初中数学竞赛辅导讲义及习题解答第14讲图第14讲图表信息问题51

合集下载

初中数学竞赛辅导资料(51)

初中数学竞赛辅导资料(51)

初中数学竞赛辅导资料(51)待定系数法甲内容提要1. 多项式恒等的定义:设f(x) 和g(x)是含相同变量x 的两个多项式,f(x)≡g(x)表示这两个多项式恒等.就是说x 在取值范围内 ,不论用什么实数值代入左右的两边,等式总是成立的.符号“≡”读作“恒等于”,也可以用等号表示恒等式. 例如:(x+3)2=x 2+6x+9, 5x 2-6x+1=(5x -1)(x -1),x 3-39x -70=(x+2)(x+5)(x -7).都是恒等式.根据恒等式定义,可求恒等式中的待定系数的值. 例如:已知:恒等式ax 2+bx+c=2(x+1)(x -2).求:①a+b+c ; ②a -b+c.解:①以x=1, 代入等式的左右两边,得a+b+c =-4.②以x=-1,代入等式的左右两边,得a -b+c =0.2. 恒等式的性质:如果两个多项式恒等,则左右两边同类项的系数相等.即 如果 a 0x n +a 1x n -1+……+a n -1x+a n = b 0x n +b 1x n -1+……+b n -1x+b n那么 a 0=b 0 , a 1=b 1, …… , a n -1=b n -1 , a n =b n .上例中又解: ∵ax 2+bx+c=2x 2-2x -4.∴a=2, b=-2, c=-4.∴a+b+c =-4, a -b+c =0.3. 待定系数法:就是先假设结论为一个含有待定系数的代数式,然后根据恒等式定义和性质,确定待定系数的值.乙例题例1. 已知:23)2)(3(22++-+=+-+-x C x B x A x x x x x 求:A ,B ,C 的值.解:去分母,得x 2-x+2=A(x -3)(x+2)+Bx(x+2)+Cx(x -3).根据恒等式定义(选择x 的适当值,可直接求出A ,B ,C 的值), 当x=0时, 2=-6A. ∴A =-31. 当x=3时, 8=15B. ∴B =158. 当x=-2时, 8=10C. ∴C =54. 本题也可以把等号右边的代数式,整理成为关于x 的二次三项式,然后用恒等式性质:“左右两边同类项的系数相等”,列出方程组来解.(见下例).例2. 把多项式x 3-x 2+2x+2表示为关于x -1的降幂排列形式.解:用待定系数法:设x 3-x 2+2x+2=a(x -1)3+b(x -1)2+c(x -1)+d把右边展开,合并同类项(把同类项对齐),得 x 3-x 2+2x+2=ax 3-3ax 2+3ax -a+bx 2-2bx+b+cx -c+d用恒等式的性质,比较同类项系数,得⎪⎪⎩⎪⎪⎨⎧=+-+-=+--=+-=2223131d c b a c b a b a a 解这个方程组,得⎪⎪⎩⎪⎪⎨⎧====4321d c b a∴x 3-x 2+2x+2=(x -1)3+2(x -1)2+3(x -1)+4.本题也可用换元法:设x -1=y, 那么x=y+1.把左边关于x 的多项式化为关于y 的多项式,最后再把y 换成x -1.例3. 已知:4x 4+ax 3+13x 2+bx+1是完全平方式.求: a 和b 的值.解:设4x 4+ax 3+13x 2+bx+1=(2x 2+mx ±1)2 (设待定的系数,要尽可能少.)右边展开,合并同类项,得4x 4+ax 3+13x 2+bx+1=4x 4+4mx 3+(m 2±4)x 2±2mx+1.比较左右两边同类项系数,得方程组⎪⎩⎪⎨⎧==+=m b m m a 213442; 或⎪⎩⎪⎨⎧-==-=m b m m a 213442. 解得⎪⎩⎪⎨⎧==⎪⎩⎪⎨⎧-==⎩⎨⎧-=-=⎩⎨⎧==172174 172174612612b a b a b a b a -或或或. 例4. 推导一元三次方程根与系数的关系.解:设方程ax 3+bx 2+cx+d=0(a ≠0)的三个根分别为x 1, x 2, x 3.原方程化为x 3+02=++ad x a c x a b . ∵x 1, x 2, x 3是方程的三个根.∴x 3+=++ad x a c x a b 2(x -x 1) (x -x 2) (x -x 3). 把右边展开,合并同类项,得x 3+=++ad x a c x a b 2=x 3-( x 1+x 2+x 3)x 2+(x 1x 2+x 1x 3+x 2x 3)x -x 1x 2x 3. 比较左右同类项的系数,得一元三次方程根与系数的关系是:x 1+x 2+x 3=-a b , x 1x 2+x 1x 3+x 2x 3=a c , x 1x 2x 3=-ad .例5. 已知:x 3+px+q 能被(x -a )2整除.求证:4p 3+27q 2=0.证明:设x 3+px+q =(x -a )2(x+b ).x 3+px+q=x 3+(b -2a)x 2+(a 2-2ab)x+a 2b. ⎪⎩⎪⎨⎧==-=-③②①q b a p ab a a b 22202由①得b=2a , 代入②和③得 ⎪⎩⎪⎨⎧=-=3223aq a p ∴4p 3+27q 2=4(-3a 2)3+27(2a 3)2=4×(-27a 6)+27×(4a 6)=0. (证毕).例6. 已知:f (x)=x 2+bx+c 是g (x)=x 4 +6x 2+25的因式,也是q (x)=3x 4+4x 2+28x+5的因式.求:f (1)的值.解:∵g (x),q (x)都能被f (x)整除,它们的和、差、倍也能被f (x)整除.为了消去四次项,设g (x)-q (x)=kf (x), (k 为正整数).即14x 2-28x+70=k (x 2+bx+c)14(x 2-2x+5)=k (x 2+bx+c)∴k=14, b=-2, c=5.即f (x)=x 2-2x+5.∴f (1)=4 .例7. 用待定系数法,求(x+y )5 的展开式解:∵展开式是五次齐次对称式,∴可设(x+y )5=a(x 5+y 5)+b(x 4y+xy 4)+c(x 3y 2+x 2y 3) (a, b, c 是待定系数.) 当 x=1,y=0时, 得a=1;当 x=1,y=1时, 得2a+2b+2c=32,即a+b+c=16当 x=-1,y=2时, 得31a -14b+4c=1.得方程组⎪⎩⎪⎨⎧=+-=++=141431161c b a c b a a解方程组,得⎪⎩⎪⎨⎧===1051c b a∴(x+y )5=x 5+5x 4y+10x 3y 2+10x 2y 3+5xy 4+y 5.丙练习511. 已知4286322+-+=++-x b x a x x x . 求a, b 的值. 2. 已知:2)1(1)2()1(534222++-+-=+-+-x C x B x A x x x x . 求:A ,B ,C 的值. 3. 已知: x 4—6x 3+13x 2-12x+4是完全平方式.求:这个代数式的算术平方根.4. 已知:ax 3+bx 2+cx+d 能被x 2+p 整除.求证:ad=bc.5. 已知:x 3-9x 2+25x+13=a(x+1)(x -2)(x -3)=b(x -1)(x -2)(x -3)=c(x -1)(x+1)(x -3)=d(x -1)(x+1)(x -2).求:a+b+c+d 的值.6. 试用待定系数法,证明一元二次方程根与系数的关系(即韦达定理).7. 用x -2的各次幂表示3x 3-10x 2+13.8. k 取什么值时,kx 2-2xy -y 2+3x -5y+2能分解为两个一次因式..9. 分解因式:①x 2+3xy+2y 24x+5y+3;②x 4+1987x 2+1986x+1987.10. 求下列展开式:① (x+y)6; ② (a+b+c)3.11. 多项式x 2y -y 2z+z 2x -x 2z+y 2x+z 2y -2xyz 因式分解的结果是( )(A) (x+y)(y -z)(x -z) . (B) (x+y)(y+z)(x -z).(C) (x -y)(y -z)(x+z). (D) (x -y)(y+z)(x+z).12. 已知( a+1)4=a 4+4a 3+6a 2+4a+1, 若S=(x -1)4+4(x -1)3+6(x -1)2+4x -3.则S 等于( )(A) (x -2)4 . (B) (x -1)4 . (C) x 4 . (D) (x+1)4.(1988年泉州市初二数学双基赛题)13. 已知:4310252323-+-++-x x x c bx x ax 的值是恒为常数求:a, b, c 的值.。

七年级数学下册培优辅导讲义(人教版)

七年级数学下册培优辅导讲义(人教版)

1第12讲 与相交有关概念及平行线的判定考点·方法·破译1.了解在平面内,两条直线的两种位置关系:相交与平行.2.掌握对顶角、邻补角、垂直、平行、内错角、中旁内角的定义,并能用图形或几何符号表示它们.3.掌握直线平行的条件,并能根据直线平行的条件说明两条直线的位置关系.经典·考题·赏析【例1】如图,三条直线AB 、CD 、EF 相交于点O ,一共构成哪几对对顶角?一共构成哪几对邻补角? 【解法指导】⑴对顶角和邻补角是两条直线所形成的图角.⑵对顶角:有一个公共顶点,并且一个角的两边是另一个角的两边的反向延长线.⑶邻补角:两个角有一条公共边,另一边互为反向延长线. 有6对对顶角. 12对邻补角.【变式题组】01.如右图所示,直线AB 、CD 、EF 相交于P 、Q 、R ,则:⑴∠ARC 的对顶角是 . 邻补角是 .⑵中有几对对顶角,几对邻补角? 02.当两条直线相交于一点时,共有2对对顶角; 当三条直线相交于一点时,共有6对对顶角; 当四条直线相交于一点时,共有12对对顶角. 问:当有100条直线相交于一点时共有 对顶角.【例2】如图所示,点O 是直线AB 上一点,OE 、OF 分别平分∠BOC 、 ∠AOC .⑴求∠EOF 的度数;⑵写出∠BOE 的余角及补角.【解法指导】解这类求角大小的问题,要根据所涉及的角的定义,以及各角的数量关系,把它们转化为代数式从而求解;【解】⑴∵OE 、OF 平分∠BOC 、∠AOC ∴∠EOC =21∠BOC ,∠FOC =21∠AOC ∴∠EOF =∠EOC +∠FOC =21∠BOC +21∠AOC =()AOC BOC ∠+∠21又∵∠BOC +∠AOC =180° ∴∠EOF =21×180°=90° ⑵∠BOE 的余角是:∠COF 、∠AOF ;∠BOE 的补角是:∠AOE .【变式题组】01.如图,已知直线AB 、CD 相交于点O ,OA 平分∠EOC ,且∠EOC =100°,则∠BOD 的度数是( )A .20°B . 40°C .50°D .80°02.(杭州)已知∠1=∠2=∠3=62°,则∠4= .【例3】如图,直线l 1、l 2相交于点O ,A 、B 分别是l 1、l 2上的点,试用三角尺完成下列作图: ⑴经过点A 画直线l 2的垂线. ⑵画出表示点B 到直线l 1的垂线段.【解法指导】垂线是一条直线,垂线段是一条线段.【变式题组】 01.P 为直线l 外一点,A 、B 、C 是直线l 上三点,且PA =4cm ,PB =5cm ,PC =6cm ,则点P 到直线l 的距离为( ) A .4cm B . 5cm C .不大于4cm D .不小于6cmABC D EF AB C DEF PQ RABCEF E A ACD O (第1题图)1 4 32 (第2题图)l 2202 如图,一辆汽车在直线形的公路AB 上由A 向B 行驶,M 、N 为位于公路两侧的村庄; ⑴设汽车行驶到路AB 上点P 的位置时距离村庄M 最近.行驶到AB 上点Q 的位置时,距离村庄N 最近,请在图中的公路上分别画出点P 、Q 的位置. ⑵当汽车从A 出发向B 行驶的过程中,在 的路上距离M 村越来越近..在 的路上距离村庄N 越来越近,而距离村庄M越来越远. 【例4】如图,直线AB 、CD 相交于点O ,OE ⊥CD ,OF ⊥AB ,∠DOF =65°,求∠BOE 和∠AOC 的度数. 【解法指导】图形的定义现可以作为判定图形的依据,也可以作为该图形具备的性质,由图可得:∠AOF =90°,OF ⊥AB .【变式题组】 01.如图,若EO ⊥AB 于O ,直线CD 过点O ,∠EOD ︰∠EOB =1︰3,求∠AOC 、∠AOE 的度数. 02.如图,O 为直线AB 上一点,∠BOC =3∠AOC ,OC 平分∠AOD . ⑴求∠AOC 的度数; ⑵试说明OD 与AB 的位置关系.03.如图,已知AB ⊥BC 于B ,DB ⊥EB 于B ,并且∠CBE ︰∠ABD =1︰2,请作出∠CBE 的对顶角,并求其度数.【例5】如图,指出下列各组角是哪两条直线被哪一条直线所截而得到的,并说出它们的名称: ∠1和∠2:∠1和∠3:∠1和∠6:∠2和∠6: ∠2和∠4: ∠3和∠5:∠3和∠4:【解法指导】正确辩认同位角、内错角、同旁内角的思路是:首先弄清所判断的是哪两个角,其次是找到这两个角公共边所在的直线即截线,其余两条边所在的直线就是被截的两条直线,最后确定它们的名称.F B A O CD E C D B A EO B ACDO A BA E DC F E BAD 1 4 2 3 6 53【变式题组】01.如图,平行直线AB 、CD 与相交直线EF ,GH 相交,图中的同旁内角共有( )A .4对B . 8对C .12对D .16对02.如图,找出图中标出的各角的同位角、内错角和同旁内角.03.如图,按各组角的位置判断错误的是( )A .∠1和∠2是同旁内角B .∠3和∠4是内错角C .∠5和∠6是同旁内角D .∠5和∠7是同旁内角【例6】如图,根据下列条件,可推得哪两条直线平行?并说明理由•⑴∠CBD =∠ADB ; ⑵∠BCD +∠ADC =180°⑶∠ACD =∠BAC【解法指导】图中有即即有同旁内角,有“ ”即有内错角.【解法指导】⑴由∠CBD =∠ADB ,可推得AD ∥BC ;根据内错角相等,两直线平行. ⑵由∠BCD +∠ADC =180°,可推得AD ∥BC ;根据同旁内角互补,两直线平行.⑶由∠ACD =∠BAC 可推得AB ∥DC ;根据内错角相等,两直线平行.【变式题组】01.如图,推理填空.⑴∵∠A =∠ (已知) ∴AC ∥ED ( ) ⑵∵∠C =∠ (已知)∴AC ∥ED ( )⑶∵∠A =∠ (已知) ∴AB ∥DF ( ) 02.如图,AD 平分∠BAC ,EF 平分∠DEC ,且∠1=∠2,试说明DE 与AB 的位置关系. 解:∵AD 是∠BAC 的平分线(已知) ∴∠BAC =2∠1(角平分线定义) 又∵EF 平分∠DEC (已知) ∴ ( ) 又∵∠1=∠2(已知) ∴ ( ) ∴AB ∥DE ( ) 03.如图,已知AE 平分∠CAB ,CE 平分∠ACD .∠CAE +∠ACE =90°,求证:AB ∥CD . ABDCHG EF7 1 5 6 8 4 1 2 乙丙 3 2 3 4 56 1 2 3 4甲 1 A B C 2 3 4 56 7 A B C DOA B D E FCABCDE A B CD EF 1 204.如图,已知∠ABC=∠ACB,BE平分∠ABC,CD平分∠ACB,∠EBF=∠EFB,求证:CD∥EF.【例7】如图⑴,平面内有六条两两不平行的直线,试证:在所有的交角中,至少有一个角小于31°.【解法指导】如图⑵,我们可以将所有的直线移动后,使它们相交于同一点,此时的图形为图⑵.证明:假设图⑵中的12个角中的每一个角都不小于31°则12×31°=372°>360°这与一周角等于360°矛盾所以这12个角中至少有一个角小于31°【变式题组】01.平面内有18条两两不平行的直线,试证:在所有的交角中至少有一个角小于11°.02.在同一平面内有2010条直线a1,a2,…,a2010,如果a1⊥a2,a2∥a3,a3⊥a4,a4∥a5……那么a1与a2010的位置关系是 .03.已知n(n>2)个点P1,P2,P3…Pn.在同一平面内没有任何三点在同一直线上,设S n表示过这几个点中的任意两个点所作的所有直线的条数,显然:S2=1,S3=3,S4=6,∴S5=10…则Sn= .演练巩固·反馈提高01.如图,∠EAC=∠ADB=90°.下列说法正确的是()A.α的余角只有∠B B.α的邻补角是∠DACC.∠ACF是α的余角D.α与∠ACF互补02.如图,已知直线AB、CD被直线EF所截,则∠EMB的同位角为()A.∠AMF B.∠BMF C.∠ENC D.∠END03.下列语句中正确的是()A.在同一平面内,一条直线只有一条垂线B.过直线上一点的直线只有一条C.过直线上一点且垂直于这条直线的直线有且只有一条D.垂线段就是点到直线的距离04.如图,∠BAC=90°,AD⊥BC于D,则下列结论中,正确的个数有()①AB⊥AC②AD与AC互相垂直③点C到AB的垂线段是线段AB④线段AB的长度是点B到AC的距离⑤垂线段BA是点B到AC的距离⑥AD >BDA.0 B. 2 C.4 D.6ABCD El1l2l3l4l5l6图⑴l1l2l3l4l5l6图⑵AEB C FDABC DFEMNα第1题图第2题图AB D C第4题图4505.点A 、B 、C 是直线l 上的三点,点P 是直线l 外一点,且PA =4cm ,PB =5cm ,PC =6cm ,则点P 到直线l 的距离是( ) A .4cm B .5cm C .小于4cm D .不大于4cm 06.将一副直角三角板按图所示的方法旋转(直角顶点重合),则∠AOB +∠DOC= .07.如图,矩形ABCD 沿EF 对折,且∠DEF =72°,则∠AEG = . 08.在同一平面内,若直线a 1∥a 2,a 2⊥a 3,a 3∥a4,…则a 1 a 10.(a 1与a 10不重合)09.如图所示,直线a 、b 被直线c 所截,现给出下列四个条件:①∠1=∠5,②∠1=∠7,③∠2+∠3=180°,④∠4=∠7,其中能判断a ∥b 的条件的序号是 .10.在同一平面内两条直线的位置关系有 .11.如图,已知BE 平分∠ABD ,DE 平分∠CDB ,且∠E =∠ABE +∠EDC .试说明AB ∥CD ?12.如图,已知BE 平分∠ABC ,CF 平分∠BCD ,∠1=∠2,那么直线AB 与CD 的位置关系如何?13.如图,推理填空:⑴∵∠A = (已知) ∴AC ∥ED ( ) ⑵∵∠2= (已知) ∴AC ∥ED ( )⑶∵∠A + =180°(已知) ∴AB ∥FD .14.如图,请你填上一个适当的条件 使AD ∥BC .ABCDOABCDEFG H abc第6题图第7题图第9题图1 2 3 4 5 6 7 81A CDEB AB C DEF12AB CD EF第14题图6培优升级·奥赛检测 01.平面图上互不重合的三条直线的交点的个数是( ) A .1,3 B .0,1,3 C .0,2,3 D .0,1,2,3 02.平面上有10条直线,其中4条是互相平行的,那么这10条直线最多能把平面分成( )部分. A .60 B . 55 C .50 D .45 03.平面上有六个点,每两点都连成一条直线,问除了原来的6个点之外,这些直线最多还有( )个交点. A .35 B . 40 C .45 D .55 04.如图,图上有6个点,作两两连线时,圆内最多有__________________交点. 05.如图是某施工队一张破损的图纸,已知a 、b 是一个角的两边,现在要在图纸上画一条与这个角的平分线平行的直线,请你帮助这个施工队画出这条平行线,并证明你的正确性. 06.平面上三条直线相互间的交点的个数是( ) A .3 B .1或3 C .1或2或3 D .不一定是1,2,3 07.请你在平面上画出6条直线(没有三条共点)使得它们中的每条直线都恰好与另三条直线相交,并简单说明画法? 08.平面上有10条直线,无任何三条交于一点,要使它们出现31个交点,怎么安排才能办到?09.如图,在一个正方体的2个面上画了两条对角线AB 、AC ,那么两条对角线的夹角等于( ) A .60° B . 75° C .90°D .135° 10.在同一平面内有9条直线如何安排才能满足下面的两个条件? ⑴任意两条直线都有交点;⑵总共有29个交点.第13讲 平行线的性质及其应用 考点·方法·破译1.掌握平行线的性质,正确理解平行线的判定与性质定理之间的区别和联系; 2.初步了解命题,命题的构成,真假命题、定理; 3.灵活运用平行线的判定和性质解决角的计算与证明,确定两直线的位置关系,感受转化思想在解决数学问题中的灵活应用.经典·考题·赏析 【例1】如图,四边形ABCD 中,AB ∥CD , BC ∥AD 求∠C 的度数. 【解法指导】两条直线平行,同位角相等; 两条直线平行,内错角相等;两条直线平行,同旁内角互补. 平行线的性质是推导角关系的重要依据之一,必须正确识别图形的特征,看清截线,识别角的关系式关键.【解】:∵AB ∥CD BC ∥AD ∴∠A +∠B =180° ∠B +∠C =180°(两条直线平行,同旁内角互补) ∴∠A =∠C ∵∠A =38° ∴∠C =38°a b AB C7【变式题组】01.如图,已知AD ∥BC ,点E 在BD 的延长线上,若∠ADE =155°,则∠DBC的度数为( ) A .155° B .50° C .45° D .25°02.(安徽)如图,直线l 1 ∥ l 2,∠1=55°,∠2=65°,则∠3为( )A . 50°B . 55°C . 60° D .65°03.如图,已知FC ∥AB ∥DE ,∠α:∠D :∠B =2: 3: 4, 试求∠α、∠D 、∠B的度数.【例2】如图,已知AB ∥CD ∥EF ,GC ⊥CF ,∠B =60°,∠EFC =45°,求∠BCG 的度数.【解法指导】平行线的性质与对顶角、邻补角、垂直和角平分线相结合,可求各种位置的角的度数,但注意看清角的位置.【解】∵AB ∥CD ∥EF ∴∠B =∠BCD ∠F =∠FCD (两条直线平行,内错角相等)又∵∠B =60° ∠EFC =45° ∴∠BCD =60° ∠FCD =45° 又∵GC ⊥CF ∴∠GCF =90°(垂直定理) ∴∠GCD =90°-45°=45° ∴∠BCG =60°-45°=15°【变式题组】01.如图,已知AF ∥BC , 且AF 平分∠EAB ,∠B =48°,则∠C 的的度数=_______________02.如图,已知∠ABC +∠ACB =120°,BO 、CO 分别∠ABC 、∠ACB ,DE 过点O 与BC 平行,则∠BOC =___________03.如图,已知AB ∥ MP ∥CD , MN 平分∠AMD ,∠A =40°,∠D =50°,求∠NMP 的度数.【例3】如图,已知∠1=∠2,∠C =∠D . 求证:∠A =∠F . 【解法指导】因果转化,综合运用.逆向思维:要证明∠A =∠F ,即要证明DF ∥AC . 要证明DF ∥AC , 即要证明∠D +∠DBC =180°, 即:∠C +∠DBC =180°;要证明∠C +∠DBC=180°即要证明DB ∥EC . 要证明DB ∥EC 即要证明∠1=∠3.证明:∵∠1=∠2,∠2=∠3(对顶角相等)所以∠1=∠3 ∴DB ∥EC (同位角相等•两直线平行)∴∠DBC +∠C =180°(两直线平行,同旁内角互补)∵∠C =∠D ∴∠DBC +∠D =180° ∴DF ∥AC (同旁内角,互补两直线平行)∴∠A =∠F (两直线平行,内错角相等) AB CDOE FAEBC (第1题图) (第2题图) E A F GDC B BA MCD N P (第3题图)CDABE F 1 328DA2 E1 B C B F E AC D 【变式题组】01.如图,已知AC ∥FG ,∠1=∠2,求证:DE ∥FG02.如图,已知∠1+∠2=180°,∠3=∠B . 求证:∠AED =∠ACB03.如图,两平面镜α、β的夹角θ,入射光线AO 平行 于β入射到α上,经两次反射后的出射光线O′B 平行 于α,则角θ等于_________. 【例4】如图,已知EG ⊥BC ,AD ⊥BC ,∠1=∠3. 求证:AD 平分∠BAC . 【解法指导】抓住题中给出的条件的目的,仔细分析 条件给我们带来的结论,对于不能直接直接得出结论 的条件,要准确把握住这些条件的意图.(题目中的: ∠1=∠3) 证明:∵EG ⊥BC ,AD ⊥BC ∴∠EGC =∠ADC =90° (垂直定义)∴EG ∥AD (同位角相等,两条直线平行) ∵∠1=∠3 ∴∠3=∠BAD (两条直线平行,内错角相等) ∴AD 平分∠BAC (角平分线定义) 【变式题组】 01.如图,若AE ⊥BC 于E ,∠1=∠2,求证:DC ⊥BC .02.如图,在△ABC 中,CE ⊥AB 于E ,DF ⊥AB 于F , AC ∥ED ,CE 平分∠ACB . 求证:∠EDF =∠BDF .AB ∥CD ,∠B =40°,CN 是∠BCE 的平分线. CM ⊥CN ,求:的度数.A D M C N EB GB 3C A 1D 2E F (第1题图) A2 C F3 E D1B(第2题图)3 1 AB G DC E9 α βP B C D A ∠P =α+β3 2 1 γ 4ψDα β E B CAFH F γ Dα β E B C AF D EBC A B C AA ′ lB ′C ′【例5】已知,如图,AB ∥EF ,求证:∠ABC +∠BCF +∠CFE =360° 【解法指导】从考虑360°这个特殊角入手展开联想,分析类比, 联想周角.构造两个“平角”或构造两组“互补”的角. 过点C 作CD ∥AB 即把已知条件AB ∥EF 联系起来,这是关键. 【证明】:过点C 作CD ∥AB ∵CD ∥AB ∴∠1+∠ABC =180° (两直线平行,同旁内角互补) 又∵AB ∥EF ,∴CD ∥EF (平行 于同一条直线的两直线平行) ∴∠2+∠CFE =180°(两直线平行, 同旁内角互补) ∴∠ABC +∠1+∠2+∠CFE =180°+180°=360° 即∠ABC +∠BCF +∠CFE =360° 【变式题组】 01.如图,已知,AB ∥CD ,分别探究下面四个图形中∠APC 和∠PAB 、∠PCD 的关系,请你从所得四个关系中选出任意一个,说明你探究的结论的正确性. 结论:⑴____________________________ ⑵____________________________ ⑶____________________________ ⑷____________________________ 【例6】如图,已知,AB ∥CD ,则∠α、∠β、∠γ、∠ψ之间的关系是 ∠α+∠γ+∠ψ-∠β=180° 【解法指导】基本图形 善于从复杂的图形中找到基本图形,运用基本图形的规律打开思路. 【解】过点E 作EH ∥AB . 过点F 作FG ∥AB . ∵AB ∥EH ∴∠α=∠1(两直线平行,内错角相等)又∵FG ∥AB ∴EH ∥FG (平行于同一条直线的两直线平行)∴∠2=∠3 又∵AB ∥CD ∴FG ∥CD (平行于同一条直线的两直线平行)∴∠ψ+∠4=180°(两直线平行,同旁内角互补)∴∠α+∠γ+∠ψ-∠β=∠1+∠3+∠4-ψ-∠1-∠2=∠4+ψ=180°【变式题组】 01.如图, AB ∥EF ,∠C =90°,则∠α、∠β、∠γ的关系是( )A . ∠β=∠α+∠γB .∠β+∠α+∠γ=180°C . ∠α+∠β-∠γ=90°D .∠β+∠γ-∠α=90° 02.如图,已知,AB ∥CD ,∠ABE 和∠CDE 的平分线相交于点F ,∠E =140°,求∠BFD 的度数.【例7】如图,平移三角形ABC ,设点A 移动到点A /,画出平移后的三角形A /B /C /.【解法指导】抓住平移作图的“四部曲”——定,找,移,连. ⑴定:确定平移的方向和距离. ⑵找:找出图形的关键点. ⑶移:过关键点作平行且相等的线段,得到关键点的对应点. ⑷连: 按原图形顺次连接对应点. 【解】①连接AA / ②过点B 作AA /的平行线l ③在l 截取BB /=AA /,则点B /就是的B 对应点,用同样的方法作出点C 的对应点C /.连接A /B /,B /C /,C /A /就得到平移后的三角形A /B /C /.B AP C A C C D A A P C B D PBPD B D ⑴ ⑵ ⑶ ⑷ FE D 2 1 AB C10西B 30° A北东 南【变式题组】01.如图,把四边形ABCD 按箭头所指的方向平移21cm ,作出平移后的图形.02.如图,三角形ABC 中,∠C =90°, BC =4,AC =4,现将△ABC 沿CB 方向平移到△A /B /C /的位置,若平移距离为3, 求△ABC与△A /B /C /的重叠部分的面积.03.原来是重叠的两个直角三角形,将其中一个三角形沿着BC 方向平移BE 的距离,就得到此图形,求阴影部分的面积.(单位:厘米)演练巩固 反馈提高01.如图,由A 测B 得方向是( )A .南偏东30°B .南偏东60°C .北偏西30°D .北偏西60°02.命题:①对顶角相等;②相等的角是对顶角;③垂直于同一条直线的两直线平行;④平行于同一条直线的两直线垂直.其中的真命题的有( ) A .1个 B .2个 C .3个 D .4个03.一个学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,两次拐弯的角度可能是( ) A .第一次向左拐30°,第二次向右拐30° B .第一次向右拐50°,第二次向左拐130°C .第一次向左拐50°,第二次向右拐130°D .第一次向左拐60°,第二次向左拐120°04.下列命题中,正确的是( )A .对顶角相等B . 同位角相等C .内错角相等D .同旁内角互补05.学习了平行线后,小敏想出过直线外一点画这条直线的平行线的新方法,是通过折一张半透明的纸得到的[如图⑴—⑷]从图中可知,小敏画平行线的依据有( )①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行. A .①② B .②③ C .③④ D .①④06.在A 、B 两座工厂之间要修建一条笔直的公路,从A 地测得B 地的走向是南偏东52°.现A 、B 两地要同时开工,若干天后,公路准确对接,则B 地所修公路的走向应该是( )A .北偏东52°B .南偏东52°C .西偏北52°D .北偏西38°B B /AA /C C /150°120°DBCE 湖07.下列几种运动中属于平移的有()①水平运输带上的砖的运动;②笔直的高诉公路上行驶的汽车的运动(忽略车轮的转动);③升降机上下做机械运动;④足球场上足球的运动.A.1种B.2种C.3种D.4种08.如图,网格中的房子图案正好处于网格右下角的位置.平移这个图案,使它正好位于左上角的位置(不能出格)09.观察图,哪个图是由图⑴平移而得到的()10.如图,AD∥BC,AB∥CD,AE⊥BC,现将△ABE进行平移. 平移方向为射线AD的方向. 平移距离为线段BC的长,则平移得到的三角形是图中()图的阴影部分.11.判断下列命题是真命题还是假命题,如果是假命题,举出一个反例.⑴对顶角是相等的角;⑵相等的角是对顶角;⑶两个锐角的和是钝角;⑷同旁内角互补,两直线平行.12.把下列命题改写成“如果……那么……”的形式,并指出命题的真假.⑴互补的角是邻补角;⑵两个锐角的和是锐角;⑶直角都相等.13.如图,在湖边修一条公路.如果第一个拐弯处∠A=120°,第二个拐弯处∠B =150°,第三个拐弯处∠C,这时道路CE恰好和道路AD平行,问∠C是多少度?并说明理由.DEAB CE DB CE D AB CED AB CEDA B C43 2 1ABE F CD 4 P 23 1A BEFC D 14.如图,一条河流两岸是平行的,当小船行驶到河中E 点时,与两岸码头B 、D 成64°角. 当小船行驶到河中F 点时,看B 点和D 点的视线FB 、FD 恰好有∠1=∠2,∠3=∠4的关系. 你能说出此时点F 与码头B 、D 所形成的角∠BFD 的度数吗?15.如图,AB ∥CD ,∠1=∠2,试说明∠E 和∠F 的关系.培优升级·奥赛检测01.如图,等边△ABC 各边都被分成五等分,这样在△ABC 内能与△DEF 完成重合的小三角形共有25个,那么在△ABC 内由△DEF 平移得到的三角形共有( )个02.如图,一足球运动员在球场上点A 处看到足球从B 点沿着BO 方向匀速滚来,运动员立即从A 处以匀速直线奔跑前去拦截足球.若足球滚动的速度与该运动员奔跑的速度相同,请标出运动员的平移方向及最快能截住足球的位置.(运动员奔跑于足球滚动视为点的平移) 03.如图,长方体的长AB =4cm ,宽BC =3cm ,高AA 1=2cm . 将AC 平移到A 1C 1的位置上时,平移的距离是___________,平移的方向是___________. 04.如图是图形的操作过程(五个矩形水平方向的边长均为a ,竖直方向的边长为b );将线段A 1A 2向右平移1个单位得到B 1B 2,得到封闭图形A 1A2B 2B 1 [即阴影部分如图⑴];将折现A 1A 2 A 3向右平移1个单位得到B 1B 2B 3,得到封闭图形A 1A 2 A 3B 3B 2B 1[即阴影部分如图⑵];⑴在图⑶中,请你类似地画出一条有两个折点的直线,同样的向右平移1个单位,从而得到1个封闭图形,并画出阴影.⑵请你分别写出上述三个阴影部分的面积S 1=________, S 2=________, S 3=________. ⑶联想与探究:如图⑷,在一矩形草地上,有一条弯曲的柏油小路(小路在任何地方的水平宽度都是1个单位),请你猜想空白部分草地面积是多少?⑶⑷CB 1AA 1C 1D 1BD. AF E B A CG D05.一位模型赛车手遥控一辆赛车,先前进一半,然后原地逆时针旋转α°(0°<α°<180°),被称为一次操作,若5次后发现赛车回到出发点,则α°角为( ) A .720° B .108°或144° C .144° D .720°或144°06.两条直线a 、b 互相平行,直线a 上顺次有10个点A 1、A 2、…、A 10,直线b上顺次有10个点B 1、B 2、…、B 9,将a 上每一点与b 上每一点相连可得线段.若没有三条线段相交于同一点,则这些选段的交点个数是( ) A .90 B .1620 C .6480 D .200607.如图,已知AB ∥CD ,∠B =100°,EF 平分∠BEC ,EG ⊥EF . 求∠BEG 和∠DEG .08.如图,AB ∥CD ,∠BAE =30°,∠DCE =60°,EF 、EG 三等分∠AEC . 问:EF 与EG 中有没有与AB 平行的直线?为什么? 09.如图,已知直线CB ∥OA ,∠C =∠OAB =100°,E 、F 在CB 上,且满足∠FOB =∠AOB ,OE 平分∠COF . ⑴求∠EOB 的度数;⑵若平行移动AB ,那么∠OBC :∠OFC 的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值.⑶在平行移动AB 的过程中,是否存在某种情况,使∠OEC =∠OBA ?若存在,求出其度数;若不存在,说明理由.10.平面上有5条直线,其中任意两条都不平行,那么在这5条直线两两相交所成的角中,至少有一个角不超过36°,请说明理由.11.如图,正方形ABCD 的边长为5,把它的对角线AC 分成n 段,以每一小段为对角线作小正方形,这n 个小正方形的周长之和为多少?12.如图将面积为a 2的小正方形和面积为b 2的大正方形放在一起,用添补法如何求出阴影部分面积?FEB AC GD 100° FE BAC O A BCD第06讲 实 数考点·方法·破译 1.平方根与立方根:若2x =a (a ≥0)则x 叫做a 的平方根,记为:a 的平方根为x =a 的平方根为xa 的算术平方根.若x 3=a ,则x 叫做a 的立方根.记为:a 的立方根为x.2.无限不循环小数叫做无理数,有理数和无理数统称实数.实数与数轴上的点一一对应.任何有理数都可以表示为分数pq(p 、q 是两个互质的整数,且q≠0)的形式. 3非负数:实数的绝对值,实数的偶次幂,非负数的算术平方根(或偶次方根)都是非负数.即a >0,2na ≥0(n 为正整数)0(a ≥0) .经典·考题·赏析【例1】若2m -4与3m -1是同一个数的平方根,求m 的值. 【解法指导】一个正数的平方根有两个,并且这两个数互为相反数.∵2m −4与3m −l 是同一个数的平方根,∴2m −4 +3m −l =0,5m =5,m =l .【变式题组】01.一个数的立方根与它的算术平方根相等,则这个数是____. 02.已知m的最大整数,则m 的平方根是____. 03____.04.如图,有一个数值转化器,当输入的x 为64时,输出的y 是____.【例2】(全国竞赛)已知非零实数a 、b 满足24242a b a -+++=,则a +b 等于( ) A .-1 B . 0 C .1 D .2有意义,∵a 、b 为非零实数,∴b 2>0∴a -3≥0a ≥3∵24242a b a -+++=∴24242a b a -+++=,∴20b +=.∴()22030b a b +=⎧⎪⎨-=⎪⎩,∴32a b =⎧⎨=-⎩,故选C .【变式题组】0l3b +=0成立,则a b =____. 02()230b -=,则ab的平方根是____. 03.(天津)若x 、y 为实数,且20x +=,则2009x y ⎛⎫⎪⎝⎭的值为( )A .1B .-1C .2D .-204.已知x1x π-的值是( )A .11π-B .11π+C .11π- D .无法确定【例3】若a 、b都为有理效,且满足1a b -=+a +b 的平方根.【解法指导】任何两个有理数的和、差、积、商(除数不为0)还是有理数,但两个无理数的和、差、积、商(除数不为0)不一定是无理数.∵1a b -+=+∴1a b -=⎧⎪=1a b -=⎧⎪=,∴1312a b =⎧⎨=⎩,a +b =12 +13=25.∴a +b的平方根为:5==±. 【变式题组】01.(西安市竞赛题)已知m 、n2)m +(3-n +7=0求m 、n .02.(希望杯试题)设x 、y 都是有理数,且满足方程(123π+)x +(132π+)y −4−π=0,则x −y =____.【例4】若a−2的整数部分,b −1是9的平方根,且a b b a -=-,求a +b 的值.【解法指导】−2=整数部分+小数部分.整数部分估算可得2,则小数部分−2 −2−4.∵a =2,b −1=±3 ,∴b =-2或4∵a b b a -=-.∴a <b ,∴a =2, b =4,即a +b =6. 【变式题组】01.若3a ,b ,则a +b 的值为____. 02a ,小数部分为ba )·b =____. 演练巩固 反馈提高 0l .下列说法正确的是( )A .-2是(-2)2的算术平方根B .3是-9的算术平方根C . 16的平方根是±4D .27的立方根是±3 02.设a =b = -2,2c =-,则a 、b 、c 的大小关系是( ) A .a <b <c B .a <c <b C . b <a <c D .c <a <b 03.下列各组数中,互为相反数的是( )A .-9与81的平方根B .4与C .4D .304.在实数1.414,,0.1•5•,π,3.1•4•( ) A .2个 B .3个 C .4个 D . 5个05.实数a 、b 在数轴上表示的位置如图所示,则( )A .b >aB .a b >C . -a <bD .-b > a06.现有四个无理数5,6,7,8,其中在2+1与3+1之间的有( )A . 1个B .2个C . 3个D .4个 07.设m 是9的平方根,n =()23.则m ,n 的关系是( )A . m =±nB .m =nC .m =-nD .m n ≠08.(烟台)如图,数轴上 A 、B 两点表示的数分别为-1和3,点B 关于点A的对称点C ,则点C 所表示的数为( )A .-23-B .-13-C .-2 +3D .l +309.点A 在数轴上和原点相距5个单位,点B 在数轴上和原点相距3个单位,且点B 在点A 左边,则A 、B 之间的距离为____. 10.用计算器探索:已知按一定规律排列的一组数:1,12,13…,119,120.如果从中选出若干个数,使它的和大于3,那么至少要选____个数. 11.对于任意不相等的两个数a 、b ,定义一种运算※如下:a ※b =a ba b+-,如3※2=3232+-=5.那么12.※4=____. 12.(长沙中考题)已知a 、b 为两个连续整数,且a <7 <b ,则a +b =____.13.对实数a 、b ,定义运算“*”,如下a *b =()()22a ba b aba b ⎧⎪⎨⎪⎩≥<,已知3*m =36,则实数m =____.14.设a 是大于1的实数.若a ,23a +,213a +在数轴上对应的点分别是A 、B 、C ,则三点在数轴上从左自右的顺序是____.15.如图,直径为1的圆与数轴有唯一的公共点P .点P 表示的实数为-1.如果该圆沿数轴正方向滚动一周后与数轴的公共点为P ′,那么点P ′所表示的数是____.16.已知整数x 、y 满足x +2y =50,求x 、y .17.已知2a −1的平方根是±3,3a +b −1的算术平方根是4,求a +b +1的立方根.18.小颖同学在电脑上做扇形滚动的游戏,如图有一圆心角为60°,半径为1个单位长的扇形放置在数轴上,当扇形在数轴上做无滑动的滚动时,当B 点恰好落在数轴上时,(1)求此时B 点所对的数;(2)求圆心O 移动的路程.19.若b 315a - 153a - +3l ,且a +11的算术平方根为m ,4b +1的立方根为n ,求(mn −2)(3mn +4)的平方根与立方根.20.若x 、y 为实数,且(x −y +1)2533x y --22x y +值.培优升级 奥赛检测 01.(荆州市八年级数学联赛试题)一个正数x 的两个平方根分别是a +1与a −3,则a 值为( )A . 2B .-1C . 1D . 0 02.x 1x -2x -( )A .0B . 12C .1D . 2 0353x +−2的最小值为____.04.设a 、b 为有理数,且a 、b 满足等式a 2+3b +33,则a +b =____. 05.若a b -=1,且3a =4b ,则在数轴上表示a 、b 两数对应点的距离为____. 06.已知实数a 满足20092010a a a --=,则a − 20092=_______.m 满足关系式3523199199x y m x y m x y x y +--+-=-+--,试确定m 的值.08.(全国联赛)若a 、b满足5b =7,S=3b ,求S 的取值范围.09.(北京市初二年级竞赛试题)已知0<a <1,并且123303030a a a ⎡⎤⎡⎤⎡⎤+++++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦2830a ⎡⎤+++⎢⎥⎣⎦2930a ⎡⎤++⎢⎥⎣⎦18=,求[10a ]的值[其中[x ]表示不超过x 的最大整数] .10.(北京竞赛试题)已知实数a 、b 、x 、y 满足y+21a =-,231x y b -=--,求22x y a b +++的值.第14讲平面直角坐标系(一)考点.方法.破译1.认识有序数对,认识平面直角坐标系.2.了解点与坐标的对应关系.3.会根据点的坐标特点,求图形的面积.经典.考题.赏析【例1】在坐标平面内描出下列各点的位置.A(2,1),B(1,2),C(-1,2),D(-2,-1),E(0,3),F(-3,0)【解法指导】从点的坐标的意义去思考,在描点时要注意点的坐标的有序性.【变式题组】01.第三象限的点P(x,y),满足|x|=5,2x+|y|=1,则点P得坐标是_____________.02.在平面直角坐标系中,如果m.n>0,那么(m, |n|)一定在____________象限.03.指出下列各点所在的象限或坐标轴.A(-3,0),B(-2,-13),C(2,12),D(0,3),E(π-3.14,3.14-π)【例2】若点P(a,b)在第四象限,则点Q(―a,b―1)在()A.第一象限B.第二象限C.第三象限D.第四象限【解法指导】∵P(a,b)在第四象限,∴a>0,b<0,∴-a<0,b-1<0,故选C.【变式题组】01.若点G(a,2-a)是第二象限的点,则a的取值范围是()A.a<0 B.a<2 C.0<a<2 B.a<0或a >202.如果点P(3x-2,2-x)在第四象限,则x的取值范围是____________.03.若点P(x,y)满足xy>0,则点P在第______________象限.04.已知点P(2a-8,2-a)是第三象限的整点,则该点的坐标为___________.【例3】已知A点与点B(-3,4)关于x轴对称,求点A关于y轴对称的点的坐标.【解法指导】关于x轴对称的点的坐标的特点:横坐标(x)相等,纵坐标(y)互为相反数,关于y轴对称的点的坐标特点:横坐标互为相反数,纵坐标(y)相等.【变式题组】01.P(-1,3)关于x轴对称的点的坐标为____________.02.P(3,-2)关于y轴对称的点的坐标为____________.03.P(a,b)关于原点对称的点的坐标为____________.04.点A(-3,2m-1) 关于原点对称的点在第四象限,则m的取值范围是____________.05.如果点M(a+b,ab)在第二象限内,那么点N(a,b) 关于y轴对称的点在第______象限.【例4】P(3,-4),则点P到x轴的距离是____________.【解法指导】P(x,y)到x轴的距离是| y|,到y轴的距离是|x|.则P到轴的距离是|-4|=4【变式题组】01.已知点P(3,5),Q(6,-5),则点P、Q到x轴的距离分别是_________,__________.P到y轴的距离是点Q到y轴的距离的________倍.02.若x轴上的点P到y轴的距离是3,则P点的坐标是__________.03.如果点B(m+1,3m-5) 到x轴的距离与它到y轴的距离相等,求m的值.04.若点(5-a,a-3)在一、三象限的角平分线上,求a的值.05.已知两点A(-3,m),B(n,4),AB∥x轴,求m的值,并确定n的取值范围.。

人教七年级上学期竞赛入门辅导讲义,共十讲,很实用

人教七年级上学期竞赛入门辅导讲义,共十讲,很实用
如1001100-2=98(能被7整除)
又如7007700-14=686,68-12=56(能被7整除)
能被11整除的数的特征:
①抹去个位数②减去原个位数③其差能被11整除
如1001100-1=99(能11整除)
又如102851028-5=1023102-3=99(能11整除)
二、例题
例1已知两个三位数328和2x9的和仍是三位数5y7且能被9整除.求x,y
第一讲数的整除
一、内容提要:
如果整数A除以整数(B≠0)所得的商A/B是整数,那么叫做A被B整除.
0能被所有非零的整数整除.
一些数的整除特征
除数
2或5
4或25
8或125
3或9
11
能被整除的数的特征
末位数能被2或5整除
末两位数能被4或25整除
末三位数能被8或125整除
各位上的数字和被3或9整除(如771,54324)
数和最犬的公约数.
6.公约数只有1的两个正整数叫做互质数(例如15与28互质).
7.在有余数的除法中,
被除数=除数×商数+余数若用字母表示可记作:
A=BQ+R,当A,B,Q,R都是整数且B≠0时,A-R能被B整除
例如23=3×7+2则23-2能被3整除.
二、例题
例1写出下列各正整数的正约数,并统计其个数,从中总结出规律加以应用:
9从1到100这100个自然数中,能同时被2和3整除的共_____个,
能被3整除但不是5的倍数的共______个.
10由1,2,3,4,5这五个自然数,任意调换位置而组成的五位数中,不
能被3整除的数共有几个?为什么?
11己知五位数1234A能被15整除,试求A的值.

2024–2025学年九年级数学暑假提升精品讲义(北师大版)第14讲 应用一元二次方程(原卷版)

2024–2025学年九年级数学暑假提升精品讲义(北师大版)第14讲 应用一元二次方程(原卷版)

第14讲应用一元二次方程模块一思维导图串知识模块二基础知识全梳理(吃透教材)模块三核心考点举一反三模块四小试牛刀过关测1.通过分析具体问题中的数量关系,建立方程模型并解决实际问题,总结运用方程解决实际问题的一般步骤;2.通过列方程解应用题,进一步提高逻辑思维能力、分析问题和解决问题的能力;知识点一、列一元二次方程解应用题的一般步骤1.利用方程解决实际问题的关键是寻找等量关系.2.解决应用题的一般步骤:审(审题目,分清已知量、未知量、等量关系等);设(设未知数,有时会用未知数表示相关的量);列(根据题目中的等量关系,列出方程);解(解方程,注意分式方程需检验,将所求量表示清晰);验(检验方程的解能否保证实际问题有意义)答(写出答案,切忌答非所问).要点:列方程解实际问题的三个重要环节:一是整体地、系统地审题;二是把握问题中的等量关系;三是正确求解方程并检验解的合理性.知识点二、一元二次方程应用题的主要类型1.平均变化率问题列一元二次方程解决增长(降低)率问题时,要理清原来数、后来数、增长率或降低率,以及增长或降低的次数之间的数量关系.如果列出的方程是一元二次方程,那么应在原数的基础上增长或降低两次.(1)增长率问题:平均增长率公式为(1)na xb +=(a 为原来数,x 为平均增长率,n 为增长次数,b 为增长后的量.)(2)降低率问题:平均降低率公式为(1)n a x b -=(a 为原来数,x 为平均降低率,n 为降低次数,b 为降低后的量.)2.数字问题(1)任何一个多位数都是由数位和数位上的数组成.数位从右至左依次分别是:个位、十位、百位、千位……,它们数位上的单位从右至左依次分别为:1、10、100、1000、……,数位上的数字只能是0、1、2、……、9之中的数,而最高位上的数不能为0.因此,任何一个多位数,都可用其各数位上的数字与其数位上的单位的积的和来表示,这也就是用多项式的形式表示了一个多位数.如:一个三位数,个位上数为a,十位上数为b,百位上数为c,则这个三位数可表示为:100c+10b+a.(2)几个连续整数中,相邻两个整数相差1.如:三个连续整数,设中间一个数为x,则另两个数分别为x-1,x+1.几个连续偶数(或奇数)中,相邻两个偶数(或奇数)相差2.如:三个连续偶数(奇数),设中间一个数为x,则另两个数分别为x-2,x+2.3.利息问题(1)概念:本金:顾客存入银行的钱叫本金.利息:银行付给顾客的酬金叫利息.本息和:本金和利息的和叫本息和.期数:存入银行的时间叫期数.利率:每个期数内的利息与本金的比叫利率.(2)公式:利息=本金×利率×期数利息税=利息×税率本金×(1+利率×期数)=本息和本金×[1+利率×期数×(1-税率)]=本息和(收利息税时)4.利润(销售)问题利润(销售)问题中常用的等量关系:利润=售价-进价(成本)总利润=每件的利润×总件数5.形积问题此类问题属于几何图形的应用问题,解决问题的关键是将不规则图形分割或组合成规则图形,根据图形的面积或体积公式,找出未知量与已知量的内在关系并列出方程.考点一:用一元二次方程解决增长率问题例1.(2023上·河南洛阳·九年级统考期中)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2020年利润为2亿元,2022年利润为2.88亿元.(1)求该企业从2020年到2022年利润的年平均增长率;(2)若2023年保持前两年利润的年平均增长率不变,该企业2023年的利润能否超过3.4亿元?为什么?【变式1-1】(2023上·广东肇庆·九年级统考期末)新能源汽车节能、环保,越来越受消费者喜爱,我国新能源汽车近几年出口量逐年增加,2021年出口量为20万台,2023年出口量增加到45万台.(1)求2021年到2023年新能源汽车出口量的年平均增长率是多少?(2)按照这个增长速度,预计2024年我国新能源汽车出口量为多少?【变式1-2】(2023上·辽宁·九年级沈阳市第七中学校联考期末)随着新能源技术的提高,新能源汽车节能、环保,越来越受消费者喜爱.沈阳某4S店新能源汽车销售量自2023年起逐月增加,据统计,该4S店1月份销售新能源汽车50辆,3月份销售了72辆.(1)求该4S店这两个月的月平均增长率;(2)若月平均增长率保持不变,求该4S店4月份卖出多少辆新能源汽车.(答案若含有小数则只取整数部分,不四舍五入)【变式1-3】(2023上·天津·九年级统考期末)为了振兴乡村经济,某村委会干部带领村民在网上直播推销农产品,八月份销售蜂蜜400瓶,九、十两月这种蜂蜜销售量持续增加,十月份的销售量达到576瓶.(1)设九、十两月的销售量的月平均增长率x,九月份销售量为______,十月份销售量为_______,(均用含x的式子表示)(2)列方程求九、十两个月的销售量月平均增长率.考点二:用一元二次方程解决传播问题例2.(2023上·新疆昌吉·九年级校考阶段练习)有一只鸡患了某种传染病,如果不加以控制,则经过两轮传染后将有81只鸡患上该种传染病.(1)求平均一只鸡传染几只鸡?(2)按此传播速度,经过3轮传染后共有多少只鸡受到传染?【变式2-1】(2023上·河北张家口·九年级统考期末)“国庆”节老同学聚会,每两个人都握一次手,所有人共握手10次,则参加聚会的人数是人.【变式2-2】(2023上·湖南湘西·九年级校考期中)随着人们生活水平的提高,节假日大家都喜欢游览观光祖国的大好河山,但一定要注意安全,特别要防止病毒的传染.我们利用学过的数学知识来解决一个关于病毒传染的问题:一个游客在旅游时,因不意防范,患上了流感,回家后,经两轮传染后有81人患上了流感,那么平均一个人传染了几个人?经过三轮传染后共有多少人患上了流感?【变式2-3】(2023上·河南南阳·六年级校考阶段练习)今年秋冬季是支原体肺炎的感染高发期,多见于5岁及以上儿童,如果外出时能够戴上口罩、做好防护,可以有效遏制支原体肺炎病毒的传染,现在,有一个人患了支原体肺炎,经过两轮传染后共有49人患了支原体肺炎(假设每个人每轮传染的人数同样多).(1)每轮传染中平均一个人传染了几个人?(2)某药房最近售出了普通医用口罩和95N 医用口罩共180盒,已知售出的普通医用口罩的盒数不少于95N 医用口罩的5倍,每盒95N 医用口罩的价格为10元,每盒普通医用口罩的价格为4元,则售出95N 医用口罩和普通医用口罩各多少盒时,总销售额最多?请说明理由.考点三:用一元二次方程解决数字问题例3.(2023上·河南信阳·九年级校联考阶段练习)读诗词解题:大江东去浪淘尽,千古风流人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位同学算得快,多少年华属周瑜?则周瑜去世时的年龄是岁.【变式3-1】(2023上·四川泸州·九年级统考期中)小明同学是一位古诗文的爱好者,在学习了一元二次方程这一章后,改编了苏轼诗词《念奴娇•赤壁怀古》:“大江东去浪淘尽,早逝英年两位数.十位恰小个位三,个位平方与寿同.哪位学子算得快,则可列方程为()A .210(3)(3)x x x +-=-B .210(3)x x x -+=C .210(3)(3)x x x ++=+D .210(3)(3)x x x ++=+【变式3-2】(2023上·河南驻马店·九年级统考阶段练习)苏轼在《念奴娇-赤壁怀古》中写道:遥想公瑾当年,小乔初嫁了,雄姿英发.羽扇纶巾,谈笑间,樯橹灰飞烟灭.根据资料,周瑜三十岁当上了东吴都督,去世时年龄是两位数,个位数比十位数大3,个位数的平方等于去世时的年龄.若设周瑜去世时年龄的十位数为x ,则根据题意可列出方程.【变式3-3】(2023上·辽宁·九年级统考期中)一个两位数的个位数字与十位数字的和为11,并且个位数字与十位数字的平方和为85,求这个两位数.考点四:用一元二次方程解决营销问题例4.(2023下·八年级课时练习)今年大德福超市以每件25元的进价购进一批商品,当商品售价为40元时,三月份销售256件,四、五月该商品十分畅销,销售量持续上涨,在售价不变的基础上,五月份的销售量达到400件.(1)求四、五这两个月销售量的月平均增长率.(2)从六月份起,商场为了减少库存,从而采用降价促销方式,经调查发现,该商品每降价1元,月销量增加5件,当商品降价多少元时,商场月获利4250元?【变式4-1】(2023上·河南商丘·九年级校联考阶段练习)2023河南省消费帮扶“土特产”产销对接专项行动在漯河市隆重开幕,此次活动以“打造‘土特产’名优品牌,赋能乡村产业振业”为主题,吸纳全省各地市的商户前来参展.某商场从展销会签订合同购进某种特产商品,每件进价为100元.经调查发现,若每件售价为150元,平均每天售出60件;当特产商品售价每降低1元时,商品平均每天可多售出3件.(1)当特产商品售价降低5元时,每天销售量可达到______件,每天盈利______元.(2)为了减少库存,当每件特产商品降价多少元时,商场通过销售这种特产商品每天可盈利3600元?【变式4-2】(2023上·广东东莞·九年级校联考期中)海战博物馆在2021年共接待游客达10万人次,预计在2023年将接待游客达12.1万人次.(1)求海战博物馆2021至2023年接待游客人次的平均增长率.(2)海战博物馆销售一款水果茶,每杯成本价为6元,若每杯定价25元,则平均每天可销售300杯,若每杯价格降低1元,则平均每天可多销售30杯,设每杯降价a 元,为了每天利润达到6300元,又能让顾客获得最大优惠,求每杯水果茶的定价.【变式4-3】(2023上·河北张家口·九年级统考期末)某商场一种商品的进价为每件30元,售价为每件40元时,每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件.①每天要想获得504元的利润,每件应降价多少元?②能不能一天获得520元的利润?请说明理由.考点五:用一元二次方程解决动态几何问题例5.(2023上·全国·九年级专题练习)如图,A 、B 、C 、D 为矩形的四个顶点,16cm 6cm AB AD ==,,动点P 、Q 分别从点A 、C 同时出发,点P 以3cm /s 的速度向点B 移动,一直到达B 为止,点Q 以2cm /s 的速度向D 移动.(1)P 、Q 两点从出发开始到几秒时,四边形PBCQ 的面积为233cm ;(2)P 、Q 两点从出发开始到几秒时,点P 和点Q 的距离是10cm .【变式5-1】(2023上·辽宁沈阳·九年级统考期末)如图,在ABC 中,5cm AB =,10cm BC =,90ABC ∠=︒,点P 从点A 开始沿AB 边向点B 以1cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm/s 的速度移动.如果点P ,Q 分别从点A ,B 同时出发,那么出发后秒时,线段PQ 的长度等于5cm .【变式5-2】(2023上·江苏无锡·九年级校考阶段练习)如图,在ABC 中6cm AB =,7cm BC =,30ABC ∠=︒点P 从A 点出发,以1cm/s 的速度向B 点移动,点Q 从B 点出发,以2cm/s 的速度向C 点移动,当一个点到达终点时,另一个点也随即停止运动.如果P 、Q 两点同时出发.请回答:(1)经过几秒后PBQ 的面积等于24cm ?(2)PBQ 的面积能否等于25cm ,并说明理由?【变式5-3】(2023上·内蒙古包头·九年级校考阶段练习)如图,ABC 中,906cm 8cm C AC BC ∠=︒==,,,动点P 从点B 出发以4cm/s 的速度向点C 移动,同时动点Q 从点C 出发以2cm/s 的速度向点A 移动,其中一点到达终点后另一点也随之停止运动,设它们的运动时间为s t .(1)运动几秒时,CPQ 为等腰三角形?(2)t 为何值时,CPQ 的面积等于ABC 面积的18?(3)在运动过程中,PQ 的长度能否为2cm ?试说明理由.考点六:用一元二次方程解决与图形有关的问题例6.(2023上·江苏南京·九年级统考期中)如图,在长40m 、宽22m 的矩形地块,修筑两条等宽且互相垂直的道路,余下的铺上草坪.要使草坪的面积是2760m ,道路的宽应为多少?【变式6-1】(2023下·黑龙江哈尔滨·八年级哈尔滨市第一一三中学校校考期中)如图,为美化庭院,某小区要利用一面墙(墙足够长),用30米长的篱笆围成一个矩形绿地,设矩形的两邻边长分别为x 米和y 米,且y x(1)请直接写出y 与x 之间的函数关系式(2)根据小区的规划要求,所修建的矩形绿地面积必须是100平方米,求矩形的两条边长各为多少米?【变式6-2】(2023上·黑龙江鸡西·九年级统考阶段练习)社区利用一块矩形空地ABCD 建了一个小型停车场,其布局如图所示.已知52m AD =,28m AB =,阴影部分设计为停车位,要铺花砖,其余部分均为宽度为x 米的道路.已知铺花砖的面积为2640m .(1)求道路的宽是多少米?(2)该停车场共有车位50个,据调查分析,当每个车位的月租金为200元时;可全部租出;若每个车位的月租金每上涨5元,就会少租出1个车位.当每个车位的月租金上涨多少元时,停车场的月租金收入为10125元【变式6-3】(2023上·云南昆明·九年级校考期中)2025年起,云南省新高考将采用“312++”新模式,改革对生物学科提出了更高的要求.云大附中星耀学校高中生物组为培养同学们观察实验现象,归纳实验规律的能力,在新校区内建立了一块矩形的生物实验田,一面利用学校的墙(墙的最大可用长度为16米),其余部分需要用总长为28米的栅栏围成,且矩形中间需用栅栏隔开,栅栏因实验需要,有两个宽为1米的门(门无需栅栏,如下图所示).设实验田的宽BC 为x 米.(1)该实验田的长AB 为多少米(用含x 的式子表示)?(2)若实验田的面积为72平方米(栅栏的占地面积忽略不计),则该实验田的宽是多少米?考点七:用一元二次方程解决工程问题例7.(2023·重庆开州·校联考一模)某工程队采用A ,B 两种设备同时对长度为3600米的公路进行施工改造.原计划A 型设备每小时铺设路面比B 型设备的2倍多30米,则30小时恰好完成改造任务.(1)求A 型设备每小时铺设的路面长度;(2)通过勘察,此工程的实际施工里程比最初的3600米多了750米.在实际施工中,B 型设备在铺路效率不变的情况下,时间比原计划增加了()25m +小时,同时,A 型设备的铺路速度比原计划每小时下降了3m 米,而使用时间增加了m 小时,求m 的值.【变式7-1】(2023上·重庆合川·九年级统考期末)2022年暑期,我区遭遇连续高温和干旱,一居民小区的部分绿化树枯死.小区物业管理公司决定补种绿化树,计划购买小叶榕和香樟共50棵进行栽种.其中小叶榕每棵680元,香樟每棵1000元,经测算,购买两种树共需38800元.(1)原计划购买小叶榕、香樟各多少棵?(2)实际购买时,经物业管理公司与商家协商,每棵小叶榕和香樟的售价均下降10m 元(10)m ≤),且两种树的售价每降低10元,物业管理公司将在原计划的基础上多购买小叶榕2棵,香樟1棵.物业管理公司实际购买的费用比原计划多3600元,求物业管理公司实际购买两种树共多少棵?【变式7-2】(2023下·八年级课时练习)由于疫情反弹,某地区开展了连续全员核酸检测,9月7日,医院派出13名医护人员到一个大型小区设置了A 、B 两个采样点进行核酸采样,当天共采样9220份,已知A 点平均每人采样720份,B 点平均每人采样700份.(1)求A 、B 两点各有多少名医护人员?(2)9月8日,医院继续派出这13名医护人员前往这个小区进行核酸采样,这天,社区组织者将附近数个商户也纳入这个小区采样范围,同时重新规划,决定从B 点抽调部分医护人员到A 点经调查发现,B 点每减少1名医护人员,人均采样量增加10份,A 点人均采样量不变,最后当天共采样9360份,求从B 点抽调了多少名医护人员到A 点?【变式7-3】(2023下·全国·八年级专题练习)为了提升干线公路美化度,相关部门拟定派一个工程队对39000米的公路进行路面“白改黑”工程.该工程队计划使用一大一小两种型号设备交替的方式施工,原计划小型设备每小时铺设路面30米,大型设备每小时铺设路面60米.(1)由于小型设备工作效率较低,该工程队计划使用大型设备的时间比使用小型设备的时间多23,当这个工程完工时,小型设备的使用时间为多少小时?(2)通过勘察、又新增了部分支线公路美化,结果此工程的实际施工里程比最初拟定的里程39000米多了9000米,于是在实际施工中,小型设备在铺设公路效率不变的情况下,使用时间比原计划增加了18m 小时,同时,因为新增的工人操作大型设备不够熟练,使得比原计划每小时下降了m 米,使用时间增加了()1502m +小时,求m 的值.考点八:用一元二次方程解决行程问题例8.(2023上·山东枣庄·九年级校联考期中)小明设计了点做圆周运动的一个动画游戏,如图所示,甲、乙两点分别从直径的两端点A 、B 以顺时针、逆时针的方向同时沿圆周运动,甲运动的路程()l cm 与时间()s t 满足关系:()213022l t t t =+≥,乙以4cm/s 的速度匀速运动,半圆的长度为21cm .(1)甲运动4s 后的路程是多少?(2)甲、乙从开始运动到第三次相遇时,它们运动了多少时间?【变式8-1】(2023上·内蒙古呼和浩特·九年级呼和浩特市实验中学校考期中)在物理中,沿着一条直线且加速度不变的运动,叫做匀变速直线运动.在此运动过程中,每个时间段的平均速度为初速度和末速度的算术平均数,路程等于时间与平均速度的乘积.若一个小球以5米/秒的速度开始向前滚动,并且均匀减速,4秒后小球停止运动.(1)小球的滚动速度平均每秒减少多少?(2)小球滚动5米用了多少秒?(精确到0.1,2 1.41≈,3 1.73≈)【变式8-2】(2023上·重庆·九年级重庆市凤鸣山中学校联考阶段练习)为鼓励广大凤中学子走向操场、走进大自然、走到阳光下,积极参加体育锻炼,初三年级某班组织同学们周末共跑沙滨路,其中,小凤和小鸣两人同时从A 地出发,匀速跑向距离12000m 处的B 地,小凤的跑步速度是小鸣跑步速度的1.2倍,那么小凤比小鸣早5分钟到达B 地.根据以上信息,解答下列问题:(1)小凤每分钟跑多少米?(2)若从A 地到达B 地后,小凤以跑步形式继续前进到C 地(整个过程不休息).据了解,从他跑步开始,前30分钟内,平均每分钟消耗热量10卡路里,超过30分钟后,每多跑步1分钟,平均每分钟消耗的热量就增加1卡路里,在整个锻炼过程中,小凤共消耗2300卡路里的热量,小凤从A 地到C 地锻炼共用多少分钟?【变式8-3】(2023下·浙江杭州·八年级统考期末)已知,一辆汽车在笔直的公路上刹车后,该车的速度(v 米/秒)与时间(t 秒)(015)t <≤之间满足一次函数关系,其图象如图所示;(1)求v 与t 之间的函数关系式;(2)已知汽车在该运动状态下,一段时间内向前滑行的距离等于这段时间内的平均速度乘以时间(该运动状态下的平均速度v =122v v +,1v 表示这段时间起始时刻的速度,2v 表示这段时间结束时刻的速度).若该车刹车后t 秒内向前滑行了378米,求t 的值.一、单选题1.(2024·云南昭通·二模)两个相邻奇数的乘积为783,若设较小的奇数为x ,则可列方程为()A .(2)783x x +=B .(21)(21)783x x +-=C .(1)783x x +=D .(2)783x x -=2.(23-24八年级下·浙江衢州·期中)《2024年春节联欢晚会》节目统计,截至2月10日2时,总台春晚全媒体累计触达142亿人次,其中“竖屏看春晚”直播播放量4.2亿次.据统计,2022年首次推出的“竖屏看春晚”累计观看2亿次,设“竖屏看春晚”次数的年平均增长率为x ,则可列出关于x 的方程为()A .()24.21142x +=B .()221 4.2x +=C .4(2122).x +=D .()24.212x -=3.(2024·浙江温州·三模)某品牌店销售一款进价为每件50元的男士短袖,若按每件80元出售,每月可销售200件.值此父亲节来临之际,该店实行降价促销.经调查发现,这款男士短袖的售价每下降1元,其销售数量就增加20件.当每件男士短袖降价多少元时,该店销售这款男士短袖的利润为8000元?设每件男士短袖降价x 元,可列出方程为()A .()()80200208000x x --=B .()()80200208000x x -+=C .()()8050200208000x x ---=D .()()8050200208000x x --+=4.(2024·四川德阳·51-的矩形叫黄金矩形,黄金矩形给我们以协调的美感,世界各国许多著名建筑为取得最佳的视觉效果,都采用了黄金矩形的设计.已知四边形ABCD 是黄金矩形.()AB BC <,点P 是边AD 上一点,则满足PB PC ⊥的点P 的个数为()A .3B .2C .1D .0二、填空题5.(2024八年级下·浙江·专题练习)某数学竞赛组,每人都必须与其他任何一位同学合照一张双人照,共照相片45张,则该组的人数是.6.(23-24八年级下·山东烟台·期中)将一些棋子按如图所示的规律摆放,若在某个图中棋子的个数恰好为160个,则这个图的序号是.7.(23-24八年级下·浙江湖州·阶段练习)“赵爽弦图”由四个全等的直角三角形围成一个大正方形,中间是小正方形(图1).在此图形中连结四条线段得到图2,记阴影部分的面积为1S ,空白部分的面积为2S ,大正方形的边长为m ,小正方形的边长为n ,若12S S =,则m n 的值为.图1图28.(23-24九年级下·江西赣州·期中)我国汉代数学家赵爽证明勾股定理时创制了一幅“勾股圆方图”,后人称之为“赵爽弦图”,它是由4个全等的直角三角形和一个小正方形组成.如图,直角三角形的直角边长为a、c=,则每个直角三角形的面积为.b,斜边长为c,若2b a-=,10三、解答题9.(23-24八年级下·浙江金华·期中)某商场销售一批衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加利润,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.(1)若每件衬衫降价5元,则商场平均每天可售出衬衫______件,每天获得的利润为______元.(2)若商场每天要获得利润1200元,请计算出每件衬衫应降价多少元?(3)商场每天要获得利润有可能达到1400元吗?若能,请求出此时每件衬衫的利润;若不能,请说明理由.10.(23-24八年级下·福建福州·阶段练习)公安部门提醒市民,骑车出行必须严格遵守“一盔一带”的规定.某头盔经销商统计了某品牌头盔4月份到6月份的销量,该品牌头盔4月份销售1500个,6月份销售2160个,且从4月份到6月份销售量的月增长率相同.(1)求该品牌头盔销售量的月增长率;(2)按照这个增长率,预计7月份该品牌头盔销售量是多少?11.(22-23八年级下·重庆北碚·期中)甲、乙两工程队合作完成某修路工程,该工程总长为4800米,原计划32小时完成.甲工程队每小时修路里程比乙工程队的2倍多30米,刚好按时完成任务.(1)求甲工程队每小时修的路面长度;(2)通过勘察,地下发现大型溶洞,此工程的实际施工里程比最初的4800米多了1000米,在实际施工中,乙工程队修路效率保持不变的情况下,时间比原计划增加了(25m +)小时;甲工程队的修路速度比原计划每小时下降了3m 米,而修路时间比原计划增加m 小时,求m 的值.12.(2024·福建龙岩·二模)运动创造美好生活!一天小美和小丽相约一起去沿河步道跑步.若两人同时从A 地出发,匀速跑向距离9000米处的B 地,小美的跑步速度是小丽跑步速度的1.2倍,那么小美比小丽早5分钟到达B 地.(1)求小美每分钟跑多少米?(2)若从A 地到达B 地后,小美以跑步形式继续前进到C 地.从小美跑步开始,前20分钟内,平均每分钟消耗热量15卡,超过20分钟后,每多跑步1分钟,平均每分钟消耗的热量就增加1卡,在整个锻炼过程中,小美共消耗1650卡的热量,小美从A 地到C 地锻炼共用多少分钟.13.(23-24八年级下·浙江杭州·期中)如图,在ABC 中,5cm AB =,6cm BC =,点P 从点A 开始沿边AB 向终点B 以1cm /s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向终点C 以2cm /s 的速度移动.如果P ,Q 分别从A ,B 同时出发,当点Q 运动到点C 时,两点停止运动.设运动时间为s t .(1)填空:BQ =_____cm ,PB =_____cm ;(用含t 的代数式表示)(2)当t 为何值时,PQ 的长度等于5cm ?(3)是否存在t 的值,使得四边形APQC 的面积等于29cm ?若存在,请求出此时t 的值;若不存在,请说明理由.14.(23-24八年级下·安徽蚌埠·期中)《劳动教育》成为一门独立的课程,我校率先行动,在校园内开辟。

七年级数学培优辅导讲义(共十讲80页)

七年级数学培优辅导讲义(共十讲80页)

第一讲有理数的巧算有理数运算是中学数学中一切运算的基础.它要求同学们在理解有理数的有关概念、法则的基础上,能根据法则、公式等正确、迅速地进行运算.不仅如此,还要善于根据题目条件,将推理与计算相结合,灵活巧妙地选择合理的简捷的算法解决问题,从而提高运算能力,发展思维的敏捷性与灵活性.1.括号的使用在代数运算中,可以根据运算法则和运算律,去掉或者添上括号,以此来改变运算的次序,使复杂的问题变得较简单.例1计算:分析中学数学中,由于负数的引入,符号“+”与“-”具有了双重涵义,它既是表示加法与减法的运算符号,也是表示正数与负数的性质符号.因此进行有理数运算时,一定要正确运用有理数的运算法则,尤其是要注意去括号时符号的变化.注意在本例中的乘除运算中,常常把小数变成分数,把带分数变成假分数,这样便于计算.例2计算下式的值:211×555+445×789+555×789+211×445.分析直接计算很麻烦,根据运算规则,添加括号改变运算次序,可使计算简单.本题可将第一、第四项和第二、第三项分别结合起来计算.解原式=(211×555+211×445)+(445×789+555×789)=211×(555+445)+(445+555)×789=211×1000+1000×789=1000×(211+789)=1 000 000.说明加括号的一般思想方法是“分组求和”,它是有理数巧算中的常用技巧.例3计算:S=1-2+3-4+…+(-1)n+1·n.分析不难看出这个算式的规律是任何相邻两项之和或为“1”或为“-1”.如果按照将第一、第二项,第三、第四项,…,分别配对的方式计算,就能得到一系列的“-1”,于是一改“去括号”的习惯,而取“添括号”之法.解 S=(1-2)+(3-4)+…+(-1)n+1·n.下面需对n的奇偶性进行讨论:当n为偶数时,上式是n/2个(-1)的和,所以有当n为奇数时,上式是(n-1)/2个(-1)的和,再加上最后一项(-1)n+1·n=n,所以有例4在数1,2,3,…,1998前添符号“+”和“-”,并依次运算,所得可能的最小非负数是多少?分析与解因为若干个整数和的奇偶性,只与奇数的个数有关,所以在1,2,3,…,1998之前任意添加符号“+”或“-”,不会改变和的奇偶性.在1,2,3,…,1998中有1998÷2个奇数,即有999个奇数,所以任意添加符号“+”或“-”之后,所得的代数和总为奇数,故最小非负数不小于1.现考虑在自然数n,n+1,n+2,n+3之间添加符号“+”或“-”,显然n-(n+1)-(n+2)+(n+3)=0.这启发我们将1,2,3,…,1998每连续四个数分为一组,再按上述规则添加符号,即(1-2-3+4)+(5-6-7+8)+…+(1993-1994-1995+1996)-1997+1998=1.所以,所求最小非负数是1.说明本例中,添括号是为了造出一系列的“零”,这种方法可使计算大大简化.2.用字母表示数我们先来计算(100+2)×(100-2)的值:(100+2)×(100-2)=100×100-2×100+2×100-4=1002-22.这是一个对具体数的运算,若用字母a代换100,用字母b代换2,上述运算过程变为(a+b)(a-b)=a2-ab+ab-b2=a2-b2.于是我们得到了一个重要的计算公式(a+b)(a-b)=a2-b2,①这个公式叫平方差公式,以后应用这个公式计算时,不必重复公式的证明过程,可直接利用该公式计算.例5计算 3001×2999的值.解 3001×2999=(3000+1)(3000-1)=30002-12=8 999 999.例6计算 103×97×10 009的值.解原式=(100+3)(100-3)(10000+9)=(1002-9)(1002+9)=1004-92=99 999 919.例7计算:分析与解直接计算繁.仔细观察,发现分母中涉及到三个连续整数:12 345,12 346,12 347.可设字母n=12 346,那么12 345=n-1,12 347=n+1,于是分母变为n2-(n-1)(n+1).应用平方差公式化简得n2-(n2-12)=n2-n2+1=1,即原式分母的值是1,所以原式=24 690.例8计算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1).分析式子中2,22,24,…每一个数都是前一个数的平方,若在(2+1)前面有一个(2-1),就可以连续递进地运用(a+b)(a-b)=a2-b2了.解原式=(2-1)(2+1)(22+1)(24+1)(28+1)×(216+1)(232+1)=(22-1)(22+1)(24+1)(28+1)(216+1)×(232+1)=(24-1)(24+1)(28+1)(216+1)(232+1)=……=(232-1)(232+1)=264-1.例9计算:分析在前面的例题中,应用过公式(a+b)(a-b)=a2-b2.这个公式也可以反着使用,即a2-b2=(a+b)(a-b).本题就是一个例子.通过以上例题可以看到,用字母表示数给我们的计算带来很大的益处.下面再看一个例题,从中可以看到用字母表示一个式子,也可使计算简化.例10计算:我们用一个字母表示它以简化计算.3.观察算式找规律例11某班20名学生的数学期末考试成绩如下,请计算他们的总分与平均分.87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88.分析与解若直接把20个数加起来,显然运算量较大,粗略地估计一下,这些数均在90上下,所以可取90为基准数,大于90的数取“正”,小于90的数取“负”,考察这20个数与90的差,这样会大大简化运算.所以总分为90×20+(-3)+1+4+(-2)+3+1+(-1)+(-3)+2+(-4)+0+2+(-2)+0+1+(-4)+(-1)+2+5+(-2)=1800-1=1799,平均分为 90+(-1)÷20=89.95.例12 计算1+3+5+7+…+1997+1999的值.分析观察发现:首先算式中,从第二项开始,后项减前项的差都等于2;其次算式中首末两项之和与距首末两项等距离的两项之和都等于2000,于是可有如下解法.解用字母S表示所求算式,即S=1+3+5+…+1997+1999.①再将S各项倒过来写为S=1999+1997+1995+…+3+1.②将①,②两式左右分别相加,得2S=(1+1999)+(3+1997)+…+(1997+3)+(1999+1)=2000+2000+…+2000+2000(500个2000)=2000×500.从而有 S=500 000.说明一般地,一列数,如果从第二项开始,后项减前项的差都相等(本题3-1=5-3=7-5=…=1999-1997,都等于2),那么,这列数的求和问题,都可以用上例中的“倒写相加”的方法解决.例13计算 1+5+52+53+…+599+5100的值.分析观察发现,上式从第二项起,每一项都是它前面一项的5倍.如果将和式各项都乘以5,所得新和式中除个别项外,其余与原和式中的项相同,于是两式相减将使差易于计算.解设S=1+5+52+…+599+5100,①所以5S=5+52+53+…+5100+5101.②②—①得4S=5101-1,说明如果一列数,从第二项起每一项与前一项之比都相等(本例中是都等于5),那么这列数的求和问题,均可用上述“错位相减”法来解决.例14 计算:分析一般情况下,分数计算是先通分.本题通分计算将很繁,所以我们不但不通分,反而利用如下一个关系式来把每一项拆成两项之差,然后再计算,这种方法叫做拆项法.解由于所以说明本例使用拆项法的目的是使总和中出现一些可以相消的相反数的项,这种方法在有理数巧算中很常用.练习一1.计算下列各式的值:(1)-1+3-5+7-9+11-…-1997+1999;(2)11+12-13-14+15+16-17-18+…+99+100;(3)1991×1999-1990×2000;(4)4726342+472 6352-472 633×472 635-472 634×472 636;(6)1+4+7+ (244)2.某小组20名同学的数学测验成绩如下,试计算他们的平均分.81,72,77,83,73,85,92,84,75,63,76,97,80,90,76,91,86,78,74,85.第二讲绝对值绝对值是初中代数中的一个基本概念,在求代数式的值、化简代数式、证明恒等式与不等式,以及求解方程与不等式时,经常会遇到含有绝对值符号的问题,同学们要学会根据绝对值的定义来解决这些问题.下面我们先复习一下有关绝对值的基本知识,然后进行例题分析.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零.即绝对值的几何意义可以借助于数轴来认识,它与距离的概念密切相关.在数轴上表示一个数的点离开原点的距离叫这个数的绝对值.结合相反数的概念可知,除零外,绝对值相等的数有两个,它们恰好互为相反数.反之,相反数的绝对值相等也成立.由此还可得到一个常用的结论:任何一个实数的绝对值是非负数.例1 a,b为实数,下列各式对吗?若不对,应附加什么条件?(1)|a+b|=|a|+|b|;(2)|ab|=|a||b|;(3)|a-b|=|b-a|;(4)若|a|=b,则a=b;(5)若|a|<|b|,则a<b;(6)若a>b,则|a|>|b|.解 (1)不对.当a,b同号或其中一个为0时成立.(2)对.(3)对.(4)不对.当a≥0时成立.(5)不对.当b>0时成立.(6)不对.当a+b>0时成立.例2设有理数a,b,c在数轴上的对应点如图1-1所示,化简|b-a|+|a+c|+|c-b|.解由图1-1可知,a>0,b<0,c<0,且有|c|>|a|>|b|>0.根据有理数加减运算的符号法则,有b-a<0,a+c<0,c-b<0.再根据绝对值的概念,得|b-a|=a-b,|a+c|=-(a+c),|c-b|=b-c.于是有原式=(a-b)-(a+c)+(b-c)=a-b-a-c+b-c=-2c.例3已知x<-3,化简:|3+|2-|1+x|||.分析这是一个含有多层绝对值符号的问题,可从里往外一层一层地去绝对值符号.解原式=|3+|2+(1+x)||(因为1+x<0)=|3+|3+x||=|3-(3+x)|(因为3+x<0)=|-x|=-x.解因为 abc≠0,所以a≠0,b≠0,c≠0.(1)当a,b,c均大于零时,原式=3;(2)当a,b,c均小于零时,原式=-3;(3)当a,b,c中有两个大于零,一个小于零时,原式=1;(4)当a,b,c中有两个小于零,一个大于零时,原式=-1.说明本例的解法是采取把a,b,c中大于零与小于零的个数分情况加以解决的,这种解法叫作分类讨论法,它在解决绝对值问题时很常用.例5若|x|=3,|y|=2,且|x-y|=y-x,求x+y的值.解因为|x-y|≥0,所以y-x≥0,y≥x.由|x|=3,|y|=2可知,x<0,即x=-3.(1)当y=2时,x+y=-1;(2)当y=-2时,x+y=-5.所以x+y的值为-1或-5.例6若a,b,c为整数,且|a-b|19+|c-a|99=1,试计算|c-a|+|a-b|+|b-c|的值.解 a,b,c均为整数,则a-b,c-a也应为整数,且|a-b|19,|c-a|99为两个非负整数,和为1,所以只能是|a-b|19=0且|c-a|99=1,①或|a-b|19=1且|c-a|99=0.②由①有a=b且c=a±1,于是|b-c|=|c-a|=1;由②有c=a且a=b±1,于是|b-c|=|a-b|=1.无论①或②都有|b-c|=1且|a-b|+|c-a|=1,所以|c-a|+|a-b|+|b-c|=2.解依相反数的意义有|x-y+3|=-|x+y-1999|.因为任何一个实数的绝对值是非负数,所以必有|x-y+3|=0且|x+y-1999|=0.即由①有x-y=-3,由②有x+y=1999.②-①得2y=2002, y=1001,所以例8 化简:|3x+1|+|2x-1|.分析本题是两个绝对值和的问题.解题的关键是如何同时去掉两个绝对值符号.若分别去掉每个绝对值符号,则是很容易的事.例如,化简|3x+1|,只要考虑3x+1的正负,即可去掉绝对值符号.这里我们为三个部分(如图1-2所示),即这样我们就可以分类讨论化简了.原式=-(3x+1)-(2x-1)=5x;原式=(3x+1)-(2x-1)=x+2;原式=(3x+1)+(2x-1)=5x.即说明解这类题目,可先求出使各个绝对值等于零的变数字母的值,即先求出各个分界点,然后在数轴上标出这些分界点,这样就将数轴分成几个部分,根据变数字母的这些取值范围分类讨论化简,这种方法又称为“零点分段法”.例9已知y=|2x+6|+|x-1|-4|x+1|,求y的最大值.分析首先使用“零点分段法”将y化简,然后在各个取值范围内求出y的最大值,再加以比较,从中选出最大者.解有三个分界点:-3,1,-1.(1)当x≤-3时,y=-(2x+6)-(x-1)+4(x+1)=x-1,由于x≤-3,所以y=x-1≤-4,y的最大值是-4.(2)当-3≤x≤-1时,y=(2x+6)-(x-1)+4(x+1)=5x+11,由于-3≤x≤-1,所以-4≤5x+11≤6,y的最大值是6.(3)当-1≤x≤1时,y=(2x+6)-(x-1)-4(x+1)=-3x+3,由于-1≤x≤1,所以0≤-3x+3≤6,y的最大值是6.(4)当x≥1时,y=(2x+6)+(x-1)-4(x+1)=-x+1,由于x≥1,所以1-x≤0,y的最大值是0.综上可知,当x=-1时,y取得最大值为6.例10设a<b<c<d,求|x-a|+|x-b|+|x-c|+|x-d|的最小值.分析本题也可用“零点分段法”讨论计算,但比较麻烦.若能利用|x-a|,|x-b|,|x-c|,|x-d|的几何意义来解题,将显得更加简捷便利.解设a,b,c,d,x在数轴上的对应点分别为A,B,C,D,X,则|x-a|表示线段AX之长,同理,|x-b|,|x-c|,|x-d|分别表示线段BX,CX,DX之长.现要求|x-a|,|x-b|,|x-c|,|x-d|之和的值最小,就是要在数轴上找一点X,使该点到A,B,C,D四点距离之和最小.因为a<b<c<d,所以A,B,C,D的排列应如图1-3所示:所以当X在B,C之间时,距离和最小,这个最小值为AD+BC,即(d-a)+(c-b).例11若2x+|4-5x|+|1-3x|+4的值恒为常数,求x该满足的条件及此常数的值.分析与解要使原式对任何数x恒为常数,则去掉绝对值符号,化简合并时,必须使含x的项相加为零,即x的系数之和为零.故本题只有2x-5x+3x=0一种情况.因此必须有|4-5x|=4-5x且|1-3x|=3x-1.故x应满足的条件是此时原式=2x+(4-5x)-(1-3x)+4=7.练习二1.x是什么实数时,下列等式成立:(1)|(x-2)+(x-4)|=|x-2|+|x-4|;(2)|(7x+6)(3x-5)|=(7x+6)(3x-5).2.化简下列各式:(2)|x+5|+|x-7|+|x+10|.3.若a+b<0,化简|a+b-1|-|3-a-b|.4.已知y=|x+3|+|x-2|-|3x-9|,求y的最大值.5.设T=|x-p|+|x-15|+|x-p-15|,其中0<p<15,对于满足p≤x≤15的x 来说,T的最小值是多少?6.已知a<b,求|x-a|+|x-b|的最小值.7.不相等的有理数a,b,c在数轴上的对应点分别为A,B,C,如果|a-b|+|b-c|=|a-c|,那么B点应为( ).(1)在A,C点的右边;(2)在A,C点的左边;(3)在A,C点之间;(4)以上三种情况都有可能.第三讲求代数式的值用具体的数代替代数式里的字母进行计算,求出代数式的值,是一个由一般到特殊的过程.具体求解代数式值的问题时,对于较简单的问题,代入直接计算并不困难,但对于较复杂的代数式,往往是先化简,然后再求值.下面结合例题初步看一看代数式求值的常用技巧.例1求下列代数式的值:分析上面两题均可直接代入求值,但会很麻烦,容易出错.我们可以利用已经学过的有关概念、法则,如合并同类项,添、去括号等,先将代数式化简,然后再求值,这样会大大提高运算的速度和结果的准确性.=0-4a3b2-a2b-5=-4×13×(- 2)2- 12×(-2)-5=-16+2-5=-19.(2)原式=3x2y-xyz+(2xyz-x2z)+4x2?[3x2y-(xyz-5x2z)]=3x2y-xyz+2xyz-x2z+4x2z-3x2y+(xyz-5x2z)=(3x2y-3x2y)+(-xyz+2xyz+xyz)+(-x2z+4x2z-5x2z)=2xyz-2x2z=2×(-1)×2×(-3)-2×(-1)2×(-3)=12+6=18.说明本例中(1)的化简是添括号,将同类项合并后,再代入求值;(2)是先去括号,然后再添括号,合并化简后,再代入求值.去、添括号时,一定要注意各项符号的变化.例2已知a-b=-1,求a3+3ab-b3的值.分析由已知条件a-b=-1,我们无法求出a,b的确定值,因此本题不能像例1那样,代入a,b的值求代数式的值.下面给出本题的五种解法.解法1由a-b=-1得a=b-1,代入所求代数式化简a3+3ab-b3=(b-1)3+3(b-1)b-b3=b3-3b2+3b-1+3b2-3b-b3=-1.说明这是用代入消元法消去a化简求值的.解法2因为a-b=-1,所以原式=(a3-b3)+3ab=(a-b)(a2+ab+b2)+3ab=-1×(a2+ab+b2)+3ab=-a2-ab-b2+3ab=-(a2-2ab+b2)=-(a-b)2=-(-1)2=-1.说明这种解法是利用了乘法公式,将原式化简求值的.解法3 因为a-b=-1,所以原式=a3-3ab(-1)-b3=a3-3ab(a-b)-b3=a3-3a2b+3ab2-b3=(a-b)3=(-1)3=-1.说明这种解法巧妙地利用了-1=a-b,并将3ab化为-3ab(-1)=-3ab(a-b),从而凑成了(a-b)3.解法4 因为a-b=-1,所以(a-b)3=(-1)3=1,即 a3+3ab2-3a2b-b3=-1,a3-b3-3ab(a-b)=-1,所以 a3-b3-3ab(-1)=-1,即 a3-b3+3ab=-1.说明这种解法是由a-b=-1,演绎推理出所求代数式的值.解法 5a3+3ab-b3=a3+3ab2-3a2b-b3-3ab2+3a2b+3ab=(a-b)3+3ab(a-b)+3ab=(-1)3+3ab(-1)+3ab=-1.说明这种解法是添项,凑出(a-b)3,然后化简求值.通过这个例题可以看出,求代数式的值的方法是很灵活的,需要认真思考,才能找到简便的算法.在本例的各种解法中,用到了几个常用的乘法公式,现总结如下:(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a-b)3=a3-3a2b+3ab2-b3;a3+b3=(a+b)(a2-ab+b2);a3-b3=(a-b)(a2+ab+b2).解由已知,xy=2(x+y),代入所求代数式中,消去xy,然后化简.所以解因为a=3b,所以c=5a=5×(3b)=15b.将a,c代入所求代数式,化简得解因为(x-5)2,|m|都是非负数,所以由(1)有由(2)得y+1=3,所以y=2.下面先化简所求代数式,然后再代入求值.=x2y+5m2x+10xy2=52×2+0+10×5×22=250例6如果4a-3b=7,并且3a+2b=19,求14a-2b的值.分析此题可以用方程组求出a,b的值,再分别代入14a-2b求值.下面介绍一种不必求出a,b的值的解法.解 14a-2b=2(7a-b)=2[(4a+3a)+(-3b+2b)]=2[(4a-3b)+(3a+2b)]=2(7+19)=52.|x|+|x-1|+|x-2|+|x-3|+|x-4|+|x-5|的值.分析所求代数式中六个绝对值的分界点,分别为:0,1,2,据绝对值的意义去掉绝对值的符号,将有3个x和3个-x,这样将抵消掉x,使求值变得容易.原式=x+(x-1)+(x-2)-(x-3)-(x-4)-(x-5)=-1-2+3+4+5=9.说明实际上,本题只要x的值在2与3之间,那么这个代数式的值就是9,即它与x具体的取值无关.例8若x:y:z=3:4:7,且2x-y+z=18,那么x+2y-z的值是多少?分析 x:y:z=3:4:7可以写成的形式,对于等比,我们通常可以设它们的比值为常数k,这样可以给问题的解决带来便利.x=3k,y=4k,z=7k.因为2x-y+z=18,所以2×3k-4k+7k=18,所以k=2,所以x=6,y=8,z=14,所以x+2y-z=6+16-14=8.例9已知x=y=11,求(xy-1)2+(x+y-2)(x+y-2xy)的值.分析本题是可直接代入求值的.下面采用换元法,先将式子改写得较简洁,然后再求值.解设x+y=m,xy=n.原式=(n-1)2+(m-2)(m-2n)=(n-1)2+m2-2m-2mn+4n=n2-2n+1+4n-2m-2mn+m2=(n+1)2-2m(n+1)+m2=(n+1-m)2=(11×11+1-22)2=(121+1-22)2=1002=10000.说明换元法是处理较复杂的代数式的常用手法,通过换元,可以使代数式的特征更加突出,从而简化了题目的表述形式.练习三1.求下列代数式的值:(1)a4+3ab-6a2b2-3ab2+4ab+6a2b-7a2b2-2a4,其中a=-2,b=1;的值.3.已知a=3.5,b=-0.8,求代数式|6-5b|-|3a-2b|-|8b-1|的值.4.已知(a+1)2-(3a2+4ab+4b2+2)=0,求 a,b的值.5.已知第四讲一元一次方程方程是中学数学中最重要的内容.最简单的方程是一元一次方程,它是进一步学习代数方程的基础,很多方程都可以通过变形化为一元一次方程来解决.本讲主要介绍一些解一元一次方程的基本方法和技巧.用等号连结两个代数式的式子叫等式.如果给等式中的文字代以任何数值,等式都成立,这种等式叫恒等式.一个等式是否是恒等式是要通过证明来确定的.如果给等式中的文字(未知数)代以某些值,等式成立,而代以其他的值,则等式不成立,这种等式叫作条件等式.条件等式也称为方程.使方程成立的未知数的值叫作方程的解.方程的解的集合,叫作方程的解集.解方程就是求出方程的解集.只含有一个未知数(又称为一元),且其次数是1的方程叫作一元一次方程.任何一个一元一次方程总可以化为ax=b(a≠0)的形式,这是一元一次方程的标准形式(最简形式).解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项,化为最简形式ax=b;(5)方程两边同除以未知数的系数,得出方程的解.一元一次方程ax=b的解由a,b的取值来确定:(2)若a=0,且b=0,方程变为0·x=0,则方程有无数多个解;(3)若a=0,且b≠0,方程变为0·x=b,则方程无解.例1解方程解法1从里到外逐级去括号.去小括号得去中括号得去大括号得解法2按照分配律由外及里去括号.去大括号得化简为去中括号得去小括号得例2已知下面两个方程3(x+2)=5x,①4x-3(a-x)=6x-7(a-x) ②有相同的解,试求a的值.分析本题解题思路是从方程①中求出x的值,代入方程②,求出a的值.解由方程①可求得3x-5x=-6,所以x=3.由已知,x=3也是方程②的解,根据方程解的定义,把x=3代入方程②时,应有4×3-3(a-3)=6×3-7(a-3),7(a-3)-3(a-3)=18-12,例3已知方程2(x+1)=3(x-1)的解为a+2,求方程2[2(x+3)-3(x-a)]=3a的解.解由方程2(x+1)=3(x-1)解得x=5.由题设知a+2=5,所以a=3.于是有2[2(x+3)-3(x-3)]=3×3,-2x=-21,例4解关于x的方程(mx-n)(m+n)=0.分析这个方程中未知数是x,m,n是可以取不同实数值的常数,因此需要讨论m,n取不同值时,方程解的情况.解把原方程化为m2x+mnx-mn-n2=0,整理得 m(m+n)x=n(m+n).当m+n≠0,且m=0时,方程无解;当m+n=0时,方程的解为一切实数.说明含有字母系数的方程,一定要注意字母的取值范围.解这类方程时,需要从方程有唯一解、无解、无数多个解三种情况进行讨论.例5解方程(a+x-b)(a-b-x)=(a2-x)(b2+x)-a2b2.分析本题将方程中的括号去掉后产生x2项,但整理化简后,可以消去x2,也就是说,原方程实际上仍是一个一元一次方程.解将原方程整理化简得(a-b)2-x2=a2b2+a2x-b2x-x2-a2b2,即 (a2-b2)x=(a-b)2.(1)当a2-b2≠0时,即a≠±b时,方程有唯一解(2)当a2-b2=0时,即a=b或a=-b时,若a-b≠0,即a≠b,即a=-b时,方程无解;若a-b=0,即a=b,方程有无数多个解.例6已知(m2-1)x2-(m+1)x+8=0是关于x的一元一次方程,求代数式199(m+x)(x-2m)+m的值.解因为(m2-1)x2-(m+1)x+8=0是关于x的一元一次方程,所以m2-1=0,即m=±1.(1)当m=1时,方程变为-2x+8=0,因此x=4,代数式的值为199(1+4)(4-2×1)+1=1991;(2)当m=-1时,原方程无解.所以所求代数式的值为1991.例7 已知关于x的方程a(2x-1)=3x-2无解,试求a的值.解将原方程变形为2ax-a=3x-2,即 (2a-3)x=a-2.由已知该方程无解,所以例8 k为何正数时,方程k2x-k2=2kx-5k的解是正数?来确定:(1)若b=0时,方程的解是零;反之,若方程ax=b的解是零,则b=0成立.(2)若ab>0时,则方程的解是正数;反之,若方程ax=b的解是正数,则ab>0成立.(3)若ab<0时,则方程的解是负数;反之,若方程ax=b的解是负数,则ab<0成立.解按未知数x整理方程得(k2-2k)x=k2-5k.要使方程的解为正数,需要(k2-2k)(k2-5k)>0.看不等式的左端(k2-2k)(k2-5k)=k2(k-2)(k-5).因为k2≥0,所以只要k>5或k<2时上式大于零,所以当k<2或k>5时,原方程的解是正数,所以k>5或0<k<2即为所求.例9若abc=1,解方程解因为abc=1,所以原方程可变形为化简整理为化简整理为说明像这种带有附加条件的方程,求解时恰当地利用附加条件可使方程的求解过程大大简化.例10若a,b,c是正数,解方程解法1原方程两边乘以abc,得到方程ab(x-a-b)+bc(x-b-c)+ac(x-c-a)=3abc.移项、合并同类项得ab[x-(a+b+c)]+bc[x-(a+b+c)]+ac[x-(a+b+c)]=0,因此有[x-(a+b+c)](ab+bc+ac)=0.因为a>0,b>0,c>0,所以ab+bc+ac≠0,所以x-(a+b+c)=0,即x=a+b+c为原方程的解.解法2将原方程右边的3移到左边变为-3,再拆为三个“-1”,并注意到其余两项做类似处理.设m=a+b+c,则原方程变形为所以即x-(a+b+c)=0.所以x=a+b+c为原方程的解.说明注意观察,巧妙变形,是产生简单优美解法所不可缺少的基本功之一.例11设n为自然数,[x]表示不超过x的最大整数,解方程:分析要解此方程,必须先去掉[ ],由于n是自然数,所以n与(n+1)…,n[x]都是整数,所以x必是整数.解根据分析,x必为整数,即x=[x],所以原方程化为合并同类项得故有所以x=n(n+1)为原方程的解.例12已知关于x的方程且a为某些自然数时,方程的解为自然数,试求自然数a的最小值.解由原方程可解得a最小,所以x应取x=160.所以所以满足题设的自然数a的最小值为2.练习四1.解下列方程:*2.解下列关于x的方程:(1)a2(x-2)-3a=x+1;4.当k取何值时,关于x的方程3(x+1)=5-kx,分别有:(1)正数解;(2)负数解;(3)不大于1的解.第五讲方程组的解法二元及多元(二元以上)一次方程组的求解,主要是通过同解变形进行消元,最终转化为一元一次方程来解决.所以,解方程组的基本思想是消元,主要的消元方法有代入消元和加减消元两种,下面结合例题予以介绍.例1解方程组解将原方程组改写为由方程②得x=6+4y,代入①化简得11y-4z=-19.④由③得2y+3z=4.⑤④×3+⑤×4得33y+8y=-57+16,所以 y=-1.将y=-1代入⑤,得z=2.将y=-1代入②,得x=2.所以为原方程组的解.说明本题解法中,由①,②消x时,采用了代入消元法;解④,⑤组成的方程组时,若用代入法消元,无论消y,还是消z,都会出现分数系数,计算较繁,而利用两个方程中z的系数是一正一负,且系数的绝对值较小,采用加减消元法较简单.解方程组消元时,是使用代入消元,还是使用加减消元,要根据方程的具体特点而定,灵活地采用各种方法与技巧,使解法简捷明快.例2解方程组解法1由①,④消x得由⑥,⑦消元,得解之得将y=2代入①得x=1.将z=3代入③得u=4.所以解法2由原方程组得所以x=5-2y=5-2(8-2z)=-11+4z=-11+4(11-2u)=33-8u=33-8(6-2x)=-15+16x,即x=-15+16x,解之得x=1.将x=1代入⑧得u=4.将u=4代入⑦得z=3.将z=3代入⑥得y=2.所以为原方程组的解.解法3①+②+③+④得x+y+z+u=10,⑤由⑤-(①+③)得y+u=6,⑥由①×2-④得4y-u=4,⑦⑥+⑦得y=2.以下略.说明解法2很好地利用了本题方程组的特点,解法简捷、流畅.例3解方程组分析与解注意到各方程中同一未知数系数的关系,可以先得到下面四个二元方程:①+②得x+u=3,⑥②+③得y+v=5,⑦③+④得z+x=7,⑧④+⑤得u+y=9.⑨又①+②+③+④+⑤得x+y+z+u+v=15.⑩⑩-⑥-⑦得z=7,把z=7代入⑧得x=0,把x=0代入⑥得u=3,把u=3代入⑨得y=6,把y=6代入⑦得v=-1.所以为原方程组的解.例4解方程组解法1①×2+②得由③得代入④得为原方程组的解.为原方程组的解.说明解法1称为整体处理法,即从整体上进行加减消元或代入消为换元法,也就是干脆引入一个新的辅助元来代替原方程组中的“整体元”,从而简化方程组的求解过程.例5已知分析与解一般想法是利用方程组求出x,y,z的值之后,代入所求的代数式计算.但本题中方程组是由三个未知数两个方程组成的,因此无法求出x,y,z的确定有限解,但我们可以利用加减消元法将原方程组变形.①-②消去x得①×3+②消去y得①×5+②×3消去z得例6已知关于x,y的方程组分别求出当a为何值时,方程组(1)有唯一一组解;(2)无解;(3)有无穷多组解.分析与一元一次方程一样,含有字母系数的一次方程组求解时也要进行讨论,一般是通过消元,归结为一元一次方程ax=b的形式进行讨论.但必须特别注意,消元时,若用含有字母的式子去乘或者去除方程的两边时,这个式子的值不能等于零.解由①得2y=(1+a)-ax,③将③代入②得(a-2)(a+1)x=(a-2)(a+2).④(1)当(a-2)(a+1)≠0,即a≠2且a≠-1时,方程④有因而原方程组有唯一一组解.(2)当(a-2)(a+1)=0且(a-2)(a+2)≠0时,即a=-1时,方程④无解,因此原方程组无解.(3)当(a-2)(a+1)=0且(a-2)(a+2)=0时,即a=2时,方程④有无穷多个解,因此原方程组有无穷多组解.例7已知关于x,y的二元一次方程(a-1)x+(a+2)y+5-2a=0,当a每取一个值时,就有一个方程,而这些方程有一个公共解,试求出这个公共解.解法1根据题意,可分别令a=1,a=-2代入原方程得到一个方程组将x=3,y=-1代入原方程得(a-1)·3+(a+2)·(-1)+5-2a=0.所以对任何a值都是原方程的解.说明取a=1为的是使方程中(a-1)x=0,方程无x项,可直接求出y值;取a=-2的道理类似.解法2可将原方程变形为a(x+y-2)-(x-2y-5)=0.由于公共解与a无关,故有例8甲、乙两人解方程组原方程的解.分析与解因为甲只看错了方程①中的a,所以甲所得到的解4×(-3)-b×(-1)=-2.③a×5+5×4=13.④解由③,④联立的方程组得所以原方程组应为练习五1.解方程组2.若x1,x2,x3,x4,x5满足方程组试确定3x4+2x5的值.3.将式子3x2+2x-5写成a(x+1)2+b(x+1)+c的形式,试求4.k为何值时,方程组有唯一一组解;无解;无穷多解?5.若方程组的解满足x+y=0,试求m的值.第六讲一次不等式(不等式组)的解法不等式和方程一样,也是代数里的一种重要模型.在概念方面,它与方程很类似,尤其重要的是不等式具有一系列基本性质,而且“数学的基本结果往往是一些不等式而不是等式”.本讲是系统学习不等式的基础.下面先介绍有关一次不等式的基本知识,然后进行例题分析.1.不等式的基本性质这里特别要强调的是在用一个不等于零的数或式子去乘(或去除)不等式时,一定要注意它与等式的类似性质上的差异,即当所乘(或除)的数或式子大于零时,不等号方向不变(性质(5));当所乘(或除)的数或式子小于零时,不等号方向要改变(性质(6)).2.区间概念在许多情况下,可以用不等式表示数集和点集.如果设a,b为实数,且a<b,那么(1)满足不等式a<x<b的数x的全体叫作一个开区间,记作(a,b).如图1-4(a).(2)满足不等式a≤x≤b的数x的全体叫作一个闭区间,记作[a,b].如图1-4(b).(3)满足不等式a<x≤b(或a≤x<b)的x的全体叫作一个半开半闭区间,记作(a,b](或[a,b)).如图1-4(c),(d).3.一次不等式的一般解法一元一次不等式像方程一样,经过移项、合并同类项、整理后,总可以写成下面的标准型:ax>b,或ax<b.为确定起见,下面仅讨论前一种形式.一元一次不等式ax>b.(3)当a=0时,用区间表示为(-∞,+∞).例1解不等式解两边同时乘以6得12(x+1)+2(x-2)≥21x-6,化简得-7x≥-14,两边同除以-7,有x≤2.所以不等式的解为x≤2,用区间表示为(-∞,2].例2求不等式的正整数解.正整数解,所以原不等式的正整数解为x=1,2,3.例3解不等式分析与解因y2+1>0,所以根据不等式的基本性质有例4解不等式为x+2>7,解为x>5.这种错误没有考虑到使原不等式有意义的条件:x≠6.解将原不等式变形为解之得所以原不等式的解为x>5且x≠6.例5已知2(x-2)-3(4x-1)=9(1-x),且y<x+9,试比较解首先解关于x的方程得x=-10.将x=-10代入不等式得y<-10+9,即y<-1.例6解关于x的不等式:解显然a≠0,将原不等式变形为3x+3-2a2>a-2ax,即(3+2a)x>(2a+3)(a-1).说明对含有字母系数的不等式的解,也要分情况讨论.例7已知a,b为实数,若不等式(2a-b)x+3a-4b<0解由(2a-b)x+3a-4b<0得(2a-b)x<4b-3a.。

初中数学竞赛辅导资料

初中数学竞赛辅导资料

初中数学比赛专题选讲识图一、内容概要1.几何学是研究物体形状、大小、地点的学科。

2.几何图形就是点,线,面,体的会合。

点是构成几何图形的基本元素。

《平面几何学》只研究在同一平面内的图形的形状、大小和互相地点。

3.几何里的点、线、面、体其实是不可以离开物体而独自存在的。

所以独自研究点、线、面、体,要靠正确的想像点:只表示地点,没有大小,不行再分。

线:只有长短,没有粗细。

线是由无数多点构成的,即“点动成线”。

面:只有长、宽,没有厚薄。

面是由无数多线构成的,“线动成面” 。

4.由于任何复杂的图形,都是由若干基本图形组合而成的,所以辨别图形的组合关系是学好几何的重要基础。

辨别图形包含静止状态的数一数,量一量,比一比,算一算;运动状态中的地点、数目的变化,图形的旋转,摺叠,割补,并合,比较等。

还要注意一般图形和特别图形的差异。

二、例题例 1. 数一数甲图中有几个角(小于平角)乙图中有几个等腰三角形丙图中有几全等三角形丁图中有几平等边三角形E A甲ADD 丙C丁乙O OCDB ABB E C解:甲图中有10 个角:∠ AOB, ∠ AOC,∠ BOC,∠BOD,∠ COD,∠ COE,∠ DOE,∠DOA,∠EOA,∠EOB.假如OA和OC成向来线,则少一个∠AOC,余类推。

乙图中有 5 个等腰三角形:△ ABC,△ ABD,△ BDC,△ BDE,△DEC 丙图中有全等三角形 4 对: ( 设 AC和 DB订交于 O)△AOB≌△ COD,△ AOD≌△ BOC,△ ABC≌△ CDA,△ BCD≌△ DAB。

边长丁图中共有等边三角形48 个:1 个单位:极点在上▲的个数有1+ 2+ 3+4+ 5= 15点在下▼的个数有1+ 2+ 3+4= 102 个位:点在上▲的个数有1+ 2+ 3+4= 10点在下▼的个数有1+ 2=33 个位:点在上▲的个数有1+ 2+ 3=64 个位:点在上▲的个数有1+ 2=35 个位:点在上▲的个数有1以上要注意数一数的律例 2.平面内有 6 个点 A A A A A A ,此中随意 3 个点都不在同向来1,2,3,4,5,6上,假如每两点都成一条,那么共有段几条假如要使形不出有4个点的两两,那么最多可成几条段画出形。

初中七年级数学竞赛培优讲义

初中七年级数学竞赛培优讲义

初中七年级数学竞赛培优讲义《初中七年级数学竞赛培优讲义》哎呀,一提到数学竞赛培优讲义,我这心里就像揣了只小兔子,怦怦直跳!为啥?因为这可真是个充满挑战又超级有趣的东西啊!你想想,数学就像一座神秘的城堡,里面藏着无数的宝藏和秘密。

而七年级的数学竞赛培优讲义,那就是打开这座城堡大门的一把神奇钥匙!我们先来说说那些有趣的几何图形吧。

三角形、四边形、圆形,它们就像是城堡里不同形状的房间。

三角形稳定得像泰山,不管怎么推怎么挤,它都稳稳当当的,难道这还不够神奇吗?四边形呢,有时候像个调皮的孩子,轻轻一拉就变形了。

圆形就更妙啦,像个超级大皮球,从哪个角度看都那么圆润可爱。

再讲讲代数部分,那些字母和数字的组合,就像是一场精彩的魔术表演。

X、Y 一会儿变大,一会儿变小,一会儿又消失不见,然后又突然冒出来,这难道不像魔术师手中的道具,让人眼花缭乱又惊喜连连?我们在课堂上,老师拿着培优讲义,就像拿着一本武功秘籍,给我们传授着一招一式。

“同学们,这道题可不容易哦,大家好好想想!”老师这么一说,大家都皱起了眉头,开始苦思冥想。

我心里想:“哼,我就不信我解不出来!”然后和同桌小声嘀咕:“你觉得从哪里入手好?”同桌挠挠头:“我也不太清楚呢,咱们再看看。

”小组讨论的时候那才热闹呢!“我觉得应该这样做。

”“不对不对,应该那样。

”大家争得面红耳赤,可谁也不服谁。

最后老师来给我们指点迷津,一下子就恍然大悟,那种感觉,就像在黑暗中突然看到了光明,别提多兴奋啦!做数学竞赛题,有时候就像爬山。

一开始觉得山坡好陡啊,怎么爬都爬不上去。

可是当你咬咬牙,坚持一下,突然就发现找到了一条小路,然后顺着这条路,一下子就爬到了山顶,那种成就感,简直无与伦比!数学竞赛培优讲义里的每一道题,都是一个小怪兽,我们就是勇敢的战士,拿着知识的武器去打败它们。

有时候会被小怪兽打得晕头转向,但是只要不放弃,总有战胜它们的时候。

经过这么长时间的学习和努力,我深深地觉得,数学竞赛培优讲义虽然难,但是它就像一个超级好玩的游戏,只要你用心去玩,就能从中获得无尽的乐趣和收获。

八年级数学竞赛辅导讲义(2021年整理)

八年级数学竞赛辅导讲义(2021年整理)

八年级数学竞赛辅导讲义(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学竞赛辅导讲义(word 版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学竞赛辅导讲义(word版可编辑修改)的全部内容。

全国初中数学联赛一全国初中数学联赛简介中国数学会所举办的全国高中数学联赛、全国初中数学联赛,以及小学数学奥林匹克,都是群众性的数学课外活动,是大众化、普及型的数学竞赛,目前,每年有12万名学生参加。

竞赛简介奖项名称:全国初中数学联合竞赛创办时间:1984年主办单位:由各省、市、自治区联合举办,轮流做庄竞赛介绍:同时,各地都提出了举行“全国初中数学联赛”的要求。

1984年,中国数学会普及工作委员会商定,委托天津市数学会举办一次初中数学邀请赛,有14个省、市、自治区参加,当时条件较简陋,准备时间也较仓促,天津数学会在南开大学数学系和天津师范大学数学系的大力支持下,极其认真负责地把这次活动搞得很成功,为后来举办“全国初中数学联赛”摸索了很多经验。

当年11月,在宁波召开的中国数学会第三次普及工作会议时,一致通过了举办“全国初中数学联赛”的决定,并详细商定了一些具体办法,规定每年四月的第一个星期天举行“全国初中数学联赛”。

会上湖北省数学会、山西省数学会、黑龙江省数学会分别主动承担了1985年、1986年、1987年的“全国初中数学联赛"承办单位,从此,“全国初中数学联赛”也形成了制度。

“全国初中数学联赛”原来不分一试、二试.为了更好地贯彻“在普及的基础上不断提高”的方针,1989年7月,在济南召开的“数学竞赛命题研讨会”上,各地的代表商定,初中联赛也分两试进行,并对一、二试各种题型的数目,以及评分标准作出明确的规定,使初中联赛的试卷走向规范化.中国数学会所举办的全国高中数学联赛、全国初中数学联赛,以及小学数学奥林匹克,都是群众性的数学课外活动,是大众化、普及型的数学竞赛,目前,每年有12万名学生参加。

超级资源:七年级数学竞赛讲义附练习及答案(12套)

超级资源:七年级数学竞赛讲义附练习及答案(12套)

七年级数学竞赛讲义附练习及答案(12套)初一数学竞赛讲座第1讲数论的方法技巧(上)数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。

数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。

因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。

任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。

”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。

数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。

主要的结论有:1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得a=bq+r (0≤r<b),且q,r是唯一的。

特别地,如果r=0,那么a=bq。

这时,a被b整除,记作b|a,也称b是a 的约数,a是b的倍数。

2.若a|c,b|c,且a,b互质,则ab|c。

3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即其中p1<p2<…<p k为质数,a1,a2,…,a k为自然数,并且这种表示是唯一的。

(1)式称为n的质因数分解或标准分解。

4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为:d(n)=(a1+1)(a2+1)…(a k+1)。

5.整数集的离散性:n 与n+1之间不再有其他整数。

因此,不等式x <y 与x ≤y-1是等价的。

下面,我们将按解数论题的方法技巧来分类讲解。

一、利用整数的各种表示法对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决。

这些常用的形式有:1.十进制表示形式:n=a n 10n +a n-110n-1+…+a 0;2.带余形式:a=bq+r ;4.2的乘方与奇数之积式:n=2m t ,其中t 为奇数。

初中数学竞赛辅导全完整版.doc

初中数学竞赛辅导全完整版.doc

第一篇 一元一次方程的讨论第一部分 基本方法1. 方程的解的定义:能使方程左右两边的值相等的未知数的值叫做方程的解。

一元方程的解也叫做根。

例如:方程 2x +6=0, x (x -1)=0, |x |=6, 0x =0, 0x =2的解 分别是: x =-3, x =0或x =1, x =±6, 所有的数,无解。

2. 关于x 的一元一次方程的解(根)的情况:化为最简方程ax =b 后, 讨论它的解:当a ≠0时,有唯一的解 x =ab; 当a =0且b ≠0时,无解;当a =0且b =0时,有无数多解。

(∵不论x 取什么值,0x =0都成立) 3. 求方程ax =b (a ≠0)的整数解、正整数解、正数解 当a |b 时,方程有整数解;当a |b ,且a 、b 同号时,方程有正整数解; 当a 、b 同号时,方程的解是正数。

综上所述,讨论一元一次方程的解,一般应先化为最简方程ax =b 第二部分 典例精析例1 a 取什么值时,方程a (a -2)x =4(a -2) ①有唯一的解?②无解? ③有无数多解?④是正数解?例2 k取什么整数值时,方程①k(x+1)=k-2(x-2)的解是整数?②(1-x)k=6的解是负整数?例3己知方程a(x-2)=b(x+1)-2a无解。

问a和b应满足什么关系?例4a、b取什么值时,方程(3x-2)a+(2x-3)b=8x-7有无数多解?第三部分典题精练1. 根据方程的解的定义,写出下列方程的解:①(x+1)=0, ②x2=9, ③|x|=9,④|x|=-3,⑤3x +1=3x -1, ⑥x +2=2+x2. 关于x 的方程ax =x +2无解,那么a __________3. 在方程a (a -3)x =a 中,当a 取值为____时,有唯一的解; 当a ___时无解;当a _____时,有无数多解; 当a ____时,解是负数。

4. k 取什么整数值时,下列等式中的x 是整数?① x =k4②x =16-k ③x =k k 32+ ④x =123+-k k5. k 取什么值时,方程x -k =6x 的解是 ①正数? ②是非负数?6. m 取什么值时,方程3(m +x )=2m -1的解 ①是零? ②是正数?7. 己知方程221463+=+-a x 的根是正数,那么a 、b 应满足什么关系?8. m 取什么整数值时,方程m m x 321)13(-=-的解是整数?9. 己知方程ax x b 231)1(2=++有无数多解,求a 、b 的值。

初中数学竞赛辅导讲义全

初中数学竞赛辅导讲义全

初中数学竞赛辅导讲义(初三)第一讲 分式的运算[知识点击]1、 分部分式:真分式化为另几个真分式的和,一般先将分母分解因式,后用待定系数法进行。

2、 综合除法:多项式除以多项式可类似于是有理数的除法运算,可列竖式来进行。

3、 分式运算:实质就是分式的通分与约分。

[例题选讲]例1.化简2312++x x + 6512++x x + 12712++x x 解:原式= )2)(1(1++x x + )3)(2(1++x x + )4)(3(1++x x = 11+x - 21+x + 21+x - 31+x + 31+x - 41+x =)4)(1(3++x x 例2. 已知 z z y x -+ = y z y x +- = x z y x ++- ,且xyz ≠0,求分式xyz x z z y y x ))()((+-+的值。

解:易知:z y x + = y z x + = x z y + =k 则⎪⎩⎪⎨⎧=+=+=+)3()2()1(kx z y ky z x kz y x (1)+(2)+(3)得:(k-2)(x+y+z)=0 k=2 或 x+y+z=0 若k=2则原式= k 3 = 8 若 x+y+z=0,则原式= k 3 =-1例3.设 12+-mx x x =1,求 12242+-x m x x 的值。

解:显然X 0≠,由已知x mx x 12+- =1 ,则 x +x 1 = m + 1 ∴ 22241x x m x +- = x2 + 21x - m2= (x +x1)2-2 –m2 =( m +1)2-2- m2= 2m -1 ∴原式=121-m 例4.已知多项式3x 3 +ax 2 +3x +1 能被x 2+1整除,求a的值。

解:13313232+++++x ax x X ax1- a=0 ∴ a=1例5:设n为正整数,求证311⨯ + 511⨯ + …… +)12)(12(1+-n n < 21 证:左边=21(1 - 31 + 31 - 51 + …… + 121-n - 121+n ) aaax ax xO x -++++1133223=21(1- 121+n ) ∵n 为正整数,∴121+n < 1 ∴1- 121+n < 1 故左边< 21[小结归纳]1、部分分式的通用公式:)(1k x x + = k 1 (x 1 - kx +1) 2、参数法是解决比例问题特别是连比问题时非常有效的方法,其优点在于设连比值为K ,将连等式化为若干个等式,把各字母用同一字母的解析式表示,从而给解题带来方便。

初中数学竞赛辅导讲义及习题解答第14讲图表信息问题

初中数学竞赛辅导讲义及习题解答第14讲图表信息问题

第十四讲图表信息问题21世纪是一个信息化的社会,从纷纷的信息中,捕获采集、办理、加工所需的信息,是新世纪对一个合格公民提出的基本要求.图表信息问题是最近几年中考浮现的新问题,即运用图象、表格及必定的文字说明供给问题情境的一类试题.图象信息题是把需要解决的问题借助图象的特点表现出来,解题时要经过对图象的解读、剖析和判断,确立图象对应的函数分析式中字母系数符号特点和隐含的数目关系,而后运用数形联合、待定系数法等方法解决问题.表格信息题是运用二维表格供给数据关系信息,解题中需经过对表中的数据信息的剖析、比较、判断和概括,弄清表中各数据所表示的含义及它们之间的内在联系,而后运用所学的方程 (组 )、不等式 (组 )及函数知识等解决问题.【例题求解】【例 1】一慢车和一快车沿同样的路线从 A 到 B 地,所行的行程与时间的函数图象如图所示,试依据图象,回答以下问题:(1) 慢车比快车早出发小时,快车追上慢车时行驶了千米,快车比慢车早小时抵达 6 地;(2) 快车追上慢车需小时,慢车、快车的速度分别为千米/时;(3)A 、 B 两地间的行程是.思路点拨对于 (2) ,设快车追上慢车需t 小时,利用快车、慢车所走的行程相等,成立t 的方程.注:股市行情走势图、期货市场趋向图、工厂产值收益表、甚而电子仪器自动记录的地震波等,它们宽泛出此刻电视、报刊、广告中,浸透到现实生活的每一角落,这些图表、图象中蕴涵着丰富的信息,我们应学会采集、整理与获取.【例 2】已知二次函数y ax2bx c 的图象如图,并设M=a b c a b c 2a b2a b ,则()A .M>0B.M=0C. M<0D.不可以确立 M 为正、为负或为0思路点拨由抛物线的地点判断 a 、b、 c 的符号,并由x 1 ,推出相应y 值的正负性.注:函数图象选择题是宽泛见于各地中考试卷中的一种常有问题,解此类问题的基本思路是:由图象大概地点确立分析式中系数符号特点,从而再判断其余图象的大概地点,在解题中常常要运用直接判断、清除挑选、分类议论、参数符合等方法.【例 3】某人租用一辆汽车由 A 城前去 B 城,沿途可能经过的城市以及经过两城市之间所1需的时间 (单位:小时 )以下图.若汽车行驶的均匀速度为 80 千米/时,而汽车每行驶千米所需要的均匀花费为 1.2 元.试指出这人从 A 城出发到 B 城的最短路线.(2003年全国初中数学比赛题)思路点拨从 A 城出发到 B 城的路线分红以下两类:(1)从 A城出发抵达 B 城,经过O 城,(2)从 A 城出发抵达 B 城,不经过 O 城.【例 4】我国东南沿海某地的风力资源丰富,一年内日均匀风速不小于 3 米/秒的时间共约 160 天,此中日均匀风速不小于 6 米/秒的时间约占60 天.为了充足利用“风能”这类“绿色能源” ,该地拟建一个小型风力发电厂,决定采用 A 、 B 两种型号的风力发电机.根据产品说日均匀风速 v/ ( 米/秒 )v<33≤ v<6v≥ 6明,这两种风力发电机在各样日发电量 A 型发电机0≥ 36≥ 150风速下的日发电量( 即一天的( 千瓦·时 ) B 型发电机0≥ 24≥ 90发电量 )如下表:依据上边的数据回答:(1) 若这个发电厂购x 台A型风力发电机,则估计这些 A 型风力发电机一年的发电总量起码为千瓦·时;(2) 已知 A 型风力发电机每台0. 3 万元, B 型风力发电机每台0. 2 万元.该发电厂拟购买风力发电机共10 台,希望购机的花费不超出2.6 万元,而建成的风力发电厂每年的发电总量许多于102000 千瓦·时,请你供给切合条件的购机方案.思路点拨对于 (1) ,注意“均匀风速不小于 3 米/秒”的时间划分;对于(2) ,利用购买花费和发电总量分别列出不等式.【例 5】一蔬菜基地栽种的某种绿色蔬菜,依据今年的市场行情,估计从 5 月 1 日起的 50天内,它的市场售价y1与上市时间x 的关系可用图 1 的一条线段表示;它的栽种成本y2与上市时间x 的关系可用图 2 抛物线的一部分来表示,假定市场售价减去栽种成本为纯收益,问哪天上市的这类绿色蔬菜既不亏本也不赚钱?思路点拨由图象供给的信息,求出直线、抛物线的分析式,利用市场售价与成本价相等建即刻间 x 的方程.注:本例综合运用一次函数和二次函数的相关知识,波及信息量大,题中体现信息的方式不单是文字和符号,还包含表格.解图象信息问题的重点是化“图象信息”为“数学信息”,详细包含:(1)读图找点;(2)看图确立系数符号特点;(3)见形 (图象形态 ) 想式 (分析式 ),建模求解.学历训练1.如图,是某出租车单程收费y (元 )与行驶行程x (千米)之间的函数关系的图象,请依据图象回答以下问题:(1) 当行驶 8 千米时,收费应为;(2)从图象上你能获取哪些正确的信息(请写出 2 条 )①;②(3) 收费 y (元 )与行驶x (千米 )(x ≥3)之间的函数关系式为..2.甲、乙两人(甲骑自行车,乙骑摩托车)从 A 城出发到 B 地旅游,如图表示甲、乙两人离开 A 城的行程与时间之间的函数图象。

八年级(下)数学竞赛班辅导讲义.docx

八年级(下)数学竞赛班辅导讲义.docx

八年级(下)数学竞赛班辅导资料(1)原班级:姓名:等腰三角形的性质( 1)【一】等腰三角形有哪些性?(1)等腰三角形两底角 ____________;(2)等腰三角形具有“三合一”的性;“三”指_____________________________________.(3)称性:等腰三角形是 ______ 称形 .A 【二】例精例 1(1)等腰三角形两个内角的度数之比1:2 ,个等腰三角形底角的度数_______________;45 或 72( 2)等腰△ ABC的三 a、 b、 c 均整数,且足 a bc b ca 24 ,的三角形共有 ___________个 . 3个例 2如,若AB=AC,BG=BH,AK=KG,∠ BAC的度数 ________________.BCHK36G例 3(2012?淮安)理解如 1,△ ABC中,沿∠ BAC的平分AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分A1B2折叠,剪掉重复部分;⋯;将余下部分沿∠B n A n C 的平分A n B n+1折叠,点B n与点 C 重合,无折叠多少次,只要最后一次恰好重合,∠BAC是△ ABC的好角.小展示了确定∠BAC是△ ABC的好角的两种情形.情形一:如2,沿等腰三角形ABC角∠ BAC的平分 AB1折叠,点 B 与点 C 重合;情形二:如3,沿∠ BAC的平分AB1折叠,剪掉重复部分;将余下部分沿∠ B1A1C的平分A1B2折叠,此点B1与点 C重合.探究(1)△ ABC中,∠ B=2∠ C,两次折叠,∠BAC是不是△ ABC的好角? ________(填“是”或“不是”).(2)小三次折叠了∠ BAC是△ ABC的好角,探究∠ B 与∠ C(不妨∠ B>∠ C)之的等量关系.根据以上内容猜想:若 n 次折叠∠ BAC是△ ABC的好角,∠ B 与∠ C(不妨∠ B>∠ C)之的等量关系_____________________ .(3)小找到一个三角形,三个角分 15°、 60°、 105°, 60°和 105°的两个角都是此三角形的好角.你完成,如果一个三角形的最小角是 4°,求出三角形另外两个角的度数,使三角形的三个角均是此三角形的好角.分析:( 1)在小丽展示的情形二中,如图3,根据根据三角形的外角定理、折叠的性质推知∠B=2∠ C;( 2)根据折叠的性质、根据三角形的外角定理知∠A1A2B2=∠ C+∠ A2B2C=2∠C;根据四边形的外角定理知∠BAC+2∠ B- 2C=180°①,根据三角形 ABC的内角和定理知∠BAC+∠ B+∠C=180°②,由①②可以求得∠B=3∠C;利用数学归纳法,根据小丽展示的三种情形得出结论:∠B=n∠ C;(3)利用( 2)的结论知∠ B=n∠ C,∠ BAC是△ ABC的好角,∠ C=n∠ A,∠ ABC是△ ABC的好角,∠ A=n∠ B,∠ BCA是△ ABC的好角;然后三角形内角和定理可以求得另外两个角的度数可以是4、 172; 8、 168; 16、160; 44、 132;88°、 88°.解答:解:(1)△ ABC中,∠ B=2∠ C,经过两次折叠,∠BAC是△ ABC的好角;理由如下:小丽展示的情形二中,如图3,∵沿∠ BAC的平分线AB1折叠,∴∠ B=∠ AA1B1;又∵将余下部分沿∠B1A1C 的平分线 A1B2折叠,此时点B1与点 C 重合,∴∠ A1B1C=∠ C;∵∠ AA1B1=∠ C+∠ A1B1C(外角定理),∴∠ B=2∠ C,∠ BAC是△ ABC的好角.故答案是:是;( 2)∠ B=3∠ C;如图所示,在△ ABC中,沿∠ BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线 A1B2折叠,剪掉重复部分,将余下部分沿∠B2A2C 的平分线 A2B3折叠,点 B2与点 C 重合,则∠ BAC是△ ABC的好角.证明如下:∵根据折叠的性质知,∠B=∠AA1B1,∠ C=∠ A2B2C,∠ A1B1C=∠A1A2B2,∴根据三角形的外角定理知,∠A1A2B2=∠ C+∠A2B2C=2∠ C;∵根据四边形的外角定理知,∠BAC+∠ B+∠ AA1B1- ∠A1 B1C=∠ BAC+2∠ B-2 ∠C=180°,根据三角形 ABC的内角和定理知,∠ BAC+∠ B+∠C=180°,∴∠ B=3∠ C;由小丽展示的情形一知,当∠B=∠ C 时,∠ BAC是△ ABC的好角;由小丽展示的情形二知,当∠B=2∠ C 时,∠ BAC是△ ABC的好角;由小丽展示的情形三知,当∠B=3∠ C 时,∠ BAC是△ ABC的好角;故若经过 n 次折叠∠ BAC是△ ABC的好角,则∠ B 与∠ C(不妨设∠ B>∠ C)之间的等量关系为∠B=n∠ C;( 3)由( 2)知设∠ A=4°,∵∠ C 是好角,∴∠ B=4n°;∵∠ A 是好角,∴∠ C=m∠B=4mn°,其中m、 n 为正整数得4+4n+4mn=180∴如果一个三角形的最小角是4°,三角形另外两个角的度数是4、172;8、168;16、160;44、132;88°、88°.点评:本题考查了翻折变换(折叠问题).解答此题时,充分利用了三角形内角和定理、三角形外角定理以及折叠的性质.难度较大.【三】练一练1.等腰三角形一腰上的高与另一腰的角36 ,等腰三角形的底角的度数___________.63 或272.如, AA、 BB 分是EAB、 DBC 的平分,若 AA BB AB,BAC 的度数_____.EA C B'B DA 'E, 且 AE=1BD.求:3.如,在△ ABC中,AC=BC,ACB 90,D 是 AC上一点,AE BD 交的延于BD是ABC的角平分 .2AED4. 某数学趣小开展了一次活,程如下:C B ∠ BAC=θ(0 °<θ< 90° ) .把小棒依次放在两射之,并使小棒两端分落在射AB, AC上.活一:如甲所示,从点A1开始,依次向右放小棒,使小棒与小棒在端点互相垂直,A1A2第 1 根小棒.数学思考:(1)小棒能无限下去?答:______. ( 填“能”或“不能” )(2)11223AA=A A =A A =1.① θ =______度;②若小棒A2n-1 A2n的度a n(n 正整数,如 A1A2=a1,A3A4=a2,⋯)求出此a2,a3的,并直接写出a n( 用含 n 的式子表示 ) .活二:如乙所示,从点A1开始,用等的小棒依次向右放,其中A1A2第 1 根小棒,且A1A2=AA1.数学思考:(3)若已放了 3 根小棒,θ1=______,θ2=______,θ3=______; ( 用含θ的式子表示 )(4)若只能放 4 根小棒,求θ的范.解:( 1)∵根据已知条件∠BAC=θ( 0°<θ< 90°)小棒两端能分落在两射上,(2)①∵ A1A2 =A2A3, A1A2⊥ A2A3,∴∠ A2A1A3=45°,∴∠ AA2A1+∠θ=45°,∵∠ AA2A1=∠ θ,∴∠ θ=22.5 °;②∵ AA=A A=AA=1,AA⊥AA∴AA=, AA=1+,112231223133又∵ A A ⊥A A ,A A ∥AA ,同理; A A ∥A A ,∴∠ A=∠AAA =∠AAA =∠AAA ,∴ AA=A A ,AA=A A 23341234345621436533455623433335235352356522+1)2∴ a =A A =AA=1+, a =AA+AA =a +A A ,∵ A A = a ,∴ a =A A =AA=a + a =(∴ a n=(+1) n-1;(3)∵ A1A2=AA1,∴∠ A1AA2=∠ AA2A1=θ,∴∠ A2A1A3=θ1=θ+θ,∴θ1=2θ同理可得:θ2 =3θ,θ3=4θ;(4)如图:∵A4A3=A4A5,∴∠ A4A3A5=∠ A4A5A3=4θ °,∵根据三角形内角和定理和等腰三角形的性质,当∠ A5A4B 是钝角或直角时,不能继续摆放小棒了,∴当∠ A4A3A5是锐角,∠ A5A4B=5θ是钝角或直角时,只能摆放 4 根小棒,∴ 5θ ≥ 90°, 4θ<90°,即,∴18°≤ θ< 22.5 °.( 1)能;(2)①∠θ =22.5 °;② a =(n-1;( 3) 2θ;3θ; 4θ;+1)n(4) 18°≤ θ< 22.5 °.本题主要考查了相似三角形的判定和性质,在解题时要注意根据题意找出规律并与相似三角形的性质相结合八年级(下)数学竞赛班辅导资料(2)原班级:姓名:等腰三角形的性质( 2)一、例题讲解:如图,已知内角度数的三个三角形,请用直尺和圆规作一条直线,把△ABC分割成两个等腰三角形.C C90°84°24°A 24°A B B36°C104°72°52°BBA C二、练一练1.如图,点 O 是等边△ ABC 内一点.将△ BOC 绕点 C 按顺时针方向旋转60°得△ ADC ,连接 OD .已知∠ AOB=110 °.(1)求证:△ COD 是等边三角形;(2)当α=150°时,试判断△ AOD 的形状,并说明理由;(3)探究:当α为多少度时,△ AOD 是等腰三角形.解:( 1)证明:∵ CO=CD ,∠ OCD=60 °,∴△ COD 是等边三角形;(3 分)(2)解:当α=150°,即∠ BOC=150 °时,△ AOD 是直角三角形.( 5 分)∵△ BOC≌△ ADC ,∴∠ ADC= ∠BOC=150 °,又∵△ COD 是等边三角形,∴∠ODC=60 °,∴∠ ADO=90 °,即△ AOD 是直角三角形;( 7 分)(3)解:①要使 AO=AD ,需∠ AOD= ∠ ADO .∵∠ AOD=360 °﹣∠ AOB ﹣∠ COD ﹣α=360 °﹣ 110°﹣ 60°﹣α=190°﹣α,∠ ADO= α﹣ 60°,∴190°﹣α=α﹣ 60°,∴ α=125°;②要使 OA=OD ,需∠ OAD= ∠ ADO .∵∠ AOD=190 °﹣α,∠ ADO= α﹣ 60°,∴∠ OAD=180 °﹣(∠ AOD+ ∠ADO )=50 °,∴α﹣ 60°=50 °,∴ α=110°;③要使 OD=AD ,需∠ OAD= ∠ AOD .∵190°﹣α=50 °,∴α=140 °.综上所述:当α的度数为125°,或 110°,或 140°时,△ AOD 是等腰三角形.(12 分)点评:本题以“空间与图形”中的核心知识(如等边三角形的性质、全等三角形的性质与证明、直角三角形的判定、多边形内角和等)为载体,内容由浅入深,层层递进.试题中几何演绎推理的难度适宜,蕴含着丰富的思想方法(如运动变化、数形结合、分类讨论、方程思想等),能较好地考查学生的推理、探究及解决问题的能力2.( 2014?宁波)课本的作业题中有这样一道题:把一张顶角为36°的等腰三角形纸片剪两刀,分成 3 张小纸片,使每张小纸片都是等腰三角形,你能办到吗?请画示意图说明剪法.我们有多少种剪法,图 1 是其中的一种方法:定义:如果两条线段将一个三角形分成 3 个等腰三角形,我们把这两条线段叫做这个三角形的三分线.( 1)请你在图 2 中用两种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(若两种方法分得的三角形成 3 对全等三角形,则视为同一种)( 2)△ ABC 中,∠B=30 °,AD 和 DE 是△ ABC 的三分线,点 D 在 BC 边上,点 E 在 AC 边上,且 AD=BD ,DE=CE ,设∠ C=x °,试画出示意图,并求出 x 所有可能的值;(3)如图 3,△ ABC 中, AC=2 , BC=3 ,∠ C=2 ∠B ,请画出△ ABC 的三分线,并求出三分线的长.考点:相似形综合题;图形的剪拼分析:( 1) 45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形,则易得一种情况.第二种情形可以考虑题例中给出的方法,试着同样以一底角作为新等腰三角形的底角,则另一底脚被分为45°和 22.5°,再以 22.5°分别作为等腰三角形的底角或顶角,易得其中作为底角时所得的三个三角形恰都为等腰三角形.即又一三分线作法.( 2)用量角器,直尺标准作30°角,而后确定一边为BA ,一边为 BC,根据题意可以先固定BA 的长,而后可确定 D 点,再标准作图实验﹣﹣分别考虑 AD 为等腰三角形的腰或者底边,兼顾 AEC 在同一直线上,易得 2 种三角形 ABC .根据图形易得 x 的值.(3)因为∠ C=2∠ B ,作∠ C 的角平分线,则可得第一个等腰三角形.而后借用圆规,以边长画弧,根据交点,寻找是否存在三分线,易得如图 4 图形为三分线.则可根据外角等于内角之和及腰相等等情况列出等量关系,求解方程可知各线的长.解答:解:( 1)如图 2 作图,(2)如图 3 ①、②作△ ABC .①当 AD=AE 时,∵2x+x=30+30 ,∴ x=20 .②当 AD=DE 时,∵30+30+2x+x=180 ,∴ x=40 .( 3)如图 4, CD、 AE 就是所求的三分线.设∠ B=a,则∠ DCB= ∠ DCA= ∠ EAC=a ,∠ ADE= ∠ AED=2a ,此时△ AEC ∽△ BDC ,△ ACD ∽△ ABC ,设 AE=AD=x ,BD=CD=y ,∵△ AEC ∽△ BDC ,∴ x: y=2: 3,∵△ ACD ∽△ ABC ,∴ 2:x= ( x+y ): 2,x : y 2 :3,即三分线长分别是和.所以联立得方程组,解得2 : x( x y) :2点评:本题考查了学生学习的理解能力及动手创新能力,知识方面重点考查三角形内角、外角间的关系及等腰三角形知识,是一道很锻炼学生能力的题目.八年级(下)数学竞赛班辅导资料(3)原班级:姓名:等腰三角形的判定( 1)一、知识要点1.等腰三角形的判定方法:(1)两 _____相等的三角形是等腰三角形.简称__________________ ;( 2)两 _____相等的三角形是等腰三角形.简称______________________ .2.解题技巧:构造等腰三角形,进而利用等腰三角形的性质为解题服务,常用方法有:( 1)“角平分线+平行线”构造等腰三角形;(2)“角平分线+垂线”构造等腰三角形;( 3)用“垂直平分线”构造等腰三角形;(4)用“三角形中角的 2 倍关系”构造等腰三角形.3.等腰三角形中长作的辅助线:(1)底边上的高;(2)底边上的中线;(3)顶角的平分线.二、例题精讲例 1 在△ ABC中 AB=AC ,∠ BAC=80°, O为△ ABC内一点,且∠ OBC=10°,∠ OCA=20° .求∠ BAO的度数.A70°OB C例 2 如图,在△ ABC中, AB=7, AC=11,点 M是 BC的中点, AD是∠ BAC的平分线, MF∥ AD,求 FC的长 .A9FB D M C三、练一练1.如图,已知 Rt △ ABC中,∠ C=90°,∠ BAC=30°,在直线 BC或 AC上取一点 P,使得△ PAB是等腰三角形,则符合条件的P 点有()C AA.2个B.4个C.6个D.8个2. 如图,△ ABC中, AD平分∠ BAC,AB+BD=AC,求B : C 的值. 2:1A B CB D C2. 如图,在△ ABC 中,BAC BCA44 ,M为△ABC内一点,使得MCA 30 , MAC 16 .求BMC 的度数.(北京市竞赛题)150°BMA C八年级(下)数学竞赛班辅导资料(4)原班级:姓名:等腰三角形的判定( 2)一、例题精讲两个全等的含 30°, 60°角的三角板 ADE 和三角板 ABC 如图所示放置, E, A ,C 三点在一条直线上,连接 BD ,取 BD 的中点 M ,连接 ME , MC .试判断△ EMC 的形状,并说明理由.解:△ EMC 是等腰直角三角形.理由如下:连接MA .∵∠ EAD=30 °,∠ BAC=60 °,∴∠ DAB=90 °,∵△ EDA ≌△ CAB ,∴ DA=AB , ED=AC ,∴△ DAB 是等腰直角三角形.又∵M 为 BD 的中点,∴∠MDA= ∠ MBA=45 °, AM ⊥ BD (三线合一),1AM=BD=MD ,(直角三角形斜边上的中线等于斜边的一半)∴∠EDM= ∠ MAC=105 °,2在△ MDE 和△ CAM 中, ED=AC ,∠ MDE= ∠ CAM ,MD=AM ,∴△ MDE ≌△ MAC .∴∠ DME= ∠ AMC ,ME=MC ,又∵∠ DMA=90 °,∴∠ EMC= ∠ EMA+ ∠ AMC= ∠ EMA+ ∠ DME= ∠DMA=90 °.∴△ MEC 是等腰直角三角形.二、练一练1.如图 (1), Rt△ABC 中,∠ ACB=-90 °, CD ⊥AB ,垂足为 D. AF 平分∠ CAB ,交 CD 于点 E,交 CB 于点F(1)求证: CE=CF.(2)将图( 1)中的△ AD E 沿 AB 向右平移到△ A’D ’E’的位置,使点 E’落在 BC 边上,其它条件不变,如图( 2)所示.试猜想: BE'与 CF 有怎样的数量关系 ?请证明你的结论.( 1)证明:略( 2)解:相等证明:如图,过点 E 作 EG⊥ AC 于 G.又∵AF 平分∠ CAB , ED⊥ AB ,∴ ED=EG .由平移的性质可知:D’E’=DE ,∴ D’E’=GE .∵∠ ACB=90 °.∴∠ ACD+ ∠DCB=90 °[来源:Z|xx|]∵CD⊥AB 于 D.∴∠ B+ ∠ DCB=90 °.∴ ∠ ACD= ∠ B在 Rt△ CEG 与 Rt△ BE’D’中,∵∠ GCE= ∠ B ,∠ CGE= ∠BD ’E’, CE=D ’E’∴△ C EG≌△BE ’D’∴ CE=BE ’由( 1)可知 CE=CF, (其它证法可参照给分 ).2.如图,已知△BAD 和△ BCE 均为等腰直角三角形,∠BAD= ∠ BCE=90 °,点 M 为 DE 的中点,过点E 与 AD 平行的直线交射线AM 于点 N.( 1)当 A , B, C 三点在同一直线上时(如图1),求证: M 为 AN 的中点;( 2)将图 1 中的△ BCE 绕点 B 旋转,当 A ,B , E 三点在同一直线上时(如图 2),求证:△ ACN 为等腰直角三角形;(3)将图 1 中△ BCE 绕点 B 旋转到图 3 位置时,( 2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.DMA B图 3C(1 )证明:如图1,∵EN∥ AD ,∴∠ MAD= ∠MNE ,∠ ADM= ∠NEM .∵点 M 为 DE 的中点,∴ DM=EM .在△ ADM 和△ NEM 中,∴.∴△ ADM ≌△ NEM .∴ AM=MN .∴ M 为 AN 的中点.( 2)证明:如图2,∵△ BAD 和△ BCE 均为等腰直角三角形,∴AB=AD , CB=CE ,∠ CBE= ∠ CEB=45 °.∵AD ∥ NE,∴∠ DAE+ ∠ NEA=180 °.∵∠ DAE=90 °,∴∠ NEA=90 °.∴∠ NEC=135 °.∵A , B, E 三点在同一直线上,∴∠ ABC=180 °﹣∠ CBE=135 °.∴∠ ABC= ∠ NEC .∵△ ADM ≌△ NEM (已证),∴ AD=NE .∵ AD=AB ,∴ AB=NE .在△ ABC 和△ NEC 中,∴△ ABC ≌△ NEC .∴ AC=NC ,∠ ACB= ∠ NCE.∴∠ ACN= ∠ BCE=90 °.∴△ ACN 为等腰直角三角形.( 3)△ ACN 仍为等腰直角三角形.证明:如图3,此时 A 、 B、 N 三点在同一条直线上.∵AD ∥ EN,∠ DAB=90 °,∴∠ ENA= ∠ DAN=90 °.∵∠ BCE=90 °,∴∠ CBN+ ∠ CEN=360 °﹣ 90°﹣ 90°=180 °.∵ A 、 B、 N 三点在同一条直线上,∴∠ABC+ ∠ CBN=180 °.∴∠ ABC= ∠ NEC .∵△ ADM ≌△ NEM (已证),∴ AD=NE .∵AD=AB ,∴ AB=NE .在△ ABC 和△ NEC 中,N E∴△ ABC ≌△ NEC .∴ AC=NC ,∠ ACB= ∠ NCE.∴∠ ACN= ∠ BCE=90 °.八年级(下)数学竞赛班辅导资料(5)原班级:姓名:等边三角形( 1)一、知识要点1.等边三角形的性质:( 1)三边相等,三角相等,每个角等于60°;( 2)每条边上的高线、中线、所对角的平分线互相重合.简称“” ;( 3)等边三角形内任意一点到三边距离和是一个定值,等于一边上的高.2.判定等边三角形的基本方法:( 1)从边入手,证明三边相等;(2)从角入手,证明三角相等或证明两个角都为60°;(3)从边角入手,有一个角为 60°的等腰三角形是等边三角形.二、例题精讲如图,△ ABC 中,∠ B=60 °,延长 BC 到 D,延长 BA 到 E,使 AE=BD ,连 CE、DE,若 CE=DE .求证:△ ABC 是等边三角形.EAB C D三、练一练1.如图,一个六边形的每个角都是120°,连续四边的长依次是 2.7, 3,5,2,则该六边形的周长是____. 20.72.如图, P 是等边△ ABC 内部一点,∠ APB 、∠ BPC 、∠ CPA的大小之比是 5:6:7,则以 PA、PB、PC 为边的三角形的三个角的大小之比(从小到大)是______________.2:3:4A5232.7PB C3.(2013?北京)在△ ABC 中, AB=AC ,∠ BAC= α( 0°<α<60°),将线段 BC 绕点 B 逆时针旋转 60°得到线段 BD.(1)如图 1,直接写出∠ ABD 的大小(用含α的式子表示);(2)如图 2,∠ BCE=150 °,∠ ABE=60 °,判断△ABE 的形状并加以证明;(3)在( 2)的条件下,连接 DE,若∠ DEC=45 °,求α的值.解:( 1)∵ AB=AC ,∠ A= α,∴∠ ABC= ∠ ACB=(180°﹣∠ A)=90°﹣α,∵∠ ABD= ∠ ABC ﹣∠ DBC ,∠ DBC=60 °,即∠ ABD=30 °﹣α;( 2)△ ABE 是等边三角形,证明:连接AD , CD ,ED,∵∠ ABE=60 °,∴∠ ABD=60 °﹣∠ DBE= ∠ EBC=30 °﹣α,且△BCD为等边三角形,在△ ABD 与△ ACD 中∴△ ABD≌△ ACD,∴∠ BAD=∠ CAD=∠ BAC=α,∵∠ BCE=150 °,∴∠ BEC=180 °﹣( 30°﹣α)﹣150°=α=∠ BAD,在△ABD 和△EBC 中∴△ ABD ≌△ EBC,∴ AB=BE ,∴△ ABE 是等边三角形;(3)∵∠ BCD=60 °,∠ BCE=150 °,∴∠ DCE=150 °﹣ 60°=90 °,∵∠ DEC=45 °,∴△ DEC 为等腰直角三角形,∴DC=CE=BC ,∵∠ BCE=150 °,∴∠ EBC=(180°﹣150°)=15°,∵∠ EBC=30 °﹣α=15°,∴ α=30°.4.【探究发现】如图 1,△ ABC 是等边三角形,∠ AEF=60 °, EF 交等边三角形外角平分线 CF 所在的直线于点F,当点 E 是 BC 的中点时,有 AE=EF 成立;【数学思考】某数学兴趣小组在探究AE 、EF 的关系时,运用“从特殊到一般”的数学思想,通过验证得出如下结论:当点 E 是直线 BC 上( B ,C 除外)任意一点时(其它条件不变),结论AE=EF仍然成立.假如你是该兴趣小组中的一员,请你从“点 E 是线段 BC 上的任意一点”;“点E时线段BC延长线上的任意一点”;“点 E 时线段 BC 反向延长线上的任意一点”三种情况中,任选一种情况,在图 2 中画出图形,并证明 AE=EF .解答:证明:如图一,在 B 上截取 AG ,使 AG=EC ,连接 EG,∵△ ABC 是等边三角形,∴AB=BC ,∠ B=∠ ACB=60 °.∵ AG=EC ,∴ BG=BE ,∴△ BEG 是等边三角形,∠BGE=60 °,∴∠ AGE=120 °.∵ FC 是外角的平分线,∠ECF=120 °=∠ AGE .∵∠ AEC 是△ ABE 的外角,∴∠AEC= ∠ B+ ∠GAE=60 °+∠GAE .∵∠ AEC= ∠ AEF+ ∠ FEC=60 °+∠ FEC,∴∠ GAE= ∠FEC.在△AGE 和△ECF 中,∴△ AGE ≌△ ECF( ASA ),∴ AE=EF ;八年级(下)数学竞赛班辅导资料(6)原班级:姓名:等边三角形( 2)1.背景:某外学小在一次学研中,得到如下两个命:①如 1,在正三角形 ABC中,M、N分是 AC、AB 上的点, BM与 CN相交于点 O,若∠ BON=60°, BM=CN.②如 2,在正方形 ABCD中, M、N 分是 CD、AD上的点, BM与 CN相交于点 O,若∠ BON=90°, BM=CN.然后运用比的思想提出了如下的命:③如 3,在正五形 ABCDE中, M、N 分是 CD、 DE上的点, BM与 CN相交于点 O,若∠ BON=108°,BM=CN.任要求:(1)你从①、②、③三个命中一个行明;(2)你完成下面的探索:①如 4,在正 n( n≥ 3)形 ABCDEF⋯中, M、N分是 CD、DE上的点, BM与 CN相交于点 O,当∠ BON 等于多少度,BM=CN成立?(不要求明)②如 5,在五形ABCDE中, M、 N 分是 DE、 AE上的点, BM与 CN相交于点 O,当∠ BON=108° ,BM=CN是否成立?若成立,予明;若不成立,明理由.解:( 1)命①明:在 1 中,∵∠ BON=60°,∴∠ CBM+∠ BCN=60°,∵∠ BCN+∠ACN=60°,∴∠ CBM=∠ ACN,又∵ BC=CA,∠ BCM=∠ CAN=60°,∴△ BCM≌△ CAN,∴ BM=CN,命②,明:在 2 中,∵∠ BON=90°,∴∠ CBM+∠ BCN=90°,∵∠ BCN+∠DCN=90°,∴∠ CBM=∠ DCN,又∵ BC=CD,∠ BCM=∠ CDN=90°,∴△ BCM≌△ CDN,∴ BM=CN,命③ 明:在 3 中,∵∠ BON=108°,∴∠ CBM+∠BCN=108°,∵∠ BCN+∠DCN=108°,∴∠ CBM=∠ DCN,又∵ BC=CD,∠ BCM=∠ CDN=108°,∴△ BCM≌△ CDN,∴ BM=CN;( 2)①当∠ BON=,BM=CN成立,② BM=CN成立,明:如5, BD、CE,在△ BCD和△ CDE中,∵ BC=CD,∠ BCD=∠ CDE=108°,CD=DE,∴△ BCD≌△ CDE,∴ BD=CE,∠ BDC=∠ CED,∠ DBC=∠ ECD,∵∠ OBC+∠ OCB=108°,∠ OCB+∠ OCD=108°,∴∠ MBC=∠ NCD,又∵∠ DBC=∠ ECD=36°,∴∠ DBM=∠ ECN,∴△ BDM≌△ ECN。

中考培优竞赛专题经典讲义第14讲数学基本方法之等积法

中考培优竞赛专题经典讲义第14讲数学基本方法之等积法


A
B
D
C
答案: AD= 2.4.
例题 2、如图, E 是边长为 1 的正方形 ABCD 的对角线上一点,且 BE =BC,P 为 CE 上任意一点, PQ⊥ BC
于点 Q, PR⊥ BE 于点 R,则 PQ+ PR 的值为
.
A
D
E R
P
B
QC
答案:
2 .
2
【解析】连接 BP,易知 S△BEC = S△BEP + S△BCP ,所以 1 · BE· CM = 1 · BE· PR+ 1 · BC· PQ,由 BC
例题 3 如图,正方形 ABCD 的边长为 1,点 P 为边 BC 上任意一点(可与 B 点或 C 点重合),分别过 B、
C、 D 作射线 AP 的垂线,垂足分别是 B 、 C 、 D ,则 B B + C C + D D 的最大值为
,最小值


D
C
C' P B'
D'
A
B
答案: 2, 2 .
【解析】 连接 AC、 DP , S正方形 ABCD = 1× 1× 1,
.
【请用等积法】
图4
图5
5. 如图,在 Rt△ ABC 中,∠ ABC= 90°,点 D 是斜边上的中点,点 P 在 AB 上, PE⊥ BD 于 E,PF ⊥AC
于 F ,若 AB =6, BC= 3. ,则 PE+ PF=
.
A
D
F
P E
B
C
6. 将两个全等的直角三角形按图 1 所示摆放,其中∠ DAB = 90°,求证: a2+ b2=c2. 7.如图,在△ ABC 中,∠ A= 90°, D 是 AC 上的一点, BD=DC , P 是 BC 上的任一点, PE⊥ BD, PF ⊥ AC, E、 F 为垂足.求证: PE+ PF= AB.

初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页

初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页

初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页初中奥数辅导讲义培优计划(星空课堂)第一讲走进追问求根公式第二讲判别式——二次方程根的检测器第三讲充满活力的韦达定理第四讲明快简捷—构造方程的妙用第五讲一元二次方程的整数整数解第六讲转化—可化为一元二次方程的方程第七讲化归—解方程组的基本思想第八讲由常量数学到变量数学第九讲坐标平面上的直线第十讲抛物线第十一讲双曲线第十二讲方程与函数第十三讲怎样求最值第十四讲图表信息问题第十五讲统计的思想方法第十六讲锐角三角函数第十七讲解直角三角形第十八讲圆的基本性质第十九讲转化灵活的圆中角2第二十讲直线与圆第二十一讲从三角形的内切圆谈起第二十二讲园幂定理第二十三讲圆与圆第二十四讲几何的定值与最值第二十五讲辅助圆第二十六讲开放性问题评说第二十七讲动态几何问题透视第二十八讲避免漏解的奥秘第二十九讲由正难则反切入第三十讲从创新构造入手3第一讲走进追问求根公式形如a某2b某c0(a0)的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法。

而公式法是解一元二次方程的最普遍、最具有一般性的方法。

求根公式某1,2bb24ac内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了2a一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美。

降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决。

解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法。

【例题求解】【例1】满足(n2n1)n21的整数n有个。

思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程。

【例2】设某1、某2是二次方程某2某30的两个根,那么某134某2219的值等于()A、一4B、8C、6D、0思路点拨:求出某1、某2的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如某123某1,某223某2。

初中八年级数学培优竞赛辅导讲义全册(213页)

初中八年级数学培优竞赛辅导讲义全册(213页)

初中八年级数学培优竞赛辅导讲义(共213页,按住ctrl键点击目录直接跳转到对应章节)第1讲全等三角形的性质与判定 (2)第2讲角平分线的性质与判定 (12)第3讲轴对称及轴对称变换 (17)第4讲等腰三角形 (25)第5讲等边三角形 (37)第06讲实数 (43)第7讲变量与函数 (50)第8讲一次函数的图象与性质 (55)第9讲一次函数与方程、不等式 (64)第10讲一次函数的应用 (69)第11讲幂的运算 (81)第12讲整式的乘除 (87)第13讲因式分解及其应用 (94)第14讲分式的概念•性质与运算 (101)第15讲分式的化简求值与证明 (109)第16讲分式方程及其应用 (118)第17讲反比例函数的图象与性质 (126)第18讲反比例函数的应用 (139)第19讲勾股定理 (146)第20讲平行四边形 (158)第21讲菱形与矩形 (167)第22讲正方形 (175)第23讲梯形 (185)第24讲数据的分析 (194)B AC D EF 第1讲 全等三角形的性质与判定考点·方法·破译1.能够完全重合的两个三角形叫全等三角形.全等三角形的形状和大小完全相同; 2.全等三角形性质:①全等三角形对应边相等,对应角相等;②全等三角形对应高、角平分线、中线相等;③全等三角形对应周长相等,面积相等;3.全等三角形判定方法有:SAS ,ASA ,AAS ,SSS ,对于两个直角三角形全等的判定方法,除上述方法外,还有HL 法;4.证明两个三角形全等的关键,就是证明两个三角形满足判定方法中的三个条件,具体分析步骤是先找出两个三角形中相等的边或角,再根据选定的判定方法,确定还需要证明哪些相等的边或角,再设法对它们进行证明;5..证明两个三角形全等,根据条件,有时能直接进行证明,有时要证的两个三角形并不全等,这时需要添加辅助线构造全等三角形,构造全等三角形常用的方法有:平移、翻折、旋转、等倍延长线中线、截取等等.经典·考题·赏析【例1】如图,AB ∥EF ∥DC ,∠ABC =90°,AB =CD ,那么图中有全等三角形( ) A .5对 B .4对 C .3对 D .2对【解法指导】从题设题设条件出发,首先找到比较明显的一对全等三角形,并由此推出结论作为下面有用的条件,从而推出第二对,第三对全等三角形.这种逐步推进的方法常用到.解:⑴∵AB ∥EF ∥DC ,∠ABC =90. ∴∠DCB =90. 在△ABC 和△DCB 中AB DC ABC DCB BC CB =⎧⎪=⎨⎪=⎩∠∠ ∴△ABC ≌∴△DCB (SAS ) ∴∠A =∠D ⑵在△ABE 和△DCE 中A DAED DEC AB DC =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△ABE ≌∴△DCE ∴BE =CE ⑶在Rt △EFB 和Rt △EFC 中BE CEEF EF=⎧⎨=⎩ ∴Rt △EFB ≌Rt △EFC (HL )故选C . 【变式题组】 01.(天津)下列判断中错误的是( )A .有两角和一边对应相等的两个三角形全等B .有两边和一角对应相等的两个三角形全等C .有两边和其中一边上的中线对应相等的两个三角形全等A F C E DB D .有一边对应相等的两个等边三角形全等 02.(丽水)已知命题:如图,点A 、D 、B 、E 在同一条直线上,且AD =BE ,∠A =∠FDE ,则△ABC ≌△DEF .判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.03.(上海)已知线段AC 与BD 相交于点O , 连接AB 、DC ,E 为OB 的中点,F 为OC 的中点,连接EF (如图所示).⑴添加条件∠A =∠D ,∠OEF =∠OFE ,求证:AB =DC ; ⑵分别将“∠A =∠D ”记为①,“∠OEF =∠OFE ”记为②,“AB =DC ”记为③,添加①、③,以②为结论构成命题1;添加条件②、③,以①为结论构成命题2.命题1是______命题,命题2是_______命题(选择“真”或“假”填入空格).【例2】已知AB =DC ,AE =DF ,CF =FB . 求证:AF =DE .【解法指导】想证AF =DE ,首先要找出AF 和DE 所在的三角形.AF 在△AFB 和△AEF 中,而DE 在△CDE 和△DEF 中,因而只需证明△ABF ≌△DCE 或△AEF ≌△DFE 即可.然后再根据已知条件找出证明它们全等的条件.证明:∵FB =CE ∴FB +EF =CE +EF ,即BE =CF 在△ABE 和△DCF 中, AB DCAE DF BE CF =⎧⎪=⎨⎪=⎩∴△ABE ≌△DCF (SSS ) ∴∠B =∠C在△ABF 和△DCE 中, AB DC B C BF CE =⎧⎪=⎨⎪=⎩∠∠ ∴△ABF ≌△DCE ∴AF =DE【变式题组】01.如图,AD 、BE 是锐角△ABC 的高,相交于点O ,若BO =AC ,BC =7,CD =2,则AO 的长为( ) A .2 B .3 C .4 D .5A B C D O FE A CEFBD02.如图,在△ABC 中,AB =AC ,∠BAC =90°,AE 是过A 点的一条直线,AE ⊥CE 于E ,BD⊥AE 于D ,DE =4cm ,CE =2cm ,则BD =__________. \ 03.(北京)已知:如图,在△ABC 中,∠ ACB =90°,CD ⊥AB 于点D ,点E 在AC 上,CE =BC ,过点E 作AC 的垂线,交CD 的延长线于点F . 求证:AB =FC .【例3】如图①,△ABC ≌△DEF ,将△ABC 和△DEF 的顶点B 和顶点E 重合,把△DEF 绕点B 顺时针方向旋转,这时AC 与DF 相交于点O .⑴当△DEF 旋转至如图②位置,点B (E )、C 、D 在同一直线上时,∠AFD 与∠DCA 的数量关系是________________;⑵当△DEF 继续旋转至如图③位置时,⑴中的结论成立吗?请说明理由_____________.【解法指导】⑴∠AFD =∠DCA⑵∠AFD =∠DCA 理由如下:由△ABC ≌△DEF ,∴AB =DE ,BC =EF , ∠ABC =∠DEF , ∠BAC =∠EDF ∴∠ABC -∠FBC =∠DEF -∠CBF , ∴∠ABF =∠DEC在△ABF 和△DEC 中, AB DE ABF DEC BF EC =⎧⎪=⎨⎪=⎩∠∠∴△ABF ≌△DEC ∠BAF =∠DEC ∴∠BAC -∠BAF =∠EDF -∠EDC , ∴∠FAC =∠CDF∵∠AOD =∠FAC +∠AFD =∠CDF +∠DCA∴∠AFD =∠DCAAFECB DAE第1题图A BCDEBCDO第2题图B (E )OC F 图③DA【变式题组】01.(绍兴)如图,D、E分别为△ABC的AC、BC边的中点,将此三角形沿DE折叠,使点C 落在AB边上的点P处.若∠CDE=48°,则∠APD等于()A.42°B.48°C.52°D.58°02.如图,Rt△ABC沿直角边BC所在的直线向右平移得到△DEF,下列结论中错误的是()A.△ABC≌△DEF B.∠DEF=90°C.AC=DF D.EC=CF03.一张长方形纸片沿对角线剪开,得到两种三角形纸片,再将这两张三角形纸片摆成如下图形式,使点B、F、C、D在同一条直线上.⑴求证:AB⊥ED;⑵若PB=BC,找出图中与此条件有关的一对全等三角形,并证明.【例4】(第21届江苏竞赛试题)已知,如图,BD、CE分别是△ABC的边A C和AB边上的高,点P在BD的延长线,BP=AC,点Q在CE上,CQ=AB.求证:⑴AP=AQ;⑵AP⊥AQ【解法指导】证明线段或角相等,也就是证线段或角所在的两三角形全等.经观察,证AP=AQ,也就是证△APD和△AQE,或△APB和△QAC全等,由已知条件BP=AC,CQ=AB,应该证△APB≌△QAC,已具备两组边对应相等,于是再证夹角∠1=∠2即可. 证AP⊥AQ,即证∠PAQ=90°,∠PAD+∠QAC=90°就可以.证明:⑴∵BD、CE分别是△ABC的两边上的高,∴∠BDA=∠CEA=90°,∴∠1+∠BAD=90°,∠2+∠BAD=90°,∴∠1=∠2.在△APB和△QAC中, 2AB QCBP CA=⎧⎪=⎨⎪=⎩∠1∠∴△APB≌△QAC,∴AP=AQE FBACDG第2题图21ABCPQEFD⑵∵△APB ≌△QAC ,∴∠P =∠CAQ , ∴∠P +∠PAD =90° ∵∠CAQ +∠PAD =90°,∴AP ⊥AQ 【变式题组】01.如图,已知AB =AE ,∠B =∠E ,BA =ED ,点F 是CD 的中点,求证:02.直距离MA 为am ,此时梯子的倾斜角为75°,如果梯子底端不动,顶端靠在对面的墙上,此时梯子顶端距地面的垂直距离NB 为bm ,梯子倾斜角为45°,这间房子的宽度是( )A .2a bm + B .2a bm - C .bm D .am03.如图,已知五边形ABCDE 中,∠ ABC =∠AED =90°,AB =CD =AE =BC +DE =2,则五边形ABCDE 的面积为__________演练巩固·反馈提高01.(海南)已知图中的两个三角形全等,则∠α度数是( )A .72°B .60°C .58°D .50°02.如图,△ACB ≌△A /C /B /,∠ BCB /=30°,则∠ACA /的度数是( )A .20°B .30°C .35°D .40° 03.(牡丹江)尺规作图作∠AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得△OCP ≌△ODP 的根据是( )AECBA 75° C45° BNM第2题图第3题图D第1题图a αcca50° b72° 58°A .SASB .ASAC .AASD .SSS 04.(江西)如图,已知AB =AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是( )A . CB =CD B .∠BAC =∠DAC C . ∠BCA =∠DCAD .∠B =∠D =90°05.有两块不同大小的等腰直角三角板△ABC 和△BDE ,将它们的一个锐角顶点放在一起,将它们的一个锐角顶点放在一起,如图,当A 、B 、D 不在一条直线上时,下面的结论不正确的是( )A . △ABE ≌△CBDB . ∠ABE =∠CBDC . ∠ABC =∠EBD =45° D . AC ∥BE06.如图,△ABC 和共顶点A ,AB =AE ,∠1=∠2,∠B =∠E . BC 交AD 于M ,DE 交AC 于N ,小华说:“一定有△ABC ≌△AED .”小明说:“△ABM ≌△AEN .”那么( ) A . 小华、小明都对 B . 小华、小明都不对 C . 小华对、小明不对 D .小华不对、小明对07.如图,已知AC =EC , BC =CD , AB =ED ,如果∠BCA =119°,∠ACD =98°,那么∠ECA 的度数是___________.08.如图,△ABC ≌△ADE ,BC 延长线交DE 于F ,∠B =25°,∠ACB =105°,∠DAC =10°,则∠DFB 的度数为_______.09.如图,在Rt △ABC 中,∠C =90°, DE ⊥AB 于D , BC =BD . AC =3,那么AE +DE =______10.如图,BA ⊥AC , CD ∥AB . BC =DE ,且BC ⊥DE ,若AB =2, CD =6,则AE =_____. 11.如图, AB =CD , AB ∥CD . BC =12cm ,同时有P 、Q 两只蚂蚁从点C 出发,沿CB 方向爬行,P 的速度是0.1cm /s , Q 的速度是0.2cm /s . 求爬行时间t 为多少时,△APB ≌△QDC .DA C .Q P.BA E FB DC 12.如图, △ABC 中,∠BCA =90°,AC =BC ,AE 是BC 边上的中线,过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于D . ⑴求证:AE =CD ;⑵若AC =12cm , 求BD 的长.13.(吉林)如图,AB =AC ,AD ⊥BC 于点D ,AD 等于AE ,AB 平分∠DAE 交DE 于点F , 请你写出图中三对全等三角形,并选取其中一对加以证明.14.如图,将等腰直角三角板ABC的直角顶点C 放在直线l 上,从另两个顶点A 、B 分别作l 的垂线,垂足分别为D 、E .⑴找出图中的全等三角形,并加以证明; ⑵若DE =a ,求梯形DABE 的面积.(温馨提示:补形法)15.如图,AC ⊥BC , AD ⊥BD , AD =BC ,CE ⊥AB ,DF ⊥AB ,垂足分别是E 、F .求证:CE =DF .16.我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等,那么在什么情况下,它们会全等? ⑴阅读与证明:对于这两个三角形均为直角三角形,显然它们全等;对于这两个三角形均为钝角三角形,可证明它们全等(证明略); 对于这两个三角形均为锐角三角形,它们也全等,可证明如下;已知△ABC 、△A 1B 1C 1均为锐角三角形,AB =A 1B 1,BC =B 1C 1,∠C =∠C 1.求证:△ABC ≌△A 1B 1C 1.(请你将下列证明过程补充完整)⑵归纳与叙述:由⑴可得一个正确结论,请你写出这个结论.ABCDA 1B 1C 1D 1D B A C EF A E B F D CAEF C DB 培优升级·奥赛检测01.如图,在△ABC 中,AB =AC ,E 、F 分别是AB 、AC 上的点,且AE =AF ,BF 、CE 相交于点O ,连接AO 并延长交BC 于点D ,则图中全等三角形有( ) A .4对 B .5对 C .6对 D .7对02.如图,在△ABC 中,AB =AC ,OC =OD ,下列结论中:①∠A =∠B ②DE =CE ,③连接DE , 则OE 平分∠AOB ,正确的是( ) A .①② B .②③ C .①③ D .①②③03.如图,A 在DE 上,F 在AB 上,且AC =CE , ∠1=∠2=∠3, 则DE 的长等于()A .DCB . BC C . ABD .AE +AC04.下面有四个命题,其中真命题是( )A .两个三角形有两边及一角对应相等,这两个三角形全等B .两边和第三边上的高对应相等的两个三角形全等C . 有一角和一边对应相等的两个直角三角形全等D . 两边和第三边上的中线对应相等的两个三角形全等05.在△ABC 中,高AD 和BE 所在直线相交于H 点,且BH =AC ,则∠ABC =_______.06.如图,EB 交AC 于点M , 交FC 于点D , AB 交FC 于点N ,∠E =∠F =90°,∠B =∠C , AE=AF . 给出下列结论:①∠1=∠2;②BE =CF ; ③△ACN ≌△ABM ; ④CD =DB ,其中正确的结论有___________.(填序号)07.如图,AD 为在△ABC 的高,E 为AC 上一点,BE 交AD 于点F ,且有BF =AC ,FD =CD .⑴求证:BE ⊥AC ;⑵若把条件“BF =AC ”和结论“BE ⊥AC ”互换,这个命题成立吗?证明你的判定.08.如图,D 为在△ABC 的边BC 上一点,且CD =AB ,∠BDA =∠BAD ,AE 是△ABD 的中线.求证:AC =2AE .09.如图,在凸四边形ABCD 中,E 为△ACD 内一点,满足AC =AD ,AB =AE , ∠BAE +∠BCEABE D CF第6题图2 1AB CE N M3 21ADEBC FADECOA E O BFCD 第1题图B第2题图第3题图AB C DEAEBDC=90°, ∠BAC =∠EAD .求证:∠CED =90°.10.(沈阳)将两个全等的直角三角形ABC 和DBE 按图①方式摆放,其中∠ACB =∠DEB =90°,∠A =∠D =30°,点E 落在AB 上,DE 所在直线交AC 所在直线于点F .⑴求证:AF +EF =DE ;⑵若将图①中△DBE 绕点B 顺时针方向旋转角α,且0°<α<60°,其他条件不变,请在图②中画出变换后的图形,并直接写出(1)中结论是否仍然成立;⑶若将图①中△DBE 绕点B 按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③你认为(1)中结论还成立吗?若成立,写出证明过程;若不成立,请写出此时AF 、EF 与DE 之间的关系,并说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十四讲图表信息问题21世纪是一个信息化的社会,从纷繁的信息中,捕捉搜集、处理、加工所需的信息,是新世纪对一个合格公民提出的基本要求.图表信息问题是近年中考涌现的新问题,即运用图象、表格及一定的文字说明提供问题情境的一类试题.图象信息题是把需要解决的问题借助图象的特征表现出来,解题时要通过对图象的解读、分析和判断,确定图象对应的函数解析式中字母系数符号特征和隐含的数量关系,然后运用数形结合、待定系数法等方法解决问题.表格信息题是运用二维表格提供数据关系信息,解题中需通过对表中的数据信息的分析、比较、判断和归纳,弄清表中各数据所表示的含义及它们之间的内在联系,然后运用所学的方程(组)、不等式(组)及函数知识等解决问题.【例题求解】【例1】一慢车和一快车沿相同的路线从A到B地,所行的路程与时间的函数图象如图所示,试根据图象,回答下列问题:(1)慢车比快车早出发小时,快车追上慢车时行驶了千米,快车比慢车早小时到达6地;(2)快车追上慢车需小时,慢车、快车的速度分别为千米/时;(3)A、B两地间的路程是.思路点拨对于(2),设快车追上慢车需t小时,利用快车、慢车所走的路程相等,建立t的方程.注:股市行情走势图、期货市场趋势图、工厂产值利润表、甚而电子仪器自动记录的地震波等,它们广泛出现在电视、报刊、广告中,渗透到现实生活的每一角落,这些图表、图象中蕴涵着丰富的信息,我们应学会收集、整理与获取.【例2】已知二次函数c+=2的图象如图,并设M=by+axbx++-+2,+2--+aa-acbbbca则( )A.M>0 B.M=0 C.M<0 D.不能确定M为正、为负或为0思路点拨由抛物线的位置判定a、b、c的符号,并由1x,推出相应y值的正负性.=±注:函数图象选择题是广泛见于各地中考试卷中的一种常见问题,解此类问题的基本思路是:由图象大致位置确定解析式中系数符号特征,进而再判定其他图象的大致位置,在解题中常常要运用直接判断、排除筛选、分类讨论、参数吻合等方法.【例3】某人租用一辆汽车由A城前往B城,沿途可能经过的城市以及通过两城市之间所需的时间(单位:小时)如图所示.若汽车行驶的平均速度为80千米/时,而汽车每行驶1千米所需要的平均费用为1.2元.试指出此人从A城出发到B城的最短路线.(2003年全国初中数学竞赛题)思路点拨从A城出发到B城的路线分成如下两类:(1)从A城出发到达B城,经过O城,(2)从A城出发到达B城,不经过O城.【例4】我国东南沿海某地的风力资源丰富,一年内日平均风速不小于3米/秒的时间共约160天,其中日平均风速不小于6米/秒的时间约占60天.为了充分利用“风能”这种“绿色能源”,该地拟建一个小型风力发电厂,决定选用A、B两种型号的风力发电机.根据产品说明,这两种风力发电机在各种风速下的日发电量(即一天的发电量)如下表:日平均风速v/(米/秒)v<33≤v<6v≥6日发电量A型发电机0≥36≥150(千瓦·时)B型发电机0≥24≥90根据上面的数据回答:(1)若这个发电厂购x台A型风力发电机,则预计这些A型风力发电机一年的发电总量至少为千瓦·时;(2)已知A型风力发电机每台0.3万元,B型风力发电机每台0.2万元.该发电厂拟购置风力发电机共10台,希望购机的费用不超过2.6万元,而建成的风力发电厂每年的发电总量不少于102000千瓦·时,请你提供符合条件的购机方案.思路点拨对于(1),注意“平均风速不小于3米/秒”的时间区分;对于(2),利用购置费用和发电总量分别列出不等式.【例5】一蔬菜基地种植的某种绿色蔬菜,根据今年的市场行情,预计从5月1日起的50天内,它的市场售价y与上市时间x的关系可用图1的一条线段表示;它的种植成本2y与1上市时间x的关系可用图2抛物线的一部分来表示,假定市场售价减去种植成本为纯利润,问哪天上市的这种绿色蔬菜既不赔本也不赚钱?思路点拨由图象提供的信息,求出直线、抛物线的解析式,利用市场售价与成本价相等建立时间x的方程.注:本例综合运用一次函数和二次函数的有关知识,涉及信息量大,题中呈现信息的方式不仅是文字和符号,还包括表格.解图象信息问题的关键是化“图象信息”为“数学信息”,具体包括:(1)读图找点;(2)看图确定系数符号特征;(3)见形(图象形态)想式(解析式),建模求解.学历训练1.如图,是某出租车单程收费y(元)与行驶路程x(千米)之间的函数关系的图象,请根据图象回答以下问题:(1)当行驶8千米时,收费应为;(2)从图象上你能获得哪些正确的信息(请写出2条)①;②.(3)收费y(元)与行驶x(千米)( x≥3)之间的函数关系式为.2.甲、乙两人(甲骑自行车,乙骑摩托车)从A城出发到B地旅行,如图表示甲、乙两人离开A城的路程与时间之间的函数图象。

根据图象,你能得到关于甲、乙两人旅行的哪些信息?答题要求:(1)请至少提供四条信息,如,由图象可知:甲比乙早出发4小时;甲离开A城的路程与时间的函数图象是一条折线段,说明甲作变速运动.(2)不要再提供“(1)”中已列举的信息.①;②;③;④.3.如图,已知函数c bx ax y ++=2的图象过(一1,0)和(0,一1)两点,则a 的取值范围是 . 4.下列各图中,能表示函数)1(x k y -=和xky =(0≠k )在同一平面直角坐标系中的图象大致是( ).5.三峡工程在6月1日至6月10日下闸蓄水期间,水库水位由106米升至135米,高峡平湖初现人间.假设水库水位匀速上升,那么下列图象中,能正确反映这10天水位h (米)随时间t (天)变化的是( )6.在同一坐标系中,函数c bx ax y ++=2与xby =的图象大致是( )7.某博物馆每周都吸引大量中外游客前来参观.如果游客过多,对馆中的珍贵文物会产生不利影响.但同时考虑到文物的修缮和保存费用问题,还要保证一定的门票收入.因此,博物馆采取了涨浮门票价格的方法来控制参观人数.在该方法实施过程中发现:每周参观人数与票价之间存在着如图所示的一次函数关系.在这样的情况下,如果确保每周4万元的门票收人,那么每周应限定参观人数是多少?门票价格应是多少元?8.行驶中的汽车,在刹车后由于惯性的作用,还要继续向前滑行一段距离才能停止,这段距离称为“刹车距离”,为了测定某种型号汽车的刹车性能(车速不超过140千米/时),对这种汽车进行测试,测得数据如下表: 刹车时车速(千米/时) 1 10 20 30 40 50 60 刹车距离(米)0.31.02.13.65.57.8(1)以车速为x 轴,以刹车距离为y 轴,在坐标系中描出这些数据所表示的点,并用平滑的曲线连结这些点,得到函数的大致图象;(2)观察图象,估计函数的类型,并确定一个满足这些数据的函数的解析式;(3)该型号汽车在国道上发生了一次交通事故,现场测得刹车距离为46.5米,请推测刹车时的速度是多少?请问在事故发生时,汽车是超速行驶还是正常行驶?9.二次函数c bx ax y ++=2的图象如图所示,则化简二次根式22)()(c b c a -++的结果是 .10.小刚、爸爸、爷爷同时从家中出发到达同一目的地后都立即返回.小刚去时骑自行车,返回时步行;爷爷去时是步行,返回时骑自行车;爸爸往返都步行.三个人步行的速度不等,小刚与爷爷骑车的速度相等.每个人的行走路程与时间的关系分别是下面三个图象中的一个.走完一个往返,小刚用 分钟,爸爸用 分钟,爷爷用 分钟. 11.小明同学骑自行车在上学的路上要经过两座山梁,行走的路线如图所示.已知上山的速度为1v 米/分钟,平路的速度为2v 米/分钟,下山的速度为3v 米/分钟,其中1v <2v <3v .那么,小明同学上学骑自行车行走的路程S(米)与所用的时间t (分钟)的函数关系,可能是下面图象中的( )12.二次函数c bx ax y ++=2的图象如图所示,则在下列不等式中, ①abc<0;②a+b+c<0;③a+c>b ;④2bc a -<成立的个数是( ) A .1个 B .2个 C .3个 D .4个13.如图,直角三角形AOB 中,AB ⊥OB ,且AB =OB=3.设直线l :x=t 截此三角形所得的阴影部分的面积为S ,则S 与t 之间的函数关系的图像为( )14.设a b >6>o ,将一次函数a bx y +=与b ax y +=的图象画在平面直角坐标系中,则有一组a 、b 的取值,使得下列4个图中的一个为正确的是( )15.某商场为提高彩电销售人员的积极性,制定了新的工资分配方案,方案规定:每位销售人员的工资总额=基本工资+奖励工资,每位销售人员的月销售定额为10000元,在销售定额内,得基本工资200元;超过销售定额,超过部分的销售额按相应比例作为奖励工资,奖励工资发放比例如表1所示.(1)已知销售员甲本月领到的工资总额为800元,请问销售员甲在本月的销售额为多少元? (2)依法纳税是每个公民应尽的义务,根据我国税法规定,全月工资总额不超过800元不要缴纳个人所得税;超过800元的部分为“全月应纳税所得额”.表2是缴纳个人所得税税率表.若销售员乙本月共销售A 、B 两种型号的彩电21台,缴纳个人所得税后实际得到的工资为1275元,又知A 型彩电的销售价为每台1000元,B 型彩电的销售价为每台1500元,请问销售员乙本月销售A 型彩电多少台?表1 表216.有麦田5块A 、B 、C 、D 、E ,它们的产量(单位:吨)、交通状况和每相邻两块麦田的距离如图所示,要建一座永久性打麦场,这5块麦田生产的麦子都在此打场,问建在哪块麦田上(不允许建在除麦田以外的其他地方)才能使总运输量最小?(图中圆圈内的数字为产量,直线段上的字母a 、b 、d 表示距离,且b<a<d).17.在元旦晚会上,学校组织了一次关于语文、数学、外语、奥运及日常生活常识的知识竞赛,设定满分为40分,以下依次为30分、20分、10分和0分共五个评分等级,每个小组分别回答这五个方面的问题.现将A、B、C、D、E五个小组的部分得分列表如下:语文数学外语常识奥运总分名次A组180 1B组 2C组 3D组30 4E组40 20 5表中:(1)每一竖行的得分均不相同(包括单科和总分);(2)C组有4个单科得分相同.求:B、C、D、E组的总分并填表进行检验.参考答案。

相关文档
最新文档