最新固体料仓设计计算

合集下载

矩形固体料仓

矩形固体料仓
设 定 料 仓 壳 体 的 名 义 厚 度 及 加 强 筋 的
的设计算有明确的阐述 , NB/ 7 0 . — T4 0 3 1 要 考 虑 其 经 济 型 。 尽 量 考 虑 优 选 用 价 格 置 加 强 筋 。 应 2 0 g 制 焊 接常 压 容 器 中对 储 存 液 体物 低 廉 并 且 刚 性 较 好 的 碳 钢 材 料 。 0 9钢 料 的钢 制焊 接 矩 形 容 器的 设 计 计 算 有详 细 的 规 定 。 在 某 一 大 型项 目中 , 一 储 存褐 3 设计计算 但 有 煤 的 钢 制 矩 形 锥 体料 仓 。 形 见 图 1 设计 3 1锥形料 仓 的分段 外 , . 计 算 无 具 体 的 标 准 参 照 。 面 就 其 结 构 及 下 受 力状 况 进 行 分 析 , 出对 该 种 设 备 的 设 提 计 计 算 方法 和 依 据 。 规格, 按照NB T 7 0 . - 0 9 / 4 0 3 2 2 0 依次 计 算每 段 锥体 的 容 积 , 操作 质量 , 重心 , 震 力 , 地 地 震 弯 矩 及 任 意 截 面 处 的 最 大弯 矩 等 。
为 使 仓 内料 松 散 固体 物 料 能 够 自动 流 3. 分 析 液体 及 固体物 料对 容 器壁 的作 用 2
出 , 仓 无 论 横 截 面 是 圆 形 还 是 方 形 其 底 力 料 部 均 为 锥 体 , 且 锥 体 部 分 的 半 顶 角 e的 并 决 定 性 的关 系 。 顶 角 e一般 由工 艺 提 供 。 半
容 器 的 壁 面 其 作 用 力 也 是 如 此 。 里 重 点 对 直 壁 板 的 垂 直 压 应 力 P, , 平 压 应 力 这 , 水 对 固体 松 散 物 料 及 液 体 介 质 对 容 器 壳 壁 的 p i 及 摩 擦 力 F i 。 根 据 设 定 的 壳 体 壁 hi - f i并 - 作用力作分析及对 比。 体 物 料 对 圆形 容 器 的 锥 体 壁 有 垂 直 压 应 力 P 】 , 平压 应  ̄ p i及 法 向压应 力p i 三种 水 v 一 J hi - i -

211245075_固体料仓仓壳锥体物料载荷计算

211245075_固体料仓仓壳锥体物料载荷计算

的设计%

%

!
!
'(' &
为物料在仓壳锥体计算截面
'('
上产生的水平压力!
! '(' )
为物料在仓壳锥体
计算截面
'('
上产生的法向压力!
! '(' *
为物料在
仓壳锥体计算截面 '(' 上产生的垂直压力!+,'&










!
#
-
$
&
" '(' ./
为仓壳锥体
'(' 截面的直径!00%
图 ! 物料对仓壳锥体的作用力
金 制 圆 筒 形 筒 仓 的 结 构 , (%%)! 此 标 准 适 用 于 直 径
不 大 于 5:0 的 铝 及 铝 合 金 料 仓 %
=>:#";5*%<<? 和 @A=:7:5$%%*%<5; 中 有 关
仓壳锥体设计的计算方法是类似的! 先利用仓壳
锥体顶截面的物料载荷和直径尺寸计算得到锥体
厚度-整个锥壳取同一厚度$!然后进行仓壳圆筒
' %=%
D
?+ 8E%F7G
A=
> @A ?
=/
H A1=;
&I'

' %=%
F
<%=%J
+
FK@
" %=%
D
LJ
K
&;'

配料仓的设计与计算

配料仓的设计与计算

4.4.1配料仓的设计与计算(流程图编号85-102)1、配料仓的结构形式:配料仓采用八角形钢板仓结构形式,设计成多联并用,材料用3mm厚的薄钢板。

每个料仓顶部设置一个边长为500㎜的正方形人孔,因为料仓顶部为天花板,为行走、清扫、看仓方便,未设置通风管。

2、配料仓容量与数量料仓容量:整体仓容量要保证至少4小时连续生产,并且仓的充满系数要根据物料的不同具体配置,按原料配比计算料仓容量及数量。

3、饲料用原料和生产配方分析由设计依据中地10个配方确定生产中需用的配料仓的原料名称,原料单位体积质量(v,t/m3)同一种原料在不同的配方中所占的百分比及一种原料在出现的若干个配方中的平均百分比并列表(epi,%)。

配方见表1。

表2 典型的饲料配方原料平均配比序号原料容重(t/m³)配比(%)1 玉米0.75 53.202 豆粕0.56 18.703 次粉0.50 9.54 鱼粉0.55 6.25 熟化小麦蛋白粉0.55 6.66 磷酸氢钙 1.2 0.627 玉米胚芽 4.038 进口鱼粉0.55 2.639 预混料 1.010 石粉 1.2 0.5211 沸石粉0.0412 菜粕0.55 6.113 棉粕0.55 4.714 酒糟粉0.55 2.315 米糠0.55 4.554、典型单体仓几何仓容计算 根据公式Vi=iktepi Q γ⨯⨯选定5%≤epi ≤10%的几种原料计算典型单体仓仓容式中: epi ——几种原料出现在若干个配方中的平均百分数(%);Vi ——原料的单位体积质量(t/m 3); Q ——配合饲料厂的设计生产能力(t/h ); t ——原料在料仓中的存放时间,取t=3h ; k ——单体仓的有效仓容系数,取k=0.80。

通过计算10种典型的配方,可知次粉的平均配比为9.5% 则有: V 次粉 =80.050.03%5.920⨯⨯⨯=14.25 m 35、基本仓仓容的确定由5%≤epi ≤10%原料所在单体仓的仓容大小得:V 基本仓=14.25 m 3 单体仓数量的配置:epi >10%,有2种原料;6个基本仓,其中2个存放玉米的基本料仓尺寸加大。

固体料仓 (2.26)设计计算

固体料仓 (2.26)设计计算
第i段的操作质量
料仓的操作质量
料仓的最小质量
料仓的等效总质量
等效质量系数:地震计算时取
V Di θ p p0 T ψ μ q0
qw
C2 C2 C2
[σ]t φ
ReL(RP0.2) Et
[σ]t ReL(RP0.2)
Et θ
料仓计算
1500 10000 22.5 0.029 0.002
65 35 0.466307658 450 A 600 7 一 0.1 Ⅲ 1
av)*Dzi/(4*δ eia-acosθ)+maac*g/(π*ma-ac*
δeia-a*cosθ)
截面a-a处组合应力
载荷组合系数 轴向组合拉应力校核 钢板的厚度负偏差 壁厚附加量 裙座壳应力
人孔截面m-m截面应力计算公式
钢板的厚度负偏差 壁厚附加量 人孔截面开孔加强管长度 人孔截面处水平方向的最大宽度
2
3000
1
3000
见表7
段号 10 9 8 7 6 5 4 3 2 1
4.56E+09
li(mm)
1091 3000 3000 3000 4000 4000 4000 4000 3000 3000 ∑,N.mm N.mm
0.800 0.780 0.468 0.234
Pi(N) 11736.85 32067.75 31251.12 30053.82 38103.31 34704.5 30622.69 25985.44 13872.2 7258.99
筋板的许用应力(λ<λc):
仓壳锥体任意截面a-a处设计压力P和垂直于其 壁面的法向压力Pn产生的周向应力
σa-aθ=(P+Pa-ah)*Dzi/

固体料仓设计计算

固体料仓设计计算

6设计计算固体料仓的校核计算按以下步骤进行:a)根据地震或风载的需要,选定若干计算截面(包括所有危险截面)。

b)根据JB/T 4735的相应章节,按设计压力及物料的特性初定仓壳圆筒及仓壳锥体各计算截面的有效厚度δe。

c)按6.1~6.18条的规定依次进行校核计算,计算结果应满足各相应要求,否则需要重新设定有效厚度,直至满足全部校核条件为止。

固体料仓的外压校核计算按GB 150的相应章节进行。

6.1 符号说明A ——特性纵坐标值,mm;B ——系数,按GB 150确定,MPa;C ——壁厚附加量,C=C1+C2,mm;C1 ——钢板的厚度负偏差,按相应材料标准选取,mm;C2 ——腐蚀裕量和磨蚀裕量,mm;腐蚀裕量对于碳钢和低合金钢,取不小于1 mm;对于不锈钢,当介质的腐蚀性极微时,取为0;对于铝及铝合金,取不小于1 mm;对于裙座壳取不小于2 mm;对于地脚螺栓取不小于3 mm;磨蚀裕量对于碳素钢和低合金钢、铝及铝合金一般取不小于1mm,对于高合金钢一般取不小于0.5mm。

D i ——仓壳圆筒内直径,mm;D o ——仓壳圆筒外直径,mm;E t——材料设计温度下的弹性模量,MPa;F f ——物料与仓壳圆筒间的摩擦力,N;F k1 ——集中质量m k引起的基本震型水平地震力,N;F V ——集中质量m k引起的垂直地震力,N;F Vi ——集中质量i引起的垂直地震力,N;0-F——料仓底截面处垂直地震力,N;VIIF-——料仓任意计算截面处垂直地震力,仅在最大弯矩为地震弯矩参与组合时计入此项,N;Vg ——重力加速度,取g =9.81m/s2;H——料仓总高度,mm;H o ——仓壳圆筒高度,mm;H c ——仓壳锥体高度,mm;H i ——料仓顶部至第i段底截面的距离,mm;h ——计算截面距地面高度(见图3),mm;h c ——物料自然堆积上锥角高度(见图7),mm;h i ——料仓第i段集中质量距地面的高度(见图3),mm;h k ——任意计算截面I-I以上集中质量m k距地面的高度(见图3),mm;h W ——料仓计算截面以上的储料高度(见图7),mm;I I E M -—— 任意计算截面I -I 处的基本振型地震弯矩,N·mm ; 00-E M —— 底部截面0-0处的地震弯矩,N·mm ; e M —— 由偏心质量引起的弯矩,N·mm ;II w M -—— 任意计算截面I -I 处的风力弯矩,N·mm ; 00-w M —— 底部截面0-0处的风力弯矩,N·mm ; I I M -m ax —— 任意计算截面I -I 处的最大弯矩,N·mm ; 00m ax -M —— 底部截面0-0处的最大弯矩,N·mm ; m c —— 仓壳锥体质量与仓壳锥体部分所储物料质量之和,kg ; m min —— 料仓最小质量,kg ;m t —— 单位面积的仓壳顶质量与附加质量之和,kg ; m o —— 料仓操作质量,kg ; m 05 —— 料仓储料质量,kg ; p —— 设计压力,MPa ; p o —— 设计外压力,MPa ;I I h p -—— 物料在仓壳圆筒计算截面I -I 处产生的水平压力,MPa ;I I v p -—— 物料在仓壳圆筒计算截面I -I 处产生的垂直压力,MPa ;a a h p -—— 物料对仓壳锥体计算截面a -a 处产生的水平压力,MPa ; a a n p -—— 物料对仓壳锥体计算截面a -a 处产生的法向压力,MPa ;a a v p -—— 物料对仓壳锥体计算截面a -a 处产生的垂直压力,MPa ;II II n p -—— 物料对仓壳锥体大端II -II 处产生的法向压力,MPa ;II II v p -—— 物料在仓壳锥体大端II -II 处产生的垂直压力,MPa ;q o —— 基本风压值,见GB 50009,或按当地气象部门资料,但均不应小于300 N/m 2; q w ——基本雪压值,N/m 2。

固体料仓设计计算-29页文档资料

固体料仓设计计算-29页文档资料

6设计计算固体料仓的校核计算按以下步骤进行:a)根据地震或风载的需要,选定若干计算截面(包括所有危险截面)。

b)根据JB/T 4735的相应章节,按设计压力及物料的特性初定仓壳圆筒及仓壳锥体各计算截面的有效厚度δe。

c)按6.1~6.18条的规定依次进行校核计算,计算结果应满足各相应要求,否则需要重新设定有效厚度,直至满足全部校核条件为止。

固体料仓的外压校核计算按GB 150的相应章节进行。

6.1 符号说明A ——特性纵坐标值,mm;B ——系数,按GB 150确定,MPa;C ——壁厚附加量,C=C1+C2,mm;C1 ——钢板的厚度负偏差,按相应材料标准选取,mm;C2 ——腐蚀裕量和磨蚀裕量,mm;腐蚀裕量对于碳钢和低合金钢,取不小于1 mm;对于不锈钢,当介质的腐蚀性极微时,取为0;对于铝及铝合金,取不小于1 mm;对于裙座壳取不小于2 mm;对于地脚螺栓取不小于3 mm;磨蚀裕量对于碳素钢和低合金钢、铝及铝合金一般取不小于1mm,对于高合金钢一般取不小于0.5mm。

D i ——仓壳圆筒内直径,mm;D o ——仓壳圆筒外直径,mm;E t——材料设计温度下的弹性模量,MPa;F f ——物料与仓壳圆筒间的摩擦力,N;F k1 ——集中质量m k引起的基本震型水平地震力,N;F V ——集中质量m k引起的垂直地震力,N;F Vi ——集中质量i引起的垂直地震力,N;0-F——料仓底截面处垂直地震力,N;VIIF-——料仓任意计算截面处垂直地震力,仅在最大弯矩为地震弯矩参与组合时计入此项,N;Vg ——重力加速度,取g =9.81m/s2;H——料仓总高度,mm;H o ——仓壳圆筒高度,mm;H c ——仓壳锥体高度,mm;H i ——料仓顶部至第i段底截面的距离,mm;h ——计算截面距地面高度(见图3),mm;h c ——物料自然堆积上锥角高度(见图7),mm;h i ——料仓第i段集中质量距地面的高度(见图3),mm;h k ——任意计算截面I-I以上集中质量m k距地面的高度(见图3),mm;h W ——料仓计算截面以上的储料高度(见图7),mm;I I E M -—— 任意计算截面I -I 处的基本振型地震弯矩,N·mm ; 00-E M —— 底部截面0-0处的地震弯矩,N·mm ; e M —— 由偏心质量引起的弯矩,N·mm ;II w M -—— 任意计算截面I -I 处的风力弯矩,N·mm ; 00-w M —— 底部截面0-0处的风力弯矩,N·mm ; I I M -m ax —— 任意计算截面I -I 处的最大弯矩,N·mm ; 00m ax -M —— 底部截面0-0处的最大弯矩,N·mm ; m c —— 仓壳锥体质量与仓壳锥体部分所储物料质量之和,kg ; m min —— 料仓最小质量,kg ;m t —— 单位面积的仓壳顶质量与附加质量之和,kg ; m o —— 料仓操作质量,kg ; m 05 —— 料仓储料质量,kg ; p —— 设计压力,MPa ; p o —— 设计外压力,MPa ;I I h p -—— 物料在仓壳圆筒计算截面I -I 处产生的水平压力,MPa ;I I v p -—— 物料在仓壳圆筒计算截面I -I 处产生的垂直压力,MPa ;a a h p -—— 物料对仓壳锥体计算截面a -a 处产生的水平压力,MPa ; a a n p -—— 物料对仓壳锥体计算截面a -a 处产生的法向压力,MPa ;a a v p -—— 物料对仓壳锥体计算截面a -a 处产生的垂直压力,MPa ;II II n p -—— 物料对仓壳锥体大端II -II 处产生的法向压力,MPa ;II II v p -—— 物料在仓壳锥体大端II -II 处产生的垂直压力,MPa ;q o —— 基本风压值,见GB 50009,或按当地气象部门资料,但均不应小于300 N/m 2; q w ——基本雪压值,N/m 2。

(整理)固体料仓设计计算

(整理)固体料仓设计计算

6设计计算固体料仓的校核计算按以下步骤进行:a)根据地震或风载的需要,选定若干计算截面(包括所有危险截面)。

b)根据JB/T 4735的相应章节,按设计压力及物料的特性初定仓壳圆筒及仓壳锥体各计算截面的有效厚度δe。

c)按6.1~6.18条的规定依次进行校核计算,计算结果应满足各相应要求,否则需要重新设定有效厚度,直至满足全部校核条件为止。

固体料仓的外压校核计算按GB 150的相应章节进行。

6.1 符号说明A ——特性纵坐标值,mm;B ——系数,按GB 150确定,MPa;C ——壁厚附加量,C=C1+C2,mm;C1 ——钢板的厚度负偏差,按相应材料标准选取,mm;C2 ——腐蚀裕量和磨蚀裕量,mm;腐蚀裕量对于碳钢和低合金钢,取不小于1 mm;对于不锈钢,当介质的腐蚀性极微时,取为0;对于铝及铝合金,取不小于1 mm;对于裙座壳取不小于2 mm;对于地脚螺栓取不小于3 mm;磨蚀裕量对于碳素钢和低合金钢、铝及铝合金一般取不小于1mm,对于高合金钢一般取不小于0.5mm。

D i ——仓壳圆筒内直径,mm;D o ——仓壳圆筒外直径,mm;E t——材料设计温度下的弹性模量,MPa;F f ——物料与仓壳圆筒间的摩擦力,N;F k1 ——集中质量m k引起的基本震型水平地震力,N;F V ——集中质量m k引起的垂直地震力,N;F Vi ——集中质量i引起的垂直地震力,N;0-F——料仓底截面处垂直地震力,N;VIIF-——料仓任意计算截面处垂直地震力,仅在最大弯矩为地震弯矩参与组合时计入此项,N;Vg ——重力加速度,取g =9.81m/s2;H——料仓总高度,mm;H o ——仓壳圆筒高度,mm;H c ——仓壳锥体高度,mm;H i ——料仓顶部至第i段底截面的距离,mm;h ——计算截面距地面高度(见图3),mm;h c ——物料自然堆积上锥角高度(见图7),mm;h i ——料仓第i段集中质量距地面的高度(见图3),mm;h k ——任意计算截面I-I以上集中质量m k距地面的高度(见图3),mm;h W ——料仓计算截面以上的储料高度(见图7),mm;I I E M -—— 任意计算截面I -I 处的基本振型地震弯矩,N·mm ; 00-E M —— 底部截面0-0处的地震弯矩,N·mm ; e M —— 由偏心质量引起的弯矩,N·mm ;II w M -—— 任意计算截面I -I 处的风力弯矩,N·mm ; 00-w M —— 底部截面0-0处的风力弯矩,N·mm ; I I M -m ax —— 任意计算截面I -I 处的最大弯矩,N·mm ; 00m ax -M —— 底部截面0-0处的最大弯矩,N·mm ; m c —— 仓壳锥体质量与仓壳锥体部分所储物料质量之和,kg ; m min —— 料仓最小质量,kg ;m t —— 单位面积的仓壳顶质量与附加质量之和,kg ; m o —— 料仓操作质量,kg ; m 05 —— 料仓储料质量,kg ; p —— 设计压力,MPa ; p o —— 设计外压力,MPa ;I I h p -—— 物料在仓壳圆筒计算截面I -I 处产生的水平压力,MPa ;I I v p -—— 物料在仓壳圆筒计算截面I -I 处产生的垂直压力,MPa ;a a h p -—— 物料对仓壳锥体计算截面a -a 处产生的水平压力,MPa ; a a n p -—— 物料对仓壳锥体计算截面a -a 处产生的法向压力,MPa ;a a v p -—— 物料对仓壳锥体计算截面a -a 处产生的垂直压力,MPa ;II II n p -—— 物料对仓壳锥体大端II -II 处产生的法向压力,MPa ;II II v p -—— 物料在仓壳锥体大端II -II 处产生的垂直压力,MPa ;q o —— 基本风压值,见GB 50009,或按当地气象部门资料,但均不应小于300 N/m 2; q w ——基本雪压值,N/m 2。

料仓计算书

料仓计算书

第三届湖北省“结构设计大赛”设计方案设计人:张学强、侯金穗、徐立一、 料仓装料部分: <一>形状尺寸1、形状:采用直圆筒状主装料仓,如图所示:2、图中圆筒部分高h1,圆台状部分高h2,其中 h1、 h2由以下过程计算体积:kg mm kg V 6010410039≥⨯⨯-mm 70021≤+h h mm 2002≤h()V h h ≥⨯⨯⨯+++⨯⨯22212460200602004200ππ3、考虑到料仓稳定性,结构体重心较低,圆台倾斜角较小,结合上述计算,最优方案为:mm h 4972= mm h 1181≥4、又考虑到料仓内部加固的箍竹片会占据一定体积,所以使上部略大于计算理论值,最终确定料仓尺寸为:mm h 5501= mm h 1202= <二>加固方法1、圆筒部采用内部竖直方向装配竹片,外部横向加环形竹箍固定的方式。

2、圆台部分采用圆筒部分向内部弯折延续,并且在折点内侧环箍加固及下部外侧环箍加固的方式。

3、为使下部形成圆台状,应将竹片加工成向下部逐渐变窄的尖竹片。

4、弯折处细部结构如图所示:5、安装有环箍部位竹片受力如图所示:<三>竹片加工规格及数据计算1、由于圆筒部分向上部受力越来越小,并且由竹片箍紧,所以主要承力部分为圆台状部分,下面就圆台状部分荷载及稳定性作具体计算分析。

2、圆筒及圆台部分共由N根竹片组成,圆筒部分每根竹片宽度为D,圆台下端宽度为d由几何关系有:mm 200⨯=πNDmm 60d ⨯=πN3、考虑竖直方向荷载,忽略料仓内壁对物料的摩擦力,每根竹片平均分摊荷载1p ,弯折区域总荷载P1满足以下关系:11p P N =⨯ 并且P1在竹片上呈梯形状分布,如图所示:4、忽略物料颗粒之间的摩擦力,圆台底部承受荷载为P2,每根竹片承受竖直向下的集中荷载p2,则满足以下关系:22p P N =⨯5、由几何关系有:kg 6020060221⨯=Pkg 6021=+P P6、P1大小呈梯形分布,在计算端点力矩时可将其看作直接作用于中点,由折点静力(力矩) 平衡条件得:0mm 200-mm 35mm 7012=⨯⨯⎪⎭⎫⎝⎛+⨯⎪⎭⎫ ⎝⎛F N P N P则水平距离中心x 处的弯矩为:Fx p x p x xx M ⨯-⨯+⨯⨯⎪⎭⎫ ⎝⎛-=720270007212021xm 10720x 114.5-54x 49000x 546-14000x 54612016-32⋅⨯⎪⎪⎭⎫ ⎝⎛⨯+⨯⨯=N N可得mm 29x =时弯矩值最大,此时m 426.01max ⋅⨯=N NM 此处的最大正应力为: ZW M maxmax =σ62λ∇=Z W其中 : λ为竹片厚度d 2970d+⨯-=∇D 又由: a 60maxMP ≤σ 得 : ≥λ0.34mm所以选用0.35mm 厚的竹片,而考虑到在弯矩最大处的安全性,所以在此处外侧额外加一环箍(图中为受力f 处)用以保护结构。

料仓计算

料仓计算

MPa MPa
25.0438258 18.0992273
结论 MPa
合格 122
4.2、轴向组合压应力按下式校核 对δ 1部分:评定条件:σ ∑z<[σ ]cr 对δ 2部分:评定条件:σ ∑z<[σ ]cr 仓筒材料的许用轴向压应力[σ ]cr按下式计算 对δ 1部分:[σ ]cr=min(B,0.9σ s) 对δ 2部分:[σ ]cr=min(B,0.9σ s) 设计温度下材料的屈服强度σ s 值为: B值按以下方法计算 (具体见Pg5,3.6.4) 对δ 1部分:A=0.094δ 1e/Do 对δ 2部分:A=0.094δ
θ
3eφ
cosθ )+Wc/(π Diδ
3eφ
cosθ )
MPa
13.7775994
<[σ ]t
结论
合格
3.2、轴向应力 评定条件:σ ∑z<[σ ]cr (十一)、料仓顶盖计算 1、此处为蝶形封头,R=Di=3200,r=0.1Di=320,δ =10 2、许用外压为:[P]=0.1Et(δ /R)2 3、仓顶附件等产生的压力:P=mg/(π Di2/4) 4、结果评定 以上各项数据满足自支承式拱顶的要求 (十二)、环行支座 1、支承受力分析(由于设备在室内,不考虑风载,仅按下计算) 公式:Ft=4Mmax/(nDb)+m0g/n 式中:n:支承数, Db:固定螺栓中心直径 2、刚性环的组合截面的惯性距 2.1、圆筒壳体上有效加强宽度 公式:Ls=1.1(Doδ
0.5 1e)
结论
合格
MPa MPa
0.17675781 0.00213948
结论
合格
N 个 mm
780572.711 4 4200
mm

料仓隔墙设计计算书原版

料仓隔墙设计计算书原版

料仓隔墙设计计算书一、工程概况根据本标段混凝土使用地为乐平互通式立体交叉、龙眼园高架桥、三花路高架桥、太院高架桥、芦泡涌大桥、卫东高架桥及涵洞和附属工程,为满足混凝土质量和施工需求,结和现场实际施工情况现于西二环MK62+50位置的线路右侧建立混凝土拌和站,共占地约11000m2。

料仓8个约2800m2,拟设置两座拌和楼,HZS120型,每座拌和楼每小时理论产量可达120m³。

按拌合站配料要求,不同粒径、不同品种分仓存放,不得混堆或交叉堆放,分料仓应采用50cm砼砌筑,2.5m高,采用水泥砂浆抹面,料仓内硬化C20砼浇筑20cm。

隔墙底部采用与之同宽的砼条形基础。

二、设计参数挡墙高度H=2.5m,挡墙厚度B=50cm,墙身采用C25砼浇筑成。

基础采用C25浇筑成的条形基础。

C25混凝土抗压强度设计值fc=11.9N/mm2,混凝土抗拉强度设计值ft=1.27 (N/mm2),混凝土弹性模量Ec=28000 (N/mm2), 砼强度系数βc=1.00。

初步设计:条形基础采用500mm×400mm的C25砼浇筑,即b=500mm。

取挡墙钢筋混凝土:25~26KN/M3;每米挡墙荷载N=2.5×0.5×25=31.25KN/m。

初步考虑条形基础底部承载力为200KPa。

即:b=500mm,h=400mm,考虑保护层ca=35mm,得h0=h-ca=365mm。

三、条形基础计算1、配筋计算(1)、主筋验算取受弯钢筋为4@φ16,得As=804mm2,N=4,φ=16mm;ρ=As/(b*h0)=804/(500*365)=0.44%受拉钢筋为4@φ12,得Asy=452mm2,Ny=4,φy=12mm;ρy=Asy/(b*h0)=452/(500*365)=0.25%得ξ=ρ*fy/(α1*fc)=0.049<ξb=0.55…………………(α1=1.00)得受压区高度x=ξ*h0=0.049*365=18mm<2ca,满足要求。

仓容计算公式

仓容计算公式

库房容量:指粮油加工企业符合《粮油仓储管理办法》和《粮油储藏技术规范》仓储设施与设备的基本要求,能够安全储原粮1年以上,直接为加工服务的原料仓、成品库的固定仓房设计储粮能力,不含粮库收储仓容。

不含封闭式的用于储粮的简单建筑物仓容,如罩棚等简易仓。

仓容:指仓房的设计能力。

一般按以下方法计算:
散装平房仓仓容计算公式:建筑面积×装粮高度×粮食容重×93%。

包装平房仓仓容计算公式:建筑面积×堆包高度×粮食容重×70%。

筒状粮仓仓容计算公式:〔3.14×内径半径2×装粮高度+漏斗锥体体积〕×粮食容重。

粮食容重统一按中等质量小麦容重计算,为750kg/m3。

优质原粮基地:指产业化龙头企业投资建设或与农民签订订单合同的专用原料基地。

油罐总罐容:仅统计单罐罐容1吨及以上的油罐罐容。

油罐容量按照设计容量确定,如设计容量不详,则按照以下公式计算:
圆柱体油罐容量计算:油罐容量(吨)=油罐底面积(m2)×油罐柱高(m)×0.9×0.92。

固体料仓计算NBT47003.2-2009

固体料仓计算NBT47003.2-2009

设备名称:仓壳圆筒内直径 mm D i 22500仓壳锥顶半顶角°θ22.5设计压力MPa P 0.029设计外压力MPa P 0-0.002设计温度℃T 100物料堆积密度Kg/m 3ρ1450物料内摩擦角的最小值°ψ35物料与壳体壁面的摩擦角°ψ'25物料与料仓间的摩擦系数 μ=tan(ψ')/μ0.466307658壳体材料//Q345R 壳体材料密度Kg/m 3ρ8000焊接接头系数/φ0.85设计温度下材料的许用应力MPa [σ]t213仓壳锥体半顶角°θ522.1水平地震力抗震设防烈度度/8设计地震分组//第二组设计基本地震加速度g /0.2料仓水平地震力N F E 8741035.627——料仓等效总质量Kgm eq8579518.083编制人:固体料仓计算-----(按照NB/T47003.2-2009《固体料仓》计算)1.物料载荷计算2.地震载荷——等效质量系数/λm 0.85——地震影响系数/α10.094414414——阻尼调整系数/η21.18018018——一阶振型阻尼比/ξ0.03——地震影响系数最大值/αmax 0.08——与物料相关系数/I 1.1距底面高度hi集中质量mi的水平地震力N F Ei 见表2——距底面h k 处的集中质量Kgm k见表22.3地震弯矩N·mm 见表3——计算截面距地面高度mm h 见表3——设备基础距地面高度mmh 03.1水平风力基本风压值N/m 2q 0750场地土类别//A 相邻计算截面间的水平风力N Pi 见表4——料仓各计算段的外径mm D 0i 见表4——风压高度变化系数/f i 见表4——料仓第i段顶截面距地面的高度m h it 见表4——体型系数/K 10.71.7见表4——料仓高度mmH34500——料仓各计算段的风振系数 (当H>20m时 )/K 2i 2.2垂直地震力3.风载荷——脉动增大系数/ξ 2.1505——脉动影响系数/v i 见表4——振型系数/φz i 见表4——第i段长度mml i见表43.2风弯矩料仓任意计算截面I-I处的风弯矩N·mm M W I-I 见表5料仓底截面为0-0处的风弯矩N·mmM W 0-0——物料自然堆积上锥角高度mm h c 7877——料仓计算截面以上的储料高度mm h w见表6——锥段以上物料堆积高度mm 170005雪载荷N W s 238988.9956——基本雪压值N/m 2q w 6006.1仓壳圆筒轴向应力计算见表64.3物料对仓壳圆筒任意截面I-I处产生的水平方向压应力MPa P h 见表64物料对仓壳圆筒的作用力6仓壳圆筒应力计算MPa P v 4.4物料与仓壳圆筒间的摩擦力MPa F f 见表64.2物料对仓壳圆筒任意截面I-I处产生的垂直方向压应力4.1特性纵坐标/A 41888设计产生的轴向应力I-I见表7MPaσz1——仓壳圆筒计算截面I-I处的有效厚度mmδ见表7eiI-I见表7物料与仓壳圆筒间摩擦力产生的轴向应力MPaσz2I-I见表7最大弯矩在仓壳圆筒内产生轴向应力MPaσz3I-I见表7由计算截面I-I以上料仓壳体重及垂直地震力产生的轴向应力MPaσz3——计算截面I-I以上料仓壳体及附件质量Kg m up见表7I-I——计算截面I-I以上料仓壳体质量Kg m1upI-I——平台、扶梯质量Kg m2upI-I——计算截面I-I以上的人孔、接管、法兰及仓壳顶安装的附件质量Kg maup6.2仓壳圆筒周向应力I-I见表7由设计压力p和物料的水平压应力ph在计算截面I-I处产生周向应力MPaσθ6.3应力组合6.3.1组合拉应力I-I见表7组合轴向应力MPaσzI-I见表7组合拉应力MPaσzLI-I见表7 6.3.2组合压应力MPaσzA6.3.4应力校核组合拉应力见表7组合压应力见表7——仓壳圆筒材料的许用轴向压应力MPa [σ]er见表7——载荷组合系数/K1.27.1仓壳锥体任意截面上的应力计算7.1.1仓壳锥体特性纵坐标值mm A z 见表8——仓壳锥体计算截面a-a处的内直径mm D zia-a见表8——物料在仓壳锥体计算截面a-a处的锥角高mm h zc 见表87.1.2物料对仓壳锥体的垂直压应力MPa p v a-a 见表87.1.3物料对仓壳锥体产生的水平压应力MPa p h a-a 见表87.1.4仓壳锥体任意截面处的法向压应力MPa p n a-a 见表87.1.5周向应力MPa σθa-a 见表87.1.6轴向应力MPa σza-a 见表8——仓壳锥体计算截面a-a处以下的仓壳锥体质量与仓壳锥体计算截面a-a以下的 仓壳锥体所储物料质量之和Kg m c a-a 见表8——锥壳下端开孔外直径mm /20007.2组合应力MPa σ∑a-a 见表87.3应力校核MPa/见表88.1裙座壳底截面的组合应力8裙座壳应力7仓壳锥体应力MPaσ1见表9MPaσ2见表90-0见表9——0-0截面处的垂直地震力,仅在最大弯矩为地震弯矩参与组合时计入此项N Fv——裙座壳底部截面积mm2A sb见表9——裙座半顶角,对圆柱形裙座,ψ=0°ψ0——裙座壳底部截面模数mm3Z sb见表9——裙座壳底部内直径mm D is22500——裙座壳底部壁厚mmδ见表9——裙座材料名称//Q345R ——设计温度下的裙座材料许用应力MPa[σ]t212——设计温度下的裙座材料屈服强度MPa R eL(R p0.2)345——设计温度下的裙座材料弹性模量MPa E t191000 8.2裙座上较大开孔处截面h-h组合应力MPaσ1见表9MPaσ2见表9h-h见表9——h-h截面处的垂直地震力,仅在最大弯矩为地震弯矩参与组合时计入此项N Fv——h-h截面处裙座壳的截面积mm2A sm见表9mm2A m——h-h截面处水平方向的最大宽度mm b m——h-h截面处裙座壳的内直径mm D is22500——开孔加长管长度mm l mh-h见表9——h-h截面处的最大弯矩N·mm Mmax——h-h截面处的风弯矩N·mm M w h-h 见表9——h-h截面以上料仓的操作质量Kg m 0h-h见表9——h-h截面以上料仓的试验质量,如不进行水压试验,可取为m 0h-h Kg m max h-h 见表9——h-h截面处裙座壳的截面模数mm 3Z sm见表99.1自支承式锥顶形仓壳顶仓壳顶有效厚度mm δt26.94090828——单位面积的仓壳顶质量与附加质量之和Kg/m 2m t 696.5306122——单位面积的仓壳顶质量Kg/m 2m t115——单位面积仓壳顶附加质量Kg/m 2m t25——单位面积仓壳顶上平均载荷Kg/m 2m t3600——锥顶母线与其水平投影线间之夹角,一般取10°~35°°β22.5——仓壳顶材料在设计温度下的弹性模量MPa E t 195000受内压锥顶的周向应力MPa σθ31.6445283校核公式MPa181.059.2自支承式拱形仓壳顶仓壳顶有效厚度mm δt8.21651318——拱形仓壳顶球壳内半径mm R n 10000受内压拱形仓壳顶的周向应力MPaσθ19.853312049仓壳顶计算结论:校核合格校核公式MPa181.05结论:校核合格9.3仓壳顶加强筋加强筋的最大弯矩N·mm M max213443.0454——集中载荷N W z6000——直径方向加强筋的数量个n24所需加强筋截面模数mm3Z min1002080.0259.4仓壳顶与仓壳圆筒连接处的加强结构仓壳顶、仓壳圆筒与包边角钢有效截面积之和mm2A j24470.91471——取设计压力P及设计外压P0中较大值MPa0.0299.5仓壳椎体与仓壳圆筒连接处的加强结构仓壳圆筒圆周方向拉力N/mm Y s1278.931309仓壳锥体母线方向拉力N/mm Y1350.6599931仓壳锥体圆周方向拉力N/mm Y23489.584448仓壳锥体圆周方向拉力N Q-2786147.094——仓壳锥体有效加强长度mm B n0——仓壳圆筒有效加强长度mm B n252.1606631当Q>0时,承压圈区域内所需截面积mm2A c按临界许用应力计算当Q<0时,承压圈区域内所需截面积mm2A c-31823.49622——设计温度下材料的许用压缩应力MPa[σ]cr1039.6仓壳圆筒加强结构9.6.1仓壳圆筒设计外压 P0=2.25f i q0×10-6+P in MPa P00.005079688——料仓内部负压值MPa P in0.0029.6.2料仓许用临界外压力MPa[P cr] 6.82415E-05——核算区间罐壁筒体的当量高度m H E11.772——核算区间最薄圈罐壁板的有效厚度mm t min见表10——第i圈罐壁板的有效厚度mm t i见表10——第i圈罐壁板的实际高度m h i见表10——第i圈罐壁板的当量高度m H ei见表10 9.6.3加强圈个数及位置需设置加强圈10裙座地脚螺栓座10.1基础环内外径数据——基础环外径mm D ob22800——基础环内径mm D ob22200——基础环面积mm2A b 2.1206E+07——基础环材料许用弯曲应力MPa[σ]b170——裙座基础板外边缘到裙座壳外表面的距离mm b132——基础环的截面模数mm3Z b 1.1773E+11 10.2基础环厚度10.2.1无筋板时mmδb42.868621555.990842339MPa 5.9908423394.70E+0010.2.2有筋板时mmδb35.79064119——矩形板计算力矩N·mm M s36294.1499N·mm|M x|23632.63652N·mm|M y|36294.1499——系数C x//-0.2264——系数C y//0.05629——裙座基础板外边缘到裙座壳外表面的距离 b=(D ob-D is)/2-δs mm b132——筋板间最大间距 l=(πD ob/n-l3-δG)/(n j+1)-δG mm l328——地脚螺栓个数/n48——两个螺栓座之间筋板数量/n j3——筋板内侧间距mm l3100——筋板厚度mmδG16 10.3地脚螺栓8.04E-02地脚螺栓承受的最大拉应力MPa8.04E-02-3.2940E+000-0——0-0截面处垂直地震力,仅在最大弯矩为地震弯矩参与组合时计入此项N Fv地脚螺栓小径mm20.54——地脚螺栓腐蚀裕量mm C23——地脚螺栓材料许用应力MPa[σ]bt14710.4筋板筋板压应力MPaσg 3.52322495——一个地脚螺栓承受的最大拉力N F35514.1——对应于一个地脚螺栓的筋板个数/n15——筋板宽度mm l2126筋板许用压应力当λ≤λc时MPa[σ]c110.94当λ>λc时MPa[σ]c——长细比/λ21.626——回转半径,对长方形截面的筋板取0.289δG mm i 4.624——筋板长度mm l k200——系数/ν 1.5169——临界长细比/λc135.95——筋板材料的许用应力MPa[σ]G170结论:校核通过10.5盖板10.5.1无垫板时盖板最大应力MPaσz53.77014823 10.5.2有垫板时盖板最大应力MPaσz49.06347743——垫板上的地脚螺栓孔直径mm d227——盖板上的地脚螺栓孔直径mm d340——垫板宽度mm l460——盖板厚度,一般分块厚度不小于基础环的厚度mmδc24——垫板厚度mmδz12 10.6仓壳筒体与裙座连接焊缝10.6.1仓壳圆筒与裙座搭接焊接接头MPa140.49合格MPa145.45合格——焊接接头扛剪断面面积mm2A w778080.2631——裙座壳顶部截面外直径mm D ot22536J-J——搭接接头处的垂直地震力,仅在最大弯矩为地震弯矩参与组合时计入N FvJ-J8.68E+10——搭接焊接接头处的最大弯矩N·mm MmaxJ-J 1.48E+10——搭接焊接接头处处的风弯矩N·mm Mw——地震弯矩N·mm M e8.31E+10J-J9.96E+06——水压试验时(或满仓时)料仓最大质量(不计裙座质量)Kg mmaxJ-J9583002.44——J-J截面以上料仓操作质量Kg m——焊接接头抗剪截面模数mm3Z w4385468641t215——设计温度下焊接接头的许用应力,取两侧母材许用应力的较小者MPa[σ]w——设计温度下焊接接头的屈服强度,取两侧母材屈服强度的较小者MPaσs42510.6.2仓壳圆筒与裙座对接焊接接头MPa-70.72合格——裙座顶截面的内直径mm D it22500。

料仓结构计算书

料仓结构计算书
-6.000
11.567
119
32.347
-6.000
11.771
120
33.347
-6.000
11.951
121
34.347
-6.000
12.109
122
35.347
-6.000
12.243
123
38.347
-6.000
12.510
124
39.347
-6.000
12.555
125
37.347
-6.000
12.444
126
36.347
-6.000
12.354
127
41.347
-6.000
12.577
128
42.347
-6.000
12.555
129
40.347
-6.000
12.577
130
43.347
-6.000
12.510
131
44.347
-6.000
12.444
132
45.347
-6.000
12.354
-6.000
13.020
51
41.847
-6.000
13.009
52
42.847
-6.000
12.976
53
43.847
-6.000
12.921
54
44.847
-6.000
12.844
55
45.847
-6.000
12.744
56
46.847
-6.000
12.622
57
47.847

固体料仓

固体料仓

JB/T 4735.3─XXXX《固体料仓》标准释义引言固体料仓是储存固体松散物料的容器,它区别于储存气体、液体的容器。

气体和液体在常温的自然状态下是无形的物质,松散的固体物料在自然状态下有堆积形态。

气体充满于所储存的容器内,以自身的压力对整个容器壁产生作用力。

液体盛装在容器里,对液面以下的容器壁,以液柱的静压对不同高度的壁面产生不同的作用力。

松散的固体物料盛装在容器里,对物料面以下的容器壁,产生垂直压力、水平压力、在物料流动的情况下对壁面还产生摩擦力。

所以设计固体料仓时除要考虑容器的共性外还要考虑到它的特殊性。

在古代,生产力发展到一定水平后,首先是稻谷、小麦、大豆等粮食类松散粒状固体物料要进行储存,人们用苇席编制、陶制、木制、砖木混制的各种容器、仓体等来储存多余的粮食。

而后随着生产力的飞速发展,科学、技术的进一步提高,除对粮食类物料外,对建筑材料中的沙石、水泥,及各种工业原料和产品等需要进行储存、配用,需要储存的松散固体物料的种类越来越多。

特别是粮食、水泥、煤炭成为料仓中储存的松散固体物料品种中最多的品种。

制造料仓的材料也随之出现了钢筋混泥土、钢材、铝材、复合材料制等多种材质。

仓体的形状也更多样化,出现了圆形、方形、矩形、星形、蜂窝形以及组合式等各种储存料仓,同时还产生了管风琴式、内置多卸料管式等均化料仓。

物料的输送方式和输送量也发生了巨大的变化,料仓的容积也越来越大,出现了上万立方米容量的特大型料仓。

料仓也成为一种具有独特用途和结构的设备。

料仓(bin,bunker)的种类繁多,其结构和制造工艺也相差甚远,其中金属制料仓具有占地面积小,具有先进的装、卸料工艺,机械化程度高,能保证储存的物料的质量等优点,成为工业用料仓中的一个不可缺少的设备。

本标准并未将所有料仓都包括在内,只涉及适用于石油、化工、化纤的工业用的金属制圆筒形料仓(也称筒仓,silo),以及能盛装在用金属制料仓里的,如粮食、建筑用物料用的料仓。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

固体料仓设计计算6 设计计算固体料仓的校核计算按以下步骤进行:a) 根据地震或风载的需要,选定若干计算截面(包括所有危险截面)。

b) 根据JB/T 4735的相应章节,按设计压力及物料的特性初定仓壳圆筒及仓壳锥体各计算截面的有效厚度δe 。

c) 按6.1~6.18条的规定依次进行校核计算,计算结果应满足各相应要求,否则需要重新设定有效厚度,直至满足全部校核条件为止。

固体料仓的外压校核计算按GB 150的相应章节进行。

6.1 符号说明 A —— 特性纵坐标值,mm ;B —— 系数,按GB 150确定,MPa ;C —— 壁厚附加量,C =C 1+C 2,mm ;C 1 —— 钢板的厚度负偏差,按相应材料标准选取,mm ; C 2 ——腐蚀裕量和磨蚀裕量,mm ;腐蚀裕量对于碳钢和低合金钢,取不小于1 mm ;对于不锈钢,当介质的腐蚀性极微时,取为0;对于铝及铝合金,取不小于1 mm ;对于裙座壳取不小于2 mm ;对于地脚螺栓取不小于3 mm ;磨蚀裕量对于碳素钢和低合金钢、铝及铝合金一般取不小于1mm ,对于高合金钢一般取不小于0.5mm 。

D i —— 仓壳圆筒内直径,mm ; D o —— 仓壳圆筒外直径,mm ;E t —— 材料设计温度下的弹性模量,MPa ;F f —— 物料与仓壳圆筒间的摩擦力,N ;F k1 —— 集中质量m k 引起的基本震型水平地震力,N ; F V —— 集中质量m k 引起的垂直地震力,N ; F Vi —— 集中质量i 引起的垂直地震力,N ; 00-V F ——料仓底截面处垂直地震力,N ;I I V F -—— 料仓任意计算截面处垂直地震力,仅在最大弯矩为地震弯矩参与组合时计入此项,N ;g —— 重力加速度,取g =9.81m/s 2; H —— 料仓总高度,mm ; H o —— 仓壳圆筒高度,mm ; H c —— 仓壳锥体高度,mm ;H i ——料仓顶部至第i 段底截面的距离,mm ;h —— 计算截面距地面高度(见图3),mm ; h c —— 物料自然堆积上锥角高度(见图7),mm ;h i —— 料仓第i 段集中质量距地面的高度(见图3),mm ;h k —— 任意计算截面I -I 以上集中质量m k 距地面的高度(见图3),mm ; h W —— 料仓计算截面以上的储料高度(见图7),mm ; I I E M -—— 任意计算截面I -I 处的基本振型地震弯矩,N·mm ; 00-E M —— 底部截面0-0处的地震弯矩,N·mm ; e M ——由偏心质量引起的弯矩,N·mm ;II w M -—— 任意计算截面I -I 处的风力弯矩,N·mm ;00-w M —— 底部截面0-0处的风力弯矩,N·mm ; I I M -m ax —— 任意计算截面I -I 处的最大弯矩,N·mm ; 00m ax -M —— 底部截面0-0处的最大弯矩,N·mm ; m c —— 仓壳锥体质量与仓壳锥体部分所储物料质量之和,kg ;m min —— 料仓最小质量,kg ;m t —— 单位面积的仓壳顶质量与附加质量之和,kg ; m o —— 料仓操作质量,kg ; m 05 —— 料仓储料质量,kg ; p —— 设计压力,MPa ; p o —— 设计外压力,MPa ;I I h p -——物料在仓壳圆筒计算截面I -I 处产生的水平压力,MPa ;I I v p -—— 物料在仓壳圆筒计算截面I -I 处产生的垂直压力,MPa ;a a h p -—— 物料对仓壳锥体计算截面a -a 处产生的水平压力,MPa ; a a n p -—— 物料对仓壳锥体计算截面a -a 处产生的法向压力,MPa ;a a v p -—— 物料对仓壳锥体计算截面a -a 处产生的垂直压力,MPa ;II II n p -—— 物料对仓壳锥体大端II -II 处产生的法向压力,MPa ;II II v p -—— 物料在仓壳锥体大端II -II 处产生的垂直压力,MPa ;q o ——基本风压值,见GB 50009,或按当地气象部门资料,但均不应小于300 N/m 2;q w ——基本雪压值,N/m 2。

对我国主要地区,q w 可从GB 50009中选取。

当表中查不到时,可向当地气象部门咨询或取 q w=300 N/m 2 。

当料仓露天建在山区时,应将上述雪压值乘以系数1.2。

R eL —— 常温下材料屈服点,MPa ;[]t R —— 设计温度下材料的许用应力,MPa ; T 1 —— 料仓基本自振周期,s ; W e —— 地震载荷,N ; W s —— 雪载荷,N ;ρ—— 物料堆积密度,kg/m 3;e δ—— 仓壳圆筒或仓壳锥体的有效壁厚,mm ;ei δ—— 各计算截面设定的仓壳圆筒或仓壳锥体的有效壁厚,mm ;t δ—— 仓壳顶的有效壁厚,mm ;θ—— 仓壳锥体的半顶角,(°); φ—— 焊接接头系数;μ—— 物料与料仓壳体间的摩擦系数;f σ—— 物料与料仓壳体间摩擦产生的应力,MPa ; z σ—— 组合轴向应力,MPa ; θσ—— 周向应力,MPa ; ∑σ—— 组合应力,MPa ;ψ—— 松散物料内摩擦角的最小值,(°); ψ’—— 松散物料与壳体壁面的摩擦角,(°)。

6.2 料仓的结构类型料仓壳体结构主要有拱顶式和锥顶式。

6.3 料仓质量计算料仓的操作质量按式(7)计算:e a o o o o o o m m m m m m m m ++++++=54321 (7)式中:m o —— 料仓的操作质量,kg ;m o 1 —— 仓壳(包括支座)质量,kg ; m o 2 —— 内件质量,kg ;m o 3 —— 保温、防护材料质量,kg ; m o 4 —— 平台、扶梯质量,kg ;m o 5 —— 操作时料仓内物料质量,kg ;m a —— 人孔、接管、法兰及仓壳顶安装的附件质量,kg ; m e —— 偏心质量,kg 。

料仓的最小质量按式(8)计算:e a o o o o m m m m m m m +++++=4321min (8)6.4 自振周期6.4.1 直径、厚度相等的料仓的基本自振周期直径、厚度相等的料仓其基本自振周期应按式(9)计算:331103390-⨯=ie t o D E H m H.T δ (9)6.4.2 2图2 多质点的体系示意图321131331110)()(8.114-=--==⨯-=∑∑∑ni i t i i n i i t i i i ni i I E H I E H H h m T (10)式中:t i E 、t i E 1-——第i 段、第i-1段仓壳材料在设计温度下的弹性模量,MPa ;m i —— 第i 段的操作质量,kg ;I i 、I i-1 —— 第i 段、第i-1段仓壳截面惯性矩,mm 4。

仓壳圆筒段: 8)(3eiei i i D I δδπ+=............................................................(11)仓壳锥体段: )(422if ie eiif ie i D D D D I +=δπ ………………………………………..(12)式中:D ie ——锥壳大端内直径,mm ;D if —— 锥壳小端内直径,mm ; 6.5 地震载荷 6.5.1 水平地震力任意高度h k (见图3)的集中质量k m 引起的基本振型水平地震力按式(13)计算:g m F k k k 111ηα= (13)式中:1k F ——集中质量m k 引起的基本振型水平地震力,N ;k m —— 距地面k h 处的集中质量,kg ;1α—— 对应于料仓基本自振周期T 1 的地震影响系数α值;α—— 地震影响系数,查图(4),曲线部分按图中公式计算。

m ax α—— 对应于设防烈度的地震影响系数最大值,见表18;表18 对应于设防烈度的地震影响系数最大值m ax α1k η—— 基本振型参与系数;∑∑===ni ii ni .ii .kk hm hm h13151511η (14)T g —— 各类场地土的特征周期,见表19 。

表19 场地土的特征周期T gζ——阻尼比。

固体料仓取 ζ=0.02;1η—— 直线下降段下降斜率的调整系数,按式(16)计算:()805.002.01ζη-+= (16)2η —— 阻尼调整系数,按式(17)计算:ζζη7.106.005.012+-+= (17)6.5.2 垂直地震力设防烈度为8度或9度区的料仓应考虑上下两个方向垂直地震力的作用,如图5所示。

料仓底截面处总的垂直地震力按式(18)计算:g m F eq v v max 00α=-... .. (18)式中:m ax v α——垂直地震影响系数最大值,取max max 65.0αα=v ;eq m —— 料仓的当量质量,取o eq m m 75.0=,kg 。

任意质量i 处所分配的垂直地震力按式(19)计算。

∑=-=nk kk v i i vi h m F h m F 100(i =1,2,……n ) …………….………………(19) 任意计算截面I-I 处的垂直地震力按式(20)计算。

n料仓任意计算截面I-I 的基本振型地震弯矩按式(21)计算(见图3):∑=--=nik k k I I Eh h F M)(1 (21)直径、厚度相等的料仓的任意截面I -I 和底截面0-0的基本振型地震弯矩分别按式(22)和式(23)计算:)41410(17585.35.25.35.201h h H H Hgm M I I E +-=-α …………….………(22) gH m M E 01003516α=- …………………………………….(23) 6.6 风载荷 6.6.1 水平风力两相邻计算截面间的水平风力按式(26)计算:601110211110-⨯=D l f q K K P ..........................................(24) 602220221210-⨯=D l f q K K P .......................................(25) 6002110-⨯=i i i i i D l f q K K P .. (26)式中:1P , 2P ,……, i P ——料仓各计算段的水平风力,N ;D 01, D 02, ……, D 0i —— 料仓各计算段的外径,mm ;i f —— 风压高度变化数系,按表20选取: H it —— 料仓第i 段顶截面距地面的高度, m ; K 1—— 体型系数,取K 1=0.7;K 21, K 22 ,……, K 2i —— 料仓各计算段的风振系数,当料仓高度H≤20m 时,取K 2i=1 .70,当H >20m 时,按式(27)计算:izii i i f K Φ+=νξ12 (27)i ξ—— 脉动增大系数,按表21选取;i v —— 第i 段脉动影响系数,按表22选取;zi Φ—— 第i 段振型系数,根据h it / H 由表23选取; i l —— 第i 计算段长度(见图6), mm ;表20 风压高度变化系数i fξ表21 脉动增大系数i表22 脉动影响系数 i ν表23 振型系数 zi Φ6.6.2 风弯矩料仓任意计算截面I -I 处的风弯矩按式(28)计算:++++++=+++++-)2()2(221211i i i i i i i i i I I w ll l P l l P l P M ………………(28) 料仓底截面为0-0处的风弯矩按式(29)计算:++++++=-)2()2(232132121100l l l P l l P l P M w (29)偏心质量引起的弯矩按式(30)计算:ge m M e e = (30)式中 e ——偏心质量重心至料仓中心线的距离,mm 。

相关文档
最新文档