高级高三文科数学中档题训练3
高考数学(文科)中档大题规范练(立体几何)(含答案)
中档大题规范练——立体几何1.如图所示,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB的中点,D为PB的中点,且△PMB为正三角形.(1)求证:DM∥平面APC;(2)求证:平面ABC⊥平面APC;(3)若BC=4,AB=20,求三棱锥D-BCM的体积.(1)证明由已知,得MD是△ABP的中位线,所以MD∥AP.又MD⊄平面APC,AP⊂平面APC,故MD∥平面APC.(2)证明因为△PMB为正三角形,D为PB的中点,所以MD⊥PB.所以AP⊥PB.又AP⊥PC,PB∩PC=P,所以AP⊥平面PBC.因为BC⊂平面PBC,所以AP⊥BC.又BC⊥AC,AC∩AP=A,所以BC⊥平面APC.因为BC⊂平面ABC,所以平面ABC⊥平面APC.(3)解由(2)知,可知MD⊥平面PBC,所以MD是三棱锥D-BCM的一条高,又AB=20,BC=4,△PMB为正三角形,M,D分别为AB,PB的中点,经计算可得MD=53,DC=5,S△BCD=12×BC×BD×sin∠CBD=12×5×4×215=221.所以V D-BCM=V M-DBC=13×S△BCD×MD=13×221×53=107. 2.如图,在Rt △ABC 中,AB =BC =4,点E 在线段AB 上.过点E 作EF ∥BC 交AC 于点F ,将△AEF 沿EF 折起到△PEF 的位置(点A 与P 重合),使得∠PEB =30°.(1)求证:EF ⊥PB ;(2)试问:当点E 在何处时,四棱锥P —EFCB 的侧面PEB 的面积最大?并求此时四棱锥P —EFCB 的体积.(1)证明 ∵EF ∥BC 且BC ⊥AB ,∴EF ⊥AB ,即EF ⊥BE ,EF ⊥PE .又BE ∩PE =E ,∴EF ⊥平面PBE ,又PB ⊂平面PBE ,∴EF ⊥PB .(2)解 设BE =x ,PE =y ,则x +y =4.∴S △PEB =12BE ·PE ·sin ∠PEB=14xy ≤14⎝ ⎛⎭⎪⎫x +y 22=1.当且仅当x =y =2时,S △PEB 的面积最大.此时,BE =PE =2.由(1)知EF ⊥平面PBE ,∴平面PBE ⊥平面EFCB ,在平面PBE 中,作PO ⊥BE 于O ,则PO ⊥平面EFCB .即PO 为四棱锥P —EFCB 的高.又PO =PE ·sin 30°=2×12=1.S 梯形EFCB =12×(2+4)×2=6.∴V P —BCFE =13×6×1=2.3.如图,在矩形ABCD 中,AB =2BC ,P 、Q 分别是线段AB 、CD 的中点,EP ⊥平面ABCD .(1)求证:DP ⊥平面EPC ;(2)问在EP 上是否存在点F ,使平面AFD ⊥平面BFC ?若存在,求出FP AP的值;若不存在,说明理由.(1)证明 ∵EP ⊥平面ABCD ,∴EP ⊥DP .又ABCD 为矩形,AB =2BC ,P 、Q 分别为AB 、CD 的中点,连接PQ ,则PQ ⊥DC 且PQ =12DC .∴DP ⊥PC .∵EP ∩PC =P ,∴DP ⊥平面EPC .(2)解 假设存在F 使平面AFD ⊥平面BFC ,∵AD ∥BC ,BC ⊂平面BFC ,AD ⊄平面BFC ,∴AD ∥平面BFC .∴AD 平行于平面AFD 与平面BFC 的交线l .∵EP ⊥平面ABCD ,∴EP ⊥AD ,而AD ⊥AB ,AB ∩EP =P ,∴AD ⊥平面EAB ,∴l ⊥平面F AB .∴∠AFB 为平面AFD 与平面BFC 所成二面角的平面角.∵P 是AB 的中点,且FP ⊥AB ,∴当∠AFB =90°时,FP =AP .∴当FP =AP ,即FP AP =1时,平面AFD ⊥平面BFC .4.(2013·课标全国Ⅱ)如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点.(1)证明:BC 1∥平面A 1CD ;(2)设AA 1=AC =CB =2,AB =22,求三棱锥C -A 1DE 的体积.(1)证明 连接AC 1交A 1C 于点F ,则F 为AC 1中点.又D 是AB 中点,连接DF ,则BC 1∥DF .因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD ,所以BC 1∥平面A 1CD .(2)解 因为ABC -A 1B 1C 1是直三棱柱,所以AA 1⊥CD .又因为AC =CB ,D 为AB 的中点,所以CD ⊥AB .又AA 1∩AB =A ,于是CD ⊥平面ABB 1A 1.由AA 1=AC =CB =2,AB =22,得∠ACB =90°,CD =2,A 1D =6,DE =3,A 1E =3,故A 1D 2+DE 2=A 1E 2,即DE ⊥A 1D .所以1C A DE V -=13×S △A 1ED ×CD =13×12×6×3×2=1.5.(2013·辽宁)如图,AB 是圆O 的直径,P A 垂直圆O 所在的平面,C 是圆O 上的点.(1)求证:BC ⊥平面P AC ;(2)设Q 为P A 的中点,G 为△AOC 的重心,求证:QG ∥平面PBC . 证明 (1)由AB 是圆O 的直径,得AC ⊥BC ,由P A ⊥平面ABC ,BC ⊂平面ABC ,得P A ⊥BC .又P A ∩AC =A ,P A ⊂平面P AC ,AC ⊂平面P AC ,所以BC ⊥平面P AC .(2)连接OG 并延长交AC 于M ,连接QM ,QO ,由G 为△AOC 的重心,得M 为AC 中点.由Q 为P A 中点,得QM ∥PC ,又O 为AB 中点,得OM ∥BC .因为QM ∩MO =M ,QM ⊂平面QMO ,MO ⊂平面QMO ,BC ∩PC =C ,BC ⊂平面PBC ,PC ⊂平面PBC .所以平面QMO ∥平面PBC .因为QG ⊂平面QMO ,所以QG ∥平面PBC .6.(2014·四川)在如图所示的多面体中,四边形ABB 1A 1和ACC 1A 1都为矩形.(1)若AC ⊥BC ,证明:直线BC ⊥平面ACC 1A 1;(2)设D ,E 分别是线段BC ,CC 1的中点,在线段AB 上是否存在一点M ,使直线DE ∥平面A 1MC ?请证明你的结论.(1)证明 因为四边形ABB 1A 1和ACC 1A 1都是矩形,所以AA 1⊥AB ,AA 1⊥AC .因为AB ∩AC =A ,AB ⊂平面ABC ,AC ⊂平面ABC , 所以AA 1⊥平面ABC .因为直线BC ⊂平面ABC ,所以AA 1⊥BC .又由已知,AC ⊥BC ,AA 1∩AC =A ,AA 1⊂平面ACC 1A 1,AC ⊂平面ACC 1A 1, 所以BC ⊥平面ACC 1A 1.(2)解 取线段AB 的中点M ,连接A 1M ,MC ,A 1C ,AC 1,设O 为A 1C ,AC 1的交点. 由题意知,O 为AC 1的中点.连接MD ,OE ,OM ,则MD ,OE 分别为△ABC ,△ACC 1的中位线,所以MD 綊12AC ,OE 綊12AC , 因此MD 綊OE .从而四边形MDEO 为平行四边形,则DE ∥MO .因为直线DE ⊄平面A 1MC ,MO ⊂平面A 1MC ,所以直线DE ∥平面A 1MC .即线段AB 上存在一点M (线段AB 的中点),使直线DE ∥平面A 1MC .。
高三数学中档题训练1-5(带详细答案)
..Word 资料.高三数学中档题训练1班级 姓名1.集合A={1,3,a },B={1,a 2},问是否存在这样的实数a ,使得B ⊆A , 且A ∩B={1,a }?若存在,求出实数a 的值;若不存在,说明理由.2、在ABC ∆中,a 、b 、c 分别是三内角A 、B 、C 的对应的三边,已知222b c a bc +=+。
(Ⅰ)求角A 的大小: (Ⅱ)若222sin 2sin 122B C+=,判断ABC ∆的形状。
3. 设椭圆的中心在原点,焦点在x 轴上,离心率23=e .已知点)23,0(P 到这个椭圆上的点的最远距离为7,求这个椭圆方程.4.数列{}n a 为等差数列,n a 为正整数,其前n 项和为n S ,数列{}n b 为等比数列,且113,1a b ==,数列{}n a b 是公比为64的等比数列,2264b S =.(1)求,n n a b ;(2)求证1211134n S S S +++<L .高三数学中档题训练2班级 姓名1.已知函数()116-+=x x f 的定义域为集合A ,函数()()m x x x g ++-=2lg 2的定义域为集合 B. ⑴当m=3时,求()B C A R I ;⑵若{}41<<-=x x B A I ,求实数m 的值.2、设向量(cos ,sin )m θθ=u r ,(22sin ,22cos )n θθ=+-r ,),23(ππθ--∈,若1m n •=u r r ,求:(1))4sin(πθ+的值; (2))127cos(πθ+的值.3.在几何体ABCDE 中,∠BAC=2π,DC ⊥平面ABC ,EB ⊥平面ABC ,F 是BC 的中点,AB=AC=BE=2,CD=1(Ⅰ)求证:DC ∥平面ABE ;(Ⅱ)求证:AF ⊥平面BCDE ;(Ⅲ)求证:平面AFD ⊥平面AFE .4. 已知ΔOFQ 的面积为2 6 ,且OF FQ m ⋅=u u u r u u u r.(1)设 6 <m <4 6 ,求向量OF FQ u u u r u u u r与的夹角θ正切值的取值范围;(2)设以O 为中心,F 为焦点的双曲线经过点Q (如图),OF c =u u u r ,m=( 6 4-1)c 2,当OQ u u u r 取得最小值时,求此双曲线的方程.ABCDEF..Word 资料.高三数学中档题训练3班级 姓名1. 已知向量a =(3sin α,cos α),b =(2sin α, 5sin α-4cos α),α∈(3π2π2,), 且a ⊥b . (1)求tan α的值; (2)求cos(π23α+)的值.2、某隧道长2150m ,通过隧道的车速不能超过20m/s 。
高三数学中档题+详细答案(全)精选
高三数学中档题+详细答案(全) 班级 姓名1.如图所示,在直三棱柱111C B A ABC -中,⊥=11,AC BB AB 平面D BD A ,1为AC 的中点.(1)求证://1C B 平面BD A 1;(2)求证:⊥11C B 平面11A ABB ;(3)在1CC 上是否存在一点E ,使得∠1BA E =45°,若存在,试确定E 的位置,并判断平面1A BD 与平面BDE 是否垂直?若不存在,请说明理由.2. 设1F 、2F 分别是椭圆1422=+y x 的左、右焦点,)1,0(-B .(Ⅰ)若P 是该椭圆上的一个动点,求12PF PF ⋅u u u r u u u u r 的最大值和最小值; (Ⅱ)若C 为椭圆上异于B 一点,且11CF BFλ=,求λ的值; (Ⅲ)设P 是该椭圆上的一个动点,求1PBF ∆的周长的最大值.3. 已知定义在R 上的奇函数()3224f x ax bx cx d =-++ (a b c d R ∈、、、),当1x = 时,()f x 取极小值.23-(1)求a b c d 、、、的值;(2)当[,]11x ∈-时,图象上是否存在两点,使得过此两点处的切线互相垂直?试证明你的结论.(3)求证:对]2,2[,21-∈∀x x ,都有34)()(21≤-x f x f4.设数列{}n a 的前n 项和为n S ,d 为常数,已知对*∈∀N m n ,,当m n >时,总有d m n m S S S m n m n )(-+=--.⑴ 求证:数列{n a }是等差数列;⑵ 若正整数n , m , k 成等差数列,比较k n S S +与mS 2的大小,并说明理由!高三数学中档题训练27班级 姓名1. 在平面直角坐标系xoy 中,已知圆心在直线4y x =+上,半径为的圆C 经过坐标原点O ,椭圆()222109x y a a +=>与圆C 的一个交点到椭圆两焦点的距离之和为10.(1)求圆C 的方程;(2)若F 为椭圆的右焦点,点P 在圆C 上,且满足4PF =,求点P 的坐标.18. 某厂为适应市场需求,提高效益,特投入98万元引进先进设备,并马上投入生产,第一年需要的各种费用是12万元,从第二年开始,所需费用会比上一年增加4万元,而每年因引入该设备可获得的年利润为50万元.请你根据以上数据,解决下列问题:(1)引进该设备多少年后,开始盈利?(2)引进该设备若干年后,有两种处理方案:第一种:年平均盈利达到最大值时,以26万元的价格卖出;第二种:盈利总额达到最大值时,以8万元的价格卖出,哪种方案较为合算?请说明理由′3.设二次函数2()f x ax bx c=++在区间[]2,2-上的最大值、最小值分别是M、m,集合{}|()A x f x x==.(1)若{1,2}A=,且(0)2f=,求M和m的值;(2)若{2}A=,且1a≥,记()g a M m=+,求()g a的最小值.4.设数列{}{},n na b满足1122336,4,3a b a b a b======,若{}1n na a+-是等差数列,{}1n nb b+-是等比数列.(1)分别求出数列{}{},n na b的通项公式;(2)求数列{}n a 中最小项及最小项的值;(3)是否存在*k N ∈,使10,2k k a b ⎛⎫-∈ ⎪⎝⎭,若存在,求满足条件的所有k 值;若不存在,请说明理由.高三数学中档题训练28班级 姓名1、已知E F 、分别是正三棱柱111ABC A B C -的侧面11AA B B 和侧面11AA C C 的对角线的交点,D 是棱BC 的中点. 求证:(1)//EF 平面ABC ;(2)平面AEF ⊥平面1A AD .2.在平面区域2100,260,270x y x y x y -+⎧⎪+-⎨⎪--⎩≥≥≤内有一个圆,向该区域内随机投点,当点落在圆内的概率最大时的圆记为⊙M .(1)试求出⊙M 的方程;(2)过点P (0,3)作⊙M 的两条切线,切点分别记为A ,B ;又过P 作⊙N :x 2+y 2-4x +λy +4=0的两条切线,切点分别记为C ,D .试确定λ的值,使AB ⊥CD .3. 已知函数22()ln ()f x x a x ax a R =-+∈.(1)当a=1时,证明函数()f x 只有一个零点;(2)若函数()f x 在区间(1,+∞)上是减函数,求实数a 的取值范围.4. 已知函数2()1f x x x =+-,αβ,是方程()0f x =的两个根()αβ>,()f x '是()f x 的导数.设11a =,1()(12)()n n n n f a a a n f a +=-='L ,,.(1)求αβ,的值;(2)已知对任意的正整数n 有n a α>,记ln(12)n n n a b n a βα-==-L ,,.求数列{}n b 的前n 项和n S .高三数学中档题训练29班级 姓名1.已知函数2π()2sin 24f x x x ⎛⎫=+ ⎪⎝⎭,ππ,42x ⎡⎤∈⎢⎥⎣⎦. (1)求()f x 的最大值和最小值;(2)若不等式()2f x m -<在ππ,42x ⎡⎤∈⎢⎥⎣⎦上恒成立,求实数m 的取值范围2、已知椭圆C :12222=+b y a x )0(>>b a 的两个焦点为1F ,2F ,点P 在椭圆C 上,且211F F PF ⊥,341=PF ,3142=PF .(1)求椭圆C 的方程;(2)若直线l 过圆02422=-++y x y x 的圆心M ,交椭圆C 于A ,B 两点,且A ,B 关于点M 对称,求直线l 的方程.3.已知集合是满足下列性质的函数)(x f 的全体:在定义域D 内存在0x ,使得)1(0+x f )1()(0f x f +=成立.(1)函数xx f 1)(=是否属于集合M ?说明理由; (2)若函数b kx x f +=)(属于集合M ,试求实数k 和b 的取值范围;(3)设函数1lg)(2+=x a x f 属于集合M ,求实数a 的取值范围.4.设常数0a ≥,函数2()ln 2ln 1f x x x a x =-+-((0,))x ∈+∞. (1)令()()g x xf x '=(0)x >,求()g x 的最小值,并比较()g x 的最小值与零的大小;(2)求证:()f x 在(0,)+∞上是增函数;(3)求证:当1x >时,恒有2ln 2ln 1x x a x >-+.高三数学中档题训练30班级 姓名1.若函数)0(cos sin sin )(2>-=a ax ax ax x f 的图象与直线y=m 相切,并且切点的横坐标依次成公差为2π的等差数列.(Ⅰ)求m 的值;(Ⅱ)若点)(),(00x f y y x A =是图象的对称中心,且]2,0[0π∈x ,求点A 的坐标.2.已知中心在原点,焦点在坐标轴上的椭圆过M (1,324), N ( -223,2)两点.(Ⅰ)求椭圆的方程;(Ⅱ)在椭圆上是否存在点P(x,y),使P 到定点A(a,0)(其中0<a <3)的距离的最小值为1?若存在,求出a 的值及P 点的坐标;若不存在,请给予证明.3.设A (x 1 , y 1),B(x 2 , y 2)是函数f(x )=21+log 2x x -1图象上任意两点,且OM =21(+),点M 的横坐标为21.⑴求M 点的纵坐标;⑵若S n =)(11∑-=n i n i f =f (1n )+f (2n )+…+f (1n n -),n ∈N *,且n ≥2,求S n ; ⑶已知a n =1231(1)(1)n n S S +⎧⎪⎪⎨⎪++⎪⎩(1)(2)n n =≥n ∈N *,T n 为数列{a n}的前n 项和,若T n <λ(S n+1+1) 对一切n >1且n ∈N *都成立,求λ的取值范围.4.已知函数f(x)= n +lnx 的图像在点P(m,f(m))处的切线方程为y=x ,设()2ln ng x mx xx =--.(1)求证:当()1,0x g x ≥≥恒成立;(2)试讨论关于x 的方程:()322nmx g x x ex txx --=-+ 根的个数.高三数学中档题训练261.证明:(1)连接1AB 与B A 1相交于M ,则M 为B A 1的中点.连结MD ,又D 为AC 的中点,MD C B //1∴,又⊄C B 1平面BD A 1,MD ⊂平面BD A 1//1C B ∴平面BD A 1 . …………………………………………4′(2)B B AB 1=Θ,∴平行四边形11A ABB 为菱形,11AB B A ⊥∴, 又⊥1AC Θ面BD A 1B A AC 11⊥∴,⊥∴B A 1面11C AB …………………………7′ 111C B B A ⊥∴.又在直棱柱111C B A ABC -中,111C B BB ⊥, ⊥∴11C B 平面A ABB 1. ……………………………………9′(3)当点E 为C C 1的中点时,∠1BA E=45°,且平面⊥BD A 1平面BDE .设AB=a ,CE=x,∴111A B AC =,1C E a x =-,∴1A E ==BE ∴在1A BEV 中,由余弦定理得22211112cos 45BE A B A E A B A E =+-⋅⋅︒即222222322a x a x a ax +=++--⋅2a x =-,∴x =12a ,即E 是C C 1的中点. ………………………………………13′D Θ、E 分别为AC 、C C 1的中点,1//AC DE ∴.1AC Θ平面BD A 1,⊥∴DE 平面BD A 1.又⊂DE 平面BDE ,∴平面⊥BD A 1平面BDE . …………………………15′ 2.解:(Ⅰ)易知2,1,a b c ===所以())12,F F ,设(),P x y ,则())2212,,,3PF PF x y x y x y ⋅=--=+-u u u r u u u u r()2221133844x x x =+--=-因为[]2,2x ∈-,故当0x =,即点P 为椭圆短轴端点时,12PF PF ⋅u u u r u u u u r有最小值2- 当2x =±,即点P 为椭圆长轴端点时,12PF PF ⋅u u u r u u u u r有最大值1(Ⅱ)设C (0x 0,y ),)1,0(-B ()1F由11CF BFλ=得001x y λ==-,又 220014x y += 所以有2670λλ+-=解得舍去)01(7>=-=λλ.(Ⅲ) 因为|P 1F |+|PB |=4-|PF 2|+|PB |≤4+|BF 2|,∴1PBF ∆的周长≤4+|BF 2|+|B 1F |≤8.所以当P 点位于直线BF 2与椭圆的交点处时,1PBF ∆周长最大,最大值为8.3.解(1)∵函数()f x 图象关于原点对称,∴对任意实数()()x f x f x -=-有,∴32322424ax bx cx d ax bx cx d ---+=-+--,即220bx d -=恒成立 ∴0,0b d == …………4分∴,3)(',)(23c ax x f cx ax x f +=+=, ∵1x =时,()f x 取极小值23-,∴2303a c a c +=+=-且, 解得1,31-==c a ………8分(2)当[1,1]x ∈-时,图象上不存在这样的两点使结论成立. …………10分假设图象上存在两点),(),,(2211y x B y x A ,使得过此两点处的切线互相垂直,则由,1)('2-=x x f 知两点处的切线斜率分别为,1211-=x k ,1222-=x k 且2212(1)(1)1x x -⋅-=-…………(*) …………13分1x Q 、2[1,1]x ∈-,2222121210,10,(1)(1)0x x x x ∴-≤-≤∴-⋅-≥此与(*)相矛盾,故假设不成立. ………………16分 4(本小题满分18分)⑴证明:∵当m n >时,总有dm n m S S S m n m n )(-+=--∴ 当2≥n 时,dn S S S n n )1(11-+=--即,)1(1d n a a n -+= 2分且1=n 也成立 ………3分∴ 当2≥n 时,dd n a d n a a a n n =----+=--)2()1(111∴数列{na }是等差数列 …………5分⑵解: ∵正整数n , m , k 成等差数列,∴,2m k n =+∴)2)1((22)1(2)1(2111d m m ma d k k ka d n n na S S S m k n -+--++-+=-+))2(2(2)2(2222222k n k n d m k n d +-+=-+=2)(4k n d-=……9分∴ ① 当0>d 时,k n S S +mS 2> ② 当0<d 时,k n S S +mS 2<③ 当0=d 时,k n S S +mS 2= ……10分 高三数学中档题训练271. 解:(1)由已知可设圆心坐标为(),4t t +, …………………………2'∴()2248t t ++=得2t =-,∴圆心坐标为()2,2-, …………………………4'所以圆的方程为()()22228x x ++-= ……………………………6'(2)由题意,椭圆中210a =,即5a =Q 29b =,∴216c =,∴()4,0F …………………………8'设(),P m n ,则()()224016m n -+-=,()()22228m n ++-= ……………………………11'解之得:4050125m m n n ⎧=⎪=⎧⎪⎨⎨=⎩⎪=⎪⎩或即()4120,0,55P P ⎛⎫⎪⎝⎭或 …………………………………………14' 2. 解:(1)设引进设备几年后开始盈利,利润为y 万元则y =50n -[12n +n(n -1)2×4]-98=-2n 2+40n -98由y >0可得10n <10 ∵n ∈N *,∴3 ≤n ≤17,即第3年开始盈利 …………………… 5′(2)方案一:年平均盈利y 98=-2n -+40≤40=12n 2当且仅当982n =n 即n =7时取“=”共盈利12×7+26=110万元 …………………………………………9′ 方案二:盈利总额y =-2n 2+40n -98=-2(n -10)2+102 当n =10时,y max =102共盈利102+8=110万元………………………………………13′方案一与方案二盈利客相同,但方案二时间长,∴方案一合算…………153. (1)由(0)22f c ==可知, ……………………1′ 又{}2A 1212(1)0.ax b x c =+-+=,,故,是方程的两实根1-b 1+2=a ,c 2=a ⎧⎪⎪∴⎨⎪⎪⎩ ……………………………………………3′1,2a b ==-解得 ………………………………………4′ []22()22(1)1,2,2f x x x x x ∴=-+=-+∈-min 1()(1)1,1x f x f m ====当时,即 ………………………5′ max 2()(2)10,10.x f x f M =-=-==当时,即 ……………………6′(2)2(1)0ax b x c +-+=由题意知,方程有两相等实根x=2,,4ca ⎧⎪⎧⎪∴⎨⎨⎩⎪=⎪⎩1-b 2+2=b=1-4a a 即c=4a ………………………8′ []2()(14)4,2,2f x ax a x a x ∴=+-+∈-4112,22a a a -==-其对称轴方程为x131,2,222a a ⎡⎫≥-∈⎪⎢⎣⎭又故 ……………………………10′(2)162,M f a ∴=-=- ………………………11′4181,24a a m f a a --⎛⎫==⎪⎝⎭ ………………………12′1()164g a M m a a ∴=+=-…………………………13′[)min 63()1,1().4g a a g a +∞∴==又在区间上为单调递增的,当时, ……15′4.解:(1)21322,1a a a a -=--=-由{}1n n a a +-成等差数列知其公差为1,故()12113n n a a n n +-=-+-⋅=- ……………………3'21322,1,b b b b -=--=-由{}1n n b b +-等比数列知,其公比为12,故11122n n n b b -+⎛⎫-=-⋅ ⎪⎝⎭ …………6'11223211()()()()n n n n n n n a a a a a a a a a a -----=-+-+-+⋅⋅⋅+-+=()()()12(1)212n n n ---⋅-+⋅+6=232282n n n -+-+=27182n n -+ ………8'11223211()()()()n n n n n n n b b b b b b b b b b -----=-+-+-+⋅⋅⋅+-+=2121()2112n -⎛⎫-- ⎪⎝⎭-+6=2+42n- …………………………………………………10'(2)由(1)题知,n a =27182n n -+ ,所以当3n =或4n =时,n a 取最小项,其值为3…12' (3)假设k 存在,使k k a b -=27182n n -+-2-42n -=27142n n -+-42n -10,2⎛⎫∈ ⎪⎝⎭ 则0<27142n n -+-42n-12< 即2527132714n n n n n --+<<-+ …………15' ∵22713714n n n n -+-+与是相邻整数 ∴52nZ -∉,这与52n Z -∈矛盾,所以满足条件的k 不存在 ………………17'高三数学中档题训练282、证明:(1)连结11A B A C和,因为E F 、分别是侧面11AA B B和侧面11AA C C的对角线的交点,所以E F 、分别是11A B A C 和的中点…………………………………………4分所以//EF BC ,且BC 在平面ABC 中,而EF 不在平面ABC 中,故//EF 平面ABC (7)分(2)因为三棱柱111ABC A B C -为正三棱柱,所以1A A ⊥平面ABC ,∴1BC A A⊥,故由//EF BC 得1EF A A⊥……9分又因为D 是棱BC 的中点,且ABC ∆为正三角形,∴BC AD ⊥,故由//EF BC 得EF AD ⊥,……11分 而1A A AD A=I ,1,A A AD ⊂平面1A AD,所以EF ⊥平面1A AD,又EF ⊂平面AEF ,故平面AEF ⊥平面1A AD .……………………………………14分2. (1)设⊙M 的方程为(x -a )2+(y -b )2=r 2(r >0),则点(a ,b )在所给区域的内部.2分于是有,,.r r r ==⎪= ………………………………………………8分(未能去掉绝对值,每个方程给1分)解得 a =3,b =4,r(x -3)2+(y -4)2=5. …………………10分(2)当且仅当PM ⊥PN 时,AB ⊥CD . ………………………………14分因13PM k =,故λ3232PNk --==-,解得λ=6. …………………………18分当λ=6时,P 点在圆N 外,故λ=6即为所求的满足条件的解.(本验证不写不扣分)3. 解:(1)当a=1时,2()ln f x x x x =-+,其定义域是(0,)+∞,2121()21x x f x x x x --'∴=-+=-令()0f x '=,即2210x x x ---=,解得12x =-或1x =.0x >Q ,12x ∴=-舍去.当01x <<时,()0f x '>;当1x >时,()0f x '<.∴函数()f x 在区间(0,1)上单调递增,在区间(1,+∞)上单调递减∴当x=1时,函数()f x 取得最大值,其值为2(1)ln1110f =-+=. 当1x ≠时,()(1)f x f <,即()0f x <. ∴函数()f x 只有一个零点.(2)法一:因为22()ln f x x a x ax =-+其定义域为(0,)+∞, 所以222121(21)(1)()2a x ax ax ax f x a x a x x x -++-+-'=-+==①当a=0时,1()0,()f x f x x '=>∴在区间(0,)+∞上为增函数,不合题意②当a>0时,()0(0)f x x '<>等价于(21)(1)0(0)ax ax x +->>,即1x a >.此时()f x 的单调递减区间为1(,)a +∞.依题意,得11,0.a a ⎧≤⎪⎨⎪>⎩解之得1a ≥.③当a<0时,()0(0)f x x '<>等价于(21)(1)(0)ax ax x +->>,即12x a >-·此时()f x 的单调递减区间为1(,)2a -+∞,11,0.a a ⎧-≤⎪∴⎨⎪<⎩得12a ≤- 综上,实数a 的取值范围是1(,][1,)2-∞-+∞U法二:22()ln ,(0,)f x x a x ax x =-+∈+∞Q 2221()a x ax f x x -++'∴=由()f x 在区间(1,)+∞上是减函数,可得22210a x ax -++≤在区间(1,)+∞上恒成立.① 当0a =时,10≤不合题意② 当0a ≠时,可得11,4(1)0a f ⎧<⎪⎨⎪≤⎩即210,4210a a a a ⎧><⎪⎨⎪-++≤⎩或10,4112a a a a ⎧><⎪⎪∴⎨⎪≥≤-⎪⎩或或 1(,][1,)2a ∴∈-∞-+∞U4. (1) 由 210x x +-=得x =α∴=β=(2) ()21f x x '=+221112121n n n n n n n a a a a a a a ++-+=-=++(221122112n n n n n n n nn n a a a a a a a a βαβα+++++++-==-⎛⎫ ⎪⎛⎫-== ⎪-⎝⎭⎝⎭∴12n nb b += 又111lna b a βα-===- ∴数列{}n b 是一个首项为14ln2+,公比为2的等比数列;∴)()12242112n n n S -==--高三数学中档题训练291.解:(1)π()1cos 221sin 222f x x x x x ⎡⎤⎛⎫=-+=+ ⎪⎢⎥⎝⎭⎣⎦∵π12sin 23x ⎛⎫=+-⎪⎝⎭. 又ππ,42x ⎡⎤∈⎢⎥⎣⎦∵,ππ2π2633x -∴≤≤,即π212sin 233x ⎛⎫+- ⎪⎝⎭≤≤, max min ()3,()2f x f x ==∴.(2)()2()2()2f x m f x m f x -<⇔-<<+∵,ππ,42x ⎡⎤∈⎢⎥⎣⎦, max ()2m f x >-∴且min ()2m f x <+,14m <<∴,即m 的取值范围是(1,4).2.(1)14922=+y x …………7分 (2)02598=+-y x …………7分3.(本小题满分16分)解:(1)),0()0,(+∞-∞=Y D ,若M xx f ∈=1)(,则存在非零实数0x ,使得111100+=+x x ,……(2分)即0102=++x x ,……(3分) 因为此方程无实数解,所以函数M xx f ∉=1)(.……(4分) (2)R D =,由M b kx x f ∈+=)(,存在实数0x ,使得 b k b kx b x k +++=++00)1(,……(6分) 解得0=b ,……(7分)所以,实数k 和b 的取得范围是R k ∈,0=b .……(8分) (3)由题意,0>a ,R D =.由M x ax f ∈+=1lg)(2,存在实数0x ,使得 2lg 1lg 1)1(lg2020ax a x a =+=++,……(10分) 所以,)1(21)1(20220+=++x a x a , 化简得0222)2(202202=-++-a a x a x a a ,……(12分)当2=a 时,210-=x ,符合题意.……(13分) 当0>a 且2≠a 时,由△0≥得0))(2(84224≥---a a a a a ,化简得0462≤+-a a ,解得]53,2()2,53[+-∈Y a .……(15分)综上,实数a 的取值范围是]53,53[+-.……(16分)4.解(Ⅰ)∵()(ln )(ln )2ln 1f x x x x a x =-+-,(0,)x ∈+∞∴112()1[ln (ln )]a f x x x x x x '=-⨯+⨯+2ln 21x ax x =-+,∴()()2ln 2g x xf x x x a '==-+,(0,)x ∈+∞∴22()1x g x x x -'=-=,令()0g x '=,得2x=,列表如下:∴()g x 在x 处取得极小值, 即()g x 的最小值为(2)22ln 22g a =-+.(2)2(1ln 2)2g a =-+,∵ln 21<,∴1ln 20->,又0a ≥,∴(2)0g >. (Ⅱ)证明由(Ⅰ)知,()g x 的最小值是正数,∴对一切(0,)x ∈+∞,恒有()()0g x xf x '=>从而当0x >时,恒有()0f x '>,故()f x 在(0)+,∞上是增函数. (Ⅲ)证明由(Ⅱ)知:()f x 在(0)+,∞上是增函数, ∴当1x >时,()(1)f x f >, 又2(1)1ln 12ln110f a =-+-=, ∴()0f x >,即21ln 2ln 0x x a x --+>,∴2ln 2ln 1x x a x >-+故当1x >时,恒有2ln 2ln 1x x a x >-+.高三数学中档题训练301.解析:解:(1))42sin(23212sin 2122cos 1)(π+-=--=ax ax ax x f 3分由于y=m 与)(x f y =的图象相切,则221221-=+=m m 或; 5分(2)因为切点的横坐标依次成公差为2π等差数列,所以42,2=∴=a T π).21,167()21,163(,21),(21640),(164)(44,0)44sin(.21)44sin(22)(000πππππππππππ或点或得由则令A k k Z k k Z k k x Z k k x x x x f ∴==∈≤-≤∈-=∴∈=+=+++-=2.解:(Ⅰ)设椭圆方程为mx 2+ny 2=1(m >0,n,>0且m≠n) ……………2分∵椭圆过M,N 两点,∴m+,1932=n 1229=+n m …………………4分∴m=41,91=n ………………………………………………6分 ∴椭圆方程为 14922=+y x …………………………………………7分(Ⅱ)设存在点P(x,y)满足题设条件,∴|AP|=(x-a)2+y 2,又14922=+y x ,∴y 2=4(1 -92x ),∴|AP|=(x-a)2+ 4(1 -92x )=95(x-59a)2+4-54a 2(|x|≤3),…………………10分 若时,即350,359≤≤<a a |AP|的最小值为4-54a 2,依题意,4-54a 2=1 ,∴a=215±⎥⎦⎤ ⎝⎛∉35,0;………………………………………12分 若,359〉a 即335<a<时,当x=3时,|AP|2的最小值为(3-a )2,(3-a )2=1,∴a=2,此时点P 的坐标是(3,0) .…………………………………………15分 故当a=2时,存在这样的点P 满足条件,P 点的坐标是(3,0).…………16分3.解:(1) ∵x 1+x 2=1,∴y M =2)()(21x f x f +=21log 1log 1222112x xx x -+-+=21; 4分(2) ∵对任意x ∈(0,1)都有f(x)+f(1-x)=1∴f(i n )+f(1-i n )=1,即f(i n )+f(n in -)=1而S n =)(11∑-=n i n i f =f (1n )+f(2n )+…+f(1n n -),又S n =)(11∑-=n i n i f =f(1n n -)+f(2n n -)+…+f(1n )两式相加得2S n =n-1,∴S n =21-n . 10分(3) n≥2时,a n =)2)(1(4++n n =4(2111+-+n n ),T n =22+n n <λ22+n ,λ>n n 444++,而n n 444++≤4424+⋅n n =21,等号成立当且仅当n=2,∴λ>21. 16分4.(本小题满分16分)(1)由k=11=m 得m=1∴f(m)=1=n+0,n=1 ∴()12ln 2ln n g x mx x x xx x =--=--. ———2′∴()()222221122110x x x g x x x x x --+'=+-==≥,∴()g x 在[)1,+∞是单调增函数,∴()g x ()1112ln10g ≥=--=对于[)1,x ∈+∞恒成立.———6′(2)方程()322nmx g x x ex tx x --=-+,∴322ln 2x x ex tx =-+.∵ 0x >,∴ 方程为22ln 2xx ex tx =-+. 令22ln (),()2xL x H x x ex t x ==-+,21ln ()2xL x x -'=Q ,当()()(0,),0,(0,]x e L x L x e ''∈≥∴时在上为增函数;()()[,),0,[0,)x e L x L x e ''∈+∞≤∴时在上为减函数,当e x =时,max 2()().L x L e e == ———11′ ()()2222H x x ex t x e t e =-+=-+-,∴()x 函数L 、()H x 在同一坐标系的大致图象如图所示,∴①当2222,t e e e e ->>+即t 时,方程无解. ②当2222,t e e e e -==+即t 时,方程有一个根. ③当2222,t e e e e -<<+即t 时,方程有两个根.—16′15、。
2021届四川省成都市七中高三11月段测三文科数学试卷
2021年四川省成都市七中高三11月段测三文科数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知全集U=R ,集合A={x|x ≥12},集合B={x|x ≤l},那么=)B ( A C U ( ) A .{x|x ≤12或x ≥1} B .{x|x <12或x >1) C .{x|12<x <1} D .{x|12≤x ≤l} 2.命题“0x ∃∈N ,x 02+2x o ≥3”的否定为( ) A .0x ∃∈N ,x 02+2x 0 ≤3B .0x ∀∈N ,x 2+2x ≤3C .0x ∃∈N ,x 02+2x 0<3D .0x ∀∈N ,x 2+2x <33.抛物线y=2x 2的焦点坐标是( ) A .(0,14) B .(0,18) C .(18,0) D .(14,0)4.已知定义在R 上的函数()y f x =满足以下三个条件:①对于任意的x R ∈,都有()()4f x f x +=;②对于任意的1212,,02,x x R x x 且∈≤<≤都有()()12;f x f x <③函数()2y f x =+的图象关于y 轴对称,则下列结论中正确的是( ) A .()()()7 4.5 6.5f f f << B .()()()4.57 6.5f f f << C .()()()7 6.5 4.5f f f <<D .()()()4.5 6.57f f f <<5.已知正项数列{}n a 为等比数列,且a 4是2a 2与3a 3的等差中项,若a 2=2,则该数列的前5项的和为( )A .3312B .31C .314D .以上都不正确6.已知函数f (x )的部分图象如图所示,则f (x )的解析式可能为 ( )A .f (x )=2sin (26x π-)B .f (x )2(44x π+) C .f (x )=2cos (23x π-) D .f (x )=2sin (46x π+) 7.若实数x ,y 满足不等式0{24010x y x y x y +≥+-≤--≤,且x y +的最大值为( )A .1B .2C .3D .48.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,若sin sin A aB c=,(b+c+a )(b+c-a )=3bc ,则△ABC 的形状为( ) A .直角三角形B .等腰非等边三角形C .等边三角形D .钝角三角形9.已知12,F F 是双曲线()222210,0x y a b a b-=>>的左右两个焦点,以线段12F F 为直径的圆与双曲线的一条渐近线交于点M ,与双曲线交于点N (点,M N 均在第一象限),当直线1MF 与直线ON 平行时,双曲线的离心率取值为0e ,则0e 所在区间为( )A.( B.C.)2 D .()2,310.设直角△ABC 的三个顶点都在单位圆x 2+ y 2=1上,点M (12,12),则||MA MB MC ++的最大值是( )A.12+ D.22+二、填空题 11.函数f (x )的定义域为 .12.式子tan20° +tan40°°tan40°的值是____.13.已知向量a ,b 满足2a b ==,且()()22a b a b +⋅-=-,则向量a ,b 的夹角为______.14.已知函数3lg ,2(){3lg(3),2x x f x x x ≥=-<,若函数()y f x k =-无零点,则实数k 的取值范围是 .15.已知,[0,1]a b ∈,则(,)(1)(1)11a b S a b a b b a=++--++的最小值为 .三、解答题16.设命题p:|2x -3|<1;命题q :lg 2x - (2t+l )lgx+t (t+l )≤0, (1)若命题q 所表示不等式的解集为A={x|l0≤x ≤100},求实数t 的值; (2)若⌝p 是⌝q 的必要不充分条件,求实数t 的取值范围.17.设△ABC 的三个内角A ,B ,C 所对的边长分别为a ,b ,c .平面向量m =(cosA ,cosC ),n =(c ,a ),p =(2b ,0),且m ·(n -p )=0 (1)求角A 的大小;(2)当|x|≤A 时,求函数f (x )=sinxcosx+sinxsin (x-6π)的值域. 18.已知数列{}n a 的前n 项和为n S ,若2n n S a n =+,且(1)n n b n a =-. (1)求证:{}1n a -为等比数列; (2)求数列{}n b 的前n 项和n T .19.已知函数f(x)=ax+blnx+c(a>0)的图象在点(1,f(1))处的切线方程为x−y−2=0.(1)用a表示b,c;(2)若函数g(x)=x−f(x)在x∈(0,1]上的最大值为2,求实数a的取值范围.20.己知椭圆C:2222x ya b+=1(a>b>0)的离心率为12,以原点为圆心,椭圆的短半轴为半径的圆与直线=0相切,过点P(4,0)且不垂直于x轴直线,与椭圆C 相交于A、B两点.(1)求椭圆C的方程:(2)求OA OB⋅的取值范围;(3)若B点关于x轴的对称点是E,证明:直线AE与x轴相交于定点.21.已知函数f(x)=lnx-ax+l,其中a∈R.(1)求f(x)的单调区间;(2)当a=1时,斜率为k的直线与函数f(x)的图像交于两点A(x 1,y1),B(x2,y2),其中x1<x2,证明:(3)是否存在k∈Z,使得f(x)+ax-2>k(1一2x)对任意x>l恒成立?若存在,请求出k的最大值;若不存在,请说明理由.参考答案1.B 【解析】试题分析:由已知得,⎭⎬⎫⎩⎨⎧≤≤=121x x B A ,所以⎭⎬⎫⎩⎨⎧><=121x x x A C U 或)B ( .故选B .考点:集合运算:交集、补集. 2.D 【解析】 试题分析:特称命题的否定是将∃改为∀,同时对结论进行否定,所以已知命题的否定是“0x ∀∈N ,x 2+2x <3”,故选D . 考点:特称命题的否定. 3.B 【解析】试题分析:先将抛物线的方程化为标准形式y x 212=,所以焦点坐标为(810,).故选B . 考点:求抛物线的焦点. 4.B 【解析】 【分析】由①可知函数f (x )是周期T=4的周期函数; 由②可得函数f (x )在[0,2]上单调递增;由③可得函数f (x )的图象关于直线x=2对称.于是f (4.5)=f (0.5),f (7)=f (3)=f (1),f (6.5)=f (2.5)=f (1.5).即可得出结果. 【详解】定义在R 上的函数y=f (x )满足以下三个条件:由①对于任意的x ∈R ,都有f (x+4)=f (x ),可知函数f (x )是周期T=4的周期函数; ②对于任意的x 1,x 2∈R ,且0≤x 1<x 2≤2,都有f (x 1)<f (x 2),可得函数f (x )在[0,2]上单调递增;③函数y=f (x+2)的图象关于y 轴对称,可得函数f (x )的图象关于直线x=2对称.∴f (4.5)=f (0.5),f (7)=f (3)=f (1),f (6.5)=f (2.5)=f (1.5).∵f (0.5)<f (1)<f (1.5),∴f (4.5)<f (7)<f (6.5).故选:B . 【点睛】本题考查了函数的图象与性质,考查了推理能力与计算能力,属于中档题,熟练掌握函数的周期性,单调性,对称性是解题的关键. 5.B 【解析】试题分析:设等比数列的公比为q ,由a 4是2a 2与3a 3的等差中项得2a 2+3a 3=2a 4,解得q=2或21-=q .又因数列各项为正,所以q=2.于是,数列{}n a 是以1为首项2为公比的等比数列,则312121155=--⨯=)(s .故选B . 考点:等比数列基本量运算. 6.C 【解析】试题分析:由图像可知,点A 、C 的横坐标的差为π,所以21241T 41=∴=⋅=ωπωππ,,所以排除答案B 、D .将点B (0,1)的坐标代入答案A 、C 中验证知,选项C 符合题意,故选C .考点:已知三角函数的部分图像求解析式. 7.C 【详解】试题分析:首先根据约束条件,作出可行域,如下图:可知目标函数z x y =+,可知在点(2,1)M 上取得的最大值,故目标函数z x y =+的最大值为3.考点:简单的线性规划. 【方法点睛】一般地,在解决简单线性规划问题时,如果目标函数z Ax By =+,首先,作直线Ay x B=-,并将其在可行区域内进行平移;当0B >时,直线Ay x B=-在可行域内平移时截距越高,目标函数值越大,截距越低,目标函数值越小;当0B <时,直线Ay x B=-在可行域内平移时截距越低,目标函数值越大,截距越高,目标函数值越小. 8.C 【详解】 由sin sin A aB c=及正弦定理得,a a b c b c =∴=,即三角形ABC 为等腰三角形.又由()()3b c a b c a bc +++-=,得222b c a bc +-=,所以由余弦定理得,2221cos 22b c a A bc +-==, 又0A π<<,所以3A π=.综上,三角形为等边三角形. 故选:C . 9.A 【解析】试题分析:由题意得,双曲线的渐近线的方程为by x a=与圆222x y c +=联立,解得(,)M a b ,与双曲线()222210,0x y a b a b -=>>联立,解得,)N c c ,即22()c a N c c-,直线1MF 与直线ON平行时,即有22b ac =+,即222222()()(2)a c c a a c a +-=-,即32232220c ac a c a +--=,即320002220e e e +--=,设()32222f x x x c =+--,由()()(1)0,0,0,20,30f f f f f <>>>>,所以可得(0e ∈,故选A .考点:双曲线的标准方程及其简单的几何性质.【方法点晴】本题主要考查了双曲线的标准方程及其简单的几何性质的应用,着重考查了双曲线离心率的求解和两直线平行的条件及其应用,注重了运算能力和转化的思想方法,属于中档试题,本题的解答 中求出双曲线的渐近线,分别与圆的方程和双曲线的方程联立,求解点,M N 的坐标,再与两直线平行的条件----斜率相等,得到方程,注意结合,,a b c 的关系及离心率的公式,转化为函数的零点问题,从而求解离心率的范围. 10.C 【解析】试题分析:不妨设AC 为直角三角形的斜边,则AC 为圆O 的直径,所以0OC OA =+.设B (x,y),所以||MA MB MC ++-OB OC OM -OC OM -OB OM -OA =++=++=)()()(222323)()(-+-=y x ,则可将其看作是单位圆上点B (x ,y )与点P (2323,)两点间距离,所以当点B 在PO 的延长线与圆的交点时,两点间的距离最大也即||MA MB MC ++最大,且最大值为1223+=+r PO .故选C . 考点:向量模长的最值问题.【方法点睛】本题综合性较强,难以找到突破口,所以根据向量特点尽可能的将向量转化到已知向量(或基底)上来.题目中的定点是O 、M ,所以运用向量运算得到||MA MB MC ++=,这时将所求化为只有一个变量(即点B ).设点B (x ,y ),得到||MA MB MC ++222323)()(-+-=y x ,然后考查几何意义即可圆外点P (2323,)与圆上点B 两点间的距离问题,从而求出最值.应注意,如何将复杂问题转化为简单问题,难的化为容易的,感受化归思想是数学的灵魂.11.(]0,10 【解析】试题分析:要使函数有意义需有01≥-x lg ,解得100≤<x ,所以函数的定义域为(]0,10. 考点:求函数的定义域.12【解析】试题分析:因为︒︒-︒+︒=︒+︒=︒402014020402060tan tan tan tan )tan(tan ,所以)tan tan (tan tan ︒︒-=︒+︒4020134020,则tan20° +tan40°°tan40°3=.考点:两角和的正切公式的灵活运用. 13.3π 【分析】由()()22a b a b +⋅-=-得2a b ,再根据平面向量的夹角公式可得结果.【详解】由()()22a b a b +⋅-=-,得2222a a b b +⋅-=-, 所以482a b +⋅-=-,即2a b ,所以21cos ,222||||a b a b a b ⋅<>===⨯,又因为,[0,]a b π<>∈,所以,3a b π<>=.故答案为:3π. 【点睛】本题考查了平面向量数量积的运算律,考查了平面向量的夹角公式,属于基础题. 14.3lg 2k < 【解析】试题分析:∵函数3lg ,2(){3lg(3),2x x f x x x ≥=-<,故函数()f x 在32⎡⎫+∞⎪⎢⎣⎭,上是增函数,在32⎛⎤-∞ ⎥⎝⎦,上是减函数.故当32x =时,()f x 有最小值为3lg 2.由题意可得,函数()f x 的图象与直线y k =无交点,∴3lg2k <.故实数k 的取值范围是3lg 2k <. 考点:1.函数零点;2.函数的单调性.【思路点睛】本题考查函数零点的定义,函数的单调性以及最小值,体现了转化的数学思想,利用函数()f x 的单调性求出函数的最小值,由题意可得,函数()f x 的图象与直线y k =无交点,故只要k 小于()f x 的最小值即可.15【解析】 试题分析:,[0,1]a b ∈,()()()()()2211(,)(1)(1)1111111ab ab a b a b a b S a b a b b a a b a b -+++∴=++--==-++++++,令()()()1,11ab ab T x a b -==++()11ab ab T a b ab-=+++1ab ab -≤()()22211x x x -=+()211x x x -=+,令()f x ()[]21,0,11x x x x -=∈+,可得()()()[]2221',0,11x x x f x x x -+-=∈+,所以()f x 在⎡⎢⎣⎭上单调递增,在⎤⎥⎝⎦上单调递增减;所以()max f x f ==⎝⎭(,)S a b 得最小值为()max 11f x -==. 考点:基本不等式;2.导数在函数单调性中的应用.【思路点睛】首先对(,)S a b 化简,可得()()()1(,)111ab ab S a b a b -=-++,令()()()1,11ab ab T x a b -==++()11ab ab T a b ab-=+++1ab ab -≤()()22211x x x -=+()211x x x -=+,再构造辅助函数()f x ()[]21,0,11x x x x -=∈+,将原问题转化为求函数()f x 在区间[]0,1x ∈的最大值,利用导数求出函数()f x 在区间[]0,1x ∈上的单调性,进而可求出函数()f x 在区间[]0,1x ∈的最大值,即可求出(,)S a b 的最小值.16.(1)1t =;(2)lg 210t -≤≤. 【解析】试题分析:(1)利用换元思想解含有对数的方程,得lg 1t x t ≤≤+,从而求出x 的范围11010+≤≤t t x .又由已知得10010101==+t t ,10,从而求出t 的值;(2)由⌝p 是⌝q 的必要不充分条件知,p 是q 的充分不必要条件,然后求出对应不等式的解集并利用集合的观点理解充分性、必要性问题,从而得到t 的不等式,进而求解. 试题解析:(1):q ()()lg lg 10x t x t --+≤⎡⎤⎣⎦,∴lg 1t x t ≤≤+ 解集为{}10100x x A =≤≤,∴1t =(2)设命题p 表示的集合为{}12x x M =<<,设命题q 表示的集合为{}11010t t x x +N =≤≤,由已知,p ⌝是q ⌝的必要不充分条件,则p 是q 的充分不必要条件,∴N M ≠⊂∴1101102tt +⎧≤⎪⎨≥⎪⎩⇒lg 210t -≤≤ 考点:①解含对数的不等式;②由充分性、必要性求参数范围. 17.(1)3πA =;(2)⎣⎦.【解析】试题分析:(1)由条件m ·(n -p )=0得,()2cos cosC 0c b a -A +=,然后运用正弦定理进行边化角,得1cos 2A =,从而求解;(2)由(1)得33x ππ-≤≤,然后利用倍角公式及辅助角公式将函数解析式化为1()sin 223f x x π⎛⎫=- ⎪⎝⎭,最后求出值域即可. 试题解析:(1)因为m ·(n -p )=0,所以()()()()cos ,cosC 2,2cos cosC 0m n p c b a c b a ⋅-=A ⋅-=-A+= 所以()sinC 2sin cos sin cosC 0-B A+A =,即2sin cos sin 0-B A+B =sin 0B ≠,∴1cos 2A =⇒3πA =(2)函数解析式可化为()21sin cos sin sin sin cos 622f x x x x x x x x π⎛⎫=+-=+ ⎪⎝⎭11cos 211sin 2sin 2cos 2sin 2422444423x x x x x π-⎛⎫=+⋅=+-=+- ⎪⎝⎭x ≤A ,3πA =,∴33x ππ-≤≤⇒233x πππ-≤-≤1sin 232x π⎛⎫-≤-≤ ⎪⎝⎭⇒21sin 244232x π⎛⎫≤+-≤⎪⎝⎭∴函数()f x 的值域为⎣⎦ 考点:①正弦定理的应用;②三角函数求值域.18.(1)详见解析;(2)1(1)22n n T n +=-+【解析】试题分析:(1)2n n S a n =+,得:1121n n S a n ++=++,可得111221n n n n n a S S a a +++=-=-+,化简可得121n n a a +=-,整理可得112(1)n n a a +-=-,即可证明结论.(2)由(1)得12n n a =-,即•2n n b n =然后再利用错位相减即可求出结果.试题解析:(1)2n n S a n =+,得:1121n n S a n ++=++,∴111221n n n n n a S S a a +++=-=-+,即121n n a a +=-, ∴112(1)n n a a +-=-,∴{}1n a -是以-2为首项,2为公比的等比数列.(2)由(1)得11222n n n a --=-⨯=-,即21nn a =-+, ∴2nn b n =⋅ ∴1212222n n T n =⋅+⋅++⋅① 231212222n n T n +=⋅+⋅++⋅②①- ②得:21112(21)22222(1)2221n n n n n n T n n n +++--=+++-⋅=-⋅=---∴1(1)22n n T n +=-+.考点:1.数列的递推公式;2.错位相减.【方法点睛】针对数列{}n n a b ⋅(其中数列{}{},n n a b 分别是等差数列和等比数列(公比1q ≠)),一般采用错位相减法求和,错位相减的一般步骤是:1.112233...n n n S a b a b a b a b =++++…①;2.等式112233...n n n S a b a b a b a b =++++两边同时乘以等比数列{}n b 的公比,得到112233...n n n qS a b q a b q a b q a b q =++++…②;3.最后①-②,化简即可求出结果.19.(1)b =a +1,c =−a −1;(2)[1,+∞). 【解析】试题分析:(1)求导可得,f ′(x)=−a x2+bx (a >0),由题意,f ′(1)=1,得b =a +1,又切点(1,a +c)在直线x −y −2=0上,得1−(a +c)−2=0,可得:c =−a −1.(2)由(1)得g(x)=x −ax −(a +1)lnx +a +1,得g ′(x)=(x−1)(x−a)x 2,令g ′(x)=0,得x =1或x =a ,然后再对a ≥1,0<a <1和0<x <a分类讨论,即可求出结果.试题解析:(1)f ′(x)=−ax 2+bx (a >0),由题意,f ′(1)=1,得−a +b =1,∴b =a +1,又切点(1,a +c)在直线x −y −2=0上,得1−(a +c)−2=0, 解得:c =−a −1.(2)g(x)=x −ax−blnx −c =x −ax−(a +1)lnx +a +1,∴g ′(x)=1+a x2−a+1x=x 2−(a+1)x+ax 2=(x−1)(x−a)x 2,令g ′(x)=0,得x =1或x =aⅰ)当a ≥1时,由0<x ≤1知,g ′(x)≥0 ∴g(x)在(0,1]上单调递增, ∴g(x)max =g(1)=2, 于是a ≥1符合条件. ⅱ)当0<a <1时,当0<x <a 时,g ′(x)>0;a <x <1时,g ′(x)<0 ∴g(x)在(0,a)上单增,在(a,1)上单减, g(x)max =g(a)>g(1)=2与题意矛盾, ∴0<a <1不符合题意.综上,实数a 的取值范围是[1,+∞).考点:1.导数的几何意义;2.利用导数研究函数的单调性.20.(1)22143x y +=;(2)134,4⎡⎫-⎪⎢⎣⎭;(3)()1,0.【解析】试题分析:(1)由椭圆性质离心率得2243a b =,由直线与圆相切得到b =圆方程;(2)设出直线方程并代入椭圆方程得到关于x 的一元二次方程()2222433264120kx k x k +-+-=,并设出点A 、B 的坐标,利用韦达定理得出12122872543x x y y k OA ⋅OB =+=-+,然后利用判别式大于零求出k 的范围,最后函数求值域即可;(3)直线恒过定点问题,常求出直线方程,令参数的系数等于零即可求解.试题解析:(1)由题意知12c e a ==,∴22222214c a b e a a -===,即2243a b =.又b ==∴24a =,23b =. 故椭圆的方程为22143x y += (2)解:由题意知直线l 的斜率存在,设直线l 的方程为()4y k x =-由()224143y k x x y ⎧=-⎪⎨+=⎪⎩得,()2222433264120k x k x k +-+-=由()()()22223244364120kk k ∆=--+->得,214k <设()11,x y A ,()22,x y B ,则21223243k x x k +=+,2122641243k x x k -=+ ①∴()()()2221212121244416y y k x k x k x x k x x k =--=-++∴()22222121222264123287141625434343k k x x y y k k k k k k -OA⋅OB =+=+⋅-⋅+=-+++2104k ≤<,∴28787873434k -≤-<-+,∴134,4⎡⎫OA ⋅OB ∈-⎪⎢⎣⎭∴OA ⋅OB 的取值范围是134,4⎡⎫-⎪⎢⎣⎭. (3)证:B 、E 两点关于x 轴对称,∴()22,x y E -直线AE 的方程为()121112y y y y x x x x +-=--,令0y =得:()112112y x x x x y y -=-+又()114y k x =-,()224y k x =-,∴()121212248x x x x x x x -+=+-由将①代入得:1x =,∴直线AE 与x 轴交于定点()1,0.考点:①求椭圆方程;②向量与椭圆的综合应用;③直线恒过定点问题.【方法点睛】直线与圆锥曲线的综合问题,常将直线方程代入圆锥曲线方程,从而得到关于x (或y )的一元二次方程,设出交点坐标A (11y x ,)、B (22y x ,),利用韦达定理得出坐标的关系,同时注意判别式大于零求出参数的范围(或者得到关于参数的不等关系),然后将所求转化到参数上来再求解.如本题()22222121222264123287141625434343k k x x y y k k k k k k -OA⋅OB =+=+⋅-⋅+=-+++,然后求值域即可.注意圆锥曲线问题中,常参数多、字母多、运算繁琐,应注意设而不求的思想、整体思想的应用.21.(1)当0a <时()f x 的单调递增区间为()0,+∞;当0a >时,()f x 的单调递增区间为10,a ⎛⎫ ⎪⎝⎭;()f x 的单调递减区间为1,a ⎛⎫+∞ ⎪⎝⎭(2)证明过程详见解析;(3)不存在满足条件的整数k ,证明过程详见解析. 【解析】试题分析:(1)先求定义域,再求导数,然后由导数大于零、小于零分别求解,并总结结论即可.但注意导函数含有参数a ,所以注意讨论;(2)由点A 、B 的坐标表示出直线的斜率21221121212121ln ln ln ln 1y y x x x x x x k x x x x x x ---+-===----,并化简所要证明的结论,即等价于证明21221211ln x x x x x x x x --<<,然后构造函数法证明不等式;(3)由不等式恒成立求参数问题,常转化为最值问题求解.本题转化为()()ln 120g x x x kx k =--+>,1x >,即求解.试题解析:(1)()1f x a x'=-,0x >, ∴当0a <时,()0f x '>,即()f x 在()0,+∞上是增函数.当0a >时,10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x 在10,a ⎛⎫⎪⎝⎭上是增函数;1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<,()f x 在1,a⎛⎫+∞ ⎪⎝⎭上是减函数.∴综上所述,当0a <时()f x 的单调递增区间为()0,+∞;当0a >时,()f x 的单调递增区间为10,a ⎛⎫ ⎪⎝⎭,()f x 的单调递减区间为1,a ⎛⎫+∞ ⎪⎝⎭.(2)当1a =时,()ln 1f x x x =-+,∴21221121212121ln ln ln ln 1y y x x x x x x k x x x x x x ---+-===----,∴2121ln ln 1x x k x x -+=-.要证1211x x k <<+,即证212211ln ln 11x x x x x x -<<-, 因为210x x ->,即证21221211ln x x x x x x x x --<<, 令21x t x =(1t >),即证11ln 1t t t-<<-(1t >).令()ln 1k t t t =-+(1t >),由(1)知,()k t 在()1,+∞上单调递减,∴()()10k t k <=,即ln 10t t -+<, ∴ln 1t t <-. ①令()1ln 1h t t t =+-(1t >),则()221110t h t t t t'-=-=>, ∴()h t 在()1,+∞上单调递增,∴()()10h t h >=,即1ln 1t t>-(1t >). ②综①②得11ln 1t t t -<<-(1t >),即1211x x k <<+. (3)由已知()221f x ax k x ⎛⎫+->-⎪⎝⎭,即为()()ln 12x x k x ->-,1x >, 即()ln 120x x kx k --+>,1x >.令()()ln 12g x x x kx k =--+,1x >,则()ln g x x k ='-. 当0k ≤时,()0g x '>,故()g x 在()1,+∞上是增函数, 由()11210g k k k =--+=->,则1k >,矛盾,舍去.当0k >时,由ln 0x k ->解得k x e >,由ln 0x k -<解得1k x e <<,故()g x 在()1,ke上是减函数,在(),ke +∞上是增函数,∴()()min 2k k g x g e k e ==-.即讨论()min 20kg x k e =->(0k >)恒成立,求k 的最小值.令()2th t t e =-,则()2th t e '=-,当20t e ->,即ln 2t <时,()h t 单调递增, 当20t e -<,即ln 2t >时,()h t 单调递减,∴ln 2t =时,()()max ln 22ln 22h t h ==-.1ln 22<<, ∴02ln 222<-<.又()120h e =-<,()2240h e =-<,∴不存在整数k 使20k k e ->成立.综上所述,不存在满足条件的整数k .考点:①求含参数的函数的单调区间;②证明不等式;③由不等式恒成立求参数范围(或值). 【方法点睛】对于含双变量的不等式证明问题,题目中变量()之间的关系,一般选取为主元,将,,,,建立关于t 的函数,用函数思想建立数量关系,利用导数这个重要工具去研究.本题:要证1211x x k <<+,即证212211ln ln 11x x x x x x -<<-, 因为210x x ->,即证21221211ln x x x x x x x x --<<,令21x t x =(1t >),即证11ln 1t t t-<<-(1t >),从而将问题转化为关于t 的不等式证明.应在实践中应用并体会这种思想、方法.。
高中数学中档题1,4
高三数学中档题训练(一)1、已知向量OA=3i-4j,OB=6i-3j,OC=(5-m)I-(3+m)j,其中i、j分别是直角坐标系内x轴与y轴正方向上的单位向量.①若A、B、C能构成三角形,求实数m应满足的条件;②若△ABC为直角三角形,且∠A为直角,求实数m的值.2、已知数列{a n}的前n项之和为S n,且S n=a(a n-1)(a≠0,a≠1,n∈N n)(1)求数列{a n}的通项公式;(2)数列{b n}=2n+b(b是常数),且a1=b1,a2>b2,求a的取值范围.3、如图,在三棱锥P-ABC 中,PA ⊥底面ABC ,△ABC 为正三角形,D 、E 分别是BC 、CA 的中点.(1)证明:平面PBE ⊥平面PAC ; (2)如何在BC 上找一点F ,使AD//平面PEF ?并说明理由; (3)若PA=AB=2,对于(2)中的点F ,求三棱锥B-PEF 的体积.4、某种细菌两小时分裂一次,(每一个细菌分裂成两个,分裂所需的时间忽略不计),研究开始时有两个细菌,在研究过程中不断进行分裂,细菌总数y 是研究时间t 的函数,记作y=f(t)(1)写出函数y=f(t)的定义域和值域;(2)在所给坐标系中画出y=f(t);(0≤t<6)的图象;(3)写出研究进行到n 小时(n ≤0,n ∈Z)时细菌的总数有多少个(用关于n 的式子表示).答案在第9页A B D CFP高三数学中档题训练(二)1、求函数x x x f 4131)(3-=的单调区间,并求f(sinx)的最大值.2、数列{a n }共有k 项(k 为定值),它的前n 项和S n =2n 2+n(1≤n ≤k ,n ∈N),现从k 项中抽取一项(不抽首项、末项),余下的k-1项的平均值是79.(1)求数列{a n }的通项.(2)求出k 的值并指出抽取的第几项.3、若一个三棱锥的三个侧面中有两个是等腰直角三角形,另一个是边长为1的正三角形,试求所有的满足上述条件的三棱锥的体积.4、某服装公司生产的衬衫,若每件定价80元,则在某市年销售量为8万件. 若该服装公司在该市设立代理商来销售该衬衫,代理商要收取代销费,代销费是销售额的p%(即每销售100元时收取p 元). 为此,该衬衫每件的价格要提高到%180p 元,而每年销售量将减少0.62p 万件.(1)设该衬衫每年销售额为y 元,试写y 与p 的函数关系式,并指出这个函数的定义域; (2)若代理商对衬衫每年收取的代理费不小于16万元,求p 的取值范围.高三数学中档题训练(三)1、已知:A 、B 是△ABC 的两个内角,j BA i b A m 2sin 252cos ++-=,其中i 、j 为互相垂地的单位向量. 若|m |=423,试求tanA ·tanB 的值.2、如图,直三棱柱ABC-A 1B 1C 1中,AB=AC=4,∠BAC=90°,侧面ABB 1A 1为正方形,D 为正方形ABB 1A 1的中心,E 为BC 的中点.(1)求证:平面DB 1E ⊥平面BCC 1B 1; (2)求异面直线A 1B 与B 1E 所成的角.1A 1C BA C D1B E3、某银行准备新设一种定期存款业务,经预测,存款量与利率的平方成正比,比例系数为K(K>0),货款的利率为4.8%,又银行吸收的存款能全部放货出去.(1)若存款的利率为x ,x ∈(0,0.048),试写出存款量g(x)及银行应支付给储户的利息(x);(2)存款利率定为多少时,银行可获得最大收益?4、已知函数f(x)=nxx a x a a n 2210a …++++(n ∈N n),且y=f(x)的图象经过点(1,n 2),数列{a n }(n ∈N +)为等差数列.(1)求数列{a n }的通项公式;(2)当n 为奇函数时,设g(x)=)]()([21x f x f --,是否存在自然数m 和M ,使不等式m<g(21)<M 恒成立,若存在,求出M-m 的最小值;若不存在,说明理由.高三数学中档题训练(四)1、已知函数)R (2sin 3cos 2)(2∈++=a a x x x f .(1)若x ∈R ,求f (x )的单调递增区间;(2)若x ∈[0,2π]时,f (x )的最大值为4,求a 的值,并指出这时x 的值.2、设两个向量1e 、2e ,满足|1e |=2,|2e |=1,1e 、2e 的夹角为60°,若向量2172e te +与向量21te e +的夹角为钝角,求实数t 的取值范围.3、如图,平面VAD ⊥平面ABCD ,△VAD 是等边三角形,ABCD 是矩形,AB ∶AD =2∶1,F 是AB 的中点.(1)求VC 与平面ABCD 所成的角;(2)求二面角V -FC -B 的度数;(3)当V 到平面ABCD 的距离是3时,求B 到平面VFC 的距离.4、已知数列{n a }中531=a ,112--=n n a a (n ≥2,+∈N n ),数列}{n b ,满足11-=n n a b(1)求证数列{n b }是等差数列;(2)求数列{n a }中的最大项与最小项,并说明理由; (3)记++=21b b S n …n b +,求1)1(+-n nS b n高三数学中档题训练(一)答案1、①当m ≠21时,A 、B 、C 三点能构成三角形; ②当m=47时,三角形ABC 为直角三角形,且∠A=90°.2、(1)n n a a a )1(-= (2))2,1()1,21(⋃3、(1) ∵PA ⊥底面ABC ,∴PA ⊥BE又∵△ABC 是正三角形,且E 为AC 的中点,∴BE ⊥CA又PA A CA =⋂,∴BE ⊥平面PAC ∵BE ⊂平面PBE ,∴平面PBE ⊥平面PAC. (2)取CD 的中点F ,则点F 即为所求. ∵E 、F 分别为CA 、CD 的中点,∴EF//AD 又EF ⊂平面PEF ,AD ⊄平面PEF ,∴AD//平面PEF. (3)43 4、 (1)函数y=f(t)的定义域为[0,+∞);值域为{y|y=2n,n ∈N *} (2)(3)y=⎪⎩⎪⎨⎧⋅⋅-为奇数时当为偶数当n n n,22n ,22212 高三数学中档题训练(二)答案1、f(sinx)有最大值121. 2、(1)a n =4n-1(1≤n ≤k) (2)抽取的是第20项. 3、1 2 3 4 5 6x12 3 4 5 6 78y4、解:(1))31400p (0 )62.08(%180<<--=p p y(2)16100)6.08(%180≥⨯--pp p 10311000100411.32≤≤∴≤+-∴p p p高三数学中档题训练(二)答案1、91 2、(1)证明:延长B 1D 至A ,连结AE∵三棱柱为直三棱柱,∴平面BCC 1B 1⊥平面ABC 又△ABC 中AB=AC ,E 为AB 中点 ∴AE ⊥BC ∴AE ⊥平面BCC 1B 1又∵AC ⊂平面B 1DE ∴平面B 1DE ⊥平面BCC 1B 1 (2)63 3、(1)由题意,存款量g(x)=Kx 2,银行应支付的利息h(x)=x ·g(x)=Kx 36(2)存款利率为3.2%时,银行可获得最大利益4、(1)据题意:f(1)=n 2 即a 0+a 1+a 2+……+a n =n 2令n=1 则a 0+a 1=1,a 1=1-a 0 令n=2 则a 0+a 1+a 2=22,a 2=4-(a 0+a 1)=4-1=3令n=3 则a 0+a 1+a 2+a 3=32,a 3=9-(a 0+a 1+a 2)=9-4=5 ∵{a n }为等差数列 ∴d=a 3-a 2=5-3=2 a 1=3-2=1 a 0=0 a n =1+(n-1)·2=2n-1(2)由(1)f(x)=a 1x 1+a 2x 2+a 3x 3+…+a n x nn 为奇数时,f(-x)=-a 1x 1+a 2x 2-a 3x 3+…+a n-1x n-1-a n x ng(x)=n n n n x a x a x a x a x a x f x f +++++=----22553311)]()([21n n n n g )21)(12()21)(52()21(9)21(5211)21(253-+-++⋅+⋅+⋅=-2753)21)(12()21)(52()21(9)21(5)21(1)21(41+-+-++⋅+⋅+⋅=n n n n g相减得 253)21)(12(])21()21()21[(4211)21(43+--++++⋅=n n n g∴n n n g )21(32)21(913914)21(+-= 令n n n C )21(32= ∵*1N n ,021)21(32∈≤-⋅⋅=-+n C C n n n ∴C n+1≤C n ,C n 随n 增大而减小 又n )21(913⋅随n 增大而减小 ∴g(21)为n 的增函数,当n=1时,g(21)=21 而914)21(32)21(913914<-⋅-n n n 914)21(21<≤∴g ∴使m<g(21)<M 恒成立的自然m 的最大值为0,M 最小值为2. M-m 的最小值为2.高三数学中档题训练(三)答案解析:1、(1)a x a x x x f +++=+++=1)6π2sin(212cos 2sin 3)(. 解不等式2ππ26π22ππ2+≤+≤-k x k . 得)Z (6ππ3ππ∈+≤≤-k k x k∴ f (x )的单调增区间为3ππ[-k ,)Z ](6ππ∈+k k .(2)∵ 0[∈x ,2π], ∴ 6π76π26π≤+≤x .∴ 当2π6π2=+x 即6π=x 时,a x f +=3)(max . ∵ 3+a =4,∴ a =1,此时6π=x . 2、解析:由已知得421=e ,122=e ,160cos 1221=⨯⨯=⋅ e e .∴ 71527)72(2)()72(222212212121++=+++=++⋅t t te e e t te te e e te . 欲使夹角为钝角,需071522<++t t . 得 217-<<-t . 设)0)((722121<+=+λte e i e te . ∴ ⎩⎨⎧==λλt t 72,∴ 722=t .∴ 214-=t ,此时14-=λ. 即214-=t 时,向量2172e te +与21te e +的夹角为π . ∴ 夹角为钝角时,t 的取值范围是(-7,214-) (214-,21-). 3、解析:(甲)取AD 的中点G ,连结VG ,CG .(1)∵ △ADV 为正三角形,∴ VG ⊥AD .又平面VAD ⊥平面ABCD .AD 为交线,∴ VG ⊥平面ABCD ,则∠VCG 为CV 与平面ABCD所成的角.设AD =a ,则a VG 23=,a DC 2=. 在Rt △GDC 中, a a a GD DC GC 23422222=+=+=. 在Rt △VGC 中,33tan ==∠GC VG VCG . ∴ 30=∠VCG . 即VC 与平面ABCD 成30°.(2)连结GF ,则a AF AG GF 2322=+=. 而 a BC FB FC 2622=+=. 在△GFC 中,222FC GF GC +=. ∴ GF ⊥FC .连结VF ,由VG ⊥平面ABCD 知VF ⊥FC ,则∠VFG 即为二面角V -FC -D 的平面角. 在Rt △VFG 中,a GF VG 23==. ∴ ∠VFG =45°. 二面角V -FC -B 的度数为135°.(3)设B 到平面VFC 的距离为h ,当V 到平面ABCD 的距离是3时,即VG =3. 此时32==BC AD ,6=FB ,23=FC ,23=VF . ∴ 921==⋅∆FC VF S VFC , 2321==⋅∆BC FB S BFC . ∵ VCF B FCB V V V --=, ∴ VFC FBC S h S VG ∆∆⋅⋅⋅⋅=3131. ∴ 93123331⋅⋅=⨯⨯h . ∴ 2=h 即B 到面VCF 的距离为2解析:(1)4、4、 4、1112111111-=--=-=---n n n n n a a a a b , 而 1111-=--n n a b , ∴ 11111111=-=-=-----n n n n n a a a b b .)(+∈N n ∴ {n b }是首项为251111-=-=a b ,公差为1的等差数列. (2)依题意有n n b a 11=-,而5.31)1(25-=-+-=⋅n n b n , ∴ 5.311-=-n a n . 对于函数5.31-=x y ,在x >3.5时,y >0,0<y',在(3.5,∞+)上为减函数. 故当n =4时,5.311-+=n a n 取最大值3 而函数5.31-=x y 在x <3.5时,y <0,0)5.3(12<--=x y',在(∞-,3.5)上也为减函数.故当n =3时,取最小值,3a =-1. (3)2)5)(1(2)25225)(1(1-+=-+-+=+n n n n S n ,5.3-=n b n ,∴ ∞→+∞→=-+--=-n n n n n n n n S b n 2)5)(1()5.3)(1(2lim )1(lim 1.。
高三年文科数学中档大题保分练(1-3)
中档大题保分练(1) (推荐时间:50分钟)1.已知函数f(x)=32sin 2x-12(cos2x-sin2x)-1,x∈R,将函数f(x)向左平移π6个单位后得到函数g(x),设△ABC三个内角A,B,C的对边分别为a,b,c.(1)若c=7,f(C)=0,sin B=3sin A,求a和b的值;(2)若g(B)=0且m=(cos A,cos B),n=(1,sin A-cos A tan B),求m·n的取值范围.2.某园林局对1 000株树木的生长情况进行调查,其中杉树600株,槐树400株.现用分层抽样方法从这1 000株树木中随机抽取100株,杉树与槐树的树干周长(单位:cm)的抽查结果如下表:(1)求x(2)如果杉树的树干周长超过60 cm就可以砍伐,请估计该片园林可以砍伐的杉树有多少株?(3)树干周长在30 cm到40 cm之间的4株槐树有1株患虫害,现要对这4株树逐一进行排查直至找出患虫害的树木为止.求排查的树木恰好为2株的概率.3.如图,在四棱锥S-ABCD中,AB⊥AD,AB∥CD,CD=3AB=3,平面SAD⊥平面ABCD,E是线段AD上一点,AE=ED=3,SE⊥AD.(1)证明:平面SBE⊥平面SEC;(2)若SE=1,求三棱锥E-SBC的高.4.已知n∈N*,数列{d n}满足d n=3+(-1)n2,数列{a n}满足a n=d1+d2+d3+…+d2n;又知数列{b n}中,b1=2,且对任意正整数m,n,b m n=b n m.(1)求数列{a n}和数列{b n}的通项公式;(2)将数列{b n}中的第a1项,第a2项,第a3项,……,第a n项,……删去后,剩余的项按从小到大的顺序排成新数列{c n},求数列{c n}的前2 013项和.1.解 (1)f (x )=32sin 2x -12cos 2x -1=sin ⎝⎛⎭⎫2x -π6-1 g (x )=sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6-π6-1=sin ⎝⎛⎭⎫2x +π6-1 由f (C )=0,∴sin ⎝⎛⎫2C -π6=1. ∵0<C <π,∴-π6<2C -π6<116π,∴2C -π6=π2,∴C =π3.由sin B =3sin A ,∴b =3a .由余弦定理得(7)2=a 2+b 2-2ab cos π3.∴7=a 2+9a 2-3a 2,∴a =1,b =3. (2)由g (B )=0得sin ⎝⎛⎭⎫2B +π6=1, ∵0<B <π,∴π6<2B +π6<136π,∴2B +π6=π2,∴B =π6.∴m ·n =cos A +cos B (sin A -cos A tan B ) =cos A +sin A cos B -cos A sin B =32sin A +12cos A =sin ⎝⎛⎭⎫A +π6. ∵A +C =5π6,∴0<A <5π6,∴π6<A +π6<π,∴0<sin ⎝⎛⎭⎫A +π6≤1. ∴m ·n 的取值范围是(0,1].2. 解 (1)按分层抽样方法随机抽取100株,可得槐树为40株,杉树为60株, ∴x =60-6-19-21=14,y =40-4-20-6=10. 估计槐树树干周长的众数为45 cm. (2)1460×600=140, 估计该片园林可以砍伐的杉树有140株.(3)设4株树为B 1,B 2,B 3,D ,设D 为有虫害的那株,基本事件为(D ),(B 1,D ),(B 2,D ),(B 3,D ),(B 1,B 2,D ),(B 1,B 3,D ),(B 2,B 1,D ),(B 2,B 3,D ),(B 3,B 1,D ),(B 3,B 2,D ),(B 1,B 2,B 3),(B 1,B 3,B 2),(B 2,B 1,B 3),(B 2,B 3,B 1),(B 3,B 1,B 2),(B 3,B 2,B 1)共16种,设事件A :排查的树木恰好为2株,事件A 包含(B 1,D ),(B 2,D ),(B 3,D )3种, ∴P (A )=316.3.(1)证明 ∵平面SAD ⊥平面ABCD ,平面SAD ∩平面ABCD =AD ,SE ⊂平面SAD , SE ⊥AD , ∴SE ⊥平面ABCD .∵BE ⊂平面ABCD ,∴SE ⊥BE .∵AB ⊥AD ,AB ∥CD ,CD =3AB =3,AE =ED =3, ∴∠AEB =30°,∠CED =60°. ∴∠BEC =90°,即BE ⊥CE . 结合SE ∩CE =E ,得BE ⊥平面SEC . ∵BE ⊂平面SBE ,∴平面SBE ⊥平面SEC . (2)解 如图,作EF ⊥BC 于F ,连接SF . 由BC ⊥SE ,SE 和EF 相交, 得BC ⊥平面SEF . 由BC 在平面SBC 内, 得平面SEF ⊥平面SBC . 过E 作EG ⊥SF 于点G , 则EG ⊥平面SBC ,即线段EG 的长即为三棱锥E -SBC 的高. 由SE =1,BE =2,CE =23得BC =4,EF =3, 所以SF =2.在Rt △SEF 中,EG =SE ·EF SF =32,所以三棱锥E -SBC 的高为32. 4.解 方法一 (1)∵d n =3+(-1)n2,∴a n =d 1+d 2+d 3+…+d2n .=3×2n2=3n . 又由题知:令m =1,则b 2=b 21=22,b 3=b 31=23,…,b n =b n 1=2n. 若b n =2n ,则b m n =2nm ,b n m =2mn , ∴b m n =b n m 恒成立.若b n ≠2n ,当m =1,b m n =b n m 不成立,∴b n =2n .(2)由题知将数列{b n }中的第3项、第6项、第9项……删去后构成的新数列{c n }中的奇数列与偶数列仍成等比数列,首项分别是b 1=1,b 2=4,公比均是8, T 2 013=(c 1+c 3+c 5+…+c 2 013)+(c 2+c 4+c 6+…+c 2 012) =2×(1-81 007)1-8+4×(1-81 006)1-8=20×81 006-67.方法二 (1)a n =d 1+d 2+…+d 2n =32×2n =3n .由b m n =b nm 及b 1=2>0知b n >0,对b m n =b n m 两边取对数得,m lg b n =n lg b m ,令m =1,得lg b n =n lg b 1=n lg 2=lg 2n , ∴b n =2n .(2)T 2 013=c 1+c 2+…+c 2 013=b 1+b 2+b 4+b 5+b 7+b 8+…+b 3 018+b 3 019 =(b 1+b 2+…+b 3 019)-(b 3+b 6+…+b 3 018) =2(1-23 019)1-2-8(1-81 006)1-23=20×81 006-67.中档大题保分练(2)(推荐时间:50分钟)1. 已知向量m =(sin x,1),n =⎝⎛⎭⎫3A cos x ,A2cos 2x (A >0),函数f (x )=m ·n 的最大值为6. (1)求A ;(2)将函数y =f (x )的图象向左平移π12个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )在⎣⎡⎦⎤0,5π24上的值域.2. 已知向量a =(2,1),b =(x ,y ).(1)若x ∈{-1,0,1,2},y ∈{-1,0,1},求向量a ∥b 的概率; (2)若x ∈[-1,2],y ∈[-1,1],求向量a ,b 的夹角是钝角的概率.3. 如图1,在等腰△ABC 中,D ,E ,F 分别是AB ,AC ,BC 边的中点,现将△ACD 沿CD 翻折,使得平面ACD ⊥平面BCD .(如图2)(1)求证:AB ∥平面DEF ; (2)求证:BD ⊥AC ;(3)设三棱锥A -BCD 的体积为V 1,多面体ABFED 的体积为V 2,求V 1∶V 2的值.4. 已知数列{a n }是一个公差大于零的等差数列,且a 3a 6=55,a 2+a 7=16,数列{b n }的前n 项和为S n ,且S n =2b n -2.(1)求数列{a n },{b n }的通项公式; (2)设c n =a nb n ,T n =c 1+c 2+…+c n ,求T n .1.解 (1)f (x )=m ·n =3A sin x cos x +A 2cos 2x =A ⎝⎛⎭⎫32sin 2x +12cos 2x =A sin ⎝⎛⎭⎫2x +π6. 因为A >0,由题意知A =6. (2)由(1)得f (x )=6sin ⎝⎛⎫2x +π6. 将函数y =f (x )的图象向左平移π12个单位后得到y =6sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π12+π6=6sin ⎝⎛⎭⎫2x +π3的图象; 再将得到的图象上各点横坐标缩短为原来的12,纵坐标不变,得到y =6sin ⎝⎛⎭⎫4x +π3的图象. 因此g (x )=6sin ⎝⎛⎭⎫4x +π3. 因为x ∈⎣⎡⎦⎤0,5π24, 所以4x +π3∈⎣⎡⎦⎤π3,7π6, 故g (x )在⎣⎡⎦⎤0,5π24上的值域为[-3,6]. 2.解 (1)共包含12个基本事件.Ω={(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),(2,-1),(2,0),(2,1)},设“a ∥b ”为事件A ,由a ∥b ,得x =2y , 则A ={(0,0),(2,1)},含2个基本事件, 则P (A )=212=16.(2)设“a ,b 的夹角是钝角”为事件B ,由a ,b 的夹角是钝角, 可得a ·b <0,即2x +y <0,且x ≠2y .Ω=⎩⎨⎧(x ,y )⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1≤x ≤2,-1≤y ≤1,,B =⎩⎨⎧(x ,y )⎪⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1≤x ≤2,-1≤y ≤1,2x +y <0,x ≠2y ,则P (B )=S B S Ω=12×⎝⎛⎭⎫12+32×23×2=13.3.(1)证明 在△ABC 中,由E ,F 分别是AC ,BC 的中点,得EF ∥AB , 又AB ⊄平面DEF ,EF ⊂平面DEF ,∴AB ∥平面DEF . (2)证明 ∵平面ACD ⊥平面BCD , 平面ACD ∩平面BCD =CD , AD ⊥CD ,且AD ⊂平面ACD ,∴AD ⊥平面BCD .又BD ⊂平面BCD , ∴AD ⊥BD .又∵CD ⊥BD ,且AD ∩CD =D , ∴BD ⊥平面ACD .又AC ⊂平面ACD ,∴BD ⊥AC . (3)解 由(2)可知AD ⊥平面BCD , ∴AD 是三棱锥A -BCD 的高, ∴V 1=13·AD ·S △BCD ,又∵E ,F 分别是AC ,BC 边的中点,∴三棱锥E -CDF 的高是三棱锥A -BCD 高的一半, 三棱锥E -CDF 的底面积是三棱锥A -BCD 底面积的一半, ∴三棱锥E -CDF 的体积V E -CDF =14V 1,∴V 2=V 1-V E -CDF =V 1-14V 1=34V 1,∴V 1∶V 2=4∶3.4.解 (1)依题意,设等差数列{a n }的公差为d (d >0),则有⎩⎪⎨⎪⎧(a 1+2d )(a 1+5d )=55 ①2a 1+7d =16 ②将②代入①得(16-3d )(16+3d )=220, 即d 2=4,∵d >0,∴d =2,a 1=1,∴a n =2n -1, 当n =1时,S 1=2b 1-2,b 1=2, 当n ≥2时,b n =S n -S n -1=(2b n -2)-(2b n -1-2)=2b n -2b n -1, ∴b n =2b n -1.∴{b n }是以2为首项,2为公比的等比数列.即b n =2n . (2)c n =a n b n =2n -12n , T n =12+322+…+2n -12n12T n =122+323+…+2n -32n +2n -12n +1 ∴③-④得,12T n =12+222+223+…+22n -2n -12n +1=12+12+122+…+12n -1-2n -12n +1 =12+12⎝⎛⎭⎫1-12n -11-12-2n -12n +1=32-2n +32n +1 ∴T n =3-2n+32n .中档大题保分练(3)(推荐时间:50分钟)1. 已知向量m =(sin x ,-1),n =(cos x,3).(1)当m ∥n 时,求sin x +cos x3sin x -2cos x的值;(2)已知在锐角△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,3c =2a sin(A +B ),函数f (x )=(m +n )·m ,求f ⎝⎛⎭⎫B +π8的取值范围.2. 已知数列{a n }的通项公式为a n =3n -1,在等差数列{b n }中,b n >0(n ∈N *),且b 1+b 2+b 3=15,又a 1+b 1、a 2+b 2、a 3+b 3成等比数列. (1)求数列{b n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .3. 某学校共有教职工900人,分成三个批次进行继续教育培训,在三个批次中男、女教职工人数如下表所示.已知在全体教职工中随机抽取1名,抽到第二批次中女教职工的概率是0.16.(1)求x 的值;(2)现用分层抽样的方法在全体教职工中抽取54名做培训效果的调查,问应在第三批次中抽取教职工多少名?(3)已知y ≥96,z ≥96,求第三批次中女教职工比男教职工多的概率.4. 如图所示多面体中,AD ⊥平面PDC ,ABCD 为平行四边形,E ,F分别为AD ,BP 的中点,AD =3,AP =5,PC =27. (1)求证:EF ∥平面PDC ;(2)若∠CDP =90°,求证:BE ⊥DP ; (3)若∠CDP =120°,求该多面体的体积.1.解 (1)由m ∥n ,可得3sin x =-cos x ,于是tan x =-13,∴sin x +cos x 3sin x -2cos x =tan x +13tan x -2=-13+13×⎝⎛⎭⎫-13-2=-29.(2)在△ABC 中,A +B =π-C ,于是sin(A +B )=sin C , 由正弦定理知:3sin C =2sin A sin C , ∵sin C ≠0,∴sin A =32. 又△ABC 为锐角三角形,∴A =π3,于是π6<B <π2.∵f (x )=(m +n )·m =(sin x +cos x,2)·(sin x ,-1)=sin 2x +sin x cos x -2 =1-cos 2x 2+12sin 2x -2 =22sin ⎝⎛⎭⎫2x -π4-32, ∴f ⎝⎛⎭⎫B +π8=22sin ⎣⎡⎦⎤2⎝⎛⎭⎫B +π8-π4-32 =22sin 2B -32. 由π6<B <π2得π3<2B <π, ∴0<sin 2B ≤1,-32<22sin 2B -32≤22-32, 即f ⎝⎛⎭⎫B +π8∈⎝⎛⎦⎤-32,22-32. 2. 解 (1)∵a n =3n -1(n ∈N *),∴a 1=1,a 2=3,a 3=9,在等差数列{b n }中,∵b 1+b 2+b 3=15,∴b 2=5. 又∵a 1+b 1、a 2+b 2、a 3+b 3成等比数列, 设等差数列{b n }的公差为d ,∴(1+5-d )(9+5+d )=64,解得d =-10或d =2, ∵b n >0(n ∈N *),∴舍去d =-10,取d =2,∴b 1=3, ∴b n =2n +1(n ∈N *).(2)由(1)知,T n =3×1+5×3+7×32+…+(2n -1)3n -2+(2n +1)3n -1, ① 3T n =3×3+5×32+7×33+…+(2n -1)3n -1+(2n +1)·3n ,②①-②得-2T n =3×1+2×3+2×32+2×33+…+2×3n -1-(2n +1)3n=3+2(3+32+33+…+3n -1)-(2n +1)3n=3+2×3-3n 1-3-(2n +1)3n =3n -(2n +1)3n =-2n ·3n , ∴T n =n ·3n .3.解 (1)由x900=0.16,解得x =144.(2)第三批次的人数为y +z =900-(196+204+144+156)=200,设应在第三批次中抽取m 名,则m 200=54900,解得m =12,所以应在第三批次中抽取12名.(3)设第三批次中女教职工比男教职工多的事件为A ,第三批次女教职工和男教职工数记为数对(y ,z ).由(2)知y +z =200(y ,z ∈N *,y ≥96,z ≥96),则基本事件总数有:(96,104),(97,103),(98,102),(99,101),(100,100),(101,99),(102,98),(103,97),(104,96),共9个;而事件A 包含的基本事件有(101,99),(102,98),(103,97),(104,96)共4个. 所以,所求概率为P (A )=49.4.(1)证明 取PC 的中点为O ,连接FO ,DO . 因为F ,O 分别为BP ,PC 的中点, 所以FO ∥BC ,且FO =12BC .又四边形ABCD 为平行四边形,E 为AD 的中点, 所以ED ∥BC ,且ED =12BC ,所以FO ∥ED ,且FO =ED ,所以四边形EFOD 是平行四边形,所以EF ∥DO . 又EF ⊄平面PDC ,DO ⊂平面PDC , 所以EF ∥平面PDC .(2)解 若∠CDP =90°,则PD ⊥DC , 又AD ⊥平面PDC ,所以AD ⊥DP , 又∵DC ∩AD =D ,所以DP ⊥平面ABCD 因为BE ⊂平面ABCD ,所以BE ⊥DP .(3)解 连接AC ,由ABCD 为平行四边形可知△ABC 与△ADC 面积相等, 所以三棱锥P -ADC 与三棱锥P -ABC 体积相等, 即五面体的体积为三棱锥P -ADC 体积的2倍. 因为AD ⊥平面PDC ,所以AD ⊥DP , 由AD =3,AP =5,可得DP =4.又∠CDP =120°,PC =27,由余弦定理得DC =2, 所以三棱锥P -ADC 的体积V P -ADC =V A -CDP =13×12×2×4×sin 120°×3=23,所以该五面体的体积为4 3.。
高考数学中档题强化训练(1)——(3
高考数学中档题精选(1)1. 已知函数f(x)=cos x 2+cos 3x 2+cos 5x 2csc x 2 +cos 23x2 .(1) 求函数f(x)的最小正周期和值域; (2) 求函数f(x)的单调递增区间.解:(1) y=sin x 2(cos x 2+cos 3x 2+cos 5x 2)+1+cos3x2=12sinx+12(sin2x-sinx)+12(sin3x-sin2x)+12cos3x+12=12sin3x+12cos3x+12 =22sin(3x+π4)+12∴T=2π3 ,值域y ∈[1-22,1+22]. (2)由2k π-π2 ≤3x+π4 ≤2k π+π2 ,k ∈Z.得:2k π3-π4 ≤x ≤2k π3+π12(k ∈Z). 2. 设数列{a n }的前n 项和为S n ,已知a 1=1,S n =na n -2n(n-1)(n ∈N)(1)求证数列{a n }为等差数列,并写出其通项公式;(2)是否存在非零常数p 、q 使数列{S npn+q }是等差数列?若存在,试求出p 、q应满足的关系式,若不存在,请说明理由. 解:(1)当n ≥2时,a n =S n -S n-1=na n -(n-1)a n-1-4(n-1),即a n -a n-1=4(n ≥2) ∴{a n }为等差数列.∵a 1=1,公差d=4,∴a n =4n-3. (2)若{S n pn+q }是等差数列,则对一切n ∈N ,都有S npn+q=An+B, 即S n =(An+B)(pn+q),又S n =12(a 1+a n )n =2n 2-n,∴2n 2-n=Apn 2+(Aq+Bp)n+Bq要使上式恒成立,当且仅当⎪⎩⎪⎨⎧=-=+=012Bq Bp Aq Ap ,∵q ≠0,∴B =0,∴p q=-2,即:p+2q=0.3. 已知正三棱锥A-BCD 的边长为a ,E 、F 分别为AB 、BC 的中点,且AC ⊥DE. (Ⅰ)求此正三棱锥的体积; (Ⅱ)求二面角E-FD-B 的正弦值. 解:(Ⅰ)作AO ⊥平面BCD 于O,由正三棱锥的性质可知O 为底面中心,连CO,则CO ⊥BD,由三垂线定理 知AC ⊥BD ,又AC ⊥ED,∴AC ⊥平面ABD,∴AC ⊥AD, AB ⊥AC,AB ⊥AD.在Rt △ACD 中,由AC 2+AD 2=2AC 2=a 2 可得:AC=AD=AB=22a .∴V=V B-ACD =13·12·AC ·AD ·AB=224a 3.(Ⅱ)过E 作EG ⊥平面BCD 于G ,过G 作GH ⊥FD 于H ,连EH ,由三垂线定理知EH ⊥FD,即∠EHG 为二面角E-FD-B 的平面角. ∵EG =12 AO 而AO =V B-ACD 13·S △BCD =66a ,∴EG=612a .又∵ED =AE 2+AD 2=(24a)2+(22a)2=104a ∵EF ∥AC ,∴EF ⊥DE.∴在Rt △FED 中,EH =EF ·ED DF =1512a ∴在Rt △EGH 中,sin ∠EHG =EG EH =105*选做题:定义在区间(-1,1)上的函数f(x)满足:①对任意x 、y ∈(-1,1)都有f(x)+f(y)=f(x+y1+xy );②当x ∈(-1,0)时,f(x)>0.(Ⅰ)求证:f(x)为奇函数;(Ⅱ)试解不等式f(x)+f(x-1)>f(12).A BCDE FOG H解:(Ⅰ)令x=y=0,则f(0)+f(0)=f(0),∴f(0)=0. 又令x ∈(-1,1),则-x ∈(-1,1),而f(x)+f(-x)=f(x-x1-x 2)=f(0)=0 ∴f(-x)=-f(x),即f(x)在(-1,1)上是奇函数. (Ⅱ)令-1<x 1<x 2<1,则x 1-x 2<0,1-x 1x 2>0,于是f(x 1)-f(x 2)=f(x 1)+f(-x 2)=f(x 1-x 21-x 1x 2)>0,即f(x 1)>f(x 2),所以f(x)在定义域上为减函数.从而f(x)+f(x-1)>f(12)等价与不等式⎪⎪⎩⎪⎪⎨⎧>-+-<-<-<<-)21()112(111112f x x x f x x.213503*********111210222-<<⇔⎩⎨⎧+-<<⇔⎩⎨⎧+-<-<<⇔⎪⎩⎪⎨⎧<-+-<<⇔x x x x x x x x x x x x 高考数学中档题精选(2)1. 已知z 是复数,且arg(z-i)=π4,|z|= 5 .求复数z. 解法1.设复数z-i 的模为r(r>0),则z-i=r(cosπ4 +isin π4), ∴i r z )122(22++=,042,5)122()22(,5||222=-+=++∴=r r r r z 即解得r= 2 ,z=1+2i.解法2.设z=x+yi,则5)1()0(15)01(145222222=++⇒⎩⎨⎧>+==+⇒⎪⎩⎪⎨⎧>--==+x x x x y y x y x y tg y x π解得x=1或-2(舍去),所以z=1+2i.解法3.设)sin (cos 5θθi z +=则1sin 5cos 51cos 51sin 54-=⇒=-=θθθθπtg解得:,10103)4cos(,0cos ,1010)4sin(=-∴>=-πθθπθ.21)55255(5554sin )4sin(4cos )4cos(]4)4cos[(cos ,5524sin )4cos(4cos )4sin(]4)4sin[(sin i i z +=+=∴=---=+-==-+-=+-=∴ππθππθππθθππθππθππθθ 2. 已知f(x)=sin 2x-2(a-1)sinxcosx+5cos 2x+2-a,若对于任意的实数x 恒有|f(x)|≤6成立,求a 的取值范围.解:f(x)=(1-a)sin2x+2cos2x+5-a=5-2a+a 2 sin(2x+ψ)+5-a.(ψ为一定角,大小与a 有关).∵x ∈R,∴[f(x)]max =5-a+5-2a+a 2 ,[f(x)]min =5-a-5-2a+a 2 .由|f(x)|≤6,得⎪⎩⎪⎨⎧-≤+-+≤+-⇔⎪⎩⎪⎨⎧-≥+---≤+-+-aa a aa a a a a a a a 1125125625562552222 .52915291111)11(25)1(251112222≤≤∴⎪⎪⎩⎪⎪⎨⎧≤≥≤≤-⇔⎪⎩⎪⎨⎧-≤+-+≤+-≤≤-a a a a a a a a a a a 3.斜三棱柱ABC-A 1B 1C 1的底面是边长为2的正三角形,顶点A 1在底面的射影O 是△ABC 的中心,异面直线AB 与CC 1所成的角为45°. (1)求证:AA 1⊥平面A 1BC ;(2)求二面角A 1-BC-A 的平面角的正弦值; (3)求这个斜三棱柱的体积.(1)由已知可得A 1-ABC 为正三棱锥,∠A 1AB=45° ∴∠AA 1B=∠AA 1C=90°即AA 1⊥A 1B,AA 1⊥A 1C∴AA 1⊥平面A 1BC(2)连AO 并延长交BC 于D,则AD ⊥BC ,连A 1D,则∠ADA 1为所求的角。
高级高三文科数学中档题训练3
高级高三文科数学中档题训练(3)17、在ABC ∆中,c b a ,,分别是内角C B A ,,的对边,AB=5,51=∠ABC COS . (1)若BC=4,求ABC ∆的面积ABC S ∆; (2)若D 是边AC 的中点,且27=BD ,求边BC 的长.18、如图,四棱锥P ABCD -中, PA ,ABCD E BD ⊥平面为的中点,G 为PD 的中点,,DAB DCB ∆≅∆,312EA EB AB PA ====,,连接CE 并延长交AD 于F . (Ⅰ)求证:AD CFG ⊥平面;(Ⅱ)求三棱锥P ACG V -的体积.19、某校的教育教学水平不断提高,该校记录了到十年间每年考入清华大学、北京大学的人数和。
为方便计算,编号为1,编号为2,…,编号为10.数据如下:(Ⅰ)从这10年中的后6年随机抽取两年,求考入清华大学、北京大学的人数和至少有一年多于20人的概率;(Ⅱ)根据前5年的数据,利用最小二乘法求出y 关于x 的回归方程y bx a =+,并计算的估计值和实际值之间的差的绝对值。
1221ni ii nii x y nx yb xnx==-=-∑∑, a y bx =-.21、已知函数1()()ln (,)f x a x b x a b R x=--∈,2()g x x =. (1)若1a =,曲线()y f x =在点(1,(1))f 处的切线与y 轴垂直,求b 的值; (2)在(1)的条件下,求证:()()2ln 2;g x f x >-年份(x )12 3 4 5 6 7 8 9 10 人数(y )35 8 11 13 14 17 22 30 31高考模拟复习试卷试题模拟卷【考情解读】1.了解集合的含义、元素与集合的属于关系;2.理解集合之间包含与相等的含义,能识别给定集合的子集;3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;4.理解在给定集合中一个子集的补集的含义,会求给定子集的补集;5.能使用韦恩(Venn)图表达集合的关系及运算.【重点知识梳理】1.元素与集合(1)集合中元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.2.集合间的基本关系表示关系文字语言符号语言集合间的基本关系相等集合A与集合B中的所有元素都相同A=B 子集A中任意一个元素均为B中的元素A⊆B 真子集A中任意一个元素均为B中的元素,且B中至少有一个元素不是A中的元素A B 空集空集是任何集合的子集,是任何非空集合的真子集3.集合的基本运算集合的并集集合的交集集合的补集图形语言符号语言A∪B={x|x∈A,或x∈B}A∩B={x|x∈A,且x∈B}∁U A={x|x∈U,且x∉A}并集的性质:A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔B⊆A.交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B.补集的性质:A∪(∁UA)=U;A∩(∁UA)=∅;∁U(∁UA)=A.【高频考点突破】考点一 集合的含义【例1】 (1)若集合A ={x ∈R|ax2+ax +1=0}中只有一个元素,则a =( ) A .4 B .2 C .0 D .0或4(2)已知a ∈R ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a ,1={a2,a +b ,0},则a2 016+b2 016=________.【答案】(1)A (2)1【规律方法】(1)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型集合.(2)集合中元素的三个特性中的互异性对解题的影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.【变式探究】 (1)已知集合A ={0,1,2},则集合B ={x -y|x ∈A ,y ∈A}中元素的个数是( ) A .1 B .3 C .5 D .9(2)已知集合A ={m +2,2m2+m},若3∈A ,则m 的值为________.【答案】(1)C (2)-32 考点二 集合间的基本关系【例2】 (1)已知集合A ={x|-2≤x≤7},B ={x|m +1<x<2m -1},若B ⊆A ,则实数m 的取值范围为__________.(2)设U =R ,集合A ={x|x2+3x +2=0},B ={x|x2+(m +1)x +m =0},若(∁UA)∩B =∅,则m =__________.【答案】(1)(-∞,4](2)1或2【规律方法】(1)空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解.(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系.常用数轴、Venn图来直观解决这类问题.【变式探究】 (1)已知集合A={x|y=ln(x+3)},B={x|x≥2},则下列结论正确的是()A.A=B B.A∩B=∅ C.A⊆B D.B⊆A(2)已知集合A={x|log2x≤2},B={x|x<a},若A⊆B,则实数a的取值范围是__________.【答案】(1)D(2)(4,+∞)考点三集合的基本运算【例3】 (1)(·四川卷)已知集合A={x|x2-x-2≤0},集合B为整数集,则A∩B=()A.{-1,0,1,2} B.{-2,-1,0,1}C.{0,1} D.{-1,0}(2)设集合U=R,A={x|2x(x-2)<1},B={x|y=ln(1-x)},则图中阴影部分表示的集合为()A.{x|x≥1} B.{x|1≤x<2}C.{x|0<x≤1} D.{x|x≤1}【答案】(1)A(2)B【规律方法】(1)一般来讲,集合中的元素若是离散的,则用Venn图表示;集合中的元素若是连续的实数,则用数轴表示,此时要注意端点的情况.(2)运算过程中要注意集合间的特殊关系的使用,灵活使用这些关系,会使运算简化.【变式探究】 (1)(·浙江卷)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁UA=()A.∅ B.{2}C .{5}D .{2,5}(2)设集合M ={x|-1≤x <2},N ={y|y <a},若M∩N≠∅,则实数a 的取值范围一定是( ) A .[-1,2) B .(-∞,2] C .[-1,+∞) D .(-1,+∞)【答案】(1)B (2)D考点四 集合背景下的新定义问题以集合为背景的新定义问题,集合只是一种表述形式,实质上考查的是考生接受新信息、理解新情境、解决新问题的数学能力.解决此类问题,要从以下两点入手:(1)正确理解创新定义.分析新定义的表述意义,把新定义所表达的数学本质弄清楚,进而转化成熟知的数学情境,并能够应用到具体的解题之中,这是解决问题的基础.(2)合理利用集合性质.运用集合的性质(如元素的性质、集合的运算性质等)是破解新定义型集合问题的关键.在解题时要善于从题设条件给出的数式中发现可以使用集合性质的一些因素,但关键之处还是合理利用集合的运算与性质.【例4】设集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪m≤x≤m +34,N =⎩⎨⎧⎭⎬⎫x ⎪⎪n -13≤x≤n ,且M ,N 都是集合{0|0≤x≤1}的子集,如果把b -a 叫作集合{x|a≤x≤b}的“长度”,那么集合M∩N 的“长度”的最小值是( )A.13B.23C.112D.512【答案】C 【真题感悟】1.【高考新课标1,文1】已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为( )(A ) 5 (B )4 (C )3 (D )22.【高考重庆,文1】已知集合{1,2,3},B {1,3}A ,则A B =() (A) {2} (B) {1,2} (C) {1,3} (D) {1,2,3} 【答案】C3.【高考浙江,文1】已知集合{}223x x x P =-≥,{}Q 24x x =<<,则Q P =()A .[)3,4B .(]2,3C .()1,2-D .(]1,3- 【答案】A4.【高考天津,文1】已知全集{1,2,3,4,5,6}U,集合{2,3,5}A ,集合{1,3,4,6}B ,则集合A UB ()()(A) {3} (B) {2,5} (C) {1,4,6} (D){2,3,5} 【答案】B5.【高考四川,文1】设集合A ={x|-1<x <2},集合B ={x|1<x <3},则A ∪B =( ) (A){x|-1<x <3} (B){x|-1<x <1} (C){x|1<x <2} (D){x|2<x <3} 【答案】A6.【高考山东,文1】已知集合{}|{|24130}A x x B x x x =<<=--<,()(),则A B ⋂= ( )(A )1,3()(B )1,4()(C )(2,3()(D )2,4())【答案】C7.【高考陕西,文1】设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N =( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞8.【高考安徽,文2】设全集{}123456U =,,,,,,{}12A =,,{}234B =,,,则()U A C B =( )(A ){}1256,,, (B ){}1 (C ){}2 (D ){}1234,,, 【答案】B9.【高考广东,文1】若集合{}1,1M =-,{}2,1,0N =-,则M N =( )A .{}0,1-B .{}0C .{}1D .{}1,1- 【答案】C1.(·北京卷) 若集合A ={0,1,2,4},B ={1,2,3},则A∩B =( ) A .{0,1,2,3,4} B .{0,4} C .{1,2} D .{3} 【答案】C2.(·福建卷) 若集合P ={x|2≤x<4},Q ={x|x≥3},则P∩Q 等于( ) A .{x|3≤x<4} B .{x|3<x<4} C .{x|2≤x<3} D .{x|2≤x≤3} 【答案】A3.(·福建卷) 已知集合{a ,b ,c}={0,1,2},且下列三个关系:①a≠2;②b =2;③c≠0有且只有一个正确,则100a +10b +c 等于________.【答案】2014.(·广东卷) 已知集合M={2,3,4},N={0,2,3,5},则M∩N=()A.{0,2} B.{2,3}C.{3,4} D.{3,5}【答案】B5.(·湖北卷) 已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则∁UA=() A.{1,3,5,6} B.{2,3,7}C.{2,4,7} D.{2,5,7}【答案】C6.(·湖南卷) 已知集合A={x|x>2},B={x|1<x<3},则A∩B=()A.{x|x>2} B.{x|x>1}C.{x|2<x<3} D.{x|1<x<3}【答案】C7.(·重庆卷) 已知集合A={3,4,5,12,13},B={2,3,5,8,13},则A∩B=________.【答案】{3,5,13}8.(·江苏卷) 已知集合A={-2,-1,3,4},B={-1,2,3},则A∩B=________.【答案】{-1,3}9.(·江西卷) 设全集为R,集合A={x|x2-9<0},B={x|-1<x≤5},则A∩(∁RB)=() A.(-3,0) B.(-3,-1)C.(-3,-1] D.(-3,3)【答案】C10.(·辽宁卷) 已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}【答案】D11.(·全国卷) 设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N中元素的个数为() A.2 B.3C.5 D.7【答案】B12.(·新课标全国卷Ⅱ)已知集合A={-2,0,2},B={x|x2-x-2=0},则A∩B=() A.∅ B.{2}C.{0} D.{-2}【答案】B13.(·全国新课标卷Ⅰ)已知集合M={x|-1<x<3},N={-2<x<1},则M∩N=()A.(-2,1) B.(-1,1)C.(1,3) D.(-2,3)【答案】B14.(·山东卷) 设集合A={x|x2-2x<0},B={x|1≤x≤4},则A∩B=()A.(0,2] B.(1,2)C.[1,2) D.(1,4)【答案】C15.(·陕西卷) 设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1] B.(0,1) C.(0,1] D.[0,1)【答案】D16.(·四川卷) 已知集合A={x|(x+1)(x-2)≤0},集合B为整数集,则A∩B=()A.{-1,0} B.{0,1}C.{-2,-1,0,1} D.{-1,0,1,2}【答案】D17.(·天津卷) 已知q和n均为给定的大于1的自然数,设集合M={0,1,2,…,q-1},集合A={x|x=x1+x2q+…+xnqn-1,xi∈M,i=1,2,…,n}.(1)当q=2,n=3时,用列举法表示集合A.(2)设s,t∈A,s=a1+a2q+…+anqn-1,t=b1+b2q+…+bnqn-1,其中ai,bi∈M,i=1,2,…,n.证明:若an<bn,则s<t.18.(·浙江卷) 设集合S={x|x≥2},T={x|x≤5},则S∩T=()A.(-∞,5] B.[2,+∞)C.(2,5) D.[2,5]【答案】D19.(·福建卷) 若集合A={1,2,3},B={1,3,4},则A∩B的子集个数为()A.2B.3C.4 D.16【答案】C20.(·北京卷) 已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B=()A.{0} B.{-1,0}C.{0,1} D.{-1,0,1}【答案】B21.(·安徽卷) 已知A={x|x+1>0},B={-2,-1,0,1},则(∁RA)∩B=()A.{-2,-1} B.{-2}C.{-1,0,1} D.{0,1}【答案】A22.(·天津卷) 已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(-∞,2] B.[1,2]C.[-2,2] D.[-2,1]【答案】D23.(·陕西卷) 设全集为R,函数f(x)=1-x的定义域为M,则∁RM为()A.(-∞,1) B.(1,+∞)C.(-∞,1] D.[1,+∞)【答案】B24.(·新课标全国卷Ⅱ] 已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N=() A.{-2,-1,0,1} B.{-3,-2,-1,0}C.{-2,-1,0} D.{-3,-2,-1}【答案】C25.(·辽宁卷) 已知集合A={0,1,2,3,4},B={x||x|<2},则A∩B=()A.{0} B.{0,1}C.{0,2} D.{0,1,2}【答案】B26.(·江苏卷) 集合{-1,0,1}共有________个子集.【答案】827.(·湖南卷) 已知集合U={2,3,6,8},A={2,3},B={2,6,8},则(∁UA)∩B=________.【答案】{6,8}28.(·湖北卷) 已知全集U={1,2,3,4,5},集合A={1,2},B={2,3,4},则B∩(∁UA)=() A.{2} B.{3,4}C.{1,4,5} D.{2,3,4,5}【答案】B29.(·广东卷) 设集合S ={x|x2+2x =0,x ∈R},T ={x|x2-2x =0,x ∈R},则S∩T =( ) A .{0} B .{0,2}C .{-2,0}D .{-2,0,2} 【答案】A30.(·广东卷) 设集合S ={x|x2+2x =0,x ∈R},T ={x|x2-2x =0,x ∈R},则S∩T =( ) A .{0} B .{0,2}C .{-2,0}D .{-2,0,2} 【答案】A31.(·新课标全国卷Ⅰ) 已知集合A ={1,2,3,4},B ={x|x =n2,n ∈A},则A∩B =( ) A .{1,4} B .{2,3} C .{9,16} D .{1,2} 【答案】A32.(·浙江卷) 设集合S ={x|x>-2},T ={x|-4≤x≤1},则S∩T =( ) A .[-4,+∞) B .(-2,+∞) C .[-4,1] D .(-2,1] 【答案】D33.(·重庆卷) 已知全集U ={1,2,3,4},集合A ={1,2},B ={2,3},则∁U(A ∪B)=( ) A .{1,3,4} B .{3,4} C .{3} D .{4} 【答案】D【押题专练】1.已知集合A =⎩⎨⎧⎭⎬⎫x|x ∈Z ,且32-x ∈Z ,则集合A 中的元素个数为( )A .2B .3C .4D .5【答案】C2.设函数f(x)=lg(1-x2),集合A={x|y=f(x)},B={y|y=f(x)},则图中阴影部分表示的集合为()A.[-1,0] B.(-1,0)C.(-∞,-1)∪[0,1) D.(-∞,-1]∪(0,1)【答案】D3.设集合A={(x,y)|x+y=1},B={(x,y)|x-y=3},则满足M⊆(A∩B)的集合M的个数是() A.0 B.1C.2 D.3【答案】C4.在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.给出如下四个结论:①2 014∈[4];②-3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a,b属于同一‘类’”的充要条件是“a-b∈[0]”.其中,正确结论的个数是()A.1 B.2C.3 D.4【答案】C5.已知A ={0,m,2},B ={x|x3-4x =0},若A =B ,则m =________.【答案】-26.若集合A ={x|x2-9x <0,x ∈N*},B =⎩⎨⎧⎭⎬⎫y ⎪⎪4y ∈N*,y ∈N*,则A∩B 中元素的个数为________.【答案】37.已知集合A ={x|4≤2x≤16},B =[a ,b],若A ⊆B ,则实数a -b 的取值范围是________.【答案】(-∞,-2]8.已知集合A ={-4,2a -1,a2},B ={a -5,1-a,9},分别求适合下列条件的a 的值. (1)9∈(A∩B); (2){9}=A∩B.9.已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.(1)当m=-1时,求A∪B;(2)若A⊆B,求实数m的取值范围;(3)若A∩B=∅,求实数m的取值范围.高考模拟复习试卷试题模拟卷高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。
高三文科数学中档大规范练3
中档大题标准练三建议用时:60分钟一、解答题1△ABC的内角A,B,C的对边分别为a,b,c,假设b=2,且2b co B=a co C +c co A1求B的大小;2求△ABC面积的最大值.2.等差数列{a n}中,公差d≠0,S7=35,且a2,a5,a11成等比数列.1求数列{a n}的通项公式;2假设T n为数列错误!的前n项和,且存在n∈N*,使得T n-λa n+1≥0成立,求实数λ的取值范围.3在边长为6 cm的正方形ABCD中,E,F分别为BC,CD的中点,M,N分别为AB,CF的中点,现沿AE,AF,EF折叠,使B,C,D三点重合于B,构成一个三棱锥如下图.1在三棱锥上标注出M、N点,并判别MN与平面AEF的位置关系,并给出证明;2G是线段AB上一点,且错误!错误!的体积.4.某互联网公司为了确定下一季度的前期广告投入方案,收集了近期前期广告投入量单位:万元和收益单位:万元的数据.对这些数据作了初步处理,得到了如图的散点图共21个数据点及一些统计量的值.为了进一步了解广告投入量对收益的影响,公司三位员工①②③对历史数据进行分析,查阅大量资料,分别提出了三个回归方程模型:表中u i=n i,v i=错误!,参考数据:错误!≈,错误!≈1根据散点图判断,哪一位员工提出的模型不适合用来描述与之间的关系?简要说明理由;2根据1的判断结果及表中数据,在余下两个模型中分别建立收益关于投入量的关系,并从数据相关性的角度考虑,在余下两位员工提出的回归模型中,哪一个是最优模型即更适宜作为收益关于投入量的回归方程?说明理由;附:对于一组数据1,1,2,2,…,n,n,其回归直线错误!错误!错误!错误!为棱CE 的中点.图641求证:直线DM⊥平面CBE;2当四面体D-ABE的体积最大时,求四棱锥E-ABCD的体积.6.[选修4-4:坐标系与参数方程]在直角坐标系O中,设直线:错误!t为参数,曲线C1:错误!θ为参数,在以O为极点、正半轴为极轴的极坐标系中:1求C1和的极坐标方程;2设曲线C2:ρ=4in θ曲线θ=α错误!,分别与C1、C2交于A、B两点,假设AB 的中点在直线上,求|AB|7[选修4-5:不等式选讲]设函数f=|-3|-|+1|,∈R1解不等式f<-1;2设函数g=|+a|-4,且g≤f在∈[-2,2]上恒成立,求实数a的取值范围.习题答案1答案:见解析解析:1由正弦定理错误!=错误!=错误!可得,2in B co B=in A co C+in C co A=in B,∵in B>0,故co B=错误!,∵0<B<π,∴B=错误!2由b=2,B=错误!,由余弦定理可得ac=a2+c2-4,由根本不等式可得ac=a2+c2-4≥2ac-4,ac≤4,当且仅当a=c=2时,S△ABC=错误!ac in B取得最大值错误!×4×错误!=错误!,故△ABC面积的最大值为错误!2答案:见解析解析:1由题意可得错误!即错误!又∵d≠0,∴a1=2,d=1,∴a n=n+12∵错误!=错误!=错误!-错误!,∴T n=错误!-错误!+错误!-错误!+…+错误!-错误!=错误!-错误!=错误!,∵∃n∈N*,使得T n-λa n+1≥0成立,∴∃n∈N*,使得错误!-λn+2≥0成立,即∃n∈N*,使得λ≤错误!成立,又错误!=错误!≤错误!=错误!当且仅当n=2时取等号,∴λ≤错误!,即实数λ的取值范围是错误!3答案:见解析解析:1因翻折后B,C,D重合,所以MN应是△ABF的一条中位线,如下图.那么MN∥平面AEF证明如下:错误!⇒MN∥平面AEF2存在点G使得AB⊥平面EGF,此时λ=1,因为错误!⇒AB⊥平面EBF又G是线段AB上一点,且错误!错误!错误!错误!=错误!=错误!,∴V E-AFNM=错误!4答案:见解析解析:1由散点图可以判断员工①提出的模型不适合.因为散点图中与之间不是线性关系.2令v=错误!,先建立关于v的线性回归方程.由于所以关于v的线性回归方程为错误!错误!错误!错误!错误!错误!N图略所以AN⊥EB,又BC⊥平面AEB,AN⊂平面AEB,所以BC⊥AN,又BC∩BE=B,所以AN⊥平面BCE,易知MN綊DA,四边形MNAD为平行四边形,所以DM∥AN,所以DM⊥平面BCE2因为AD∥BC,BC⊥底面ABE,所以AD⊥平面ABE设∠EAB=θ,因为AD=AB=AE=1,那么四面体D-ABE的体积V=错误!×错误!×AE·AB·in θ·AD=错误!in θ,当θ=90°,即AE⊥AB时体积最大,又BC⊥平面AEB,AE⊂平面AEB,所以AE⊥BC,因为BC∩AB=B,所以AE⊥平面ABC,V E-ABCD=错误!×错误!×1+2×1×1=错误!6答案:见解析解析:1消去θ可得C1:-22+2=4,即2+2-4=0,化为极坐标:ρ=4co θ,消去t可得:2+-4=0,化为极坐标:2ρco θ+ρin θ-4=02AB中点的极径为错误!=2in α+co α,将2in α+2co α,α代入2ρco θ+ρin θ-4=0中,化简得:3in αco α-in2α=0,故tan α=3,故in α=错误!,co α=错误!,|AB|=|ρA-ρB|=4|in α-co α|=错误!7答案:见解析解析:1函数f=|-3|-|+1|=错误!故由不等式f<-1可得,>3或错误!解得>错误!2函数g≤f在∈[-2,2]上恒成立,即|+a|-4≤|-3|-|+1|在∈[-2,2]上恒成立,在同一个坐标系中画出函数f和g的图象,如下图.故当∈[-2,2]时,假设0≤-a≤4,那么函数g的图象在函数f的图象的下方,g≤f在∈[-2,2]上恒成立,求得-4≤a≤0,故所求的实数a的取值范围为[-4,0].。
高考数学(文科)中档大题规范练(三角函数)(含答案)
中档大题规范练中档大题规范练——三角函数1.已知函数f (x )=(sin x -cos x )sin 2x sin x. (1)求f (x )的定义域及最小正周期;(2)求f (x )的单调递增区间.解 (1)由sin x ≠0得x ≠k π(k ∈Z ),故f (x )的定义域为{x ∈R |x ≠k π,k ∈Z }.因为f (x )=(sin x -cos x )sin 2x sin x=2cos x (sin x -cos x )=sin 2x -2cos 2x=sin 2x -(1+cos 2x ) =2sin ⎝⎛⎭⎫2x -π4-1, 所以f (x )的最小正周期T =2π2=π. (2)函数y =sin x 的单调递增区间为⎣⎡⎦⎤2k π-π2,2k π+π2(k ∈Z ). 由2k π-π2≤2x -π4≤2k π+π2,x ≠k π(k ∈Z ), 得k π-π8≤x ≤k π+3π8,x ≠k π(k ∈Z ).所以f (x )的单调递增区间为⎣⎡⎭⎫k π-π8,k π和⎝⎛⎦⎤k π,k π+3π8(k ∈Z ). 2.已知△ABC 的三个内角A ,B ,C 成等差数列,角B 所对的边b =3,且函数f (x )=23sin 2x +2sin x cos x -3在x =A 处取得最大值.(1)求f (x )的值域及周期;(2)求△ABC 的面积.解 (1)因为A ,B ,C 成等差数列,所以2B =A +C ,又A +B +C =π,所以B =π3,即A +C =2π3. 因为f (x )=23sin 2x +2sin x cos x - 3 =3(2sin 2x -1)+sin 2x =sin 2x -3cos 2x=2sin ⎝⎛⎭⎫2x -π3, 所以T =2π2=π. 又因为sin ⎝⎛⎭⎫2x -π3∈[-1,1], 所以f (x )的值域为[-2,2].(2)因为f (x )在x =A 处取得最大值,所以sin ⎝⎛⎭⎫2A -π3=1. 因为0<A <23π,所以-π3<2A -π3<π, 故当2A -π3=π2时,f (x )取到最大值, 所以A =512π,所以C =π4. 由正弦定理,知3sin π3=c sin π4⇒c = 2. 又因为sin A =sin ⎝⎛⎭⎫π4+π6=2+64, 所以S △ABC =12bc sin A =3+34. 3.已知函数f (x )=3sin 2x +2cos 2x +a .(1)求函数f (x )的最小正周期以及单调递增区间;(2)当x ∈[0,π4]时,函数f (x )有最大值4,求实数a 的值. 解 f (x )=3sin 2x +2cos 2x +a=cos 2x +3sin 2x +1+a=2sin(2x +π6)+a +1. (1)函数f (x )的最小正周期为2π2=π, 由2k π-π2≤2x +π6≤2k π+π2,k ∈Z , 解得k π-π3≤x ≤k π+π6,k ∈Z .故函数f (x )的单调递增区间为[k π-π3,k π+π6](k ∈Z ). (2)∵x ∈[0,π4],∴2x +π6∈[π6,2π3], 从而sin(2x +π6)∈[12,1]. ∴f (x )=2sin(2x +π6)+a +1∈[a +2,a +3], ∵f (x )有最大值4,∴a +3=4,故a =1.4.设向量a =(3sin x ,sin x ),b =(cos x ,sin x ),x ∈[0,π2]. (1)若|a |=|b |,求x 的值;(2)设函数f (x )=a ·b ,求f (x )的最大值.解 (1)由|a |2=(3sin x )2+(sin x )2=4sin 2x ,|b |2=(cos x )2+(sin x )2=1,由|a |=|b |,得4sin 2x =1.又x ∈[0,π2],从而sin x =12, 所以x =π6. (2)f (x )=a ·b =3sin x ·cos x +sin 2x =32sin 2x -12cos 2x +12=sin(2x -π6)+12. 当x =π3∈[0,π2]时,sin(2x -π6)取最大值1, 所以f (x )的最大值为32. 5.已知函数f (x )=4cos ωx ·sin(ωx -π6)+1(ω>0)的最小正周期是π. (1)求f (x )的单调递增区间;(2)求f (x )在[π8,3π8]上的最大值和最小值. 解 (1)f (x )=4cos ωx ·sin(ωx -π6)+1 =23sin ωx cos ωx -2cos 2ωx +1=3sin 2ωx -cos 2ωx =2sin(2ωx -π6). 最小正周期是2π2ω=π,所以,ω=1,从而f (x )=2sin(2x -π6). 令-π2+2k π≤2x -π6≤π2+2k π,k ∈Z . 解得-π6+k π≤x ≤π3+k π,k ∈Z . 所以函数f (x )的单调递增区间为[-π6+k π,π3+k π](k ∈Z ). (2)当x ∈[π8,3π8]时,2x -π6∈[π12,7π12], f (x )=2sin(2x -π6)∈[6-22,2], 所以f (x )在[π8,3π8]上的最大值和最小值分别为2,6-22. 6.在斜度一定的山坡上的一点A 测得山顶上一建筑物顶端对于山坡的斜度为15°,如图所示,向山顶前进100 m 后,又从B 点测得斜度为45°,设建筑物的高为50 m .求此山对于地平面的斜度θ的余弦值.解 在△ABC 中,∠BAC =15°,∠CBA =180°-45°=135°,AB =100 m , 所以∠ACB =30°. 由正弦定理,得100sin 30°=BC sin 15°,即BC =100sin 15°sin 30°. 在△BCD 中,因为CD =50,BC =100sin 15°sin 30°,∠CBD =45°,∠CDB =90°+θ, 由正弦定理,得50sin 45°=100sin 15°sin 30°sin (90°+θ), 解得cos θ=3-1.因此,山对地面的斜度的余弦值为3-1.。
高级高三文科数学中档题训练33
高级高三文科数学中档题训练(3)17、在ABC ∆中,c b a ,,分别是内角C B A ,,的对边,AB=5,51=∠ABC COS . (1)若BC=4,求ABC ∆的面积ABC S ∆; (2)若D 是边AC 的中点,且27=BD ,求边BC 的长.18、如图,四棱锥P ABCD -中, PA ,ABCD E BD ⊥平面为的中点,G 为PD 的中点,,DAB DCB ∆≅∆,312EA EB AB PA ====,,连接CE 并延长交AD 于F . (Ⅰ)求证:AD CFG ⊥平面;(Ⅱ)求三棱锥P ACG V -的体积.19、某校的教育教学水平不断提高,该校记录了到十年间每年考入清华大学、北京大学的人数和。
为方便计算,编号为1,编号为2,…,编号为10.数据如下:(Ⅰ)从这10年中的后6年随机抽取两年,求考入清华大学、北京大学的人数和至少有一年多于20人的概率;(Ⅱ)根据前5年的数据,利用最小二乘法求出y 关于x 的回归方程y bx a =+,并计算的估计值和实际值之间的差的绝对值。
1221ni ii nii x y nx yb xnx==-=-∑∑, a y bx =-.21、已知函数1()()ln (,)f x a x b x a b R x=--∈,2()g x x =. (1)若1a =,曲线()y f x =在点(1,(1))f 处的切线与y 轴垂直,求b 的值; (2)在(1)的条件下,求证:()()2ln 2;g x f x >-年份(x )12 3 4 5 6 7 8 9 10 人数(y )35 8 11 13 14 17 22 30 31高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.31ii+=+() A .12i + B .12i - C .2i + D .2i -2. 设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =()A .{}1,3-B .{}1,0C .{}1,3D .{}1,53. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯() A .1盏 B .3盏 C .5盏 D .9盏4. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部 分所得,则该几何体的体积为() A .90π B .63π C .42π D .36π5. 设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是()A .15-B .9-C .1D .96. 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A .12种B .18种C .24种D .36种7. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则() A .乙可以知道四人的成绩 B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩 D .乙、丁可以知道自己的成绩8. 执行右面的程序框图,如果输入的1a =-,则输出的S =()A .2 B .3 C .4 D .59. 若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的 离心率为()A .2B .3C .2D .2310. 若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为()A.1-B.32e --C.35e -D.111. 已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB与1C B 所成角的余弦值为()A .32B .155C .105D .3312. 已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是()A.2-B.32-C. 43- D.1-二、填空题:本题共4小题,每小题5分,共20分。
高三数学中档练习题推荐
高三数学中档练习题推荐高三是学生们最为紧张和重要的一年,而数学作为一门重要的学科,占据着整个高考的很大比重。
为了帮助高三学生们更好地备考数学,我精心挑选了一些中档练习题,希望能给同学们提供有针对性的练习,提高数学解题能力。
1. 函数(1)已知函数f(x) = x^2 - 2x + 1,求f(3)的值。
(2)已知函数g(x) = 2^x,求g(0)的值。
2. 三角函数(1)已知直角三角形中的一条锐角的正弦值为1/2,求该角的大小。
(2)已知sin(a) = 3/5,cos(b) = 4/5,且a和b为锐角,求sin(a+b)的值。
3. 数列与数列求和(1)已知等差数列的首项为3,公差为4,求该数列的第5项。
(2)已知等比数列的首项为2,公比为3,求该数列的前6项的和。
4. 三角函数与解析几何(1)已知平面直角坐标系中有一条直线L,其斜率为-2,经过点(3, 4),求直线L的方程。
(2)已知平面直角坐标系中有一个圆心在原点,半径为3的圆,求该圆上的一点P(x, y),使得点P与直线y = 2x之间的距离最短。
5. 概率与统计(1)甲、乙、丙三个人依次从一副扑克牌中抽取一张纸牌,不放回,求出甲乙丙三个人抽到的纸牌分别为黑桃、红心、梅花的概率。
(2)某班级60名同学中,有20人擅长数学,30人擅长英语,并且既擅长数学又擅长英语的有10人。
从该班级中任意选出一名学生,求他既不擅长数学也不擅长英语的概率。
这些练习题涵盖了高三数学中的各个知识点,通过解答这些题目,可以加深对数学知识的理解和掌握,提高解题能力和应试水平。
希望同学们在备考中能够认真对待每一道题目,多思考、多总结,相信付出努力一定会有收获。
祝愿大家高考顺利!。
高级高三文科数学中档题训练3
高级高三文科数学中档题训练(3)17、在ABC ∆中,c b a ,,分别是内角C B A ,,的对边,AB=5,51=∠ABC COS . (1)若BC=4,求ABC ∆的面积ABC S ∆;(2)若D 是边AC 的中点,且27=BD ,求边BC 的长. 18、如图,四棱锥P ABCD -中, PA ,ABCD E BD ⊥平面为的中点,G 为PD 的中点,,DAB DCB ∆≅∆,312EA EB AB PA ====,,连接CE 并延长交AD 于F .(Ⅰ)求证:AD CFG ⊥平面;(Ⅱ)求三棱锥P ACG V -的体积.19、某校的教育教学水平不断提高,该校记录了到十年间每年考入清华大学、北京大学的人数和。
为方便计算,编号为1,编号为2,…,编号为10.数据如下:(Ⅰ)从这10年中的后6年随机抽取两年,求考入清华大学、北京大学的人数和至少有一年多于20人的概率;(Ⅱ)根据前5年的数据,利用最小二乘法求出y关于x 的回归方程y bx a =+,并计算的估计值和实际值之间的差的绝对值。
1221ni ii ni i x y nx yb x nx==-=-∑∑, a y bx =-.21、已知函数1()()ln (,)f x a x b x a b R x=--∈,2()g x x =.(1)若1a =,曲线()y f x =在点(1,(1))f 处的切线与y 轴垂直,求b 的值;(2)在(1)的条件下,求证:()()2ln 2;g x f x >-年份(x ) 1 2 3 4 5 6 7 8 9 10 人数(y )3581113 14 17 22 30 31高考理科数学试卷普通高等学校招生全国统一考试注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (2)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-,(B )(13)-,(C )(1,)∞+(D )(3)∞--, (3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m= (A )-8(B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a= (A )43-(B )34-(C )3(D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 (A )20π(B )24π(C )28π(D )32π(7)若将函数y=2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为(A )x=kπ2–π6 (k ∈Z) (B )x=kπ2+π6 (k ∈Z) (C )x=kπ2–π12 (k ∈Z) (D )x=kπ2+π12 (k ∈Z)(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s= (A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)=35,则sin 2α=(A )725(B )15(C )–15(D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,nx ,1y ,2y ,…,ny ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11)已知F1,F2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为 (AB )32(CD )2(12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A=45,cos C=513,a=1,则b=. (14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n.(3)如果α∥β,m ⊂α,那么m ∥β. (4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。
高三数学中档练习题
高三数学中档练习题一、选择题1. 已知集合A={1, 2, 3},B={3, 4, 5},则A∪B的结果是:A) {1, 2, 3, 4, 5}B) {1, 2, 3}C) {3, 4, 5}D) {1, 2}选择:_____2. 若函数f(x) = x^2 + 2x + 1,则f(-1)的值为:A) 1B) -1C) 0D) 2选择:_____3. 若log2(8x) = 4,则x的值为:A) 2B) 4C) 8D) 16选择:_____4. 已知三角形ABC,∠ACB = 90°,AB = 5 cm,BC = 12 cm,则AC的长度为:A) 7 cmB) 13 cmC) 17 cmD) 25 cm选择:_____5. 若p(x) = x^3 - 2x^2 + kx + 6,其中k为常数,若p(2) = 4,则k的值为:A) -8B) -6C) -4D) -2选择:_____二、填空题1. 解方程组:2x + 3y = 7x + 2y = 4x = _____, y = _____2. 已知函数f(x) = x^2 + bx + c,若f(1) = 0,f(-1) = 0,则b = _____,c = _____3. 从1、2、3、4、5、6、7、8、9中任选3个数字,不放回地抽取,若抽取的三个数字的和为12,则这三个数字可能是_____、_____、_____三、解答题1. 三角形ABC中,∠ACB = 90°,AB = 8 cm,BC = 15 cm。
求三角形ABC的面积。
解答:2. 已知函数f(x) = 2x^3 + 3x^2 - 4x + 1,求f'(x)。
解答:3. 解方程组:3x - 2y = 72x + 3y = 1解答:四、证明题证明:在任意三角形ABC中,角平分线和边所构成的角的两边比例相等。
证明:五、应用题一块长方形的地皮,长为20米,宽为15米,现需要在长方形的四周围上一圈环形花坛,假设花坛的宽度为1米,求花坛的面积。
高三数学中档题汇总(新课程)
高三数学中档题汇总一、导数考查重点:掌握运用导数的有关知识,研究一元三次函数的性质(单调性、极值与图象),进而研究与三个二次有关的问题。
利用导数的几何意义解决函数或解析几何中与切线有关的问题。
二、三角考查重点是:正弦型函数的图象与性质及三角形中的三角函数问题,基础是合理选择公式进行三角函数式的变换,对图象与性质关键是利用倍角公式、和异变形公式转化为一个正弦型函数,第二类解题的关键是恰当地利用各种关系,角角关系和边角关系,同时渗透方程思想。
三、数列考查重点是:等差、等比数列的通项公式及前n项和的灵活运用,等差等比数列的综合运用,递推数列问题,解题的关键是综合运用各种思想方法解题,如利用求等差、比数列的通项公式、前n项公式的思想方法(累加法、累积法和倒序求和法、错位相减法)解决有关杂数列问题,利用方程思想及转化思想解题,构造辅助数列解决递推数列问题,综合运用数列、函数方程,不等式等知识。
四、解析几何考查重点是:求曲线的轨迹方程,直线与圆锥曲线的位置关系,圆锥曲线中的最值问题,解题关键是注意转化思想的运用,利用韦达定理、点差法、待定系数法、圆锥曲线的定义及弦长公式解题,对于以向量为背景的解析问题,常用思考方法是向量代数法和向量几何法。
五、立体几何考查重点是:空间位置关系(平行垂直)的确定和空间度量问题。
对于空间位置关系要严格利用相关的判定定理和性质定理证明,并掌握一般的证明思路和方法;空间度量问题主要是空间的角度和体积,异面直线所成的角主要是通过平移使得相交,线面角主要是找斜线的射影(或找垂线),二面角的平面角主要是利用定义法和垂线法确定,最后通过解三角形求得,同时注意解题步骤是一作(找)、二证、三求;体积问题主要是确定图形的形状利用相关公式求解,或利用等体积法和分解法求解。
高三数学中档题汇总(一)1. 已知函数)(x f 的定义域是()+∞,0,当x>1时,)(x f >0,且)()()(y f x f xy f +=1) 求)1(f2) 求证:)(x f 在定义域上是增函数 3) 如果1)31(-=f ,求满足不等式1)21()(≥--x f x f 的x 的取值范围2、已知向量1),1,3(),cos ,(sin =⋅-==n m n A A m,且A 为锐角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高级高三文科数学中档题训练(3)17、在ABC ∆中,c b a ,,分别是内角C B A ,,的对边,AB=5,51=∠ABC COS . (1)若BC=4,求ABC ∆的面积ABC S ∆;(2)若D 是边AC 的中点,且27=BD ,求边BC 的长. 18、如图,四棱锥P ABCD -中, PA ,ABCD E BD ⊥平面为的中点,G 为PD 的中点,,DAB DCB ∆≅∆,312EA EB AB PA ====,,连接CE 并延长交AD 于F .(Ⅰ)求证:AD CFG ⊥平面;(Ⅱ)求三棱锥P ACG V -的体积.19、某校的教育教学水平不断提高,该校记录了到十年间每年考入清华大学、北京大学的人数和。
为方便计算,编号为1,编号为2,…,编号为10.数据如下:(Ⅰ)从这10年中的后6年随机抽取两年,求考入清华大学、北京大学的人数和至少有一年多于20人的概率;(Ⅱ)根据前5年的数据,利用最小二乘法求出y关于x 的回归方程y bx a =+,并计算的估计值和实际值之间的差的绝对值。
1221ni ii ni i x y nx yb x nx==-=-∑∑, a y bx =-.21、已知函数1()()ln (,)f x a x b x a b R x=--∈,2()g x x =.(1)若1a =,曲线()y f x =在点(1,(1))f 处的切线与y 轴垂直,求b 的值;(2)在(1)的条件下,求证:()()2ln 2;g x f x >-年份(x ) 1 2 3 4 5 6 7 8 9 10 人数(y )3581113 14 17 22 30 31高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.31ii+=+() A .12i + B .12i - C .2i + D .2i -2. 设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =()A .{}1,3-B .{}1,0C .{}1,3D .{}1,53. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯() A .1盏 B .3盏 C .5盏 D .9盏4. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部 分所得,则该几何体的体积为() A .90π B .63π C .42π D .36π5. 设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是()A .15-B .9-C .1D .96. 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A .12种B .18种C .24种D .36种7. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则() A .乙可以知道四人的成绩 B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩 D .乙、丁可以知道自己的成绩8. 执行右面的程序框图,如果输入的1a =-,则输出的S =()A .2 B .3 C .4 D .59. 若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的 离心率为()A .2B .3C .2D .2310. 若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为()A.1-B.32e --C.35e -D.111. 已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB与1C B 所成角的余弦值为()A .32B .155C .105D .3312. 已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是()A.2-B.32-C. 43- D.1-二、填空题:本题共4小题,每小题5分,共20分。
13. 一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则D X =. 14. 函数()23sin 3cos 4f x x x =+-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是. 15. 等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑. 16. 已知F 是抛物线C:28y x =的焦点,M 是C 上一点,F M 的延长线交y 轴于点N .若M 为F N 的中点,则F N =.三、解答题:共70分。
解答应写出文字说明、解答过程或演算步骤。
第17~21题为必做题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(12分)ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2sin()8sin 2BA C +=. (1)求cos B(2)若6a c += , ABC ∆面积为2,求.b18.(12分)淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg )某频率直方图如下:1.设两种养殖方法的箱产量相互独立,记A 表示事件:旧养殖法的箱产量低于50kg, 新养殖法的箱产量不低于50kg,估计A 的概率;2.填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg 箱产量≥50kg 旧养殖法 新养殖法3.根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01)P ()0.050 0.010 0.001 k3.841 6.63510.82822()()()()()n ad bc K a b c d a c b d -=++++19.(12分)如图,四棱锥PABCD 中,侧面PAD 为等比三角形且垂直于底面ABCD ,o 1,90,2AB BC AD BAD ABC ==∠=∠= E 是PD 的中点.(1)证明:直线//CE 平面PAB(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成锐角为o 45 ,求二面角MABD 的余弦值20. (12分)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1) 求点P 的轨迹方程;(2)设点Q 在直线x=3上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F. 21.(12分)已知函数3()ln ,f x ax ax x x =--且()0f x ≥. (1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且230()2ef x --<<.(二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,按所做的第一题计22.[选修44:坐标系与参数方程](10分)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB ∆面积的最大值.23.[选修45:不等式选讲](10分)已知330,0,2a b a b >>+=,证明: (1)33()()4a b a b ++≥; (2)2a b +≤.参考答案1.D【解析】1是方程240x x m -+=的解,1x =代入方程得3m =∴2430x x -+=的解为1x =或3x =,∴{}13B =,3.B【解析】设顶层灯数为1a ,2=q ,()7171238112-==-a S ,解得13a =.4.B【解析】该几何体可视为一个完整的圆柱减去一个高为6的圆柱的一半.2211π310π3663π22=-=⋅⋅-⋅⋅⋅=V V V 总上5.A【解析】目标区域如图所示,当直线-2y =x+z 取到点()63--,时,所求z 最小值为15-.6.D【解析】只能是一个人完成2份工作,剩下2人各完成一份工作.由此把4份工作分成3份再全排得2343C A 36⋅=7.D【解析】四人所知只有自己看到,老师所说及最后甲说的话.甲不知自己成绩→乙、丙中必有一优一良,(若为两优,甲会知道自己成绩;两良亦然)→乙看了丙成绩,知自己成绩→丁看甲,甲、丁中也为一优一良,丁知自己成绩.【解析】0S =,1k =,1a =-代入循环得,7k =时停止循环,3S =. 9.A【解析】取渐近线by x a =,化成一般式0bx ay -=,圆心()20,= 得224c a =,24e =,2e =.10.C【解析】M ,N ,P 分别为AB ,1BB ,11B C 中点,则1AB ,1BC 夹角为MN 和NP 夹角或其补角(异面线所成角为π02⎛⎤ ⎥⎝⎦,)可知112MN AB =,1122NP BC ==, 作BC 中点Q ,则可知PQM △为直角三角形. 1=PQ ,12MQ AC =ABC △中,2222cos AC AB BC AB BC ABC =+-⋅⋅∠14122172⎛⎫=+-⨯⨯⋅-= ⎪⎝⎭,=AC则MQ =MQP △中,MP = 则PMN △中,222cos 2MN NP PM PNM MH NP+-∠=⋅⋅222+-== 又异面线所成角为π02⎛⎤ ⎥⎝⎦,.11.A 【解析】()()2121x f x x a x a e -'⎡⎤=+++-⋅⎣⎦,则()()32422101f a a e a -'-=-++-⋅=⇒=-⎡⎤⎣⎦,则()()211x f x x x e -=--⋅,()()212x f x x x e -'=+-⋅, 令()0f x '=,得2x =-或1x =, 当2x <-或1x >时,()0f x '>, 当21x -<<时,()0f x '<, 则()f x 极小值为()11f =-.12.B【解析】几何法:如图,2PB PC PD +=(D 为BC 中点), 则()2PA PB PC PD PA ⋅+=⋅,要使PA PD ⋅最小,则PA ,PD 方向相反,即P 点在线段AD 上, 则min 22PD PA PA PD ⋅=-⋅, 即求PD PA ⋅最大值, 又323PA PD AD +==⨯=, 则223324PA PD PA PD ⎛⎫+⎛⎫ ⎪⋅== ⎪ ⎪ ⎪⎝⎭⎝⎭≤, 则min 332242PD PA ⋅=-⨯=-. 解析法:建立如图坐标系,以BC 中点为坐标原点,PD CBA∴()03A ,,()10B -,,()10C ,. 设()P x y ,, ()3PA x y=--,,()1PB x y =---,,()1PC x y =--,,∴()222222PA PB PC x y y ⋅+=-+223324x y ⎡⎤⎛⎫⎢⎥=+-- ⎪ ⎪⎢⎥⎝⎭⎣⎦则其最小值为33242⎛⎫⨯-=- ⎪⎝⎭,此时0x =,3y =.13.1.96【解析】有放回的拿取,是一个二项分布模型,其中0.02=p ,100n =则()11000.020.98 1.96x D np p =-=⨯⨯= 14.1【解析】()23πsin 3cos 042f x x x x ⎛⎫⎡⎤=+-∈ ⎪⎢⎥⎣⎦⎝⎭,()231cos 3cos 4f x x x =-+-令cos x t =且[]01t ∈, 2134y t t =-++231t ⎛⎫=--+ ⎪ ⎪⎝⎭则当3t =时,()f x 取最大值1. 15.2+1n n 【解析】设{}n a 首项为1a ,公差为d .则3123a a d =+= 414610S a d =+=求得11a =,1d =,则n a n =,()12n n n S +=()()112222122311nk kSn n n n ==++++⨯⨯-+∑11111112122311n n n n ⎛⎫=-+-++-+- ⎪-+⎝⎭122111n n n ⎛⎫=-=⎪++⎝⎭16.6【解析】28y x =则4p =,焦点为()20F ,,准线:2l x =-, 如图,M 为F 、N 中点,故易知线段BM 为梯形AFMC 中位线, ∵2CN =,4AF =, ∴3ME =又由定义ME MF =, 且MN NF =, ∴6NF NM MF =+=17.【解析】(1)依题得:21cos sin 8sin84(1cos )22B B B B -==⋅=-. ∵22sin cos 1B B +=, ∴2216(1cos )cos 1B B -+=, ∴(17cos 15)(cos 1)0B B --=, ∴15cos 17B =, (2)由⑴可知8sin 17B =. ∵2ABC S =△, ∴1sin 22ac B ⋅=, ∴182217ac ⋅=, ∴172ac =, ∵15cos 17B =, l FN M C B AOyx∴22215217a cb ac +-=,∴22215a c b +-=, ∴22()215a c ac b +--=, ∴2361715b --=, ∴2b =.18.【解析】(1)记:“旧养殖法的箱产量低于50kg ” 为事件B“新养殖法的箱产量不低于50kg ”为事件C而()0.04050.03450.02450.01450.0125P B =⨯+⨯+⨯+⨯+⨯0.62=()0.06850.04650.01050.0085P C =⨯+⨯+⨯+⨯0.66=()()()0.4092P A P B P C ==(2)由计算可得2K 的观测值为()222006266383415.70510010096104k ⨯⨯-⨯==⨯⨯⨯∵15.705 6.635> ∴()2 6.6350.001P K ≈≥∴有99%以上的把握产量的养殖方法有关.(3)150.2÷=,()0.20.0040.0200.0440.032-++=80.0320.06817÷=,85 2.3517⨯≈ 50 2.3552.35+=,∴中位数为52.35.19.【解析】zyxM 'MOFPABCDE(1)令PA 中点为F ,连结EF ,BF ,CE .∵E ,F 为PD ,PA 中点,∴EF 为PAD △的中位线,∴12EF AD ∥.又∵90BAD ABC ∠=∠=︒,∴BC AD ∥. 又∵12AB BC AD ==,∴12BC AD ∥,∴EF BC ∥. ∴四边形BCEF 为平行四边形,∴CE BF ∥. 又∵BF PAB ⊂面,∴CE PAB 面∥(2)以AD 中点O 为原点,如图建立空间直角坐标系.设1AB BC ==,则(000)O ,,,(010)A -,,,(110)B -,,,(100)C ,,,(010)D ,,, (00P ,.M 在底面ABCD 上的投影为M ',∴MM BM ''⊥.∵45MBM '∠=︒,∴MBM '△为等腰直角三角形. ∵POC △为直角三角形,OC =,∴60PCO ∠=︒.设MM a '=,CM '=,1OM '=.∴100M ⎛⎫' ⎪ ⎪⎝⎭,,.BM a a '==⇒=.∴11OM'==. ∴100M ⎛⎫'⎪ ⎪⎝⎭,,10M ⎛ ⎝⎭2611AM ⎛⎫=- ⎪ ⎪⎝⎭,,,(100)AB =,,.设平面ABM 的法向量11(0)m y z =,,. 1160y z +=,∴(062)m =-,, (020)AD =,,,(100)AB =,,.设平面ABD 的法向量为2(00)n z =,,,(001)n =,,.∴10cos ,m n m n m n⋅<>==⋅. ∴二面角M AB D --的余弦值为10. 20.【解析】 ⑴设()P x y ,,易知(0)N x ,(0)NP y =,又1022NM NP ⎛== ⎪⎝⎭,∴12M x y ⎛⎫⎪⎝⎭,,又M 在椭圆上. ∴22122x += ⎪⎝⎭,即222x y +=. ⑵设点(3)Q Q y -,,()P P P x y ,,(0)Q y ≠,由已知:()(3)1P P P Q P OP PQ x y y y y ⋅=⋅---=,,, ()21OP OQ OP OP OQ OP ⋅-=⋅-=,∴213OP OQ OP ⋅=+=, ∴33P Q P Q P P Q x x y y x y y ⋅+=-+=.设直线OQ :3Q y y x =⋅-,因为直线l 与OQ l 垂直. ∴3l Qk y =故直线l 方程为3()P P Qy x x y y =-+, 令0y =,得3()P Q P y y x x -=-,13P Q P y y x x -⋅=-, ∴13P Q P x y y x =-⋅+,∵33P Q P y y x =+, ∴1(33)13P P x x x =-++=-,若0Q y =,则33P x -=,1P x =-,1P y =±, 直线OQ 方程为0y =,直线l 方程为1x =-, 直线l 过点(10)-,,为椭圆C 的左焦点.21.【解析】 ⑴ 因为()()ln 0f x x ax a x =--≥,0x >,所以ln 0ax a x --≥.令()ln g x ax a x =--,则()10g =,()11ax g x a x x-'=-=, 当0a ≤时,()0g x '<,()g x 单调递减,但()10g =,1x >时,()0g x <; 当0a >时,令()0g x '=,得1x a=. 当10x a <<时,()0g x '<,()g x 单调减;当1x a>时,()0g x '>,()g x 单调增. 若01a <<,则()g x 在11a ⎛⎫ ⎪⎝⎭,上单调减,()110g g a ⎛⎫<= ⎪⎝⎭;若1a >,则()g x 在11a ⎛⎫ ⎪⎝⎭,上单调增,()110g g a ⎛⎫<= ⎪⎝⎭;若1a =,则()()min 110g x g g a ⎛⎫=== ⎪⎝⎭,()0g x ≥.综上,1a =.⑵()2ln f x x x x x =--,()22ln f x x x '=--,0x >.令()22ln h x x x =--,则()1212x h x x x-'=-=,0x >. 令()0h x '=得12x =, 当102x <<时,()0h x '<,()h x 单调递减;当12x >时,()0h x '>,()h x 单调递增. 所以,()min 112ln 202h x h ⎛⎫==-+< ⎪⎝⎭.因为()22e 2e 0h --=>,()22ln 20h =->,21e 02-⎛⎫∈ ⎪⎝⎭,,122⎛⎫∈+∞ ⎪⎝⎭,,所以在102⎛⎫ ⎪⎝⎭,和12⎛⎫+∞ ⎪⎝⎭,上,()h x 即()f x '各有一个零点.设()f x '在102⎛⎫ ⎪⎝⎭,和12⎛⎫+∞ ⎪⎝⎭,上的零点分别为02x x ,,因为()f x '在102⎛⎫⎪⎝⎭,上单调减,所以当00x x <<时,()0f x '>,()f x 单调增;当012x x <<时,()0f x '<,()f x 单调减.因此,0x 是()f x 的极大值点.因为,()f x '在12⎛⎫+∞ ⎪⎝⎭,上单调增,所以当212x x <<时,()0f x '<,()f x 单调减,2x x >时,()f x 单调增,因此2x 是()f x 的极小值点.所以,()f x 有唯一的极大值点0x .由前面的证明可知,201e 2x -⎛⎫∈ ⎪⎝⎭,,则()()24220e e e e f x f ---->=+>.因为()00022ln 0f x x x '=--=,所以00ln 22x x =-,则 又()()22000000022f x x x x x x x =---=-,因为0102x <<,所以()014f x <. 因此,()201e 4f x -<<. 22.【解析】⑴设()()00M P ρθρθ,,, 则0||OM OP ρρ==,. 000016cos 4ρρρθθθ=⎧⎪=⎨⎪=⎩解得4cos ρθ=,化为直角坐标系方程为()2224x y -+=.()0x ≠⑵连接AC ,易知AOC △为正三角形.||OA 为定值.∴当高最大时,AOB S △面积最大,如图,过圆心C 作AO 垂线,交AO 于H 点 交圆C 于B 点, 此时AOB S △最大max 1||||2S AO HB =⋅ ()1||||||2AO HC BC =+2=23.【解析】⑴由柯西不等式得:()()()2255334a b a b a b ++=+=≥1a b ==时取等号. ⑵∵332a b +=∴()()222a b a ab b +-+=∴()()232a b b ab α⎡⎤++-=⎣⎦∴()()332a b ab a b +-+=∴()()323a b aba b +-=+由均值不等式可得:()()32232a b a b ab a b +-+⎛⎫= ⎪+⎝⎭≤ ∴()()32232a b a b a b +-+⎛⎫ ⎪+⎝⎭≤ ∴()()33324a b a b ++-≤∴()3124a b +≤ ∴2a b +≤ 当且仅当1a b ==时等号成立.。