2016年广东华附奥校招生数学真卷
广州市华附奥校小升初数学期末试卷测试卷(解析版)
广州市华附奥校小升初数学期末试卷测试卷(解析版)一、选择题1.玻璃店有几种不同规格的玻璃,小明想做一个长方体的鱼缸(无盖).他应该选择方案()(图中单位dm).①②③④⑤A.①玻璃2块,②玻璃2块,④玻璃2块B.③玻璃2块,④玻璃2块,②玻璃1块C.①玻璃2块,②玻璃2块,④玻璃1块D.②玻璃2块,④玻璃2块,⑤玻璃1块2.一种收音机,每台售价从120元降到100元,这种收音机的售价降低了百分之几?正确的算式是()。
A.(120﹣100)÷120 B.100÷120 C.(120﹣100)÷1003.下面说法中错误的有()句。
①把一个圆柱削成最大的圆锥,削去部分的体积是圆锥体积的2倍;②一项工程,甲队独立完成需12天,乙队独立完成需10天,甲队与乙队的工作效率的最简单整数比是5∶6;③某商店同时卖出两件商品,卖价均为120元,其中一件盈利20%,另一件亏本20%,这个商店卖出这两件商品,相对成本而言,总体上不亏不赚;④一个三角形的三个内角的度数的比是3∶4∶5,则这个三角形是锐角三角形;⑤两个不同的自然数的和,一定比这两个自然数的积小;⑥两个半圆一定能拼成一个整圆。
A.2 B.3 C.4 D.54.两根长都是3米的管子,第一根用去米,第二根用去它的,比较用去的管子长度,结果是()A.第一根用去的长B.第二根用去的长C.两根用去的一样长D.不能确定5.一个立方体的六个面上分别标上了数1点、2点、3点、4点、5点、6点,下图是从三个不同角度观察到的情况.“3点”这一面相对的面是()A.2点B.4点C.6点或4点6.统计学校人数发现,女生人数比男生人数少10%,已知男生共680人。
下列算式中计算全校人数错误的是()。
A.2×680-(680×10%)B.680×(1+1-10%)C.680×(1-10%)+680 D.680×(1+10%)+6807.一个圆柱的底面半径是5分米。
广州市华附奥校新初一分班数学试卷含答案
广州市华附奥校新初一分班数学试卷含答案一、选择题1.一个零件长4毫米,画在图上长12厘米。
这幅图的比例尺是( )。
A .1∶30B .1∶3C .30∶1D .3∶12.如图所示是一个正方体展开图,和这个展开图对应的正方体是( )A .B .C .D .3.一桶油用去35千克,还剩15千克,剩下的比用去的少百分之几?正确的算式是( )。
A .()351535-÷ B .()353515÷+ C .()153515÷+D .1535÷4.有一个等腰三角形,其中两个角的度数之比是1∶2。
这个三角形按角分不可能是( )。
A .锐角三角形B .直角三角形C .钝角三角形5.如果x 是一个大于0的数,那么x +79和x×79比较的结果是( )。
A .x×79大B .x +79大C .无法确定6.下图是一个正方体的展开图,在这个正方体中,和“美”相对的面是( )。
A .建B .晋C .丽D .城7.铁路提速后,从甲地到乙地时间由16小时缩短到10小时,下列说法错误的是( )。
A .速度比原来提高60% B .时间比原来减少37.5% C .现在速度是原来的62.5%D .现在与原来速度比是8∶58.图中,将长方形绕直线L 旋转一周形成一个圆柱,这个圆柱的底面积是( )cm 2。
A .3.14B .12.56C .78.59.一种商品提价20%后,又降价20%,现在的价格( )。
A.与原价相同B.比原价低C.比原价高10.古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”,从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+31二、填空题11.3.2时=(______)时(______)分 5千克80克=(______)千克十12.(________)÷24=14∶(________)=78=(________)%。
2016年广东广州天河华附初三一模数学试卷答案
4. 一组数据3,6,4,5,3,2,则这组数据的中位数和极差是( ).
A. , 4.5 2
B. , 4 6
C. , 4 4
答案 D
解 析 把这组数据从小到大排列为:2,3,3,4,5,6, 中位数是第3、4个数的平均数, 则这组数据的中位数 3 + 4 ; = 3.5
2
极差是:6 − 2 = 4 ; 故选D.
2018/12/03
18. 如图,在△ABC中,AD是BC边上的中线,分别过点C、B作射线AD的垂线段,垂足分别为E、F.求证:BF = . CE
答 案 证明见解析.
解析
∵ , , C E⊥AF F B⊥AF ∴ . ∘
∠DEC = ∠DF B = 90
又∵AD为BC 边上的中线, ∴ . BD = C D 又∵ , ∠EDC = ∠F DB ∴ ≌ . △BF D △C ED ∴ . BF = C E
径为√− 1− 3,则点P 的坐标为
.
答案
(3 , 2)
解 析 过点P 作P D⊥x轴于点D,连接OP ,
∵ , , A(6 , 0) P D⊥OA
∴ , OD = OA = 3
在 中, Rt△OP D
∵ , , −− OP = √13 OD = 3
∴ , P D
=
−−−−−−−−−−
√OP 2 −
∴ , ,即 , α + β = −2
2 α + 2α − 2007 = 0
2 α + 2α = 2007
则 . 2
2
α + 3α + β = α + 2α + α + β = 2007 − 2 = 2005
广东省广州市华南师范大学附属中学2016届九年级中考一模数学试题解析(解析版)
一、选择题(每小题3分,共30分) 1.﹣3的相反数是()A.3 B.﹣3 C.±3 D.1 3【答案】A【解析】试题分析:依据相反数的概念求解.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.可求得-3的相反数就是3.故选A.考点:相反数2.下列计算正确的是()A.2﹣1=﹣2 B±3 C.(a4)3=a7D.﹣(3pq)2=﹣9p2q2【答案】D【解析】考点:1、幂的乘方与积的乘方;2、算术平方根;3、负整数指数幂3.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()A.B.C.D.【答案】B【解析】试题分析:据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.可知:A、C、D不是轴对称图形,不符合题意;B、是轴对称图形,符合题意.故选B.考点:轴对称图形4.一组数据3,6,4,5,3,2,则这组数据的中位数和极差是()A.4.5,2 B.4,6 C.4,4 D.3.5,4【答案】D【解析】试题分析:把这组数据从小到大排列为:2,3,3,4,5,6,中位数是第3、4个数的平均数,则这组数据的中位数342=3. 5;极差是:6-2=4.故选D.考点:1、极差;2、中位数5.如图所示几何体的俯视图是()A.B.C.D.【答案】D【解析】试题分析:从上面看可得到三个左右相邻的中间有两个界限的长方形.故选D.考点:简单几何体的三视图6.如图,在▱ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC交BC边于点E,则BE等于()A cm B.2cm C.3cm D.4cm【解析】试题分析:由在▱ABCD中,可得CD=AD=6cm,BC=AD=8cm,又由DE平分∠ADC,易证得△CDE是等腰三角形,即可求得CE=CD=6cm,继而求得BE=BC﹣CE=2cm.故选B.考点:平行四边形的性质7.如图,在数轴上所表示的是哪一个不等式的解集()A.12x>﹣1 B.32x≥﹣3 C.x+1≥﹣1 D.﹣2x>4【答案】C【解析】考点:在数轴上表示不等式的解集8.已知一次函数y=kx+b的图象如图,那么正比例函数y=kx和反比例函数y=bx在同一坐标系中的图象大致是()A. B. C.D.【答案】C试题分析:如图所示,由一次函数y=kx+b的图象经过第一、三、四象限,可得k>0,b<0.因此可知正比例函数y=kx的图象经过第一、三象限,反比例函数y=bx的图象经过第二、四象限.综上所述,符合条件的图象是C选项.故选:C.考点:1、反比例函数的图象;2、一次函数的图象;3、一次函数图象与系数的关系9.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35° B.40° C.50° D.65°【答案】C【解析】试题分析:根据两直线平行,内错角相等可得∠ACC′=∠CAB=65°,根据旋转的性质可得AC=AC′,然后利用等腰三角形两底角相等求∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,再根据∠CAC′、∠BAB′都是旋转角可知∠CAC′=∠BAB′=50°.故选C.考点:旋转的性质10.若α、β是方程x2+2x﹣2007=0的两个实数根,则α2+3α+β的值()A.2007 B.2005 C.﹣2007 D.4010【答案】B【解析】试题分析:根据方程的解的概念及根与系数的关系得α+β=-2、α2+2α=2007,整体代入到α2+3α+β=α2+2α+α+β=2007-2=2005,故选:B.考点:根与系数的关系二、填空题(每小题3分,共18分)11有意义时,x应满足的条件是.【答案】x>1【解析】试题分析:直接利用二次根式的定义可得x-1>0,解得:x>1.考点:二次根式有意义的条件12.分解因式:x3﹣xy2= .【答案】x(x+y)(x-y)【解析】试题分析:首先提取公因式x,进而利用平方差公式分解因式得出答案,可得x3-xy2=x(x2-y2)=x(x+y)(x-y).考点:分解因式13.一个不透明的口袋里有4张形状完全相同的卡片,分别写有数字1、2、3、4,口袋外有两张卡片,分别写有数字2、3,现随机从口袋里取出一张卡片,则这张卡片与口袋外的卡片上的数字能构成三角形的概率是.【答案】3 4【解析】试题分析:由一个不透明的口袋里有4张形状完全相同的卡片,分别写有数字1,2,3,4,可得共有4种等可能的结果,又由这张卡片与口袋外的两张卡片上的数作为三角形三边的长,能构成三角形的有:2,2,3;3,2,3;4,2,3;共3种情况,然后利用概率公式求解即可求得能构成三角形的概率是:34.考点:1、概率公式;2、三角形三边关系14.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P,则点P的坐标为.【答案】(3,2)【解析】试题分析:过点P 作PD ⊥x 轴于点D ,连接OP ,先由垂径定理求出OD=12OA=3,再由,OD=3,根据勾股定理求出P (3,2).考点:1、垂径定理;2、坐标与图形性质;3、勾股定理15.如图,量角器的直径与直角三角板ABC 的斜边AB 重合,其中量角器0刻度线的端点N 与点A 重合,射线CP 从CA 处出发沿顺时针方向以每秒3度的速度旋转,CP 与量角器的半圆弧交于点E ,第24秒,点E 在量角器上对应的读数是 度.【答案】144【解析】试题分析:首先连接OE ,由∠ACB=90°,易得点E ,A ,B ,C 共圆,然后由圆周角定理,求得∠AOE=2∠ACE=144°,所以点E 在量角器上对应的读数是144°.考点:圆周角定理16.在Rt△ABC中,∠A=90°,有一个锐角为60°,BC=6.若点P在直线AC上(不与点A,C重合),且∠ABP=30°,则CP的长为.【答案】6或或【解析】试题分析:如图1:当∠C=60°时,∠ABC=30°,与∠ABP=30°矛盾;如图2:当∠C=60°时,∠ABC=30°,∵∠ABP=30°,∴∠CBP=60°,∴△PBC 是等边三角形,∴CP=BC=6;如图3:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°﹣30°=30°,∴PC=PB ,∵BC=6,∴AB=3,∴PC=PB=3cos30 如图4:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°+30°=90°,∴PC=BC故答案为:6或.考点:解直角三角形三、解答题17.解方程:x2﹣10x+9=0.【答案】x1=1,x2=9【解析】试题分析:先分解因式,即可得出两个一元一次方程,求出方程的解即可.试题解析: x2﹣10x+9=0,(x﹣1)(x﹣9)=0,x﹣1=0,x﹣9=0,x1=1,x2=9.考点:解一元二次方程-因式分解法18.如图,在△ABC中,AD是BC边上的中线,分别过点C、B作射线AD的垂线段,垂足分别为E、F.求证:BF=CE.【答案】证明见解析【解析】试题分析:求出∠DEC=∠DFB=90°,DB=DC,根据AAS证△BFD≌△CED,根据全等三角形的性质推出即可.试题解析:∵CE⊥AF,FB⊥AF,∴∠DEC=∠DFB=90°,又∵AD为BC边上的中线,∴BD=CD,在△BFD 和△CED 中BFD CED BDF CDE BD DC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BFD ≌△CED (AAS ),∴BF=CE .考点:全等三角形的判定与性质19.先化简,再求值:2221122a ab b a b b a -+⎛⎫÷- ⎪-⎝⎭,其中b=2. 【答案】2ab【解析】试题分析:先算括号里面的,再算除法,最后把a 、b 的值代入进行计算即可. 试题解析:2221122a ab b a b b a -+⎛⎫÷- ⎪-⎝⎭=()()22a b a b a b ab--÷- =2a b ab a b -⋅- =2ab , 当b=2时,原式考点:实数的运算20.为实施“农村留守儿童关爱计划”,某校结全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:(1)求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;(2)某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.【答案】(1)4(2)13【解析】试题分析:(1)根据留守儿童有6名的班级有4个,占20%,可求得有留守儿童的班级总数,再求得留守儿童是2名的班数;(2)由(1)得只有2名留守儿童的班级有2个,共4名学生.设A 1,A 2来自一个班,B 1,B 2来自一个班,列出树状图可得出来自一个班的共有4种情况,则所选两名留守儿童来自同一个班级的概率.试题解析:(1)该校班级个数为4÷20%=20(个),只有2名留守儿童的班级个数为:20﹣(2+3+4+5+4)=2(个),该校平均每班留守儿童的人数为: 12223344556420⨯+⨯+⨯+⨯+⨯+⨯=4(名), 补图如下:;(2)由(1)得只有2名留守儿童的班级有2个,共4名学生.设A 1,A 2来自一个班,B 1,B 2来自一个班,由树状图可知,共有12种可能的情况,并且每种结果出现的可能性相等,其中来自一个班的共有4种情况,则所选两名留守儿童来自同一个班级的概率为:41 123.考点:1、条形统计图;2、扇形统计图;3、列表法与树状图法21.两个城镇A、B与两条公路ME,MF位置如图所示,其中ME是东西方向的公路.现电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路ME,MF的距离也必须相等,且在∠FME的内部.(1)点C应选在何处?请在图中,用尺规作图找出符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)(2)点C到公路ME的距离为2km,设AB的垂直平分线交ME于点N,点M处测得点C位于点M的北偏东60°方向,在N处没得点C位于点N的北偏西45°方向,求MN的长(结果保留根号)【答案】(1)作图见解析(2)+2km【解析】试题分析:(1)到城镇A、B距离相等的点在线段AB的垂直平分线上,到两条公路距离相等的点在两条公路所夹角的角平分线上,分别作出垂直平分线与角平分线,它们的交点即为所求作的点C;(2)作CD⊥MN于点D.由三角函数得出CD,DN=CD,于是得到结论.试题解析:(1)如图所示,点C即为所求;(2)作CD ⊥MN 于点D ,由题意得:∠CMN=30°,∠CND=45°,∵在Rt △CMD 中,CD MD=tan ∠CMN ,∴∵在Rt △CND 中,CD DN=tan ∠CNM , ∴ND=CD=2,∵+2km ,考点:1、解直角三角形的应用-方向角问题;2、线段垂直平分线的性质22.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y (微克/毫升)与服药时间x 小时之间函数关系如图所示(当4≤x ≤10时,y 与x 成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y 与x 之间的函数关系式.(2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?【答案】(1)y=32x(4≤x ≤10)(2)6 【解析】 试题分析:(1)分别利用正比例函数以及反比例函数解析式求法得出即可;(2)利用y=4分别得出x 的值,进而得出答案.试题解析:(1)当0≤x ≤4时,设直线解析式为:y=kx ,将(4,8)代入得:8=4k ,解得:k=2,故直线解析式为:y=2x ,当4≤x ≤10时,设直反比例函数解析式为:y=4a ,将(4,8)代入得:8=4a , 解得:a=32, 故反比例函数解析式为:y=32x ; 因此血液中药物浓度上升阶段的函数关系式为y=2x (0≤x ≤4),下降阶段的函数关系式为y=32x(4≤x ≤10). (2)当y=4,则4=2x ,解得:x=2,当y=4,则4=32x,解得:x=8, ∵8﹣2=6(小时),∴血液中药物浓度不低于4微克/毫升的持续时间6小时.考点:1、反比例函数的应用;2、一次函数的应用23.如图,AB 是⊙O 的弦,D 为半径OA 的中点,过D 作CD ⊥OA 交弦AB 于点E ,交⊙O 于点F ,且CE=CB .(1)求证:BC 是⊙O 的切线;(2)连接AF 、BF ,求∠ABF 的度数;(3)如果CD=15,BE=10,sinA=513,求⊙O 的半径.【答案】(1)证明见解析(2)30°(3)485【解析】 试题分析:(1)连接OB ,由圆的半径相等和已知条件证明∠OBC=90°,即可证明BC 是⊙O 的切线;(2)连接OF ,AF ,BF ,首先证明△OAF 是等边三角形,再利用圆周角定理:同弧所对的圆周角是所对圆心角的一半即可求出∠ABF 的度数;(3)过点C 作CG ⊥BE 于G ,根据等腰三角形的性质得到EG=12BE=5,由两角相等的三角形相似,△ADE ∽△CGE ,利用相似三角形对应角相等得到sin ∠ECG=sinA=513,在Rt △ECG 中,利用勾股定理求出CG 的长,根据三角形相似得到比例式,代入数据即可得到结果.试题解析:(1)连接OB,∵OB=OA,CE=CB,∴∠A=∠OBA,∠CEB=∠ABC,又∵CD⊥OA,∴∠A+∠AED=∠A+∠CEB=90°,∴∠OBA+∠ABC=90°,∴OB⊥BC,∴BC是⊙O的切线;(2)如图1,连接OF,AF,BF,∵DA=DO,CD⊥OA,∴AF=OF,∵OA=OF,∴△OAF是等边三角形,∴∠AOF=60°,∴∠ABF=12∠AOF=30°;(3)如图2,过点C作CG⊥BE于G,∵CE=CB,∴EG=12BE=5,∵∠ADE=∠CGE=90°,∠AED=∠GEC,∴∠GCE=∠A,∴△ADE∽△CGE,∴sin∠ECG=sinA=513EGCE=,即CE=13,在Rt△ECG中,∵=12,∵CD=15,CE=13,∴DE=2,∵△ADE∽△CGE,∴AD DE CG GE=,∴AD=DEGE,CG=245,∴⊙O的半径OA=2AD=48 5.考点:1、切线的判定;2、相似三角形的判定与性质24.类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)概念理解:如图1,在四边形ABCD中,添加一个条件使得四边形ABCD是“等邻边四边形”.请写出你添加的一个条件.(2)问题探究:①小红猜想:对角线互相平分的“等邻边四边形”是菱形,她的猜想正确吗?请说明理由.②如图2,小红画了一个Rt△ABC,其中∠ABC=90°,AB=2,BC=1,并将Rt△ABC沿∠ABC的平分线BB′方向平移得到△A′B′C′,连结AA′,BC′,小红要使平移后的四边形ABC′A′是“等邻边四边形”,应平移多少距离(即线段BB′的长)?(3)拓展应用:如图3,“等邻边四边形”ABCD中,AB=AD,∠BAD+∠BCD=90°,AC,BD为对角线,AB,试探究BC,CD,BD的数量关系.【答案】(1)AB=BC或BC=CD或CD=AD或AD=AB(任写一个即可);(2)①正确(3)BC2+CD2=2BD2【解析】试题分析:(1)由“等邻边四边形”的定义易得出结论;(2)①先利用平行四边形的判定定理得平行四边形,再利用“等邻边四边形”定义得邻边相等,得出结论;②由平移的性质易得BB′=AA′,A′B′∥AB邻边四边形”定义分类讨论,由勾股定理得出结论;(3)由旋转的性质可得△ABF≌△ADC,由全等性质得∠ABF=∠ADC,∠BAF=∠DAC,AF=AC,FB=CD,利用相似三角形判定得△ACF∽△ABD,由相似的性质和四边形内角和得∠CBF=90°,利用勾股定理,等量代换得出结论.试题解析:(1)AB=BC或BC=CD或CD=AD或AD=AB(任写一个即可);(2)①正确,理由为:∵四边形的对角线互相平分,∴这个四边形是平行四边形,∵四边形是“等邻边四边形”,∴这个四边形有一组邻边相等,∴这个“等邻边四边形”是菱形;②∵∠ABC=90°,AB=2,BC=1,∴,∵将Rt△ABC平移得到△A′B′C′,∴BB′=AA′,A′B′∥AB,(I)如图1,当AA′=AB时,BB′=AA′=AB=2;(II)如图2,当(III)当时,如图3,延长C′B′交AB于点D,则C′B′⊥AB,∵BB′平分∠ABC,∴∠ABB′=12∠ABC=45°,∴∠BB′D=′∠ABB′=45°∴B′D=B,设B′D=BD=x,则C′D=x+1x,∵在Rt△BC′D中,BD2+(C′D)2=(BC′)2∴x2+(x+1)2=2,解得:x1=1,x2=﹣2(不合题意,舍去),(Ⅳ)当BC′=AB=2时,如图4,与(Ⅲ)方法一同理可得:BD2+(C′D)2=(BC′)2,设B′D=BD=x,则x2+(x+1)2=22,解得:x1,x2(不合题意,舍去),;(3)BC ,CD ,BD 的数量关系为:BC 2+CD 2=2BD 2,如图5,∵AB=AD ,∴将△ADC 绕点A 旋转到△ABF ,连接CF ,∴△ABF ≌△ADC ,∴∠ABF=∠ADC ,∠BAF=∠DAC ,AF=AC ,FB=CD ,∴∠BAD=∠CAF ,AC AD AF AB==1, ∴△ACF ∽△ABD ,∴CF AC BD AB=,∴BD , ∵∠BAD+∠ADC+∠BCD+∠ABC=360°,∴∠ABC+∠ADC ﹣360°﹣(∠BAD+∠BCD )=360°﹣90°=270°,∴∠ABC+∠ABF=270°,∴∠CBF=90°,∴BC 2+FB 2=CF 2=BD )2=2BD 2,∴BC 2+CD 2=2BD 2.考点:四边形综合题25.在平面直角坐标系中,已知抛物线y=12-x 2+bx+c (b ,c 为常数)的顶点为P ,等腰直角三角形ABC 的顶点A 的坐标为(0,﹣1),C 的坐标为(4,3),直角顶点B 在第四象限.(1)如图,若该抛物线过A ,B 两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P 在直线AC 上滑动,且与AC 交于另一点Q .(i )若点M 在直线AC 下方,且为平移前(1)中的抛物线上的点,当以M 、P 、Q 三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M 的坐标;(ii )取BC 的中点N ,连接NP ,BQ .试探究PQ NP BQ+是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.【答案】(1)y=12-x 2+2x ﹣1(2)i :M 1(4,﹣1),M 2(﹣2,﹣7),M 3(,﹣,M 4(1,﹣2);【解析】试题分析:(1)先求出点B 的坐标,然后利用待定系数法求出抛物线的函数表达式;(2)i )首先求出直线AC 的解析式和线段PQ 的长度,作为后续计算的基础.若△MPQ 为等腰直角三角形,则可分为以下两种情况:①当PQ 为直角边时:点M 到PQ 的距离为AC 向右平移4个单位后所得直线(y=x ﹣5)与抛物线的交点,即为所求之M 点;②当PQ 为斜边时:点M 到PQ .此时,将直线AC 向右平移2个单位后所得直线(y=x ﹣3)与抛物线的交点,即为所求之M 点.ii )由(i )可知,PQ=NP+BQ 取最小值时,PQ NP BQ+有最大值. 如答图2所示,作点B 关于直线AC 的对称点B′,由分析可知,当B′、Q 、F (AB 中点)三点共线时,NP+BQ最小,最小值为线段B′F 的长度.试题解析:(1)∵等腰直角三角形ABC 的顶点A 的坐标为(0,﹣1),C 的坐标为(4,3) ∴点B 的坐标为(4,﹣1).∵抛物线过A (0,﹣1),B (4,﹣1)两点, ∴1116412c b c =-⎧⎪⎨-⨯++=-⎪⎩,解得:b=2,c=﹣1, ∴抛物线的函数表达式为:y=12-x 2+2x ﹣1. (2)方法一:i )∵A (0,﹣1),C (4,3),∴直线AC 的解析式为:y=x ﹣1.设平移前抛物线的顶点为P 0,则由(1)可得P 0的坐标为(2,1),且P 0在直线AC 上. ∵点P 在直线AC 上滑动,∴可设P 的坐标为(m ,m ﹣1),则平移后抛物线的函数表达式为:y=12-(x ﹣m )2+m ﹣1. 解方程组:()()21112y x y x m m =-⎧⎪⎨=--+-⎪⎩, 解得111x m y m =⎧⎨=-⎩,2223x m y m =-⎧⎨=-⎩ ∴P (m ,m ﹣1),Q (m ﹣2,m ﹣3).过点P 作PE ∥x 轴,过点Q 作QF ∥y 轴,则PE=m ﹣(m ﹣2)=2,QF=(m ﹣1)﹣(m ﹣3)=2.∴PQ=0.若以M 、P 、Q 三点为顶点的等腰直角三角形,则可分为以下两种情况:①当PQ 为直角边时:点M 到PQ的距离为PQ 的长).由A (0,﹣1),B (4,﹣1),P 0(2,1)可知,△ABP 0为等腰直角三角形,且BP 0⊥AC ,BP 0=.如答图1,过点B 作直线l 1∥AC ,交抛物线y=12-x 2+2x ﹣1于点M ,则M 为符合条件的点.∴可设直线l 1的解析式为:y=x+b 1,∵B (4,﹣1),∴﹣1=4+b 1,解得b 1=﹣5,∴直线l 1的解析式为:y=x ﹣5.解方程组2521y x y x x =-⎧⎨=-+-⎩,得:1141x y =⎧⎨=-⎩,2227x y =-⎧⎨=-⎩ ∴M 1(4,﹣1),M 2(﹣2,﹣7).②当PQ 为斜边时:MP=MQ=2,可求得点M 到PQ.如答图2,取AB 的中点F ,则点F 的坐标为(2,﹣1).由A (0,﹣1),F (2,﹣1),P 0(2,1)可知:△AFP 0为等腰直角三角形,且点F 到直线AC.过点F 作直线l 2∥AC ,交抛物线y=12-x 2+2x ﹣1于点M ,则M 为符合条件的点. ∴可设直线l 2的解析式为:y=x+b 2,∵F (2,﹣1),∴﹣1=2+b 2,解得b 2=﹣3,∴直线l 2的解析式为:y=x ﹣3. 解方程组231212y x y x x =-⎧⎪⎨=-+-⎪⎩,得:1112x y ⎧=⎪⎨=-+⎪⎩,2212x y ⎧=-⎪⎨=-⎪⎩∴M 3(,﹣,M 4(12.综上所述,所有符合条件的点M 的坐标为:M 1(4,﹣1),M 2(﹣2,﹣7),M 3(,M 4(12.方法二:∵A (0,1),C (4,3),∴l AC :y=x ﹣1,∵抛物线顶点P 在直线AC 上,设P (t ,t ﹣1), ∴抛物线表达式:21()12y x t t =--+-, ∴l AC 与抛物线的交点Q (t ﹣2,t ﹣3),∵一M 、P 、Q 三点为顶点的三角形是等腰直角三角形,P (t ,t ﹣1),①当M 为直角顶点时,M (t ,t ﹣3),212132t t t -+-=-,∴t=1∴M 1(2),M 2(12,②当Q 为直角顶点时,点M 可视为点P 绕点Q 顺时针旋转90°而成,将点Q (t ﹣2,t ﹣3)平移至原点Q′(0,0),则点P 平移后P′(2,2), 将点P′绕原点顺时针旋转90°,则点M′(2,﹣2),将Q′(0,0)平移至点Q (t ﹣2,t ﹣3),则点M′平移后即为点M (t ,t ﹣5), ∴212152t t t -+-=-, ∴t 1=4,t 2=﹣2,∴M 1(4,﹣1),M 2(﹣2,﹣7),③当P 为直角顶点时,同理可得M 1(4,﹣1),M 2(﹣2,﹣7),综上所述,所有符合条件的点M 的坐标为:M 1(4,﹣1),M 2(﹣2,﹣7),M 3(,M 4(12. ii )PQ NP BQ+存在最大值.理由如下:由i )知PQ=NP+BQ 取最小值时,PQ NP BQ +有最大值.如答图2,取点B 关于AC 的对称点B′,易得点B′的坐标为(0,3),BQ=B′Q. 连接QF ,FN ,QB′,易得FN ∥PQ ,且FN=PQ ,∴四边形PQFN 为平行四边形.∴NP=FQ .∴NP+BQ=FQ+=∴当B′、Q 、F 三点共线时,NP+BQ 最小,最小值为∴PQ NP BQ + 考点:二次函数综合题。
广州市华附奥校数学全等三角形单元测试卷(解析版)
广州市华附奥校数学全等三角形单元测试卷(解析版)一、八年级数学轴对称三角形填空题(难)1.如图,在菱形ABCD中,∠ABC=120°,AB=10cm,点P是这个菱形内部或边上的一点.若以P,B,C为顶点的三角形是等腰三角形,则P,A(P,A两点不重合)两点间的最短距离为______cm.-【答案】10310【解析】解:连接BD,在菱形ABCD中,∵∠ABC=120°,AB=BC=AD=CD=10,∴∠A=∠C=60°,∴△ABD,△BCD都是等边三角形,分三种情况讨论:①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短”,即当点P与点D重合时,PA最小,最小值PA=10;②若以边PB为底,∠PCB为顶角时,以点C为圆心,BC长为半径作圆,与AC相交于一点,则弧BD(除点B外)上的所有点都满足△PBC是等腰三角形,当点P在AC上时,AP-;最小,最小值为10310③若以边PC为底,∠PBC为顶角,以点B为圆心,BC为半径作圆,则弧AC上的点A与点D均满足△PBC为等腰三角形,当点P与点A重合时,PA最小,显然不满足题意,故此种情况不存在;-(cm).综上所述,PA的最小值为10310-.故答案为:10310点睛:本题考查菱形的性质、等边三角形的性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.2.在Rt△ABC中,∠ABC=90°,AB=3,BC=4,点E,F分别在边AB,AC上,将△AEF沿直线EF 翻折,点A 落在点P 处,且点P 在直线BC 上.则线段CP 长的取值范围是____.【答案】15CP ≤≤【解析】【分析】根据点E 、F 在边AB 、AC 上,可知当点E 与点B 重合时,CP 有最小值,当点F 与点C 重合时CP 有最大值,根据分析画出符合条件的图形即可得.【详解】如图,当点E 与点B 重合时,CP 的值最小,此时BP=AB=3,所以PC=BC-BP=4-3=1,如图,当点F 与点C 重合时,CP 的值最大,此时CP=AC ,Rt △ABC 中,∠ABC=90°,AB=3,BC=4,根据勾股定理可得AC=5,所以CP 的最大值为5, 所以线段CP 长的取值范围是1≤CP≤5,故答案为1≤CP≤5.【点睛】本题考查了折叠问题,能根据点E 、F 分别在线段AB 、AC 上,点P 在直线BC 上确定出点E 、F 位于什么位置时PC 有最大(小)值是解题的关键.3.如图,在四边形ABCD 中,BC CD = ,对角线BD 平分ADC ∠,连接AC ,2ACB DBC ∠=∠,若4AB =,10BD =,则ABC S =_________________.【答案】10【解析】【分析】由等腰三角形的性质和角平分线的性质可推出AD ∥BC ,然后根据平行线的性质和已知条件可推出CA=CD ,可得CB=CA=CD ,过点C 作CE ⊥BD 于点E ,CF ⊥AB 于点F ,如图,根据等腰三角形的性质和已知条件可得DE 的长和BCF CDE ∠=∠,然后即可根据AAS 证明△BCF ≌△CDE ,可得CF=DE ,再根据三角形的面积公式计算即得结果.【详解】解:∵BC CD =,∴∠CBD =∠CDB ,∵BD 平分ADC ∠,∴∠ADB =∠CDB ,∴∠CBD =∠ADB ,∴AD ∥BC ,∴∠CAD =∠ACB ,∵2ACB DBC ∠=∠,2ADC BDC ∠=∠,∠CBD =∠CDB ,∴ACB ADC ∠=∠,∴CAD ADC ∠=∠,∴CA=CD ,∴CB=CA=CD ,过点C 作CE ⊥BD 于点E ,CF ⊥AB 于点F ,如图,则152DE BD ==,12BCF ACB ∠=∠, ∵12BDC ADC ∠=∠,ACB ADC ∠=∠,∴BCF CDE ∠=∠, 在△BCF 和△CDE 中,∵BCF CDE ∠=∠,∠BFC =∠CED =90°,CB=CD ,∴△BCF ≌△CDE (AAS ),∴CF=DE =5,∴11451022ABC S AB CF =⋅=⨯⨯=. 故答案为:10.【点睛】本题考查了等腰三角形的判定和性质、平行线的判定和性质、角平分线的定义以及全等三角形的判定和性质等知识,涉及的知识点多、综合性强、具有一定的难度,正确添加辅助线、熟练掌握上述知识是解题的关键.4.如图,已知等边ABC∆的边长为8,E是中线AD上一点,以CE为一边在CE下方作等边CEF∆,连接BF并延长至点,N M为BN上一点,且5CM CN==,则MN的长为_________.【答案】6【解析】【分析】作CG⊥MN于G,证△ACE≌△BCF,求出∠CBF=∠CAE=30°,则可以得出124CG BC==,在Rt△CMG中,由勾股定理求出MG,即可得到MN的长.【详解】解:如图示:作CG⊥MN于G,∵△ABC和△CEF是等边三角形,∴AC=BC,CE=CF,∠ACB=∠ECF=60°,∴∠ACB-∠BCE=∠ECF-∠BCE,即∠ACE=∠BCF,在△ACE与△BCF中AC BCACE BCFCE CF=⎧⎪∠=∠⎨⎪=⎩∴△ACE≌△BCF(SAS),又∵AD是三角形△ABC的中线∴∠CBF=∠CAE=30°,∴124CG BC ==,在Rt △CMG 中,3MG ==,∴MN=2MG=6,故答案为:6.【点睛】本题考查了勾股定理,等边三角形的性质,全等三角形的性质和判定的应用,解此题的关键是推出△ACF ≌△BCF .5.在ABC ∆中,边AB 、AC 的垂直平分线分别交边BC 于点D 、点E ,20DAE ∠=︒,则BAC ∠=______°.【答案】80或100【解析】【分析】根据题意,点D 和点E 的位置不确定,需分析谁靠近B 点,则有如下图(图见解析)两种情况:(1)图1中,点E 距离点B 近,根据垂直平分线性质可知,,BD AD AE CE ==,从而有1,2B DAE C DAE ∠=∠+∠∠=∠+∠,再根据三角形的内角和定理可得180B C BAC ∠+∠+∠=︒,联立即可求得;(2)图2中,点D 距离点B 近,根据垂直平分线性质可知,,BD AD AE CE ==,从而有3,4B C ∠=∠∠=∠,由三角形的内角和定理得180B C BAC ∠+∠+∠=︒,联立即可求得.【详解】由题意可分如下两种情况:(1)图1中,根据垂直平分线性质可知,,BD AD AE CE ==,1,2B DAE C DAE ∴∠=∠+∠∠=∠+∠(等边对等角),两式相加得12B C DAE DAE ∠+∠=∠+∠+∠+∠,又12DAE BAC ∠+∠+∠=∠20B C BAC DAE BAC ∴∠+∠=∠+∠=∠+︒,由三角形内角和定理得180B C BAC ∠+∠+∠=︒,20180BAC BAC ∴∠+︒+∠=︒,80BAC ∴∠=︒;(2)图2中,根据垂直平分线性质可知,,BD AD AE CE ==,3,4B C ∴∠=∠∠=∠(等边对等角),两式相加得34B C ∠+∠=∠+∠,又34DAE BAC ∠+∠+∠=∠,3420BAC DAE BAC ∴∠+∠=∠-∠=∠-︒,20B C BAC ∴∠+∠=∠-︒由三角形内角和定理得180B C BAC ∠+∠+∠=︒,20180BAC BAC ∴∠-︒+∠=︒,100BAC ∴∠=︒.故答案为80或100.【点睛】本题考查了垂直平分线的性质(垂直平分线上的点到线段两端点的距离相等)、等腰三角形的定义和性质(等边对等角)、以及三角形内角和定理,本题的难点在于容易漏掉第二种情况,出现漏解.6.等腰三角形一边长等于4,一边长等于9,它的周长是__.【答案】22【解析】【分析】等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形;【详解】解:因为4+4=8<9,0<4<9+9=18,∴腰的不应为4,而应为9,∴等腰三角形的周长=4+9+9=22.故答案为22.【点睛】本题主要考查了等腰三角形的性质和三角形的三边关系;求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.7.如图,在平面直角坐标系中,点 A,B 的坐标分别是(1,5)、(5,1),若点 C 在 x 轴上,且 A,B,C 三点构成的三角形是等腰三角形,则这样的 C 点共有_____________个【答案】5【解析】【分析】分别以A、B为圆心,AB为半径画圆,及作AB的垂直平分线,数出在x轴上的点C的数量即可【详解】解:由图可知:点 C 在 x 轴上,且 A,B,C 三点构成的三角形是等腰三角形,则这样的 C 点共有5个故答案为:5【点睛】本题考查了等腰三角形的存在性问题,掌握“两圆一线”找等腰三角形是解题的关键8.已知等边△ABC中,点D为射线BA上一点,作DE=DC,交直线BC于点E,∠ABC的平分线BF交CD于点F,过点A作AH⊥CD于H,当EDC=30 ,CF=43,则DH=______.【答案】2 3【解析】连接AF.∵△ABC是等边三角形,∴AB=BC,∠ABC=∠ACB=∠BAC=60°.∵DE=DC,∠EDC=30°,∴∠DEC=∠DCE=75°,∴∠ACF=75°-60°=15°.∵BF平分∠ABC,∴∠ABF=∠CBF.在△ABF和△CBF中,AB BCABF CBFBF BF⎧⎪∠∠⎨⎪⎩===,∴△ABF≌△CBF,∴AF=CF,∴∠FAC=∠ACF=15°,∴∠AFH=15°+15°=30°.∵AH⊥CD,∴AH=12AF=12CF=23.∵∠DEC=∠ABC+∠BDE,∴∠BDE=75°-60°=15°,∴∠ADH=15°+30°=45°,∴∠DAH=∠ADH=45°,∴DH=AH=23.故答案为23.点睛:本题考查了全等三角形的判定与性质;证明三角形全等是解决问题的关键,注意辅助线的作法.9.如图,∠BOC=60°,点A是BO延长线上的一点,OA=10cm,动点P从点A出发沿AB 以2cm/s的速度移动,动点Q从点O出发沿OC以1cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间,当t=_____s时,△POQ是等腰三角形.【答案】103或10【解析】【分析】根据△POQ是等腰三角形,分两种情况进行讨论:点P在AO上,点P在BO上,分别计算,即可得解.【详解】当PO=QO时,△POQ是等腰三角形,如图1所示当点P在AO上时,∵PO=AO-AP=10-2t,OQ=t当PO=QO时,102t t-=解得103 t=当PO=QO时,△POQ是等腰三角形,如图2所示当点P在BO上时∵PO=AP-AO=2t-10,OQ=t当PO=QO时,210t t-=解得10t=故答案为:103或10 【点睛】 本题考查等腰三角形的性质及动点问题,熟练掌握等腰三角形的性质以及分类讨论思想是解题关键.10.如图,D 为ABC ∆内一点,CD 平分ACB ∠,BD CD ⊥,A ABD ∠=∠,若8AC =,5BC =,则BD 的长为_______.【答案】1.5【解析】【分析】延长BD 交AC 边于点E ,根据BD⊥CD,CD 平分∠ACB,得到三角形全等,由此求出AE 的长,再根据A ABD ∠=∠,求出BE 的长即可求得BD.【详解】延长BD 交AC 于点E ,∵BD⊥CD,∴∠BDC=∠EDC=900,∵CD 平分∠ACB,∴∠BCD=∠ECD又∵CD=CD∴△BCD≌△ECD∴BD=ED,CE=BC=5,∴AE=AC -CE=8-5=3,∵A ABD ∠=∠,∴BE=AE=3,∴BD=1.5【点睛】此题考察等腰三角形的性质,延长BD 构建全等三角形是证明此题的关键.二、八年级数学轴对称三角形选择题(难)11.如图,在△ABC中,分别以点A和点B为圆心,大于12AB的长为半径画弧,两弧相交于点M、N,作直线MN,交BC于点D,连接AD,若△ADC的周长为14,BC=8,则AC 的长为A.5 B.6 C.7 D.8【答案】A【解析】【分析】根据题意可得MN是直线AB的中点,所以可得AD=BD,BC=BD+CD,而△ADC为AC+CD+AD=14,即AC+CD+BD=14,因此可得AC+BC=14,已知BC即可求出AC.【详解】根据题意可得MN是直线AB的中点AD BD∴=ADC的周长为14AC CD AD++=14AC CD BD++=∴BC BD CD=+14AC BC=∴+已知8BD=6AC∴=,故选B【点睛】本题主要考查几何中的等量替换,关键在于MN是直线AB的中点,这样所有的问题就解决了.12.某平原有一条很直的小河和两个村庄,要在此小河边的某处修建一个水泵站向这两个村庄供水. 某同学用直线(虛线)l表示小河,,P Q两点表示村庄,线段(实线)表示铺设的管道,画出了如下四个示意图,则所需管道最短的是().A.B.C.D.【答案】C【解析】【分析】根据轴对称分析即可得到答案.【详解】根据题意,所需管道最短,应过点P或点Q作对称点,再连接另一点,与直线l的交点即为水泵站M,故选项A、B、D均错误,选项C正确,故选:C.【点睛】此题考查最短路径问题,应作对称点,使三点的连线在同一直线上,这是此类问题的解题目标,把握此目标即可正确解题.13.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为()A.130°B.120°C.110°D.100°【答案】B【解析】根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和ED的对称点A′,A″,即可得出∠AA′M+∠A″=∠HAA′=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案:如图,作A关于BC和ED的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.作DA延长线AH.∵∠BAD=120°,∴∠HAA′=60°.∴∠AA′M+∠A″=∠HAA′=60°.∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°.故选B.14.如图,在锐角△ABC中,AC=10,S△ABC=25,∠BAC的平分线交BC于点D,点M,N分别是AD和AB上的动点,则BM+MN的最小值是()A.4 B.245C.5 D.6【答案】C【解析】试题解析:如图,∵AD是∠BAC的平分线,∴点B关于AD的对称点B′在AC上,过点B′作B′N⊥AB于N交AD于M,由轴对称确定最短路线问题,点M即为使BM+MN最小的点,B′N=BM+MN,过点B作BE⊥AC于E,∵AC=10,S△ABC=25,∴12×10•BE=25,解得BE=5,∵AD是∠BAC的平分线,B′与B关于AD对称,∴AB=AB′,∴△ABB′是等腰三角形,∴B′N=BE=5,即BM+MN的最小值是5.故选C.15.如图,已知AD为ABC∆的高线,AD BC=,以AB为底边作等腰Rt ABE∆,连接ED,EC,延长CE交AD于F点,下列结论:①DAE CBE∠=∠;②CE DE⊥;③BD AF=;④AED∆为等腰三角形;⑤BDE ACES S∆∆=,其中正确的有( )A.①③B.①②④C.①③④D.①②③⑤【答案】D【解析】【分析】①根据等腰直角三角形的性质即可证明∠CBE=∠DAE,再得到△ADE≌△BCE;②根据①结论可得∠AEC=∠DEB,即可求得∠AED=∠BEG,即可解题;③证明△AEF≌△BED即可;④根据△AEF≌△BED得到DE=EF, 又DE⊥CF,故可判断;⑤易证△FDC是等腰直角三角形,则CE=EF,S△AEF=S△ACE,由△AEF≌△BED,可知S△BDE =S△ACE,所以S△BDE=S△ACE.【详解】①∵AD为△ABC的高线,∴CBE+∠ABE+∠BAD=90°,∵Rt△ABE是等腰直角三角形,∴∠ABE=∠BAE=∠BAD+∠DAE=45°,AE=BE,∴∠CBE+∠BAD=45°,∴∠DAE=∠CBE,故①正确;在△DAE和△CBE中,AE BEDAE CBEAD BC⎧⎪∠∠⎨⎪⎩===,∴△ADE≌△BCE(SAS);②∵△ADE≌△BCE,∴∠EDA=∠ECB,∵∠ADE+∠EDC=90°,∴∠EDC+∠ECB=90°,∴∠DEC=90°,∴CE⊥DE;故②正确;③∵∠BDE=∠ADB+∠ADE,∠AFE=∠ADC+∠ECD,∴∠BDE=∠AFE,∵∠BED+∠BEF=∠AEF+∠BEF=90°,∴∠BED=∠AEF,在△AEF和△BED中,BDE AFEBED AEFAE BE∠∠⎧⎪∠∠⎨⎪⎩===,∴△AEF≌△BED(AAS),∴BD=AF故③正确;∵△AEF≌△BED∴DE=EF, 又DE⊥CF,∴△DEF为等腰直角三角形,故④错误;④∵AD=BC,BD=AF,∴CD=DF,∵AD⊥BC,∴△FDC是等腰直角三角形,∵DE⊥CE,∴EF=CE,∴S△AEF=S△ACE,∵△AEF≌△BED,∴S△AEF=S△BED,∴S△BDE=S△ACE.故④正确;故选:D.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△BFE≌△CDE是解题的关键.16.如图所示,在等边△ABC中,E是AC边的中点,AD是BC边上的中线,P是AD上的动点,若AD=3,则EP+CP的最小值为()A .2B .3C .4D .5【答案】B【解析】 由等边三角形的性质得,点B ,C 关于AD 对称,连接BE 交AD 于点P ,则EP+CP=BE 最小,又BE=AD ,所以EP+CP 的最小值是3.故选B.点睛:本题主要考查了等边三角形的性质和轴对称的性质,求一条定直线上的一个动点到定直线的同旁的两个定点的距离的最小值,常用的方法是,①确定两个定点中的一个关于定直线的对称点;②连接另一个定点与对称点,与定直线的交点就是两线段和的值最小时,动点的位置.17.如图,Rt ABC ∆中,90ACB ∠=,3AC =,4BC =,5AB =,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B ′处,两条折痕与斜边AB 分别交于点E 、F ,则线段EF 的长为( )A .52B .125C .4D .53【答案】B【解析】【分析】先利用折叠的性质证明出△ECF 是一个等腰直角三角形,因此EF=CE ,然后再根据文中条件综合得出S △ABC =12AC∙BC=12AB∙CE ,求出CE 进而得出答案即可. 【详解】根据折叠性质可知:CD=AC=3,BC=B C '=4,∠ACE=∠DCE ,∠BCF=∠B 'CF ,CE ⊥AB , ∴∠DCE+∠B 'CF=∠ACE+∠BCF ,∵∠ACB=90°,∴∠ECF=45°,又∵CE ⊥AB ,∴△ECF 是等腰直角三角形,∴EF=CE , 又∵S △ABC =12AC∙BC=12AB∙CE , ∴AC∙BC=AB∙CE , ∵3AC =,4BC =,5AB =,∴125CE =, ∴EF 125=. 所以答案为B 选项.【点睛】本题主要考查了直角三角形与等腰三角形性质的综合运用,熟练掌握相关概念是解题关键.18.如图,已知:∠MON =30°,点A 1、A 2、A 3 ···在射线ON 上,点1B 、2B 、3B ···在射线OM 上,△112A B A 、△223A B A 、△334A B A …均为等边三角形,若112OA =,则△667A B A 的边长为( )A .6B .12C .16D .32【答案】C【解析】【分析】 根据等腰三角形与等边三角形性质以及直角三角形中30°角所对应的直角边等于斜边的一半111OA A B =,112122321122A B A B A B A B ===…以此类推得出答案即可 【详解】∵△112A B A 是等边三角形,∴∠112A B A =∠112B A A =60°又∵∠MON =30°∴∠11OB A =30°∴∠12OB A =∠212A B B =90°,1112112A B OA A B ===又∵△223A B A 是等边三角形∴22A B ∥11A B∴∠22OB A =∠11OB A =30°∴在Rt△212A B B 中,22A B =212A B =1以此类推,得出△667A B A 的边长=1222222⋅⋅⋅⋅⋅=16 所以答案为C 选项【点睛】本题主要考查了等腰三角形与等边三角形性质以及30°角的直角三角形的性质,熟练掌握相关概念通过题目发现规律是解题关键19.如果一个三角形能被一条线段分割成两个等腰三角形,那么称这个三角形为特异三角形.若△ABC 是特异三角形,∠A=30°,∠B 为钝角,则符合条件的∠B 有( )个. A .1B .2C .3D .4【答案】B【解析】【分析】【详解】如下图,当30°角为等腰三角形的底角时有两种情况:∠B=135°或90°,当30°角为等腰三角形的顶角时有一种情况:∠B=112.5°,所以符合条件的∠B 有三个.又因为∠B 为钝角,则符合答案的有两个,故本题应选B.点睛:因为不确定这个等腰三角形的底边,所以应当以点A 为一个确定点进行分类讨论:①当以B 为顶点时,即以B 为圆心,AB 长为半径画弧交AC 于点D ,构成等腰△BAD ;②当以点A 为顶点时,即以点A 为圆心,AB 长为半径画弧,交AC 于点D ,构成等腰△ABD ;或作线段AB 的垂直平分线交AC 于点D 构成等腰△DAB.20.如图,在ABC △中,2B C ∠=∠,AH BC ⊥,AE 平分BAC ∠,M 是 BC 中点,则下列结论正确的个数为( )(1)AB BE AC += (2)2AB BH BC += (3)2AB HM = (4)CH EH AC +=A .1B .2C .3D .4【答案】D【解析】【分析】(1)延长AB 取BD=BE ,连接DE ,由∠D=∠BED ,2ABC C ∠=∠,得到∠D=∠C ,在△ADE 和△ACE 中,利用AAS 证明ADE ACE ≌,可得AC=AD=AB+BE ;(2)在HC 上截取HF=BH,连接AF ,可知△ABF 为等腰三角形,再根据2ABC AFB C ∠=∠=∠,可得出△AFC 为等腰三角形,所以FC+BH+HF=AB+2BH=BC ; (3)HM=BM-BH ,所以2HM=2BM-2BH=BC-2BH ,再结合(2)中结论,可得2AB HM =;(4)结合(1)(2)的结论,BC 2BH BE BC BH BE BH CH EH AC AB BE =+=-+=-+-=+.【详解】解:①延长AB 取BD=BE ,连接DE ,∴∠D=∠BED ,∠ABC=∠D+∠BED=2∠D,∵2ABC C ∠=∠,∴∠D=∠C ,在△ADE 和△ACE 中,DAE CAE D C AE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ADE ACE ≌∴AC=AD=AB+BE ,故(1)正确;②在HC 上截取HF=BH,连接AF ,∵AH BC ⊥,∴△ABF 为等腰三角形,∴AB=AF ,∠ABF=∠AFB ,∵2ABC C ∠=∠,∴∠AFB=2∠C=∠C+∠CAF ,∴FC=AF=AB ,∴FC+BH+HF=AB+2BH=BC ,故(2)正确;③∵HM=BM-BH ,∴2HM=2BM-2BH=BC-2BH ,由②可知BC-2BH=AB ,∴2AB HM =④根据①②结论,可得:BC 2BH BE BC BH BE BH CH EH AC AB BE =+=-+=-+-=+,故(4)正确;故选D.【点睛】本题主要考查了等腰三角形的判定和性质、三角形的外角以及全等三角形的判定和性质,结合实际问题作出合适辅助线是解题关键.。
(7)2016年广州广大附中招生数学真卷(4)含答案
2016年广大附中招生数学真卷(4)一、填空1、定义"A ※B"为A 的3倍减去B 的2倍,即A ※B= 3A -2B, 已知X ※ (4※1) =7, 则X= 。
2、如果A=2×3×3 , B=2×5×3 , 那么A 、B 的最小公倍数是 。
3、李老师发表一篇文章,稿费是1500元,为此他要将超过800元的部分按14%的税率交个人所得税,他应交税 元4、—个数,如果将它的小数点向右移动—位,得到的数比原数大22.5, 原数是 。
5、35的分母增加20, 要使分数的大小不变,分子应增加 。
6、一个数被3除余2, 被7除也余2, 这个数最小是 。
7、2x 和7y 分别是两个最简分数,这两个分数的和是1314,那么x+y = 。
8、—个梯形的下底是18厘米,如果下底缩短8厘米,就成为一个平行四边形,面积减少28平方厘米,原梯形的面积是 平方厘米9、—个平行四边形两边的长分别是10厘米和7厘米,其中—条边上的高是8厘米, 这个平行四边形的面积是 平方厘米10、自来水管的内直径是2厘米,水管内的水流速度是每秒8厘米,—位同学去水池洗手, 忘记关水龙头, 5分钟浪费 升水11 、—个圆柱和—个圆锥等底等高,它们的体积之和是124立方厘米, 那么圆锥的体积是 立方厘米12、用三个大小一样的正方形拼成一个长方形,这个长方形的周长是正方形周长的 倍13、—座大桥长396米,一列长72米的火车以每秒18米的速度通过这座大桥,从车头上桥到车尾离开桥—共需要 秒14、某班数学英语期中考试的成绩如下,英语100分的有12个人,数学100分的有10人,两门功课都得100分的有3人,两门功课都未得100分的有26人,这个班共有 人16、1399458171232 16131351313⎛⎫⎛⎫⨯⨯----⎪ ⎪⎝⎭⎝⎭17、12572.420108.755878⎡⎤⎛⎫-⨯+⨯÷⎪⎢⎥⎝⎭⎣⎦18、1717171717 10982 7777777777⨯+⨯+⨯+⋅⋅⋅+⨯+19、111111 2612203042 -----20、小敏说,今年她自己的年龄比爷爷的27还小3岁,已知小敏今年15岁,爷爷今年多少岁?21、甲、乙两人从相距46干米的A、B两地出发,相向而行,甲先出发1小时,他们在乙出发后4小时相遇,又已知甲比乙每小时快2干米,乙行完全程需要几小时?22、某商场用2500元购进A、B两种新型节能灯共50盏,这两种台灯的进价、标价如下表所示:(1)这两种台灯各购进多少台(2)若A型台灯按标价的九折出售,B型台灯按标价的八折出售,那么这批台灯全部售完后,商场共获利多少元?24、如图所示,正方形ABCD的边长为4, 求阴影部分的面积和周长。
2016年广东省广州市华师附中中考数学一模试卷(解析版)
2016年广东省广州市华师附中中考数学一模试卷一、选择题(每小题3分,共30分)1.﹣3的相反数是()A.3 B.﹣3 C.±3 D.2.下列计算正确的是()A.2﹣1=﹣2 B.=±3 C.(a4)3=a7 D.﹣(3pq)2=﹣9p2q23.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()A.B.C.D.4.一组数据3,6,4,5,3,2,则这组数据的中位数和极差是()A.4.5,2 B.4,6 C.4,4 D.3.5,45.如图所示几何体的俯视图是()A.B.C.D.6.如图,在▱ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC交BC边于点E,则BE 等于()A.cm B.2cm C.3cm D.4cm7.如图,在数轴上所表示的是哪一个不等式的解集()A.>﹣1 B.≥﹣3 C.x+1≥﹣1 D.﹣2x>48.已知一次函数y=kx+b的图象如图,那么正比例函数y=kx和反比例函数y=在同一坐标系中的图象大致是()A. B. C.D.9.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35°B.40°C.50°D.65°10.若α、β是方程x2+2x﹣2007=0的两个实数根,则α2+3α+β的值()A.2007 B.2005 C.﹣2007 D.4010二、填空题(每小题3分,共18分)11.代数式有意义时,x应满足的条件是.12.分解因式:x3﹣xy2=.13.一个不透明的口袋里有4张形状完全相同的卡片,分别写有数字1、2、3、4,口袋外有两张卡片,分别写有数字2、3,现随机从口袋里取出一张卡片,则这张卡片与口袋外的卡片上的数字能构成三角形的概率是.14.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为,则点P的坐标为.15.如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器0刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒3度的速度旋转,CP与量角器的半圆弧交于点E,第24秒,点E在量角器上对应的读数是度.16.在Rt△ABC中,∠A=90°,有一个锐角为60°,BC=6.若点P在直线AC上(不与点A,C重合),且∠ABP=30°,则CP的长为.三、解答题17.解方程:x2﹣10x+9=0.18.如图,在△ABC中,AD是BC边上的中线,分别过点C、B作射线AD的垂线段,垂足分别为E、F.求证:BF=CE.19.先化简,再求值:÷(﹣),其中a=,b=2.20.为实施“农村留守儿童关爱计划”,某校结全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:(1)求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;(2)某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.21.两个城镇A、B与两条公路ME,MF位置如图所示,其中ME是东西方向的公路.现电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路ME,MF的距离也必须相等,且在∠FME的内部.(1)点C应选在何处?请在图中,用尺规作图找出符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)(2)点C到公路ME的距离为2km,设AB的垂直平分线交ME于点N,点M处测得点C 位于点M的北偏东60°方向,在N处没得点C位于点N的北偏西45°方向,求MN的长(结果保留根号)22.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x ≤10时,y与x成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式.(2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?23.如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB.(1)求证:BC是⊙O的切线;(2)连接AF、BF,求∠ABF的度数;(3)如果CD=15,BE=10,sinA=,求⊙O的半径.24.类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)概念理解:如图1,在四边形ABCD中,添加一个条件使得四边形ABCD是“等邻边四边形”.请写出你添加的一个条件.(2)问题探究:①小红猜想:对角线互相平分的“等邻边四边形”是菱形,她的猜想正确吗?请说明理由.②如图2,小红画了一个Rt△ABC,其中∠ABC=90°,AB=2,BC=1,并将Rt△ABC沿∠ABC的平分线BB′方向平移得到△A′B′C′,连结AA′,BC′,小红要使平移后的四边形ABC′A′是“等邻边四边形”,应平移多少距离(即线段BB′的长)?(3)拓展应用:如图3,“等邻边四边形”ABCD中,AB=AD,∠BAD+∠BCD=90°,AC,BD为对角线,AC= AB,试探究BC,CD,BD的数量关系.25.在平面直角坐标系中,已知抛物线y=x2+bx+c(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(4,3),直角顶点B在第四象限.(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q.(i)若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;(ii)取BC的中点N,连接NP,BQ.试探究是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.2016年广东省广州市华师附中中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.﹣3的相反数是()A.3 B.﹣3 C.±3 D.【考点】相反数.【分析】依据相反数的概念求解.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.【解答】解:﹣3的相反数就是3.故选A.2.下列计算正确的是()A.2﹣1=﹣2 B.=±3 C.(a4)3=a7 D.﹣(3pq)2=﹣9p2q2【考点】幂的乘方与积的乘方;算术平方根;负整数指数幂.【分析】分别利用积的乘方运算以及幂的乘方运算法则和算术平方根、负整数指数幂的性质计算得出答案.【解答】解:A、2﹣1=,故此选项错误;B、=3,故此选项错误;C、(a4)3=a12,故此选项错误;D、﹣(3pq)2=﹣9p2q2,正确.故选:D.3.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()A.B.C.D.【考点】轴对称图形.【分析】据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选B.4.一组数据3,6,4,5,3,2,则这组数据的中位数和极差是()A.4.5,2 B.4,6 C.4,4 D.3.5,4【考点】极差;中位数.【分析】根据中位数的定义和求极差的方法分别进行计算即可.【解答】解:把这组数据从小到大排列为:2,3,3,4,5,6,中位数是第3、4个数的平均数,则这组数据的中位数=3.5;极差是:6﹣2=4;故选D.5.如图所示几何体的俯视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】根据定义,俯视图是从物体上面看所得到的图形,即可得出答案.【解答】解:从上面看可得到三个左右相邻的中间有两个界限的长方形,故选D.6.如图,在▱ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC交BC边于点E,则BE 等于()A.cm B.2cm C.3cm D.4cm【考点】平行四边形的性质.【分析】由在▱ABCD中,可得CD=AD=6cm,BC=AD=8cm,又由DE平分∠ADC,易证得△CDE是等腰三角形,即可求得CE的长,继而求得答案.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=8cm,CD=AB=6cm,AD∥BC,∴∠ADE=∠CED,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠CDE=∠CED,∴CE=CD=6cm,∴BE=BC﹣CE=2cm.故选B.7.如图,在数轴上所表示的是哪一个不等式的解集()A.>﹣1 B.≥﹣3 C.x+1≥﹣1 D.﹣2x>4【考点】在数轴上表示不等式的解集.【分析】本题先观察数轴表示的不等式的解集,再对选项分别化简,看是否与题意相符.若是,则该选项为正确的答案.【解答】解:依题意得:数轴表示的解集是:x≥﹣2A、解得:x>﹣2B、解x+3≥﹣6,不等式的解集是x≥﹣9C、解得:x≥﹣2D、解得x<﹣2故应选C.8.已知一次函数y=kx+b的图象如图,那么正比例函数y=kx和反比例函数y=在同一坐标系中的图象大致是()A. B. C.D.【考点】反比例函数的图象;一次函数的图象;一次函数图象与系数的关系.【分析】根据一次函数图象可以确定k、b的符号,根据k、b的符号来判定正比例函数y=kx和反比例函数y=图象所在的象限.【解答】解:如图所示,∵一次函数y=kx+b的图象经过第一、三、四象限,∴k>0,b<0.∴正比例函数y=kx的图象经过第一、三象限,反比例函数y=的图象经过第二、四象限.综上所述,符合条件的图象是C选项.故选:C.9.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35°B.40°C.50°D.65°【考点】旋转的性质.【分析】根据两直线平行,内错角相等可得∠ACC′=∠CAB,根据旋转的性质可得AC=AC′,然后利用等腰三角形两底角相等求∠CAC′,再根据∠CAC′、∠BAB′都是旋转角解答.【解答】解:∵CC′∥AB,∴∠ACC′=∠CAB=65°,∵△ABC绕点A旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,∴∠CAC′=∠BAB′=50°.故选C.10.若α、β是方程x2+2x﹣2007=0的两个实数根,则α2+3α+β的值()A.2007 B.2005 C.﹣2007 D.4010【考点】根与系数的关系.【分析】根据方程的解的概念及根与系数的关系得α+β=﹣2、α2+2α=2007,整体代入到α2+3α+β=α2+2α+α+β可得.【解答】解:∵α、β是方程x2+2x﹣2007=0的两个实数根,∴α+β=﹣2,α2+2α﹣2007=0,即α2+2α=2007,则α2+3α+β=α2+2α+α+β=2007﹣2=2005,故选:B.二、填空题(每小题3分,共18分)11.代数式有意义时,x应满足的条件是x>1.【考点】二次根式有意义的条件.【分析】直接利用二次根式的定义求出x的取值范围.【解答】解:代数式有意义时,x﹣1>0,解得:x>1.故答案为:x>1.12.分解因式:x3﹣xy2=x(x+y)(x﹣y).【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式x,进而利用平方差公式分解因式得出答案.【解答】解:x3﹣xy2=x(x2﹣y2)=x(x+y)(x﹣y).故答案为:x(x+y)(x﹣y).13.一个不透明的口袋里有4张形状完全相同的卡片,分别写有数字1、2、3、4,口袋外有两张卡片,分别写有数字2、3,现随机从口袋里取出一张卡片,则这张卡片与口袋外的卡片上的数字能构成三角形的概率是.【考点】概率公式;三角形三边关系.【分析】由一个不透明的口袋里有4张形状完全相同的卡片,分别写有数字1,2,3,4,可得共有4种等可能的结果,又由这张卡片与口袋外的两张卡片上的数作为三角形三边的长,能构成三角形的有:2,2,3;3,2,3;4,2,3;共3种情况,然后利用概率公式求解即可求得答案.【解答】解:∵一个不透明的口袋里有4张形状完全相同的卡片,分别写有数字1,2,3,4,∴共有4种等可能的结果,∵这张卡片与口袋外的两张卡片上的数作为三角形三边的长,能构成三角形的有:2,2,3;3,2,3;4,2,3;共3种情况,∴能构成三角形的概率是:.故答案为:.14.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为,则点P的坐标为(3,2).【考点】垂径定理;坐标与图形性质;勾股定理.【分析】过点P作PD⊥x轴于点D,连接OP,先由垂径定理求出OD的长,再根据勾股定理求出PD的长,故可得出答案.【解答】解:过点P作PD⊥x轴于点D,连接OP,∵A(6,0),PD⊥OA,∴OD=OA=3,在Rt△OPD中,∵OP=,OD=3,∴PD===2,∴P(3,2).故答案为:(3,2).15.如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器0刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒3度的速度旋转,CP与量角器的半圆弧交于点E,第24秒,点E在量角器上对应的读数是144度.【考点】圆周角定理.【分析】首先连接OE,由∠ACB=90°,易得点E,A,B,C共圆,然后由圆周角定理,求得点E在量角器上对应的读数.【解答】解:连接OE,∵∠ACB=90°,∴A,B,C在以点O为圆心,AB为直径的圆上,∴点E,A,B,C共圆,∵∠ACE=3×24=72°,∴∠AOE=2∠ACE=144°.∴点E在量角器上对应的读数是:144°.故答案为:144.16.在Rt△ABC中,∠A=90°,有一个锐角为60°,BC=6.若点P在直线AC上(不与点A,C重合),且∠ABP=30°,则CP的长为6或2或4.【考点】解直角三角形.【分析】根据题意画出图形,分4种情况进行讨论,利用直角三角形的性质解答.【解答】解:如图1:当∠C=60°时,∠ABC=30°,与∠ABP=30°矛盾;如图2:当∠C=60°时,∠ABC=30°,∵∠ABP=30°,∴∠CBP=60°,∴△PBC是等边三角形,∴CP=BC=6;如图3:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°﹣30°=30°,∴PC=PB,∵BC=6,∴AB=3,∴PC=PB===2;如图4:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°+30°=90°,∴PC=BC÷cos30°=4.故答案为:6或2或4.三、解答题17.解方程:x2﹣10x+9=0.【考点】解一元二次方程-因式分解法.【分析】先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x2﹣10x+9=0,(x﹣1)(x﹣9)=0,x﹣1=0,x﹣9=0,x1=1,x2=9.18.如图,在△ABC中,AD是BC边上的中线,分别过点C、B作射线AD的垂线段,垂足分别为E、F.求证:BF=CE.【考点】全等三角形的判定与性质.【分析】求出∠DEC=∠DFB=90°,DB=DC,根据AAS证△BFD≌△CED,根据全等三角形的性质推出即可.【解答】证明:∵CE⊥AF,FB⊥AF,∴∠DEC=∠DFB=90°,又∵AD为BC边上的中线,∴BD=CD,在△BFD和△CED中∴△BFD≌△CED(AAS),∴BF=CE.19.先化简,再求值:÷(﹣),其中a=,b=2.【考点】实数的运算.【分析】先算括号里面的,再算除法,最后把a、b的值代入进行计算即可.【解答】解:原式=÷=•=,当a=,b=2时,原式==.20.为实施“农村留守儿童关爱计划”,某校结全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:(1)求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;(2)某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.【考点】条形统计图;扇形统计图;列表法与树状图法.【分析】(1)根据留守儿童有6名的班级有4个,占20%,可求得有留守儿童的班级总数,再求得留守儿童是2名的班数;(2)由(1)得只有2名留守儿童的班级有2个,共4名学生.设A1,A2来自一个班,B1,B2来自一个班,列出树状图可得出来自一个班的共有4种情况,则所选两名留守儿童来自同一个班级的概率.【解答】解:(1)该校班级个数为4÷20%=20(个),只有2名留守儿童的班级个数为:20﹣(2+3+4+5+4)=2(个),该校平均每班留守儿童的人数为:=4(名),补图如下:;(2)由(1)得只有2名留守儿童的班级有2个,共4名学生.设A1,A2来自一个班,B1,B2来自一个班,由树状图可知,共有12种可能的情况,并且每种结果出现的可能性相等,其中来自一个班的共有4种情况,则所选两名留守儿童来自同一个班级的概率为:=.21.两个城镇A、B与两条公路ME,MF位置如图所示,其中ME是东西方向的公路.现电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路ME,MF的距离也必须相等,且在∠FME的内部.(1)点C应选在何处?请在图中,用尺规作图找出符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)(2)点C到公路ME的距离为2km,设AB的垂直平分线交ME于点N,点M处测得点C 位于点M的北偏东60°方向,在N处没得点C位于点N的北偏西45°方向,求MN的长(结果保留根号)【考点】解直角三角形的应用-方向角问题;线段垂直平分线的性质.【分析】(1)到城镇A、B距离相等的点在线段AB的垂直平分线上,到两条公路距离相等的点在两条公路所夹角的角平分线上,分别作出垂直平分线与角平分线,它们的交点即为所求作的点C;(2)作CD⊥MN于点D.由三角函数得出MD=CD,DN=CD,于是得到结论.【解答】解:(1)如图所示,点C即为所求;(2)作CD⊥MN于点D,由题意得:∠CMN=30°,∠CND=45°,∵在Rt△CMD中,=tan∠CMN,∴MD==2;∵在Rt△CND中,=tan∠CNM,∴ND=CD=2,∵MN=DM+DN=2+2km,22.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x ≤10时,y与x成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式.(2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?【考点】反比例函数的应用;一次函数的应用.【分析】(1)分别利用正比例函数以及反比例函数解析式求法得出即可;(2)利用y=4分别得出x的值,进而得出答案.【解答】解:(1)当0≤x≤4时,设直线解析式为:y=kx,将(4,8)代入得:8=4k,解得:k=2,故直线解析式为:y=2x,当4≤x≤10时,设直反比例函数解析式为:y=,将(4,8)代入得:8=,解得:a=32,故反比例函数解析式为:y=;因此血液中药物浓度上升阶段的函数关系式为y=2x(0≤x≤4),下降阶段的函数关系式为y=(4≤x≤10).(2)当y=4,则4=2x,解得:x=2,当y=4,则4=,解得:x=8,∵8﹣2=6(小时),∴血液中药物浓度不低于4微克/毫升的持续时间6小时.23.如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB.(1)求证:BC是⊙O的切线;(2)连接AF、BF,求∠ABF的度数;(3)如果CD=15,BE=10,sinA=,求⊙O的半径.【考点】切线的判定;相似三角形的判定与性质.【分析】(1)连接OB,由圆的半径相等和已知条件证明∠OBC=90°,即可证明BC是⊙O 的切线;(2)连接OF,AF,BF,首先证明△OAF是等边三角形,再利用圆周角定理:同弧所对的圆周角是所对圆心角的一半即可求出∠ABF的度数;(3)过点C作CG⊥BE于G,根据等腰三角形的性质得到EG=BE=5,由两角相等的三角形相似,△ADE∽△CGE,利用相似三角形对应角相等得到sin∠ECG=sinA=,在Rt△ECG中,利用勾股定理求出CG的长,根据三角形相似得到比例式,代入数据即可得到结果.【解答】(1)证明:连接OB,∵OB=OA,CE=CB,∴∠A=∠OBA,∠CEB=∠ABC,又∵CD⊥OA,∴∠A+∠AED=∠A+∠CEB=90°,∴∠OBA+∠ABC=90°,∴OB⊥BC,∴BC是⊙O的切线;(2)解:如图1,连接OF,AF,BF,∵DA=DO,CD⊥OA,∴AF=OF,∵OA=OF,∴△OAF是等边三角形,∴∠AOF=60°,∴∠ABF=∠AOF=30°;(3)解:如图2,过点C作CG⊥BE于G,∵CE=CB,∴EG=BE=5,∵∠ADE=∠CGE=90°,∠AED=∠GEC,∴∠GCE=∠A,∴△ADE∽△CGE,∴sin∠ECG=sinA==,即CE=13,在Rt△ECG中,∵CG==12,∵CD=15,CE=13,∴DE=2,∵△ADE∽△CGE,∴=,∴AD=,CG=,∴⊙O的半径OA=2AD=.24.类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)概念理解:如图1,在四边形ABCD中,添加一个条件使得四边形ABCD是“等邻边四边形”.请写出你添加的一个条件.(2)问题探究:①小红猜想:对角线互相平分的“等邻边四边形”是菱形,她的猜想正确吗?请说明理由.②如图2,小红画了一个Rt△ABC,其中∠ABC=90°,AB=2,BC=1,并将Rt△ABC沿∠ABC的平分线BB′方向平移得到△A′B′C′,连结AA′,BC′,小红要使平移后的四边形ABC′A′是“等邻边四边形”,应平移多少距离(即线段BB′的长)?(3)拓展应用:如图3,“等邻边四边形”ABCD中,AB=AD,∠BAD+∠BCD=90°,AC,BD为对角线,AC= AB,试探究BC,CD,BD的数量关系.【考点】四边形综合题.【分析】(1)由“等邻边四边形”的定义易得出结论;(2)①先利用平行四边形的判定定理得平行四边形,再利用“等邻边四边形”定义得邻边相等,得出结论;②由平移的性质易得BB′=AA′,A′B′∥AB,A′B′=AB=2,B′C′=BC=1,A′C′=AC=,再利用“等邻边四边形”定义分类讨论,由勾股定理得出结论;(3)由旋转的性质可得△ABF≌△ADC,由全等性质得∠ABF=∠ADC,∠BAF=∠DAC,AF=AC,FB=CD,利用相似三角形判定得△ACF∽△ABD,由相似的性质和四边形内角和得∠CBF=90°,利用勾股定理,等量代换得出结论.【解答】解:(1)AB=BC或BC=CD或CD=AD或AD=AB(任写一个即可);(2)①正确,理由为:∵四边形的对角线互相平分,∴这个四边形是平行四边形,∵四边形是“等邻边四边形”,∴这个四边形有一组邻边相等,∴这个“等邻边四边形”是菱形;②∵∠ABC=90°,AB=2,BC=1,∴AC=,∵将Rt△ABC平移得到△A′B′C′,∴BB′=AA′,A′B′∥AB,A′B′=AB=2,B′C′=BC=1,A′C′=AC=,(I)如图1,当AA′=AB时,BB′=AA′=AB=2;(II)如图2,当AA′=A′C′时,BB′=AA′=A′C′=;(III)当A′C′=BC′=时,如图3,延长C′B′交AB于点D,则C′B′⊥AB,∵BB′平分∠ABC,∴∠ABB′=∠ABC=45°,∴∠BB′D=′∠ABB′=45°∴B′D=B,设B′D=BD=x,则C′D=x+1,BB′=x,∵在Rt△BC′D中,BD2+(C′D)2=(BC′)2∴x2+(x+1)2=()2,解得:x1=1,x2=﹣2(不合题意,舍去),∴BB′=x=(Ⅳ)当BC′=AB=2时,如图4,与(Ⅲ)方法一同理可得:BD2+(C′D)2=(BC′)2,设B′D=BD=x,则x2+(x+1)2=22,解得:x1=,x2=(不合题意,舍去),∴BB′=x=;(3)BC,CD,BD的数量关系为:BC2+CD2=2BD2,如图5,∵AB=AD,∴将△ADC绕点A旋转到△ABF,连接CF,∴△ABF≌△ADC,∴∠ABF=∠ADC,∠BAF=∠DAC,AF=AC,FB=CD,∴∠BAD=∠CAF,==1,∴△ACF∽△ABD,∴==,∴BD,∵∠BAD+∠ADC+∠BCD+∠ABC=360°,∴∠ABC+∠ADC﹣360°﹣(∠BAD+∠BCD)=360°﹣90°=270°,∴∠ABC+∠ABF=270°,∴∠CBF=90°,∴BC2+FB2=CF2=(BD)2=2BD2,∴BC2+CD2=2BD2.25.在平面直角坐标系中,已知抛物线y=x2+bx+c(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(4,3),直角顶点B在第四象限.(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q.(i)若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;(ii)取BC的中点N,连接NP,BQ.试探究是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)先求出点B的坐标,然后利用待定系数法求出抛物线的函数表达式;(2)i)首先求出直线AC的解析式和线段PQ的长度,作为后续计算的基础.若△MPQ为等腰直角三角形,则可分为以下两种情况:①当PQ为直角边时:点M到PQ的距离为.此时,将直线AC向右平移4个单位后所得直线(y=x﹣5)与抛物线的交点,即为所求之M点;②当PQ为斜边时:点M到PQ的距离为.此时,将直线AC向右平移2个单位后所得直线(y=x﹣3)与抛物线的交点,即为所求之M点.ii)由(i)可知,PQ=为定值,因此当NP+BQ取最小值时,有最大值.如答图2所示,作点B关于直线AC的对称点B′,由分析可知,当B′、Q、F(AB中点)三点共线时,NP+BQ最小,最小值为线段B′F的长度.【解答】解:(1)∵等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(4,3)∴点B的坐标为(4,﹣1).∵抛物线过A(0,﹣1),B(4,﹣1)两点,∴,解得:b=2,c=﹣1,∴抛物线的函数表达式为:y=x2+2x﹣1.(2)方法一:i)∵A(0,﹣1),C(4,3),∴直线AC的解析式为:y=x﹣1.设平移前抛物线的顶点为P0,则由(1)可得P0的坐标为(2,1),且P0在直线AC上.∵点P在直线AC上滑动,∴可设P的坐标为(m,m﹣1),则平移后抛物线的函数表达式为:y=(x﹣m)2+m﹣1.解方程组:,解得,∴P(m,m﹣1),Q(m﹣2,m﹣3).过点P作PE∥x轴,过点Q作QF∥y轴,则PE=m﹣(m﹣2)=2,QF=(m﹣1)﹣(m﹣3)=2.∴PQ==AP0.若以M、P、Q三点为顶点的等腰直角三角形,则可分为以下两种情况:①当PQ为直角边时:点M到PQ的距离为(即为PQ的长).由A(0,﹣1),B(4,﹣1),P0(2,1)可知,△ABP0为等腰直角三角形,且BP0⊥AC,BP0=.如答图1,过点B作直线l1∥AC,交抛物线y=x2+2x﹣1于点M,则M为符合条件的点.∴可设直线l1的解析式为:y=x+b1,∵B(4,﹣1),∴﹣1=4+b1,解得b1=﹣5,∴直线l1的解析式为:y=x﹣5.解方程组,得:,∴M1(4,﹣1),M2(﹣2,﹣7).②当PQ为斜边时:MP=MQ=2,可求得点M到PQ的距离为.如答图2,取AB的中点F,则点F的坐标为(2,﹣1).由A(0,﹣1),F(2,﹣1),P0(2,1)可知:△AFP0为等腰直角三角形,且点F到直线AC的距离为.过点F作直线l2∥AC,交抛物线y=x2+2x﹣1于点M,则M为符合条件的点.∴可设直线l2的解析式为:y=x+b2,∵F(2,﹣1),∴﹣1=2+b2,解得b2=﹣3,∴直线l2的解析式为:y=x﹣3.解方程组,得:,∴M3(1+,﹣2+),M4(1﹣,﹣2﹣).综上所述,所有符合条件的点M的坐标为:M1(4,﹣1),M2(﹣2,﹣7),M3(1+,﹣2+),M4(1﹣,﹣2﹣).方法二:∵A(0,1),C(4,3),∴l AC:y=x﹣1,∵抛物线顶点P在直线AC上,设P(t,t﹣1),∴抛物线表达式:,∴l AC与抛物线的交点Q(t﹣2,t﹣3),∵一M、P、Q三点为顶点的三角形是等腰直角三角形,P(t,t﹣1),①当M为直角顶点时,M(t,t﹣3),,∴t=1±,∴M1(1+,﹣2),M2(1﹣,﹣2﹣),②当Q为直角顶点时,点M可视为点P绕点Q顺时针旋转90°而成,将点Q(t﹣2,t﹣3)平移至原点Q′(0,0),则点P平移后P′(2,2),将点P′绕原点顺时针旋转90°,则点M′(2,﹣2),将Q′(0,0)平移至点Q(t﹣2,t﹣3),则点M′平移后即为点M(t,t﹣5),∴,∴t1=4,t2=﹣2,∴M1(4,﹣1),M2(﹣2,﹣7),③当P为直角顶点时,同理可得M1(4,﹣1),M2(﹣2,﹣7),综上所述,所有符合条件的点M的坐标为:M1(4,﹣1),M2(﹣2,﹣7),M3(1+,﹣2+),M4(1﹣,﹣2﹣).ii)存在最大值.理由如下:由i)知PQ=为定值,则当NP+BQ取最小值时,有最大值.如答图2,取点B关于AC的对称点B′,易得点B′的坐标为(0,3),BQ=B′Q.连接QF,FN,QB′,易得FN∥PQ,且FN=PQ,∴四边形PQFN为平行四边形.∴NP=FQ.∴NP+BQ=FQ+B′Q≥FB′==.∴当B′、Q、F三点共线时,NP+BQ最小,最小值为.∴的最大值为=.2016年8月1日。
华中师大一附中2016年高中招生考试数学试题(word版附答案)
华中师大一附中2016年高中招生考试数学试题考试时间:80分钟 卷面满分:150分说明:所有答案一律书写在答题卡上,写在试卷上作答无效.一、选择题 (本大题共6小题,每小题7分,共42分.在每小题给出的四个选项中,有且只有一项是正确的.)1.已知方程1x ax =+有一个负根,而且没有正根,则a 的取值范围是( ) A .1a >- B .1a ≥C .1a =D .1a >2.关于x 的方程21212x x ax x x x +-=+-+-的根为负数,则a 的值为( ) A .3a ≠-B .3a ≠C .1a <-且3a ≠-D .1a >-且3a ≠3.如图,抛物线21(0)y ax bx c a =++≠的顶点为(1,3)A ,且与x 轴有一个交点为(4,0)B ,直线2y mx n =+与抛物线交于A 、B 两点,下列结论: ①20a b +=;②0abc >;③方程23ax bx c ++=有两个相等的实数根; ④抛物线与x 轴的另一个交点坐标是(1,0)-,⑤当14x <<时,有21y y <.其中正确的是( ) A .①②③B .①③④C .①③⑤D .②④⑤4.已知,αβ是方程2260x ax a -++=的两实数根,那么22(1)(1)αβ+++的最小值为( ) A .414-B .2C .10D .325.设S ⋅⋅⋅+S 最接近的整数是( ) A .2015B .2016C .2017D .20186.如图,菱形ABCD 中,60A ∠=︒,6AB =,⊙A 、⊙B 的半径分别为4和2,P 、E 、F 分别是线段CD 、⊙A 和⊙B 上的动点,则PE PF +的最大值是( ) A.12 B.16 C .18D .6CBD二、填空题(本大题共6小题,每小题7分,共42分).7.如图,四边形ABCD 是菱形,E 、F 、G 、H 分别是各边的中点,随机地向菱形ABCD 内掷一粒米,则米粒落在阴影区域内的概率是 . 8.已知222x y z x y z x y z z y x +--+-++==且0xyz ≠,则()()()x y y z z x xyz+++= .9.满足1mx m n +-=的整数对(,)m n 共有 对.10.已知22(1)56p q p p q pq ++=⎧⎨+=⎩,则以p 、q 为实数根的一元二次方程为 . 11.函数3max{4,,}y t t t =-+表示对于给定的t 的值,代数式4t -+、t 、3t的值中最大的数,例如当1t =-时,max{5,1,3}5y =--=,当1t =时,max{3,1,3}3y ==,则当t = 时函数y 的值最小.12.在平面直角坐标系中,同时满足下列两个条件的点的坐标为 . (1)直线23y x =-+通过这样的点;(2)不论m 取何非零实数值,抛物线2(21)3y mx m x m =+--都不通过这样的点. 三、解答题(本大题共4小题,共66分.解答应写出文字说明、证明过程和演算步骤) 13. (本小题满分16分)对于任意实数k ,方程2222(1)2()40k x k a x k k b +-++++=总有一个根是1.(1)求实数a 、b ; (2)求另一个根的范围.14. (本小题满分16分)如图,在平面直角坐标系中,直线y =-12x +4与x 轴交于A 点,与y 轴交于B 点,以AB 为直径作⊙1O ,过B 作⊙1O 的切线交x 轴于点C . (1)求C 点的坐标;(2)设点D 为BC 延长线上一点,CD BC =,P 为线段BC 上的一个动点(异于B 、C ),过P 点作x 轴的平行线交AB 于M ,交DA 的延长线于N ,试判断PM PN +是否为定值,如果是,求出这个值,若不是,说明理由.15. (本小题满分16分)在四边形ABCD 中,AD ∥BC ,BAC D ∠=∠,点E 在边BC (点C 除外)上运动,点F 在边CD 上运动,且AEF ACD ∠=∠.(1)如图1,若AB kBC =(k 为常数),则AE 与EF 之间是否存在某种确定的数量关系?若存在,请证明,若不存在,请说明理由; (2)如图2,若5AB AC ==,2425sin BAC ∠=,BAC ∠为锐角,设EF 的长度为m ,当E 、F 点运动时,求m 的变化范围.16. (本小题满分16分)已知抛物线2:24C y x x =-+,其顶点为E ,与y 轴交于点D . (1)直线2:(0)l y kx k =>与抛物线C 交于不同两点P 、Q ,并与直线1:28l y x =-+交于点R ,分别过P 、Q 、R 作x 轴的垂线,其垂足依次为1P 、1Q 、1R ,若11111u OP OQ OR +=,求u 的值; (2)若直线31:83l y x =-+与抛物线C 在第一象限交于点B ,交y 轴于点A ,求ABD DBE∠-∠的值; (3)若13(1,)4F 、(0,8)A ,请在抛物线C 上找一点K ,使得KFA ∆的周长最小,并求出周长的最小值.EDBB华中师大一附中2016年高中招生考试数学试题参考答案及评分标准考试时间:80分钟 卷面满分:150分说明:所有答案一律书写在答题卡上,写在试卷上作答无效.一、选择题(本大题共6小题,每小题7分,共42分.在每小题给出的四个选项中,有且只有一项是正确的.)7.128.-1或8(只填对一个只得3分) 9.6 10.x 2-3x +2 =0 (填了x 2-2x +3 =0给4分)11.212.(-3,9),(1,1),(3,-3)[(正确答案个数-错误答案个数)×2。
广州太和华附2016年招生真卷
广州太和华附2016年招生真卷一、选择题:把正确答案的编号填在括号里。
(每题2分,共16分)1、中央电视台晚上少儿节目“动画梦工场”7时开始,用24小时计时法表示是( )。
A .07:00B .19:00C .晚上7:00D .192、323至少要加上( )能同时被2、3整除。
A .1B .2C .3D .43、用20克糖和80克水配成一种糖水。
糖与糖水的比是( )。
A .1:4B .4:1C .1:5D .5:14、下图是一个长3厘米、宽与高都是2厘米的长方体。
将它挖掉一个棱长1厘米的小正方体,它的表面积( )。
A .比原来小B .比原来大C .无法确定D .不变5、 59.9954精确到百分位是( )。
A. 59.99B. 59.995C. 60.0D. 60.006、一根电线长20米,剪去52 后又剪去52米,还剩( )米。
A 、4 B 、5311 C 、 36 7、三角形的面积一定,它的底和高( )。
A 、成正比例B 、 成反比例C 、 不成比例D 、 无法确定8、下列图形中,( )不是轴对称图形。
A B C D二、填空题。
(每题2分,共14分)1、 27: ( )=( )÷12=0.75=( )%.2、4吨50千克=( )千克 4530毫升=( )升 1.25小时=( )分3、173的分数单位是( ),再加上( )个这样的单位就是最小的质数。
4、一个圆锥体,底面周长是12.56厘米,高2.4厘米,它的体积是( )立方厘米。
5、有一个机器零件长5毫米,画在设计图纸上长2厘米,这副图的比例尺是( )。
6、一个圆柱体,削去6立方分米,正好削成与它等底等高的圆锥体。
这个圆锥体的体积是( )。
7、甲、乙两数的比是2∶5,乙数比甲数多( )%,若甲数是15,乙数是( )。
三、计算题。
(共20分)1、口算:(每题1分,共6分)1.57÷41×25= 15÷15%= 21×51÷21×51=1.25×1.5×8= 1001×99-99= 0.22=2、简便运算:(前两小题,各2分,后两小题,各3分,共10分)(1)(61-81+121)÷241(2) 0.75×65+43×36-75%(3)1110÷[56×(73-83)] (4)(21+31)÷65+1033、求未知数:(每题2分,共4分)(1)x :12=43∶54 (2) 43x +83x =1.75四、解决问题:(每小题10分,共30分)1、小红读一本故事书,前5天每天读18页,后10天共读210页才把这本书读完,小红平均每天读书多少页?2、贺兰一中食堂有大米840千克,大米和面粉的重量比是5:2,面粉有多少千克?3、贺兰回小组织“爱心”捐款活动,六年级学生共捐款650元,比五年级学生捐款数的2倍少150元。
广州市华附奥校选修三第一单元《计数原理》检测(答案解析)
一、选择题1.已知()272901291(21)(1)(1)(1)()x x a a x a x a x x R +-=+-+-++-∈.则1a =( ) A .-30B .30C .-40D .402.261(12)()x x x+-的展开式中,含2x 的项的系数是( ) A .40-B .25-C .25D .553.有5名同学从左到右站成一排照相,其中中间位置只能排甲或乙,最右边不能排甲,则不同的排法共有( ) A .42种B .48种C .60种D .72种4.已知8a x x ⎛⎫+ ⎪⎝⎭展开式中4x 项的系数为112,其中a R ∈,则此二项式展开式中各项系数之和是( ) A .83B .1或83C .82D .1或825.二项式2()nx x-的展开式中,第3项的二项式系数比第2项的二项式系数大9,则该展开式中的常数项为( ) A .160-B .80-C .80D .1606.将甲、乙、丙、丁四人分配到A 、B 、C 三所学校任教,每所学校至少安排1人,则甲不去A 学校的不同分配方法有( ) A .18种B .24种C .32种D .36种7.已知10件产品有2件是次品.为保证使2件次品全部检验出的概率超过0.6,至少应抽取作检验的产品件数为() A .6B .7C .8D .98.已知67017(1)()...x a x a a x a x +-=+++,若017...0a a a +++=,则3a =( )A .5-B .20-C .15D .359.从5种主料中选2种,8种辅料中选3种来烹饪一道菜,烹饪方式有5种,那么最多可以烹饪出不同的菜的种数为 A .18B .200C .2800D .3360010.如图,用6种不同的颜色把图中A,B,C,D 四块区域涂色分开,若相邻区域不能涂同一种颜色,则不同涂法的种数为( )A .400B .460C .480D .49611.1231261823n nn n n n C C C C -+++⋯+⨯=( )A.21 23n+B.()2413n-C.123n-⨯D .()2313n-12.将编号为1,2,3,4,5,6,7的小球放入编号为1,2,3,4,5,6,7的七个盒子中,每盒放一球,若有且只有三个盒子的编号与放入的小球的编号相同,则不同的放法种数为()A.315 B.640 C.840 D.5040二、填空题13.有2个不同的红球和3个不同的黄球,将这5个球放入4个不同的盒子中,要求每个盒子至少放一个球,且同色球不能放在同一个盒子中,则不同的放置方法有________种.(用数字作答)14.市扶贫工作组从4男3女共7名成员中选出队长1人,副队长1人,普通队员2人组成4人工作小组下乡,要求工作组中至少有1名女同志,且队长和副队长不能都是女同志,共有______种安排方法.15.若423401234(37)x a a x a x a x a x+=++++,则2202413()()a a a a a++-+的值为____.16.二项式61(2x)x-的展开式中常数项为______(用数字表示).17.622xx⎛-⎪⎝⎭的展开式中3x的系数为__________.(用数字作答)18.已知()nx y+的展开式中,只有第七项的系数最大,则n=___________19.如图所示,在杨辉三角中,斜线AB上方箭头所示的数组成一个锯齿形的数列:1,2,3,3,6,4,10,…,记这个数列的前n项和为S(n),则S(16)的值为_____.20.设S为一个非空有限集合,记||S为集合S中元素的个数,若集合S的两个子集A、B满足:||A B k=并且A B S=,则称子集{,}A B为集合S的一个“k—覆盖”(其中0||k S≤≤),若||S n=,则S的“k—覆盖”个数为________三、解答题21.已知4nxx的二项展开式的各二项式系数的和与各项系数的和均为256.(1)求展开式中有理项的个数;(2)求展开式中系数最大的项.22.已知n的展开式的各项系数之和等于5⎛⎝展开式中的常数项,求n展开式中含1a -的项的二项式系数. 23.有7本不同的书:(1)全部分给6个人,每人至少一本,有多少种不同的分法? (2)全部分给5个人,每人至少一本,有多少种不同的分法?.24.(1)求91x ⎛- ⎝的展开式的常数项;(2)若1nx ⎛ ⎝的展开的第6项与第7项的系数互为相反数,求展开式的各项系数的绝对值之和.25.已知()23*23n n A C n N =∈.(1)求n 的值;(2)求12nx x ⎛⎫- ⎪⎝⎭展开式中2x 项的系数. 26.已知二项式()23nx x +.(1)若它的二项式系数之和为128.求展开式中二项式系数最大的项; (2)若3,2016x n ==,求二项式的值被7除的余数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】令1t x =-,得29012927(22)(21)()a a t t t t a t a t x R =++++++∈+,进而得含t 的项为767722(2)tC C t +,从而得解.【详解】令1t x =-,则有:27290129[(1)1][2(1)1]()t t a a t a t a t x R +++-=++++∈,即29012927(22)(21)()a a t t t t a t a t x R =++++++∈+,7(21)t +展开式的通项公式为:77(2)r r C t -,所以29012927(22)(21)()a a t t t t a t a t x R =++++++∈+中含t 的项为:767722(2)30tC C t t +=.故选:B. 【点睛】关键点点睛:本题解题的关键是令1t x =-,转化为求27(22)(21)t t t +++的展开中含t 的项.2.B解析:B 【分析】写出二项式61()x x-的展开式中的通项,然后观察含2x 项有两种构成,一种是()212x+中的1与61()x x-中的二次项相乘得到,一种是()212x+中的22x 与61()x x-中的常数项相乘得到,将系数相加即可得出结果. 【详解】二项式61()x x-的展开式中的通项662166()1C (1)C k kk k k k k T x x x--+=-=-,含2x 的项的系数为223366(1)2(1)25C C -+⨯-=- 故选B. 【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.3.A解析:A 【分析】根据题意,分2种情况讨论:①甲在最中间,将剩余的4人全排列,②乙在中间,分析可得此时的排法数目,由加法原理计算可得答案. 【详解】根据题意,中间只能排甲或乙,分2种情况讨论:①甲在中间将剩余的4人全排列,有4424A =种情况,②乙在中间,甲不能在最右端,有3种情况,将剩余的3人全排列,安排在剩下的三个位置,此时有33318A ⨯=种情况,则一共有241842+=种排法。
广州市华附奥校高中数学选修2-3第一章《计数原理》检测(答案解析)
一、选择题1.某城市有3 个演习点同时进行消防演习,现将5 个消防队分配到这3 个演习点,若每个演习点至少安排1 个消防队,则不同的分配方案种数为( ) A .150B .240C .360D .5402.如图,在杨辉三角形中,斜线l 的上方从 1 按箭头所示方向可以构成一个“锯齿形”的数列: 1,3,3,4,6,5,10,...,记此数列的前n 项之和为n S ,则 21S 的值为( )A .66B .153C .295D .3613.为深入贯彻实施党中央布置的“精准扶贫”计划,某地方党委政府决定安排5名党员干部到4个贫困村驻村扶贫,每个贫困村至少分配1名党员干部,则不同的分配方案共有( ) A .264种B .480种C .240种D .720种4.某科技小组有四名男生两名女生.现从中选出三名同学参加比赛,其中至少有一名女生入选的不同选法种数为( ) A .36CB .1225C CC .12212424C C C C +D .36A5.5名师生站成一排照相留念,其中教师1人,男生2人,女生2人,则两名女生相邻而站的概率是( ) A .15B .25C .35D .456.现有甲、乙、丙、丁、戌5人参加社区志愿者服务活动,每人从事团购、体温测量、进出人员信息登记、司机四项工作之一,每项工作至少有一人参加.若甲、乙不会开车但能从事其他三项工作,丙、丁、戌都能胜任四项工作,则不同安排方案的种数是( ) A .234B .152C .126D .1087.某医院计划从3名医生,9名护士中选派5人参加湖北新冠肺炎疫情狙击战,要求选派的5人中至少要有2名医生,则不同的选派方法有( ) A .495种B .288种C .252种D .126种8.我省5名医学专家驰援湖北武汉抗击新冠肺炎疫情现把专家全部分配到A ,B ,C 三个集中医疗点,每个医疗点至少要分配1人,其中甲专家不去A 医疗点,则不同分配种数为( ) A .116B .100C .124D .909.2101()x x+的展开式中含5x 项的系数为( )A .160B .210C .120D .25210.已知5250125(12)...x a a x a x a x +=++++,则512025 (222)a a a a ++++的值为( ) A .32 B .1 C .81D .6411.将20名学生任意分成甲、乙两组,每组10人,其中2名学生干部恰好被分在不同组内的概率为( )A .192181020C C CB .1921810202C C C C .1921910202C C C D .192191020C C C12.式子22223459C C C C ++++=( )A .83B .84C .119D .120二、填空题13.如图给三棱柱ABC DEF -的顶点染色,定义由同一条棱连接的两个顶点叫相邻顶点,规定相邻顶点不得使用同一种颜色,现有4种颜色可供选择,则不同的染色方法有_________________.14.《红海行动》是一部现代海军题材影片,该片讲述了中国海军“蛟龙突击队”奉命执行撤侨任务的故事.撤侨过程中,海军舰长要求队员们依次完成六项任务,并对任务的顺序提出了如下要求:重点任务A 必须排在前三位,且任务E 、F 必须排在一起,则这六项任务的不同安排方案共有_____种. 15.集合{}1,2,3,,14S =的4元子集{}1234,,,T a a a a =中,任意两个元素差的绝对值都不为2,这样的4元子集T 的个数有___个16.从0、2、4中取一个数字,从1、3、5中取两个数字,组成无重复数字的三位数,则所有不同的三位数的个数是______(用数字作答) 17.已知()723801238()(21)x m x a a x a x a R x a x m +-=+++++∈,若127a =,则()81ii i a =⋅∑的值为_______.18.在停课不停学期间,某校有四位教师参加三项不同的公益教学活动,每位教师任选一项,则每个项目都有该校教师参加的概率为________(结果用数值表示).19.已知集合{}()*1,2,,,2U n n N n =⋅⋅⋅∈≥,对于集合U 的两个非空子集A ,B ,若AB =∅,则称(),A B 为集合U 的一组“互斥子集”.记集合U 的所有“互斥子集”的组数为()f n (视(),A B 与(),B A 为同一组“互斥子集”).那么()f n =______.20.某中学安排,,,A B C D 四支小队去3所不同的高校参观,上午每支小队各参观一所高校,下午A 小队有事返回学校,其余三支小队继续参观.要求每支小队上下午参观的高校不能相同,且每所高校上午和下午均有小队参观,则不同的安排有_____种.三、解答题21.有5个男生和3个女生,从中选出5人担任5门不同学科的课代表,求分别符合下列条件的选法数.(1)有女生但人数必须少于男生;(2)某男生必须包括在内,但不担任数学课代表;(3)某女生一定要担任语文课代表,某男生必须担任课代表,但不担任数学课代表. 22.某工厂生产的10件产品中,有8件合格品、2件不合格品,合格品与不合格品在外观上没有区别.从这10件产品中任意抽检2件,计算: (1)抽出的2件产品恰好都是合格品的抽法有多少种? (2)抽出的2件产品至多有1件不合格品的抽法有多少种?(3)如果抽检的2件产品都是不合格品,那么这批产品将被退货,求这批产品被退货的概率.23.从1到9的九个数字中取三个偶数四个奇数,试问: ①能组成多少个没有重复数字的七位数? ②上述七位数中三个偶数排在一起的有几个?③在①中的七位数中,偶数排在一起、奇数也排在一起的有几个? ④在①中任意两偶数都不相邻的七位数有几个?24.现有2位男生和3位女生共5位同学站成一排.(用数字作答) (1)若2位男生相邻且3位女生相邻,则共有多少种不同的排法? (2)若男女相间,则共有多少种不同的排法?(3)若男生甲不站两端,女生乙不站最中间,则共有多少种不同的排法? 25.有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数. (1)选5人排成一排;(2)排成前后两排,前排4人,后排3人; (3)全体排成一排,甲不站排头也不站排尾; (4)全体排成一排,女生必须站在一起; (5)全体排成一排,男生互不相邻. 26.已知. (1)若,求及的值;(2)若,求最大的系数;(3)定义,若化简.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】试题分析:由题意得,把5个消防队分成三组,可分为1,1,3,1,2,2两类方法,(1)分为1,1,3,共有1135432210C C C A =种不同的分组方法;(2)分为1,2,2,共有1225422215C C C A =种不同的分组方法;所以分配到三个演习点,共有33(1015)150A +⨯=种不同的分配方案,故选A .考点:排列、组合的应用.【方法点晴】本题主要考查了以分配为背景的排列与组合的综合应用,解答的关键是根据“每个演习点至少要安排1个消防队”的要求,明确要将5个消防队分为1,1,3,1,2,2的三组是解得关键,着重考查了分析问题和解答问题的能力,属于中档试题,本题的解答中,先将5个消防队分为三组,则分配到三个演习点,然后根据分步计数原理,即可得到答案.2.D解析:D 【解析】试题分析:观察杨辉三角结合其中数的来源,可得到这个数列的通项公式.n a 当n 为偶数时,42n n a +=;当n 为奇数时,0212322233551,3,6,C C C C C C ======,所以()()232138n n n n a C +++==,所以21S =()()()()22221352124620124622224622758a a a a a a a a ⎡⎤+++++++++=++++++++++⎣⎦()122423112475286753618⎡⎤=⨯⨯+⨯+=+=⎣⎦,故选D. 考点:归纳推理与数列求和.3.C解析:C 【分析】先从5个党员干部里选2个,再从4个贫困村里选1个接受选出的2个党员,剩下的3名党员分配给3个贫困村,即得解. 【详解】先从5个党员干部里选2个,有25C 种方法,再从4个贫困村里选1个接受选出的2个党员,有14C 种方法,剩下的3名党员分配给3个贫困村,有33A 种方法.所以共有213543240C C A =种方法.故选:C. 【点睛】本题主要考查排列组合的综合应用,意在考查学生对这些知识的理解掌握水平.4.C解析:C 【分析】分只有一名女生入选和有二名女生入选两种情况,结合分步乘法计数原理以及分类加法计数原理,即可得出答案. 【详解】当只有一名女生入选时,先选1名女生,有12C 种,再选2名男生,有24C 种,则根据分步乘法计数原理可知,有1224C C 种当有二名女生入选时,选选2名女生,有22C 种,再选1名男生,有14C 种,则根据分步乘法计数原理可知,有2124C C 种所以从中选出三名同学参加比赛,其中至少有一名女生入选的不同选法种数为12212424C C C C +故选:C 【点睛】本题主要考查了组合的应用,涉及了分步乘法计数原理以及分类加法计数原理的应用,属于中档题.5.B解析:B 【分析】这是一个古典概型,先确定5名师生站成一排站法数,记“两名女生相邻而站”为事件A , 两名女生站在一起,视为一个元素与其余3个人全排,计算出事件A 共有不同站法数,再代入公式求解. 【详解】5名师生站成一排共有55120A =种站法, 记“两名女生相邻而站”为事件A ,两名女生站在一起有222A =种,视为一个元素与其余3个人全排,有4424A =种排法, 则事件A 共有不同站法242448A A ⋅=种,所以()482 1205p A==,两名女生相邻而站的概率是2 5 .故选:B【点睛】本题主要考查古典概型的概率,还考查了理解辨析,运算求解的能力,属于中档题. 6.C解析:C【分析】分情况进行讨论,先计算“甲乙一起参加除了开车的三项工作之一”有多少种情况,再计算“甲和乙分别承担一份工作,丙、丁、戌三人中有两人承担同一份工作”和“甲或乙与丙、丁、戌三人中的一人承担同一份工作”的情况,相加即得.【详解】由题,分情况讨论,甲乙一起参加除了开车的三项工作之一:133318C A=种;甲乙不同时参加一项工作,又分为两种情况:①甲和乙分别承担一份工作,丙、丁、戌三人中有两人承担同一份工作,有:222 323323236C A A=⨯⨯⨯=种;②甲或乙与丙、丁、戌三人中的一人承担同一份工作:2112332272A C C A=种.由分类计数原理,可得共有183672126++=种.故选:C【点睛】本题考查计数原理,考查学生的逻辑推理能力.7.B解析:B【分析】题意分两种情况,①选派2名医生,3名护士,②选派3名医生,2名护士,分别计算,再根据分类加法计算原理计算可得;【详解】解:依题意分两种情况,①选派2名医生,3名护士,则有2339252C C=(种);②选派3名医生,2名护士,则有323936C C=(种);按照分类加法计算原理可知,一共有2332393936252288C C C C+=+=(种).故选:B【点睛】本题考查简单的组合问题,分类加法计算原理,属于中档题.8.B解析:B【分析】完成这件事情可分2步进行:第一步将5名医学专家分为3组;第二步将分好的3组分别派到三个医疗点,由分步计数原理计算即可得到答案. 【详解】根据已知条件,完成这件事情可分2步进行: 第一步:将5名医学专家分为3组①若分为3,1,1的三组,有3510C =种分组方法;②若分为2,2,1的三组,有22532215C C A =种分组方法, 故有101525+=种分组方法.第二步:将分好的三组分别派到三个医疗点,甲专家不去A 医疗点,可分配到,B C 医疗点中的一个,有122C =种分配方法, 再将剩余的2组分配到其余的2个医疗点,有222A =种分配方法, 则有224⨯=种分配方法.根据分步计数原理,共有254100=⨯种分配方法. 故选:B . 【点睛】本题主要考查排列、组合的应用,同时考查分步计数原理,属于基础题.9.D解析:D 【分析】由二项式定理及其二项展开式通项得:210203110101()()rrr r rr T C x C x x--+==,令2035r -=,解得r 的值,进而求得其系数.【详解】()102203110101rrrr rr T C xC xx --+⎛⎫== ⎪⎝⎭, 当=5r 时,555610252T C x x ==. 故选:D. 【点睛】本题考查了二项式定理及其二项式展开式的通项,属于基础题.10.A解析:A 【分析】根据所求与已知的关系,令12x =,即可求得答案. 【详解】5250125(12)...x a a x a x a x +=++++,∴令12x =,即可得555120251...122322222a a a a ⎛⎫++++=+⨯== ⎪⎝⎭.故选:A 【点睛】本题考查二项式定理的应用,考查理解辨析能力与运算求解能力,属于基础题.11.A解析:A 【分析】由题意知本题是一个古典概型,先求出事件发生的总个数,再求出满足要求的事件个数,再根据古典概型的概率公式即可得出结果. 【详解】由题意知本题是一个古典概型,试验发生的所有事件是20名学生平均分成两组共有1020C 种结果, 而满足条件的事件是2名学生干部恰好被分在不同组内共有19218C C 中结果,根据古典概型的概率公式得192181020=C C P C . 故选:A. 【点睛】本题主要考查古典概型和组合问题,属于基础题.12.C解析:C 【分析】根据组合数的计算公式111r r r n n n C C C ++++=,化简运算,即可求解.【详解】由题意,根据组合数的计算公式111rr r n n n C C C ++++=,可得22223459C C C C ++++=32222334591C C C C C +++++-322244591C C C C =++++-32235591011119C C C C =+++-==-=.故选:C. 【点睛】本题主要考查了组合数的化简与运算,其中解答中熟记组合数的运算公式,准确运算是解答的关键,着重考查了计算能力.二、填空题13.【分析】首先先给染色再按分类和分步给染色计算染色方法【详解】首先先给顶点染色有种方法再给顶点染色①若它和点染同一种颜色点和点染相同颜色点就有2种方法若点和点染不同颜色则点有2种方法点也有1种方法则的 解析:264【分析】首先先给,,A B C 染色,再按分类和分步,给,,D E F 染色,计算染色方法. 【详解】首先先给顶点,,A B C 染色,有3424A =种方法,再给顶点D 染色,①若它和点B 染同一种颜色,点E 和点C 染相同颜色,点F 就有2种方法,若点E 和点C 染不同颜色,则点E 有2种方法,点F 也有1种方法,则,,D E F 的染色方法一共有2214+⨯=种方法,②若点D 和点B 染不同颜色,且与点C 颜色不同,则点D 有1种方法,点E 与点C 颜色不同,则点E 有1种方法,则点F 有1种方法,此时有1种方法;若最后E 与C 相同,则F 有2种方法,则共有2种方法;点D 与点C 颜色相同,则点D 有1种方法,则点E 有2种方法,则点F 有2种方法,共有224⨯=种方法,所以点D 和点B 染不同,颜色共有1247++=种方法,所以点,,D E F 的染色方法一共有4711+=种,所以共有2411264⨯=种方法. 故答案为:264 【点睛】关键点点睛:本题重点考查涂色问题,涂色问题的一个关键点是分步里面有分类,所以分类清楚是关键.14.【分析】由题意重点任务必须排在前三位分别讨论排在第一位第二位第三位的情况再将捆绑在一起与另外三个任务安排顺序即可得解【详解】由题意重点任务必须排在前三位必须排在一起分别讨论的位置:当排在第一位时排在 解析:120【分析】由题意重点任务A 必须排在前三位,分别讨论A 排在第一位、第二位、第三位的情况,再将E 、F 捆绑在一起,与另外三个任务安排顺序即可得解. 【详解】由题意重点任务A 必须排在前三位,E 、F 必须排在一起,分别讨论A 的位置: 当A 排在第一位时,E 、F 排在一起则有22A 种方法,将E 、F 捆绑作为一个整体与另外三个任务全排列则有44A ,所以此时有2424=24321=48A A ⨯⨯⨯⨯种方案;当A 排在第二位时,先从另外三个任务中选一个排在第一位,则有13C ,E 、F 排在一起有22A 种方法,将E 、F 捆绑作为一个整体与另外两个任务全排列则有33A ,所以此时有123323=32321=36C A A ⨯⨯⨯⨯种方案;当A 排在第三位时,分E 、F 在A 左侧与右侧两种情况:当E 、F 在A 左侧时,E 、F二个任务全排列,另外三个任务在A 的右侧全排列,所以有2323232112A A =⨯⨯⨯=种;当E 、F 在A 右侧时,先将另外三个任务中的两个任务在左侧排列,再将E 、F 捆绑作为一个整体排列在右侧,最后与另外一个任务全排列有222322322224A A A =⨯⨯⨯=种;所以此种情况共有12+24=36种方案;综上可知,不同安排方案共有48+36+36=120种. 故答案为:120. 【点睛】本题考查了排列组合问题的实际应用,对由位置要求的元素进行优先安排,通过分离讨论的方法分析各种情况,属于中档题.15.367【分析】将集合中的元素分为奇数偶数然后分类讨论4元子集中的元素:4个全是奇数;奇偶;奇偶;偶奇;4个全是偶数;再利用组合数的运算即可求解【详解】由集合其中个奇数:;个偶数:;4元子集中任意两个解析:367 【分析】将集合S 中的元素分为奇数、偶数,然后分类讨论4元子集中的元素:4个全是奇数;3奇1偶;2奇2偶;3偶1奇;4个全是偶数;再利用组合数的运算即可求解. 【详解】 由集合{}1,2,3,,14S =,其中7个奇数:1,3,5,7,9,11,13;7个偶数:2,4,6,8,10,12,14;4元子集{}1234,,,T a a a a =中,任意两个元素差的绝对值都不为2, 4个元素全是奇数:{}1,5,9,13,共1种.3个奇数1个偶数:3个奇数的取法有{}1,5,9,{}1,5,11,{}1,5,13,{}1,7,11,{}1,7,13,{}1,9,13,{}3,7,11,{}3,7,13,{}3,9,13,{}5,9,13,共10种,此时共有171070C ⨯=.2个奇数2个偶数:即奇数任意抽取2个需去除相邻项、偶数任意抽取2个需去除相邻项,即()()2277661515225C C --=⨯=.3个偶数1个奇数的情况与3个奇数1个偶数情况一样:171070C ⨯=. 4个全是偶数:{}2,6,10,14,共1种.所以满足题意的共有:170225701367++++=. 故答案为:367 【点睛】本题考查了组合数的应用,此题属于复杂的组合问题,考查了分类讨论的思想,属于中档题16.【分析】由题意分为从024中取一个数字0从024中取一个数字不是0分类由分步乘法计数原理结合排列组合的知识即可得解【详解】由题意要从024中取一个数字从135中取两个数字组成无重复数字的三位数可以分 解析:48【分析】由题意分为从0、2、4中取一个数字0,从0、2、4中取一个数字不是0分类,由分步乘法计数原理结合排列、组合的知识即可得解. 【详解】由题意,要从0、2、4中取一个数字,从1、3、5中取两个数字,组成无重复数字的三位数,可以分成两种情况:第一种,当从0、2、4中取一个数字0,而从1、3、5中任选两个数字时,组成无重复数字的三位数有21232212C C A ⋅⋅=个;第二种,当从0、2、4中取一个数字不是0,而从1、3、5中任选两个数字时,组成无重复数字的三位数有12323336C C A ⋅⋅=个; 综上,所有不同的三位数的个数是123648+=. 故答案为:48. 【点睛】本题考查了计数原理的应用,考查了运算求解能力与分类讨论思想,属于中档题.17.43【分析】因为的展开通项为:根据求的将所给等式两边求导即可求得的值【详解】的展开通项为:又等式两边求导可得:令得:故答案为:【点睛】本题解题关键是掌握多项式系数的求法和导数基础知识考查了分析能力和解析:43 【分析】因为7(21)x -的展开通项为:777177(2)(1)(1)2rrr rr r r r T C x C x ---+=⋅⋅-⋅-⋅⋅=,根据127a =,求的m ,将所给等式两边求导,即可求得()81i i i a =⋅∑的值.【详解】7(21)x -的展开通项为:777177(2)(1)(1)2r r r rr r r r T C x C x ---+=⋅⋅-⋅-⋅⋅= 又777()(21)(21)(21)x m x x x m x +--+-=∴7661777011(1)2(1)211427a C m C m =⨯-⋅+⨯--+==⋅∴2m =80187(2)(21)x x a a x a x +-=++⋯+等式两边求导可得:762712381(21)(2)7(21)2238x x x a a x a x a x ⋅-++⋅⋅-⋅=+++⋯+6(21)(211428)x x x =--++67128(1627)(21)28x x a a x a x =+-=++⋯+令1x =,得:1282843a a a ++⋯=+∴()8143i i i a =⋅=∑故答案为:43 【点睛】本题解题关键是掌握多项式系数的求法和导数基础知识,考查了分析能力和计算能力,属于中档题.18.【分析】根据题意先求出四位教师参加三项不同的公益教学活动每位教师任选一项的所有情况有种每个项目都有该校教师参加的情况有种即可求得相应的概率【详解】解:由于四位教师参加三项不同的公益教学活动每位教师任解析:49【分析】根据题意,先求出四位教师参加三项不同的公益教学活动,每位教师任选一项的所有情况有43种,每个项目都有该校教师参加的情况有2343C A ⋅种,即可求得相应的概率. 【详解】解:由于四位教师参加三项不同的公益教学活动,每位教师任选一项的情况有:433333⨯⨯⨯=(种),而每个项目都有该校教师参加的情况有:234336C A ⋅=(种), 则每个项目都有该校教师参加的概率为:436439=. 故答案为:49. 【点睛】本题考查概率的计算和分步乘法的计数原理,以及排列组合的应用,考查分析计算能力.19.【分析】根据任意一个元素只能在集合之一中以及的非空子集个数即可求得【详解】根据题意任意一个元素只能在集合之一中则这个元素在集合中共有种;其中为空集的种数为为空集的种数为个故可得均为非空子集的种数为又 解析:()113212nn +-+ 【分析】根据任意一个元素只能在集合(),,U A B C C A B =⋃之一中,以及,A B 的非空子集个数,即可求得. 【详解】根据题意,任意一个元素只能在集合(),,U A B C C A B =⋃之一中, 则这n 个元素在集合,,A B C 中,共有3n 种;其中A 为空集的种数为2n ,B 为空集的种数为2n 个, 故可得,A B 均为非空子集的种数为1321n n +-+, 又因为(),A B 与(),B A 为同一组“互斥子集, 故()()113212nn f n +=-+. 故答案为:()113212nn +-+. 【点睛】本题考查集合新定义,涉及排列组合的求解,属综合中档题.20.【分析】本题属于分组分配问题可按上午参观时A 是否与其他小队分在一组进行讨论分上下午两步安排参观即可得出答案【详解】若与中的某一支小队分在一组上午有种参观方法下午参观时三支小队不去各自上午参观的高校有解析:【分析】本题属于分组分配问题,可按上午参观时A 是否与其他小队分在一组进行讨论,分上下午两步安排参观,即可得出答案. 【详解】若A 与B 、C 、D 中的某一支小队分在一组,上午有1333C A ⋅种参观方法, 下午参观时B 、C 、D 三支小队不去各自上午参观的高校,有2种方法, 故有1333236C A ⋅⋅=种;若B 、C 、D 中某两支队分在一组,上午有2333C A ⋅种参观方法, 下午再安排时,也有2种方法, 故有2333236C A ⋅⋅=种. 所以一共有363672+=种. 故答案为:72. 【点睛】本题考查考查分组分配问题,注意其中的分类分步,属于中档题.三、解答题21.(1)5400种;(2)3360种;(3)360种. 【分析】(1)有女生但人数必须少于男生,先取后排即可; (2)先取后排,但先安排该男生;(3)先从除去该男生该女生的6人中选3人有36C 种,再安排该男生有13C 种,其余3人全排即可. 【详解】解:(1)先选后排,先取可以是2女3男,也可以是1女4男,先取有32415353C C C C +种,后排有55A 种,共()32415535355400C C C C A +⋅=(种).(2)先选后排,但先安排该男生,有4147443360C C A ⋅⋅=(种).(3)先从除去该男生、该女生的6人中选3人有36C 种,再安排该男生有13C 种,其中3人全排有33A 种,共313633360C C A ⋅⋅=(种). 【点睛】排列组合问题在实际问题中的应用,在计算时要求做到,兼顾所有的条件,先排约束条件多的元素,做的不重不漏,注意实际问题本身的限制条件,属于中档题. 22.(1)28种;(2)44种;(3)145【分析】(1)根据题意,利用组合数的公式,即可求得抽出的2件都是合格品的抽法种数; (2)由(1)得抽出的2件产品都是合格品的抽法,再求得恰好1件合格品1件不合格品的抽法种数,利用分类计数原理,即可求解.(3)求得基本事件的总数,得出其中抽检的2件产品都是不合格品的事件数,结合古典概型的概率计算公式,即可求解. 【详解】(1)由题意,某工厂生产的10件产品中,有8件合格品、2件不合格品,所以抽出的2件都是合格品的抽法,共有20828712821C C ⨯=⨯=⨯种. (2)由(1)得抽出的2件产品都是合格品的抽法,共有2082872821C C ⨯==⨯种; 恰好1件合格品1件不合格品的抽法,共有11828216C C =⨯=种, 所以抽到的2件产品中至多有1件不合格品的抽法,共有281644+=种.(3)从10件产品中任意抽取2件产品的抽法,共有2101094521C ⨯==⨯种, 其中抽检的2件产品都是不合格品的事件数有221C =种, 得抽检的2件产品都是不合格品的概率145P =, 即这批产品被退货的概率为145. 【点睛】本题主要考查了分类计数原理、排列组合的应用,以及古典概型的概率计算,其中解答中认真审题,合理分类,结合分类计数原理和古典概型的概率计算公式准确运算是解答的关键,着重考查了分析问题和解答问题的能力. 23.①100800;②14400;③5760;④28800 【分析】①分步完成:第一步计算在4个偶数中取3个的情况数目,第二步计算在5个奇数中取4个的情况数目,第三步将取出的7个数进行全排列,计算可得答案;②由①的第一、二步,将3个偶数排在一起,有33A 种情况,与4个奇数共5个元素全排列,计算可得答案;③由①的第一、二步,将3个偶数排在一起,有33A 种情况,4个奇数也排在一起有44A 种情况,将奇数与偶数进行全排列计算可得答案;④由①的第一、二步,可先把4个奇数取出并排好有4454C A 种情况,再将3个偶数分别插入5个空档,有3345C A 种情况,进而由乘法原理,计算可得答案. 【详解】解:①分步完成:第一步在4个偶数中取3个,可有34C 种情况; 第二步在5个奇数中取4个,可有45C 种情况; 第三步3个偶数,4个奇数进行排列,可有77A 种情况, 所以符合题意的七位数有347457100800C C A =个.②上述七位数中,三个偶数排在一起的有3453455314400C C A A =个.③上述七位数中,3个偶数排在一起,4个奇数也排在一起的有34342453425760C C A A A =个. ④上述七位数中,偶数都不相邻,可先把4个奇数排好,再将3个偶数分别插入5个空档,共有4454C A 334528800C A =个. 【点睛】对于有限制条件的排列问题,常见方法是分步进行,先组合再排列,这是乘法原理的典型应用.24.(1)24(2)12(3)60 【分析】(1)相邻问题利用捆绑法; (2)若男女相间,则用插空法;(3)若男生甲不站两端,女生乙不站最中间,则利用间接法. 【详解】解:(1)利用捆绑法,可得共有22322324A A A =种不同的排法; (2)利用插空法,可得共有232312A A =种不同的排法; (3)利用间接法,可得共有54135423360A A C A -+=种不同的排法. 【点睛】本题考查排列组合及简单的计数问题,涉及间接法和捆绑,插空等方法的应用,属于中档题.25.(1)2520种(2)5040种(3)3600种(4)576种(5)1440种 【分析】(1)按照排列的定义求解..(2)分两步完成,先选4人站前排进行排列,余下3人站后排进行排列,然后相乘求解.. (3)先考虑甲,再其余6人进行排列,然后相乘求解.(4)将女生看作一个整体与3名男生一起全排列,再将女生全排列,然后相乘求解. (5)先排女生,再在女生之间及首尾5个空位中任选3个空位安排男生,然后相乘求解. 【详解】(1)从7人中选5人排列,有57765432520A =⨯⨯⨯⨯=(种). (2)分两步完成,先选4人站前排,有47A 种方法,余下3人站后排,有33A 种方法,共有4373A A 5040=(种).(3)(特殊元素优先法)先排甲,有5种方法,其余6人有66A 种排列方法,共有6653600A ⨯=(种).(4)(捆绑法)将女生看作一个整体与3名男生一起全排列,有44A 种方法,再将女生全排列,有44A 种方法,共有4444A A 576=(种).(5)(插空法)先排女生,有44A 种方法,再在女生之间及首尾5个空位中任选3个空位安排男生,有35A 种方法,共有4345A A 1440=(种). 【点睛】本题主要考查了对排列的理解和排列数的计算,还考查了理解辨析的能力,属于中档题. 26.(1)(2)(3)【解析】 【分析】(1)由赋值法得到相应的数值;(2)将参数值代入表达式得到其通项公式为,由不等式,可得到,进而得到;(3)按照组合数的展开公式,分组求和即可. 【详解】 (1)若,,令,则, 令,则所以.(2)若,其通项公式为,由不等式。
【精选试卷】广州市华附奥校中考数学专项练习经典复习题(课后培优) (2)
一、选择题1.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( ) A .24y x =- B .24y x =+ C .22y x =+ D .22y x =- 2.若关于x 的一元二次方程kx 2﹣4x +3=0有实数根,则k 的非负整数值是( ) A .1B .0,1C .1,2D .1,2,33.下列计算正确的是( ) A .()3473=a ba b B .()232482--=--b a bab bC .32242⋅+⋅=a a a a aD .22(5)25-=-a a4.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是( )A .15.5,15.5B .15.5,15C .15,15.5D .15,155.矩形ABCD 与CEFG ,如图放置,点B ,C ,E 共线,点C ,D ,G 共线,连接AF ,取AF 的中点H ,连接GH .若BC=EF=2,CD=CE=1,则GH=( )A .1B .23C .22D .526.如图,矩形纸片ABCD 中,4AB =,6BC =,将ABC 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则DF 的长等于( )A .35B .53C .73D .547.若关于x 的一元二次方程()2110k x x -++=有两个实数根,则k 的取值范围是() A .54k ≤B .54k >C .514k k ≠<且D .514k k ≤≠且 8.如图,AB ,AC 分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为( )A .25B .4C .213D .4.89.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为( )A .7分B .8分C .9分D .10分10.如图,AB 为⊙O 直径,已知为∠DCB=20°,则∠DBA 为( )A .50°B .20°C .60°D .70°11.定义一种新运算:1an nnbn xdx a b -⋅=-⎰,例如:222khxdx k h ⋅=-⎰,若m252mx dx --=-⎰,则m =( )A .-2B .25-C .2D .2512.如图,在△ABC 中,AC =BC ,有一动点P 从点A 出发,沿A →C →B →A 匀速运动.则CP 的长度s 与时间t 之间的函数关系用图象描述大致是( )A.B.C.D.13.如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD的周长为()A.5cm B.10cm C.20cm D.40cm14.如图,A,B,P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为()A.2B.4C.22D.215.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是( )A.③④B.②③C.①④D.①②③16.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y 尺,则符合题意的方程组是( )A .5{152x y x y =+=-B .5{1+52x y x y =+=C .5{2-5x y x y =+=D .-5{2+5x y x y ==17.如图,在热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,热气球C 的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是( )A .200米B .2003米C .2203米D .100(31)+米18.如图,将△ABC 绕点C (0,1)旋转180°得到△A'B'C ,设点A 的坐标为(,)a b ,则点的坐标为( )A .(,)a b --B .(,1)a b ---C .(,1)a b --+D .(,2)a b --+19.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =-- 20.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是A .B .C .D .21.如图A ,B ,C 是⊙O 上的三个点,若∠AOC =100∘,则∠ABC 等于( )A.50°B.80°C.100°D.130°22.通过如下尺规作图,能确定点D是BC边中点的是()A.B.C.D.23.下列四个实数中,比1-小的数是()A.2-B.0 C.1 D.224.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB 和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()A.B.C.D.25.如图,下列四种标志中,既是轴对称图形又是中心对称图形的为()A.B.C.D.26.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( )A.2 B.3 C.5 D.727.下列由阴影构成的图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.28.下面的几何体中,主视图为圆的是()A.B.C.D.29.为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是()捐款数额10203050100人数24531A.众数是100B.中位数是30C.极差是20D.平均数是30 30.8×200=x+40解得:x=120答:商品进价为120元.故选:B.【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.二、填空题31.用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为_______.32.如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=32,在DB的延长线上取一点P,满足∠ABD =∠MAP+∠PAB,则AP=_____.33.如图,一束平行太阳光线照射到正五边形上,则∠1= ______.34.82=_______________.35.农科院新培育出A、B两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:种子数量10020050010002000出芽种子数961654919841965A发芽率0.960.830.980.980.98出芽种子数961924869771946B发芽率0.960.960.970.980.97下面有三个推断:①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样;②随着实验种子数量的增加,A种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A 种子出芽的概率是0.98;③在同样的地质环境下播种,A 种子的出芽率可能会高于B 种子.其中合理的是__________(只填序号).36.如图,在△ABC 中,BC 边上的垂直平分线DE 交边BC 于点D ,交边AB 于点E .若△EDC 的周长为24,△ABC 与四边形AEDC 的周长之差为12,则线段DE 的长为_____.37.九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得如图所放风筝的高度,进行了如下操作:(1)在放风筝的点A 处安置测倾器,测得风筝C 的仰角∠CBD =60°; (2)根据手中剩余线的长度出风筝线BC 的长度为70米; (3)量出测倾器的高度AB =1.5米.根据测量数据,计算出风筝的高度CE 约为_____米.(精确到0.1米,3≈1.73).38.对于有理数a 、b ,定义一种新运算,规定a ☆b =a 2﹣|b|,则2☆(﹣3)=_____. 39.分解因式:2x 2﹣18=_____. 40.当m =____________时,解分式方程533x mx x-=--会出现增根. 41.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=_____.42.已知关于x 的一元二次方程2220ax x c ++-=有两个相等的实数根,则1c a+的值等于_______.43.分解因式:2x 3﹣6x 2+4x =__________.44.如图:在△ABC 中,AB=13,BC=12,点D ,E 分别是AB ,BC 的中点,连接DE ,CD ,如果DE=2.5,那么△ACD 的周长是_____.45.半径为2的圆中,60°的圆心角所对的弧的弧长为_____. 46.如图,反比例函数y=kx的图象经过▱ABCD 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD ⊥DC ,▱ABCD 的面积为6,则k=_____.47.如图,在平面直角坐标系中,菱形OABC 的面积为12,点B 在y 轴上,点C 在反比例函数y =kx的图象上,则k 的值为________.48.如图,矩形ABCD 中,AB=3,对角线AC ,BD 相交于点O ,AE 垂直平分OB 于点E ,则AD 的长为____________.49.关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在-1和0之间(不包括-1和0),则a 的取值范围是___________50.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.51.如果a 是不为1的有理数,我们把11a-称为a 的差倒数如:2的差倒数是1112=--,-1的差倒数是111(1)2=--,已知14a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…,依此类推,则 2019a =___________ .52.如图,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB =90°,若AB =5,BC =8,则EF的长为______.53.关于x的一元二次方程(a+1)x2-2x+3=0有实数根,则整数a的最大值是_____. 54.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是.55.二元一次方程组627x yx y+=⎧⎨+=⎩的解为_____.56.我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为______.57.在一次班级数学测试中,65分为及格分数线,全班的总平均分为66分,而所有成绩及格的学生的平均分为72分,所有成绩不及格的学生的平均分为58分,为了减少不及格的学生人数,老师给每位学生的成绩加上了5分,加分之后,所有成绩及格的学生的平均分变为75分,所有成绩不及格的学生的平均分变为59分,已知该班学生人数大于15人少于30人,该班共有_____位学生.58.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快40千米,提速后从北京到上海运行时间缩短了30分钟,已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x千米/时,依题意,可列方程为_____.59.在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数为19的概率______.60.如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=10,CD=6,则tanC=________.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A 2.A 3.C 4.D 5.C6.B 7.D 8.C9.B 10.D 11.B 12.D 13.D 14.C 15.C 16.A 17.D 18.D 19.A 20.C 21.D 22.A 23.A 24.B 25.B26.C27.B28.C29.B30.无二、填空题31.2【解析】【分析】设这个圆锥的底面圆的半径为R根据扇形的弧长等于这个圆锥的底面圆的周长列出方程即可解决问题【详解】设这个圆锥的底面圆的半径为R由题意:2πR=解得R=2故答案为232.6【解析】分析:根据BD=CDAB=CD可得BD=BA再根据AM⊥BDDN⊥AB即可得到DN=AM=3依据∠ABD=∠MAP+∠PAB∠ABD=∠P+∠BAP即可得到△APM是等腰直角三角形进而得到33.30°【解析】【分析】【详解】解:∵AB//CD∴∠BAC+∠ACD=180°即∠1+∠EAC+∠ACD=180°∵五边形是正五边形∴∠EAC=108°∵∠ACD=42°∴∠1=180°-42°-134.【解析】【分析】先把化简为2再合并同类二次根式即可得解【详解】2-=故答案为【点睛】本题考查了二次根式的运算正确对二次根式进行化简是关键35.②③【解析】分析:根据随机事件发生的频率与概率的关系进行分析解答即可详解:(1)由表中的数据可知当实验种子数量为100时两种种子的发芽率虽然都是96但结合后续实验数据可知此时的发芽率并不稳定故不能确36.6【解析】试题解析:∵DE是BC边上的垂直平分线∴BE=CE∵△EDC的周长为24∴ED+DC+EC=24①∵△ABC与四边形AEDC的周长之差为12∴(AB+AC+BC)-(AE+ED+DC+AC37.1【解析】试题分析:在Rt△CBD中知道了斜边求60°角的对边可以用正弦值进行解答试题解析:在Rt△CBD中DC=BC•sin60°=70×≈6055(米)∵AB=15∴CE=6055+15≈62138.1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1故答案为1点睛:此题考查有理数的混合运算掌握规定的运算方法是解决问题的关键39.2(x+3)(x﹣3)【解析】【分析】原式提取2再利用平方差公式分解即可【详解】原式=2(x2﹣9)=2(x+3)(x﹣3)故答案为:2(x+3)(x﹣3)【点睛】此题考查了提公因式法与公式法的综合40.2【解析】分析:分式方程的增根是分式方程转化为整式方程的根且使分式方程的分母为0的未知数的值详解:分式方程可化为:x-5=-m由分母可知分式方程的增根是3当x=3时3-5=-m解得m=2故答案为:241.7【解析】【分析】根据非负数的性质列式求出ab的值再根据三角形的任意两边之和大于第三边两边之差小于第三边求出c的取值范围再根据c是奇数求出c的值【详解】∵ab满足|a﹣7|+(b﹣1)2=0∴a﹣742.【解析】【分析】根据关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根结合根的判别式公式得到关于a和c的等式整理后即可得到的答案【详解】解:根据题意得:△=4﹣4a(2﹣c)=0整理得:43.2x(x﹣1)(x﹣2)【解析】分析:首先提取公因式2x再利用十字相乘法分解因式得出答案详解:2x3﹣6x2+4x=2x(x2﹣3x+2)=2x(x﹣1)(x﹣2)故答案为2x(x﹣1)(x﹣2)点44.18【解析】【分析】根据三角形中位线定理得到AC=2DE=5AC∥DE根据勾股定理的逆定理得到∠ACB=90°根据线段垂直平分线的性质得到DC=BD根据三角形的周长公式计算即可【详解】∵DE分别是A45.【解析】根据弧长公式可得:=故答案为46.-3【解析】分析:由平行四边形面积转化为矩形BDOA面积在得到矩形PDOE面积应用反比例函数比例系数k的意义即可详解:过点P做PE⊥y轴于点E∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴47.-6【解析】因为四边形OABC是菱形所以对角线互相垂直平分则点A和点C关于y轴对称点C在反比例函数上设点C的坐标为(x)则点A的坐标为(-x)点B的坐标为(0)因此AC=-2xOB=根据菱形的面积等48.【解析】试题解析:∵四边形ABCD是矩形∴OB=ODOA=OCAC=BD∴OA=OB∵AE垂直平分OB∴AB=AO∴OA=AB=OB=3∴BD=2OB=6∴AD=【点睛】此题考查了矩形的性质等边三角49.<a<-2【解析】【分析】【详解】解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0解得:a>−设f(x)=ax2-3x-1如图∵实数根都在-150.5【解析】【分析】根据题意运用待定系数法建立适当的函数解析式代入求值即可解答【详解】以左边树与地面交点为原点地面水平线为x轴左边树为y轴建立平面直角坐标系由题意可得A(025)B(225)C(05151.【解析】【分析】利用规定的运算方法分别算得a1a2a3a4…找出运算结果的循环规律利用规律解决问题【详解】∵a1=4a2=a3=a4=…数列以4−三个数依次不断循环∵2019÷3=673∴a201952.5【解析】【分析】【详解】试题解析:∵∠AFB=90°D为AB的中点∴DF=AB=25∵DE为△ABC的中位线∴DE=BC=4∴EF=DE-DF=15故答案为15【点睛】直角三角形斜边上的中线性质:53.-2【解析】【分析】若一元二次方程有实数根则根的判别式△=b2-4ac≥0建立关于a 的不等式求出a的取值范围还要注意二次项系数不为0【详解】∵关于x的一元二次方程(a +1)x2-2x+3=0有实数根54.3【解析】试题解析:根据概率公式摸出黑球的概率是1-02-05=03考点:概率公式55.【解析】【分析】由加减消元法或代入消元法都可求解【详解】②﹣①得③将③代入①得∴故答案为:【点睛】本题考查的是二元一次方程组的基本解法本题属于基础题比较简单56.4×109【解析】【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值>10时n是正57.28【解析】【分析】设加分前及格人数为x人不及格人数为y人原来不及格加分为及格的人数为n人所以72x+58y=66(x+y)75(x+n)+59(y-n)=(66+5)(x+y)用n分别表示xy得到58.【解析】【分析】设复兴号的速度为x千米/时则原来列车的速度为(x-40)千米/时根据提速后从北京到上海运行时间缩短了30分钟列出方程即可【详解】设复兴号的速度为x 千米/时则原来列车的速度为(x﹣4059.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果两名同学的植树总棵数为19的结果有5种结果∴这两名同学的植树总棵数为19的概率为60.【解析】【分析】连接BD根据中位线的性质得出EFBD且EF=BD进而根据勾股定理的逆定理得到△BDC是直角三角形求解即可【详解】连接BD分别是ABAD的中点EFBD且EF=BD又△BDC是直角三角形2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【解析】【分析】直接根据“上加下减”、“左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,将直线y=2x-3向右平移2个单位后所得函数解析式为y=2(x-2)-3=2x-7,由“上加下减”原则可知,将直线y=2x-7向上平移3个单位后所得函数解析式为y=2x-7+3=2x-4,故选A.【点睛】本题考查了一次函数的平移,熟知函数图象平移的法则是解答此题的关键.2.A解析:A【解析】【分析】【详解】由题意得,根的判别式为△=(-4)2-4×3k , 由方程有实数根,得(-4)2-4×3k≥0,解得k≤43, 由于一元二次方程的二次项系数不为零,所以k≠0, 所以k 的取值范围为k≤43且k≠0, 即k 的非负整数值为1,故选A .3.C解析:C【解析】【分析】根据幂的乘方、单项式乘以单项式、合并同类项的运算法则及完全平方公式对各选项逐一计算即可得答案.【详解】A.43123()a b a b =,故该选项计算错误,B.()232482b a b ab b --=-+,故该选项计算错误, C.32242⋅+⋅=a a a a a ,故该选项计算正确,D.22(5)1025a a a -=-+,故该选项计算错误,故选B.【点睛】本题考查幂的乘方、单项式乘以单项式、合并同类项的运算法则及完全平方公式,熟练掌握运算法则是解题关键.4.D解析:D【解析】【分析】【详解】根据图中信息可知这些队员年龄的平均数为: 132146158163172181268321⨯+⨯+⨯+⨯+⨯+⨯+++++=15岁, 该足球队共有队员2+6+8+3+2+1=22人,则第11名和第12名的平均年龄即为年龄的中位数,即中位数为15岁,故选D .5.C解析:C【解析】分析:延长GH 交AD 于点P ,先证△APH ≌△FGH 得AP=GF=1,GH=PH=12PG ,再利用勾股定理求得PG=2,从而得出答案.详解:如图,延长GH 交AD 于点P ,∵四边形ABCD 和四边形CEFG 都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD ∥GF ,∴∠GFH=∠PAH ,又∵H 是AF 的中点,∴AH=FH ,在△APH 和△FGH 中,∵PAH GFH AH FH AHP FHG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△APH ≌△FGH (ASA ),∴AP=GF=1,GH=PH=12PG ,∴PD=AD ﹣AP=1,∵CG=2、CD=1,∴DG=1,则GH=12PG=12, 故选:C . 点睛:本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.6.B解析:B【解析】【分析】由折叠的性质得到AE=AB ,∠E=∠B=90°,易证Rt △AEF ≌Rt △CDF ,即可得到结论EF=DF ;易得FC=FA ,设FA=x ,则FC=x ,FD=6-x ,在Rt △CDF 中利用勾股定理得到关于x 的方程x 2=42+(6-x )2,解方程求出x 即可.【详解】∵矩形ABCD 沿对角线AC 对折,使△ABC 落在△ACE 的位置,∴AE=AB ,∠E=∠B=90°,又∵四边形ABCD 为矩形,∴AB=CD ,∴AE=DC ,而∠AFE=∠DFC ,∵在△AEF 与△CDF 中,AFE CFD E DAE CD ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AEF ≌△CDF (AAS ),∴EF=DF ;∵四边形ABCD 为矩形,∴AD=BC=6,CD=AB=4,∵Rt △AEF ≌Rt △CDF ,∴FC=FA ,设FA=x ,则FC=x ,FD=6-x ,在Rt △CDF 中,CF 2=CD 2+DF 2,即x 2=42+(6-x )2,解得x =133, 则FD =6-x=53. 故选B .【点睛】考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.也考查了矩形的性质和三角形全等的判定与性质以及勾股定理.7.D解析:D【解析】【分析】运用根的判别式和一元二次方程的定义,组成不等式组即可解答【详解】解:∵关于x 的一元二次方程(k ﹣1)x 2+x +1=0有两个实数根,∴210=1-41)10k k -⎧⎨∆⨯-⨯≥⎩≠( , 解得:k ≤54且k ≠1. 故选:D .【点睛】 此题考查根的判别式和一元二次方程的定义,掌握根的情况与判别式的关系是解题关键8.C解析:C【解析】【分析】先根据圆周角定理得∠ACB=90°,则利用勾股定理计算出BC=6,再根据垂径定理得到142CD AD AC ===,然后利用勾股定理计算BD 的长. 【详解】 ∵AB 为直径,∴90ACB ︒∠=,∴6BC ==,∵OD AC ⊥, ∴142CD AD AC ===,在Rt CBD ∆中,BD ==故选C .【点睛】 本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.9.B解析:B【解析】【分析】根据平均数的定义进行求解即可得.【详解】根据折线图可知该球员4节的得分分别为:12、4、10、6,所以该球员平均每节得分=1241064+++=8, 故选B .【点睛】本题考查了折线统计图、平均数的定义等知识,解题的关键是理解题意,掌握平均数的求解方法. 10.D解析:D【解析】题解析:∵AB 为⊙O 直径,∴∠ACB =90°,∴∠ACD =90°-∠DCB =90°-20°=70°,∴∠DBA =∠ACD =70°.故选D .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.11.B解析:B【解析】【分析】根据新定义运算得到一个分式方程,求解即可.【详解】根据题意得,5211m 11(5)25mx dx m m m m---⎰-=-=-=-, 则25m =-, 经检验,25m =-是方程的解, 故选B.【点睛】此题考查了解分式方程,弄清题中的新定义是解本题的关键.12.D解析:D【解析】试题分析:如图,过点C作CD⊥AB于点D.∵在△ABC中,AC=BC,∴AD=BD.①点P在边AC上时,s随t的增大而减小.故A、B错误;②当点P在边BC上时,s随t的增大而增大;③当点P在线段BD上时,s随t的增大而减小,点P与点D重合时,s最小,但是不等于零.故C错误;④当点P在线段AD上时,s随t的增大而增大.故D正确.故答案选D.考点:等腰三角形的性质,函数的图象;分段函数.13.D解析:D【解析】【分析】根据菱形的性质得出AB=BC=CD=AD,AO=OC,根据三角形的中位线求出BC,即可得出答案.【详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD,AO=OC,∵AM=BM,∴BC=2MO=2×5cm=10cm,即AB=BC=CD=AD=10cm,即菱形ABCD的周长为40cm,故选D.【点睛】本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC是解此题的关键.14.C解析:C【解析】【分析】由A、B、P是半径为2的⊙O上的三点,∠APB=45°,可得△OAB是等腰直角三角形,继而求得答案.【详解】解:连接OA,OB.∵∠APB=45°,∴∠AOB=2∠APB=90°.∵OA=OB=2,∴AB=22=22.OA OB故选C.15.C解析:C【解析】试题分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解:①当x=1时,y=a+b+c=0,故本选项错误;②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<0,故本选项正确;③由抛物线的开口向下知a<0,∵对称轴为1>x=﹣>0,∴2a+b<0,故本选项正确;④对称轴为x=﹣>0,∴a、b异号,即b>0,∴abc<0,故本选项错误;∴正确结论的序号为②③.故选B.点评:二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0;(2)b由对称轴和a的符号确定:由对称轴公式x=﹣b2a判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0;(4)当x=1时,可以确定y=a+b+C的值;当x=﹣1时,可以确定y=a﹣b+c的值.16.A解析:A【解析】【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:5152x y x y =+⎧⎪⎨=-⎪⎩. 故选A .【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.17.D解析:D【解析】【分析】在热气球C 处测得地面B 点的俯角分别为45°,BD=CD=100米,再在Rt △ACD 中求出AD 的长,据此即可求出AB 的长.【详解】∵在热气球C 处测得地面B 点的俯角分别为45°,∴BD =CD =100米,∵在热气球C 处测得地面A 点的俯角分别为30°,∴AC =2×100=200米, ∴AD∴AB =AD +BD =100(故选D .【点睛】本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.18.D解析:D【解析】试题分析:根据题意,点A 、A′关于点C 对称,设点A 的坐标是(x ,y ),则0122a xb y ++==,,解得2x a y b =-=-+,,∴点A 的坐标是(2)a b --+,.故选D . 考点:坐标与图形变化-旋转.19.A解析:A【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A .20.C解析:C【解析】【分析】x=0,求出两个函数图象在y 轴上相交于同一点,再根据抛物线开口方向向上确定出a >0,然后确定出一次函数图象经过第一三象限,从而得解.【详解】x=0时,两个函数的函数值y=b ,所以,两个函数图象与y 轴相交于同一点,故B 、D 选项错误;由A 、C 选项可知,抛物线开口方向向上,所以,a >0,所以,一次函数y=ax+b 经过第一三象限,所以,A 选项错误,C 选项正确.故选C .21.D解析:D【解析】试题分析:根据圆周的度数为360°,可知优弧AC 的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.故选D考点:圆周角定理22.A解析:A【解析】【分析】作线段BC 的垂直平分线可得线段BC 的中点.【详解】作线段BC 的垂直平分线可得线段BC 的中点.由此可知:选项A 符合条件,故选A .【点睛】本题考查作图﹣复杂作图,解题的关键是熟练掌握五种基本作图.23.A解析:A【解析】试题分析:A .﹣2<﹣1,故正确;B .0>﹣1,故本选项错误;C.1>﹣1,故本选项错误;D.2>﹣1,故本选项错误;故选A.考点:有理数大小比较.24.B解析:B【解析】【分析】①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC上时,根据同角的余角相等求出∠APB=∠PAD,再利用相似三角形的列出比例式整理得到y与x的关系式,从而得解.【详解】①点P在AB上时,0≤x≤3,点D到AP的距离为AD的长度,是定值4;②点P在BC上时,3<x≤5,∵∠APB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠APB=∠PAD,又∵∠B=∠DEA=90°,∴△ABP∽△DEA,∴ABDE=APADAB APDE AD=,即34xy=,∴y=12x,纵观各选项,只有B选项图形符合,故选B.25.B解析:B【解析】解:A.不是轴对称图形,是中心对称图形,不符合题意;B.既是轴对称图形,也是中心对称图形,符合题意;C.不是轴对称图形,是中心对称图形,不符合题意;D.不是轴对称图形,也不是中心对称图形,不符合题意.故选B.26.C解析:C【解析】试题解析:∵这组数据的众数为7,∴x=7,则这组数据按照从小到大的顺序排列为:2,3,5,7,7,中位数为:5.故选C.考点:众数;中位数.27.B解析:B【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是中心对称图形,不是轴对称图形,故该选项不符合题意,B、是中心对称图形,也是轴对称图形,故该选项符合题意,C、不是中心对称图形,是轴对称图形,故该选项不符合题意,D、是中心对称图形,不是轴对称图形,故该选项不符合题意.故选B.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折沿对称轴叠后可重合,中心对称图形是要寻找对称中心,旋转180°后两部分重合.28.C解析:C【解析】试题解析:A、的主视图是矩形,故A不符合题意;B、的主视图是正方形,故B不符合题意;C、的主视图是圆,故C符合题意;D、的主视图是三角形,故D不符合题意;故选C.考点:简单几何体的三视图.29.B解析:B【解析】分析:根据中位数、众数和极差的概念及平均数的计算公式,分别求出这组数据的中位数、平均数、众数和极差,得到正确结论.详解:该组数据中出现次数最多的数是30,故众数是30不是100,所以选项A不正确;该组共有15个数据,其中第8个数据是30,故中位数是30,所以选项B正确;该组数据的极差是100-10=90,故极差是90不是20,所以选项C不正确;该组数据的平均数是102204305503100100245313⨯+⨯+⨯+⨯+=++++不是30,所以选项D不正确.故选B.点睛:本题考查了中位数、平均数、众数和极差的概念.题目难度不大,注意勿混淆概念.30.二、填空题31.2【解析】【分析】设这个圆锥的底面圆的半径为R根据扇形的弧长等于这个圆锥的底面圆的周长列出方程即可解决问题【详解】设这个圆锥的底面圆的半径为R由题意:2πR=解得R=2故答案为2解析:2【解析】【分析】设这个圆锥的底面圆的半径为R,根据扇形的弧长等于这个圆锥的底面圆的周长,列出方程即可解决问题.【详解】设这个圆锥的底面圆的半径为R,由题意:2πR=1804 180π⨯,解得R=2.故答案为2.32.6【解析】分析:根据BD=CDAB=CD可得BD=BA再根据AM⊥BDDN⊥AB即可得到DN=AM=3依据∠ABD=∠MAP+∠PAB∠ABD=∠P+∠BAP即可得到△APM是等腰直角三角形进而得到解析:6【解析】分析:根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到AM=6.详解:∵BD=CD,AB=CD,∴BD=BA,又∵AM⊥BD,DN⊥AB,∴,又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,∴∠P=∠PAM,。
六年级下册数学试题-广州番禺华附数学招生招生真卷④ (PDF版含答案)
广州番禺华附招生数学真卷(四)(满分:120分 时间:80分)第一卷(70分)一、填空题(每分钟2分,共20分)1、一个数由7个亿、9个千万、5个百万、6个百、2个十组成,把这个数写成用“万”作单位的数是_____________万,省略“亿”后面的尾数约是______________。
2、8吨50千克=_____________吨,4.25小时=________小时________分。
3、把2016分解质因数:2016=________________________。
4、三个连续的奇数,中间一个是n ,则它的前边和后边的数分别是___________和_________。
5、36和48的最大公因数是____________,最小公倍数是____________。
6、把21、43、65、32用“<”号连接起来__________________________,根据你发现的规律,可以知道20152014与20162015的大小关系是______________________________。
7、若等腰三角形的顶角度数是x ,则一个底角的度数用含x 的式子表示是________________。
8、直角三角形三边之长分别是3、4、5,则它的三条高中最短的一条长度为_____________。
9、一个长方体沿着长的方向切掉一个小正方体,剩下的长方体的表面积比原来减少了24平方厘米,则所切下的正方体的表面积是________________平方厘米。
10、长方体不同的三个面的面积分别为10平方厘米、15平方厘米和6平方厘米,这个长方体的体积是_________________立方厘米。
二、判断题(正确的打“√”,错误的打“X ”,每小题1分,共5分) 1、所有的质数都是奇数。
( ) 2、圆的周长变为原来的2倍,面积也变为原来的2倍。
( ) 3、有两根一样长的木料,第一根用去43米,第二根用去43,那么剩下的木料一样长。
六年级下册数学试题-广州番禺华附数学招生招生真卷① (PDF版含答案)
广州番禺华附招生数学真卷(一)(满分:110分 时间:80分钟)一 单选题(每小题2分,共20分)1. 已知a 的倒数小于b 的倒数(b a ,均为正数),则a ( )b 。
A.>B.<C.=D.不能确定2. 从对称轴数量的角度考虑,下图中与另外三种图形不是同一类的是( )。
A.扇形B.等腰三角形C.圆D.半圆3. 下列每组中的两个量具有相反意义的一组量是( )。
A. 记住20个单词和遗忘20个单词B. 向北走10米和向西走10米C. 浪费2吨水和节约3吨水D. 答对了5道题和打错了4道题4. 下列各说法中正确的是( )。
A. 一堆煤重25%吨。
B. 一堆零件100个合格,10个不合格,合格率是10%C. 一个数除以假分数,商不一定小于被除数。
D. 圆的直径扩大到原来的3倍,它的面积就扩大到原来的6倍。
5. 太阳是由75%的氢和25%的的氦形成的,下面图( )能正确地表示这个信息。
6. 一个比的比值是32,后项是43,它的前项是( )。
A. 0.2 B.51 C.21 D.98 7. 大牛与小牛的头数比是4:5,那么大牛比小牛少( )。
A.41B.51C.91D.54 8. 一根绳子,减去,还剩下米,这条绳子原长多少米?正确列式是( )。
A.5353÷B.5353+C.⎪⎭⎫ ⎝⎛÷53-153D.⎪⎭⎫ ⎝⎛÷53-15353+ 9. 有两箱苹果,如果卖出第一箱的53,则第一箱剩16千克;如果卖出第二箱的20%,则第二箱还剩32千克。
两箱苹果相比( )。
A.第一箱多B.第二箱多C.一样多D.无法确定10. 若a ,b ,c 都大于0,且a55%=b ,下面排列正确的是( )。
A. c b a >>B.a b c >>C.b c a >>D.b a c >>二 填空题(每小题2分,共30分)11. 一个数的倒数是43,这个数是( )。
六年级下册数学试题-广州番禺华附数学招生招生真卷②(PDF版含答案)
D、36
7、一件商品打八折出售,比原价便宜了( )%;商品促销,买一送一,就是打( A、15;二 B、20;二 C、80;八 D、20;五
)折销售。
2017 年广州番禺华附 1
8、小明每个月的零用钱,其中 9 用于交通费,25%用于买文具,0.3 用于买零食,小明每个月 20
的零用钱最多用于( )上。 A、交通费 B、文具 C、零食 D 、三者相同
25、计算下面图形中阴影部分的面积。(6 分)(π取 3.14)
54cm
2017 年广州番禺华附 4
26、一种 MP4,现在的售价是 240 元,比去年降低了 160 元,降低了百分之几?(4 分)
27、有一个长方形苗圃,长 32 米,宽 12.5 米,每平方米大约有 25 棵幼苗,这个苗圃一共有多 少棵幼苗?(5 分)
7
11 11
2017 年广州番禺华附 3
23、解方程。(每小题 3 分,共 6 分) 9x1 1 4 54
7x2 5 9 96
24、操作题。(7 分) (1)画一个直径是 3 厘米的圆,并在图上用 O、d、r 分别标出圆的圆心、直径和半径。然后在 图中画一个圆心角为 45°的扇形。(3 分) (2)①右图中,广州图书馆在广州塔( )偏( )( ) 度,距离广州塔( )m 的地方。(2 分) ②广州塔的位置用(1,1)表示,那么广州图书馆的位置表 示为( , )。(1 分) ③广州歌剧院的位置是(0,5),请你在图中用“O”标出来。 (1 分)
行四边形的高是____厘米 ,如果平行四边形的高是 8 厘米,那么三角形的高是____厘米 。
正确的选项是( )。
A、16;4
B、4;16
C、4;8
D、8;4
【精选试卷】广州市华附奥校中考数学解答题专项练习经典复习题(课后培优)
一、解答题1.某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名;(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数;(3)如果要在这个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).2.已知n边形的内角和θ=(n-2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.3.为了解某县建档立卡贫困户对精准扶贫政策落实的满意度,现从全县建档立卡贫困户中随机抽取了部分贫困户进行了调查(把调查结果分为四个等级:A级:非常满意;B级:满意;C级:基本满意;D级:不满意),并将调查结果绘制成如下两幅不完整的统计图.请根据统计图中的信息解决下列问题:(1)本次抽样调查测试的建档立卡贫困户的总户数______.(2)图1中,∠α的度数是______,并把图2条形统计图补充完整.(3)某县建档立卡贫困户有10000户,如果全部参加这次满意度调查,请估计非常满意的人数约为多少户?a b c d e)中随机选取两户,调查他(4)调查人员想从5户建档立卡贫困户(分别记为,,,,们对精准扶贫政策落实的满意度,请用列表或画树状图的方法求出选中贫困户e的概率. 4.如图,在平面直角坐标系中,小正方形格子的边长为1,Rt△ABC三个顶点都在格点上,请解答下列问题:(1)写出A,C两点的坐标;(2)画出△ABC关于原点O的中心对称图形△A1B1C1;(3)画出△ABC绕原点O顺时针旋转90°后得到的△A2B2C2,并直接写出点C旋转至C2经过的路径长.5.今年5月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为A,B,C,D四个等级,并绘制了如下不完整的频数分布表和扇形统计图:等级成绩(s)频数(人数)A90<s≤1004B80<s≤90xC70<s≤8016D s≤706根据以上信息,解答以下问题:(1)表中的x= ;(2)扇形统计图中m= ,n=,C等级对应的扇形的圆心角为度;(3)该校准备从上述获得A等级的四名学生中选取两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用a1,a2表示)和两名女生(用b1,b2表示),请用列表或画树状图的方法求恰好选取的是a1和b1的概率.6.如图,AB 为⊙O 的直径,C 为⊙O 上一点,∠ABC 的平分线交⊙O 于点D ,DE ⊥BC 于点E .(1)试判断DE 与⊙O 的位置关系,并说明理由;(2)过点D 作DF ⊥AB 于点F ,若BE=33,DF=3,求图中阴影部分的面积.7.如图,AB 是半圆O 的直径,AD 为弦,∠DBC=∠A .(1)求证:BC 是半圆O 的切线;(2)若OC ∥AD ,OC 交BD 于E ,BD=6,CE=4,求AD 的长. 8.将A B C D ,,,四人随机分成甲、乙两组参加羽毛球比赛,每组两人. (1)A 在甲组的概率是多少? (2)A B ,都在甲组的概率是多少?9.解方程组:226,320.x y x xy y +=⎧⎨-+=⎩10.4月18日,一年一度的“风筝节”活动在市政广场举行,如图,广场上有一风筝A ,小江抓着风筝线的一端站在D 处,他从牵引端E 测得风筝A 的仰角为67°,同一时刻小芸在附近一座距地面30米高(BC =30米)的居民楼顶B 处测得风筝A 的仰角是45°,已知小江与居民楼的距离CD =40米,牵引端距地面高度DE =1.5米,根据以上条件计算风筝距地面的高度(结果精确到0.1米,参考数据:sin67°≈1213,cos67°≈513,tan67°≈125,2≈1.414).11.解分式方程:23211x x x +=+- 12.安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y (千克)与每千克降价x (元)(020)x <<之间满足一次函数关系,其图象如图所示:(1)求y 与x 之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元? 13.计算:103212sin45(2π)-+--+-.14.在一个不透明的盒子中装有三张卡片,分别标有数字1,2,3,这些卡片除数字不同外其余均相同.小吉从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为奇数的概率. 15.甲、乙两公司为“见义勇为基金会”各捐款60000元.已知甲公司的人数比乙公司的人数多20℅,乙公司比甲公司人均多捐20元.甲、乙两公司各有多少人?16.如图,AD 是ABC ∆的中线,AE BC ∥,BE 交AD 于点F ,F 是AD 的中点,连接EC .(1)求证:四边形ADCE 是平行四边形;(2)若四边形ABCE 的面积为S ,请直接写出图中所有面积是13S 的三角形.17.如图,点B 、C 、D 都在⊙O 上,过点C 作AC ∥BD 交OB 延长线于点A ,连接CD ,且∠CDB=∠OBD=30°,DB=63cm.(1)求证:AC是⊙O的切线;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)18.数学活动课上,张老师引导同学进行如下探究:如图1,将长为12cm的铅笔AB斜靠在垂直于水平桌面AE的直尺FO的边沿上,一端A固定在桌面上,图2是示意图.活动一如图3,将铅笔AB绕端点A顺时针旋转,AB与OF交于点D,当旋转至水平位置时,铅笔AB的中点C与点O重合.数学思考(1)设CD=x cm,点B到OF的距离GB=y cm.①用含x的代数式表示:AD的长是_________cm,BD的长是________cm;②y与x的函数关系式是_____________,自变量x的取值范围是____________.活动二(2)①列表:根据(1)中所求函数关系式计算并补全表格.x(cm)654 3.53 2.5210.50 y(cm)00.55 1.2 1.58 1.0 2.473 4.29 5.08②描点:根据表中数值,描出①中剩余的两个点(x,y).③连线:在平面直角坐标系中,请用平滑的曲线画出该函数的图象.数学思考(3)请你结合函数的图象,写出该函数的两条性质或结论.19.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图1中a的值为;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.20.某数学小组到人民英雄纪念碑站岗执勤,并在活动后实地测量了纪念碑的高度,方法如下:如图,首先在测量点A处用高为1.5m的测角仪AC测得人民英雄纪念碑MN项部M的仰角为37°,然后在测量点B处用同样的测角仪BD测得人民英雄纪念碑MN顶部M 的仰角为45°,最后测量出A,B两点间的距离为15m,并且N,B,A三点在一条直线上,连接CD并延长交MN于点E.请你利用他们的测量结果,计算人民英雄纪念碑MN 的高度.(参考数据:sin37°≈0.60,cos37°≈0.80,tan35°≈0.75)21.如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD的长度;(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.22.某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示,成本y2与销售月份x之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价﹣成本)(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?23.2018年“妇女节”前夕,扬州某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花,已知第二批所购花的束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少5元,求第一批花每束的进价是多少?24.解方程:x21 x1x-= -.25.如图,某地修建高速公路,要从A地向B地修一座隧道(A、B在同一水平面上),为了测量A、B两地之间的距离,某工程师乘坐热气球从B地出发,垂直上升100米到达C处,在C处观察A地的俯角为39°,求A、B两地之间的距离.(结果精确到1米)(参考数据:sin39°=0.63,cos39°=0.78,tan39°=0.81)26.先化简(31a+-a+1)÷2441a aa-++,并从0,-1,2中选一个合适的数作为a的值代入求值.27.某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A型机器比一台B 型机器每小时多加工2个零件,且一台A 型机器加工80个零件与一台B 型机器加工60个零件所用时间相等.(1)每台A ,B 两种型号的机器每小时分别加工多少个零件?(2)如果该企业计划安排A ,B 两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A ,B 两种型号的机器可以各安排多少台?28.如图,ABC ∆是边长为4cm 的等边三角形,边AB 在射线OM 上,且6OA cm =,点D 从点O 出发,沿OM 的方向以1cm/s 的速度运动,当D 不与点A 重合时,将ACD ∆绕点C 逆时针方向旋转60°得到BCE ∆,连接DE. (1)如图1,求证:CDE ∆是等边三角形;(2)如图2,当6<t<10时,DE 是否存在最小值?若存在,求出DE 的最小值;若不存在,请说明理由.(3)当点D 在射线OM 上运动时,是否存在以D ,E ,B 为顶点的三角形是直角三角形?若存在,求出此时t 的值;若不存在,请说明理由.29.如图,一艘巡逻艇航行至海面B 处时,得知正北方向上距B 处20海里的C 处有一渔船发生故障,就立即指挥港口A 处的救援艇前往C 处营救.已知C 处位于A 处的北偏东45°的方向上,港口A 位于B 的北偏西30°的方向上.求A 、C 之间的距离.(结果精确到0.1海里,参考数据2≈1.41,3≈1.73)30.某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有人;(2)补全条形统计图,并在图上标明相应的数据;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、解答题1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、解答题1.(1)280名;(2)补图见解析;108°;(3)0.1.【解析】【分析】(1)根据“平等”的人数除以占的百分比得到调查的学生总数即可;(2)求出“互助”与“进取”的学生数,补全条形统计图,求出“进取”占的圆心角度数即可;(3)列表或画树状图得出所有等可能的情况数,找出恰好选到“C”与“E”的情况数,即可求出所求的概率.【详解】解:(1)56÷20%=280(名),答:这次调查的学生共有280名;(2)280×15%=42(名),280﹣42﹣56﹣28﹣70=84(名),补全条形统计图,如图所示,根据题意得:84÷280=30%,360°×30%=108°,答:“进取”所对应的圆心角是108°;(3)由(2)中调查结果知:学生关注最多的两个主题为“进取”和“感恩”用列表法为:A B C D EA(A,B)(A,C)(A,D)(A,E)B(B,A)(B,C)(B,D)(B,E)C(C,A)(C,B)(C,D)(C,E)D(D,A)(D,B)(D,C)(D,E)E(E,A)(E,B)(E,C)(E,D)共20种情况,恰好选到“C”和“E”有2种,∴恰好选到“进取”和“感恩”两个主题的概率是0.1.2.(1)甲对,乙不对,理由见解析;(2)2.【解析】试题分析:(1)根据多边形的内角和公式判定即可;(2)根据题意列方程,解方程即可.试题解析:(1)甲对,乙不对.∵θ=360°,∴(n-2)×180°=360°,解得n=4.∵θ=630°,∴(n-2)×180°=630°,解得n=.∵n为整数,∴θ不能取630°.(2)由题意得,(n-2)×180+360=(n+x-2)×180,解得x=2.考点:多边形的内角和.3.(1)60;(2)54°;(3)1500户;(4)见解析,2 5 .【解析】【分析】(1)用B级人数除以B级所占百分比即可得答案;(2)用A级人数除以总人数可求出A 级所占百分比,乘以360°即可得∠α的度数,总人数减去A级、B级、D级的人数即可得C级的人数,补全条形统计图即可;(3)用10000乘以A级人数所占百分比即可得答案;(4)画出树状图,得出所有可能出现的结果及选中e的结果,根据概率公式即可得答案.【详解】(1)21÷35%=60(户)故答案为60(2)9÷60×360°=54°,C级户数为:60-9-21-9=21(户),补全条形统计图如所示:故答案为:54°(3)9 10000150060⨯=(户)(4)由题可列如下树状图:由树状图可知,所有可能出现的结果共有20种,选中e的结果有8种∴P(选中e)=82 205=.【点睛】本题考查了条形统计图、扇形统计图及概率,概率=所求结果数与所有可能出现的结果数的比值,正确得出统计图中的信息,熟练掌握概率公式是解题关键.4.(1)A点坐标为(﹣4,1),C点坐标为(﹣1,1);(2)见解析;10.【解析】【分析】(1)利用第二象限点的坐标特征写出A,C两点的坐标;(2)利用关于原点对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(3)利用网格特点和旋转的性质画出点A、B、C的对应点A2、B2、C2,然后描点得到△A2B2C2,再利用弧长公式计算点C旋转至C2经过的路径长.【详解】解:(1)A点坐标为(﹣4,1),C点坐标为(﹣1,1);(2)如图,△A1B1C1为所作;(3)如图,△A2B2C2为所作,OC2213+10,点C旋转至C2经过的路径长=9010180π⋅=102π.【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了弧长公式.5.(1)14;(2)10、40、144;(3)恰好选取的是a1和b1的概率为16.【解析】【分析】(1)根据D组人数及其所占百分比可得总人数,用总人数减去其他三组人数即可得出x的值;(2)用A、C人数分别除以总人数求得A、C的百分比即可得m、n的值,再用360°乘以C等级百分比可得其度数;(3)首先根据题意列出表格,然后由表格求得所有等可能的结果与恰好选取的是a1和b1的情况,再利用概率公式即可求得答案.【详解】(1)∵被调查的学生总人数为6÷15%=40人,∴x=40﹣(4+16+6)=14,故答案为14;(2)∵m%=440×100%=10%,n%=1640×10%=40%,∴m=10、n=40,C等级对应的扇形的圆心角为360°×40%=144°,故答案为10、40、144;(3)列表如下:a1a2b1b2a1a2,a1b1,a1b2,a1a2a1,a2b1,a2b2,a2b1a1,b1a2,b1b2,b1b2a1,b2a2,b2b1,b2由表可知共有12种等可能结果,其中恰好选取的是a1和b1的有2种结果,∴恰好选取的是a1和b1的概率为21 126.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,列表法或树状图法求概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小;概率=所求情况数与总情况数之比.6.(1)DE与⊙O相切,理由见解析;(2)阴影部分的面积为2π﹣332.【解析】【分析】(1)直接利用角平分线的定义结合平行线的判定与性质得出∠DEB=∠EDO=90°,进而得出答案;(2)利用勾股定理结合扇形面积求法分别分析得出答案.【详解】(1)DE与⊙O相切,理由:连接DO,∵DO=BO,∴∠ODB=∠OBD,∵∠ABC的平分线交⊙O于点D,∴∠EBD=∠DBO,∴∠EBD=∠BDO,∴DO∥BE,∵DE⊥BC,∴∠DEB=∠EDO=90°,∴DE与⊙O相切;(2)∵∠ABC的平分线交⊙O于点D,DE⊥BE,DF⊥AB,∴DE=DF=3,=6,∵sin∠DBF=31=62, ∴∠DBA=30°, ∴∠DOF=60°,∴sin60°=3DF DO DO ==则1322π-= 【点睛】此题主要考查了切线的判定方法以及扇形面积求法等知识,正确得出DO 的长是解题关键.7.(1)见解析;(2)AD=4.5. 【解析】 【分析】(1)若证明BC 是半圆O 的切线,利用切线的判定定理:即证明AB ⊥BC 即可; (2)因为OC ∥AD ,可得∠BEC=∠D=90°,再有其他条件可判定△BCE ∽△BAD ,利用相似三角形的性质:对应边的比值相等即可求出AD 的长. 【详解】(1)证明:∵AB 是半圆O 的直径, ∴BD ⊥AD , ∴∠DBA+∠A=90°, ∵∠DBC=∠A ,∴∠DBA+∠DBC=90°即AB ⊥BC , ∴BC 是半圆O 的切线; (2)解:∵OC ∥AD , ∴∠BEC=∠D=90°, ∵BD ⊥AD ,BD=6, ∴BE=DE=3, ∵∠DBC=∠A , ∴△BCE ∽△BAD ,∴=CE BE BD AD ,即436=AD ; ∴AD=4.5本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了相似三角形的判定和性质.8.(1)12(2)16【解析】解:所有可能出现的结果如下:(1)所有的结果中,满足A 在甲组的结果有3种,所以A 在甲组的概率是12,··· 2分 (2)所有的结果中,满足A B ,都在甲组的结果有1种,所以A B ,都在甲组的概率是16. 利用表格表示出所有可能的结果,根据A 在甲组的概率=3162=, A B ,都在甲组的概率=169.114,2;x y =⎧⎨=⎩223,3.x y =⎧⎨=⎩【分析】先对x 2-3xy+2y 2=0分解因式转化为两个一元一次方程,然后联立①,组成两个二元一次方程组,解之即可. 【详解】将方程22320x xy y -+= 的左边因式分解,得20x y -=或0x y -=. 原方程组可以化为6,20x y x y +=⎧⎨-=⎩或6,0.x y x y +=⎧⎨-=⎩解这两个方程组得114,2;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=⎩ 所以原方程组的解是114,2;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=⎩ 【点睛】本题考查了高次方程组,将高次方程化为一次方程是解题的关键.10.风筝距地面的高度49.9m . 【解析】 【分析】作AM ⊥CD 于M ,作BF ⊥AM 于F ,EH ⊥AM 于H .设AF =BF =x ,则CM =BF =x ,DM =HE =40-x ,AH =x +30-1.5=x +28.5, 在Rt △AHE 中,利用∠AEH 的正切列方程求解即可. 【详解】如图,作AM ⊥CD 于M ,作BF ⊥AM 于F ,EH ⊥AM 于H .∵∠ABF =45°,∠AFB =90°,∴AF =BF ,设AF =BF =x ,则CM =BF =x ,DM =HE =40-x ,AH =x +30-1.5=x +28.5, 在Rt △AHE 中,tan67°=AHHE, ∴1228.5540x x+=-, 解得x ≈19.9 m . ∴AM =19.9+30=49.9 m .∴风筝距地面的高度49.9 m . 【点睛】本题考查了解直角三角形的应用,解决此问题的关键在于正确理解题意得基础上建立数学模型,把实际问题转化为数学问题.11.x =-5 【解析】 【分析】本题考查了分式方程的解法,把方程的两边都乘以最简公分母(x +1)( x -1),化为整式方程求解,求出x 的值后不要忘记检验. 【详解】解:方程两边同时乘以(x +1)( x -1) 得: 2x (x -1)+3(x +1)=2(x +1)( x -1) 整理化简,得 x =-5 经检验,x =-5是原方程的根 ∴原方程的解为:x =-5.12.(1)10100y x =+;(2)商贸公司要想获利2090元,则这种干果每千克应降价9元. 【解析】 【分析】(1)根据图象可得:当2x =,120y =,当4x =,140y =;再用待定系数法求解即可;(2)根据这种干果每千克的利润×销售量=2090列出方程,解方程即可. 【详解】解:(1)设一次函数解析式为:y kx b =+,根据图象可知:当2x =,120y =;当4x =,140y =;∴21204140k b k b +=⎧⎨+=⎩,解得:10100k b =⎧⎨=⎩,∴y 与x 之间的函数关系式为10100y x =+;(2)由题意得:(6040)(10100)2090x x --+=, 整理得:21090x x -+=,解得:11x =.29x =, ∵让顾客得到更大的实惠,∴9x =.答:商贸公司要想获利2090元,这种干果每千克应降价9元. 【点睛】本题考查了一元二次方程的应用和一次函数的应用,读懂图象信息、熟练掌握待定系数法、正确列出一元二次方程是解题的关键.13.13【解析】【分析】根据负指数幂的性质、绝对值的性质、特殊角的三角函数值及零指数幂的性质分别化简各项后,再合并即可解答.【详解】原式122121 32=+--⨯+=12121 3+--+ 13=.【点睛】本题主要考查了实数运算,利用负指数幂的性质、绝对值的性质、特殊角的三角函数值及零指数幂的性质正确化简各数是解题关键.14.49.【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽取的卡片上数字之和是奇数的情况,再利用概率公式即可求得答案即可.【详解】解:画树状图得:∵共有9种等可能的结果,两次抽取的卡片上数字之和是奇数的有4种情况,∴两次两次抽取的卡片上数字之和是奇数的概率为49.【点睛】本题考查列表法与树状图法.15.甲公司有600人,乙公司有500人.【解析】分析:根据题意,可以设乙公司人数有x人,则甲公司有(1+20%)x人;由乙公司比甲公司人均多捐20元列分式方程,解之即可得出答案.详解:设乙公司有x 人,则甲公司就有(1+20%)x 人,即1.2x 人,根据题意,可列方程:60000x 600001.2x-=20 解之得:x =500经检验:x =500是该方程的实数根. 16.(1)见解析;(2)ABD ∆,ACD ∆,ACE ∆,ABE ∆【解析】【分析】(1)首先证明△AFE ≌△DFB 可得AE=BD ,进而可证明AE=CD ,再由AE ∥BC 可利用一组对边平行且相等的四边形是平行四边形可得四边形ADCE 是平行四边形;(2)根据面积公式解答即可.【详解】证明:∵AD 是△ABC 的中线,∴BD=CD ,∵AE ∥BC ,∴∠AEF=∠DBF ,在△AFE 和△DFB 中,AEF DBF AFE BFD AF DF ===∠∠⎧⎪∠∠⎨⎪⎩,∴△AFE ≌△DFB (AAS ),∴AE=BD ,∴AE=CD ,∵AE ∥BC ,∴四边形ADCE 是平行四边形;(2)∵四边形ABCE 的面积为S ,∵BD=DC ,∴四边形ABCE 的面积可以分成三部分,即△ABD 的面积+△ADC 的面积+△AEC 的面积=S , ∴面积是12S 的三角形有△ABD ,△ACD ,△ACE ,△ABE . 【点睛】此题主要考查了平行四边形的判定,全等三角形的判定和性质.等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题. 17.(1)证明见解析;(2)6πcm 2.【解析】【分析】连接BC ,OD ,OC ,设OC 与BD 交于点M .(1)求出∠COB 的度数,求出∠A 的度数,根据三角形的内角和定理求出∠OCA 的度数,根据切线的判定推出即可; (2)证明△CDM ≌△OBM ,从而得到S 阴影=S 扇形BOC .【详解】如图,连接BC ,OD ,OC ,设OC 与BD 交于点M .(1)根据圆周角定理得:∠COB=2∠CDB=2×30°=60°,∵AC ∥BD ,∴∠A=∠OBD=30°,∴∠OCA=180°﹣30°﹣60°=90°,即OC ⊥AC ,∵OC 为半径,∴AC 是⊙O 的切线;(2)由(1)知,AC 为⊙O 的切线,∴OC ⊥AC .∵AC ∥BD ,∴OC ⊥BD .由垂径定理可知,MD=MB=12BD=33. 在Rt △OBM 中, ∠COB=60°,OB=33cos3032MB ︒==6.在△CDM 与△OBM 中3090CDM OBM MD MBCMD OMB ︒︒⎧∠=∠=⎪=⎨⎪∠=∠=⎩, ∴△CDM ≌△OBM (ASA ),∴S △CDM =S △OBM∴阴影部分的面积S 阴影=S 扇形BOC =2606360π⋅=6π(cm 2).考点:1.切线的判定;2.扇形面积的计算.18.(1) )(6+x),(6−x),y=6(6−x)6+x,0⩽x⩽6;(2)见解析;(3)①y随着x的增大而减小;②图象关于直线y=x对称;③函数y的取值范围是0⩽y⩽6.【解析】【分析】(1)①利用线段的和差定义计算即可.②利用平行线分线段成比例定理解决问题即可.(2)①利用函数关系式计算即可.②描出点(0,6),(3,2)即可.③由平滑的曲线画出该函数的图象即可.(3)根据函数图象写出两个性质即可(答案不唯一).【详解】解:(1)①如图3中,由题意AC=OA=12AB=6(cm),∵CD=xcm,∴AD=(6+x)(cm),BD=12−(6+x)=(6−x)(cm),故答案为:(6+x),(6−x).②作BG⊥OF于G.∵OA⊥OF,BG⊥OF,∴BG//OA,∴BGOA =BDAD,∴y6=6−x6+x,∴y=36−6x6+x(0⩽x⩽6),故答案为:y=36−6x6+x,0⩽x⩽6.(2)①当x=3时,y=2,当x=0时,y=6,故答案为2,6.②点(0,6),点(3,2)如图所示.③函数图象如图所示.(3)性质1:函数值y的取值范围为0⩽y⩽6.性质2:函数图象在第一象限,y随x的增大而减小.【点睛】本题属于几何变换综合题,考查了平行线分线段成比例定理,函数的图象等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.19.(1) 25 ; (2) 这组初赛成绩数据的平均数是1.61.;众数是1.65;中位数是1.60;(3)初赛成绩为1.65 m的运动员能进入复赛.【解析】【分析】【详解】试题分析:(1)、用整体1减去其它所占的百分比,即可求出a的值;(2)、根据平均数、众数和中位数的定义分别进行解答即可;(3)、根据中位数的意义可直接判断出能否进入复赛.试题解析:(1)、根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%;则a的值是25;(2)、观察条形统计图得:1.502 1.554 1.605 1.656 1.70324563x⨯+⨯+⨯+⨯+⨯=++++=1.61;∵在这组数据中,1.65出现了6次,出现的次数最多,∴这组数据的众数是1.65;将这组数据从小到大排列为,其中处于中间的两个数都是1.60,则这组数据的中位数是1.60.(3)、能;∵共有20个人,中位数是第10、11个数的平均数,∴根据中位数可以判断出能否进入前9名;∵1.65m>1.60m,∴能进入复赛考点:(1)、众数;(2)、扇形统计图;(3)、条形统计图;(4)、加权平均数;(5)、中位数20.人民英雄纪念碑MN的高度约为36.5米.【解析】【分析】在Rt△MED中,由∠MDE=45°知ME=DE,据此设ME=DE=x,则EC=x+15,在Rt△MEC 中,由ME=EC•tan∠MCE知x≈0.7(x+15),解之求得x的值,根据MN=ME+EN可得答案.【详解】由题意得四边形ABDC、ACEN是矩形,∴EN=AC=1.5,AB=CD=15,在Rt△MED中,∠MED=90°,∠MDE=45°,∴ME=DE,设ME=DE=x,则EC=x+15,在Rt△MEC中,∠MEC=90°,∠MCE=35°,∵ME=EC•tan∠MCE,∴x≈0.7(x+15),解得:x≈35,∴ME≈35,∴MN=ME+EN≈36.5,答:人民英雄纪念碑MN的高度约为36.5米.【点睛】本题考查了解直角三角形中的仰俯角问题,解题的关键是从实际问题中整理出直角三角形并利用解直角三角形的知识解题.21.(1)AD=95;(2)当点E是AC的中点时,ED与⊙O相切;理由见解析.【解析】【分析】(1)由勾股定理易求得AB的长;可连接CD,由圆周角定理知CD⊥AB,易知△ACD∽△ABC,可得关于AC、AD、AB的比例关系式,即可求出AD的长.(2)当ED与 O相切时,由切线长定理知EC=ED,则∠ECD=∠EDC,那么∠A和∠DEC就是等角的余角,由此可证得AE=DE,即E是AC的中点.在证明时,可连接OD,证OD⊥DE 即可.【详解】(1)在Rt△ACB中,∵AC=3cm,BC=4cm,∠ACB=90°,∴AB=5cm;连接CD,∵BC为直径,∴∠ADC=∠BDC=90°;∵∠A=∠A,∠ADC=∠ACB,∴Rt△ADC∽Rt△ACB;∴,∴;(2)当点E是AC的中点时,ED与⊙O相切;证明:连接OD,∵DE 是Rt △ADC 的中线;∴ED=EC ,∴∠EDC=∠ECD ;∵OC=OD ,∴∠ODC=∠OCD ;∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°;∴ED ⊥OD ,∴ED 与⊙O 相切.【点睛】本题考查了圆周角定理、切线的判定、相似三角形的判定与性质,熟练掌握该知识点是本题解题的关键.22.(1)6月份出售这种蔬菜每千克的收益是2元.(2)5月份出售这种蔬菜,每千克的收益最大.(3)4月份的销售量为4万千克,5月份的销售量为6万千克.【解析】分析:(1)找出当x=6时,y 1、y 2的值,二者作差即可得出结论;(2)观察图象找出点的坐标,利用待定系数法即可求出y 1、y 2关于x 的函数关系式,二者作差后利用二次函数的性质即可解决最值问题;(3)求出当x=4时,y 1﹣y 2的值,设4月份的销售量为t 万千克,则5月份的销售量为(t+2)万千克,根据总利润=每千克利润×销售数量,即可得出关于t 的一元一次方程,解之即可得出结论.详解:(1)当x=6时,y 1=3,y 2=1,∵y 1﹣y 2=3﹣1=2,∴6月份出售这种蔬菜每千克的收益是2元.(2)设y 1=mx+n ,y 2=a (x ﹣6)2+1.将(3,5)、(6,3)代入y 1=mx+n ,3563m n m n +=⎧⎨+=⎩,解得:237m n ⎧=-⎪⎨⎪=⎩, ∴y 1=﹣23x+7; 将(3,4)代入y 2=a (x ﹣6)2+1,4=a (3﹣6)2+1,解得:a=13,∴y2=13(x﹣6)2+1=13x2﹣4x+13.∴y1﹣y2=﹣23x+7﹣(13x2﹣4x+13)=﹣13x2+103x﹣6=﹣13(x﹣5)2+73.∵﹣13<0,∴当x=5时,y1﹣y2取最大值,最大值为73,即5月份出售这种蔬菜,每千克的收益最大.(3)当t=4时,y1﹣y2=﹣13x2+103x﹣6=2.设4月份的销售量为t万千克,则5月份的销售量为(t+2)万千克,根据题意得:2t+73(t+2)=22,解得:t=4,∴t+2=6.答:4月份的销售量为4万千克,5月份的销售量为6万千克.点睛:本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质以及一元一次方程的应用,解题的关键是:(1)观察函数图象,找出当x=6时y1﹣y2的值;(2)根据点的坐标,利用待定系数法求出y1、y2关于x的函数关系式;(3)找准等量关系,正确列出一元一次方程.23.20元/束.【解析】【分析】设第一批花每束的进价是x元/束,则第一批进的数量是:4000x,再根据等量关系:第二批进的数量=第一批进的数量×1.5可得方程.【详解】设第一批花每束的进价是x元/束,依题意得:4000x×1.5=45005x,解得x=20.经检验x=20是原方程的解,且符合题意.答:第一批花每束的进价是20元/束.【点睛】本题考查了分式方程的应用.关键是根据等量关系:第二批进的数量=第一批进的数量×1.5列方程.24.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年广东华附奥校招生数学真卷
一、选择题(每小题5分,共30分)
1.2
34
m m n n +*=-,求111432⎛⎫**= ⎪⎝⎭( )
A .
5764 B .532 C .3516 D .1
48
2.把835,38,145,11120,49,521分成三组,要求每组的和相等,则下列四个数中与38同
分在一组的数是( )
A .
145 B .11120
C .49
D .
521
3.一件商品按定价的140%出售,现推出“九折并附送50元充电话费”的活动,每件商品还能获利158元,那么进货价位( ) A .900 B .850 C .800 D .750
4.扇形AOB 的圆心角为90°,8S =甲,∠AOB 的平分线交AB 于D ,以OB 的中点为圆心作一个半圆,如下图所示,那么S =乙( )
A .4π+
B .12π-
C .π
84
-
D .8
5.用0,1,2,3,4组成两位数(数字不能重复),则所有的两位数的和是( ) A .430 B .440 C .540 D .550
6.一项工作,乙单独做需要16小时做完,先甲、乙两人合作,甲的效率提高1
5,乙的效率
提高
17,合作5小时完成全部工作的6
7,那么甲单独做需要( )小时完成. A .9 B .10 C .11 D .12
二、填空题(每小题5分,共50分)
7.1235678105001500250035005791113
++-+++-++++-=⨯⨯⨯__________.
8.2016ABC BCA CAB x +++=,其中x 是一个两位数,那么ABC 的最大值是_________.
D O
B
A
乙
甲
9.图中以格点为顶点的正方形一共有________个.
10.观察下列数表的规律:
2 4 6
8 10 12
14 16 18
………
那么2016在第_______行第_______列.
11.把下面的幻方补充完整:
12.从6点整开始,________分钟后时针与分针反向成一条直线.
13.一台复印机有如下的按键:
250%,200%,128%,125%,100%,50%,10%
现在有三个按键250%、100%、50%同时坏了,如果要复印一张与原图同样大小的图片,并且每按一次需要付1元,那么最少需要________元.
14.A、B两地相距90千米,甲、乙、丙从A地出发走向B地.甲先出发20分钟后,乙、丙两人同时出发,乙出发30分钟后追上甲,当乙到达B地后立即返回,结果甲、乙、丙三人同时相遇。
已知甲、丙的速度之比为3:4,则甲的速度是________千米/时.
15.{}[]
46
+=,所有符合条件的x的总和是_________([]x表示不超过x的整数,{}x
x x
表示除整数部分外的数)
16.一个十位数,倒序数(例如321是123的倒序数)是原序数的9倍,请写出所有满足条件的十位数:__________________________________.
三、解答题(每小题10分,共40分)
17.有1000元分给三对夫妇,A 、B 、C 三位女士共有396元,其中A 比B 多拿10元,C 比A 多拿10元,D 比他的夫人多拿104元,E 拿的钱是他夫人的
3
2
倍,F 拿的钱是他夫人的5
4
倍. (1)A 拿了________元,B 拿了________元,C 拿了________元; (2)三对夫妇分别是:A 和________,B 和________,C 和________; (3)哪对夫妇拿的钱最少?是多少元?
18.A 、B 、C 、D 、E 五个人各有一些弹珠,在一次操作中指令该人给其余人一些弹珠,使其余人的弹珠数目变为原来的两倍,A ~E 依次操作了一次后,最终都有64颗弹珠.求原来每人手上各有多少颗弹珠?
19.如图,ABCD 是长方形,260cm AFD S =△,2105cm ABE S =△,218cm FGE S =△,求: (1)ABF S △的面积是多少? (2)ABCD S 四边形的面积是多少?
20.2026能否表示成k 个不同质数的平方和?
G
F
E
D
C
B
A。