成人高考高等数学模拟试题及答案解析
成考数学试题及答案详解
成考数学试题及答案详解一、选择题(每题3分,共30分)1. 若函数\( f(x) = 2x - 3 \),则\( f(1) \)的值为:A. -1B. 1C. 3D. 52. 已知\( a \)和\( b \)是两个不同的非零实数,且\( a^2 - b^2 =0 \),则\( a \)和\( b \)的关系是:A. \( a = b \)B. \( a = -b \)C. \( a \)和\( b \)互为相反数D. \( a \)和\( b \)互为倒数3. 计算\( \sqrt{9} \)的值:A. 3B. -3C. ±3D. 94. 若\( x \)和\( y \)满足方程\( x + y = 5 \)且\( x - y = 3 \),则\( x \)和\( y \)的值分别为:A. \( x = 4, y = 1 \)B. \( x = 1, y = 4 \)C. \( x = 2, y = 3 \)D. \( x = 3, y = 2 \)5. 已知\( \cos(\theta) = \frac{1}{2} \),且\( \theta \)在第一象限,求\( \sin(\theta) \)的值:A. \( \frac{\sqrt{3}}{2} \)B. \( -\frac{\sqrt{3}}{2} \)C. \( \frac{1}{2} \)D. \( -\frac{1}{2} \)6. 一个等差数列的首项为3,公差为2,求第5项的值:A. 13B. 11C. 9D. 77. 计算\( \log_2(8) \)的值:A. 2B. 3C. 4D. 58. 已知\( \tan(\alpha) = 2 \),求\( \sin(\alpha) \)的值:A. \( \frac{2\sqrt{5}}{5} \)B. \( \frac{\sqrt{5}}{5} \)C. \( \frac{2}{\sqrt{5}} \)D. \( \frac{1}{\sqrt{5}} \)9. 计算\( \frac{1}{x} + \frac{1}{y} = \frac{1}{x+y} \)时,\( x \)和\( y \)的关系:A. \( x = y \)B. \( x = -y \)C. \( x \)和\( y \)互为相反数D. \( x \)和\( y \)互为倒数10. 已知\( a \)和\( b \)是两个不同的实数,且\( a^3 - b^3 = 0 \),则\( a \)和\( b \)的关系是:A. \( a = b \)B. \( a = -b \)C. \( a \)和\( b \)互为相反数D. \( a \)和\( b \)相等答案:1. B2. B3. A4. A5. A6. A7. B8. A9. B10. C结束语:本试题及答案详解旨在帮助考生复习和掌握成考数学的基本概念和计算方法,希望考生能够通过练习提高解题能力,为考试做好充分准备。
成人高考高等数学二模拟试题和答案解析一
成人高考高等数学二模拟试题和答案解析一成人高考《高等数学(二)》模拟试题和答案解析(一)一、选择题:1~10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内.1.设函数ƒ(x)在点x处连续,则下列结论肯定正确的是().A.B.C.当x→x0时, ƒ(x)- ƒ(x)不是无穷小量D.当x→x0时, ƒ(x)- ƒ(X)必为无穷小量2.函数y-=ƒ(x)满足ƒ(1)=2ƒ″(1)=0,且当x<1时,ƒ″(x)<0;当x>1时,ƒ″(x)>0,则有().A.x=1是驻点B.x=1是极值点C.x=1是拐点D.点(1,2)是拐点3.A.x=-2B.x=-1C.x=1D.x=04.A.可微B.不连续C.无切线D.有切线,但该切线的斜率不存在5.下面等式正确的是().A.B.C.D.6.A.2dxB.1/2dxC.dxD.07.A.B.C.D.8.A.0B.2(e-1)C.e-1D.1/2(e-1)9.A.B.C.D.10.设函数z=x2+y2,2,则点(0,0)().A.不是驻点B.是驻点但不是极值点C.是驻点且是极大值点D.是驻点且是极小值点二、填空题:1~10小题,每小题4分,共40分.把答案填在题中横线上·11.12.13.14.15.16.17.18.19.20.三、解答题:21~28小题,共70分。
解答应写出推理、演算步骤.21.22.(本题满分8分)设函数Y=cos(Inx),求y'.23.24.25.26.。
成考数学试题及答案解析
成考数学试题及答案解析一、选择题1. 下列函数中,为奇函数的是()A. y = x^2B. y = |x|C. y = x^3D. y = sin(x)答案:C解析:奇函数满足f(-x) = -f(x)的性质。
选项A是偶函数,因为(-x)^2 = x^2;选项B不是奇函数也不是偶函数,因为|-x| = |x|;选项C是奇函数,因为(-x)^3 = -x^3;选项D是奇函数,但不是本题的正确答案。
2. 已知等差数列的第3项为5,第5项为9,求首项a1和公差d。
A. a1 = 2, d = 1B. a1 = 1, d = 2C. a1 = 3, d = 1D. a1 = 4, d = 3答案:B解析:设等差数列的首项为a1,公差为d。
根据等差数列的性质,第3项a3 = a1 + 2d = 5,第5项a5 = a1 + 4d = 9。
联立两式可得a1 = 1,d = 2。
二、填空题1. 计算定积分∫(0,1) x^2 dx的值为________。
答案:1/3解析:根据定积分的计算公式,∫(0,1) x^2 dx = [x^3/3](0,1) =1/3。
2. 若f(x) = 2x - 1,求f(1)的值为________。
答案:1解析:将x=1代入函数f(x)中,得到f(1) = 2*1 - 1 = 1。
三、解答题1. 解不等式:2x + 5 > 3x - 2。
答案:x < 7解析:将不等式中的项进行移项,得到2x - 3x > -2 - 5,即-x > -7,两边同时乘以-1(注意不等号方向要改变),得到x < 7。
2. 已知三角形ABC的两边分别为3和4,夹角为60度,求第三边c的长度。
答案:c = 2√3解析:根据余弦定理,c^2 = a^2 + b^2 - 2ab*cos(C),其中a=3,b=4,C=60度。
代入公式计算得c^2 = 3^2 + 4^2 - 2*3*4*cos(60°) = 9 + 16 - 24*1/2 = 25 - 12 = 13,所以c = √13 = 2√3。
2019年成人高考高等数学模拟考试题及答案及解析
成人高考《高等数学(二)》模拟试题和答案解析(一)一、选择题:1~10 小题,每小题 4 分,共40 分.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内.21.当 x→0时,x 是 x-1n(1+x) 的().A.较高阶的无穷小量B.等价无穷小量C.同阶但不等价的无穷小量D.较低阶的无穷小量2.设函数? (sinx)=sin 2 x ,则?ˊ(x) 等于().A.2cos xB.-2sin xcosxC.%D.2x3.以下结论正确的是().A.函数? (x) 的导数不存在的点,一定不是? (x) 的极值点B.若 x0 为函数? (x) 的驻点,则x0 必为?(x) 的极值点C.若函数? (x) 在点 x0 处有极值,且 ?ˊ (x 0) 存在,则必有 ?ˊ (x 0)=0 D.若函数? (x) 在点 x0 处连续,则?ˊ (x 0) 一定存在4.A.B.C.exdxD.exIn xdx5.函数y=ex-x 在区间 (-1 ,1) 内().A.单调减少B.单调增加C.不增不减D.有增有减6.A.F(x)B.-F(x)C.0D.2F(x)7.设 y= ?(x) 二阶可导,且 ?ˊ (1)=0, ?″(1)>0 ,则必有().A.?(1)=0B.?(1) 是极小值C.?(1) 是极大值D.点(1, ?(1)) 是拐点8.A.?(3)- ?(1)B.?(9)- ?(3)C.1[f(3)-f(1)D.1/3[ ?(9)- ?(3)]9.A.2x+1B.2xy+1C.x2+12D.x10.设事件A,B 的 P(B)=0 .5,P(AB)=0.4,则在事件 B 发生的条件下,事件 A 发生的条件概率P(A | B)= ().A.O.1B.0.2C.0.8D.0.9二、填空题:11~20 小题,每小题 4 分,共40 分.把答案填在题中横线上.11.k 12.当 x→0时,1-cos 戈与x 是同阶无穷小量,则k= __________.13.设 y=in(x+cosx) ,则 yˊ__________.14.15.16.设? (x) 的导函数是sin 2x ,则? (x) 的全体原函数是__________ .17.18.曲线y=xlnx-x 在 x=e 处的法线方程为__________ .19.20.三、解答题:21~28 小题,共70 分.解答应写出推理、演算步骤.21.22. 23.24.25.( 本题满分 8 分) 一枚 5 分硬币,连续抛掷 3 次,求“至少有 1 次国徽向上”的概率.26.( 本题满分 10 分) 在抛物线 y 2=4x 与 x=2 所围成的平面区域内作一矩形, 其一边在 x=2 上,另外两个顶点在抛物线上,求此矩形面积最大时的长和宽,最大面积是多少?27.( 本题满分 10 分) 设 z=z(x ,y) 由方程 ez-x 2 2 +y +x+z=0 确定,求出. 28.( 本题满分 10 分) 求由曲线 y=x ,y=lnx 及 y=0,y=1 围成的平面图形的面积 S ,并求此平面图形绕 y 轴旋转一周所得旋转体的体积V y .参考答案及解析一、选择题1.【答案】应选 C .【解析】本题考查两个无穷小量阶的比较.比较两个无穷小量阶的方法就是求其比的极限,从而确定正确的选项.本题即为计算:由于其比的极限为常数 2,所以选项 C 正确. 请考生注意:由于分母为 x-ln(1+x) ,所以本题不能用等价无穷小量代换ln(1+x)-x ,否则将导致错误的结论.与本题类似的另一类考题 ( 可以为选择题也可为填空题 ) 为:确定一个无穷小量的“阶”. 例 如:当 x →0 时,x-In(1+x) 是 x 的 A .1/2 阶的无穷小量 B .等价无穷小量 C .2 阶的无穷小量 D .3 阶的无穷小量要使上式的极限存在,则必须有 k-2=0 ,即 k=2.所以,当 x →0 时,x-in(1 坝)为 x 的 2 阶无穷小量,选 C . 2.【答案】应选 D .【解析】本题主要考查函数概念及复合函数的导数计算. 本题的解法有两种:解法 1 先用换元法求出? (x) 的表达式,再求导.设 sinx=u ,则? (x)=u 2 ,所以?ˊ(u)=2u ,即?ˊ(x)=2x ,选D .解法 2 将? (sinx) 作为? (x) ,u=sinx 的复合函数直接求导,再用换元法写成?ˊ(x) 的形式.等式两边对x 求导得?ˊ(sinx) ·COSx=2sin xCOS,x?ˊ(sin x)=2sinx .用x 换sin x ,得?ˊ (x)=2x ,所以选D.请考生注意:这类题是基本题型之一,也是历年考试中经常出现的.熟练地掌握基本概念及解题的基本方法,必能较大幅度地提高考生的成绩.为便于考生对有关的题型有一个较全面的了解和掌握,特将历年试卷的部分试题中的相关部分摘录如下:(2004 年 )设函数? (cosx)=1+cos 3x,求?ˊ (x) .( 答案为3x2)3.【答案】应选C.【解析】本题考查的主要知识点是函数在一点处连续、可导的概念,驻点与极值点等概念的相互关系,熟练地掌握这些概念是非常重要的.要否定一个命题的最佳方法是举一个反例,例如:y=|x| 在x=0 处有极小值且连续,但在x=0 处不可导,排除A和D.y=x3,x=0 是它的驻点,但x=0 不是它的极值点,排除B,所以命题C是正确的.4.【答案】应选A.【解析】本题可用dy=yˊdx 求得选项为A,也可以直接求微分得到dy.5.【答案】应选D.【解析】本题需先求出函数的驻点,再用y″来判定是极大值点还是极小值点,若是极值点,则在极值点两侧的yˊ必异号,从而进一步确定选项.因为yˊ =e x-1 ,令yˊ=0,得x=0.又y″=e x>0,x∈( -1 ,1) ,且y″|x>0,x∈( -1 ,1) ,且y″| x=0=1>0,所以x=0 为极小值点,故在x=0 的左、右两侧的函数必为由减到增,则当x∈( -1 ,1) 时,函数有增有减,所以应选D.6.【答案】应选B.【解析】用换元法将F(-x) 与 F(x) 联系起来,再确定选项.7.【答案】应选B.【提示】根据极值的第二充分条件确定选项.8.【答案】应选D.【解析】本题考查的知识点是定积分的换元法.本题可以直接换元或用凑微分法.9.【答案】应选B.【解析】用二元函数求偏导公式计算即可.10.【答案】应选C.【解析】利用条件概率公式计算即可.二、填空题11.【答案】应填 e-2.-2【解析】利用重要极限Ⅱ和极限存在的充要条件,可知k=e.12.【答案】应填2.【解析】根据同阶无穷小量的概念,并利用洛必达法则确定k 值.13.【解析】用复合函数求导公式计算.14.【答案】应填6.15.【解析】利用隐函数求导公式或直接对x 求导.将等式两边对x 求导( 此时 y=y(x)) ,得16.【解析】本题主要考查的知识点是导函数和原函数的概念.17.18.【答案】应填x+y-e=0 .【解析】先求切线斜率,再由切线与法线互相垂直求出法线斜率,从而得到法线方程.19.【答案】应填 2π.【提示】利用奇、偶函数在对称区间上积分的性质.20.x2 y【提示】将函数z 写成 z=e· e ,则很容易求得结果.三、解答题21.本题考查的是型不定式极限的概念及相关性质.【解析】含变上限的型不定式极限直接用洛必达法则求解.22.本题考查的知识点是复合函数的求导计算.【解析】利用复合函数的求导公式计算.23.本题考查的知识点是不定积分的公式法和凑微分积分法.【解析】本题被积函数的分子为二项之差,一般情况下要考虑将它分成二项之差的积分.另外由于被积函数中含有根式,所以也应考虑用三角代换去根式的方法进行积分.解法 1解法 2 三角代换去根号.24.本题考查的知识点是反常积分的计算.【解析】配方后用积分公式计算.25.本题考查的知识点是古典概型的概率计算.26.本题考查的知识点是利用导数研究函数特性的方法.【解析】本题的关键是正确列出函数的关系式,再求其最大值.解如图2-7-1 所示,设 A 点坐标为 (x 0,y0) ,则 AD=2-x0,矩形面积27.本题考查的知识点是二元隐函数全微分的求法.利用公式法求导的关键是需构造辅助函数F(x ,y,z)=e z-x2+y2+x+z,然后将等式两边分别对x,y,z 求导.考生一定要注意:对x 求导时, y,z 均视为常数,而对 y 或 z 求导时,另外两个变量同样也视为常数.也即用公式法时,辅助函数F(x ,y,z) 中的三个变量均视为自变量.解法 1 直接求导法.等式两边对x 求导得解法 2 公式法.解法 3 微分法.对等式两边求微分得三种解法各有优劣,但公式法更容易理解和掌握.建议考生根据自己的熟悉程度,牢记一种方法.28.本题考查的知识点是曲边梯形面积的求法及旋转体体积的求法.【解析】首先应根据题目中所给的曲线方程画出封闭的平面图形,然后根据此图形的特点选择对x 积分还是对) ,积分.选择的原则是:使得积分计算尽可能简单或容易算出.本题如果选择对x 积分,则有这显然要比对y 积分麻烦.在求旋转体的体积时一定要注意是绕x 轴还是绕y 轴旋转.历年的试题均是绕x 轴旋转,而本题是求绕y 轴旋转的旋转体的体积.旋转体的体积计算中最容易出现的错误(在历年的试卷均是如此) 是:解画出平面图形,如图2-7-2 所示的阴影部分,则有阴影部分的面积山水是一部书,枝枝叶叶的文字间,声声鸟鸣是抑扬顿挫的标点,在茂密纵深间,一条曲径,是整部书最芬芳的禅意。
成考数学试题及答案详解
成考数学试题及答案详解一、选择题1. 下列哪个数不是实数?A. -3B. √2C. πD. i答案:D2. 如果函数f(x) = 2x + 3,那么f(-1)的值是多少?A. -1B. 1C. 3D. 5答案:A3. 圆的面积公式是πr²,其中r是半径。
如果一个圆的半径是4,那么它的面积是多少?A. 16πB. 32πC. 64πD. 100π答案:B二、填空题4. 一个直角三角形的两条直角边分别为3和4,那么它的斜边长度是_________。
答案:55. 一个数的平方根是4,那么这个数是_________。
答案:16三、解答题6. 解不等式:3x + 5 > 14。
解:首先将5移到不等式的右边,得到3x > 9,然后除以3,得到x > 3。
7. 已知函数f(x) = x² - 4x + 3,求它在x = 2处的值。
解:将x = 2代入函数f(x)中,得到f(2) = 2² - 4*2 + 3 = 4- 8 + 3 = -1。
四、证明题8. 证明:对于任意实数a和b,如果a > b,则a² > b²。
证明:假设a > b,那么a - b > 0。
将两边平方得到(a - b)² > 0。
根据平方差公式,(a - b)² = a² - 2ab + b²。
因为2ab总是正数,所以a² - 2ab + b² > b²,即a² > b²。
五、应用题9. 一个工厂生产某种产品的总成本是C = 5000 + 50x,其中x是生产的产品数量。
如果每件产品的销售价格是100元,那么工厂需要生产多少件产品才能达到收支平衡?解:设工厂生产x件产品,总收入为100x,总成本为5000 + 50x。
收支平衡时,总收入等于总成本,即100x = 5000 + 50x。
成考数学试题答案及解析
成考数学试题答案及解析一、选择题(每题3分,共30分)1. 下列函数中,哪一个是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^2 + 1D. f(x) = x^3 - 1答案:B解析:奇函数的定义是f(-x) = -f(x)。
对于选项A,f(-x) = (-x)^2 = x^2 = f(x),是偶函数;对于选项B,f(-x) = (-x)^3 = -x^3 = -f(x),是奇函数;对于选项C,f(-x) = (-x)^2 + 1 = x^2 + 1 =f(x),是偶函数;对于选项D,f(-x) = (-x)^3 - 1 = -x^3 - 1 ≠ -f(x),既不是奇函数也不是偶函数。
2. 计算下列极限:\[\lim_{x \to 0} \frac{\sin x}{x}\]A. 0B. 1C. -1D. 不存在答案:B解析:根据极限的性质,我们知道\(\lim_{x \to 0} \frac{\sinx}{x} = 1\),这是一个基本的极限公式。
3. 计算下列定积分:\[\int_{0}^{1} x^2 dx\]A. 1/3B. 1/2C. 2/3D. 1答案:A解析:根据定积分的计算公式,\(\int_{0}^{1} x^2 dx =\left[\frac{1}{3}x^3\right]_0^1 = \frac{1}{3}(1^3 - 0^3) = \frac{1}{3}\)。
4. 计算下列二阶导数:\[f''(x) = \frac{d^2}{dx^2} (e^x \sin x)\]A. \(e^x \sin x + e^x \cos x\)B. \(e^x \sin x - e^x \cos x\)C. \(e^x \cos x + e^x \sin x\)D. \(e^x \cos x - e^x \sin x\)答案:A解析:使用乘积法则求导,\(f'(x) = e^x \sin x + e^x \cos x\),再求导得到\(f''(x) = e^x \sin x + e^x \cos x + e^x \cos x - e^x \sin x = 2e^x \cos x\)。
2021年成人高考高等数学模拟试题和答案解析
2021年成人高考高等数学模拟试题和答案解析解析】此题考查函数的连续性和极限的概念,通过极限的定义可以推出x=1时函数不连续,而x≠1时函数连续,所以选项C正确.4.【答案】应选B.解析】此题考查函数可导的概念,在选项中只有B符合函数不可导的条件,所以选B.5.【答案】应选C.解析】此题考查对数函数的性质,利用对数函数的定义可以推出选项C正确.6.【答案】应选B.解析】此题考查函数的积分,利用分部积分公式可以求出选项B正确.7.【答案】应选A.解析】此题考查函数的导数和极值的概念,利用导数的定义可以求出函数的导数为0,然后通过二阶导数的符号来判断极值类型,所以选项A正确.8.【答案】应选C.解析】此题考查指数函数的性质,利用指数函数的定义可以推出选项C正确.9.【答案】应选D.解析】此题考查函数的极限的概念,通过极限的定义可以推出选项D正确.10.【答案】应选B.解析】此题考查函数的极值的概念,通过求导和判断二阶导数的符号可以得到选项B正确.二、填空题11.-112.-1/213.014.015.√316.2/317.218.019.1/220.2三、解答题21.(此题总分值10分)已知函数y=ln(1+x),求其在点x=0处的二阶泰勒展开式.解析】根据泰勒公式,可以得到:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)²/2.+ O((x-a)³)其中,a=0,f(a)=ln(1+0)=0,f'(a)=1/(1+0)=1,f''(a)=-1/(1+0)²=-1,代入公式可得:y = x - x²/2 + O(x³)所以,在点x=0处的二阶泰勒展开式为y=x-x²/2.22.(此题总分值8分)设函数y=cos(lnx),求y'.解析】根据链式法则和反函数的导数公式,可以得到:y' = -sin(lnx) * 1/x所以,函数y=cos(lnx)的导数为y'=-sin(lnx)/x.23.(此题总分值10分)已知函数y=ln(1+sinx),求其在点x=π/4处的三阶XXX展开式.解析】根据泰勒公式,可以得到:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)²/2.+ f'''(a)(x-a)³/3.+ O((x-a)⁴)其中,a=π/4,f(a)=ln(1+sin(π/4))=ln(√2),f'(a)=cos(a)/(1+sin(a))=1/2,f''(a)=-sin(a)/(1+sin(a))²=-1/4,f'''(a)=-cos(a)*(1+sin(a)+2cos(a))/(1+sin(a))³=-3/8√2,代入公式可得:y = ln(√2) + (x-π/4)/2 - (x-π/4)²/8 - 3√2(x-π/4)³/48 + O((x-π/4)⁴)所以,在点x=π/4处的三阶泰勒展开式为y=ln(√2)+(x-π/4)/2-(x-π/4)²/8-3√2(x-π/4)³/48.24.(此题总分值8分)设函数y=xlnx-x,求其在点x=e处的极值.解析】对函数求导,可以得到:y' = ln(x)y'' = 1/x令y'=0,可得x=e,此时y''=1/e>0,所以函数在点x=e处取得极小值,极小值为y=e.25.(此题总分值10分)已知函数y=xe^(x-1),求其在区间[0,1]上的最大值和最小值.解析】对函数求导,可以得到:y' = xe^(x-1) + e^(x-1)*(1-x)令y'=0,可得x=1,此时y''=2e^(x-1)>0,所以函数在点x=1处取得极小值,极小值为y=1/e.又因为函数在区间[0,1]上单调递增,所以最小值为y(0)=0,最大值为y(1)=e.26.(此题总分值10分)已知函数y=x^3-3x^2+2x,求其在区间[-1,3]上的最大值和最小值.解析】对函数求导,可以得到:y' = 3x^2-6x+2令y'=0,可得x=1/3或x=2,此时y''=6x-6,当x=1/3时,y''0,所以函数在点x=2处取得极小值,极小值为y=-4.又因为函数在区间[-1,3]上单调递增,所以最小值为y(-1)=-4,最大值为y(3)=2.27.(此题总分值10分)已知函数y=x^3-3x,求其在区间[-2,2]上的拐点.解析】对函数求导,可以得到:y' = 3x^2-3y'' = 6x令y''=0,可得x=0,此时y'''=6>0,所以函数在点x=0处取得拐点.28.(此题总分值10分)已知袋中装有8个球,其中5个白球,3个黄球.一次取3个球,以X表示所取的3个球中黄球的个数.1)求随机变量X的散布列;2)求数学期望E(X).解析】(1)当取出的3个球中有0个黄球时,有C(5,3)=10种取法;当取出的3个球中有1个黄球时,有C(5,2)*C(3,1)=30种取法;当取出的3个球中有2个黄球时,有C(5,1)*C(3,2)=30种取法;当取出的3个球中有3个黄球时,有C(3,3)=1种取法.所以,X的散布列为:X。
2024年成人高考成考(高起专)数学(文科)试题及答案指导
2024年成人高考成考数学(文科)(高起专)模拟试题(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、已知函数f(x)=2x2−3x+1,则该函数的导数f′(x)为:A.4x−3B.2x−3C.4x+1D.2x+12、在下列各数中,绝对值最小的是()A、-3/2B、-1/2C、3/2D、1/23、若一个正方形的边长增加其原长的25%,则新正方形的面积比原来增加了多少百分比?A、50%B、56.25%C、75%D、100%4、在下列各数中,不是有理数的是:A、-5.25B、√16C、πD、0.35、已知直线(l)的方程为(2x−3y+6=0),则直线(l)的斜率是多少?)A、(23)B、(32)C、(−23)D、(−326、下列函数中,定义域为全体实数的是()A、f(x) = √(x+1)B、f(x) = √(x^2 - 4)C、f(x) = 1 / (x-2)D、f(x) = 1 / (x^2 + 1)7、设函数f(x)=2x2−3x+1,则该函数的最小值为()。
A.−18B.18C.−1D.1),则下列说法正确的是:8、若函数(f(x)=3x2−2x+1)的图像的对称轴为(x=13A.(f (0)=f (1))B.(f (0)=f (−13))C.(f (13)=f (−13))D.(f (0)+f (1)=2f (13))9、若直线(l )的方向向量为((3,−4)),则直线(l )的斜率为:A.(34)B.(−34)C.(43)D.(−43)10、在下列各数中,有理数是( )A.√2B.πC.13D.ln211、一个等差数列的前三项分别是2、5、8,那么该数列的公差是多少?A 、3B 、4C 、5D 、612、已知函数f (x )=2x−1x 2−2x+1,下列说法正确的是:A. 函数的定义域为(−∞,1)∪(1,+∞)B. 函数的值域为(−∞,0)∪(0,+∞)C. 函数的增减性在x=1处发生改变D. 函数的图像关于直线x=1对称二、填空题(本大题有3小题,每小题7分,共21分)1、若函数f(x)=12x2−3x+4在x=1处取得极值,则该极值为_______ 。
成人高考《高等数学(二)》模拟试题和答案解析(三)
成人高考《高等数学(二)》模拟试题和答案解析(三)一、选择题:1~10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内.1.A.x=—2B.x=—1C.x=1D.x=02.设ƒ(x)在x0及其邻域内可导,且当x〈x0时ƒˊ(x)〉0,当x〉x0时ƒˊ(x)<0,则必ƒˊ(x0)().A.小于0B.等于0C.大于0D.不确定3.A.B.C.D.4.设函数ƒ(x)=sin(x2)+e-2x,则ƒˊ(x)等于().A.B.C.D.5.A.B.C.(0,1)D.6.A.xln x+CB.-xlnx+CC.D.7.设ƒˊ(x)=COS x+x,则ƒ(x)等于( ).A.B.C. sinx+x2+CD. sinx+2x2+C8.A.F(x)B.-F(x)C.0D.2F(x)9.A.ƒˊ(x+y)+ƒˊ(x—y)B.ƒˊ(x+y)-ƒˊ(x—y)C.2 ƒˊ(x+y)D.2 ƒˊ(x-y)10.若事件A发生必然导致事件B发生,则事件A和B的关系一定是().A.B.C.对立事件D.互不相容事件二、填空题:11~20小题,每小题4分,共40分.把答案填在题中横线上.11.12.13.14.设函数y=In(1+x2),则dy=__________.15.16.17.18.19.20.由曲线y=x和y=x2围成的平面图形的面积S=__________.三、解答题:21~28小题,共70分.解答应写出推理、演算步骤.21.22.23.24.25.(本题满分8分)设随机变量X的分布列为X 123 4P 0.2 0.3α 0。
4(1)求常数α;(2)求X的数学期望E(X).26.(本题满分10分)当x>0时,证明:ex>1+x.27.28.参考答案及解析一、选择题1.【答案】应选D.【解析】本题主要考查间断点的概念.读者若注意到初等函数在定义区间内是连续的结论,可知选项A、B、C都不正确,所以应选D.2.【答案】应选B.【解析】本题主要考查函数在点x0处取到极值的必要条件:若函数y=ƒ(x)在点x0处可导,且x0为ƒ(x)的极值点,则必有ƒˊ(x0)=0.本题虽未直接给出x0是极值点,但是根据已知条件及极值的第一充分条件可知f(x0)为极大值,故选B.3.【答案】应选D.【解析】本题考查的知识点是基本初等函数的导数公式.4。
成人高考成考(高起专)数学(理科)试卷及解答参考
成人高考成考数学(理科)(高起专)模拟试卷(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、若函数(f(x)=x3−3x2+4)的导数(f′(x))等于0,则(f(x))的极值点为:A、(x=0)B、(x=1)C、(x=2)D、(x=−1)2、已知函数f(x)=x 2−4x−2,则函数的定义域为()A.x≠2B.x≠0C.x≠2且x≠0D.x≠0且x≠−23、若函数(f(x)=1x−2+√x+1)在区间([−1,2))上有定义,则函数(f(x))的定义域为:A.([−1,2))B.([−1,2])C.((−1,2))D.((−1,2])4、在下列各数中,正实数 a、b、c 的大小关系是:a = 2^(3/2),b = 3^(2/3),c = 5^(1/4)。
A、a < b < cB、b < a < cC、c < b < aD、a = b = c5、已知函数f(x)=2x3−9x2+12x+1,若函数的图像在(−∞,+∞)上恒过点(a,b),则a和b的值分别为:A.a=2,b=9B.a=3,b=10C.a=1,b=2D.a=0,b=1+2x)在(x=1)处有极值,则此极值点处的导数值为:6、若函数(f(x)=3xA. 1B. -1C. 0D. 3在点x=1处的导数等于多少?7、若函数f(x)=2x−3x+1A、2B、−1C、1D、08、已知函数f(x)=x 3−3x2+4xx2−2x+1,则f(x)的奇偶性为:A. 奇函数B. 偶函数C. 非奇非偶函数D. 无法确定9、在下列数列中,属于等差数列的是()A、1, 2, 3, 4, 5B、1, 3, 6, 10, 15C、2, 4, 8, 16, 32D、1, 3, 6, 9, 1210、已知函数(f(x)=1x+x2)在区间((−∞,+∞))上的定义域为(D),且函数的值域为(R),则(D)和(R)分别是:A.(D=(−∞,0)∪(0,+∞),R=(−∞,0)∪(0,+∞))B.(D=(−∞,0)∪(0,+∞),R=[0,+∞))C.(D=(−∞,+∞),R=(−∞,+∞))D.(D=(−∞,+∞),R=[0,+∞))11、若函数f(x)=x3−3x2+4x,则函数的对称中心为:A.(1,2)B.(1,1)C.(0,0)D.(−1,−1)12、若函数(f(x)=√x2−4)的定义域为(D f),则(D f)为:A.(x≥2)B.(x≤−2)或(x≥2)C.(x≤−2)或(x≥2)D.(x≥2)或(x≤−2)二、填空题(本大题有3小题,每小题7分,共21分)1、在△ABC中,若sinA=√55,cosB=−√1010,则sinC=____.2、已知直线(l)的方程为(3x−4y+10=0),求直线(l)在 y 轴上的截距。
成人高考专升本高等数学(一)全真模拟试题及答案解析⑤
成人高考专升本高等数学(一)------------------------全真模拟试题及答案解析⑤1(单选题)函数在x=0处()(本题4分)A 连续且可导B 连续且不可导C 不连续D 不仅可导,导数也连续标准答案: B解析:【考情点拨】本题考查了函数在一点处的连续性和可导性的知识点。
【应试指导】因为所以函数在x=0处连续;又因不存在,所以函数在x=0处不可导。
2(单选题)曲线()(本题4分)A 没有渐近线B 仅有水平渐近线C 仅有铅直渐近线D 既有水平渐近线,又有铅直渐近线标准答案: D解析:【考情点拨】本题考查了曲线的渐近线的知识点。
【应试指导】所以y=1为水平渐近线。
又因所以x=0为铅直渐近线。
3(单选题)则α的值为()(本题4分)A -1B 1C -1/2D 0标准答案: B解析:【考情点拨】本题考查了洛必达法则的知识点。
【应试指导】因为x→0时分母极限为0,只有分子极限也为0,才有可能使分式极限为6,故解得a=-1,所以4(单选题)设()(本题4分)A 等价无穷小B f(x)是比g(x)高阶无穷小C f(x)是比gCc)低阶无穷小D f(x)与g(x)是同阶但非等价无穷小标准答案: D解析:【考情点拨】本题考查了两个无穷小量阶的比较的知识点。
【应试指导】故f(x)与g(x)是同价但非等价无穷小。
5(单选题)已知=()(本题4分)ABCD标准答案: B解析:【考情点拨】本题考查了已知积分函数求原函数的知识点。
【应试指导】因为所以6(单选题)曲线y=e^x与其过原点的切线及y轴所围面积为()(本题4分)ABCD标准答案: A解析:【考情点拨】本题考查了曲线围成的面积的知识点。
【应试指导】设(x0,y0)为切点,则切线方程为联立得x0=1,y0=e,所以切线方程为y=ex。
故所求面积为7(单选题)设函数()(本题4分)A 1B 0C -1/2D -1标准答案: D解析:【考情点拨】本题考查了一元函数在一点处的一阶导数的知识点。
成人高考专升本高等数学(一)全真模拟试题及答案解析③
成人高考专升本高等数学(一)------------------------全真模拟试题及答案解析③1(单选题)若则是( )(本题4分)A 2B -2C -1D 1标准答案: A解析:【考情点拨】本题考查了一元函数的导数及其极限的知识点。
【应试指导】因为2(单选题)若则等于()(本题4分)A 2x+2B x(x+1)C x(x-1)D 2x-1标准答案: A解析:【考情点拨】本题考查了一元函数的一阶导数的知识点。
【应试指导】因为故则3(单选题)设函数f(x)满足且f(0)=0,则f(x)=()。
(本题4分)ABCD标准答案: D解析:【考情点拨】本题考查了已知导函数求原函数的知识点。
【应试指导】由4(单选题)函数是()(本题4分)ABCD标准答案: D解析:【考情点拨】本题考查了函数的极值的知识点。
【应试指导】因于是令得驻点(-4,1)。
又因故对于点(-4,1),A=2,B=-1,C=2,B^2-AC=-3<0,且A>0,因此z=f(x,y)在点(-4,1)处取得极小值,且极小值为f(-4,1)=-1。
5(单选题)当x→0时,与x等价的无穷小量是( )。
(本题4分)ABCD标准答案: B解析:【考情点拨】本题考查了等价无穷小量的知识点。
【应试指导】对于选项A,故是在x→0时的比x低价的无穷小;对于选项B,故ln(1+x)是x→0时与x等价的无穷小;对于选项C,故是x→0时与x同阶非等价的无穷小;对于选项D,故是x→0时的比x高阶的无穷小。
6(单选题)使成立的f(x)为()。
(本题4分)A 绝对收敛B 条件收敛C 发散D 无法确定敛散性标准答案: A解析:【考情点拨】本题考查了反常积分的敛散性的知识点。
【应试指导】对于选项A,故此积分收敛,且收敛于1;对于选项B,不存在;对于选项C,故此积分收敛,但收敛于;对于选项D,故此积分收敛,但收敛于故选A。
7(单选题)级数是()。
(本题4分)ABCD标准答案: A解析:【考情点拨】本题考查了级数的绝对收敛的知识点。
2020年成人高考专升本《高等数学(一)》模拟考试及参考答案
【解题指导】 28.【解析】所给曲线围成的图形如图 8—1 所示.
…………○…………外…………○…………装…………○…………订…………○…………线…………○………… 学校:___________姓名:___________班级:___________考号:___________
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
A.
…………○…………外…………○…………装…………○…………订…………○…………线…………○………… 学校:___________姓名:___________班级:___________考号:___________
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
9. A.条件收敛 B.绝对收敛 C.收敛性与 k 有关 D.发散 10. A.Ax B. C. D.
第Ⅱ卷(非选择题,共 110 分)
评卷人 得分
二、填空题:11~20 小题,每小题 4 分,共 40 分.把答案填在题 中横线上.
11.
12.
13.设 sinx 为 f(x)的原函数,则 f(x)=
20.【参考答案】 【解析】本题考查的知识点为幂级数的收敛半径. 所给级数为缺项情形,
三、解答题 21.【解析】本题考查的知识点为极限运算. 解法 1
解法 2
…………○…………外…………○…………装…………○…………订…………○…………线…………○………… 学校:___________姓名:___________班级:___________考号:___________
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
成人高考专升本高等数学(一)全真模拟试题及答案解析①
成人高考专升本高等数学(一)--------------------------------全真模拟试题①一、单选题,共10题,每题4分,共40分:1(单选题)当x→0时,下列变量中为无穷小的是_________ (本题4分)ABCD标准答案: D解析:【考情点拨】本题考查了无穷小量的知识点.【应试指导】2(单选题)下列等式成立的是__________(本题4分)ABCD标准答案: C解析:【考情点拨】本题考查了函数的极限的知识点.【应试指导】3(单选题)设函数则等于_____(本题4分)A eB 1CD ln2标准答案: C解析:【考情点拨】本题考查了函数在一点的导数的知识点.【应试指导】4(单选题)设函数则函数f(X)______(本题4分)A 有极小值B 有极大值C 即有极小值又有极大值D 无极值标准答案: A解析:【考情点拨】本题考查了函数极值的知识点【应试指导】5(单选题)( )(本题4分)A 2/5B 0C -2/5D 1/2标准答案: A解析:【考情点拨】本题考查了定积分的知识点.【应试指导】6(单选题)下列各式中正确的是( )(本题4分)ABCD标准答案: B解析:【考情点拨】本题考查了定积分的性质的知识点.【应试指导】7(单选题)下列反常积分收敛的是________(本题4分)ABCD标准答案: D解析:【考情点拨】本题考查了反常积分的敛散性的知识点.【应试指导】8(单选题)方程表示的二次曲面是(本题4分)A 球面B 旋转抛物面C 圆柱面D 圆锥面标准答案: D解析:【考情点拨】本题考查了二次曲面(圓锥面)的知识点.【应试指导】由方程可知它表示的是圓锥面.9(单选题)函数在(-3,3)内展开成x的幂级数是()(本题4分)ABCD标准答案: B解析:【考情点拨】本题考查了函数展开为幂级数的知识点.【应试指导】10(单选题)微分方程________(本题4分)ABCD标准答案: A解析:【考情点拨】本题考查了二阶线性微分方程的特解形式的知识点.【应试指导】二、填空题,共10题,每题4分,共40分:11(填空题)函数在x=0连续此时α=________(本题4分)标准答案: 0解析:【考情点拨】本题考查了函数在一点处的连续性的知识点.【应试指导】12(填空题)若则_______(本题4分)标准答案: -1解析:【考情点拨】本题考查了利用导数定义求极限的知识点.【应试指导】13(填空题)设则y'=_______(本题4分)标准答案:解析:【考情点拨】本题考查了函数的一阶导数的知识点.【应试指导】14(填空题)函数上满足罗尔定理,则ε=_________(本题4分)标准答案:π解析:【考情点拨】本题考查了罗尔定理的知识点.【应试指导】15(填空题)_______(本题4分)标准答案:解析:【考情点拨】本题考查了不定积分的知识点.【应试指导】16(填空题)_________(本题4分)标准答案:解析:【考情点拨】本题考查了利用换元法求定积分的知识点.【应试指导】17(填空题)将积分改变积分顺序,则I=__________(本题4分)标准答案:解析:【考情点拨】本题考查了改变积分顺序的知识点.【应试指导】18(填空题)幂级数的收敛半径为______(本题4分)标准答案: 3解析:【考情点拨】本题考查了幂级数的收敛半径的知识点.【应试指导】19(填空题)微分方程的通解是______(本题4分)标准答案:解析:【考情点拨】本题考查了二阶线性微分方程的通解的知识点.【应试指导】微分方程的特征方程是微分方程的特征方程是20(填空题)若则_______(本题4分)标准答案:解析:【考情点拨】本题考查了二元函数的全微分的知识点.【应试指导】一、问答题8题,前5题每题8分,后3题每题10分,共70分:21(问答题)求函数的二阶导数(本题8分)标准答案及解析:22(问答题)求(本题8分)标准答案及解析:23(问答题)求(本题8分)标准答案及解析:24(问答题)求函数的极值. (本题8分)标准答案及解析:25(问答题)设求(本题8分)标准答案及解析:26(问答题)计算其中D是由:y=x,y=2x,x=2与x=4围成(本题10分)标准答案: 9解析:积分区域D如下图所示. 被积函数 H:为二次积分时对哪个变量皆易于积分;但是区域D易于用X —型不等式表示,因此选择先对:y积分,后对x积分的二次积分次序.27(问答题)求由曲线y2=(x-1)3和直线x=2所围成的图形绕x轴旋转所得的旋转体的体积.(本题10分)标准答案及解析:28(问答题)已知证明: (本题10分)标准答案及解析:。
成人高考成考(高起专)数学(理科)试题及解答参考
成人高考成考数学(理科)(高起专)复习试题(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、下列函数中,是奇函数的是()。
A.y=x2B.y=arctanxC.y=e xD.y=x 3−1x−1,x≠12、若分子是正数的分数与负数相乘,则结果一定()A、是正数B、是负数C、可能为正数,也可能为负数D、不确定3.已知函数f(x) = 2x^3 - 3x^2 - 12x + 1,那么f(x)在区间[-2, 3]上的最大值是:A. 17B. 25C. 33D. 414、已知向量a⃗=(2,−3),b⃗⃗=(5,1), 则2a⃗−b⃗⃗的大小为A.√29B.√13C.√37D.√265.题目:已知圆的方程为 x^2 + y^2 = 9,点 A(-3, 0),则点 A 与圆的位置关系是()A. 在圆内B. 在圆上C. 在圆外D. 无法确定6、若函数f(x)=x2−4x+3,则不等式f(x)<0的解集为A.(1,3)B.(−∞,1)∪(3,+∞)C.(−∞,1]∪[3,+∞)D.(1,+∞)7、若函数y=x^2的图像向上平移2个单位,向右平移1个单位,则平移后的函数解析式为()A、y=x^2+2x+3B、y=x^2+2x+1C、y=x^2+2D、y=(x-1)^2+28、在甲、乙两队拔河比赛中,甲队最大能拉动横绳中间的白带的水平距离为6米。
已知绳的轻质、不可伸长,横绳的重量忽略不计,两队发力使对方过界并保持不动撤力后,白带即回到恰好在界线的不动平衡位置。
问两队发力过界时,白带向哪边过界?最多能拉动白带的最大水平距离是多少米?已知甲队最大拉力为F1=600N,乙队最大拉力F2=320N。
A. 乙队方向,12米B. 甲队方向,5米C. 乙队方向,5米D. 甲队方向,12米9、若一元二次方程ax² + bx + c = 0 的两个根互为倒数,则下列式子一定成立的是()A. a + b + c = 0B. b² = 4acC. a = bD. c = 010、一个正整数,它的各位数字之和为9,这个数可能是( )。
成人高考专升本高等数学(一)全真模拟试题及答案解析②
成人高考专升本高等数学(一)------------------全真模拟试题及答案解析②一、单选10题,每题4分,共40分:1(单选题)()(本题4分)A 0B 1C ∞D 不存在但不是∞标准答案: D解析:【考情点拨】本题考查了函数的极限的知识点.2(单选题)设则等于()(本题4分)A -1B 0C 1/2D 1标准答案: C解析:【考情点拨】本题考查了利用导数定义求极限的.3(单选题)下列函数中,在x=0处可导的是()(本题4分)A y=|x|BC y=x^3D y=lnx标准答案: C解析:【考情点拨】本题考查了函数在一点处可导的知识点.=lnx在x=0处不可导(事实上,在x=0点就没定义).4(单选题)函数在区间[―1,1]上()(本题4分)A 单调减少B 单调增加C 无最大值D 无最小值标准答案: B解析:【考情点拨】本题考查了函数的单调性的知识点.因处处成立,于是函数在(-∞,+∞)内都是单调增加的,故在[-1,1]上单调增加.5(单选题)曲线的水平渐近线的方程是_____(本题4分)A y=2B y=-2C y=1D y=-1标准答案: D解析:【考情点拨】本题考查了曲线的水平渐近线的知识点.【应试指导】所以水平渐近线为y=-1.注:若是水平渐远线是铅直渐近线6(单选题)设y=cosx,则y"=________(本题4分)A sinxB -cosxC cosxD -sinx标准答案: C解析:【考情点拨】本题考查了函数的二阶导数的知识点。
7(单选题)设函数则等于_______(本题4分)A 0B 1C 2D -1标准答案: C解析:【考情点拨】本题考查了函数在一点处的一阶偏导数的知识点.8(单选题)二元函数z=x3-y3+3x2+3y2-9x的极小值点为_________(本题4分)A (1,0)B (1,2)C (-3,0)D (-3,2)标准答案: A解析:【考情点拨】本题考查了二元函数的极值的知识点.9(单选题)设则积分区域D可以表示为______(本题4分)ABCD标准答案: C解析:【考情点拨】本题考查了二重积分的积分区域的表示的知识点.【应试指导】据右端的二次积分可得积分区域D项中显然没有这个结果,于是须将该区域D用另一种不等式(X—型)表示.故D又可表示为10(单选题)下列级数中发散的是( )(本题4分)ABCD标准答案: D解析:【考情点拨】本题考查了级数的敛散性的知识点.【应试指导】故选项A收敛,选项B 是交错级数,单调递减,且故选项B收敛;选项C,所以选项C收敛;用排除法故知选项D 正确,其实从收敛的必要条件而故选项D发散.二、填空题10题,每题4分,共40分:11(填空题)_________(本题4分)标准答案: 1/2解析:【考情点拨】本题考查了函数的极限的知识点.【应试指导】令1/x=t,则12(填空题)________(本题4分)标准答案: 1/2解析:【考情点拨】本题考查了对∞-∞型未定式极限的知识点.【应试指导】这是∞-∞型,应合并成一个整体,再求极限.13(填空题)若则____(本题4分) 标准答案:解析:【考情点拨】本题考查了对由参数方程确定的函数求导的知识点.【应试指导】参数方程为14(填空题)=________(本题4分)标准答案:解析:【考情点拨】本题考查了不定积分的知识点.【应试指导】15(填空题)设在x=0处连续,则α=___(本题4分) 标准答案: 1解析:【考情点拨】本题考查了函数在一点处的连续性的知识点. 又f(0)=1,所以f(x)在x=0连续应有a=1.注:(无穷小量X有界量=无穷小量)这是常用极限应记牢.16(填空题)__________(本题4分)标准答案:解析:【考情点拨】本题考查了利用换元法求定积分的知识点.17(填空题)设函数,则全微分dz=__________(本题4分)标准答案:解析:则18(填空题)设可知,则_______(本题4分)标准答案:解析:【考情点拨】本题考查了复合函数的一阶偏导数的知识点.19(填空题)微分方程的通解为_______(本题4分) 标准答案:解析:微分方程的特征方程20(填空题)设D为________(本题4分)标准答案: 4π解析:本题考查了二重积分的知识点. 【应试指导】因积分区域为圆x2+y2=22的上半圆,则三、问答题8题,前5题每题8分,后3题每题10分,共70分:21(问答题)设求的值(本题8分)标准答案:在sin.( t•s)+ ln(s-t)=t两边对t求导,视s为t的函数,有22(问答题)设求f(x)在[1,2]上的最大值(本题8分)标准答案:在[1,2]上单调递减23(问答题)如果试求(本题8分)标准答案:两端对x求导,得24(问答题)求(本题8分)标准答案: 2/5解析:25(问答题)计算其中D为圆域x2+y2≤9. (本题8分)标准答案:用极坐标系进行计算.26(问答题)设z是x,y的函数,且证明:(本题10分)标准答案:在已知等式两边对x求导,y视为常数,有27(问答题)设求f(x)(本题10分)标准答案:28(问答题)求幂级函数的收敛区间(本题10分)标准答案:这是交错级数,由莱布尼茨判别法知级数收敛.级数在[0,2]上收敛.注:本题另解如下,所以当丨x-1| <1时级数收敛,即0<x< 2时级数收效,同上知x=0或x=2时级数收敛,故级数的收敛区间为[0,2].。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题 1.设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则=⋂(M N )ðA .{}12,B .{}23,C .{}2,4D .{}1,42.函数2(0)y x x =≥的反函数为A .2()4x y x R =∈B .2(0)4x y x =≥C .24y x =()x R ∈D .24(0)y x x =≥3.权向量a,b 满足1||||1,2a b a b ==⋅=-,则2a b +=A .2B .3C .5D .74.若变量x 、y 满足约束条件6321x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则23z x y -+的最小值为A .17B .14C .5D .35.下面四个条件中,使a b >成立的充分而不必要的条件是 A .1a b >+ B .1a b >-C .22a b >D .33a b >6.设nS 为等差数列{}n a 的前n 项和,若11a =,公差为22,24k k d S S +=-=,则k=A .8B .7C .6D .57.设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于A .13B .3C .6D .98.已知二面角l αβ--,点,,A AC l α∈⊥C 为垂足,点,B BD l β∈⊥,D 为垂足,若AB=2,AC=BD=1,则CD=A .2B .3C .2D .19.4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有 A .12种 B .24种 C .30种 D .36种10.设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5()2f -=A .-12B .1 4-C .14D .1211.设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =A .4B .42C .8D .8212.已知平面α截一球面得圆M ,过圆心M 且与α成060,二面角的平面β截该球面得圆N ,若该球的半径为4,圆M 的面积为4π,则圆N 的面积为A .7πB .9πC .11πD .13π二、填空题:本大题共4小题,每小题5分,共20分把答案填在题中横线上(注意:在试..卷上作答无效......) 13.(1-x )10的二项展开式中,x 的系数与x 9的系数之差为: .14.已知a ∈(3,2ππ),tan 2,cos αα=则=15.已知正方体ABCD —A 1B 1C 1D 1中,E 为C 1D 1的中点,则异面直线AE 与BC 所成角的余弦值为。
16.已知F 1、F 2分别为双曲线C : 29x - 227y =1的左、右焦点,点A ∈C ,点M 的坐标为(2,0),AM 为∠F 1AF 2∠的平分线.则|AF 2| = .三、解答题:本大题共6小题,共70分解答应写出文字说明,证明过程或演算步骤 17.(本小题满分l0分)(注意:在试题卷上.....作答无效....) 设等比数列{}n a 的前n 项和为n S ,已知26,a =13630,a a +=求n a 和n S18.(本小题满分2分)(注意:在试题卷上作答无效.........) △ABC 的内角A 、B 、C 的对边分别为a 、b 、c .己知sin csin 2sin sin ,a A C a C b B +-=(Ⅰ)求B ;(Ⅱ)若75,2,A b a c ==求与19.(本小题满分l2分)(注意:在试题卷上作答无效.........) 根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立。
(I )求该地1位车主至少购买甲、乙两种保险中的1种概率;(II )求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率。
20.(本小题满分l2分)(注意:在试题卷上作......答无效...) 如图,四棱锥S ABCD -中, AB CD ,BC CD ⊥,侧面SAB 为等边三角形,2,1AB BC CD SD ====.(I )证明:SD ⊥平面SAB ;(II )求AB 与平面SBC 所成的角的大小。
21.(本小题满分l2分)(注意:在试题卷上作......答无效...) 已知函数{}32()3(36)124f x x ax a x a a R =++---∈(I )证明:曲线()0y f x x ==在处的切线过点(2,2); (II )若0()f x x x =在处取得极小值,0(1,3)x ∈,求a 的取值范围。
22.(本小题满分l2分)(注意:在试题卷上作答无效.........) 已知O 为坐标原点,F 为椭圆22:12y C x +=在y 轴正半轴上的焦点,过F 且斜率为-2的直线l 与C 交与A 、B 两点,点P 满足0.OA OB OP ++= (Ⅰ)证明:点P 在C 上;(II )设点P 关于O 的对称点为Q ,证明:A 、P 、B 、Q 四点在同一圆上。
参考答案评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则。
2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给力,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分。
3.解答右端所注分数,表示考生正确做到这一步应得的累加分数。
4.只给整数分数,选择题不给中间分。
一、选择题1—6 DBBCAD 7—12 CCBACD 二、填空题13.0 14.55-15.23 16.6三、解答题17.解:设{}n a 的公比为q ,由题设得12116,630.a q a a q =⎧⎨+=⎩…………3分解得113,2,2, 3.a a q q ==⎧⎧⎨⎨==⎩⎩或…………6分当113,2,32,3(21);n nn n a q a S -===⨯=⨯-时 当112,3,23,3 1.n n n n a q a S -===⨯=-时 …………10分18.解:(I )由正弦定理得2222.a c ac b +-=…………3分由余弦定理得2222cos .b a c ac B =+- 故2cos ,45.2B B ==︒因此…………6分(II )sin sin(3045)A =︒+︒sin 30cos 45cos 30sin 4526.4=︒︒+︒︒+=…………8分故sin 2613,sin 2A a b B +=⨯==+sin sin 602 6.sin sin 45C c b B ︒=⨯=⨯=︒…………12分19.解:记A 表示事件:该地的1位车主购买甲种保险;B 表示事件:该地的1位车主购买乙种保险但不购买甲种保险;C 表示事件:该地的1位车主至少购买甲、乙两种保险中的1种;D 表示事件:该地的1位车主甲、乙两种保险都不购买;E 表示事件:该地的3位车主中恰有1位车主甲、乙两种保险都不购买。
(I )()0.5,()0.3,,P A P B C A B ===+ …………3分 ()()()()0.8.P C P A B P A P B =+=+= …………6分 (II ),()1()10.80.2,D C P D P C ==-=-= …………9分123()0.20.80.384.P E C =⨯⨯=…………12分(I )取AB 中点E ,连结DE ,则四边形BCDE 为矩形,DE=CB=2, 连结SE ,则, 3.SE AB SE ⊥= 又SD=1,故222ED SE SD =+, 所以DSE ∠为直角。
…………3分由,,AB DE AB SE DESE E ⊥⊥=,得AB ⊥平面SDE ,所以AB SD ⊥。
SD 与两条相交直线AB 、SE 都垂直。
所以SD ⊥平面SAB 。
…………6分(II )由AB ⊥平面SDE 知, 平面ABCD ⊥平面SED 。
作,SF DE ⊥垂足为F ,则SF ⊥平面ABCD ,3.2SD SE SF DE ⨯==作FG BC ⊥,垂足为G ,则FG=DC=1。
连结SG ,则SG BC ⊥, 又,BC FG SGFG G ⊥=,故BC ⊥平面SFG ,平面SBC ⊥平面SFG 。
…………9分作FH SG ⊥,H 为垂足,则FH ⊥平面SBC 。
37SF FG FH SG ⨯==,即F 到平面SBC 的距离为21.7由于ED//BC ,所以ED//平面SBC ,E 到平面SBC 的距离d 也有21.7设AB 与平面SBC 所成的角为α,则2121sin ,arcsin .77d EB αα===…………12分以C 为坐标原点,射线CD 为x 轴正半轴,建立如图所示的空间直角坐标系C —xyz 。
设D (1,0,0),则A (2,2,0)、B (0,2,0)。
又设(,,),0,0,0.S x y z x y z >>>则(I )(2,2,),(,2,)AS x y z BS x y z =--=-,(1,,)DS x y z =-,由||||AS BS =得222222(2)(2)(2),x y z x y z -+-+=+-+故x=1。
由22||11,DS y z =+=得 又由222||2(2)4,BS x y z =+-+=得 即2213410,,.22y z y y z +-+===故 …………3分于是133333(1,,),(1,,),(1,,)222222S AS BS =--=-, 13(0,,),0,0.22DS DS AS DS BS =⋅=⋅=故,,,DS AD DS BS AS BS S ⊥⊥=又所以SD ⊥平面SAB 。
(II )设平面SBC 的法向量(,,)a m n p =,则,,0,0.a BS a CB a BS a CB ⊥⊥⋅=⋅=又33(1,,),(0,2,0),22BS CB =-=故330,2220.m n p n ⎧-+=⎪⎨⎪=⎩…………9分取p=2得(3,0,2),(2,0,0)a AB =-=-又。
21cos ,.7||||AB a AB a AB a ⋅==⋅故AB 与平面SBC 所成的角为21arcsin.721.解:(I )2'()3636.f x x ax a =++-…………2分由(0)124,'(0)36f a f a =-=-得曲线()0y f x x ==在处的切线方程为 由此知曲线()0y f x x ==在处的切线过点(2,2)…………6分(II )由2'()02120.f x x ax a =++-=得 (i )当2121,()a f x --≤≤-时没有极小值;(ii )当2121,'()0a a f x >-<--=或时由得221221,21,x a a a x a a a =--+-=-++-故02.x x =由题设知2121 3.a a a <-++-< 当21a >-时,不等式21213a a a <-++-<无解。