19.1 矩形(矩形的判定第2课时)
华师大版八下数学19.1.2《矩形的判定》教学设计
华师大版八下数学19.1.2《矩形的判定》教学设计一. 教材分析《矩形的判定》是华师大版八下数学19.1.2的教学内容,本节课主要让学生掌握矩形的判定方法,并能够运用这些方法解决实际问题。
教材通过引入矩形的定义和性质,引导学生探索矩形的判定方法,培养学生的逻辑思维能力和空间想象能力。
本节课的内容是学生进一步学习几何图形的基础,对于学生形成完整的几何知识体系具有重要意义。
二. 学情分析学生在学习本节课之前,已经学习了矩形的定义和性质,具备了一定的几何知识基础。
同时,学生通过之前的学习,已经掌握了一定的逻辑思维能力和空间想象能力。
然而,学生在运用矩形的判定方法解决实际问题时,仍然存在一定的困难。
因此,在教学过程中,教师需要关注学生的学习需求,引导学生通过自主探究、合作交流的方式,深入理解矩形的判定方法,提高学生的解题能力。
三. 教学目标1.知识与技能:使学生掌握矩形的判定方法,能够运用矩形的判定方法解决实际问题。
2.过程与方法:通过自主探究、合作交流,培养学生的逻辑思维能力和空间想象能力。
3.情感态度与价值观:激发学生对数学学习的兴趣,培养学生的团队协作精神和自主学习能力。
四. 教学重难点1.教学重点:矩形的判定方法。
2.教学难点:运用矩形的判定方法解决实际问题。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,提高学生的学习积极性。
2.自主探究法:引导学生通过自主学习,探索矩形的判定方法,培养学生的自主学习能力。
3.合作交流法:学生进行小组讨论,促进学生之间的思维碰撞,提高学生的团队协作能力。
4.案例教学法:通过分析典型例题,引导学生运用矩形的判定方法解决问题,提高学生的解题能力。
六. 教学准备1.教师准备:熟悉教材内容,了解学生的学习状况,设计教学方案。
2.学生准备:预习相关知识点,了解矩形的定义和性质。
七. 教学过程1.导入(5分钟)教师通过引入实际问题,如“判断一个四边形是否为矩形”,激发学生的学习兴趣,引导学生思考矩形的判定方法。
第2课时 矩形的判定PPT课件
数学课件:/kejian/shuxue/
美术课件:/kejian/me ishu/
物理课件:/kejian/wul i/
生物课件:/kejian/she ngwu/
历史课件:/kejian/lishi/
解:四边形 A F C E是矩形.
理由:略.
第一章
第2课时 矩形的判定
知识要点基础练
综合能力提升练
拓展探究突破练
-6-
知识点3 根据直角的个数判定
5.(原创)在数学活动课上,老师让同学们判断一个四边形是不是矩形,下面是某合作学习小组
的4位同学拟定的方案,其中正确的是( C )
个人简历:/jianli/
教案下载:/jiaoan/
PPT课件:/kejian/
数学课件:/kejian/shuxue/
美术课件:/kejian/me ishu/
物理课件:/kejian/wul i/
地理课件:/kejian/dili/
PPT素材:/sucai/
PPT图表:/tubiao/
PPT教程: /powerpoint/
个人简历:/jianli/
教案下载:/jiaoan/
化学课件:/kejian/huaxue/
地理课件:/kejian/dili/
PPT素材:/sucai/
PPT图表:/tubiao/
PPT教程: /powerpoint/
个人简历:/jianli/
A .测量对角线是否互相平分
B .测量两组对边是否分别相等
C .测量其中三个角是否都为直角
D .测量一组对角是否都为直角
PPT模板:/moban/
PPT背景:/beijing/
19.1.2矩形的判定
线相等的平行四边形是矩形。
试一试
判断对错,并说明理由: ⒈对角线相等的四边形是矩形( × ) ⒉对角线互相平分且相等的四边形是矩形( √ ⒊有一个角是直角的四边形是矩形( ⒋有四个角是直角的四边形是矩形( ⒌四个角都相等的四边形是矩形( √
× )
)
√
) )
⒍对角线相等,且有一个角是直角的四边形是矩形 ( × ) ⒎一组邻边垂直,一组对边平行且相等的四边形是矩形 ( √ ) ⒏对角线相等且互相垂直的四边形是矩形( × )
矩形的定义 有一个角是直角的平行四边形叫做矩形 一个角是直角
平行四边形
矩形
边
矩形的对边平行且相等
矩 形 的 性 质
角
矩形的四个角都是直角
对角线
矩形的两条对角线相等且互相平分
1、记住矩形的判定方法
2、会灵活运用判定方法判断四边
形是否为矩形 3、在探索矩形的判定条件的过程 中,进一步发展推理论证的能力
思 考
有一个角是直角的 四边形是矩形吗? 有两个角是直角的 四边形是矩形吗? 有三个角是直角的 四边形是矩形吗?
归纳:有三个角是直角的四边形是矩形。
证明:有三个角是直角的四边形是矩形。
已知:如图,在四边形ABCD中,∠A=∠B=∠C=90°. A D 求证:四边形ABCD是矩形.
证明: ∵ ∠A=∠B=∠C=90°, B ∴∠A+∠B=180°,∠B+∠C=180° . ∴AD∥BC,AB∥CD. ∴四边形ABCD是平行四边形. ∴四边形ABCD是矩形(有一 个角是直角的平行四边形是矩 形)
a
达标检测
b
矩形的判定方法
定义:有一个角是直角的平行四边形是矩形 对角线相等的平行四边形是矩形 有三个角是直角的平行四边形是矩形
人教版初中八年级下册数学课件 《矩形》平行四边形(第2课时矩形的判定)
矩形 第二课时矩形的判定
课标解读
1.理解矩形的定义,能够利用矩形的定义判定四边形是矩形。 2.掌握矩形的判定定理,并能灵活运用这些判定定理解决问题。 3.通过探索矩形的判定定理,进一步培养视图能力,以及推理论证 能力。
知识梳理 矩形的判定 1.定义法:有一个角是直角的平行四边形是矩形
4
4.八年级(3)班同学要在广场上布置一个矩形的花坛,计划用红花 摆成两条对角线.如果一条对角线用了38盆红花,还需要从花房运来 多少盆红花?为什么?如果一条对角线用了49盆呢?
解:还需要从花房运来38盆“红花”. 因为,矩形的对角线相等,所以另一条对角线也需38盆“红花”.且 不应除去两条对角线的交点,这是因为38盆是偶数,因此对较线的 交点没有摆花盆. 如果一条对角线用了49盆,那么应从花房运来48盆“红花”.因为矩 形的对角线相等,但由于49盆是奇数,因此对角线交点应已摆放花 盆,所以,另一条对角线上的花盆数应少1盆.
3.已知平行四边形ABCD的对角线AC,BD交于点O,△AOB是等 边三角形,AB=4cm. (1)这个平行四边形是矩形吗?说明你的理由; (2)求这个平行四边形的面积.
解:(1)是.∵△AOB是等边三角形,
∴AO=BO
1
1
又∵AO=2 AC,BO2= BD.
∴AC=BD.
∴ ABCD是矩形.
(2)S 1 ABCD= 2 3 4 4 16 3 2
已知:如图,∠A=∠B=∠C=90°.
A
D
求证:四边形ABCD是矩形
证明:∵∠A=∠B=∠C=90° ∴∠D=90°
B
C
∴∠A=∠C,∠B=∠D,
∴四边形ABCD是平行四边形 , ∵∠A=90°
《矩形的性质与判定》示范公开课教学设计【北师大版九年级数学上册】(第2课时)
第一章特殊的平行四边形1.2 矩形的性质与判定第2课时教学设计一、教学目标1.理解矩形的概念,了解它与平行四边形之间的关系.2.经历矩形判定定理的探索过程,进一步发展合情推理能力.3.能够用综合法证明矩形的判定定理,以及其他相关结论,进一步发展演绎推理能力.4.进一步体会探索与证明过程中所蕴含的抽象、推理等数学思想.二、教学重点及难点重点:探索矩形的判定方法.难点:合理应用矩形的判定定理解决问题.三、教学用具多媒体课件、直尺或三角板。
四、相关资源《四边形到平行四边形再到矩形的变化》动画,《矩形的判定》微课.五、教学过程设计【复习引入】1.什么叫做矩形?答:有一个角是直角的平行四边形叫做矩形.2.矩形与平行四边形及四边形有什么从属关系?3.矩形有什么特有的性质呢?答:(1)矩形的四个角都是直角;(2)矩形的对角线相等.4.你知道如何判定一个平行四边形是矩形吗?答:有一个角是直角的平行四边形是矩形(定义判定).5.那么除了矩形的定义外,还有没有其他判定矩形的方法呢?这节课我们就共同来探究一下.师生活动:教师出示问题,学生回答,让学生复习前面学过的内容.设计意图:通过复习,巩固旧知,铺垫新知,设置问题,引出新课.【探究新知】做一做如图,是一个平行四边形活动框架,拉动一对不相邻的顶点时,平行四边形的形状会发生变化.(1)随着∠α的变化,两条对角线的长度将发生怎样的变化?(2)当两条对角线的长度相等时,平行四边形有什么特征?由此你能得到一个怎样的猜想?师生活动:教师出示“做一做”并操作演示,学生思考、讨论、交流,猜想出矩形的一个判定方法.答:(1)当∠α增大到90°时,两条对角线的长度相等.当∠α超过90°时,以∠α的顶点为端点的一条对角线逐渐变短,另一条对角线逐渐变长.(2)当两条对角线的长度相等时,平行四边形的四个角都等于90°.得到的猜想是:对角线相等的平行四边形是矩形.思考你能证明你的猜想吗?师生活动:教师出示问题,学生思考,教师引导学生写出已知、求证并完成证明过程.答:已知:如图,在四边形ABCD中,AC,DB是它的两条对角线,AC=DB.求证:□ABCD是矩形.分析:利用全等三角形证明平行四边形的某两个相邻的角相等,而这两个角又互补,所以它们都是直角,从而得证.证明:∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC.又∵BC=CB,AC=DB,∴△ABC≌△DCB.∴∠ABC=∠DCB.∵AB ∥DC ,∴∠ABC +∠DCB =180°.∴∠ABC =∠DCB =1180902⨯︒=︒. ∴□ABCD 是矩形(矩形的定义).设计意图:培养学生发现规律的能力和逻辑推理能力.判定定理1:对角线相等的平行四边形是矩形.几何语言:∵四边形ABCD 是平行四边形,AC =BD ,∴四边形ABCD 是矩形.该判定定理的两个适用条件:(1)对角线相等;(2)是平行四边形.想一想:我们知道,矩形的四个角都是直角.反过来,一个四边形至少有几个角是直角时,这个四边形就是矩形呢?请证明你的结论.师生活动:教师出示问题,学生思考、讨论、交流,形成猜想并证明猜想.猜想:一个四边形至少有三个角是直角时,这个四边形就是矩形.已知:在四边形ABCD 中,∠A =∠B =∠C =90°.求证:四边形ABCD 是矩形.证明:∵∠A =∠B =90°,∴∠A +∠B =180°.∴AD ∥BC .∵∠B +∠C =180°,∴AB ∥CD . ∴四边形ABCD 是平行四边形(两组对边分别平行的四边形是平行四边形).又∵∠A =90°,∴四边形ABCD 是矩形(有一个角是直角的平行四边形是矩形).DC BA设计意图:培养学生的归纳猜想,推理论证的能力.判定定理2:有三个角是直角的四边形是矩形.几何语言:∵∠A=∠B=∠C=90°,∴四边形ABCD是矩形.归纳:矩形的判定方法:方法1:有一个角是直角的平行四边形是矩形;方法2:对角线相等的平行四边形是矩形;方法3:有三个角是直角的四边形是矩形.议一议你有什么方法检查你家(或教室)刚安装的门框是不是矩形?如果仅有一根较长的绳子,你怎样检查?请说明检查方法的合理性,并与同伴交流.师生活动:教师出示问题,学生思考,教师找学生代表回答.答:可以用直角尺检查安装的门框的四个角是否为直角.如果有三个角是直角,那么刚安装的门框一定是矩形.也可以用直尺(或皮尺)分别量出门框两组对边的长度,如果两组对边长度分别相等,则门框一定是平行四边形,再测量门框的对角线的长度,如果两条对角线的长度相等,那么刚安装的门框一定是矩形.如果仅有一根较长的绳子,可以先用绳子分别测量出门框的两组对边的长度,做上记号.如果两组对边的长度分别相等,那么这个门框一定是平行四边形,再用绳子量出门框的对角线的长度.如果这两条对角线的长度相等,那么这个刚安装的门框一定是矩形,否则不是矩形.理由是对角线相等的平行四边形是矩形.设计意图:让学生运用所学知识解决实际问题.【典例精析】例1 如图,在□ABCD中,对角线AC与BD相交于点O,△ABO是等边三角形,AB=4,求□ABCD的面积.师生活动:教师出示例题,学生思考,教师引导学生完成本题.分析:教师先带学生从已知条件入手,对平行四边形对角线的性质进行分析,再结合△ABO是等边三角形的条件,很容易推出对角线相等,从而利用刚学的矩形的判定定理“对角线相等的四边形是矩形”证得是矩形,再利用勾股定理求出边长BC,进而求出矩形的面积.解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.又∵△ABO是等边三角形,∴OA=OB=AB=4,∠BAC=60°.∴OA=OB=OC=OD=4.∴AC=BD=2OA=2×4=8.∴□ABCD是矩形(对角线相等的平行四边形是矩形).∴∠ABC=90°(矩形的四个角都是直角).在Rt△ABC中,由勾股定理,得AB2+BC2=AC2,∴BC.∴S□ABCD=AB·BC=4×=设计意图:培养学生应用所学知识解决问题的能力.【课堂练习】1.下列命题错误的是().A.对角线相等且互相平分的四边形是矩形B.对角互补的平行四边形是矩形C.对角线相等且有一个角是直角的四边形是矩形D.四个角都相等的四边形是矩形参考答案 C2.如图,在四边形ABCD 中,对角线AC ⊥BD ,垂足为O ,点E ,F ,G ,H 分别为边AD ,AB ,BC ,CD 的中点.若AC =8,BD =6,则四边形EFGH 的面积为__________.参考答案 12.3.已知:如图,在□ABCD 中,M 是AD 边的中点,且MB =MC .求证:四边形ABCD 是矩形.师生活动:教师先找几名学生板演,然后讲解出现的问题.答案证明:∵四边形ABCD 是平行四边形,∴AB =DC .∵M 是AD 边的中点,∴AM =DM .又∵MB =MC ,∴△ABM ≌△DCM (SSS ).∴∠A =∠D .又∵AB ∥DC ,∴∠A +∠D =180°.∴平行四边形ABCD 是矩形(有一个角是直角的平行四边形是矩形).4.如图,在□ABCD 中,对角线AC ,BD 相交于点O ,点E 是□ABCD 外一点,且∠AEC =∠BED =90°.求证:□ABCD 是矩形.师生活动:教师出示题目,学生思考,教师请有思路的学生讲述解题思路,然后订正,最后教师写出解题过程.证明:如图,连接OE .∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD .∵∠AEC =∠BED =90°,∴OE =12AC =12BD . ∴AC =BD .∴□ABCD 是矩形(对角线相等的平行四边形是矩形).设计意图:通过本环节的学习,让学生巩固所学知识,进一步加深对所学知识的理解.六、课堂小结请同学们回顾一下,我们学过的矩形的判定方法有哪些?答:我们学过的矩形的判定方法有:(1)定义:有一个角是直角的平行四边形是矩形;(2)判定定理1:对角线相等的平行四边形是矩形;(3)判定定理2:有三个角是直角的四边形是矩形.师生活动:教师出示问题,引导学生归纳、总结本节课所学内容.设计意图:通过小结,使学生梳理本节课所学内容,掌握本节课的核心内容.七、板书设计1.2 矩形的性质与判定(2)1.矩形的判定方法:(1)定义:有一个角是直角的平行四边形是矩形(2)判定定理1:对角线相等的平行四边形是矩形(3)判定定理2:有三个角是直角的四边形是矩形。
19.1矩形(第2课时 矩形的判定)
问题:木工师傅检查所做的门窗是否是矩 形常用什么方法?为什么?
答:木工师傅靠测量门窗的对角线是否相 等来判断所做的门窗是否是矩形。因为对角
线相等的平行四边形是矩形。
判断对错,并说明理由: ⒈对角线相等的四边形是矩形( × )
⒉对角线互相平分且相等的四边形是矩形( √
⒊有一个角是直角的四边形是矩形( × ) ⒋有四个角是直角的四边形是矩形( √ )
归纳:有三个角是直角的四边形是矩形。
证明:有三个角是直角的四边形是矩形。
已知:如图,在四边形ABCD中,∠A=∠B=∠C=90°. 求证:四边形ABCD是矩形. 证明: ∵ ∠A=∠B=∠C=90°, ∴∠A+∠B=180°,∠B+∠C=180°. B ∴AD∥BC,AB∥CD.
A
D
C
∴四边形ABCD是平行四边形. ∴四边形ABCD是矩形(有一 个角是直角的平行四边形是矩 矩形判定定理: 有三个角是直角 形)
华东师大版八年级(下册)
第19章
矩形、菱形与正方形
19.1矩形(第2课时)
矩形的判定
矩形的定义 有一个角是直角的平行四边形叫做矩形 一个角是直角
平行四边形
矩形
边 矩 形 的 性 质 角
矩形的对边平行且相等
矩形的四个角都是直角
对角线
矩形的两条对角线相等且互相平分
思 考
有一个角是直角的 四边形是矩形吗? 有两个角是直角的 四边形是矩形吗? 有三个角是直角的 四边形是矩形吗?
的四边形是矩形
思考:
(1)对角线相等的四边 形是矩形吗? (2)需要添加什么条件才 能使对角线相等的四边 形是矩形吗? 归纳:对角线相等的平行四 边形是矩形。
(课件) 19.1.2矩形的判定2
又∵AE∥DC ∴四边形ADCE是平行四边形
B
C
D
∴四边形ADCE是矩形(对角线相等的平行四边形是矩形)
湖北鸿鹄志文化传媒有限公司——助您成功
本节课你学习图,AB=AC,AE=AF,且∠EAB=∠FAC, EF=BC.求证:四边形EBCF是矩形.
例6 如图,在△ABC中,AB=AC,AD⊥BC垂足为点
D,AG是△ABC的外角∠FAC的平分线,DE∥AB交
AG于点E,求证:四边形ADCE是矩形。
证明:∵AB=AC,AD⊥BC ∴∠B=∠ACB,BD=CD 又∵AG是∠FAC的平分线,
F
A
1E
G
2
1 1 CAF 1 (B ACB) B B
证明:∵△ABD和△BCD是全等的正三角D 形。
∴∠AOB=∠CDB=60°
C
又∵M,N是BC,AD边的中点。
N
M
∴BN⊥AD,DM⊥BC, ∠BDM=30° A ∴∠DNB=∠DMB=90 °
B
∠MDN=∠ADB+∠BDM=90°
∴四边形BMDN是矩形(三个角都是直角的四边形是矩形)
湖北鸿鹄志文化传媒有限公司——助您成功
2
2
∴AE∥BC
又∵ DE∥AB
∴四边形ADCE是平行四边形
C D
湖北鸿鹄志文化传媒有限公司——助您成功
例6 如图,在△ABC中,AB=AC,AD⊥BC垂足为点
D,AG是△ABC的外角∠FAC的平分线,DE∥AB交
AG于点E,求证:四边形ADCE是矩形。 F
A
E
G
∴AE=BD,AB=DE
∴AC=DE,AE=DC
湖北鸿鹄志文化传媒有限公司——助您成功
19.1.2 矩形的判定(二)
19.1.2 矩形的判定(二)一、教学目标:1.理解并掌握矩形的判定方法.2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力二、重点、难点1.重点:矩形的判定.2.难点:矩形的判定及性质的综合应用.三、预习导学1.什么叫做平行四边形?什么叫做矩形?2.矩形有哪些性质?3.矩形与平行四边形有什么共同之处?有什么不同之处?4.事例引入:小华想要做一个矩形像框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形像框吗?看看谁的方法可行?通过自学讨论得到矩形的判定方法.矩形判定方法1:矩形判定方法2:(指出:判定一个四边形是矩形,知道三个角是直角,条件就够了.因为由四边形内角和可知,这时第四个角一定是直角.)四、例习题分析例1(补充)下列各句判定矩形的说法是否正确?为什么?(1)有一个角是直角的四边形是矩形;(×)(2)有四个角是直角的四边形是矩形;(√)(3)四个角都相等的四边形是矩形;(√)(4)对角线相等的四边形是矩形;(×)(5)对角线相等且互相垂直的四边形是矩形;(×)(6)对角线互相平分且相等的四边形是矩形;(√)(7)对角线相等,且有一个角是直角的四边形是矩形;(×)(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;(√)(9)两组对边分别平行,且对角线相等的四边形是矩形.(√)指出:(l)所给四边形添加的条件不满足三个的肯定不是矩形;(2)所给四边形添加的条件是三个独立条件,但若与判定方法不同,则需要利用定义和判定方法证明或举反例,才能下结论.例2 (补充)已知ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,AB=4 cm,求这个平行四边形的面积.分析:首先根据△AOB是等边三角形及平行四边形对角线互相平分的性质判定出ABCD是矩形,再利用勾股定理计算边长,从而得到面积值.解:例3 (补充)已知:如图(1),ABCD的四个内角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形.分析:要证四边形EFGH是矩形,由于此题目可分解出基本图形,如图(2),因此,可选用“三个角是直角的四边形是矩形”来证明.证明:五、随堂练习1.(选择)下列说法正确的是().(A)有一组对角是直角的四边形一定是矩形(B)有一组邻角是直角的四边形一定是矩形(C)对角线互相平分的四边形是矩形(D)对角互补的平行四边形是矩形2.已知:如图,在△ABC中,∠C=90°, CD为中线,延长CD到点E,使得DE=CD.连结AE,BE,则四边形ACBE为矩形.六、课后练习1.工人师傅做铝合金窗框分下面三个步骤进行:⑴先截出两对符合规格的铝合金窗料(如图①),使AB=CD,EF=GH;⑵摆放成如图②的四边形,则这时窗框的形状是形,根据的数学道理是:;⑶将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是形,根据的数学道理是:;2.在Rt△ABC中,∠C=90°,AB=2AC,求∠A、∠B的度数.七、小结:八、作业:九、反思:。
第2课时 矩形的判定
15.如图,在△ABC 中,AB=AC,点 D(不与点 B 重合)在 BC 上, 点 E 是 AB 的中点,过点 A 作 AF∥BC 交 DE 延长线于点 F,连接 AD, BF.
(1)求证:△AEF≌△BED; (2)若 BD=CD,求证:四边形 AFBD 是矩形.
证明:∵四边形 ABCD 是矩形, ∴AC=BD,AO=BO=CO=DO. ∵AE=BF=CG=DH, ∴OE=OF=OG=OH.
MING XIAO KE TANG
∴四边形 EFGH 是平行四边形(对角线互相平分的四边形是平行四 边形).
∵OE+OG=FO+OH,即 EG=FH, ∴平行四边形 EFGH 是矩形(对角线相等的平行四边形是矩形).
MING XIAO KE TANG
易错点 对矩形的判定方法理解错误导致出错 10.(2019·重庆)下列命题正确的是(A ) A.有一个角是直角的平行四边形是矩形 B.四条边相等的四边形是矩形 C.有一组邻边相等的平行四边形是矩形 D.对角线相等的四边形是矩形
MING XIAO KE TANG
02 中档题
MING XIAO KE TANG
证明:(1)∵AF∥BC, ∴∠AFE=∠EDB. ∵E 为 AB 的中点,∴EA=EB. 在△AEF 和△BED 中,
∠AFE=∠BDE,
∠AEF=∠BED, EA=EB, ∴△AEF≌△BED(AAS).
MING XIAO KE TANG
(2)∵△AEF≌△BED,∴AF=BD. 又∵AF∥BD,∴四边形 AFBD 是平行四边形. ∵AB=AC,BD=CD,∴AD⊥BD. ∴四边形 AFBD 是矩形.
MING XIAO KE TANG
19.1.2矩形的判定2
例4.如图,矩形ABCD的两对角线交于点O,过点O作AC的垂线EF,分别 交AD、BC于点E、F,连接CE,已知△CDE的周长为24 cm,求矩形ABCD 的周长. 解: ∵四边形ABCD矩形 ∴点O为AC中点 ( ? ) ∵EF垂直AC ∴EF是AC的中垂线 ∴EA=EC ( ? ) ∵△CDE的周长为24cm, ∴DC+DE+EC=24cm x E B A 即:DC+AD=24cm 2 3 ∴C矩形ABCD=2×24=48cm. x 练习:如图,在矩形ABCD中,AE=BF=3,EF⊥ED 1 F 交BC于点F,矩形的周长为22,求EF的长. C D
作者:李先贵(平昌县信义小学)
10
1.弄清矩形的性质与判定的区别与联系.并能熟练应用. 2.会应用矩形的性质与判定来证明和计算一些几何问题. 3.进一步理解矩形与平行四边形之间的关系. 4.矩形(平行四边形)与勾股定理、等腰三角形、中垂线及
全等的综合应用,学会看图与读题,理顺已知与未知关系, 并在头脑中构思好解答步骤,然后写出解答过程.
8 16 x x 2
2 2
解得:x=10 即:DE=10
A
练习:将一个边长分别为4、8的矩纸片 ABCD折叠,使C与A重合,求折痕EF的长.
x x 3 8-x
E
F
D
4
B
N
C
作者:李先贵(平昌县信义小学)
9
巩固练习
A
D
1.如图,矩形ABCD两条对角线相交于点O: O 若AB=3,BC=4,则△AOB的周长为 8 ; C B 若矩形的对角线长10㎝,一条边长6cm,则矩形的面积= 10cm . 若∠AOB=60°,AB=4,则△AOB是 正 三角形,对角线BD= 8 . 2.矩形ABCD中,两条对角线的夹角为60°,并且较短边AB与对角线 AC的和为6cm,则较长边BC的长为_____ 2 3 3.一个矩形的对角线长为8,对角线与一边的夹角是45°,则矩形 的两邻边长为_____ 4 2 4 _. 2 4.在矩形ABCD中,AB=3,BD=5交于O,则△AOB的周长为 8 ,△AOB的 面积为 3 . 5.一条直线把矩形的周长平分,这样的直线有 无数 条.
§19.1.3 矩形的判定(二)
课题§19.1.4 矩形的判定(二)教学目标知识目标:通过探索和交流使学生逐步得出矩形的判定方法,使学生亲身经历知识发生发展的过程,并会用判定方法解决相关的问题。
能力目标:通过探究中的猜想、分析、类比、测量、交流、展示等手段,让学生充分体验得出结论的过程,让学生在观察中学会分析,在操作中学习感知,在交流中学会合作,在展示中学会倾听。
培养学生合情推理能力和逻辑思维能力,使学生在学习中学会学习。
情感目标:使学生经历探究矩形判定的过程,体会探索研究问题的方法,使学生在数学活动中获取成功的体验,增强自信心。
教学重点矩形的性质及其推论.教学难点矩形的本质属性及性质定理的综合应用.教具学具多媒体课件教学内容及教师活动二次备课创设情境直角三角形的性质定理:直角三角形斜边上的中线等于斜边的一半.矩形的定义:有一个角是直角的平行四边形是矩形.矩形的判定定理1:对角线相等的平行四边形是矩形。
几何语言:∵四边形ABCD是平行四边形AC=BD(或OA=OC=OB=OD)∴四边形ABCD是矩形矩形的判定定理2:有三个角是直角的四边形是矩形.几何语言:∵∠A=∠B=∠C=90°∴四边形ABCD是矩形实践应用例4:如果平行四边形四个内角的平分线能够围成一个四边形,那么这个四边形是矩形.已知:如图,ABCD的四个内角的平分线分别相交于E、F、G、H,求证:四边形EFGH为矩形.检测反馈1、能够判断一个四边形是矩形的条件是()A 对角线相等B 对角线垂直C对角线互相平分且相等D对角线垂直且相等2、矩形的一组邻边长分别是3cm和4cm,则它的对角线长是cm3、如图,直线EF∥MN,PQ交EF、MN于A、C两点,AB、CB、CD、AD分别是∠EAC、∠MCA、∠ACN、∠CAF的角平分线,则四边形ABCD是()A 菱形B 平行四边形C 矩形D 不能确定4、如图,ABCD中,AB=6, BC=8, AC=10.求证四边形ABCD是矩形.5、如图,△ABC中,AB=AC, AD、AE分别是∠A与∠A的外角的平分线,BE⊥AE.求证:AB=DE.6、如图,点P是矩形ABCD的边AD上的一个动点,矩形的两条边长AB、BC分别为8和15,求点P到矩形的两条对角线AC和BD的距离之和.交流反思这节课你有哪些收获?作业设计评价与反思。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相交于点O,且AC⊥BD。E、F、G、H分别是AB、
BC、CD、AD的中点。
求证:四边形EFGH是矩形。
(2)对角线垂直的任意四边形 的中点四边形是矩形
A E B G F C H D
练习3:如图,在四边形ABCD中,AB=AD, CB=CD,点M、N、P、Q分别是AB、BC、 CD、DA的中点.
工作师傅做铝合金窗框分下面三个步骤进行: (2)摆放成如图所示的四边形,则这时窗框的形 状是____________ 平行四边 形,数学原理是 两组对边分别相等的四边形是平行四边形 _______________________________________ A C E G B D F H
学以致用:
工作师傅做铝合金窗框分下面三个步骤进行: (3)将直角尺靠紧窗框的一个角(如图所示),调整 窗框的边框,当直角尺的两条直角边与窗框无缝 隙时,说明窗框合格,这时窗框是_____ 矩 形,数学 原理是_________________________________ 有一个角为直角的平行四边形是矩形 A C E G B D
A G F D
B
E
C
《数学周报》
精彩不断
创意无限
再
见
配合《数学周报》使用 效果更佳
华东师大版八年级(下册)
第19章 矩形、菱形与正方形
矩形的判定
(第2课时)
定义: 有一个角是直角的平行四边形叫做矩形。 矩 形 性 质 角 四个角 都是直 角 边 对边平 行且相 等 对角线 对称性 互相平 中心对称 分且相 图形,轴 对称图形 等
矩形的判定方法:
四边形 (1)有三个角是直角的四边形是矩形。 平行四边形 (2)有一个角是直角的平行四边形是矩形。 平行四边形 (3)对角线相等的平行四边形是矩形。 做一做:判断下命题是否正确,并说明理由。
(1)若要从这张纸板中剪出一个平行四边形,并且使它
的四个顶点分别落在四边形ABCD的四条边上,可怎 C 样剪? G
解:分别取AB、BC、 CD、DA的中点E、F、G、 H,则剪的中点四边形 H EFGH为平行四边形. ⑵四边形ABCD满足什么情 A 况下,中点四边形EFGH为 矩形?并说明理由. 两条对角线互相垂直,AC⊥BD
中考考点1
△ABC中,点O是AC边上一动点,过点O作直线 MN//BC,设MN交∠BCA的平分线于点E,交 ∠BCA的外角平分线于点F. (1)试说明EO=OF的理由。 (2)当点O运动到何处时,四边形AECF是矩形? 并说明你的结论。
A
M E O F
N
B
C
D
中考考点2
如图,矩形纸片ABCD中,AB=3厘米, BC=4厘米,现将A、C重合,使纸片折 叠压平,设折痕为EF。试确定重叠部分 △AEF的面积。
(1)对角互补的平行四边形是矩形。
(2)一组邻角相等的平行四边形是矩形。 (3)对角线相等的四边形是矩形。 (4)内角都相等的四边形是矩形。
学以致用:
工作师傅做铝合金窗框分下面三个步骤进行: (1)先截同两对符合规格的铝合金窗料,使 AB=CD,EF=GH A C E G B D F H
学以致用:
求证:四边形MNPQ是矩形.
D Q A M B N P C
练习4:如图,AC与BD相交于点O,AB 且∠1=∠2。 求证:四边形ABCD是矩形。
CD,
拓展:在直角坐标系中有点A(a,b),B(a, c),C(-a,-b),D(-a,-c)其中a和b不等 于0。若要使四边形ABCD是矩形, b, c应满足 什么条件?说明理由。
练习1: 如果平行四边形四个内角的平分线能够围 成一个四边形,那么这个四边形是矩形. 已知:如图, ABCD的四个内角的 平分线分别相交于E、F、G、H, 求证:四边形 EFGH为矩形. 证明:因为AB∥CD, 所以∠ABC+∠BCD=180°。 因为BG平分∠ABC,CG平分∠BCD, 1 1 所以∠GBC= 2 ∠ABC,∠GCB= 2 ∠DCB。 1 所以∠GBC + ∠GCB = 2 ×180°=90 ° .
说能出你这节课的收获和体验让大家
与你分享吗?
课堂小结
ABCD ∠A=90°
ABCD AC = BD
ABCD 是矩形
∠A= ∠B= ∠C=90°
四边形ABCD 是矩形
知识链:
有一个角是直角
平行四边形 四边形
矩形
有三个角是直角
矩形的判定口诀:
任意一个四边形, 三角直角定矩形。 对于平行四边形, 一个直角即可定; 对线相等也矩形。
F H
巩固新知
判断题
1.对角线相等且一组对边也相等的四边形是矩形. × 2.两条对角线交点到四个顶点距离相等的四边形为矩形. √ 3.有一组对边相等,一组对角是直角的四边形是矩形. √ 4.有三个角都相等的四边形是矩形. ×
选择题
5. 具备条件____的四边形是矩形. [ D ] A.两条对角线相等 B.对角线互相垂直 C.一组对角是直角 D.有三个角是直角 6. 能够判断一个四边形是矩形的条件是 [ C ] A.对角线相等 B.对角线垂直 C.对角线互相平分且相等 D.对角线垂直且相等
所以∠BGC=90°。 同理可证∠AFB=∠AED=90°. 所以四边形EFGH是矩形 (有三个角是直角的四边形是矩形)
练习2:已知:如图,矩形ABCD的对角 线AC、BD相交于点O,且E、F、G、H 分别是AO、BO、CO、DO的中点,求 证四边形EFGH是矩形.
例1 一张四边形纸板ABCD形状如图,