自动控制原理简明教程第二版课后答案第六章习题答案

合集下载

自动控制原理第二版6-7-8章习题及详解

自动控制原理第二版6-7-8章习题及详解

第6章习题及详解6-1 试求图6-93所示电路的频率特性表达式,并指出哪些电路的低频段增益大于高频段增益。

(a ) (b )R R(c ) (d )图6-93 习题6-1图解:(a )1112121212++++ωωCj R R R R Cj R R R R ;(b )()11212+++ωωCj R R Cj R ;(c )1155434314368++⎪⎪⎭⎫ ⎝⎛+++ωωCj R Cj R R R R R R R R R R ;(d ) 117767647613++++ωωCj R Cj R R R R R R R R R ;(a )和(c )低频段增益小于高频段增益;(b )和(d )低频段增益大于高频段增益。

6-2 若系统单位脉冲响应为t t e e t g 35.0)(--+=,试确定系统的频率特性。

解:315.011)(+++=s s s G ,故315.011)(+++=ωωωj j j G 6-3 已知单位反馈系统的开环传递函数为11)(+=s s G 试根据式(6-11)频率特性的定义求闭环系统在输入信号()sin(30)2cos(545)r t t t =+︒--︒作用下的稳态输出。

解:先求得闭环传递函数21)(+=s s T 。

(1)1=ω,447.055211)1(==+=j j T ,︒-=-=∠56.2621arctan )1(j T 。

(2)5=ω,186.02929251)5(==+=j j T ,︒-=-=∠20.6825arctan )5(j T 。

故)2.1135cos(372.0)44.3sin(447.0)(︒--︒+=∞→t t t y t 。

6-4 某对象传递函数为s e Ts s G τ-+=11)( 试求:(1)?该对象在输入()sin()u t t ω=作用下输出的表达式,并指出哪部分是瞬态分量; (2)?分析T 和τ增大对瞬态分量和稳态分量的影响;(3)?很多化工过程对象的T 和τ都很大,通过实验方法测定对象的频率特性需要很长时间,试解释其原因。

自动控制原理第6章习题解——邵世凡

自动控制原理第6章习题解——邵世凡

习 题 66-1 设控制系统的开环传递函数为:()()()s s s s G 1.015.0110++= 绘出系统的Bode 图并求出相角裕量和幅值裕量。

若采用传递函数为(1+0.23s)/(1+0.023s)的串联校正装置,试求校正后系统的幅值和相角裕度,并讨论校正后系统的性能有何改进。

6—2设控制系统的开环频率特性为()()()()ωωωωωj j j j H j G 25.01625.011++= ①绘出系统的Bode 图,并确定系统的相角裕度和幅值裕度以及系统的稳定性; ②如引入传递函数()()()0125.025.005.0++=s s s G c 的相位滞后校正装置,试绘出校正后系统的Bode 图,并确定校正后系统的相角裕度和幅值裕度。

6 3设单位反馈系统的开环传递函数为()()()8210++=s s s s G 设计一校正装置,使静态速度误差系数K v =80,并使闭环主导极点位于s=-2±j23。

6-4设单位反馈系统的开环传递函数为()()()93++=s s s K s G ①如果要求系统在单位阶跃输入作用下的超凋量σ =20%,试确定K 值;②根据所确定的K 值,求出系统在单位阶跃输入下的调节时间t s 。

,以及静态速度误差系数; ③设计一串联校正装置,使系统K v ≥20,σ≤25%,t s 减少两倍以上。

6 5 已知单位反馈系统开环传递函数为()()()12.011.0++=s s s K s G 设计校正网络,使K v ≥30,γ≥40º,ωn ≥2.5,K g ≥8dB 。

6-6 由实验测得单位反馈二阶系统的单位阶跃响应如图6-38所示.要求①绘制系统的方框图,并标出参数值;②系统单位阶跃响应的超调量σ =20%,峰值时间t p =0.5s ,设计适当的校正环节并画出校正后系统的方框图。

6-7设原系统的开环传递函数为()()()15.012.010++=s s s s G 要求校正后系统的相角裕度γ=65º。

自动控制原理第六章课后习题答案(完整)

自动控制原理第六章课后习题答案(完整)

自动控制原理第六章课后习题答案(免费)线性定常系统的综合6-1 已知系统状态方程为:()100102301010100x x u y x•-⎛⎫⎛⎫ ⎪ ⎪=--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭= 试设计一状态反馈阵使闭环系统极点配置为-1,-2,-3.解: 由()100102301010100x x u y x•-⎛⎫⎛⎫ ⎪ ⎪=--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=可得:(1) 加入状态反馈阵()012K k k k =,闭环系统特征多项式为:32002012()det[()](2)(1)(2322)f I A bK k k k k k k λλλλλ=--=++++-+--+-(2) 根据给定的极点值,得期望特征多项式:*32()(1)(2)(3)6116f λλλλλλλ=+++=+++(3) 比较()f λ与*()f λ各对应项系数,可得:0124,0,8;k k k ===即:()408K =6-2 有系统:()2100111,0x x u y x•-⎛⎫⎛⎫=+ ⎪ ⎪-⎝⎭⎝⎭= (1) 画出模拟结构图。

(2) 若动态性能不能满足要求,可否任意配置极点? (3) 若指定极点为-3,-3,求状态反馈阵。

解(1) 模拟结构图如下:(2) 判断系统的能控性;0111c U ⎡⎤=⎢⎥-⎣⎦满秩,系统完全能控,可以任意配置极点。

(3)加入状态反馈阵01(,)K k k =,闭环系统特征多项式为:()2101()det[()](3)22f I A bK k k k λλλλ=--=+++++ 根据给定的极点值,得期望特征多项式:*2()(3)(3)69f λλλλλ=++=++比较()f λ与*()f λ各对应项系数,可解得:011,3k k ==即:[1,3]K =6-3 设系统的传递函数为:(1)(2)(1)(2)(3)s s s s s -++-+试问可否用状态反馈将其传递函数变成:1(2)(3)s s s -++若能,试求状态反馈阵,并画出系统结构图。

自动控制原理第二版课后答案

自动控制原理第二版课后答案

自动控制原理第二版课后答案1. 什么是自动控制原理?自动控制原理是一门研究如何设计、分析和实现自动控制系统的学科。

它涉及到信号处理、系统建模、控制算法设计等多个领域,是现代工程技术中的重要组成部分。

自动控制系统广泛应用于工业生产、交通运输、航空航天等领域,对提高生产效率、降低能耗、改善产品质量等方面起到了重要作用。

2. 为什么需要学习自动控制原理?学习自动控制原理可以帮助我们理解和掌握如何设计和优化控制系统,从而更好地解决实际工程问题。

掌握自动控制原理知识可以提高工程师的工作效率,同时也为未来的科研和创新打下坚实的基础。

3. 自动控制原理的基本概念。

自动控制系统由输入、输出、控制器和被控对象组成。

输入是系统的控制信号,输出是系统的反馈信号,控制器根据输入信号和输出信号进行计算,然后控制被控对象的行为。

自动控制系统的目标是使系统的输出信号尽可能接近期望值,从而实现对系统的精确控制。

4. 自动控制原理的数学模型。

自动控制系统可以用数学模型来描述,常见的数学模型包括微分方程、差分方程、状态空间方程等。

通过建立系统的数学模型,可以对系统进行分析和设计,从而实现对系统的控制。

5. 自动控制原理的控制算法。

控制算法是自动控制系统的核心部分,常见的控制算法包括比例控制、积分控制、微分控制、模糊控制、神经网络控制等。

不同的控制算法适用于不同的系统,可以根据实际情况选择合适的控制算法来实现对系统的控制。

6. 自动控制原理的应用。

自动控制原理在工业生产、交通运输、航空航天等领域有着广泛的应用。

例如,在工业生产中,自动控制系统可以实现对生产过程的精确控制,提高生产效率和产品质量;在交通运输领域,自动控制系统可以实现对交通信号、车辆行驶等方面的控制,提高交通运输效率和安全性。

7. 自动控制原理的发展趋势。

随着科学技术的不断发展,自动控制原理也在不断地发展和完善。

未来,自动控制系统将更加智能化、自适应化,能够更好地适应复杂多变的环境,实现对系统的更加精确和高效的控制。

自控原理习题解答(第六章)(课堂PPT)

自控原理习题解答(第六章)(课堂PPT)

2
900 2 1 2025 2 1
yt Gj 0.8sin0.1t Gj
3.2 0.8
sin 0.1t 2tg130 0.1 tg1 45 0.1
900 0.12 1 2025 0.12 1
2.56 sin0.1t 143.13 77.47
10 21.25
0.056sin0.1t 220.6
1
GjHj
5 12
1 0.12 1 0.22 1 22
GjHj tg1 tg1 0.1- tg1 0.2 tg1 2
0 : M 5, 0
: M 0, 90 90 90 90 180
13
答6 41 3.MATLAB画法
GsHs
0.04s3
5s 1 0.62s2
kT1s 1
T2s 1
k
T1s
1
T2
1 s
1
R1 R2
k
R2 R1 R2
, T1
R1C, T2
R1R 2C R1 R2
T1 T2 , k 1
1
1 T1
2
1 T2
22
L dB
1
2
90 45
0
1
2
- 45
- 90
23
答6 5b
E0 s Ei s
R2
1 Cs
1 R 2 R1 Cs
R1
R
R1C1s 1R 2C2s 1 2C2s 1R 2C1s 1 R1C2s
R1C1s 1R 2C2s 1 R1C1R 2C2s 2 R1C1 R 2C2 R1C2
s
1
Tas 1Tbs 1 Ta Tbs 2 Ta Tb Ta Tb

(完整版)自动控制原理课后习题及答案

(完整版)自动控制原理课后习题及答案

第一章绪论1-1 试比较开环控制系统和闭环控制系统的优弊端.解答: 1 开环系统(1)长处 :构造简单,成本低,工作稳固。

用于系统输入信号及扰动作用能早先知道时,可获得满意的成效。

(2)弊端:不可以自动调理被控量的偏差。

所以系统元器件参数变化,外来未知扰动存在时,控制精度差。

2闭环系统⑴长处:不论因为扰乱或因为系统自己构造参数变化所惹起的被控量偏离给定值,都会产生控制作用去消除此偏差,所以控制精度较高。

它是一种按偏差调理的控制系统。

在实质中应用宽泛。

⑵弊端:主要弊端是被控量可能出现颠簸,严重时系统没法工作。

1-2什么叫反应?为何闭环控制系统常采纳负反应?试举例说明之。

解答:将系统输出信号引回输入端并对系统产生控制作用的控制方式叫反应。

闭环控制系统常采纳负反应。

由1-1 中的描绘的闭环系统的长处所证明。

比如,一个温度控制系统经过热电阻(或热电偶)检测出目前炉子的温度,再与温度值对比较,去控制加热系统,以达到设定值。

1-3试判断以下微分方程所描绘的系统属于何种种类(线性,非线性,定常,时变)?2 d 2 y(t)3 dy(t ) 4y(t ) 5 du (t ) 6u(t )(1)dt 2 dt dt(2) y(t ) 2 u(t)(3)t dy(t) 2 y(t) 4 du(t) u(t ) dt dtdy (t )u(t )sin t2 y(t )(4)dtd 2 y(t)y(t )dy (t ) (5)dt 2 2 y(t ) 3u(t )dt(6)dy (t ) y 2 (t) 2u(t ) dty(t ) 2u(t ) 3du (t )5 u(t) dt(7)dt解答: (1)线性定常(2)非线性定常 (3)线性时变(4)线性时变(5)非线性定常(6)非线性定常(7)线性定常1-4 如图 1-4 是水位自动控制系统的表示图, 图中 Q1,Q2 分别为进水流量和出水流量。

控制的目的是保持水位为必定的高度。

《自动控制原理》第二版课后习题答案

《自动控制原理》第二版课后习题答案
ui uo , ue 经放大后驱动电动机转动,在驱动导弹发射架转动的同时,通过输出轴带
动电位器 P2 的滑臂转过一定的角度 o ,直至 o i 时, ui uo ,偏差电压ue 0 ,电动 机停止转动。这时,导弹发射架停留在相应的方位角上。只要 i o ,偏差就会产生调节作
3
用,控制的结果是消除偏差 e ,使输出量 o 严格地跟随输入量 i 的变化而变化。 系统中,导弹发射架是被控对象,发射架方位角 o 是被控量,通过手轮输入的角度 i 是
大,提高发电机的端电压,使发电机 G 的端电压回升,偏差电压减小,但不可能等于零,因
为当偏差电压为 0 时, i f =0,发电机就不能工作。即图(b)所示系统的稳态电压会低于 110
伏。 1-8 图 1-22 为水温控制系统示意图。冷水在热交换器中由通入的蒸汽加热,从而得到一
定温度的热水。冷水流量变化用流量计测量。试绘制系统方块图,并说明为了保持热水温度 为期望值,系统是如何工作的?系统的被控对象和控制装置各是什么?
图 1-16 仓库大门自动开闭控制系统
1
解 当合上开门开关时,电桥会测量出开门位置与大门实际位置间对应的偏差电压,偏 差电压经放大器放大后,驱动伺服电动机带动绞盘转动,将大门向上提起。与此同时,和大 门连在一起的电刷也向上移动,直到桥式测量电路达到平衡,电动机停止转动,大门达到开 启位置。反之,当合上关门开关时,电动机带动绞盘使大门关闭,从而可以实现大门远距离 开闭自动控制。系统方框图如图解 1-2 所示。
征炉温的希望值)。系统方框图见图解 1-3。
1-4 图 1-18 是控制导弹发射架方位的电位器式随动系统原理图。图中电位器 P1 、 P2 并 联后跨接到同一电源 E0 的两端,其滑臂分别与输入轴和输出轴相联结,组成方位角的给定元件

《自动控制原理》第六章习题答案

《自动控制原理》第六章习题答案

119第六章习题及解答6-1 试求下列函数的z 变换T ta t e =)()1(()()223e t t e t=- 21)()3(ss s E +=)2)(1(3)()4(+++=s s s s s E解 (1)∑∞=---=-==0111)(n nnaz z azza z E(2)[]322)1()1(-+=z z z T t Z由移位定理:[]333323333232)()()1()1(TTTTTTte z ez zeT ze ze zeT et Z -----+=-+=(3)22111)(ssss s E +=+=2)1(1)(-+-=z Tz z z z E (4)21)(210++++=s c s c sc s E21)1(3lim212)2(3lim23)2)(1(3lim221100=++=-=-=++==+++=-→-→→s s s c s s s c s s s c s s s2211223+++-=s s s)(22)1(23)(2TT e z ze z z z z z E ---+---=6-2 试分别用部分分式法、幂级数法和反演积分法求下列函数的z 反变换。

120()()()()11012E z z z z =-- 211213)()2(---+-+-=z zz z E 解 (1))2)(1(10)(--=z z zz E① 部分分式法)12(10210110)()2(10)1(10)(210110)2)(1(10)(-=⨯+⨯-=-+--=-+--=---=nnnT e z zz z z E z z z z zz E② 幂级数法:用长除法可得+-+-+-=+++=+-=--=---)3(70)2(30)(10)(7030102310)2)(1(10)(*3212T t T t T t t e z z z z z z z z z z E δδδ③ 反演积分法[][])()12(10)()12(10210110)(210110lim)(Re 10210lim)(Re 0*221111nT t t e nT e z zzz E s z z z z E s n nnnnnz z n nz z n --=-=⨯+⨯-=⨯=-=⋅-=-=⋅∑∞=→→-→→-δ(2) 2221)1()13(12)13(213)(-+-=+-+-=+-+-=--z z z z z z z zz zz E① 部分分式法∑∑∞=∞=---=-⎥⎦⎤⎢⎣⎡--=⨯--=----=----=--=0*222)()32()(32)()(132)(13)1(2)(13)1(2)1(31)(n n nT t n nT t nT Tt e t t Tt e z z z z z E z z z z zz E δδ121② 幂级数法:用长除法可得--------=-----=+-+-=---)3(9)2(7)(5)(3)(9753123)(*32122T t T t T t t t e zzzz z z z z E δδδδ③ 反演积分法[][]12111)3(lim!11)(Re )(-→→-⋅+-=⋅=n s z n zz zdzd z z E s nT e[]32)1(3lim 11--=++-=-→n nzz n n ns∑∞=---=*)()32()(n nT t n t e δ6-3 试确定下列函数的终值()()()11112E z Tzz =--- )208.0416.0)(1(792.0)()2(22+--=z z z zz E解 (1)∞=--=---→21111)1()1(lim zTz z e z ss(2)1208.0416.01792.0208.0416.0792.0lim)()1(lim 2211=+-=+-=-=→→z z zz E z e z z ss6-4 已知差分方程为c k c k c k ()()()-+++=4120初始条件:c(0)=0,c(1)=1。

自动控制原理简明教程 第六章离散系统理论 习题答案

自动控制原理简明教程 第六章离散系统理论 习题答案
T 而r(t)=t输入时系统的稳态误差为 kv
kv
lim (z
z 1
1)G( z )
lim
z1
0.12 z 0.9
0.1
ess
T kv
0.1 1 0.1
五. 某离散系统结构如图所示,试求在单位阶跃输 入时,系统输出的Z变换y(z)和输出y(2)、y(∞)。
x(t)
1 eTs
1
y(t)
T=1秒
0.5)

K
(z 1)(z 0.5) K
(z 1)(z 0.5)
特征方程:z2 1.5z 0.5 K 0
令 z w 1 代入上式,得:Kw2 (1 2K )w 3 K 0 w 1
列劳斯表: w2 K 3 K
w1 1 2K 0
w0 3 K
K 0
欲使系统稳定: 1 2K 0 得:0 K 0.5
闭环脉冲传递函数为:
(z) C(z)
G1G2 (z)
R(z) 1 G2 (z) G1G2 (z)
G1G2 (z)
Z
s
2
10 (s
1)
10Z
1 s2
1 s
1 s 1
10[
(
z
Tz 1)
2
z
z 1
z
z eT
]
G2 (z)
Z
1 s
z
z 1
特征方程为:1 G2 (z) G1G2 (z) 0
,得:C ( z )
T (z) G2 (z)
RG1(z) G2 (z) 1 G1G2 (z)
即得证。
3. 若离散系统特征方程如下,
Z3 Z2 Z 1 0
解方程:Z 2 (1 Z ) Z 1 0 (1 Z )(1 Z 2 ) 0 解得: z1 1, z2 j, z3 j

自动控制原理课后答案第6章

自动控制原理课后答案第6章

串联超前校正
一般而言,当控制系统的开环增益增大到满足其稳态精度时,有可能其稳定裕量不够甚 至不稳定,或者即使稳定,其动态性能一般也不会满足设计要求。为此,需要在系统前向通 道中增设一个超前校正装置,已实现在开环增益增大的情况下,使系统的动态性能也能满足 设计要求。本节先讨论超前校正装置的特点,然后介绍超前校正装置的设计方法。

a ) 按给定补偿的复合校正 图 6-3 复合校正 3
b)按扰动补偿的复合校正
复合控制系统充分利用开环控制与闭环控制的优点,解决了系统静态与动态性能方面, 以及对扰动的抑制与对给定的跟随两方面的矛盾,极大地改善了系统的性能。 在系统设计中,究竟采用那种校正方式,取决于系统中的信号性质、技术实现的方便性、 可供选用的元件、抗干扰性、经济性、环境使用条件以及设计者的经验等因素。一般来说, 对于一个具体的单输入、单输出线性定常系统,宜选用串联校正或反馈校正。通常由于串联 校正比较简单,易于实现,所以工程实际中应用较多,也是本章学习的重点内容。
图 6-1 串联校正
为了减少校正装置的输出功率,降低系统功率损耗和成本,串联校正装置一般装设在前 向通道综合放大器之前,误差测量点之后的位置。串联校正的特点是结构简单,易于实现, 但需附加放大器,且对于系统参数变化比较敏感。 串联校正按照校正装置的特点分为超前校正、滞后校正和滞后-超前校正。校正后系统开 环传递函数为
自动控制原理研究的范畴有两方面:一方面已知控制系统的结构和参数,研究和分析其 三个基本性能,即稳定性、动态性能和稳态性能,称此过程为系统分析。本书的第 3 章~第 5 章就是采用不同的方法进行系统分析;另一方面在是被控对象已知的前提下,根据工程实 际对系统提出的各项性能要求,设计一个新系统或改善原性能不太好的系统,使系统的各项 性能指标均能满足实际需要,称此过程为系统校正(或综合) 。本章就是研究控制系统校正的 基本问题,并介绍基于 MATLAB 和 Simulink 的线性控制系统较正的一般方法。 通过本章的学习,建立系统校正的概念,掌握校正的方法和步骤,并能利用 MATLAB 和 Simulink 对系统进行校正分析,为进行实际系统设计建立理论基础。

自动控制原理_第二版_课后答案

自动控制原理_第二版_课后答案

《自动控制原理》(第2版)习题答案1第2章2-1 (1)t e t ett23sin 3123cos122--+- (2)6 + 3t(3))334(322+++---t t e e t t (4)t t ωωωsin 1132-2-2 (1)2351853tt e e --+-(2)t e 2-(3)t e a b t ae n t nnn t n n ωωζωωζωζωsin cos --++(4)t a Aa t a A e b a A atωωωωωωωsin cos 222222++++⎪⎭⎫ ⎝⎛++- 2-3 (a ))()()(2110f f ms f s X s X i ++=(b )212110)()()(k k s k k f fsk s X s X i ++=2-4 (a ))()()(t u t kx t xm =+ (b ))()()(2121t u t x k k k k t x m =++ 2-5 (a ))()()()()(2212121t u R dt t du C R R t u R R dt t du CR R r r c c +=++ (b ))()()()()()(22121221t u R t u R R dt t du C R R L dt t u d LC R r c c c =++++ 2-6 252312)14(100)()(2+++=s s s s R s C 2523125231210)()(22++++⋅=s s s s s R s E 2-7 t t e e t c 2241)(--+-= 2-8 )1)(2(23)(+++=s s s s G t t e e t h ---=24)(22-9 (a )1)(1)()(32213+++⋅-=s R R C s CR R R s U s U r c (b )13221)()()(R R R s R CR s U s U r c ++-= 2-10 (a )))((1)()(432121G G G G G G s R s C -+++=(b ))(1)1()()(21221H H G G G s R s C -++=(c )331311321332123113211)()(H G H G H G G G G H G G H G G H G G G G s R s C ++++++=2-11 (a )32211)()(G G G G s R s C ++=(b )H G H H G s R s C 111)1()()(+--=(c )121223121)()()(H G G H G G G G s R s C +++=2-12 (a )))((1)1()()(23111232123111134321H G H G H H G G G H G H G H G G G G G G s R s C --++++++=))((1)1(1)()(2311123212311123423H G H G H H G G G H G H G H H G G H G s R s E --++++-+⋅=(b )21212121312)()(G G G G G G G G s R s C ++-++-= 21212131)1(1)()(G G G G G G s R s E ++-+⋅=2-13 (a )12121211)()(H G G G G G G s R s C ++= 121211211)1(1)()(H G G G G H G G s R s E +++⋅=12121231211)1(1)()(H G G G G G G H G G s D s C ++++⋅-=12121231211)1(1)()(H G G G G G G H G G s D s E ++-+⋅= (b )434242143421)()(G G G G G G G G G G G s R s C ++++= 434242111)()(G G G G G G G s R s E ++-=434241)()(G G G G G s D s C ++= 434241)()(G G G G G s D s E ++-=32-14 (a )))((1)(23113343321231134321H G H G H G G H G G G H G H G G G G G G s G -+++-++=(b )3541432326543211)(H G G H G G H G G G G G G G G s G +-+=(c ) 15.1 (d )))((1)1()(ch af ehgf ch gb af gb ed abcd s G +----++=45σ % = 56.2% t p = 1.006 t s = 63-13 0 < K < 0.75 3-14 (1)0(2)1 3-16 (1)∞ ∞6分离点:d = -0.8857(4) 渐近线:σa = -1 ϕa = ± 60︒,180︒与虚轴的交点:K = 3 s = ± j1.414分离点:d = -0.423 根迹图略(5) 渐近线:σa = -2/3 ϕa = ± 60︒,180︒与虚轴的交点:K = 4 s = ± j1.414(6)渐近线:σa = -1.5 ϕa = ± 45︒,± 135︒起始角:ϕ1 = -63.4︒根迹图略 (7)(8)894-9 零度根轨迹。

自控简明教程第二版部分习题答案

自控简明教程第二版部分习题答案

5-4 5-5
0.653
n 1.848
j 0
T
T
j 0
5-6
10( 0.05s 1) G (s ) s( 20s 1)
o
5-7 G( j0.5) 17.9 153.4
G( j2) 0.383 327.53o
G( j0 ) 90o G( j2 ) 153.4o G( j2 ) 333.4o G( j) 0 360o
2-4
2-5
Q
F 12.11y s 2 4s 2 2-6 (s) (s 1)(s 2)
零输入响应
k2 2 Qo
( P 2-4题~2-9题)
dc(t ) k (t ) (t ) 2e 2t e t dt
t
2-7
零初态响应 c1 (t ) 1 2e
3-2 (1) ( s ) 3-3 3-4
0.0125 s 1.25
(2) ( s )
0.6 n 2 % 9.478% t p 1.96 s t s 2.917 s r 1.0066 n 1 d 0.5 z 2.5 1.686 2 tr 1.45 s t p 3.156 s t s 6.0133s % 17.99%
i ( t )+( R1C1 + R2C2 )u i ( t ) = R1R2C1C2u
(b) f1 f 2 o ( t )+( f1k1 + f1k2 + f 2k1 ) x o ( t )+ k1k2 xo ( t ) x
i ( t )+( f1k2 + f 2k1 ) x i ( t )+ k1k2 xi ( t ) = f1 f 2 x

《自动控制原理(第2版)》李晓秀(习题参考答案)

《自动控制原理(第2版)》李晓秀(习题参考答案)

《自动控制原理(第2版)》李晓秀第 1章习题答案1-3 题系统的控制任务是保持发电机端电压U 不变。

当负载恒定发电机的端电压U 等于设定值U0时,U0 ,电动机不动,电位器滑臂不动,励磁电流 I f恒定;当负载改变,发电机的端电压U 不等于设定值U 0时,U 0,U 经放大器放大后控制电动机转动,电位器滑臂移动动,使得励磁电流I f改变,调整发电机的端电压U ,直到U U 0。

系统框图为:负载U 0U电动机电位器I f U放大器发电机1-4 题(1)在炉温控制系统中,输出量为电炉内温度,设为T c;输入量为给定毫伏信号,设为 u r;扰动输入为电炉的环境温度和自耦调压器输入电压的波动等;被控对象为电炉;控制装置有电压放大器、功率放大器、可逆电动机、减速器、调压器等。

系统框图为:扰动u r u电压、功率可逆减速器调压器T c 电炉放大电动机u f热电耦( 2)炉温控制系统的任务是使炉内温度值保持不变。

当炉内温度与设定温度相等时,u r等于u f,即u0 ,可逆电动机电枢电压为0,电动机不转动,调压器滑臂不动,炉温温度不改变。

若实际温度小于给定温度,u u r u f0 ,经放大后控制可逆电动机转动使调压器滑臂上移,使加热器电压增大,调高炉温;若实际温度大于给定温度,u u r u f0 ,经放大后控制可逆电动机转动使调压器滑臂下移,使加热器电压减小,降低炉温。

使得 u f和 u r之间的偏差减小甚至消除,实现了温度的自动控制。

1-5 题(1)在水位控制系统中,输出量为水位高度H ;输入量为给定电压u g;扰动输入为出水量等。

系统原理框图为:出水u g放大器电动机减速器进水阀H 水箱u f浮球( 2)当实际水位高度H为设定高度时,与受浮球控制的电位器滑臂位置对应的u f与给定电压 u g相等,电动机不转动,进水阀门维持不变。

若水位下降,电位器滑臂上移,u f增大,偏差u u g u f 0 ,经放大后控制电动机逆转调大进水阀门,加大进水量使水位升高;若水位升高降,电位器滑臂下移,u f减小,偏差u u g u f0 ,经放大后控制电动机正转调小进水阀门,减小进水量使水位下降,实现了水位的自动控制。

自动控制原理第二版课后习题参考答案

自动控制原理第二版课后习题参考答案

自动控制原理第二版课后习题参考答案2-1 (a)()()1121211212212122112+++⋅+=+++=CS R R R R CS R R R R R R CS R R R CS R R s U s U (b)()()1)(12221112212121++++=s C R C R C R s C C R R s U s U 2-2 (a)()()RCs RCs s U s U 112+=(b) ()()141112+⋅-=Cs R R R s U s U (c)()()⎪⎭⎫⎝⎛+-=141112Cs R R R s U s U 2-3 设激磁磁通f f i K =φ恒定()()()⎥⎦⎤⎢⎣⎡++++=Θφφπφm e a a a a m a C C f R s J R f L Js L s C s U s 2602 2-4()()()φφφπφm A m e a a a a m A C K s C C f R i s J R f L i Js iL C K s R s C +⎪⎭⎫⎝⎛++++=260232-5 ()2.0084.01019.23-=⨯--d d u i 2-8 (a)()()()()3113211G H G G G G s R s C +++=(b)()()()()()31243212143211H G H G G G H G G G G G G s R s C +++++=2-9 框图化简中间结果如图A-2-1所示。

图A-2-1 题2-9框图化简中间结果()()()()52.042.018.17.09.042.07.023++++++=s k s k s s s R s C 2-10()()4232121123211G H G G H G G H G G G G s R s C ++-+=2-11 系统信号流程图如图A-2-2所示。

图A-2-2 题2-11系统信号流程图()()()()2154214212654212215421421321111H H G G G G G G G H G G G G G s R s C H H G G G G G G G G G G s R s C -++=-++=2-12 (a)()()()adgi abcdi agdef abcdef cdhs R s C +++-=11(b)()()()1221211222112++++=s C R C R C R s C R C R R s R s C 2-13 由选加原理,可得()()()()()()[]s D H G G s D G s D G s R G G G H G H s C 3121221221221111--+++=第三章3-1 分三种情况讨论 (a) 当1>ζ时()()()()()⎥⎥⎦⎤⎢⎢⎣⎡-+----+-=-+-=---=⎪⎭⎫ ⎝⎛-+-⎪⎭⎫ ⎝⎛---221221222211112121,122ζζζζωζωζωζζωζζωζζωζζt t n n nn n n e e t t c s s (b) 当10<<ζ时()()()⎪⎪⎭⎫⎝⎛-----+-=---+---=-+-=---=---22222222222121121sin 1121sin 1211cos 221,1ζζζωζωζωζωζωζζωζωζωζωζζωζζζωζωζωarctg t et t e t et t c j s j s n tnnn t nn tnnn n n n n(c) 当1=ζ时设系统为单位反馈系统,有()()()()()2222nn n r s s s s R s c s R s E ωζωζω+++=-= 系统对单位斜坡输入的稳态误差为 ()nn n n s sr s s s s s s im e ωζωζωζω22212220=+++⋅⋅=→ 3-2 (1) 0,0,50===a v p K K K (2) 0,,==∞=a v p K K K K(3) 10,,K K K K a v p =∞=∞= (4) 0,200,==∞=a v p K KK K 3-3 首先求系统的给定误差传递函数()⎪⎭⎫ ⎝⎛++-=-=-t e t t c s n t n n nn 21222,1ωωωωω()101.0)11.0()(11)()(2+++=+==Φs s s s s G s R s E s e 误差系数可求得如下()()()0)101.0()12.0(20)101.0(2lim lim 1.0)101.0()12.0(10lim lim 0101.0)11.0(lim lim 32220220222001200=+++-++=Φ==+++=Φ==+++=Φ=→→→→→→s s s s s s ds d C s s s s ds d C s s s s s C s e s s e s s e s(1) 0)(R t r =,此时有0)()(,)(0===t r t r R t r s s s ,于是稳态误差级数为()0)(0==t r C t e s sr ,0≥t(2) t R R t r 10)(+=,此时有0)(,)(,)(110==+=t r R t r t R R t r s s s ,于是稳态误差级数为()1101.0)()(R t rC t r C t e s s sr =+= ,0≥t (3) 221021)(t R t R R t r ++=,此时有t R R t rt R t R R t r s s 212210)(,21)(+=++= ,2)(R t r s = ,于是稳态误差级数为())(1.0)(!2)()(21210t R R t r C t rC t r C t e s s s sr +=++= ,0≥t 3-4 首先求系统的给定误差传递函数()5001.0)11.0()(11)()(2+++=+==Φs s s s s G s R s E s e 误差系数可求得如下()()()232220220222001200050098)5001.0()12.0(1000)5001.0(100lim lim 5001)5001.0()12.0(500lim lim 05001.0)11.0(lim lim =+++-++=Φ==+++=Φ==+++=Φ=→→→→→→s s s s s s ds d C s s s s ds d C s s s s s C s e s s es s e stt r t t rt t r s s s 5sin 25)(5cos 5)(5sin )(-===稳态误差级数为()[][][]tt tC t C C t e sr 5cos 1015sin 109.45cos 55sin 25224120 -⨯++⨯=-⨯+⎥⎦⎤⎢⎣⎡+⨯-=- 3-5 按技术条件(1)~(4)确定的二阶系统极点在s 平面上的区域如图A-3-1 (a) ~ (d)的阴影区域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

c

− arctanω
c

− arctan 0.25ω
c

= −900 + 760 −89.20 −140 − 3.60 = −120.80 γ (ω c) =ϕ(ω c) +1800 = 59.20
(2)设校正后系统希望的频率特性如下:
8
胡寿松自动控制原理第六章习题解答 电三刘晓峰制作
-20 -40 14 ω2 ω1 -10
6-9 设单位反馈系统的开环传递函数
K G(s) = s(0.1s +1)(0.01s +1)
试设计串联校正装置,使系统期望特性满足下列指标: (1)静态速度误差系数 Kv ≥ 250s−1 ; (2)截止频率 ω c ≥ 30rad / s; (3)相角裕度 γ (ω c) ≥ 450 ; 解:由题目给定的条件(1) ,取 K = 250 系统校正前的对数幅频渐近特性如下:
(1)写出校正后各系统的开环传递函数; (2)分析各 Gc(s) 对系统的作用,并比较其优缺点。
解: (1)
20 s/0.5
+1
(a)G(s) = Gc(s) =
s(s/10 +1)
s /0.1+1 20(s /0.5 + 1)
所以校正后系统的传递函数为:G(s)Gc(s) =
s(s/10 +1)(s /0.1+1) 20 s/10
-40 1 ω 4.47
截止频率为 ω c = 4.47 ,相角裕量 γ (ω c) =12.60 不满足要求。 其希望的对数频率渐进曲线如下(按二阶最佳校正) : -20 26 L(ω)
-40 20 1 4.47 40 ω
20
校正后的开环传递函数为 G(s)Gc(s) =
s(s/ 40 +1) G(s)Gc (s) 所以 Gc(s) = = s +1
这时
= −900 + 84.30 −87.70 − 26.60 − arctan(ω c /ω
经计算得 ω 3 = 7.46 γ (ω c)
3
) = −1350
=ϕ(ω c) +1800 = 450
9
胡寿松自动控制原理第六章习题解答 电三刘晓峰制作
所以校正后的系统传递函数为:
5(5s +1) G(s)Gc(s) = s(25s /2 +1)(0.25s +1)(s /7.46 +1)
1,经计算得 ω 1 = 1/ 25
12
胡寿松自动控制原理第六章习题解答 电三刘晓峰制作
则 A(ω c) = =
ω cω c /ω
1
所以校正后的系统传递函数为:
250(s /5 +1) G(s)Gc(s) = s(25s +1)(s /100 +1)(s /ω 3 +1) ϕ(ω c) = −900 + arctanω c /5 − arctan 25ω c − arctan 0.01ω c − arctanω c / ω
ξ ω
n
0.457*2.35
54.8 这时:KV = limsG(s) = = 2.03 27 K
(3)KV = limsG(s) =
s→0
≥ 20 所以 K ≥ 540
s→0
27
6-3 设单位反馈系统的开环传递函数
K G(s) = s(s +1)
试设计一串联超前校正装置,使系统满足如下指标: (1)相角裕度 γ ≥ 450 ; (2)在单位斜坡输入下的稳态误差
胡寿松自动控制原理第六章习题解答 电三刘晓峰制作
6-2 设单位反馈系统的开环传递函数
K G(s) = s(s + 3)(s + 9)
(1)如果要求系统在单位阶跃输入作用下的超调量 σ % = 20% ,试确定 K 值; (2)
根据所求得的 K 值,求出系统在单位阶跃输入作用下的调节时间 ts ,以及静态速度误差系 数 Kv 。
系统不稳定,需要加串联校正装置。 设校正后系统的截止频率为:ω c = 50,校正后 系统希望的对数幅频渐进曲线如下:
校正后的系统传递函数为:
250(s / ω 2 +1) G(s)Gc(s) = s(s /ω 1 +1)(s /100 +1)(s /ω 3 +1)
选取 ω 2 = 5
250*ω c *5
≥ 450 ,试设计串
-40 4 1 ω -60
-10
截止频率为:ω c = 2.24
ϕ(ω c) = −900 − arctanω c − arctan0.25ω c = −900 − 65.90 − 290 = −184.90 γ (ω c) =ϕ(ω c) +1800 = −4.90
系统不稳定,需要加串联校正装置。设采用滞后校正,校正后系统希望的对数幅频渐进曲线 如下:
11
胡寿松自动控制原理第六章习题解答 电三刘晓峰制作
-20 28
L(ω)
-40 100 10 -60 ω
-12
截止频率为:ω c = 50
ϕ(ω c) = −900 − arctanω c /10 − arctanω c /100 = −900 − 78.70 − 26.60 = −195.30 γ (ω c) =ϕ(ω c) +1800 = −15.30
s(2s +1)
5
胡寿松自动控制原理第六章习题解答 电三刘晓峰制作
-20 24
L(ω)
-40 0.5 ω 2
截止频率为:ω c = 2
ϕ(ω c) = −900 − arctan2ω c = −900 − 760 = −1660 γ (ω c) =ϕ(ω c) +1800 =140
系统校正后的开环传递函数为
L(ω)
-20 1
-40 4 -40 ω3 ω
-60
校正后的系统传递函数为:
5(s / ω 2 +1) G(s)Gc(s) = s(s /ω 1 +1)(0.25s +1)(s /ω 3 +1)
设校正后的截止频率 ω c = 2 ω 2 = 0.2
5*ω c *5 1,经计算得 ω 1 = 2/ 25 则 A(ω c ) = = ω cω c /ω
这时
3
= −900 + 84.30 −89.90 − 26.60 − arctanω c /ω
经计算得到 ω 3 = 217 校正装置传递函数为:
3
= −1350
G(s)Gc(s) = (s /5 +1)(s /10 +1) Gc(s) = G(s) (25s +1)(s /217 +1)
6—10 数 设可控硅—电动机调速系统中的电流环如图 6-44 所示。图中,调节对象传递函
c
6
胡寿松自动控制原理第六章习题解答 电三刘晓峰制作
6-7 设单位反馈系统的开环传递函数
K G(s) = s(s +1)(0.25s +1)
(1)若要求校正后系统的静态速度误差系数 Kv ≥ 5s−1 ,相角裕度 γ 联校正装置; (2)若除上述指标要求外,还要求系统校正后截止频率 ω c ≥ 2rad / s ,试设计串联校正 装置。 解: (1)因为 Kv ≥ 5s−1 ,所以 K ≥ 5s−1。取 K = 5s−1 系统校正前的对数幅频渐近 特性如下: -20 14 L(ω)
1 ess < 15
(3)截止频率 ω c ≥ 7.5rad / s 。
rad
1 解:在单位斜坡输入下的稳态误差由于 ess < rad ,所以 K >15 取 K = 20 15 20
这时系统开环传递函数 G(s) =
s(s +1)
2
胡寿松自动控制原理第六章习题解答 电三刘晓峰制作
其对数频率渐进曲线如下: -20 26 L(ω)
1
所以校正后的系统传递函数为:
5(5s +1) G(s)Gc(s) = s(25s / 2 +1)(0.25s +1)(s /ω 3 +1) ϕ(ω c) = −900 + arctan5ω c − arctan(25ω c /2) − arctan0.25ω c − arctan(ω c /ω 3 )
(b)G(s) = Gc (s) =
+1
4
胡寿松自动控制原理第六章习题解答 电三刘晓峰制作
s(s /20 +1) s/100 +1 20(s/10
所以校正后系统的传递函数为:G(s)Gc(s) =
+ 1)
s(s /20 +1)(s/100 +1)
(c)G(s) = K 0
Gc(s) = Kc(T2 s +1)(T3 s +1)
(3)设计一串联校正装置,使系统的 Kv ≥ 20s−1,σ % ≤15% ,ts 减小两倍以上。 解: (1)系统根轨迹如下:
通过计算得到这时 K = 54.8 这时系统呈现二阶系统特性,这时系统的 ξ = 0.457 ω n = 2.35
3.5 3.26s
3.5 (2)ts = = =
1
胡寿松自动控制原理第六章习题解答 电三刘晓峰制作
G(s)Gc(s) = 8(10s +1)(2s +1)
=
8(10s +1)
=
8(s /0.1+1)
s(2s +1)(100s +1)(0.2s +1)
s(100s +1)(0.2s +1) s(s/0.01+1)(s/5+1)
相关文档
最新文档