实数与数轴练习题 (3)

合集下载

7年级数学练习:第三章实数

7年级数学练习:第三章实数

七年级上册第三章综合训练卷一.选择题(共10小题)1.下列说法正确的是()A.实数可分为有理数和无理数B.无限小数都是无理数C.只有0的立方根是它本身D.1的任何次方根都是12.下列说法正确的是()A.等于±2B.2和﹣都是实数C.无理数和数轴上的点一一对应D.3.如图所示,以A为圆心的圆交数轴于B,C两点,若A,B两点表示的数分别为1,,则点C表示的数是()A.﹣1B.2﹣C.2﹣2D.1﹣4.在,3.1415926,(π﹣2)0,﹣3,,﹣,0这些数中,无理数有()A.2个B.3个C.4个D.5个5.下列整数中,与10﹣最接近的是()A.3B.4C.5D.66.已知≈0.5981,≈1.289,≈2.776,则≈()A.27.76B.12.89C.59.81D.5.9817.已知M=是9的算术平方根,7a+3b﹣1的平方根为±4,N=,则M+2N的立方根为()A.﹣1B.1C.﹣2D.28.对于实数a和b,定义两种新运算:①a*b=(|a﹣b|+a+b),②a⊗b=a11b,则(5⊗3)*(3⊗5)=()A.355B.533C.533﹣355D.533+3559.对于实数a、b,定义min{a,b}的含义为:当a<b时,min{a,b}=a;当a>b时,min{a,b}=b,例如:min{1,﹣2}=﹣2.已知min{,a}=a,min{,b}=,且a和b为两个连续正整数,则2a﹣b的值为()A.1B.2C.3D.410.若实数p,q,m,n在数轴上的对应点的位置如图所示,且满足p+q+m+n=0,则绝对值最小的数是()A.p B.q C.m D.n二.填空题(共6小题)11.若9x2﹣16=0,则x=.12.一个正数m的两个平方根分别为1﹣3a和a+5,则这个正数m的立方根是.13.已知≈5.03587,≈15.92482,则≈(结果保留3位小数).14.满足﹣<x<的整数x是.15.一个正数的两个平方根是5a+1和a﹣7,则a=.16.的最小值是,这时a=.三.解答题(共8小题)17.计算:(1);(2)+.18.(1)计算:;(2)计算:2()﹣|﹣2|﹣.19.把下列各数分别填入相应的横线上.﹣5、|﹣|、0、﹣3.14、、﹣12、﹣、+1.99、﹣(﹣6)、0.1010010001…(每两个1之间依次多一个0)(1)整数:.(2)分数:.(3)无理数:.20.如果一个正数a的两个不同平方根是2x﹣2和6﹣3x.(1)求这个正数a的值;(2)求17+3a的立方根.21.对于任意一个实数x,我们用〈x〉表示小于x的最大整数.例如:〈 4.7〉=4,〈﹣2〉=﹣3;〈10〉=9.(1)填空:〈﹣2021〉=,〈4〉=,〈〉=;(2)若a,b都是整数,且〈a〉=2b,〈b〉=a+1;求a2﹣b2的平方根;(3)如果〈1﹣x〉=3,求x的取值范围.22.如图,一只蚂蚁从点A沿数轴向右爬了2个单位长度到达点B,点A表示,设点B所表示的数为m.(1)实数m的值是.(2)求|m+1|+|m﹣1|的值;(3)在数轴上还有C、D两点分别表示实数c和d,且有|2c+4|与互为相反数,求2c+3d 的平方根.23.阅读下列解题过程:===;===;===;…(1)=,=.(2)观察上面的解题过程,则=(n为自然数)(3)利用这一规律计算:.24.如图1,数轴上O点与C点对应的数分别是0、90(单位:单位长度),将一根质地均匀的直尺AB放在数轴上(A在B的左边),若将直尺在数轴上水平移动,当点A移动到点B的位置时,B与C重合;当点B移动到点A的位置时,A与O重合.(1)直尺AB的长为个单位长度.(2)若直尺AB在数轴上移动,且满足BC=5OA,请借助图2求此时点A对应的数;(3)如图3,在数轴前面放一个以OC为边不透明的长方形挡板,将直尺AB放在挡板后数轴上的某处(看不到直尺的任何部分,A在B的左边),将直尺AB沿数轴以5个单位秒的速度分别向左、向右移动,直到直尺完全被看到.①若向左移动所经历时间是向右移动所经历时间的2倍,求直尺起初放置时点A对应的数为多少?②若不透明的挡板与直尺AB同时出发,挡板沿数轴以1个单位/秒的速度向右移动,当点A对应的数为多少时,向左、向右移动所经历的时间相差2秒?。

八上数学每日一练:实数在数轴上的表示练习题及答案_2020年综合题版

八上数学每日一练:实数在数轴上的表示练习题及答案_2020年综合题版
根式的乘除法;二次根式的加减法;
答案解析
2. (2019兴隆.八上期中) (1) 如图①△ABC是一个边长为2的等腰直角三角形,它的面积是2.把它沿着斜边的高线剪开拼成如图②的正方形 ABCD,则这个正方形的面积也就等于三角形的面积,即为2,则这个正方形的边长就是,它是一个无理数.
(1) 比较a﹣b与a+b的大小; (2) 化简|b﹣a|+|a+b|. 考点: 实数在数轴上的表示;
4. (2019新蔡.八上期中) 如图1,这是由8个同样大小的立方体组成的魔方,体积为64.
答案解析 答案解析
(1) 求出这个魔方的棱长. (2) 图中阴影部分是一个正方形ABCD,求出阴影部分的面积及其边长. (3) 把正方形ABCD放到数轴上,如图2,使得A与﹣1重合,求D在数轴上表示的数.
(2) 如图,直径为1个单位长度的圆从原点O沿数轴向右滚动一周,圆上的一点P(滚动时与点O重合)由原点到达点 O′,则OO′的长度就等于圆的周长,所以数轴上点O′代表的实数就是,它是一个无理数.
考点: 无理数的认识;实数在数轴上的表示;
3. (2019海伦.八上期中) 已知实数a、b在数轴上对应点的位置如图:
八上数学每日一练:实数在数轴上的表示练习题及答案_2020年综合题版
2020年 八 上 数 学 : 数 与 式 _无 理 数 与 实 数 _实 数 在 数 轴 上 的 表 示 练 习 题
1. (2019贵阳.八上期末) (1) 化简: (2) 如图,数轴上点A和点B表示的数分别是1和 .若点A是BC的中点。求点C所表示的数.
答案解析
2020年 八 上 数 学 : 数 与 式 _无 理 数 与 实 数 _实 数 在 数 轴 上 的 表 示 练 习 题 答 案

《6.3 实数》同步练习卷(3)

《6.3 实数》同步练习卷(3)

《6.3 实数》同步练习卷(3)一、选择题(共10小题)1.下列实数:15,,,﹣3π,0.10101中,无理数有()个.A.1B.2C.3D.42.的倒数是()A.﹣B.C.﹣D.3.下列说法中正确的是()A.不循环小数是无理数B.分数不是有理数C.有理数都是有限小数D.3.1415926是有理数4.在﹣1,0,2,四个数中,最大的数是()A.﹣1B.0C.2D.5.如图,数轴上表示实数的点可能是()A.点P B.点Q C.点R D.点S6.在下列各数0.51515354…、0、0.、3π、、6.1010010001…、、中,无理数的个数是()A.1B.2C.3D.47.在﹣,﹣,0,1四个数中,最大的数是()A.1B.0C.﹣D.﹣8.如图,数轴上表示1、的对应点分别为点A、点B.若点A是BC的中点,则点C所表示的数为()A.B.1﹣C.D.2﹣9.估计的值在()A.3.2和3.3之间B.3.3和3.4之间C.3.4和3.5之间D.3.5和3.6 之间10.若|a|=4,,且a+b<0,则a﹣b的值是()A.1,7B.﹣1,7C.1,﹣7D.﹣1,﹣7二、填空题(共5小题)11.实数a、b在数轴上的位置如图所示,则化简2|a+b|﹣|a﹣b|的结果为.12.已知的小数部分是a,的整数部分是b,则a+b=.13.在﹣,﹣0.2020020002…(两个非零数之间依次多一个0),其中无理数有个.14.比较大小:﹣1(填“>”、“=”或“<”).15.计算:=三、解答题(共5小题)16.计算:﹣12020+﹣|1﹣|+﹣.17.实数a、b、c在数轴上的位置如图所示,求代数式|a|﹣|a+b|+|c﹣a|+|b﹣c|的值.18.已知有理数a,b,c在数轴上的位置如图所示.(1)用“>”或“<”填空:b﹣a0,c﹣b0,a+b0;(2)化简:|b﹣a|﹣|c﹣b|+|a+b|.19.(1)如图,化简﹣|a+b|++|b+c|.(2)已知2a﹣1的平方根是±3,3a+2b+4的立方根是3,求a+b的平方根.20.若的整数部分为a,小数部分为b,求a2+b﹣的值.。

初二(下)实数的知识点与练习题

初二(下)实数的知识点与练习题

第十三章 实数知识要点一: 1.实数的性质(1)实数范围内仍然适用在有理数范围内定义的一些概念(如倒数,相反数);(2)两实数的大小关系:正数大于0,0大于负数;两个正实数,绝对值大的实数大;两个负实数,绝对值大的实数反而小;(3)在实数范围内,加、减、乘、除(除数不为零)、乘方五种运算是畅通无阻的,但是开方运算要注意,正实数和零总能进行开方运算,而负实数只能开奇次方,不能开偶次方;(4)有理数范围内的运算律和运算顺序在实数范围内仍然相同. 2.实数与数轴的关系每一个实数都可以用数轴上的一个点表示;反之,数轴上每一个点都表示一个实数,即数轴上的点与实数是一一对应关系.3.实数的分类(1)按实数的定义分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 (2)按实数的正负分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧负无理数负分数负整数负有理数负实数负数)零(既不是正数也不是正无理数正分数正整数正有理数正实数实数4.实数的大小比较两实数的大小关系如下:正实数都大于0,负实数都小于0,正数大于一切负数;两个正实数,绝对值大的实数较大;两个负实数,绝对值大的实数反而小.实数和数轴上的点一一对应,在数轴上表示的两个实数,右边的数总大于左边的数.【典型例题】2-1C B A 例1若a 为实数,下列代数式中,一定是负数的是( ) A. -a 2 B. -( a +1)2 C.-2a D.-(a -+1)分析:本题主要考查负数和非负数的概念,同时涉及考查字母表示数这个知识点.由于a 为实数, a 2、( a +1)2、2a 均为非负数,∴-a 2≤0,-( a +1)2≤0,-2a ≤0.而0既不是正数也不是负数,是介于正数与负数之间的中性数.因此,A 、B 、C 不一定是负数.又依据绝对值的概念及性质知-(a -+1)﹤0.故选D例2 实数a 在数轴上的位置如图所示, 化简:2)2(1-+-a a =分析:这里考查了数形结合的数学思想,要去掉绝对值符号,必须清楚绝对值符号内的数是正还是负.由数轴可知:1﹤a ﹤2,于是,22)2(,112a a a a a -=-=--=-所以, 2)2(1-+-a a =a -1+2-a =1.例3 如图所示,数轴上A 、B 两点分别表示实数1,5,点B 关于点A 的对称点为C ,则点C 所表示的实数为( ) A. 5-2 B. 2-5 C.5-3 D.3-5分析:这道题也考查了数形结合的数学思想,同时又考查了对称的性质.B 、C 两点关于点A 对称,因而B 、C 两点到点A 的距离是相同的,点B 到点A 的距离是5-1,所以点C 到点A 的距离也是5-1,设点C 到点O 的距离为a ,所以a +1=5-1,即a =5-2.又因为点C 所表示的实数为负数,所以点C 所表示的实数为2-5.例4 已知a 、b 是有理数,且满足(a -2)2+3-b =0,则a b 的值为分析:因为(a -2)2+3-b =0,所以a -2=0,b -3=0。

八年级数学实数的概念及数轴的三要素试题

八年级数学实数的概念及数轴的三要素试题

初二数学实数的概念及数轴的三要素华东师大版【本讲教育信息】一. 教学内容:实数的概念及数轴的三要素及实数与数轴上的点之间的一一对应关系二. 学习目的1、使学生理解无理数和实数的概念,掌握实数的分类,会准确判断一个数是有理数还是无理数。

2、使学生能理解实数绝对值的意义。

3、使学生能理解数轴上的点具有一一对应关系。

4、由实数的分类,浸透数学分类的思想。

5、由实数与数轴的一一对应,浸透数形结合的思想。

三. 重、难点知识的归纳与剖析1、无理数及实数的概念无限不循环小数成为无理数。

无理数的形式。

有理数与无理数统称为实数〔Real number〕。

2、有理数与无理数的区别。

实数,小数,分数的关系。

3、实数的分类4、学会利用数轴解决实数的问题,实数与数轴上的点一一对应是指:〔1〕每一个实数都可以用数轴上的点来表示;〔2〕数轴上的每一个点都表示一个实数。

5、用计算器求一个实数或者多个实数的运算应注意准确度,或者根据准确度取近似数.【典型例题】例1、把…分别填入有理数集合___________,无理数集合___________,实数集合___________。

答案:有理数集合:无理数集合:实数集合:例2、假设m的相反数是,那么m=___________,|m|=___________。

解:由题意,得例3、化简、求值〔1〕=___________;〔2〕=___________;〔3〕=___________;〔4〕假设x2=〔-1.21〕2,那么x=___________.解:〔1〕∵表示〔-3〕2这个数的算术平方根;〔2〕±表示32的平方根;〔3〕表示10-2的负的平方根;〔4〕∵ x2=〔-1.21〕2,∴x是〔-1.21〕2的平方根.∴〔1〕3 〔2〕±3 〔3〕-〔4〕±1.21例4、〔2021年,东城区〕在实数中,无理数有〔〕A、1个B、2个C、3个D、4个分析:因为实数包括有理数和无理数两大类,所以在实数集合中,非有理数,即是无理数;反之,非无理数,即是有理数。

部编数学七年级下册实数与数轴大题提升训练(重难点培优30题)【拔尖特训】2023培优(解析版)

部编数学七年级下册实数与数轴大题提升训练(重难点培优30题)【拔尖特训】2023培优(解析版)

【拔尖特训】2022-2023学年七年级数学下册尖子生培优必刷题【人教版】专题6.10实数与数轴大题提升训练(重难点培优30题)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷试题解答30道,共分成三个层组:基础过关题(第1-10题)、能力提升题(第11-20题)、培优压轴题(第21-30题),每个题组各10题,可以灵活选用.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一.解答题(共30小题)1.(2022秋•郓城县期中)如图,数轴的正半轴上有A、B、C三点,点A、B表示数1和.点B到点A 的距离与点C到点O的距离相等,设点C所表示的数为x.(1)请你求出数x的值.(2)若m为x﹣2的相反数,n为x﹣2的绝对值,求m+n.【分析】(1)根据数轴上两点间的距离求出AB之间的距离即为x的值;(2)根据题意及x的值求出m和n的值,再把m,n代入所求代数式进行计算即可.【解答】解:(1)∵点A,B表示的数分别是1和,∴,∴,∴点C表示的数;(2)由(1)知,∴,∴m=3﹣,,∴m+n=6﹣2.2.(2022秋•三元区期中)如图,数轴的正半轴上有A,B两点,表示1和的对应点分别为A,B,点C,D在数轴上,点B到点A的距离与点C到点D的距离相等,设点C所表示的数为x.(1)当D所表示的数为0且C在D的右边时,求出x的值;(2)当D所表示的数为﹣2时,求出x的值.【分析】(1)根据数轴上两点间的距离求出AB之间的距离即为x的值;(2)分C在D的左边和右边两种情况确定x的值.【解答】解:(1)∵点A.B分别表示1,,∴AB=﹣1,即x=﹣1;(2)当C在D的左边时:∵D所表示的数为﹣2,AB=﹣1,∴x=﹣2﹣(﹣1)=﹣3+1;当C在D的右边时:∵D所表示的数为﹣2,AB=﹣1,∴x=﹣2+﹣1=﹣﹣1.综上所述,x的值为﹣3+1或﹣﹣1.3.(2022秋•北仑区期中)如图,一只蚂蚁从A点沿数轴向右直爬2个单位长度到达点B,点A表示﹣,设点B所表示的数为m,(1)求m的值.(2)求|m﹣3|+m+2的值.【分析】(1)根据数轴上的点运动规律:右加左减的规律可求出m的值;(2)主要将m的值代入到代数式中即可,只要注意运算的顺序和绝对值的计算方法即可.【解答】解:(1)∵蚂蚁从点A沿数轴向右直爬2个单位到达点B,∴点B所表示的数比点A表示的数大2,∵点A表示,点B所表示的数为m,∴m=﹣+2;(2)|m﹣3|+m+2=|﹣+2+3|﹣+2+2=5﹣﹣+4=9﹣2.4.(2022秋•鄞州区期中)“数形结合”是重要的数学思想.如:|3﹣(﹣2)|表示3与﹣2差的绝对值,实际上也可以理解为3与﹣2在数轴上所对应的两个点之间的距离.进一步地,数轴上两个点A,B所对应的数分别用a,b表示,那么A,B两点之间的距离表示为AB=|a﹣b|.利用此结论,回答以下问题:(1)数轴上﹣2和5这两点之间的距离为 7 .(2)若x表示一个实数,|x+2|+|x﹣4|的最小值为 6 .(3)直接写出所有符合条件的x,使得|x﹣2|+|x+5|=9,则x的值为 3或﹣6 .【分析】(1)利用数轴直观得出答案.(2)x在﹣2到4之间值最小,两点之间线段最短.(3)2到﹣5之间是7,与9相差2,分到两段中,每段加1,得出结果.【解答】解:(1)|(﹣2)﹣5|=7.(2)当x<﹣2时,|x+2|+|x﹣4|=﹣2x+2>6;当﹣2≤x≤4时,|x+2|+|x﹣4|=6;当x>4时,|x+2|+|x﹣4|=2x﹣2>6,故|x+2|+|x﹣4|最小值为6.(3)当x<﹣5时,|x﹣2|+|x+5|=﹣(x﹣2)﹣(x+5)=﹣2x﹣3=9,解方程得:x=﹣6;当﹣5≤x≤2时,|x﹣2|+|x+5|=7,无解;当x>2时,|x﹣2|+|x+5|=2x+3=9,解方程得:x=3.故x的值为﹣6或3.5.(2022秋•义乌市校级期中)如图,有一只蚂蚁从点B沿数轴向左爬了2个单位长度到达点A,若点B表示数,设点A所表示的数为m.(1)实数m的值是 ﹣2 ;(2)求(m+2)2+|m+1|的值;(3)在数轴上还有C、D两点分别表示实数c和d,且有|2c+4|与互为相反数,求2c+3d+8的平方根.【分析】(1)m比小2;(2)结合(1),把m的值代入计算即可;(3)求出c,d,代入2c+3d+8,可得到答案.【解答】解:(1)根据题意:m=﹣2,故答案为:﹣2;(2)当m=﹣2时,(m+2)2+|m+1|=(﹣2+2)2+|﹣2+1|=5+﹣1=4+;(3)∵|2c+4|与互为相反数,∴|2c+4|+=0,∴2c+4=0,d﹣4=0,解得c=﹣2,d=4,∴2c+3d+8=2×(﹣2)+3×4+8=16,∴2c+3d+8的平方根,即16的平方根为±4.6.(2022秋•拱墅区期中)已知实数a,b,c在数轴上的位置如图所示,且满足|a|=|b|=2|﹣c|=4.(1)求a,b,c的值;(2)求|a﹣2b|+|﹣b+c|+|c﹣3a|的值.【分析】(1)根据数轴上点的位置及绝对值求解;(2)把(1)中求得的数值代入求解.【解答】解:(1)∵a<0,b>0,c>0,且满足|a|=|b|=2|﹣c|=4,∴a=﹣4,b=4,c=2;(2)|a﹣2b|+|﹣b+c|+|c﹣3a|=|﹣4﹣8|+|﹣4+2|+|2+12|=12+2+14=28.7.(2022春•巴东县期末)如图,数轴的正半轴上有A、B、C三点,表示1和的对应点分别为A、B,点B到点A的距离与点C到原点的距离相等.设点C对应的数为x.(1)求AC的长;(2)求()2的平方根.【分析】(1)根据点B到点A的距离与点C到原点的距离相等求出x的值,根据AC=AO﹣CO即可得出答案;(2)把x的值代入代数式求值,再求平方根即可.【解答】解:(1)根据题意得:﹣1=x﹣0,∴x=﹣1,∴AC=1﹣(﹣1)=2﹣;(2)∵x=﹣1,∴(x﹣)2=(﹣1﹣)2=(﹣1)2=1,∴()2的平方根为±1.8.(2022春•巨野县期末)在数轴上点A,B分别对应数1,,点B关于点A的对称点为C,设点C所对应的数为x,则x的值是多少?并求x(x﹣1)的值.【分析】求出AB的长,表示出AC的长,根据对称可得AB=AC,进而得到方程,求方程的解即可求出x,再代入代数式求值即可.【解答】解:由题意得:AB=﹣1,AC=1﹣x,∵点B关于点A的对称点为C.∴AB=AC,即:﹣1=1﹣x,解得x=2﹣,当x=2﹣时,x(x﹣1)=(2﹣)(2﹣﹣1)=4﹣3,答:x(x﹣1)的值为4﹣3.9.(2022春•望城区期末)如图:已知在数轴上点A表示﹣,点B表示;(1)求出A、B两点间的距离;(2)点C在数轴上满足AC=2AB,写出点C所表示的数.【分析】(1)利用两点间的距离公式计算即可;(2)利用两点间的距离公式计算即可;【解答】解:(1)=;(2)设点C表示的数是x,∵AC=2AB,∴|x﹣(﹣)|=2(),∴x+=,∴x1=2,x2=﹣3.所以点C表示的数是2或﹣3.10.(2021秋•封丘县期末)如图,数轴上点B,C关于点A成中心对称,若点A表示的数是1,点B表示的数是﹣.(1)填空:线段AB的长是 +1 ,点C表示的数为 +2 ;(2)点C表示的数为a,a的小数部分为b,求ab的值.【分析】(1)根据两点间的距离公式可得AB的长,根据对称可得AC=AB,可知点C表示的数;(2)由题意可得a=+2,b=﹣2,再代入可得ab的值.【解答】解:(1)∵点A表示的数是1,点B表示的数是﹣,∴AB=1﹣(﹣)=+1.∵点B,C关于点A成中心对称,∴AC=AB=+1,∴点C表示的数是1++1=+2.故答案为:,;(2)由(1)得,点C表示的数是+2,∴,,∴.11.(2021秋•垦利区期末)如图,一只蚂蚁从A点沿数轴向右直爬2个单位到达点B,点A表示﹣,设点B所表示的数为m.(1)求m的值;(2)求|m﹣1|+1的值.【分析】(1)根据数轴表示数的意义即可求出答案;(2)将m的值代入,再根据绝对值的意义进行计算即可.【解答】解:(1)∵点A表示,∴点B所表示的数为,即:m=;(2)∵m=∴原式====.12.(2021秋•诸暨市期末)定义:有A、B两只电子跳蚤在同一条数轴上跳动,它们在数轴上对应的实数分别为a、b.若实数a、b满足b=3a+2时,则称A、B处于“和谐位置”,A、B之间的距离为“和谐距离”.(1)当A在原点位置,且A、B处于“和谐位置”时,“和谐距离”为 2 .(2)当A、B之间的“和谐距离”为2022时,求a、b的值.【分析】(1)将a=0代入b=3a+2中得到b=2,所以和谐距离为2;(2)根据A,B的和谐距离为2022列出方程即可求解.【解答】解:(1)将a=0代入b=3a+2中得到b=2,所以和谐距离为2;故答案为:2;(2)∵A,B处于和谐位置,∴b=3a+2,∴|AB|=|b﹣a|=|2a+2|=2022,∴2a+2=±2022,∴a=1010,b=3032或a=﹣1012,b=﹣3034.13.(2022春•越秀区校级期末)如图,一只蚂蚁从点A沿数轴向右爬了2个单位长度到达点B,点A表示﹣,设点B所表示的数为m.(1)求|m+1|+|m﹣1|的值;(2)在数轴上还有C、D两点分别表示实数c和d,且有|2c+d|与互为相反数,求2c﹣3d的平方根.【分析】(1)先化简每一个绝对值,然后再进行计算即可;(2)根据互为相反数的两个数相加和为0,求出c,d即可.【解答】解:(1)由题意得:m=,∴m+1>0,m﹣1<0,∴|m+1|+|m﹣1|=m+1+1﹣m=2;(2)由题意得:|2c+d|+=0,∴2c+d=0,d+4=0,∴d=﹣4,c=2,∴2c﹣3d=16,∵16的平方根是±4,∴2c﹣3d的平方根是±4.14.(2021秋•唐山期末)如图,一只蚂蚁从点A沿数轴向右爬了2个单位长度到达点B,点A表示,设点B所表示的数为m.(1)实数m的值是 2﹣ .(2)求|m+1|+|m﹣1|的值;(3)在数轴上还有C、D两点分别表示实数c和d,且有|2c+4|与互为相反数,求2c+3d的平方根.【分析】(1)通过A,B在数轴上表示的数进行运算.(2)化简绝对值进行运算.(3)根据非负数的意义进行解答.【解答】解:∵点B在点A右侧2个单位处,∴点B所表示的数m为:﹣+2,即2﹣.故答案为:2﹣.,则m+1>0,m﹣1<0,∴|m+1|+|m﹣1|=m+1+1﹣m=2;答:|m+1|+|m﹣1|的值为2.(3)∵|2c+4|与互为相反数,∴,∴|2c+4|=0,且,解得:c=﹣2,d=4,∴2c+3d=8,∴2c+3d的平方根为±2.答:2c+3d的平方根为±2.15.(2022春•前郭县期末)如图,数轴的正半轴上有A、B、C三点,表示1和的对应点分别为A,B,点B到点A的距离与点C到原点的距离相等,设点C所表示的数为x.(1)请你直接写出x的值;(2)求(x﹣)2的平方根.【分析】(1)根据数轴上两点间的距离求出AB之间的距离即为x的值;(2)把x的值代入所求代数式进行计算即可.【解答】解:(1)∵点A.B分别表示1,,∴AB=,即x=;(2)∵x=,∴原式===1,∴1的平方根为±1.16.(2021秋•兰州期末)如图,已知点A、B是数轴上两点,O为原点,AB=12,点B表示的数为4,点P、Q分别从O、B同时出发,沿数轴向不同的方向运动,点P速度为每秒1个单位,点Q速度为每秒2个单位,设运动时间为t,当PQ的长为5时,求t的值及AP的长.【分析】根据题意可以分两种情况,然后根据题意和数轴即可解答本题.【解答】解:∵AB=12,0B=4,∴OA=8,当P向左,Q向右时,t+2t=5﹣4,得t=,此时,OP=,AP=8﹣=;当P向右,Q向左时,t+2t=5+4,得t=3,此时,OP=3,AP=8+3=11.17.(2021秋•藤县期末)如图,数轴上A,B两点对应的有理数分别为10和15,点P从点A出发,以每秒1个单位长度的速度沿数轴正方向运动,点Q同时从原点O出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t秒.(1)当0<t<5时,用含t的式子填空:BP= 5﹣t ,AQ= 10﹣2t ;(2)当t=2时,求PQ的值;(3)当PQ=AB时,求t的值.【分析】(1)先求出当0<t<5时,P点对应的有理数为10+t<15,Q点对应的有理数为2t<10,再根据两点间的距离公式即可求出BP,AQ的长;(2)先求出当t=2时,P点对应的有理数为10+2=12,Q点对应的有理数为2×2=4,再根据两点间的距离公式即可求出PQ的长;(3)由于t秒时,P点对应的有理数为10+t,Q点对应的有理数为2t,根据两点间的距离公式得出PQ=|2t﹣(10+t)|=|t﹣10|,根据PQ=AB列出方程,解方程即可.【解答】解:(1)∵当0<t<5时,P点对应的有理数为10+t<15,Q点对应的有理数为2t<10,∴BP=15﹣(10+t)=5﹣t,AQ=10﹣2t.(2)当t=2时,P点对应的有理数为10+2=12,Q点对应的有理数为2×2=4,所以PQ=12﹣4=8;(3)∵t秒时,P点对应的有理数为10+t,Q点对应的有理数为2t,∴PQ=|2t﹣(10+t)|=|t﹣10|,∵PQ=AB,∴|t﹣10|=5,解得t=15或5.故t的值是15或5.故答案为:5﹣t,10﹣2t.18.(2021秋•绥宁县期末)如图1,这是由8个同样大小的立方体组成的魔方,体积为64.(1)求出这个魔方的棱长.(2)图中阴影部分是一个正方形ABCD,求出阴影部分的面积及其边长.(3)把正方形ABCD放到数轴上,如图2,使得A与﹣1重合,那么D在数轴上表示的数为 ﹣1﹣2 .【分析】(1)根据正方体的体积公式可求这个魔方的棱长.(2)根据魔方的棱长为4,所以小立方体的棱长为2,阴影部分由4个直角三角形组成,算出一个直角三角形的面积乘以4即可得到阴影部分的面积,开平方即可求出边长.(3)根据两点间的距离公式可得D在数轴上表示的数.【解答】解:(1).答:这个魔方的棱长为4.(2)∵魔方的棱长为4,∴小立方体的棱长为2,∴阴影部分面积为:×2×2×4=8,边长为:=2.答:阴影部分的面积是8,边长是2.(3)D在数轴上表示的数为﹣1﹣2.故答案为:﹣1﹣2.19.(2022春•宁明县期末)如图所示,数轴的正半轴上有A、B、C三点,表示1和的对应点分别为A、B,点B到点A的距离与点C到点O的距离相等,设点C所表示的数为x.(1)请你写出数x的值;(2)求(x﹣)2的立方根.【分析】(1)根据数轴上两点间的距离求出AB之间的距离即为x的值;(2)把x的值代入所求代数式进行计算即可.【解答】解:(1)∵点A、B分别表示1,,∴AB=﹣1,即x=﹣1;(2)∵x=﹣1,∴原式==,∴1的立方根为1.20.(2021春•南通期末)如图,a,b,c是数轴上三个点A、B、C所对应的实数.试化简:+|a+b|+﹣|b﹣c|.【分析】直接利用数轴得出c>0,a+b<0,b﹣c<0,再化简求解.【解答】解:由数轴可得:c>0,a+b<0,b﹣c<0,原式=c﹣a﹣b+(a+b)+(b﹣c)=b.21.(2020秋•福山区期末)如图,一只蚂蚁从点A沿数轴向右爬2个单位长度后到达点B,点A表示的数是﹣,设点B所表示的数为m.(1)求m的值;(2)求|m﹣2|+|2m﹣|的值.【分析】(1)根据数轴上右边的数总比左边的数大,求出﹣与的和即可;(2)把(1)中求出的m值代入计算即可.【解答】解:(1)由题意得:m=﹣+=,∴m的值为;(2)|m﹣2|+|2m﹣|=|﹣2|+|2﹣|=|﹣|+||==.22.(2020秋•滨江区期末)如图,顺次连结4×4方格四条边的中点,得到一个正方形ABCD.设每一个小方格的边长为1个单位.(1)正方形ABCD的边长介于哪两个相邻的整数之间,请说明理由.(2)如果把正方形ABCD放到数轴上,使得边AB与数轴重合,且点A与数轴的原点重合,数轴的单位长度就是小方格的边长.请写出点B在数轴上所表示的数.【分析】(1)利用大正方形的面积减去四个直角三角形的面积,求出正方形ABCD的面积,然后再求出边长即可;(2)点B在数轴上的位置有两种情况,点B在原点左侧,点B在原点右侧.【解答】解:(1)正方形ABCD的边长介于两个相邻的整数2和3之间,理由是:∵正方形ABCD的面积=4×4﹣4××2×2=8,∴AB==,∵22=4,32=9,∴4<8<9,∴,∴2<<3,正方形ABCD的边长介于两个相邻的整数2和3之间;(2)分两种情况:当点B在原点左侧,点B在数轴上所表示的数是:,当点B在原点右侧,点B在数轴上所表示的数是:,∴点B在数轴上所表示的数是:±.23.(2021春•绥中县期末)如图,一只蚂蚁从点A沿数轴向右直爬2个单位到达点B,点A表示﹣,设点B所表示的数为m.(1)求m的值;(2)求|m﹣1|+(m﹣6)的值.【分析】(1)根据正负数的意义计算即可;(2)根据去绝对值的法则和有理数加减法则即可得到答案.【解答】解:(1)由题意,A和B的距离为2,点A表示﹣,∴B表示的数比A表示的数大2,∴m=﹣+2;(2)把m=﹣+2代入得:|m﹣1|+(m﹣6)=|﹣+2﹣1|+(﹣+2﹣6)=|1﹣|﹣﹣4=﹣1﹣﹣4=﹣5.24.(2021春•二道区期末)如图①,点O为数轴原点,OA=3,正方形ABCD的边长为6,点P从点O出发,沿射线OA方向运动,速度为每秒2个单位长度,设运动时间为t秒,回答下列问题.(1)点A表示的数为 3 ,点D表示的数为 9 .(2)t秒后点P对应的数为 2t (用含t的式子表示).(3)当PD=2时,求t的值.(4)如图②,在点P运动过程中,作线段PE=3,点E在点P右侧,以PE为边向上作正方形PEFG,当正方形PEFG与正方形ABCD重叠面积为6时,直接写出t的值.【分析】(1)根据线段OA的长和正方形的边长可以求解.(2)根据P点的运动速度与运动时间得出运动路程,对应数数轴得出结论.(3)根据运动过程P点处于不同位置进行分类讨论.(4)根据P点运动确定正方形的位置再去讨论重合面积为6时的t值.【解答】解:(1)∵OA=3,且O为数轴原点,在O的右侧,∴A表示的数为3,∵正方形的边长为6,∴OD=6+3=9,∴D表示的数为9.故答案是3,9;(2)∵P点从O点开始运动且速度为每秒2个单位长度∴OP=2t,故答案是2t.(3)∵OP=2t,OD=9,∴①当P点在D点左侧时,9﹣2t=2,解得t=3.5;②当P点在D点右侧时,2t﹣9=2,解得t=5.5.答:当PD=2时,t的值是3.5或5.5.(4)由题意得:①当E点在D点左侧时,AE=2t,∴2t×3=6,解得t=1;②当E点在D点右侧时,(9﹣2t)×3=6,解得:t=3.5.答:当正方形PEFG与正方形ABCD重叠面积为6时,t的值是1或3.5.25.(2020秋•北碚区校级期末)众所周知,所有实数都可以用数轴上的点来表示.其中,我们将数轴上表示正整数的点称为“正点”.取任意一个“正点”P,该数轴上到点P距离为1的点所对应的数分别记为a,b(a<b).定义:若数m=b3﹣a3,则称数m为“复合数”.例如:若“正点”P所表示的数为3,则a=2,b=4,那么m=43﹣23=56,所以56是“复合数”.【提示:b3﹣a3=(b﹣a)(b2+ab+a2).】(1)请直接判断12是不是“复合数”,并且证明所有的“复合数”与2的差一定能被6整除;(2)已知两个“复合数”的差是42,求这两个“复合数”.【分析】(1)直接利用定义进行判断12不是复合数,利用定义对复合数进行变形即可证明;(2)借助(1)的证明,所有的复合数都可以写成6x2+2,设出两个复合数进行转化.【解答】解:(1)12不是复合数,∵找不到两个整数a,b,使a3﹣b3=12,故12不是复合数;设“正点”P所表示的数为x(x为正整数),则a=x﹣1,b=x+1,∴(x+1)3﹣(x﹣1)3=(x+1﹣x+1)(x2+2x+1+x2﹣1+x2﹣2x+1)=2(3x2+1)=6x2+2,∴6x2+2﹣2=6x2一定能被6整除.(2)设两个复合数为6m2+2和6n2+2(m,n都是正整数),∵两个“复合数”的差是42,∴(6m2+2)﹣(6n2+2)=42,∴m2﹣n2=7,∵m,n都是正整数,∴,∴,∴6m2+2=98,6n2+2=56,这两个“复合数”为98和56.26.(2021秋•绥宁县期末)点A、B在数轴上分别表示实数a、b,A、B两点之间的距离记作AB.当A、B 两点中有一点为原点时,不妨设A点在原点.如图1所示,则AB=OB=|b|=|a﹣b|.当A、B两点都不在原点时:(1)如图2所示,点A、B都在原点的右边,不妨设点A在点B的左侧,则AB=OB﹣OA=|b|﹣|a|=b﹣a=|b﹣a|=|a﹣b|.(2)如图3所示,点A、B都在原点的左边,不妨设点A在点B的右侧,则AB=OB﹣OA=|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b|.(3)如图4所示,点A、B分别在原点的两边,不妨设点A在原点的右侧,则AB=OB+OA=|b|+|a|=a+(﹣b)=|a﹣b|.回答下列问题:(1)综上所述,数轴上A、B两点之间的距离AB= |a﹣b| ;(2)数轴上表示3和﹣5的两点A和B之间的距离AB= 8 ;(3)数轴上表示x和﹣5的两点A和B之间的距离AB= |x+5| ,如果AB=3,则x的值为 ﹣8或﹣2 ;(4)若代数式|x+5|+|x﹣2|有最小值,则最小值为 7 .【分析】根据题目条件可得,两点间的距离用绝对值可以表示成|a﹣b|,利用此几何意义解决距离问题即可.【解答】解:(1)AB=|a﹣b|(也可以填|b﹣a|)(2)AB=|3﹣(﹣5)|=8(3)AB=|x﹣(﹣5)|=|x+5|,即|x+5|=3.∴x+5=3或者﹣3,解得x=﹣2或﹣8.(4)若代数式|x+5|+|x﹣2|有最小值,|x+5|+|x﹣2|的最小值即为数轴上表示﹣5与2两点间的距离,此时最小值为|﹣5﹣2|=7.27.(2022秋•济南期末)已知数轴上两点A,B,其中A表示的数为﹣2,B表示的数为2,AB表示A,B两点之间的距离.若在数轴上存在一点C,使得AC+BC=n,则称点C为点A,B的“n节点”.例如图1所示,若点C表示的数为0,有AC+BC=2+2=4,则称点C为点A,B的“4节点”(1)若点C为点A,B的“n节点”,且点C在数轴上表示的数为﹣3,则n= 6 ;(2)若点D为点A,B的“节点”,请直接写出点D在数轴上表示的数为 ±2 ;(3)若点E在数轴上(不与A,B重合),满足A,E两点之间的距离是B,E两点之间的距离的倍,且点E为点A,B的“n节点”,求n的值.【分析】(1)根据新定义求解;(2)设未知数,根据新定义列方程求解;(3)先求点E表示的数,再计算n的值.【解答】解:(1)AC+BC=(﹣2+3)+(2+3)=6,故答案为:6;(2)设D表示的数为x,则|x+2|+|x﹣2|=4,解得:x=±2,故答案为:±2;(3)设E点表示的数是y,则:|﹣2﹣y|=|2﹣y|,解得:y=6,当y=6+4时,n=AE+BE=8+4+4+4=12+8,当y=6﹣4时,n=AE+BE=8﹣4+4﹣4=4.28.(2021秋•成都期末)如图,数轴上点M,N对应的实数分别为﹣6和8,数轴上一条线段AB从点M出发(刚开始点A与点M重合),以每秒1个单位的速度沿数轴在M,N之间往返运动(点B到达点N立刻返回),线段AB=2,设线段AB的运动时间为t秒.(1)如图1,当t=2时,求出点A对应的有理数和点B与点N之间的距离;(2)如图2,当线段AB从点M出发时,在数轴上的线段CD从点N出发(D在C点的右侧,刚开始点D与点N重合),以每秒2个单位的速度沿数轴在N,M之间往返运动(点C到达点M立刻返回),CD=4,点P为线段AB的中点,点Q为线段CD的中点.①当P点第一次到达原点O之前,若点P、点Q到数轴原点的距离恰好相等,求t的值;②我们把数轴上的整数对应的点称为“整点”,当P,Q两点第一次在整点处重合时,请求出此时点C 对应的数.【分析】(1)根据起始点求出点A和点B对应的数,进而可得答案;(2)①分别用含t的代数式表示出点P和点Q,再分情况列方程即可;②当0<t≤5时,点P与点Q重合时不在整点处;当5<t≤10时,由题意得﹣5+t=﹣4+2(t﹣5),解方程可得答案.【解答】解:(1)点A起始点在﹣6处,当t=2时,∵﹣6+1×2=﹣4,∴点A对应的有理数为﹣4,点B起始点在﹣4处,当t=2时,∵﹣4+1×2=﹣2,∴点B对应的有理数为﹣2,∴点B与点N之间的距离为10;(2)①点P起始点在﹣5处,当运动时间为t秒时,∵0<t≤5,∴此时点P一直往右运动,∴点P对应的有理数为﹣5+t,点Q起始点在6处,当运动时间为t秒时,∵0<t≤5,∴此时点Q一直往左运动,∴点Q对应的有理数为6﹣2t,∵点P、点Q到数轴原点的距离相等,∴当原点是PQ中点时,﹣5+t+6﹣2t=0,解得t=1,当P、Q重合时,﹣5+t=6﹣2t,解得t=.综上,t的值是1或;②当0<t≤5时,由①可得点P与点Q重合时不在整点处;当5<t≤10时,由题意得﹣5+t=﹣4+2(t﹣5),解得t=9,此时,点Q对应是有理数为4,故点C对应是有理数为2.29.(2021秋•南充期末)如图,O为原点,长方形OABC与ODEF的面积都为12,且能够完全重合,边OA在数轴上,OA=3.长方形ODEF可以沿数轴水平移动,移动后的长方形O′D′E′F′与OABC重叠部分的面积记为S.(1)如图1,求出数轴上点F表示的数.(2)当S恰好等于长方形OABC面积的一半时,求出数轴上点O′表示的数.(3)在移动过程中,设P为线段O′A的中点,点F′,P所表示的数能否互为相反数?若能,求点O 移动的距离;若不能,请说明理由.【分析】(1)利用面积÷OA可得OC长,即可得出OF的长,进而可得答案;(2)首先计算出S的值,再根据矩形的面积表示出O′A的长度,再分两种情况:当点O′在OA上时,当点O′在点A右侧时,分别求出O′表示的数;(3)设OO′=x,分两种情况:当原长方形ODEF向左移动时,点O′所表示的数为﹣x,则点P所表示的数为:﹣x,点F′所表示的数为﹣4﹣x;若互为相反数则有﹣x+(﹣4﹣x)=0,求解即可;当原长方形ODEF向右移动时,点O′所表示的数为x,则点P所表示的数为:+x,点F′所表示的数为﹣4+x;若互为相反数则有+x+(﹣4+x)=0,求解即可.【解答】解:(1)∵长方形OABC的面积为12,OA边长为3,∴OC=12÷3=4,∵长方形OABC与ODEF的面积都为12,∴OF=OC=4,DE=OA=3,∴数轴上点F表示的数为﹣4,(2)∵S恰好等于原长方形OABC面积的一半,∴S=6,①当点O′在OA上时,O′O=6÷3=2,∴O′表示的数为2,②当点O′在点A右侧时,如图,∴AF′=6÷3=2,∴OF′=3﹣2=1,∴OO′=O′F′+OF′=5,综上,O′表示的数为2或5.(3)能,理由如下:设OO′=x,分两种情况:①当原长方形ODEF向左移动时,点O′所表示的数为﹣x,点F′所表示的数为﹣4﹣x,∵点P是O′A的中点,∴点P所表示的数为:﹣x;∴﹣x+(﹣4﹣x)=0,∴x=﹣;②当原长方形ODEF向右移动时,点O′所表示的数为x,点F′所表示的数为﹣4+x;∵点P是O′A的中点,∴点P所表示的数为:+x,∴+x+(﹣4+x)=0,∴x=.∴点O移动的距离为:.30.(2021秋•北仑区期末)数轴是一个非常重要的数学工具,它使实数和数轴上的点建立起一一对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.【阅读理解】|3﹣1|表示3与1的差的绝对值,也可理解为3与1两数在数轴上所对应的两点之间的距离;同理|x﹣1|可以理解为x与1两数在数轴上所对应的两点之间的距离,|x+1|=|x﹣(﹣1)|就表示x在数轴上对应的点到﹣1的距离.(1)【尝试应用】①数轴上表示﹣4和2的两点之间的距离是 6 (写出最后结果);②若|x﹣(﹣2)|=3,则x= 1或﹣5 ;(2)【动手探究】小明在草稿纸上画了一条数轴,并折叠纸面,若表示2的点与表示﹣4的点重合.①则表示10的点与表示 ﹣12 的点重合;②这时如果A,B(A在B的左侧)两点之间的距离为2022,且A,B两点经过折叠后重合,则A表示的数是 ﹣1012 ,B表示的数是 1010 ;③若点A表示的数为a,点B表示的数为b(A在B的左侧),且A,B两点经折叠后刚好重合,那么a与b之间的数量关系是 a+b=﹣2 ;(3)【拓展延伸】①当x= 1 时,|x+2|+|x﹣1|+|x﹣3|有最小值,最小值是 5 ;②|x+1|﹣|x﹣4|有最大值,最大值是 5 ,|x+1|﹣|x﹣4|有最小值,最小值是 ﹣5 .【分析】(1)①根据两点间距离公式可得答案;②根据绝对值的定义可以解答;(2)①首先求出折叠点是﹣1,列式为﹣1﹣(10+1)可得答案;②根据折叠点为﹣1可列式解答;③由题意得,(a+b)=﹣1,整理可得答案;(3)根据绝对值的定义和分类讨论的数学思想可以解答本题.【解答】解:(1)①﹣4和2的两点之间的距离是:2﹣(﹣4)=6,故答案为:6;②∵|x﹣(﹣2)|=3,∴x=1或﹣5,故答案为:1或﹣5;(2)∵表示2的点与表示﹣4的点重合,∴折叠点是﹣1,①﹣1﹣(10+1)=﹣12,故答案为:﹣12;②2022÷2=1011,﹣1﹣1011=﹣1012,﹣1+1011=1010,∴则A表示的数是﹣1012,B表示的数是1010,故答案为:﹣1012,1010;③由题意得,(a+b)=﹣1,∴a+b=﹣2,故答案为:a+b=﹣2;(3)①当x≤﹣2时,|x+2|+|x﹣1|+|x﹣3|=﹣x﹣2﹣x+1﹣x+3=﹣3x+2≥8,当﹣2<x≤1时,|x+2|+|x﹣1|+|x﹣3|=x+2﹣x+1﹣x+3=﹣x+6,5≤﹣x+6<8,当1<x≤3时,|x+2|+|x﹣1|+|x﹣3|=x+2+x﹣1﹣x+3=x+4,5<x+4≤7,当x>3时,|x+2|+|x﹣1|+|x﹣3|=x+2+x﹣1+x﹣3=3x﹣2>7,∴当x=1时,最小值是5,故答案为:1,5;②当x<﹣1时,|x+1|﹣|x﹣4|=﹣x﹣1+x﹣4=﹣5,当﹣1≤x≤4时,|x+1|﹣|x﹣4|=x+1+x﹣4=2x﹣3,﹣5≤2x﹣3≤5,当x>4时,|x+1|﹣|x﹣4|=x+1﹣x+4=5,∴最大值是5,最小值是﹣5,故答案为:5,﹣5.。

数轴练习题加答案

数轴练习题加答案

数轴练习题加答案数轴是一种数学工具,用于表示实数和它们的顺序。

它是一个直线,通常水平放置,标有等距的点,这些点代表整数。

数轴上每个点之间的距离代表一个单位长度。

以下是一些数轴练习题以及它们的答案。

练习题1:在数轴上标出以下数:-3, 0, 5, 7。

答案:在数轴上,从左到右依次标出-3, 0, 5, 7。

0位于数轴的中心,-3在0的左边,5和7在0的右边。

练习题2:如果点A在数轴上表示-2,点B表示3,求点A和点B之间的距离。

答案:点A和点B之间的距离是3 - (-2) = 5。

练习题3:在数轴上,如果点P表示一个数,且它与-1的距离是4个单位长度,求点P表示的数。

答案:如果点P在-1的右边,那么P表示的数是-1 + 4 = 3。

如果点P在-1的左边,那么P表示的数是-1 - 4 = -5。

练习题4:给定数轴上的点Q表示-4,点R表示6,求点Q和点R之间的中点。

答案:中点的值是(-4 + 6) / 2 = 1。

练习题5:在数轴上,点S表示-3,点T表示7。

如果点U表示一个数,使得点U与点S和点T的距离相等,求点U表示的数。

答案:点U表示的数是(-3 + 7) / 2 = 2。

练习题6:如果在数轴上有一个点V,它表示的数是-2,并且它与另一个点W的距离是3个单位长度,求点W表示的数。

答案:如果点W在点V的右边,那么W表示的数是-2 + 3 = 1。

如果点W在点V的左边,那么W表示的数是-2 - 3 = -5。

练习题7:在数轴上,点X表示一个数,并且与0的距离是5个单位长度,求点X表示的数。

答案:如果点X在0的右边,那么X表示的数是5。

如果点X在0的左边,那么X表示的数是-5。

练习题8:如果点Y表示一个数,并且它与点Z表示的数的和是10,而点Y和点Z在数轴上的距离是6个单位长度,求点Y和点Z各自表示的数。

答案:设点Y表示的数为y,点Z表示的数为z。

根据题意,我们有y + z = 10 和 |y - z| = 6。

数轴练习题(含答案)

数轴练习题(含答案)

亲爱的朋友,很高兴能在此相遇!欢迎您阅读文档数轴练习题(含答案),这篇文档是由我们精心收集整理的新文档。

相信您通过阅读这篇文档,一定会有所收获。

假若亲能将此文档收藏或者转发,将是我们莫大的荣幸,更是我们继续前行的动力。

数轴练习题(含答案)篇一:《数轴、相反数、绝对值》专题练习(含答案)《数轴、相反数、绝对值》专题练习一、选择题(每小题3分,共30分)1.-5的绝对值为()A.-5B.5C.-15D.152.-的相反数是()A.-8B.1818C.0.8D.83.在下面所画的数轴中,你认为正确的数轴是()4.下列说法正确的是()A.正数与负数互为相反数B.符号不同的两个数互为相反数C.数轴上原点两旁的两个点所表示的数互为相反数D.任何一个有理数都有它的相反数5.数轴上的点A,B位置如图所示,则线段AB的长度为( )A.-3B.5C.6D.76.若a=7,b=5,则a-b的值为()A.2C.2或12B.12D.2或12或-12或-27.实数a,b在数轴上的位置如图所示,以下说法正确的是()8.下列式子不正确的是()A.44B.1122C.00D.1.51.59.如果有理数a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,d是倒数等于它本身的数,那么式子a-b+c2-d的值是()A.-2B.-1C.0D.110.如果abcd0,那么这四个数中的负因数至少有()A.4个B.3个C.2个D.1个二、填空题(每小题3分,共24分)11.数轴上最靠近-2且比-2大的负整数是______.12.-111的相反数是______;-2是______的相反数;_______与互为倒数.21013.数轴上表示-2的点离原点的距离是______个单位长度;表示+2的点离原点的距离是______个单位长度;数轴上与原点的距离是2个单位长度的点有______个,它们表示的数分别是______.14.绝对值小于π的非负整数是_______.15.数轴上,若A,B表示互为相反数的两个点,并且这两点的距离为8,则这两点所表示的数分别是______和_______.16.写出一个x的值,使x1=x-1成立,你写出的x的值是______.17.若x,y是两个负数,且xb>c,则该数轴的原点O的位置应该在______.三、解答题(共46分)19.(5分)分别写出下列各数的绝对值:-120.(5分)(1)如图,根据数轴上各点的位置,写出它们所表示的数:31,-(+6.3),+(-32),12,3.52(2)用数轴上的点表示下列各数,并用“<”号把下列各数连接起来.-311,4,2.5,0,1,-(-7),-5,-1.2221.(6分)七(4)班在一次联欢活动中,把全班分成5个队参加活动,游戏结束后,5个队的得分如下:A队:-50分;B队:150分;C队:-300分;D队:0分;E队:100分.(1)将5个队按由低分到高分的顺序排序;(2)把每个队的得分标在数轴上,并标上代表该队的字母;(3)从数轴上看A队与B队相差多少分C队与E队呢?22.(6分)如图是一个长方体纸盒的展开图,请把-5,3,5,-1,-3,1分别填入六个长方形中,使得按虚线折成长方体后,相对面上的两数互为相反数.23.(8分)在数轴上,表示数x的点与表示数1的点的距离等于1,其几何意义可表示为:x=1,这样的数x可以是0或2.(1)等式x2=2的几何意义可仿上解释为:在数轴上____________________________,其中x的值可以是______________.(2)等式x3=2的几何意义可仿上解释为:在数轴上____________________________,其中x的值可以是______________.(3)在数轴上,表示数x的点与表示数5的点的距离等于6,其中x的值可以是_______,其几何意义可以表示为_______.24.(8分)(1)5的相反数是-5,-5的相反数是5,那么-x的相反数是_______,m+的相反数是_______.(2)数轴上到点2和点6距离相等的点表示的数是4,有这样的关系4=1n21(2+6),那么2到点100和到点999距离相等的点表示的数是_______;到点m和点-n距离相等的点表示的数是_______.(3)数轴上点4和点9之间的距离为5个单位,有这样的关系5=9-4,那么点10和点-3之间的距离是_______;点m和点n之间的距离是_______.25.(6分)设abc0,abc0,求bccaab的值。

专题02 实数的运算(三大题型,50题)(解析版)

专题02 实数的运算(三大题型,50题)(解析版)

专题02实数的运算(三大题型,50题)(解析版)学校:___________姓名:___________班级:___________考号:___________一、用数轴上的点表示实数,中档题20题,难度三星1.如图,若5x =,则表示2211(1)x x x x -+÷-的值的点落在()A .段①B .段②C .段③D .段④【答案】C 【分析】首先对原式进行化简,然后代入x 的值,最后根据5 2.236≈即可判断.【详解】原式=2211()x x x x x-+-÷=()211x xx x -- =1x -当5x =时,原式=51-∵5 2.236≈∴51 1.236-≈故选C .【点睛】本题考查了分式的乘除法化简,无理数的估算,无理数的估算是难点,关键是要熟记一些常用的完全平方数,和一些常用无理数的近似值.2.若实数p ,q ,m ,n 在数轴上的对应点的位置如图所示,且满足0p q m n +++=,则绝对值最小的数是()A .pB .qC .mD .n【答案】C 【分析】根据0p q m n +++=,并结合数轴可知原点在q 和m 之间,且离m 点最近,即可求解.A.a b>B.π+A.πB.1【答案】B【分析】根据数轴与实数的一一对应关系解答即可.A .a b-+B .a b +C .a 【答案】21π--【分析】求出圆的周长,再根据实数与数轴上的点的对应关系解答即可.【答案】﹣2a﹣b【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案.【答案】32-或32+【分析】分顺时针旋转和逆时针旋转,两种情况讨论求解即可.【详解】解:∵点A 表示的数为3,点B 表示的数为4,∴1AB =,此时C '表示的数为:32-;当正方形ABCD 绕点A 逆时针旋转,使得点C 落在数轴上的点C '处时,如图:此时C '表示的数为:32+;【答案】2π2+【分析】先求出圆的周长为2π,再利用数轴的性质求解即可得.【详解】解:由题意可知,将圆沿数轴向右转动一周,转动的距离为∴点A 向右移动了2π个单位长度,【答案】280905--+/809052【分析】本题考查的是数轴的一个知识,解题的关键是找到规律:第移动25个单位,从第2次落在数轴上开始,比上一次又向右多移动了(1)图1中的阴影部分为正方形,它的面积是_________;(2)请利用(1)的解答,在图1的数轴上画出表示10的点;并简洁地说明理由.(3)如图2,请你利用正方形网格,设计一个面积方案,在数轴上画出表示理由.【答案】(1)10(3)解:如图,阴影部分为正方形,面积为所以,其边长为5,在数轴上截取5==,CDOC OK则点K表示的数为5,点D表示的数【点睛】本题主要考查正方形的性质以及网格,熟练掌握正方形的性质是解题的关键.20.阅读下面的文字,解答问题.大家知道,2是无理数,而无理数是无限不循环小数,因此【点睛】此题考查的是估算无理数及求代数式的值,能够得到一个无理数的整数部分与小数部分是解决此题的关键.二、实数的大小比较,中档题15题,难度三星π-<-<根据数轴上点的特点可得: 1.5333.在数轴上表示数0,π-303π-<-<<.2【点睛】本题考查了实数与数轴,实数的大小比较,能利用数轴比较实数的大小是解此题的关键,注意:。

重难点02有关实数与数轴的应用题(3种题型)(原卷版)-【暑假预习】2024年新七年级数学核心知识点

重难点02有关实数与数轴的应用题(3种题型)(原卷版)-【暑假预习】2024年新七年级数学核心知识点

重难点02有关实数与数轴的应用题(3种题型)【考点剖析】一.数轴(共9小题)1.(2022秋•东阳市月考)如图所示,圆的周长为4个单位长度,在圆周的四等分点处标上字母A,B,C,D,先将圆周上的字母A对应的点与数轴上的原点重合,再将圆沿着数轴向右滚动,那么数轴上的2022所对应的点与圆周上字母()所对应的点重合.A.A B.B C.C D.D2.(2022秋•义乌市校级月考)点A、B在数轴上所对应的数分别是x、y,其中x、y满足(x﹣3)2+|y+5|=0.若点D是AB的中点,O为原点,数轴上有一动点P,|PD|、|PO|分别表示数轴上P与D,P与O两点间的距离,则|PD|﹣|PO|的最小值是.3.(2021秋•慈溪市期中)如图:在数轴上A点表示数a,B点表示数b,C点表示数c,b是最小的正整数,且a,c满足|a+2|+(c﹣7)2=0.(1)a=,b=,c=;(2)若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,则AB=,AC=,BC=.(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.4.(2022秋•吴兴区期中)【新知理解】点C在线段AB上,若BC=2AC或AC=2BC,则称点C是线段AB的“优点”,线段AC,BC称作互为“优点“伴侣线段.例如,图1,线段AB的长度为6,点C在AB上,AC的长度为2,则点C是线段AB的其中一个“优点”.(1)若点C为图1中线段AB的“优点”AC=6(AC<BC),则AB=;(2)若点D也是图1中线段AB的“优点”(不同于点C),则AC BD(填“=”或“≠”)【解决问题】如图2,数轴上有一点E表示的数为1,向右平移3个单位到达点F;(3)若不同的两点M,N都在线段OF上,且M,N均为线段OF的“优点”,求线段MN的长;(4)如图2,若点G在射线EF上,且线段GF与以E,F,G中某两个点为端点的线段互为“优点”伴侣线段,求点G表示的数(写出所有可能).5.(2022秋•宁波期中)如图,圆的半径为个单位长度.数轴上每个数字之间的距离为1个单位长度,在圆的4等分点处分别标上点A,B,C,D.先让圆周上的点A与数轴上表示—1的点重合.(1)圆的周长为多少?(2)若该圆在数轴上向右滚动2周后,则与点B重合的点表示的数为多少?(3)若将数轴按照顺时针方向绕在该圆上,(如数轴上表示—2的点与点B重合,数轴上表示—3的点与点C重合…),那么数轴上表示—2024的点与圆周上哪个点重合?6.(2022秋•义乌市月考)我们知道,|a|可以理解为|a﹣0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a﹣b|,反过来,式子|a﹣b|的几何意义是:数轴上表示数a的点和表示数b的点之间的距离.利用此结论,回答以下问题:(一)数轴上表示数﹣8的点和表示数3的点之间的距离是.(二)数轴上点A用数a表示,(1)若|a﹣3|=5,那么a的值是.(2)当|a+2|+|a﹣3|=5时,这样的整数a有个.(3)|a﹣3|+|a+2022|最小值是.(4)3|a﹣3|+|a+2022|+|a+3|最小值是.(5)|3a+3|+|a+4|+|4a﹣8|最小值是.7.(2021秋•西湖区期末)已知点A,B,C,D是同一数轴上的不同四点,且点M为线段AB的中点,点N 为线段CD的中点.如图,设数轴上点O表示的数为0,点D表示的数为1.(1)若数轴上点A,B表示的数分别是﹣5,﹣1,①若点C表示的数是3,求线段MN的长.②若CD=1,请结合数轴,求线段MN的长.(2)若点A,B,C均在点O的右侧,且始终满足MN=,求点M在数轴上所表示的数.8.(2021秋•东阳市期末)数轴上的三个点,若其中一个点与其它两个点的距离满足2倍关系,则称该点是其它两个点的“友好点”,这三点满足“友好关系”.已知点A、B表示的数分别为﹣2、1,点C为数轴上一动点.(1)当点C在线段AB上,点A是B、C两点的“友好点”时,点C表示的数为;(2)若点C从点B出发,沿BA方向运动到点M,在运动过程中有4个时刻使A、B、C三点满足“友好关系”,设点M表示的数为m,则m的范围是.9.(2021秋•武昌区期中)已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2(单位长度),慢车长CD=4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向右方向为正方向画数轴,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是b.若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以2个单位长度/秒的速度向左匀速继续行驶,且|a+8|与(b﹣16)2互为相反数.(1)求此时刻快车头A与慢车头C之间相距多少单位长度?(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头AC相距8个单位长度?(3)此时在快车AB上有一位爱动脑筋的七年级学生乘客P,他发现行驶中有一段时间t秒钟,他的位置P到两列火车头A、C的距离和加上到两列火车尾B、D的距离和是一个不变的值(即P A+PC+PB+PD 为定值).你认为学生P发现的这一结论是否正确?若正确,求出这个时间及定值;若不正确,请说明理由.二.实数与数轴(共12小题)10.(2022秋•慈溪市期中)数轴上有A,B,C三个点,点A表示的数是,点B表示的数是1,点A到点B的距离与点C到点B的距离相等,那么点C表示的数是()A.B.C.D.11.(2022秋•杭州期中)如图,以数轴的单位长度线段为边长作一个正方形,以表示数2的点为圆心,正方形对角线长为半径画半圆,交数轴于点A和点B,则点A表示的数是,B表示的数是.12.(2022秋•北仑区期中)如图,一只蚂蚁从A点沿数轴向右直爬2个单位长度到达点B,点A表示﹣,设点B所表示的数为m,(1)求m的值.(2)求|m﹣3|+m+2的值.13.(2022秋•越城区期中)如图,在数轴上表示2、的对应点分别为C、B,点C是AB的中点,则点A 表示的数是()A.﹣B.2﹣C.4﹣D.﹣214.(2021秋•吴兴区期末)如图,已知正方形ABCD的面积为5,点A在数轴上,且表示的数为1.现以A 为圆心,AB为半径画圆,和数轴交于点E(E在A的右侧),则点E表示的数为()A.3.2B.C.D.15.(2022秋•义乌市校级月考)若点A、B在数轴上分别表示有理数a、b,则A、B两点之间的距离表示为AB,即AB=|a﹣b|.利用数轴回答下列问题:(1)①数轴上表示2和5两点之间的距离是;数轴上表示x和﹣2的两点之间的距离表示为.②若x表示一个有理数,且﹣2<x<2,则|x﹣2|+|x+2|=.③当|x﹣1|+|x+2|=10﹣|y﹣3|﹣|y+4|时,求xy的最大值和最小值.(2)实数a、b、c满足a<b<c(ac<0),且|c|<|b|<|a|,当x为何值时,|x﹣a|+|x+b|+|x﹣c|的值最小,并求最小值.16.(2022秋•拱墅区月考)【方法感悟】阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.如图1,从数轴上看,若点A,B表示的分别是1,4,则|AB|=|4﹣1|=3或|AB|=|1﹣4|=3;若点A,B表示的数分别是﹣1,4,则|AB|=|4﹣(﹣1)|=4+1=5或|AB|=|﹣1﹣4|=|﹣5|=5;若点A,B表示的数分别是﹣1,﹣4,则|AB|=|(﹣1)﹣(﹣4)|=|﹣1+4|=3或|AB|=|﹣4﹣(﹣1)|=|﹣4+1|=3.【归纳】若点A,B表示的数分别是x1,x2则|AB|=|x1﹣x2|或|AB|=|x2﹣x1|.【知识迁移】(1)如图1,点A,B表示的数分别是﹣4.5,b,且|AB|=3,则b=;(2)如图2,点A,B表示的数分别是x1,x2,若把AB向左平移|AB|个单位,则点A与﹣50重合:若把AB向右平移|AB|个单位,则点B与70重合,那么x1=,x2=;【拓展应用】(3)一天,美羊羊去问村长爷爷的年龄,村长爷爷说:“我若是你现在这么大,你还要40年才出生呢,你若是我现在这么大,我已经是老寿星了,116岁了,哈哈!”美羊羊纳闷,请问村长爷爷现在到底是多少岁?美羊羊现在又是几岁?请写出解题思路.(4)结合几何意义,求|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+|x﹣5|最小值.17.(2021秋•拱墅区校级期中)如图1,这是由8个同样大小的立方体组成的魔方,体积为8.(1)图中阴影部分是一个正方形ABCD,求出阴影部分的面积及其边长.(2)把正方形ABCD放到数轴上.如图2.使得A与1重合,那么D在数轴上表示的数为.(3)在(2)的条件下,把正方形ABCD沿数轴逆时针方向滚动.当点B第一次落在数轴上时,求点B 在数轴上表示的数.18.(2022秋•海曙区期中)长方形ABCD在数轴上的位置如图所示,点B、C对应的数分别为﹣2和﹣1,CD=2.若长方形ABCD绕着点C顺时针方向在数轴上翻转,翻转1次后,点D所对应的数为1;绕D 点翻转第2次;继续翻转,则翻转2022次后,落在数轴上的两点所对应的数中较大的是.19.(2022秋•温州期中)操作探究:已知在纸面上有一数轴(如图所示),(1)折叠纸片,使表示1的点与表示﹣1的点重合,则表示﹣2的点与表示的点重合;(2)折叠纸片,使表示﹣1的点与表示3的点重合,回答以下问题:①表示5的点与表示的点重合;②若数轴上A、B两点之间的距离为13(A在B的左侧),且A、B两点经折叠后重合,此时点A表示的数是;点B表示的数是.③表示点与表示的点重合;(3)已知数轴上P,Q两点表示的数分别为﹣1和3,有一只电子小蜗牛从P点出发以每秒2个单位的速度向右移动,运动多少秒时,它到点P的距离是到点Q的距离的2倍?20.(2021秋•诸暨市期末)期末复习过程中,七(1)班的张老师设计了一个数学问题,涉及本册中多个知识点和多种数学思想,请聪明的你来解答一下吧.(1)若一个数x的立方等于﹣8,请求出x的值.(2)请利用整体思想和方程思想进行解题.①若(1)中的x的值也是关于x的一元一次方程x﹣3=5x﹣p的解,那么关于y的一元一次方程(y﹣8)﹣3=5(y﹣8)﹣p的解为y=.②在如图所示的“幻方”中,每个小三角形的三个顶点上的数字之和都与中间正方形四个顶点上的数字之和相等,现将①中的x,y填入如图所示的位置,则(a﹣b)+(d﹣c)的值为多少?(3)在(2)的条件下,在数轴上标注x,y所表示的数的对应点,分别记作A,B,已知P点从A点出发,以1个单位每秒的速度向B点运动,Q点从B点出发,以4个单位每秒的速度在A、B两点之间做往返运动,P、Q两点同时开始运动,当Q点第一次返回到B点时,两点同时停止运动,若记数轴的原点为O,则P点运动几秒后OQ=2OP?21.(2022秋•鄞州区期中)“数形结合”是重要的数学思想.如:|3﹣(﹣2)|表示3与﹣2差的绝对值,实际上也可以理解为3与﹣2在数轴上所对应的两个点之间的距离.进一步地,数轴上两个点A,B所对应的数分别用a,b表示,那么A,B两点之间的距离表示为AB=|a﹣b|.利用此结论,回答以下问题:(1)数轴上﹣2和5这两点之间的距离为.(2)若x表示一个实数,|x+2|+|x﹣4|的最小值为.(3)直接写出所有符合条件的x,使得|x﹣2|+|x+5|=9,则x的值为.三.实数与数轴复杂应用题(共7小题)22.(2022秋•宁波期末)【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美结合.研究数轴时,我们发现有许多重要的规律:若数轴上点A,B表示的数分别为a,b,则A,B两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为.【知识应用】如图,在数轴上,点A表示的数为5,点B表示的数为3,点C表示的数为﹣2,点P从点C出发,以每秒2个单位沿数轴向右匀速运动.设运动时间为t秒t>0,根据以上信息,回答下列问题:(1)填空:①A,C两点之间的距离AC=,线段BC的中点表示的数为.②用含t的代数式表示:t秒后点P表示的数为.(2)若点M为P A的中点,当t为何值时,.【拓展提升】(3)在数轴上,点D表示的数为9,点E表示的数为6,点F表示的数为﹣4,点G从点D,点H从点E同时出发,分别以每秒1个单位长度和每秒2个单位长度的速度沿数轴的负方向运动,且当它们各自到达点F时停止运动,设运动时间为t秒,线段GH的中点为点K,当t为何值时,HK=3.23.(2022秋•莲都区期中)已知数轴上的A、B两点分别对应的数字为a、b,且a、b满足|4a﹣b|+(a﹣4)2=0.(1)直接写出a、b的值;(2)P从A出发,以每秒3个长度的速度沿数轴正方向运动,何时P,A,B三点中其中一个点到另外两个点的距离相等?求出相应的时间t;(3)数轴上还有一点C对应的数为36,若点P从A出发,以每秒3个单位的速度向C点运动,同时,Q从B点出发,以每秒1个长度的速度向正方向运动,点P运动到C点立即返回再沿数轴向左运动.当PQ=10时,求P运动的时间.24.(2021秋•平阳县期中)如图1,数轴上有A,B两点(点A在点B的左侧),点A表示的数是﹣x,点B 表示的数是3x﹣4,点P,Q是数轴A,B之间的动点,且点P以每秒4个单位的速度运动,点Q以每秒3个单位的速度运动,设运动时间为t秒.(1)当数轴沿原点折叠时,点A与点B重合,则点A表示的数为.(2)若x=22时,点P,Q分别从点A,B同时出发,相向而行,点P到达点B时,点P,Q同时停止运动,当t为何值时,A,B两点之间的距离是P,Q两点之间距离的6倍.(3)若点P,Q同时从点A出发,在线段AB上各自做不间断的往返运动(即只要动点与线段AB的某一端点重合则立即转身以同样的速度向另一点运动).①如图2,点P与点Q第一次重合于点C,第二次重合于点D,且点C与点D之间的距离为40,求线段AB的长;②在①的基础上,当t=2021时,点P,Q两点之间的距离是点A,P两点之间的距离的倍.(请直接写出答案)25.(2022秋•富阳区期中)如图数轴上有两个点A、B,分别表示的数是﹣2,4.请回答以下问题:(1)A与B之间距离为,A,B中点对应的数为,B点向左平移7个单位对应的数为.(2)若点C对应的数为﹣3,只移动C点,要使得A,B,C其中一点到另两点之间的距离相等,请写出所有的移动方法.(3)若点P从A点出发,以每秒3个单位长度的速度向左做匀速运动,点Q从B出发,以每秒5个单位长度的速度向左做匀速运动,P,Q同时运动:①当点P运动多少秒时,点P和点Q重合?②当点P运动多少秒时,P,Q之间的距离为3个单位长度?26.(2022秋•萧山区期中)如图,已知数轴上三点A、B、C分别对应的数为a、b、c.(1)点A、点B在数轴上所表示的数互为相反数,且A、B两点之间距离为4.①若A、C两点之间距离为2,且点C在点A的左侧,则点C所表示的数为.②点D位于点C的左侧,且点D到B、C两点的距离之和为7,则点D所表示的数为.③数轴上是否存在点P,使得点P到A、B、C三点的距离之和为9.若存在,请直接写出点P在数轴上所表示的数,若不存在请说明理由.(2)点B、点C在数轴上所表示的数互为相反数.请判断下列两个代数式的结果是正数还是负数,并说明理由.①a(b+c)+ac;②|c+a|﹣|a+b|.27.(2021秋•定海区期末)已知M、N两点在数轴上所表示的数分别为m,n,且满足(m﹣11)2+(n+4)2=0.(1)m=,n=;(2)若点P从N点出发,以每秒1个单位长度的速度向右运动,同时点Q从M点出发,以每秒2个单位长度的速度向左运动,经过多长时间后P、Q两点相距6个单位长度?(3)若点A、B为线段MN上的两点,且NA=AB=BM,点P从N点出发,以每秒3个单位长度的速度向左运动,点Q从M点出发,以每秒4个单位长度的速度向右运动,点R从B点出发,以每秒5个单位长度的速度向右运动,P、Q、R同时出发,是否存在常数k,使得PQ﹣kAR的值与它们的运动时间无关,为定值?若存在,请求出k和这个定值;若不存在,请说明理由.28.(2020秋•鹿城区期末)已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A、点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为8?若存在,请求出x的值;若不存在,说明理由;(3)现在点A、点B分别以2个单位长度/秒和0.5个单位长度/秒的速度同时向右运动,点P以6个单位长度/秒的速度同时从O点向左运动.当点A与点B之间的距离为3个单位长度时,求点P所对应的数是多少?。

专题02 实数压轴题必练(人教版)

专题02  实数压轴题必练(人教版)

专题02 实数压轴题必练填空题必练1.任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1.现对72进行如下操作:72[]=8[]=2[]=1,这样对72只需进行3次操作后变为1,类似的,①对81只需进行次操作后变为1;②只需进行3次操作后变为1的所有正整数中,最大的是.2.下面是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥3)行从左向右数第n﹣2个数是(用含n的代数式表示)3.对于实数a,我们规定:用符号表示不大于的最大整数,称为a的根整数,例如:,.(1)仿照以上方法计算:=;=.(2)若,写出满足题意的x的整数值.如果我们对a连续求根整数,直到结果为1为止.例如:对10连续求根整数2次,这时候结果为1.(3)对100连续求根整数,次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是.解答题必练4.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,事实上,小明的表示方法是有道理的,因为<<,所以的整数部分是1,将这个数减去其整数部分,差就是小数部分.请据此解答:(1)的整数部分是,小数部分是(2)如果的小数部分为a,的整数部分为b,求a+b﹣的值;(3)若设2+的整数部分为x,小数部分为y,求y﹣x的值.5.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|,例如:数轴上表示﹣1与﹣2的两点间的距离=|﹣1﹣(﹣2)|=﹣1+2=1;而|x+2|=|x﹣(﹣2)|,所以|x+2|表示x与﹣2两点间的距离.利用数形结合思想回答下列问题:(1)数轴上表示﹣2和5两点之间的距离.(2)若数轴上表示点x的数满足|x﹣1|=3,那么x=.(3)若数轴上表示点x的数满足﹣4<x<2,则|x﹣2|+|x+4|=.6.若+(1﹣y)2=0.(1)求x,y的值;(2)求+++…+的值.7.无限循环小数如何化为分数呢?请你仔细阅读下列资料:由于小数部分位数是无限的,所以不可能写成十分之几、百分之几、千分之几等等的数.转化时需要先去掉无限循环小数的“无限小数部分”.一般是用扩倍的方法,把无限循环小数扩大十倍、一百倍或一千倍…使扩大后的无限循环小数与原无限循环小数的“无限小数部分”完全相同,然后这两个数相减,这样“大尾巴”就剪掉了.例题:例如把0.和0.2化为分数请用以上方法解决下列问题(1)把0.化为分数(2)把0.3化为分数.8.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离示为:AB=|a﹣b|,且我们发现存在以下不等关系:|a|+|b|≥|a+b|.(1)代数式|x+1|+|x﹣2|的几何意义是:表示有理数x的点到表示数2的点与表示数的点距离之和;利用几何意义,可求得|x+1|+|x﹣2|的最小值为,此时x的取值范围是.(2)求|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2019|的最小值.(3)已知|y﹣3|+|1﹣x|+|z﹣5|=10﹣|x+4|﹣|1﹣z|﹣|y﹣2|,求x+y+z的最大值与最小值.9.阅读理解题:定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi (a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2﹣i)+(5+3i)=(2+5)+(﹣1+3)i=7+2i;(1+i)×(2﹣i)=1×2﹣i+2×i﹣i2=2+(﹣1+2)i+1=3+i;根据以上信息,完成下列问题:(1)填空:i3=,i4=;(2)计算:(1+i)×(3﹣4i);(3)计算:i+i2+i3+ (i2017)10.如图1,已知在数轴上有A、B两点,点A表示的数是﹣6,点B表示的数是9.点P 在数轴上从点A出发,以每秒2个单位的速度沿数轴正方向运动,同时,点Q在数轴上从点B出发,以每秒3个单位的速度在沿数轴负方向运动,当点Q到达点A时,两点同时停止运动.设运动时间为t秒.(1)AB=;t=1时,点Q表示的数是;当t=时,P、Q两点相遇;(2)如图2,若点M为线段AP的中点,点N为线段BP中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长;(3)如图3,若点M为线段AP的中点,点T为线段BQ中点,则点M表示的数为;点T表示的数为;MT=.(用含t的代数式填空)11.如图1,长方形OABC的边OA在数轴上,O为原点,长方形OABC的面积为12,OC 边长为3(1)数轴上点A表示的数为.(2)将长方形OABC沿数轴水平移动,移动后的长方形记为O′A′B′C′,移动后的长方形O′A′B'C′与原长方形OABC重叠部分(如图2中阴影部分)的面积记为S①设点A的移动距离AA′=x.当S=4时,x=.②当S恰好等于原长方形OABC面积的一半时,求数轴上点A′表示的数为多少.12.给出定义如下:若一对实数(a,b)满足a﹣b=ab+4,则称它们为一对“相关数”,如:,故是一对“相关数”.(1)数对(1,1),(﹣2,﹣6),(0,﹣4)中是“相关数”的是;(2)若数对(x,﹣3)是“相关数”,求x的值;(3)是否存在有理数m,n,使数对(m,n)和(n,m)都是“相关数”,若存在,求出一对m,n的值,若不存在,说明理由.13.如图,正方形ABCD的边AB在数轴上,数轴上点A表示的数为﹣1,正方形ABCD的面积为16.(1)数轴上点B表示的数为;(2)将正方形ABCD沿数轴水平移动,移动后的正方形记为A′B′C′D′,移动后的正方形A′B′C′D′与原正方形ABCD重叠部分的面积为S.①当S=4时,画出图形,并求出数轴上点A′表示的数;②设正方形ABCD的移动速度为每秒2个单位长度,点E为线段AA′的中点,点F在线段BB′上,且BF=BB′.经过t秒后,点E,F所表示的数互为相反数,直接写出t的值.专题02 实数压轴题必练填空题必练1.任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1.现对72进行如下操作:72[]=8[]=2[]=1,这样对72只需进行3次操作后变为1,类似的,①对81只需进行次操作后变为1;②只需进行3次操作后变为1的所有正整数中,最大的是.【答案】3;255.【解答】解:①[]=9,[]=3,[]=1,故答案为:3;②最大的是255,[]=15,[]=3,[]=1,而[]=16,[]=4,[]=2,[]=1,即只需进行3次操作后变为1的所有正整数中,最大的正整数是255,故答案为:255.2.下面是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥3)行从左向右数第n﹣2个数是(用含n的代数式表示)【答案】【解答】解:前(n﹣1)行的数据的个数为2+4+6+…+2(n﹣1)=n(n﹣1),所以,第n(n是整数,且n≥3)行从左到右数第n﹣2个数的被开方数是n(n﹣1)+n ﹣2=n2﹣2,所以,第n(n是整数,且n≥3)行从左到右数第n﹣2个数是.故答案为:.3.对于实数a,我们规定:用符号表示不大于的最大整数,称为a的根整数,例如:,.(1)仿照以上方法计算:=;=.(2)若,写出满足题意的x的整数值.如果我们对a连续求根整数,直到结果为1为止.例如:对10连续求根整数2次,这时候结果为1.(3)对100连续求根整数,次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是.【答案】(1)2,5;(2)1,2,3;(3)3 (4)255【解答】解:(1)∵22=4,52=25,62=36,∴5<<6,∴=[2]=2,[]=5,故答案为:2,5;(2)∵12=1,22=4,且,∴x=1,2,3,故答案为:1,2,3;(3)第一次:[]=10,第二次:[]=3,第三次:[]=1,故答案为:3;(4)最大的正整数是255,理由是:∵[]=15,[]=3,[]=1,∴对255只需进行3次操作后变为1,∵[]=16,[]=4,[]=2,[]=1,∴对256只需进行4次操作后变为1,∴只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为:255.解答题必练4.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,事实上,小明的表示方法是有道理的,因为<<,所以的整数部分是1,将这个数减去其整数部分,差就是小数部分.请据此解答:(1)的整数部分是,小数部分是(2)如果的小数部分为a,的整数部分为b,求a+b﹣的值;(3)若设2+的整数部分为x,小数部分为y,求y﹣x的值.【答案】(1)3;﹣3.(2)4 (3)﹣4.【解答】解:(1)∵3<<4,∴的整数部分是3,小数部分是﹣3;故答案为:3;﹣3.(2)∵2<<3,∴a=﹣2,∵6<<7,∴b=6,∴a+b﹣=﹣2+6﹣=4.(3)∵1<<2,∴3<2+<4,∴2+的整数部分为x=3,小数部分为y=2+﹣3=﹣1.∴y﹣x=﹣4.5.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|,例如:数轴上表示﹣1与﹣2的两点间的距离=|﹣1﹣(﹣2)|=﹣1+2=1;而|x+2|=|x﹣(﹣2)|,所以|x+2|表示x与﹣2两点间的距离.利用数形结合思想回答下列问题:(1)数轴上表示﹣2和5两点之间的距离.(2)若数轴上表示点x的数满足|x﹣1|=3,那么x=.(3)若数轴上表示点x的数满足﹣4<x<2,则|x﹣2|+|x+4|=.【答案】(1)7(2)﹣2或4(3)6【解答】解:(1)根据题意知数轴上表示﹣2和5两点之间的距离为5﹣(﹣2)=7,故答案为:7;(2)∵|x﹣1|=3,即在数轴上到表示1和x的点的距离为3,∴x=﹣2或x=4,故答案为:﹣2或4;(3)∵|x﹣2|+|x+4|表示在数轴上表示x的点到﹣4和2的点的距离之和,且x位于﹣4到2之间,∴|x﹣2|+|x+4|=2﹣x+x+4=6,故答案为:6.6.若+(1﹣y)2=0.(1)求x,y的值;(2)求+++…+的值.【答案】(1)(2)【解答】解:(1)根据题意得,解得;(2)原式=+++…+=1﹣+﹣+﹣+…+﹣=1﹣=.7.无限循环小数如何化为分数呢?请你仔细阅读下列资料:由于小数部分位数是无限的,所以不可能写成十分之几、百分之几、千分之几等等的数.转化时需要先去掉无限循环小数的“无限小数部分”.一般是用扩倍的方法,把无限循环小数扩大十倍、一百倍或一千倍…使扩大后的无限循环小数与原无限循环小数的“无限小数部分”完全相同,然后这两个数相减,这样“大尾巴”就剪掉了.例题:例如把0.和0.2化为分数请用以上方法解决下列问题(1)把0.化为分数(2)把0.3化为分数.【答案】(1)(2)【解答】解(1)∵0.×100=17.∴0.×100﹣0.=17.﹣0.0.×(100﹣1)=17,0.=,(2)∵0.3×10=3.①0.3×1000=313.•②∴由②﹣①得0.3×1000﹣0.3×10=313.﹣3.,0.3(1000﹣10)=310,0.3=.8.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离示为:AB=|a﹣b|,且我们发现存在以下不等关系:|a|+|b|≥|a+b|.(1)代数式|x+1|+|x﹣2|的几何意义是:表示有理数x的点到表示数2的点与表示数的点距离之和;利用几何意义,可求得|x+1|+|x﹣2|的最小值为,此时x的取值范围是.(2)求|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2019|的最小值.(3)已知|y﹣3|+|1﹣x|+|z﹣5|=10﹣|x+4|﹣|1﹣z|﹣|y﹣2|,求x+y+z的最大值与最小值.【答案】(1)﹣1,3;(2)1019090;(3)﹣1【解答】解:(1)由已知,|x+1|+|x﹣2|表示有理数x的点到表示数2的点与表示数﹣1的点距离之和;|x+1|+|x﹣2|表示有理数x的点到表示数2的点与表示数﹣1的点距离之和,最小是2+1=3;故答案为﹣1,3;(2)|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2019|的中间一项是|x﹣1010|,当x=1010时,|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2019|有最小值,∴|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2019|=2×(1+2+…+1009)=1019090,∴|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2019|的最小值为1019090;(3)∵|y﹣3|+|1﹣x|+|z﹣5|=10﹣|x+4|﹣|1﹣z|﹣|y﹣2|,∴|y﹣3|+|1﹣x|+|z﹣5|+|x+4|+|1﹣z|+|y﹣2|=10,∴|y﹣3|+|1﹣x|+|z﹣5|+|x+4|+|1﹣z|+|y﹣2|=10≥|2x+2y+2z﹣8|,∴﹣10≤2(x+y+z)﹣8≤10,∴﹣1≤x+y+z≤9,∴x+y+z的最大值为9与最小值为﹣1.9.阅读理解题:定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi (a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2﹣i)+(5+3i)=(2+5)+(﹣1+3)i=7+2i;(1+i)×(2﹣i)=1×2﹣i+2×i﹣i2=2+(﹣1+2)i+1=3+i;根据以上信息,完成下列问题:(1)填空:i3=,i4=;(2)计算:(1+i)×(3﹣4i);(3)计算:i+i2+i3+ (i2017)【答案】(1)﹣i,1;(2)7﹣i;(3)i.【解答】解:(1)i3=i2•i=﹣i,i4=(i2)2=(﹣1)2=1.故答案为:﹣i,1;(2)(1+i)×(3﹣4i)=3﹣4i+3i﹣4i2=3﹣i+4=7﹣i;(3)i+i2+i3+…+i2017=i﹣1﹣i+1+…+i=i.10.如图1,已知在数轴上有A、B两点,点A表示的数是﹣6,点B表示的数是9.点P 在数轴上从点A出发,以每秒2个单位的速度沿数轴正方向运动,同时,点Q在数轴上从点B出发,以每秒3个单位的速度在沿数轴负方向运动,当点Q到达点A时,两点同时停止运动.设运动时间为t秒.(1)AB=;t=1时,点Q表示的数是;当t=时,P、Q两点相遇;(2)如图2,若点M为线段AP的中点,点N为线段BP中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长;(3)如图3,若点M为线段AP的中点,点T为线段BQ中点,则点M表示的数为;点T表示的数为;MT=.(用含t的代数式填空)【答案】(1)15,6,3 (2)7.5(3)t﹣6,9﹣t,15﹣t;【解答】解:(1)AB=9﹣(﹣6)=15,t=1时,BQ=3,OQ=6,设t秒后相遇,由题意(2+3)t=15,t=3,故答案为15,6,3(2)答:MN长度不变,理由如下:∵M为AP中点,N为BP中点∴MP=AP,NP=BP,∴MN=MP+NP=(AP+BP)=AB=7.5.(3)则点M表示的数为t﹣6;点T表示的数为9﹣t;MT=15﹣t;故答案为t﹣6,9﹣t,15﹣t;11.如图1,长方形OABC的边OA在数轴上,O为原点,长方形OABC的面积为12,OC边长为3(1)数轴上点A表示的数为.(2)将长方形OABC沿数轴水平移动,移动后的长方形记为O′A′B′C′,移动后的长方形O′A′B'C′与原长方形OABC重叠部分(如图2中阴影部分)的面积记为S①设点A的移动距离AA′=x.当S=4时,x=.②当S恰好等于原长方形OABC面积的一半时,求数轴上点A′表示的数为多少.【答案】(1)4;(2)①②6或2【解答】解:(1)OA=BC=12÷3=4,故答案为:4;(2)当S=4时,①若正方形OABC平移后得图2,重叠部分中AO′=4÷3=,AA′=4﹣=.故答案为:;②当S恰好等于原长方形OABC面积的一半时,点A向右或向左移动4÷2=2,因此点A′表示的数为4+2=6或4﹣2=2,故点A′所表示的数6或2.12.给出定义如下:若一对实数(a,b)满足a﹣b=ab+4,则称它们为一对“相关数”,如:,故是一对“相关数”.(1)数对(1,1),(﹣2,﹣6),(0,﹣4)中是“相关数”的是;(2)若数对(x,﹣3)是“相关数”,求x的值;(3)是否存在有理数m,n,使数对(m,n)和(n,m)都是“相关数”,若存在,求出一对m,n的值,若不存在,说明理由.【答案】(1)(0,﹣4);(2)x=(3)不存在【解答】解:(1)∵1﹣1≠1×1+4,因此一对实数(1,1)不是“相关数”,∵﹣2﹣(﹣6)≠(﹣2)×(﹣6)+4,因此一对实数(﹣2,﹣6)不是“相关数”,∵0﹣(﹣4)=0×(﹣4)+4,因此一对实数(0,﹣4)是“相关数”,故答案为:(0,﹣4);(2)由“相关数”的意义得,x﹣(﹣3)=﹣3x+4解得,x=答:x=;(3)不存在.若(m,n)是“相关数”,则,m﹣n=mn+4,若(n,m)是“相关数”,则,n﹣m=nm+4,若(m,n)和(n,m)都是“相关数”,则有m=n,而m=n时,m﹣n=0≠mn+4,因此不存在.13.如图,正方形ABCD的边AB在数轴上,数轴上点A表示的数为﹣1,正方形ABCD的面积为16.(1)数轴上点B表示的数为;(2)将正方形ABCD沿数轴水平移动,移动后的正方形记为A′B′C′D′,移动后的正方形A′B′C′D′与原正方形ABCD重叠部分的面积为S.①当S=4时,画出图形,并求出数轴上点A′表示的数;②设正方形ABCD的移动速度为每秒2个单位长度,点E为线段AA′的中点,点F在线段BB′上,且BF=BB′.经过t秒后,点E,F所表示的数互为相反数,直接写出t的值.【答案】(1)﹣5.(2)①点A'表示的数为﹣4或2;②t=4.【解答】解:(1)∵正方形ABCD的面积为16,∴AB=4,∵点A表示的数为﹣1,∴AO=1,∴BO=5,∴数轴上点B表示的数为﹣5,故答案为:﹣5.(2)①∵正方形的面积为16,∴边长为4,当S=4时,分两种情况:若正方形ABCD向左平移,如图1,A'B=4÷4=1,∴AA'=4﹣1=3,∴点A'表示的数为﹣1﹣3=﹣4;若正方形ABCD向右平移,如图2,AB'=4÷4=1,∴AA'=4﹣1=3,∴点A'表示的数为﹣1+3=2;综上所述,点A'表示的数为﹣4或2;②t的值为4.理由如下:当正方形ABCD沿数轴负方向运动时,点E,F表示的数均为负数,不可能互为相反数,不符合题意;当点E,F所表示的数互为相反数时,正方形ABCD沿数轴正方向运动,如图3,∵AE=AA'=×2t=t,点A表示﹣1,∴点E表示的数为﹣1+t,∵BF=BB′=×2t=t,点B表示﹣5,∴点F表示的数为﹣5+t,∵点E,F所表示的数互为相反数,∴﹣1+t+(﹣5+t)=0,解得t=4.。

实数(考题猜想,实数与数轴的关系解题的三种技巧与常见估算的五种题型)解析版-7下数学期末考点大串讲

实数(考题猜想,实数与数轴的关系解题的三种技巧与常见估算的五种题型)解析版-7下数学期末考点大串讲

专题2-2实数(考点猜想,利用实数与数轴的关系解题的三种技巧与常见估算的五种题型)技巧1:利用数轴上的点表示实数【例题1】(22-23七年级下·山东日照·期中)如图,若数轴上的点A,B,C,D表示数1-,1,2,3,则表示数4)A.A,O之间B.B,C之间C.C,D之间D.O,B之间=,【变式1】(23-24九年级上·广东潮州·期中)如图,数轴上A,B两点对应的实数分别是2若AB BC 则C表示的实数为()A.2B2C.2D.4【变式2】(2024七年级下·全国·专题练习))A.点M B.点N C.点O D.点P【变式3】(22-23七年级下·贵州遵义·期中)若将这四个无理数表示在数轴上,其中能被如图所示的墨迹(阴影)覆盖的数是()A .B C D技巧2:利用数轴表示实数的大小【例题2】(23-24七年级下·甘肃武威·期中)在如图所示的数轴上近似地表示下列各数:83,1.5,π-,并用“<”连接.根据数轴上点的特点可得:83 1.53π-<-<<.【变式1】(23-24七年级下·安徽阜阳·阶段练习)在数轴上表示下列各数,并按从小到大的顺序用“<”把这些数连接起来.1,327-, 1.5-,5,2-【答案】数轴见解析;32721| 1.5|5-<-<<-<【分析】本题考查实数的大小比较,解题的关键是正确理解实数的大小比较法则,以及数轴上右边的数永远大于左边的数.根据实数的大小比较以及数轴与实数是一一对应的关系即可求出答案.【详解】解:3273-=-, 1.5 1.5-=,由各数在数轴上的位置可得:32721| 1.5|5-<-<<-<,【变式2】(23-24七年级上·浙江宁波·期中)把下列实数表示在数轴上,并比较它们的大小(用“<”连接).()2--,5,0,38-,π-,2【答案】数轴见解析;()380225p -<-<<<--<【分析】本题主要考查了实数与数轴,实数大小的比较,解题的关键是熟练掌握数轴上点的特点.根据数轴的特点,将各个点表示在数轴上,利用数轴比较大小即可.【详解】解:()22--=,382-=-,用“<”连接为:()380225π-<-<<<--<.【变式3】(23-24七年级上·浙江杭州·期中)在数轴上表示下列各数,并把这些数按从小到大顺序进行排列,用“<”连接;π,4, 1.5-,0,不要求精确表示)故 1.5204π-<-<<<.技巧3:利用实数与数轴的关系进行计算【例题3】(23-24七年级下·湖北黄冈·阶段练习)如图,数轴上有A、B、C三点,表示1的对应点分别为A、B,点B到点A的距离与点C到原点O的距离相等,设A、B、C三点表示的三个数之和为p.(1)求AB的长;(2)求p;DO=,若以点D为原点,直接写出点C表示的数.(3)点D在点O的左侧,且10【变式1】(23-24八年级下·山西吕梁·阶段练习)如图,A ,B 两点在数轴上对应的数分别是C 是数轴上一动点,设点C 对应的数是x .(1)若C 是线段AB 的中点,求x 的值;(2)若2AC BC =,求x 的值.【变式2】(23-24七年级下·安徽蚌埠·阶段练习)如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)求11m m ++-的值;(2)数轴上有C ,D 两点分别表示实数c 和d ,且有|5|20c d -++=,求23c d +的平方根.【答案】(1)2(2)2±【分析】本题考查了数轴上动点问题,绝对值的非负性,化简绝对值,平方根,正确掌握相关性质内容是解题的关键.(1)先由数轴,得到22m =-,再估算01m <<,然后化简112m m ++-=,即可作答.(2)根据绝对值的非负性,得5,2c d ==-,代入23c d +,最后求平方根,即可作答.【详解】(1)解:根据题意可得:22m =-,01m ∴<<,111(1)112m m m m m m ∴++-=+--=+-+=;(2)解:|5|20c d -++=Q ,5,2c d ∴==-,23253(2)4c d ∴+=⨯+⨯-=,23c d ∴+的平方根是2±.【变式3】(23-24七年级下·湖南衡阳·阶段练习)实数a ,b 在数轴上的对应点的位置如图,请化简式子:()22a b b a b ---+【答案】2a b+【分析】本题主要考查了算术平方根的性质,整式的加减,数轴.观察数轴可得0b a <<,且b a >,从而得到0,0a b a b ->+<,再根据算术平方根的性质,原式变形为a b b a b ---+,即可求解.【详解】解:观察数轴得:0b a <<,且b a >,∴0,0a b a b ->+<,∴()22a b b a b ---+题型4:利用夹逼法进行估算【例题4】(上海市黄浦区2023-2024学年七年级下学期期中数学试题)学校里有一个正方形的花坛,它的面积是20平方米,请你估计这个正方形的边长约在()A.3米和4米之间B.4米和5米之间C.5米和6米之间D.6米和7米之间【变式1】(2023·江苏常州·2的值应在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间【变式2】(2024年云南省初中学业水平考试数学模拟预测题(一))估算)A.在5和6之间B.在2和3之间C.在3和4之间D.在4和5之间【变式3】(23-24八年级下·湖南益阳·阶段练习)估算7-)A.0和1之间B.1和2之间C.2和3之间D.3和4之间题型5:用估算比较数的大小【例题5】(2024·陕西·一模)实数2-的大小关系是.(用“<”号连接)-,3【变式1】.(23-24七年级下·江苏南通·阶段练习)比较大小:1412(填“>”或“=”或“<”)【变式2】(23-24七年级下·安徽蚌埠·阶段练习)比较大小:13(填“>”或“<”)【变式3】(23-24七年级下·安徽淮北·31(选填“>”“<”或“=”).题型6:利用估算确定一个数的整数部分和小数部分【例题6】(23-24八年级下·甘肃武威·期中)若3的整数部分为a,小数部分为b,则代数式()2b⋅的值为()A.2B.0C.1D.2-【变式1】(23-24八年级下·贵州黔东南·阶段练习)已知7的整数部分是a,15的小数部分是b,+的值为()则a bA.12-B.13-C.14D.15-b-是400的算术平方根,求【变式2】(23-24七年级下·辽宁鞍山·阶段练习)已知a3.【变式3】(23-24七年级下·福建福州·阶段练习)(1的整数部分是______,小数部分是______.(2a的整数部分为b,求a b+的值.(3)已知x是3y是3小数部分,求出x y-的值.题型7:利用估算探究规律【例题7】(21-22七年级下·安徽芜湖·期末)据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根,华罗庚脱口而出:39.你知道他是怎么快速准确地计算出来的吗?请研究解决下列问题:(1)已知310648x =,且x 为整数.∵33100010106481001000000=<<=,∴x 一定是一个两位数;∵10648的个位数字是8,∴x 的个位数字一定是______;划去10648后面的三位648得10,∵338210327=<<=,∴x 的十位数字一定是______;∴x =______.(2)3614125y =,且y 为整数,按照以上思考方法,请你求出y 的值.【答案】(1)2#,2#,22#(2)85y =【分析】(1)根据立方根的定义和题意即可得出答案;(2)根据(1)中的方法计算书写即可得出结果.【详解】(1)解:∵310648x =,且x 为整数.∵33100010106481001000000=<<=,∴x 一定是一个两位数;∵10648的个位数字是8,∴x 的个位数字一定是2;划去10648后面的三位648得10,∵338210327=<<=,∴x 的十位数字一定是2;∴x =22.故答案为:2,2,22.(2)∵33100010614125100100000=<<=,∴y一定是两位数;∵614125的个位数字是5,∴y 的个位数字一定是5;划去614125后面的三位125得614,∵3351286149729=<<=,∴y的十位数字一定是8;∴85y =.【点睛】本题考查立方根,灵活运用立方根的计算是解题的关键.【变式1】(2024八年级下·全国·专题练习)阅读下列材料,然后回答问题.这样的式子,其实我们还可以将其进一步化简:)()22212111⨯-⨯-=--,以上这种化简的步骤叫作分母有理化.(1)(2)a ,小数部分为b ,求22a b +的值.(3)【变式2】(22-23七年级下·山东济宁·期中)【阅读理解】的最大整数,例如:1=,2=,2=.对于正整数n,定义Array【问题解答】(1)直接写出的值为______;(2)对72进行如下操作:72821−−−→=−−−→=−−−→=第一次第二次第三次,即对72进行3次操作后可变为1.类似地:对25进行______次操作后可变为1;(3)先化简,再求值:()()2235x x x -+--+,其中x =.【变式3】(22-23七年级下·贵州黔西·期中)阅读下列材料:<<,即12<<,11-.请根据材料提示,进行解答:______,小数部分是______.(2)的小数部分为m的整数部分为n,求2m n+的值.(3)已知:=+,其中a是整数,且0110a b<<,请直接写出a,b的值.b题型8:利用估算解决实际问题400cm的正方形,将其改造为【例题8】(23-24七年级下·湖北武汉·阶段练习)现有一根铁丝围成面积为2300cm的长方形,使其长宽之比为3:2,问铁丝是否够用?面积为2100cm,李明同学想沿这块正方【变式1】(23-24七年级下·山东临沂·阶段练习)如图,若正方形的面积为290cm的长方形纸片,使它的长和宽之比为5:3,他能裁出符合要求的纸片吗?形边的方向裁出一块面积为2若能,请求出该长方形纸片的长和宽,若不能,请说明理由.【变式2】(23-24八年级下·湖南邵阳·阶段练习)超速驾驶是造成交通事故的重要原因之一.交警部门一般会根据刹车后滑行的距离判断车辆的行驶速度,公式为=v v 表示车速(单位:km/h ),d 表示刹车后滑行的距离(单位:m ),f 表示摩擦因数.若交警在处理某次交通事故时,测得19.2m d =, 1.25f =,已知该路段限速70km/h ,那么该汽车超速了吗?请说明理由. 1.4≈ 1.7≈,结果保留一位小数)【变式3】(23-24七年级下·贵州安顺·阶段练习)小明制作了一张边长为16cm 的正方形贺卡想寄给朋友.现有一个长方形信封如图所示,长、宽之比为3:2,面积为2420cm .(1)求此长方形信封的长和宽.(2)小明能将这张贺卡不折叠就放入此信封吗?请通过计算说明理由.。

七年级数学(下)第六章《实数——实数》练习题含答案

七年级数学(下)第六章《实数——实数》练习题含答案

七年级数学(下)第六章《实数——实数》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各数中,是有理数的是A.0.9B.–3C.πD.1 3【答案】D【解析】A、0.9=910=31010,是无理数,故此选项错误;B、–3是无理数,故此选项错误;C、π是无理数,故此选项错误;D、13是有理数,故此选项正确.故选D.2.下列说法中错误的是A.数轴上的点与实数一一对应B.实数中没有最小的数C.a、b为实数,若a<b,则a<bD.a、b为实数,若a<b,则3a<3b【答案】C3.实数a、b在数轴上的位置如图所示,则下列各式表示正确的是A.b–a<0 B.1–a>0C.b–1>0 D.–1–b<0【答案】A【解析】由题意,可得b<–1<1<a,则b–a<0,1–a<0,b–1<0,–1–b>0.故选A.4.如图,数轴上点P表示的数可能是A2B5C10D15【答案】B24591015 251015B.5.在实数0,–2,15A.0 B.–2C.1 D5【答案】B【解析】∵0,–2,15–5–2;故选B.6.若m14n,且m、n为连续正整数,则n2–m2的值为A.5 B.7C.9 D.11【答案】B【解析】∵m14n,且m、n为连续正整数,∴m=3,n=4,则原式=7,故选B.+的值为7.|63||26A.5 B.526-C.1 D.61【答案】C【解析】原式=3–6+6–2=1.故选C.8.任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[3]=1,现对72进行如下操作:72[72]=8[8]=2[2]=1,这样对72只需进行3次操作后变为1,类似地,对81只需进行3次操作后变为1;那么只需进行3次操作后变为1的所有正整数中,最大的是A.82 B.182C.255 D.282【答案】C二、填空题:请将答案填在题中横线上.95__________16__________.【答案】5 25516,4的平方根是±2162.故答案为:5;±2.10.已知:n24n n的最小值为__________.【答案】624n6n,则6n是完全平方数,∴正整数n的最小值是6,故答案为:6.11.比较大小–2__________–3>”、“<”或“=”填空).【答案】<【解析】–2=50–348,5048,∴–2<–3,故答案为:<.12.用“※”定义新运算:对于任意实数a 、b ,都有a ※b =2a 2+B .例如3※4=2×32+4=22※2=__________. 【答案】8※2=2×3+2=6+2=8.故答案为:8.13.计算:|+.【解析】|+14.计算:|2.【答案】3【解析】|2–2+5. 故答案为:3.三、解答题:解答应写出文字说明、证明过程或演算步骤.15.计算:(1)–14–2|(2)4(x +1)2=25【解析】(1)原式=–1–2–3+2=–4 (2)方程整理得:(x +1)2=254, 开方得:x +1=±52, 解得:x =1.5或x =–3.5.16.把下列各数填在相应的大括号内:20%,0,3π,3.14,–23,–0.55,8,–2,–0.5252252225…(每两个5之间依次增加1个2). (1)正数集合:{__________…}; (2)非负整数集合:{__________…}; (3)无理数集合:{__________…}; (4)负分数集合:{__________…}. 【解析】(1)正数集合:{20%,3π,3.14,8…};(2)非负整数集合:{8,0…};(3)无理数集合:{3π,–0.525225……}; (4)负分数集合:{–23,–0.55…}.故答案为:(1)20%,3π,3.14,8;(2)8,0;(3)3π,–0.525225…;(4)–23,–0.55.17.如图:观察实数a 、b 在数轴上的位置,(1)a __________0,b __________0,a –b __________0(请选择<,>,=填写). (2)化简:2a –2b –2()a b -.18.(1)计算并化简(结果保留根号)①|1–2|=__________; ②23|=__________; ③34|=__________; ④45(2)计算(结果保留根号):233445……20172018|.【解析】(1)①|12|=2–1;②2332;③3443④4554; 21324354.(2)原式324354+……2018201720182.。

第3章 《实数》复习训练卷(含答案)

第3章 《实数》复习训练卷(含答案)

第3章 《实数》复习训练卷一、选择题。

1.下列实数:227,3.14159265,-80.6,03π无理数的个数是( ) A .1个 B .2个 C .3个 D .4个2.下列说法:①实数和数轴上的点是一一对应的;②实数分为正实数和负实数:③立方根等于它本身的数是±1和0;④无理数都是无限小数;⑤平方根等于本身的数是1和0.正确的个数是( )A .1B .2C .3D .43.27(7)0y z ++-=,则x y z -+的平方根为( )A .±2B .4C .2D .±44.若一个正数的两个平方根为1a +和27a -,则这个正数是( )A .2B .3C .8D .9 5.有下列说法:(1)﹣3(2)7是(﹣7)2的算术平方根;(3)27的立方根是±3;(4)1的平方根是±1;(5)0没有算术平方根.其中正确的有( )A .1个B .2个C .3个D .4个6.2020年3月14日,是全球首个“国际圆周率日(πDay )”.国际圆周率日之所以定在3月14日,是因为“3.14”是与圆周率数值最接近的数字.祖冲之是世界上最早把圆周率的精确值计算到小数点后第7位的中国古代科学巨匠,该成果领先世界一千多年.以下关于“圆周率”的四个命题,错误的是( )A .圆周率是一个大于3而小于4的无理数B .圆周率是一个近似数C .圆周率是一个与圆的大小无关的常数D .圆周率等于该圆的周长与直径的比值7.依据图中呈现的运算关系,可知m n +=( ).A .-4040B .4040C .-2020D .202081的结果是介于下列哪两个数之间( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间9.有一个数值转换器,原理如下:当输入的x 为64时,输出的y 是( )A .22B .2C .2D .±210.把四张形状大小完全相同的小长方形卡片(如图①,卡片的长为a ,宽为b )不重叠地放在一个底面为长方形宽为4)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A .B .16C .)24D .)44二、填空题。

实数与数轴练习题

实数与数轴练习题

实数与数轴练习题-(2)(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--实数基础知识练习题一.选择题1.下列各数654.0 、23π、0)(π-、14.3、80108.0、ππ--1、 1010010001.0、4、 544514524534.0,其中无理数的个数是 ( )A 、 1B 、2C 、3D 、42. 在下列各数 51515354.0、0、2.0 、π3、722、 1010010001.6、11131、27中,无理数的个数是 ( )A 、 1B 、2C 、3D 、43.数 032032032.123是 ( )A 、有限小数B 、无限不循环小数C 、无理数D 、有理数4.边长为3的正方形的对角线的长是 ( )A 、整数B 、分数C 、有理数D 、以上都不对5.下列说法正确的是 ( )A 、无限小数都是无理数B 、 正数、负数统称有理数C 、无理数的相反数还是无理数D 、 无理数的倒数不一定是无理数6.下列语句中,正确的是 ( )A 、 无理数与无理数的和一定还是无理数B 、 无理数与有理数的和一定是无理数C 、 无理数与有理数的积一定仍是无理数D 、 无理数与有理数的商可能是又理数7.一个长方形的长与宽分别时6、3,它的对角线的长可能是 ( )A 、整数B 、分数C 、有理数D 、无理数8.下列说法中不正确的是 ( )A 、1-的立方是1-,1-的平方是1B 、 两个有理之间必定存在着无数个无理数C 、在1和2之间的有理数有无数个,但无理数却没有;D 、如果62=x ,则x 一定不是有理数9.两个正有理数之和 ( )A 、 一定是无理数B 、一定是有理数C 、可能是有理数D 、不可能是自然数10.36的平方根是 ( )A 、6B 、6±C 、6D 、6±11.下列语句中正确的是 ( )A 、9-的平方根是3-;B 、的平方根是3;C 、9的算术平方根是3±;D 、9的算术平方根是312.下列语句中正确的是 ( )A 、任意算术平方根是正数B 、只有正数才有算术平方根C 、∵3的平方是9,∴9的平方根是3D 、1-是1的平方根13.下列运算中,错误的是 ( ) ①1251144251=, ②4)4(2±=-, ③22222-=-=-,④2095141251161=+=+ A 、1个 B 、2个 C 、3个 D 、4个14.22)4(+x 的算术平方根是( )A 、42)4(+xB 、22)4(+xC 、42+xD 、42+x 15.2)5(-的平方根是( )A 、 5±B 、5C 、 5-D 、5±16.下列说法正确的是 ( )A 、 一个数的立方根有两个,它们互为相反数B 、一个数的立方根与这个数同号C 、 如果一个数有立方根,那么它一定有平方根D 、 一个数的立方根是非负数17.下列运算正确的是 ( )A 、3311--=-B 、3333=-C 、3311-=-D 、 3311-=-18.下列计正确的是( )A 、5.00125.03=B 、4364273=-C 、2118333=D 、5212583-=-- 19.下列说法正确的是( )A 、27的立方根是3±;B 、6427-的立方根是43;C 、2-的立方根是8-;D 、8-的立方根是220.若51=+m m ,则mm 1-的平方根是( ) A 、2± B 、 1± C 、1 D 、221.若a 、b 为实数,且471122++-+-=a a a b ,则b a +的值为( ) A 、1± B 、4 C 、3或5 D 、522.已知一个正方形的边长为a ,面积为S ,则 ( )A 、a S =B 、S 的平方根是aC 、a 是S 的算术平方根D 、S a ±=23.若9,422==b a ,且0<ab ,则b a -的值为( )A 、2-B 、5±C 、5D 、5-24.算术平方根等于它本身的数是 ( )A 、1和0B 、 0C 、1D 、1±和0二.填空题:1.如右图:以直角三角形斜边为边的正方形面积是 ;2.有理数包括整数和 ;有理数可以用 小数和 小数表示;3. 叫无理数;4.无限小数包括无限循环小数和 ,其中 是有理数, 是无理数;5.请你举出三个无理数: ;6.在棱长为5的正方体木箱中,想放入一根细长的铁丝,则这根铁丝的最大长度可能是 ;7.已知032=++-b a ,则______)(2=-b a ;8.若01)1(2=++-b a ,则_____20052004=+b a ;9.当_______x 时,32-x 有意义;10.当_______x 时,x -11有意义;11.9的算术平方根是 ,16的算术平方根是 ;12.已知0113=-++b a ,则_______20042=--b a ;13.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ;14.当10≤≤x 时,化简__________12=-+x x ;15.当________x 时,式子21--x x 有意义; 16.计算:______1112=-+-+-x x x ;17.210-的算术平方根是 ,0)5(-的平方根是 ;18.若a a -=-2)2(2,则a 的取值范围是 ;19.若06432=+++-++z y x x y x ,则____=yxz ; 20.如果a 的平方根等于2±,那么_____=a ;F21.已知x 、y 满足0242422=+-++y x y x ,则_______16522=+y x ;22.计算:_______10_________,112561363=-=--; 23.3-是 的平方根,3-是 的立方根; 24.20041-的立方根是 ,2004)1(-的立方根是 ;25.若33-x 有意义,则x 的取值范围是 ;26.若02733=+-x ,则______=x ;27.64的平方根是 ,64的立方根是 ;28.81-的立方根是 ,125的立方根是 ; 29.若某数的立方根是027.0-,则这个数的倒数是 ;30.若a 、b 互为相反数,c 、d 互为负倒数,则______322=++cd b a ;三.解答题:1.已知a a a =-+-20052004,求22004-a 的值;2.求x(1) 822=x (2) 126942-=x(3) 8)12(3-=-x (4) 35123403-=+x3.化简(1)24612⨯ (2))32)(32(-+ (3)2)525(-(4))52)(53(-+ (5)2224145- (6))81()64(-⨯-4.计算:已知0)2(12=-+-ab a , 求)2004)(2004(1)2)(2(1)1)(1(11++++++++++b a b a b a ab 的值;。

实数练习题及答案

实数练习题及答案

实数练习题及答案一、选择题(每小题3分,共30分)1.下列各式中无意义的是()A. B. C. D.2.在下列说法中: 10的平方根是±; -2是4的一个平方根; 的平方根是④0.01的算术平方根是0.1;⑤,其中正确的有()A.1个B.2个C.3个D.4个3.下列说法中正确的是()A.立方根是它本身的数只有1和0B.算数平方根是它本身的数只有1和0C.平方根是它本身的数只有1和0D.绝对值是它本身的数只有1和04.的立方根是()A. B. C. D.5.现有四个无理数,,,,其中在实数+1 与+1 之间的有()A.1个B.2个C.3个D.4个6.实数,-2,-3的大小关系是()A. B. C. D.7.已知=1.147,=2.472,=0.532 5,则的值是()A.24.72B.53.25C.11.47D.114.78.若,则的大小关系是()A. B. C. D.9.已知是169的平方根,且,则的值是()A.11B.±11C. ±15D.65或10.大于且小于的整数有()A.9个B.8个 C .7个 D.5个二、填空题(每小题3分,共30分)10.绝对值是,的相反数是.11.的平方根是,的平方根是,-343的立方根是,的平方根是.12.比较大小:(1);(2);(3);(4) 2.13.当时,有意义。

14.已知=0,则=.15.最大的负整数是,最小的正整数是,绝对值最小的实数是,不超过的最大整数是.16.已知且,则的值为。

17.已知一个正数的两个平方根是和,则=,=.18.设是大于1的实数,若在数轴上对应的点分别记作A、B、C,则A、B、C三点在数轴上从左至右的顺序是.19.若无理数满足1,请写出两个符合条件的无理数.三、解答题(共40分)20.(8分)计算:(1);(2);(3);(4);21.(12分)求下列各式中的的值:(1);(2);(3);(4);22.(6分)已知实数、、在数轴上的对应点如图所示,化简:23.(7分)若、、是有理数,且满足等式,试计算的值。

人教版七年级数学下册第六章第三节实数试题(含答案) (35)

人教版七年级数学下册第六章第三节实数试题(含答案) (35)

人教版七年级数学下册第六章第三节实数练习试题三(含答案)计算:(1)2(2)2()()a b a b a b +--+(2)201910221()(3)(2)3π---++--- 【答案】(1)2264b ab a +-;(2)54【解析】【分析】(1)根据平方差和完全平方公式计算即可;(2)根据实数的运算法则计算即可得出结论.【详解】(1)原式=222222442264a ab b a b b ab a ++-+=+-;(2)原式=31511244-++-=. 【点睛】本题考查了平方差和完全平方公式,实数的运算,熟练掌握公式和运算法则是解题的关键.42()022π+-. 【答案】3【解析】【分析】根据实数的性质即可化简求解.【详解】()022π+- =21-=3+【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质.43.阅读材料,解答问题:如果一个四位自然数,十位数字是千位数字的2倍与百位数字的差,个位数字是千位数字的2倍与百位数字的和,则我们称这个四位数“依赖数”,例如,自然数2135,其中3=2×2﹣1,5=2×2+1,所以2135是“依赖数”.(1)请直接写出最小的四位依赖数;(2)若四位依赖数的后三位表示的数减去百位数字的3倍得到的结果除以7余3,这样的数叫做“特色数”,求所有特色数.(3)已知一个大于1的正整数m 可以分解成m =pq+n 4的形式(p ≤q ,n ≤b ,p ,q ,n 均为正整数),在m 的所有表示结果中,当nq ﹣np 取得最小时,称“m =pq+n 4”是m 的“最小分解”,此时规定:F (m )=q n p n ++,例:20=1×4+24=2×2+24=1×19+14,因为1×19﹣1×1>2×4﹣2×1>2×2﹣2×2,所以F (20)=2222++=1,求所有“特色数”的F (m )的最大值. 【答案】(1)1022;(2)3066,2226;(3)6736【解析】【分析】(1)由于千位不能为0,最小只能取1;根据题目得出相应的公式:十位=2×千位﹣百位,个位=2×千位+百位,分别求出十位和个位,即可求出最小的四位依赖数;(2)设千位数字是x ,百位数字是y ,根据“依赖数”定义,则有:十位数字是(2x ﹣y ),个位数字是(2x+y ),依据题意列出代数式然后表示为7的倍数加余数形式,然后求出x 、y 即可,从而求出所有特色数;(3)根据最小分解的定义可知: n 越小,p 、q 越接近,nq ﹣np 才越小,才是最小分解,此时F (m )=q n p n++,故将(2)中特色数分解,找到最小分解,然后将n 、p 、q 的值代入F (m )=q n p n++,再比较大小即可. 【详解】解:(1)由题意可知:千位一定是1,百位取0,十位上的数字为:2×1-0=2,个位上的数字为:2×1+0=2则最小的四位依赖数是1022;(2)设千位数字是x ,百位数字是y ,根据“依赖数”定义,则有:十位数字是(2x ﹣y ),个位数字是(2x+y ),根据题意得:100y+10(2x ﹣y )+2x+y ﹣3y =88y+22x =21(4y+x )+(4y+x ),∵21(4y+x )+(4y+x )被7除余3,∴4y+x =3+7k ,(k 是非负整数)∴此方程的一位整数解为:x=4,y=5(此时2x+y >10,故舍去);x =3,y =7(此时2x ﹣y <0,故舍去);x =3,y =0;x =2,y =2;x =1,y =4(此时2x ﹣y <0,故舍去);∴特色数是3066,2226.(3)根据最小分解的定义可知: n 越小,p 、q 越接近,nq ﹣np 才越小,才是最小分解,此时F (m )=q n p n++, 由(2)可知:特色数有3066和2226两个,对于3066=613×5+14=61×50+24∵1×613-1×5>2×61-2×50,∴3066取最小分解时:n=2,p=50,q=61∴F (3066)=61263=50252++ 对于2226=89×25+14=65×34+24,∵1×89-1×25>2×65-2×34,∴2226取最小分解时:n=2,p=34,q=65∴F (2226)=6365267=342++ ∵63675236< 故所有“特色数”的F (m )的最大值为:6736. 【点睛】此题考查的是新定义类问题,理解题意,并根据新定义解决问题是解决此题的关键.44.计算:(1)36×(153--1294)+(﹣3)2(2)2﹣2×(3.14﹣π)0﹣|﹣22|÷(12)3【答案】(1)-35;(2)3314-【解析】【分析】(1)首先利用乘法分配律计算36×(1531294--),同时计算乘方,然后再计算加减即可;(2)先算负整数指数幂、零次幂、绝对值和乘方,然后再算乘除,后算加减即可.【详解】解:(1)原式=36×112﹣36×59﹣36×34+9,=3﹣20﹣27+9,=﹣35;(2)原式=14×1﹣418÷,=14﹣32,=3314-.【点睛】此题考查的是有理数的混合运算,掌握有理数的运算法则、负指数幂的性质和任何非0数的0次幂都等于1是解决此题的关键.45.如果一个三位正整数是19的倍数,且它的个位、十位、百位上的数字之和是6的倍数,那么我们把这样的三位正整数叫“天天数”.例如:912是一个“天天数”(1)请写出最小的“天天数”(2)若一个三位正整数的百位上的数字比1大,且百位上的数字与十位上的数字相等、百位上的数字与十位上的数字的和是个位上的数字的一半,请判断这个三位正整数是否是“天天数”【答案】(1)114;(2)这个三位正整数是228,是“天天数”.【解析】【分析】(1)先求出19的倍数中最小的三位正整数,再按照“天天数”的定义判断这个正整数是不是“天天数”,如果不是,再求出19的倍数中第二小的三位正整数,依此类推;(2)设百位上的数字是a,则十位上的数字是a、个位上的数字是4a,根据a>1,4a<10求出a值,从而求出这个三位正整数,再按照“天天数”的定义判断这个正整数是不是“天天数”,即可.【详解】解:(1)∵19×5=95,19×6=114,∴19的倍数中最小的三位正整数是114,∵1+1+4=6,∴114是“天天数”,∴最小的“天天数”是114.(2)设百位上的数字是a,则十位上的数字是a、个位上的数字是4a,∴a>1,4a<10,∴1<a<2.5,∵a 是整数,∴a=2,∴这个三位正整数是228,∵228=19×12,2+2+8=12=6×2,∴228是“天天数”.【点睛】此题考查了整数中的新定义,理解定义为关键点.能求出19的倍数中最小的三位正整数是突破口.46.计算:10112-⎛⎫⨯- ⎪⎝⎭. 【答案】1-【解析】【分析】本题涉及零指数幂、负整数指数幂、二次根式化简、绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】10112-⎛⎫⨯- ⎪⎝⎭, =211⨯-=1-【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.47.计算:2sin60°2|+(﹣1)﹣1【答案】3.【解析】【分析】首先计算乘方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【详解】2sin60°2|+(﹣1)﹣1=221﹣(﹣2)=2 1=3.【点睛】本题考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.48.计算:(1)﹣12+2×(﹣3)2+(﹣6)÷|﹣13|; (2)22221124a b ab ab a b ⎛⎫--- ⎪⎝⎭. 【答案】(1)﹣1;(2)32a 2b ﹣54ab 2【解析】【分析】(1)先计算乘方、将除法转化为乘法,再计算乘法,最后计算加减可得;(2)先去括号,再合并同类项即可得.【详解】解:(1)原式=﹣1+2×9+(﹣6)×3=﹣1+18﹣18=﹣1;(2)原式=12a2b﹣ab2﹣14ab2+a2b=32a2b﹣54ab2.【点睛】本题主要考查实数和整式的混合运算,解题的关键是熟练掌握实数混合运算顺序和运算法则及去括号、合并同类项法则.49.老师在讲“实数”时画了一个图(如图),即“以数轴的单位长度为边作一个正方形,然后以原点为圆心,正方形的对角线长为半径画弧交数轴于点A.(1)A点表示的数是多少?在数轴上,A点与表示一1.42的点有什么位置关系;(2)你认为老师作这样的图是为了说明什么?(3)请类比上面的作法在数轴上画出表示 B.(请保留作图痕迹)【答案】(1)A点表示的数是,在数轴A点在与表示-1.42的点的右边;(2)说明数轴上的点和实数一一对应关系;(3)画图见解析.【解析】【分析】(1)首先根据勾股定理求出正方形对角线的长度即为OA的长,然后结合数轴的知识即可求解;(2)根据数轴上的点与实数的对应关系即可求解;(3)利用题中给出的方法画图,画图时即看是直角边和斜边分别多少,再从数轴上画出来即可解决问题.【详解】解:(1)∵22+=,112∴2OA=,∴A点表示的数是-2,在数轴上A点在表示-1.42的点的右边;(2)数轴上的点和实数一一对应关系;(3)如图:如图以数轴的单位长度为边,作3×2的长方形,以数轴上的原点O为圆心,长方形的对角线的长为半径作弧与数轴负半轴交于一点B,则点B表示的数就是.【点睛】本题主要考查了实数与数轴之间的定义关系,此题综合性较强,不仅要结合图形,还需要熟悉平方根的定义.也要求学生了解数形结合的数学思想.501【解析】【分析】利用立方根,二次根式的乘除运算及绝对值的性质分别化简得出答案.【详解】解:原式-1.【点睛】本题考查了实数的运算,正确把握定义是解题的关键.。

6.3 实数的概念、分类及实数与数轴含答案

6.3 实数的概念、分类及实数与数轴含答案

七年级数学下实数的概念和分类及实数与数轴一、选择题1. 下列各数中,是无理数的是 (D ) A.3.1415B.√4C.227 D.√6分析:无理数的三种形式:开方开不尽的数,圆周率π及一些含π的数,特殊构造的数; 注意:带根号的数不一定是无理数。

2.下列说法错误的是(D )A.π2是无理数 B.√4是有理数 C.√-273是有理数 D.√22是分数 3.下列说法正确的是(C )A.一个数不是有限小数就是无理数B.带根号的数都是无理数C.无理数一定是无限小数D.所有无限小数都是无理数 4.下列说法中,正确的是 (C )A.无理数包括正无理数、零和负无理数B.无限小数都是无理数C.正实数包括正有理数和正无理数D.实数可以分为正实数和负实数两类 5. -√5的相反数是 (D ) A.-√5 B.-√55 C.±√5 D.√56. -|-√2|的值为 (B ) A.√2B.-√2C.±√2D.27. 下列各数中,与-√3互为倒数的为 (D ) A.√3B.-√3C.√3 D.-√38.如果实数a=√14,那么a 在数轴上对应点的位置是图1中的 (D )图1二、填空题9.已知a,b 为两个连续的整数,且a<√13<b,则a+b= 7 .10.有一个数值转换器,原理如下:当输入的x=81时,输出的y= √3 .图111.若实数√x -32是一个有理数,则满足条件的x 的最小正整数是 4 . 若实数√x -13是一个有理数,则满足条件的x 的最大负整数是 -5 . 12.在数轴上表示-√67的点到原点的距离为√67 .13.如图2所示,某位老师在讲“实数”时,画了一个图,即“以数轴上的单位长度为边作一个正方形,然后以原点为圆心,正方形的对角线长为半径画弧,交数轴正半轴于一点A”,作这样的图是用来说明: 实数与数轴上的点一一对应 .图214.已知a 的绝对值是√2020,b 的倒数是√2020,则ab= ±1 . 15.将下列实数填在相应的括号内:0,-√3,3.1415926,0.3·4·,√(-5)2,π,-√-203,-137,√13,0.7171171117…(两个7之间依次增加一个1).(1)有理数:{ 0,3.1415926,0.3·4·,√(-5)2,-137 ,… };(2)无理数:{ -√3,π,-√-203,√13,0.7171171117…(两个7之间依次增加一个1) ,… }; (3)正实数:{ 3.1415926,0.3·4·,√(-5)2,π,-√-203,√13,0.7171171117…(两个7之间依次增加一个1) }; (4)负实数:{ -√3,-137,… }. 三、解答题16.把下列各数写成分数的形式:(1) 0.5; (2) 0.53; (3) 0.43; (4) 0.3213解:(1) 0.5= 59.设x =0.5,∴10x =5+ 0.5,∴10x =5+x ,∴ 9x =5,∴ x =59;(2) 0.53=5399.设x = 0.53,∴100x =53+ 0.53,∴100x =53+x ,∴ 99x =53,∴ x =5399;(3) 0.43=43-490=1330.设x =0.43,∴100x =43+ 0.3,10x =4+ 0.3,∴ 90x =43+ 0.3−4− 0.3,∴90 x =43−4,∴ x =3990(4) 0.3213=3213-329900=31819900.设x =0.3213,∴10000x =3213+ 0.13,100x =32+ 0.13,∴ 9900x =3213+ 0.13−32− 0.13,∴9900 x =3213−32,∴ x =3181990017.如图2,正方形网格的单位长度为1. (1)求出格点正方形ABCD 的面积和边长;(2)线段AB 的长是一个 (填“有理数”或“无理数”). 分析:先利用割补法求面积,再利用平方根求出其边长.解:(1)格点正方形ABCD 的面积=4×4-12×1×3×4=10,所以其边长为√10. (2)√10是一个无理数,故答案为无理数.18.如图,一只蚂蚁从点A 出发沿数轴向右直爬3个单位长度到达点B,点A 表示-√2,设点B 所表示的数为m,求m 的值. 数轴上向右移动加,向做移动减. 解:由题意,得m=3-√2.19.写出下列各数的相反数和绝对值.(1)√3(2)√3-2; (3)0.314-π10; (4)√9-√93. 解:(1)因为√-0.1253=-0.5,所以√-0.1253的相反数是0.5, |√-0.1253|=|-0.5|=0.5. (2)√3-2的相反数是2-√3. 因为√3-2<0,所以|√3-2|=2-√3. (3)0.314-π10的相反数是π10-0.314. 因为0.314-π10<0, 所以|0.314-π10|=π10-0.314. (4)√9-√93的相反数是√93-3.因为√9-√93=3-√93>0,所以|√9-√93|=3-√93.20.若实数a,b 互为相反数,c,d 互为倒数,求√2a +2b +√8cd 3的值. 解:由已知条件知,a+b=0,cd=1,则 √2a +2b +√8cd 3=√√8cd 3 =0+2=2.21.如图4所示,数轴的正半轴上有A,B,C 三点,表示1和√2的点分别为A,B,点B 到点A 的距离与点C 到点O 的距离相等,设点C 所表示的数为x.(1)请你写出数x 的值; (2)求(x-√2)2的立方根.图4解:(1)因为点A,B 分别表示1,√2,所以AB=√2-1,即x=√2-1.(2)因为x=√2-1,所以(x-√2)2=(√2-1-√2)2=1,所以1的立方根为1.22.先阅读材料,再回答问题.因为2+1=√2,且1<√2<2,所以√12+1的整数部分是1;小数部分是√2−1;因为√22+2=√6,且2<√6<3,所以√22+2的整数部分是2;小数部分是√6−2;因为√32+3=√12,且3<√12<4,所以√32+3的整数部分是3;小数部分是√12−3;以此类推,我们会发现2+n(n为正整数)的整数部分是, 小数部分是;并说明理由.[提示:n2+n=n(n+1)]解:n,√n2+n−n理由:因为n2+n=n(n+1),而n2<n(n+1)<(n+1)2,所以2<√n(n+1)<√(n+1)2,所以n<√n(n+1)<n+1,所以2+n的整数部分是n(n为正整数);小数部分是√n2+n−n。

实数 练习题(带答案

实数 练习题(带答案


故选 .
【标注】【知识点】无理数的估算
21. 已知整数 满足
,则 的值为

【答案】
【解析】 ∵ ∴ 又∵ ∴.
, .
【标注】【知识点】无理数的估算
7
22. 若
,且 , 为两个连续的正整数,则 的值是

【答案】
Байду номын сангаас
【解析】 ∵ ∴ ∴
, ,,

【标注】【知识点】无理数的估算
23. 已知 的算术平方根是 , 的立方根是 , 是 的整数部分,求
13. 写出一个大于 的无理数:

【答案】 答案不唯一,如:
【解析】
,并且 是无理数.
故答案为: ,但是不唯一.
【标注】【知识点】无理数大小的比较
14. 比较大小:

【答案】 ;
【解析】 ∴

, . , . .
【标注】【知识点】二次根式比较大小
15. 如图,在数轴上标注了四段范围,则表示 的点落在( ).
A.
B.
C.
D.
【答案】 B
【解析】 由图可知,点 所表示的数在 和 之间.



,故排除 ;



故排除 ;
又由图可知点 所表示的数在 和 之间,






故排除 ,选择 .
11
故选 . 【标注】【知识点】实数与数轴
12
【标注】【知识点】无理数的估算
17. 比较大小:

【答案】
【解析】


∵被开方数越大,数越大,

七年级数学上册《第三章-实数》练习题及答案-浙教版

七年级数学上册《第三章-实数》练习题及答案-浙教版

七年级数学上册《第三章 实数》练习题及答案-浙教版一 、选择题1.下列各数:1.414,2,-13,0,其中是无理数的是( ) A.1.414 B. 2 C.-13D.0 2.下列各数中,无理数的个数有( )A.1个B.2个C.3个D.4个3.计算1916+42536的值为( ) A.2512 B.3512 C.4712 D.57124.当14 a 的值为最小时,a 的取值为( )A.-1B.0C.﹣14D.1 5.下列说法正确的是( )A.|-2|=-2B.0的倒数是0C.4的平方根是2D.-3的相反数是36.若a=10,则实数a 在数轴上对应的点的大致位置是( )A.点EB.点FC.点GD.点H7.如图,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心、正方形对角线的长为半径画弧,交数轴于点A ,则点A 表示的数是( )A .- 2B .2- 2C .1- 2D .1+ 28.实数-7,-2,-3的大小关系是( )A.-7<-3<-2B.-3<-2<-7C.-2<-7<-3D.-3<-7<-2二 、填空题9.写出一个3到4之间的无理数 .10.化简:|3﹣2|= .11.实数a,b在数轴上的位置如图所示,则a2﹣|a﹣b|=______.12.比较大小:5﹣3 0.(填“>”、“﹦”或“<”号)13.点A在数轴上和原点相距7个单位,点B在数轴上和原点相距3个单位,且点B在点A的左边,则A,B两点之间的距离为 .14.如图,数轴上与1,2对应的点分别为A,B,点B关于点A的对称点为C,设点C表示的数为x,则|x-2|的值是____________.三、解答题15.在数轴上画出表示下列各数的点,并用”<”连接.16.已知表示实数a,b的两点在数轴上的位置如图所示,化简:|a-b|+(a+b)2.17.一个长方体木箱,它的底面是正方形,木箱高1.25m,体积是11.25m3,求这个木箱底面的边长.18.如图,某玩具厂要制作一批体积为100 0cm3的长方体包装盒,其高为10cm. 按设计需要,底面应做成正方形. 求底面边长应是多少?19.例:试比较4与17的大小.解:∵42=16,(17)2=17又∵16<17∴4<17.请你参照上面的例子比较下列各数的大小.(1)8与65;(2)1.8与3;(3)-5与-24.20.阅读理解∵4<5<9,即2<5<3.∴1<5﹣1<2∴5﹣1的整数部分为1.∴5﹣1的小数部分为5﹣2.解决问题:已知a是17﹣3的整数部分,b是17﹣3的小数部分,求(﹣a)3+(b+4)2的平方根.参考答案一、选择题1.【答案】B2.【答案】C3.【答案】B4.【答案】C5.【答案】D6.【答案】C7.【答案】B8.【答案】D二、填空题9.【答案】π.10.【答案】2﹣ 3.11.【答案】﹣b12.【答案】<.13.【答案】3±7.14.【答案】22-2三、解答题15.【答案】解:数轴略-2<-3<0<0.5<2< 516.【答案】解:由图知b<a<0,∴a-b>0,a+b<0.故|a-b|=a-b,(a+b)2=-(a+b)=-a-b∴原式=a-b-a-b=-2b.17.【答案】解:11.25÷1.25=3m.18.【答案】解:由题意可知:底面面积为:1000÷10=100 cm2所以底面边长:10 cm19.【答案】解:(1)8<65 (2)1.8> 3 (3)-5<-2420.【答案】解:∵<<∴4<17<5∴1<17﹣3<2∴a=1,b=17﹣4∴(﹣a)3+(b+4)2=(﹣1)3+(17﹣4+4)2=﹣1+17=16∴(﹣a)3+(b+4)2的平方根是:±4.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实 数
知识点:
1.一般的,如果一个________的平方等于a ,即______,那么这个______叫做a 的算术平方根.a 的
算术平方根记为______,a 叫做______. 规定:0的算术平方根是______.
2.一般的,如果______,那么这个数叫做a 的平方根.这就是说,如果______,那么x 叫做a 的平方
根,a 的平方根记为______.
3.求一个数a 的______的运算,叫做开平方.
4.一个正数有______个平方根,它们______;0的平方根是______;负数______.
5. 一般的,如果______,那么这个数叫做a 的立方根或三次方根。

这就是说,如果______,那么x 叫
做a 的立方根,a 的立方根记为________. 6.求一个数a 的______的运算,叫做开立方.
7.正数的立方根是______数;负数的立方根是______数;0的立方根是______. 8.一般的,=-3a ______.
9. ______叫无理数,______统称实数. 10.______与数轴上的点一一对应. 练习题:
1.25的算术平方根是______ ;______是9的平方根;16的平方根是______. 2.计算:(1)=121______;(2)=-256______;(3)=±212______;
(4)=43______;(5)=-2)3(______;(6)=-4
12
______.
3.25
111
的平方根是______;0.0001算术平方根是______:0的平方根是______.
4.2)4(-的算术平方根是______:81的算术平方根的相反数是______. 5.一个数的平方根是±2,则这个数的平方是______.
6.3表示3的______;3±表示3的______. 7.如果-x 2有平方根,那么x 的值为______. 8.如果一个数的负平方根是-2,则这个数的算术平方根是______,这个数的平方是_____. 9.若a 有意义,则a 满足______;若a --
有意义,则a 满足______.
10.若3x 2-27=0,则x =______.
11. 求下列等式中的x :
(1)若x 2=1.21,则x =______; (2)x 2=169,则x =______; (3)若,492=
x ,则
x =______; (4)若x 2=(-2)2,则x =______.
12. 125的立方根是______;8
1-
的立方根是______.
13.计算:(1)=-3
008.0______;(2)=3
64
611
______;(3)=--
3
127
19______.
14.体积是64m 3的立方体,它的棱长是______m . 15.64的立方根是______;3
64的平方根是______.
16.=3064.0____;=3216_____;=-33
)2(_____;=-3
3
5
11)(_____;=-3
8_____;=-38_____;
17.(-1)2的立方根是______;一个数的立方根是
10
1,则这个数是______.
18.比较大小:(1);11______
103
3(2)
;2______
23
(3).27______
93
19.求出下列各式中的a :
(1)若a 3=0.343,则a =______;(2)若a 3-3=213,则a =______;
(3)若a 3+125=0,则a =______;(4)若(a -1)3=8,则a =______. 20.若x 的立方根是4,则x 的平方根是______. 21.3311-+-x x 中的x 的取值范围是______,11-+
-x x 中的x 的取值范围是______.
22.-27的立方根与81的平方根的和是______. 23.若,033=+y x 则x 与y 的关系是______. 24.如果,443=+a 那么(a -67)3的值是______. 25.若,141233+=-x x 则x =______. 26.若m <0,则=-33m m ______.
27.2的相反数是_____;2
1
-的倒数是______;35-的绝对值是________.
28.一个数的平方是64,那么它的倒数是________. 29.比较大小:(1);233
-
-________(2).36________1253--
30.
3
8的平方根是______;-12
的立方根是______. 31.若,
2||=x 则x =______.
32.|3.14-π|=______;=-|2332|______. 33.若,5||=x 则x =______;若;12||+=x 则x =______.
34.当a ______时,|a -2 |=a -2.
35.若实数a 、b 互为相反数,c 、d 互为负倒数,则式子3
cd b a +
+-=______.
36.在数轴上与1距离是的点2,表示的实数为______.
37.估计76的大小应在整数 和 之间. 38.求下列各式的值:
(1)325 (2)3681+ (3)25.004.0- (4)121
436.0⋅
(5)3
27
102
--
(6)3235411+⨯ (7)3
3
64
18-
⋅ (8)3
231)3(27--
-+- (9)100
3
3
)
1(4
12
)2(-+÷
--
(10)3
2716949+- (11)
2
3
3
6)48(1÷
--- (12)
2
3
)
4
51(127
26-
+-
(13)32
)13
1)(
9
51()31
(--
+
(14)2
3
3)3
2(1000216-
++
39.已知5x +19的立方根是4,求2x +7的平方根. 40.已知,0|133|22=--+-y x x 求x +y 的值.
41.已知n
m m n A -+-=3是n -m +3的算术平方根,3
22n m B n m +=
+-是m +2n 的立方根,求B -A 的平方根.
42.已知a 是10的整数部分,b 是它的小数部分,求(-a )3+(b +3)2的值.
4313+--- 44. 一个正数x 的平方根是2a -3与5-a ,则a 是多少?
45.
计算:2
2007
1(1)
2
2-⎛⎫
-+-⨯
-- ⎪⎝⎭
46.若03)2(12=-+
-+-z y x ,求z y x ++的值。

47. 求x 值: ①25242=-x ②2542=x ③027.0)7.0(3=-x
48. 已知,a 、b 互为倒数,c 、d 互为相反数,求(3a b )13
+++-d c ab 的值。

49.请在同一个数轴上用尺规作出 2- 和 5 的对应的点。

50.设x 、y ,试求x 、y 的值与x-1的算术平方根.
51.如图所示,正方形网格中的每个小正方形边长都是1,
每个小格顶点为格点,以格点为顶点按要求画一个三角 形,使三角形的三边分别为3、22、5. 52.计算下列各小题 (1)12
3
15
)
520(∙-
+
(2)3
2
14
505
118-+
(3)|-22|-(5
1)0
+
2
2.
(4)8-2(2+2) (5)
80
4
14555-+
(6)(
3
412-
)-2(
18
2
18
1--
)
53.... 已知..y=..x x -+-88+18,....求代数式....y x -的值。

...
54. 已知实数a b c 、、在数轴上的位置如下,化简
a b a b +++-
55. 若a 、b 为实数,且1
112
2
++-+
-=
a a
a
a
b
56. 已知实数a 满足a a a =-+-19931992,求2
1992
-a 的值。

57.阅读下列解题过程:
(1)(
)(
)((2
545454
5454
5)45(14
51
2
2
-=-=--
=
-
+-
⨯=
+;
(2)(
)()
5
65
65
6)56(15
61
-=-
+-⨯=
+;
请回答下列问题:
(1)观察上面解题过程,请直接写出
1
1-+
n n 的结果为__________________.
(2)利用上面所提供的解法,请化简: 100
99199
981......
431321211+
+
+
++
+
+
+
+

c
a
O b。

相关文档
最新文档