2 +144t 6
2 2 vx + vy =
dv 1 8t + 864t 5 2 + 216t 4 aτ = = = dt 2 4t 2 + 144t 6 1+ 36t 4
若求法向加速度,应先求曲率半径。 注:若求法向加速度,应先求曲率半径。
得:
9 3tdt = mvt 0 得:vt = 2 (m/ s) 0
0 3
依动能定理: 依动能定理:
1 2 W = mvt 0 2
W = 30.3(J )
的两质点间存在万有引力。 例4、质量分别为 和m的两质点间存在万有引力。 、质量分别为M和 的两质点间存在万有引力 初始时刻质点相距无穷远,然后两质点沿 初始时刻质点相距无穷远, 连线相向运动,当它们的距离为r时的相对速度 连线相向运动,当它们的距离为 时的相对速度 . 的大小为 v M v m v X v2 f O f’ 1 r 为研究对象, 解:以mM为研究对象,系统所受外力为零, 为研究对象 系统所受外力为零, 非保守内力为零,故动量守恒,能量守恒。 非保守内力为零,故动量守恒,能量守恒。
习题课一 (Exercises Class One)
质点和刚体力学部分
一、思考题
r r dr dr dv dv 1.试 问 与 有 区 , 与 何 别 又 dt dt dt dt 有 区 ? 何 别
2. 作直线运动的质点,它的运 作直线运动的质点, 与时间t的关系由图 动速度 v与时间 的关系由图 与时间 中曲线表示。 中曲线表示。问: (1) t1时刻的曲线的切线 表示 时刻的曲线的切线AB表示 什么? 什么? (2) t1与t2之间曲线的割线的斜 率表示什么? 率表示什么? (3) 从t=0到t3时间内质点的位移 到 和路程分别由什么表示? 和路程分别由什么表示?
第六章 刚体质点组力学(1)2012
⎛1 0 0 ⎞ ⎟ R=⎜ ⎜0 1 0 ⎟ ⎜ 0 0 −1⎟ ⎝ ⎠
记 Rr 为 r′ ,即 r′ = Rr 。由于
r = x1e1 + x2e 2 + x3e 3 = ∑ xi ei
i =1
3
由 R 的线性性,得
∑ xi′ei = r′ = Rr = ∑ x j Re j = ∑ x j ∑ Rijei
பைடு நூலகம்
′ , x′ ′ ϕ ( x1 , x2 , x3 ) = ϕ ′( x1 2 , x3 )
成立,则称 ϕ 是标量。 注意:当坐标变换之后,函数形式可能发生了改变(因此,记为 ϕ ′ ) ,但只要 ( x1 , x2 , x3 ) 和
′ , x′ ′ ( x1 2 , x3 ) 表示同一个点,则它们的值就相等。
6.1.2 正交变换(数学 II)
刚体有两种基本运动的运动形式,一是平动(translation) ,一是转动(rotation) 。 所谓平动是指刚体上任意两点的联线在整个运动过程中始终保持其原来的方向不变,或 者说,任意两点的联线始终与其初始位置平行的运动。
P′
P
Q′ Q
刚体的平动
刚体的转动则是指刚体上有两个点(实际上这两点连线上所有的点)始终保持不动的运 动。这两个点构成的直线称为转动轴。此时,刚体上所有各点都绕转动轴作圆周运动。
det | RR T |= det | R | ⋅ det | R T |= (det | R |) 2 = det | I |= 1
所以
det | R |= ±1
当 det | R |= +1 时, 对应的正交变换称为正当转动, 它表示空间内的旋转变换; 而当 det | R |= −1 时,正交变换为非正当转动,表示空间内的反演变换。 考察正交矩阵
质点动力学课后习题答案
试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量
2-10
设F
7i
6 jN
.(1)
当一质点从原点运动到
r
3i
4j
16km 时,求 F
所作
的功.(2)如果质点到 r 处时需0.6s,试求平均功率.(3)如果质点的质量为1kg,试求动能
的变化.
2-11 质量为16 kg 的质点在 xOy 平面内运动,受一恒力作用,力的分量为 f x =6 N, f y
x 向: Fmin cos fmax 0
y 向: N Fmin sin Mg 0
还有
fmax s N
解以上三式可得要推动木箱所需力 F 的最小值为
习题 2-1 图
习题 2-1 图
Fmin
s Mg cos s sin
在木箱做匀速运动情况下,如上类似分析可得所需力 F 的大小为
BR
a
m
G
讨论:当 t 时,V VT 。
VX 4.0m / s ax 0.当t 0, x 0. x vxt
又因方程2 y x2 y 0.5(vxt)2
2-3 vy
dy dt
8.0m / s
即a y v16vmx i a axi
/s vy ay j
j
4.0i
16 j (m
8.0 / s2)
j (m
/
s)
2-4 以地面飞机滑行方向为坐标正方向,由牛顿定律及初始条件,有
F ma mdv / dt t
v
大学物理第二章习题课
6
作业. 两块并排的木块A和B,质量分别为m1和m2,静止地放置在光滑的水 平面上,一子弹水平地穿过两木块,设子弹穿过两木块所用的时间分别为t1 和t2,木块对子弹的阻力为恒力F,则子弹穿出后,木块A的速度为______, 木块B的速度大小为_______.
F t1 m1 m2
F t1 F t2 m1 m2 m2
u dt
l
船岸
0
M m 0 狗船
M m
S
狗离岸的距离为 S S0 S
S
L l
S
S0
S
S0
M M
m
l
S l L l(1 m ) M l M m M m 17
17
作业. 有两个自由质点,质量分别为 m1和m2 ,他们之间只有万有引 力作用,开始时,两质点相距为 l ,处于静止状态。求当它们相距 l /2
[ C]
(A) ①、②是正确的。
(B) ②、③是正确的。
(C) 只有②是正确的。
(D) 只有③是正确的。
势能与保守力作功的一般关系: W Δ E p
物体沿闭合路径运动一周时, 保守力对它所作的功等于零。 l F保 d r 0
功不仅与力有关,还与位移有关!
5
2.填空题
教材、作业. 质量为m的小球,用轻绳AB、
L1
Δ
L
质点系的角动量定理(积分形式):作用于质点组的合
外力矩的冲量矩等于质点组角动量的增量。
4
教材. 对功的概念有以下几种说法:
① 保守力作正功时,系统内相应的势能增加。
② 质点运动经一闭合路径,保守力对质点作的功为零。
③ 作用力与反作用力大小相等、方向相反,所以两者所作功的
质点力学-前4章-习题课
假设她是从静止下落,也就是初速度 v 0 为 0米/秒,层高 3 米, 7 层楼高度为 18 米。据此我们可以算出美女落到地面的最终速度:
基本概念:
位置矢量、位移、速度与加速度 位矢、位移是矢量,位矢随时间变化的关系称运动方程 速度、加速度是矢量,它具有矢量性
r r(t )
质点做变速运动中各个时刻的速度不一定相同,它具有瞬时性 选取不同的参考系,质点的速度和加速度是不同的,它具有相对性
平均速度
r (t t ) r(t ) v t
E p E p0 A保 末 F保 dr "0"
Ep2
"0" 末
系统在任意状态时的势能等于系统保守力所做功的负值。
F保 dr
功与能
1 1 2 2 Aab E mv mv A E b a 2 kt 2 k0
A外 A内 E k t E k 0
cos30º 20× 9.8
得
30.6(m)
练习:汽车在半径为200m的圆弧公路上刹车,刹车开始阶段的运动学方 程为 s = 20t - 0.2t3 求汽车在 t =1s时的加速度。
解:根据加速度的定义
ds vt 20 0.6t 2 dt
dvt at 1.2t dt
vt2 dv an , at R dt
法向单位矢量 :n
dv d 2 S at dt dt 2
v2 an
直角坐标系
质点力学练习题答案
一、 填空题1.一质点沿半径0.1米的圆周运动,其角位移θ可用下式表示342t +=θ(SI),则当2t s =时,切向加速度=τa 2/m s ;[答案:24.8/m s ] 2.一质点沿x 方向运动,其加速度随时间的变化关系为32a t =+(SI),如果初始时刻质点的速度0v 为5/m s ,则当t 为3s 时,质点的速度v = 。
[答案:23/m s ]3.一个质量为10kg 的物体,沿X 轴无摩擦地滑动,设t=0时物体静止于原点,若物体在力F=3+4t(N)的作用下运动2秒,则它的速度增加为/m s 。
[答案:1.4/m s ] 4.一个质量为7kg 的物体,沿X 轴无摩擦地滑动,设t=0时物体静止于原点,若物体在力F=3+4x (N)的作用下运动2米,则它的速度增加为 /m s 。
[答案:2/m s ]二、计算题1.已知质点运动方程为()2352r t i t j =+−K K K ,求:1)轨道方程;2)0t =到1s 的位移;3)1t s =时的速度、加速度。
解:1)2352x t y t⎧=⎨=−⎩消去t 得轨道方程为()2354x y =− 2)0t =时,()20305205r i j j =×+−×=K K K K1t =时,133r i j =+K K K1032r r r i j ∴Δ=−=−K K K K K3)62drv ti j dt ==−K K K K ,6dv a i dt==K K K1t s =时,162v i j =−K K K,6a i =K K2.已知一质点的运动方程为234r ti t j =−KKK,求质点的运动轨道、速度、加速度、切向加速度、法向加速度。
解:1)由3x t =,24y t =−得质点轨道方程为2490x y +=2)速度38drv i tj dt ==−K K K K3) 加速度8dva j dt==−K K K4)速率v ==切向加速度dv a dt τ==5)法向加速度n a =na = 3.一质点沿半径为1m 的圆周运动,它通过的弧长s 按22s t t =+的规律变化.问它在2s 末的速率、切向加速度、法向加速度各是多少? 解:1)速率14dsv t dt==+ 2s 末21429/v m s =+×=2)切向加速度4dva dtτ== 2s 末24/a m s τ=3)2s 末法向加速度228181/1n v a m s r ===4.一质点沿半径为1m 的圆周转动,其角量运动方程为323t 4t θ=+-(SI),求质点在2s 末的角位置、角速度、角加速度、速率、切向加速度、法向加速度、总加速度.解:1)2t =,角位置263224rad θ=−=+-2)角速度2312t d dtθω==- 2t =,312445/rad s ω=×=−-3)角加速度24d t dtωα==−2t =,224248/rad s α=−×=−4)速率1(45)45/v R m s ω==×−=− 5)切向加速度248/a R m s τα==−6)法向加速度2222025/n v a R m s Rω===7)总加速度22025.6/a m s ==5.一质点在xOy 平面上运动,运动方程为x =3t +5, y =21t 2+3t -4.式中t 以 s计,x ,y 以m计.(1)以时间t 为变量,写出质点位置矢量的表示式;(2)求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;(3)计算t =0 s时刻到t =4s时刻内的平均速度;(4)求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式). 解:(1)j t t i t r KKK)4321()53(2−+++=m (2)将1=t ,2=t 代入上式即有j i r K K K5.081−= m2114r i j =+K K Km 213 4.5r r r i j Δ=−=+K K K K Km(3)∵ 0454,1716r i j r i j =−=+K K K K KK ∴401122040435m s r r r i j v ti j −−Δ+===Δ−=+⋅K K K KK K K K(4) 1s m )3(3d d −⋅++==j t i t rv K K K K则 j i v K K K 734+= 1s m −⋅(5)∵ j i v j i v KK KK KK73,3340+=+=24041m s 44v v v ja j t −−Δ====⋅ΔK K K K K K(6) 2s m 1d d −⋅==j tva K K K6.某质点的加速度为j i t a K K K26+=,已知t =0时它从坐标原点静止开始运动(即初始位矢00=r K 、初速度00=v K),求质点在2秒时刻的位矢、速度。
质点力学练习题及详细解答(很好)
质点力学综合(013)条目试题1. 选择题题号:01313001 分值:3分难度系数等级:3一质点在力F = 5m (5 - 2t ) (SI)的作用下,t =0时从静止开始作直线运动,式中m 为质点的质量,t 为时间,则当t = 5 s 时,质点的速率为(A) 50 m ·s -1. . (B) 25 m ·s -1.(C) 0.(D) -50 m ·s -1. [ ]答案:(C )题号:01312002 分值:3分难度系数等级:2站在电梯内的一个人,看到用细线连结的质量不同的两个物体跨过电梯内的一个无摩擦的定滑轮而处于“平衡”状态.由此,他断定电梯作加速运动,其加速度为 (A) 大小为g ,方向向上. (B) 大小为g ,方向向下.(C) 大小为g 21,方向向上. (D) 大小为g 21,方向向下. [ ]答案:(B )题号:01311003 分值:3分难度系数等级:1设物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,(A) 它的加速度方向永远指向圆心. (B) 它受到的轨道的作用力的大小不断增加. (C) 它受到的合外力大小变化,方向永远指向圆心. (D) 它受到的合外力大小不变.答案:(B )题号:01312004 分值:3分难度系数等级:2质量相等的两个物体甲和乙,并排静止在光滑水平面上(如图所示).现用一水平恒力F 作用在物体甲上,同时给物体乙一个与F 同方向的瞬时冲量量I,使两物体沿同一方向运动,则两物体再次达到并排的位置所经过的时间为:(A) I / F . (B) 2I / F . (C) 2 F/ I . (D) F/ I .[ ]答案:(B )题号:01313005 分值:3分难度系数等级:3竖直上抛一小球.若空气阻力的大小不变,则球上升到最高点所需用的时间,与从最高点下降到原位置所需用的时间相比(A) 前者长. (B) 前者短.(C) 两者相等. (D) 无法判断其长短. [ ]答案:(B )题号:01314006 分值:3分 难度系数等级4一质量为m 的质点,在半径为R 的半球形容器中,由静止开始自边缘上的A 点滑下,到达最低点B 时,它对容器的正压力为N .则质点自A 滑到B 的过程中,摩擦力对其作的功为(A) )3(21mg N R -. (B) )3(21N mg R -. (C) )(21mg N R -. (D))2(21mg N R -. [ ]答案:(A )题号:01314007 分值:3分难度系数等级:4质点的质量为m ,置于光滑球面的顶点A 处(球面固定不动),如图所示.当它由静止开始下滑到球面上B 点时,它的加速度的大小为俯视图F I A B(A) )cos 1(2θ-=g a . (B) θsin g a =. (C) g a =. (D) θθ2222sin )cos 1(4g g a +-=. [ ]答案:(D )题号:01312008 分值:3分难度系数等级:2在以加速度a 向上运动的电梯内,挂着一根劲度系数为k 、质量不计的弹簧.弹簧下面挂着一质量为M 的物体,物体相对于电梯的速度为零.当电梯的加速度突然变为零后,电梯内的观测者看到物体的最大速度为(A) k M a /. (B) M k a /.(C) k M a /2. (D) k M a /21. [ ]答案:(A )题号:01312009 分值:3分难度系数等级:2一质量为m 的质点,自半径为R 的光滑半球形碗口由静止下滑,质点在碗内某处的速率为v ,则质点对该处的压力数值为(A) Rm 2v . (B) R m 232v .(C) R m 22v . (D) Rm 252v . [ ]答案:(B )题号:01313010 分值:3分难度系数等级:3如图示.一质量为m 的小球.由高H处沿光滑轨道由静止开始滑入环形轨道.若H 足够高,则小球在环最低点时环对它的作用力与小球在环最高点时环对它的作用力之差,恰为小球重量的(A) 2倍. (B) 4倍.(C) 6倍. (D) 8倍.[ ]答案:(C )题号:01312011 分值:3分难度系数等级:2空中有一气球,下连一绳梯,它们的质量共为M .在梯上站一质量为m 的人,起始时气球与人均相对于地面静止.当人相对于绳梯以速度v 向上爬时,气球的速度为(以向上为正)(A) M m m +-v . (B) M m M +-v.(C) M m v -. (D) mM m v)(+-.[ ]答案:(A )题号:01313012 分值:3分难度系数等级:3一质量为60 kg 的人起初站在一条质量为300 kg ,且正以2 m/s 的速率向湖岸驶近的小木船上,湖水是静止的,其阻力不计.现在人相对于船以一水平速率v 沿船的前进方向向河岸跳去,该人起跳后,船速减为原来的一半,v 应为(A) 2 m/s . (B) 3 m/s .(C) 5 m/s . (D) 6 m/s . [ ]答案:(D )题号:01313013 分值:3分难度系数等级:3一船浮于静水中,船长L ,质量为m ,一个质量也为m 的人从船尾走到船头. 不计水和空气的阻力,则在此过程中船将(A) 不动. (B) 后退L . (C) 后退L 21. (D) 后退L 31. [ ]答案:(C )题号:01315014 分值:3分难度系数等级:5质量分别为m 1、m 2的两个物体用一劲度系数为k 的轻弹簧相联,放在水平光滑桌面上,如图所示.当两物体相距x 时,系统由静止释放.已知弹簧的自然长度为x 0,则当物体相距x 0时,m 1的速度大小为 (A)120)(m x x k -. (B)220)(m x x k -.(C)2120)(m m x x k +-. (D))()(211202m m m x x km +-.[ ]答案:(D )题号:01314015 分值:3分难度系数等级:4一质量为m 的滑块,由静止开始沿着1/4圆弧形光滑的木槽滑下.设木槽的质量也是m .槽的圆半径为R ,放在光滑水平地面上,如图所示.则滑块离开槽时的速度是(A)Rg 2. (B) Rg 2. (C)Rg .(D) Rg 21. [ ]答案:(C )题号:01311016 分值:3分难度系数等级:1一轻弹簧竖直固定于水平桌面上.如图所示,小球从距离桌面高为h 处以初速度v 0落下,撞击弹簧后跳回到高为h 处时速度仍为v 0,以小球为系统,则在这一整个过程中小球的 (A) 动能不守恒,动量不守恒. (B) 动能守恒,动量不守恒. (C) 机械能不守恒,动量守恒. (D) 机械能守恒,动量守恒.[ ]答案:(A )题号:01313017 分值:3分难度系数等级:3两质量分别为m 1、m 2的小球,用一劲度系数为k 的轻弹簧相连,放在水平光滑桌面上,如图所示.今以等值反向的力分别作用于两小球,则两小球和弹簧这系统的 (A) 动量守恒,机械能守恒.(B) 动量守恒,机械能不守恒.(C) 动量不守恒,机械能守恒.(D) 动量不守恒,机械能不守恒. [ ]答案:(B )题号:01313018 分值:3分难度系数等级:3如图所示,质量分别为m 1和m 2的物体A 和B ,置于光滑桌面上,A 和B 之间连有一轻弹簧.另有质量为m 1和m 2的物体C 和D 分别置于物体A 与B 之上,且物体A 和C 、B 和D 之间的摩擦系数均不为零.首先用外力沿水平方向相向推压A 和B ,使弹簧被压缩.然后撤掉外力,则在A 和B 弹开的过程中,对A 、B 、C 、D 弹簧组成的系统 (A) 动量守恒,机械能守恒. (B) 动量不守恒,机械能守恒. (C) 动量不守恒,机械能不守恒.(D) 动量守恒,机械能不一定守恒. [ ]答案:(D )题号:01314019 分值:3分难度系数等级:4一质量为M 的弹簧振子,水平放置且静止在平衡位置,如图所示.一质量为m 的子弹以水平速度v射入振子中,并随之一起运动.如果水平面光滑,此后弹簧的最大势能为(A) 221v m . (B) )(222m M m +v .(C) 2222)(v M m m M +. (D) 222v M m . [ ]答案:(B )题号:01312020 分值:3分难度系数等级:2如图所示,置于水平光滑桌面上质量分别为m 1和m 2的物体A 和B 之间夹有一轻弹簧.首先用双手挤压A 和B 使弹簧处于压缩状态,然后撤掉外力,则在A 和B 被弹开的过程中 (A) 系统的动量守恒,机械能不守恒.(B) 系统的动量守恒,机械能守恒.(C) 系统的动量不守恒,机械能守恒.(D) 系统的动量与机械能都不守恒.[ ]答案:(B )题号:01311021 分值:3分难度系数等级:1在由两个物体组成的系统不受外力作用而发生非弹性碰撞的过程中,系统的 (A) 动能和动量都守恒. (B) 动能和动量都不守恒.(C) 动能不守恒,动量守恒. (D) 动能守恒,动量不守恒. [ ]答案:(C )题号:01314022 分值:3分难度系数等级:4两木块A 、B 的质量分别为m 1和m 2,用一个质量不计、劲度系数为k 的弹簧连接起来.把弹簧压缩x 0并用线扎住,放在光滑水平面上,A 紧靠墙壁,如图所示,然后烧断扎线.判断下列说法哪个正确.(A) 弹簧由初态恢复为原长的过程中,以A 、B 、弹簧为系统,动量守恒.(B) 在上述过程中,系统机械能守恒. (C) 当A 离开墙后,整个系统动量守恒,机械能不守恒.1kx,总动量为零.[](D) A离开墙后,整个系统的总机械能为22答案:(B)题号:01311023分值:3分难度系数等级:1一子弹以水平速度v0射入一静止于光滑水平面上的木块后,随木块一起运动.对于这一过程正确的分析是(A) 子弹、木块组成的系统机械能守恒.(B) 子弹、木块组成的系统水平方向的动量守恒.(C) 子弹所受的冲量等于木块所受的冲量.(D) 子弹动能的减少等于木块动能的增加.[]答案:(B)题号:01311024分值:3分难度系数等级:1两个质量相等、速率也相等的粘土球相向碰撞后粘在一起而停止运动. 在此过程中,由这两个粘土球组成的系统,(A) 动量守恒,动能也守恒.(B) 动量守恒,动能不守恒.(C) 动量不守恒,动能守恒.(D) 动量不守恒,动能也不守恒.[]答案:(B)题号:01313025分值:3分难度系数等级:3物体在恒力F作用下作直线运动,在时间∆t1内速度由0增加到v,在时间∆t2内速度由v增加到2 v,设F在∆t1内作的功是W1,冲量是I1,在∆t2内作的功是W2,冲量是I2.那么,(A) W1 = W2,I2 > I1.(B) W1 = W2,I2 < I1.(C) W1 < W2,I2 = I1.(D) W1 > W2,I2 = I1.[]答案:(C)题号:01312026分值:3分难度系数等级:2一质子轰击一α 粒子时因未对准而发生轨迹偏转.假设附近没有其它带电粒子,则在这一过程中,由此质子和α 粒子组成的系统,(A) 动量守恒,能量不守恒.(B) 能量守恒,动量不守恒.(C) 动量和能量都不守恒.(D) 动量和能量都守恒.[]答案:(D)题号:01312027分值:3分难度系数等级:2有两个倾角不同、高度相同、质量一样的斜面放在光滑的水平面上,斜面是光滑的,有两个一样的小球分别从这两个斜面的顶点,由静止开始滑下,则(A) 小球到达斜面底端时的动量相等.(B) 小球到达斜面底端时动能相等.(C) 小球和斜面(以及地球)组成的系统,机械能不守恒.(D) 小球和斜面组成的系统水平方向上动量守恒.[]答案:(D)题号:01312028分值:3分难度系数等级:2如图所示,一个小物体,位于光滑的水平桌面上,与一绳的一端相连结,绳的另一端穿过桌面中心的小孔O. 该物体原以角速度ω在半径为R的圆周上绕O旋转,今将绳从小孔缓慢往下拉.则物体(A) 动能不变,动量改变.(B) 动量不变,动能改变.(C)角动量不变,动量不变.(D)角动量不变,动能、动量都改变.[]答案:(D)题号:01313029分值:3分难度系数等级:3一人造地球卫星到地球中心O 的最大距离和最小距离分别是R A 和R B .设卫星对应的角动量分别是L A 、L B ,动能分别是E KA 、E KB ,则应有(A) L B > L A ,E KA > E KB .(B) L B > L A ,E KA = E KB .(C) L B < L A ,E KA = E KB . (D) L B = L A ,E KA < E KB . [ ]答案:(D )题号:01311030 分值:3分难度系数等级:1假设卫星环绕地球中心作圆周运动,则在运动过程中,卫星对地球中心的 (A) 角动量守恒,动能也守恒. (B) 角动量守恒,动能不守恒. (C) 角动量不守恒,动能守恒.(D) 角动量守恒,动量也守恒. [ ]答案:(A )2.判断题题号:01321001 分值:2分难度系数等级:1质量为m 的质点开始时静止,在如图所示合力F 的作用下沿直线运动,已知)/2sin(0T t F F π=,方向与直线平行,在0到T 时间内,力F的冲量大小不为零.答案: 错题号:01324002 分值:2分难度系数等级:4质量为m 的质点开始时静止,在如图所示合力F 的作用下沿直线运动,已知)/2sin(0T t F F π=,方向与直线平行,在T t =时刻,质点又回到了出发点.题号:01321003 分值:2分难度系数等级:1一木块恰好能在倾角 的斜面上以匀速下滑,现在使它以初速率v 0沿这一斜面上滑,当它停止滑动时,会静止在斜面上,不再下滑.答案: 对题号:01323004 分值:2分难度系数等级:3当一质子通过质量较大带电荷为Ze 的原子核附近时,原子核可近似视为静止.质子受到原子核的排斥力的作用,如图所示,它运动的轨道为抛物线. 答案:错题号:01323005 分值:2分难度系数等级:3两个滑冰运动员A 、B 的质量均为m ,以v 0的速率沿相反方向滑行,滑行路线间的垂直距离为R ,当彼此交错时,各抓住长度等于R 的绳索的一端,然后相对旋转,在抓住绳索之前和抓住之后,两个滑冰运动员各自对绳中心的角动量守恒。
质点力学习题
v
v = v 0e
− µπ
例5、与水桶绕自身的铅直轴以角速度ω旋转, 与水桶绕自身的铅直轴以角速度ω旋转, 当水与桶一起转动时,水面的形状如何? 当水与桶一起转动时,水面的形状如何? 解:在与桶共转的参考系内液块 受个个三力:重力∆ g ∆m受个个三力:重力 mg,液面 z 对物块的支持力- 对物块的支持力-N 和惯性离心 A1 ∆mrω2 ω 2r,合力为零,所以有: 力∆mω 合力为零,所以有: r v v 2v z0 N=∆m( g + ω r ) N ∆mg 水面处处与N垂直, 水面处处与N垂直,设 水面方程为: 水面方程为:
质点力学习题课
习题课的目的是培养一种良好的解题习惯和规范 化解题。解题的一般注意事项如下: 化解题。解题的一般注意事项如下: 在认真复习的基础上解题, ①在认真复习的基础上解题,解题过程中绝不能 对照例题; 对照例题; 搞清题意,分清已知量、未知量, ②搞清题意,分清已知量、未知量,并用适当的 符号来表示,且每一个符号只能代表一个物理量; 符号来表示,且每一个符号只能代表一个物理量; 画出简练正确的示意图,建立坐标系, ③画出简练正确的示意图,建立坐标系,进行受 力分析,搞清各物理量之间的关系; 力分析,搞清各物理量之间的关系; 选用最简便的定律或公式列方程( ④选用最简便的定律或公式列方程(平时学习一 定要注意各种定律及公式的适用条件和范围); 定要注意各种定律及公式的适用条件和范围); 列联立方程,先用字母符号运算, ⑤列联立方程,先用字母符号运算,最后代入原 始数据。并对答案进行讨论。 始数据。并对答案进行讨论。
v v 2 v 提示 : ∆s = ∫ dr = ∫ 2dti − 2tdtj = ∫ 4 + 4t 2 dt
1
大学物理 质点运动学动力学习题课
的直线运动的叠加(矢量加法)。
——运动的独立性原理或运动叠加原理
2
第一、二章习题课
自然坐标系中的速度和加速度
v
v
ds
dt
a
a
an
dv
dt
v2
n
a
a
an
圆周运动中的切向加速度和法向加速度
a dv v2 n
dt R
3
二、圆周运动的角量描述 t A 角位置 t t B 角位移
r
v
a
dxri
yj
dx
i
zk
dy
dt
dv
dt
dv x
i
dt
dv y
dt dt dt
j
j
dz dt
dvz dt
k
k
vxi vy j vzk
axi ay j azk
任意曲线运动都可以视为沿x,y,z轴的三个各自独立
4m/s的速率从北面驶近A船。
(1)在湖岸上看,B船的速度如何?
(2)如果A船的速度变为6m/s(方向不变),在A船上看B
船的速度又为多少?
解:(1)设B船岸的上速的度人为看v到BA船A的船速看度到为B船v的A 速度为 v
vA
vA
由伽利略速度变换,可有
v
vB
v vB vA
的速度的大小。
y
H Ox
解:建立如图坐标,t时刻头顶
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
o
R
外力矩: B :
mgR
方向 ⊗
AB
A : mgR 方向 •
其他外力对o轴不产生力矩。 系统对o轴的角动量守恒。
设: 重物B相对地面上升速度为v , 角动量
LB = R m v, 方向⊙
o
R
人A相对地面速度为(u-v), 角动量
LA = R m (u-v), 方向⊗
A取角动量方向向外为正方向来自解:重力势能为:o′ X 0 o x P
以o点为重力势能零点
求:挖掉小圆盘后,该系统的质心坐标。y 解:由对称性分析,
质心C应在 x 轴上。
R
用挖补法 1) 先将挖去的部分补上
C
x· c O
O′ x
r
计算总的质心位置
xC总 = 0
d
2) 再计算挖去的部分的质心位置
xC挖 = d
y
m总xC总 = m挖 xC挖
+ m剩xC剩
3) 则剩余部分的质心位置
R
C
x· c O
m θ
选(D)
(A) 水平向前。 (B)只可能沿斜面向上。 (C)只可能沿斜面向下。 (D)沿斜面向上或向下均有可能。
9、 倔强系数为K的弹簧,上端固定,下端悬挂重物。当弹 簧伸长X0时,重物在O处达到平衡。现取重物在O处时各种 势能均为零,则当 m 偏离O点x时,系统的重力势能为多 少?系统的弹性势能为多少?系统的总势能为多少?
r = a cos ω ti + b sin ω tj a = −ω 2 a cos ω ti − ω 2 b sin ω tj
M = r × F = r × ma
( ) ( ) = m acosωti + bsinωtj ×− ω 2acosωti − ω 2bsinωtj ( ) = m (−abω 2 sinωt cosωtk − −abω2 sinωt cosωtk )
ϕ
u
m
ϕ
m
u 解: 以车厢为参考系
系统(小球与地球 )机械能守恒 .
mgl (1 − cos ϕ ) = 1 mv′2
2
v ′是小球相对车厢的速度
∴ v ′ = 2 gl (1 − cos ϕ )
小球第一次到达最低位置时,相对于地面的速率为
v = v′ − u = 2gl(1 − cosϕ ) − u
dt
(b). dr = υ
dt
(c).ds=υ
dt
(d). dυ
dt
= at
答案: (c )
3. 质点沿半径为 R 的圆周按规律: S = bt − ct 2 2 运动,其中 b,c 是正常数,且 ⎜⎝⎛ b2 c ⎟⎠⎞ < R, 则在切向加速度与法向加速度数值相等以前所经历 的时间是多少?
1
解:S = bt − ct 2
O′
r
x
d
xC剩
=
−d ⋅σ ⋅π r2 + 0 σ ⋅π R2 −σ ⋅πr2
=
−
(R
/
d
r )2
−1
2.一质量为 m的质点沿着一条空间曲 线运动,
该曲线在直角坐标系下的定义式为:
r = a cos ω ti + b sin ω tj 其中a b ω皆为常数,
则此质点所受的对原点 的力矩 M =
;
(A ) μ ≥ 1 (B) μ ≥ 1 (C) μ ≥2 3 (D) μ ≥ 3
2
3
解:受力分析如图:
F
300
F
N
G
fG
2
F
300
f
y
列方程
N
N − F cos 300 = 0
F sin300 − f − G = 0
G
f ≤ μN
得出:μ ≥ F sin 300 − G
F cos 300
由于 F >>G
d
∫t
x = udt = ut 0
2
∫ ∫ y =
t
vdt
0
=
t 0
V0 d
xdt
2
∫=
t V0 utdt 0d
2
= V0 ut 2 d
o x (划船)
∴ y = V0 x2 ud
( ) 7 . 已知质点的运动方程为 r = 2 ti + 4 − t 2 j
在t > 0的时间内,质点的运动 状况是( )。
牛顿运动定律
F = dp dt
动量定理及守恒定律(力的时间积累)
∫t f
ti
Fdt
= Pf
− Pi
∑ F = 0, P = 常矢量
角动量定理和角动量守恒定律:
M = r × F = dL dt
L=r×p M = 0, L = 恒矢量
动能定理(力的空间积累)
Lp
∫ AAB =
B A
F
⋅ dr
=
1 2
mvB2
v0
oθ
y m ϕ v2
v1
x
v2 = v12 + 4v02 cos2 θ
ϕ = tg −1
v1
2v0 cos θ
解:爆炸过程动量守恒。
mv最高点
=
⎜⎛ ⎝
m 2
⎟⎠⎞v1
+
⎜⎛ ⎝
m 2
⎟⎠⎞v2
分量式
mv0
cosθ
=
⎜⎛ ⎝
m 2
⎟⎠⎞v2
cosϕ
0
=
⎜⎛ ⎝
m 2
⎟⎞(−
⎠
v1
)
+
⎜⎛ ⎝
m 2
=0
i
j
k
acosωt
bsinωt 0
−ω2acosωt −ω2bsinωt 0
3
r = a cos ω ti + b sin ω tj
v = −ωa sin ωti + ωb cos ωtj
(2) L = r × m v
( ) ( ) = acosωti + bsinωtj × − mωasinωti + mωbcosωtj
该质点对原点的角动量 L =
。
解: ∵ r = a cos ω ti + b sin ω tj
∴ v = dr = −ωa sin ωti + ωb cos ωtj dt
a = dv = −ω 2 a cos ω ti − ω 2 b sin ω tj dt
(1) F = ma M = r × F = r × ma
x
则 μ ≥ F sin300 = 1
F cos300 3
选(B)
2.设有水平力 F作用于斜面上的质点 m.为了使 物体不滑动,对 F的大小有何限制?
⎜⎜⎝⎛已μ 为知质斜点面与倾斜角面α间,的且摩μ擦=
tgε , ε为斜面的摩擦角。
系数。
N
⎟⎟⎠⎞
m
yF
F
α
x
mg
f
α
解:研究 m 受力分析图:
列方程: x: mg sinα − F cosα + f = 0 − μN < f < μN
υ = ds = b − ct
2
dt
( ) at
=
dυ dt
=
−c,
at = an ⇒ − c
an
= υ2 R
=
(b − ct)2 R
= (b − ct )2
R
∴ c 2t 2 − 2bct + b2 − Rc = 0
∴t = b ± c
R c
∵⎜⎝⎛ b2 c ⎟⎠⎞ < R,
∴t = b + c
(A) 0. (B) 5m. (C ) 2m.
(D) − 2m. (E) − 5m.
解:
v(m s )
Δx = v − t曲线下的面积
2
1
2.5 4.5
0
−1
12
34
5 t(s)
∴ Δx = 2m
2.质点作曲线运动, r 表位矢, S表路程,
a 表切向加速度。下列表 达式正确的是: t
(a). dυ = a
B
由 角动量守恒定律,得:
0 = − Rm (u − v ) + Rmv
∴ v= 1u 2
7. 下列物理量:质量、动量、冲量、动能、势能、
功中与参考系的选取有关的物理量是
。
动量、动能、功 (不考虑相对论效应)
8. 如图所示。一斜面固定在卡车上,一物体置于该斜 面上。在卡车沿水平方向加速起动的过程中,物块在斜 面上无相对滑动,说明在此过程中摩擦力对物块的冲量。
R c
4. 以下五种运动形式中, a 保持不变的运动是:
(A) 单摆的运动; (B) 匀速率圆周运动;
(C) 行星的椭圆轨道运动; (D)抛体运动;(E)
圆锥摆运动。
选(D)
5. 下列说法哪一条正确? ( A ) 加速度恒定不变时,物体运动方向也不变;
( B )平均速率等于平均速度的大小;
(C )不管加速度如何,平均速率 表达式总可以写成
(a ) 位置矢量可能和加速度 垂直,速度不可能和加 速度垂直。
(b) 位置矢量不可能和加速 度垂直,速度可能和加 速度垂直。
(c) 位置矢量和速度都可能 与加速度垂直。
(d) 位置矢量和速度都不可 能与加速度垂直。
( ) 解: r = 2ti + 4 − t 2 j
欲判断 r , υ , a是否可能互相垂直,只要判断他们
+