2013年春_西南大学《初等数论》作业及答案(共4次_已整理)

合集下载

02013初等数论试卷及答案

02013初等数论试卷及答案

初等数论考试试卷一、 单项选择题:(1分/题×20题=20分) 1.设x 为实数,[]x 为x 的整数部分,则( A ) A.[][]1x x x ≤<+; B.[][]1x x x <≤+; C.[][]1x x x ≤≤+; D.[][]1x x x <<+. 2.下列命题中不正确的是( B ) A.整数12,,,n a a a 的公因数中最大的称为最大公因数;B.整数12,,,n a a a 的公倍数中最小的称为最小公倍数 【有最小的吗?】C.整数a 与它的绝对值有相同的倍数 D.整数a 与它的绝对值有相同的约数3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解()00,,,x y d a b =,则此方程的一切解可表为( C )A.00,,0,1,2,;abx x t y y t t d d =-=+=±± B.00,,0,1,2,;abx x t y y t t d d =+=-=±±C.00,,0,1,2,;bax x t y y t t d d =+=-=±±D.00,,0,1,2,;bax x t y y t t dd=-=-=±±4.下列各组数中不构成勾股数的是( D )A.5,12,13; B.7,24,25; C.3,4,5; D.8,16,17 5.下列推导中不正确的是( D )A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡⇒+≡+ B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡⇒≡ C.()()111212mod mod ;a b m a a b a m ≡⇒≡ D.()()112211mod mod .a b m a b m ≡⇒≡ 6.模10的一个简化剩余系是( D )A.0,1,2,,9; B.1,2,3,,10;C.5,4,3,2,1,0,1,2,3,4;----- D.1,3,7,9. 7.()mod a b m ≡的充分必要条件是( A ) A.;m a b - B.;a b m - C.;m a b + D..a b m +8.设()43289f x x x x =+++,同余式()()0mod5f x ≡的所有解为( C ) A.1x =或1;- B.1x =或4; C.1x ≡或()1mod5;- D.无解. 9、设f(x)=10n n a x a x a +++其中()0,mod i a x x p ≡是奇数若为f(x)()0mod p ≡的一个解,则:( ? )A .()()mod ()0mod ,1p f x p χχ∂≡≡∂>一定为的一个解 B .()()0mod ,1,()0mod p f x p χχ∂∂≡∂>≡一定为的一个解C .()()()00(),()0mod mod ,mod p f x f x p x x p x x p ααα≡≡≡当不整除时一定有解其中 D .()()()00mod ()0mod ,mod x x p f x p x x p ααα≡≡≡若为的一个解则有 10.()10(),,0mod ,,n n i n f x a x a x a a a p n p =+++≡>/设其中为奇数则同余式()()0mod f x p ≡的解数:( ) A .有时大于p 但不大于n; B .不超过pC .等于pD .等于n11.若2为模p 的平方剩余,则p 只能为下列质数中的 :( D )A .3B .11C .13D .23 12.若雅可比符号1a m ⎛⎫=⎪⎝⎭,则 ( C ) A .()2mod ,x a m ≡同余式一定有解B .()()2,1,mod a m x a p =≡当时同余式有解;C .()2(,mod m p x a p =≡当奇数)时同余式有解;D .()2(),mod a p x a p =≡当奇数时同余式有解.13.()()2mod 2,3,2,1,x a a αα≡≥=若同余式有解则解数等于( A )A . 4B . 3C . 2D . 1 14. 模12的所有可能的指数为:( A )A .1,2,4B .1,2,4,6,12C .1,2,3,4,6,12D .无法确定 15. 若模m 的原根存在,下列数中,m 不可能等于:( D ) A . 2 B . 3 C . 4 D . 12 16.对于模5,下列式子成立的是 ( B ) A .322ind = B . 323ind =C . 350ind =D . 3331025ind ind ind =+ 17.下列函数中不是可乘函数的是: ( C ) A .茂陛鸟斯(mobius)函数w(a) ; B .欧拉函数()a φ;C .不超过x 的质数的个数()x π;D .除数函数()a τ;18.若x 对模m 的指数是ab ,a >0,ab >0,则a χ对模m 的指数是( B ) A .a B .b C .ab D .无法确定 19.()f a ,()g a 均为可乘函数,则( A ) A .()()f a g a 为可乘函数; B .()()f ag a 为可乘函数 C .()()f a g a +为可乘函数; D .()()f a g a -为可乘函数 20.设()a μ为茂陛乌斯函数,则有( B )不成立A .()11μ=B .()11μ-=C .()21μ=-D .()90μ= 二.填空题:(每小题1分,共10分)21. 3在45!中的最高次n = _____21____; 22. 多元一次不定方程:1122n n a x a x a x N +++=,其中1a ,2a ,…,n a ,N 均为整数,2≥n ,有整数解的充分必要条件是_(1a ,2a ,…,n a ,)︱N_;23.有理数ab,0a b <<,)(,1a b =,能表成纯循环小数的充分必要条件是_(10,b )=1__; 24. 设()0mod x x m ≡为一次同余式()mod ax b m ≡,a ≡()0mod m 的一个解,则它的所有解为2,__;25. 威尔生(wilson )定理:____()1p -!+1()0mod ,p p ≡为素数______; 26. 勒让德符号5031013⎛⎫⎪⎝⎭=___1___; 27. 若)(,1a p =,则a 是模p 欧拉判别条件);28. 在模m 的简化剩余系中,原根的个数是___()()m φφ__;29. 设1α≥,g 为模p α的一个原根,则模2p α的一个原根为_g 与g+a p 中的奇数_; 30. ()48ϕ=___16___。

《初等数论》历年考试解答

《初等数论》历年考试解答

《初等数论》习题集第1章第 1 节1. 证明定理1.2. 证明:若m-p∣mn+pq,则m-p∣mq+np.3.证明:任意给定地连续39个自然数,其中至少存在一个自然数,使得这个自然数地数字和能被11整除.4. 设p是n地最小素约数,n=pn1,n1>1,证明:若p>,则n1是素数.5. 证明:存在无穷多个自然数n,使得n不能表示为a2+p(a > 0是整数,p为素数)地形式.第 2 节1.证明:12∣n4+2n3+11n2+10n,n∈Z.2. 设3∣a2+b2,证明:3∣a且3∣b.3.设n,k是正整数,证明:n k与n k + 4地个位数字相同.4.证明:对于任何整数n,m,等式n2+ (n+1)2 =m2+ 2不可能成立.5. 设a是自然数,问a4- 3a2+ 9是素数还是合数?6.证明:对于任意给定地n个整数,必可以从中找出若干个作和,使得这个和能被n整除.第 3 节1.证明定理1中地结论(ⅰ)—(ⅳ).2.证明定理2地推论1,推论2和推论3.3.证明定理4地推论1和推论3.4.设x,y∈Z,17∣2x+3y,证明:17∣9x+5y.5. 设a,b,c∈N,c无平方因子,a2∣b2c,证明:a∣b.6.设n是正整数,求地最大公约数.第 4 节1. 证明定理1.2.证明定理3地推论.3. 设a,b是正整数,证明:(a+b)[a, b] = a[b, a+b].4. 求正整数a,b,使得a+b = 120,(a, b) = 24,[a, b] = 144.5.设a,b,c是正整数,证明:.6. 设k是正奇数,证明:1 + 2 + + 9∣1k+ 2k+ + 9k.第 5 节1.说明例1证明中所用到地四个事实地依据.2.用辗转相除法求整数x,y,使得1387x-162y = (1387,162).3.计算:(27090,21672, 11352).4. 使用引理1中地记号,证明:(F n+ 1, F n) = 1.5. 若四个整数2836,4582,5164,6522被同一个大于1地整数除所得地余数相同,且不等于零,求除数和余数各是多少?6.记M n=2n- 1,证明:对于正整数a,b,有(M a, M b)= M(a, b).第 6 节1.证明定理1地推论1.2.证明定理1地推论2.3.写出22345680地标准分解式.4. 证明:在1, 2, , 2n中任取n+ 1数,其中至少有一个能被另一个整除.5.证明:(n≥2)不是整数.6.设a,b是正整数,证明:存在a1,a2,b1,b2,使得a = a1a2,b = b1b2,(a2,b2) = 1,并且[a,b] = a2b2.第7 节1.证明定理1.2.求使12347!被35k整除地最大地k值.3. 设n是正整数,x是实数,证明:= n.4.设n是正整数,求方程x2-[x2] = (x-[x])2在[1,n]中地解地个数.5.证明:方程f(x) = [x] + [2x] + [22x] + [23x] + [24x] + [25x] = 12345没有实数解.6. 证明:在n!地标准分解式中,2地指数h = n-k,其中k是n地二进制表示地位数码之和.第8 节1. 证明:若2n+ 1是素数,则n是2地乘幂.2.证明:若2n- 1是素数,则n是素数.3.证明:形如6n+ 5地素数有无限多个.4.设d是正整数,6d,证明:在以d为公差地等差数列中,连续三项都是素数地情况最多发生一次.5.证明:对于任意给定地正整数n,必存在连续地n个自然数,使得它们都是合数.6. 证明:级数发散,此处使用了定理1注2中地记号.第2章第 1 节1.证明定理1和定理2.2.证明定理4.3.证明定理5中地结论(ⅰ)—(ⅳ).4.求81234被13除地余数.5. 设f(x)是整系数多项式,并且f(1), f(2), ,f(m)都不能被m整除,则f(x) = 0没有整数解.6.已知99∣,求α与β.第 2 节1.证明定理1.2.证明:若2p+ 1是奇素数,则(p!)2+ (-1)p≡ 0(mod 2p+ 1).3.证明:若p是奇素数,N = 1 + 2 + + ( p- 1),则(p- 1)! ≡p- 1(mod N).4.证明Wilson定理地逆定理:若n>1,并且(n- 1)! ≡-1(mod n),则n是素数.5.设m是整数,4∣m,{a1, a2, , a m}与{b1, b2, , b m}是模m地两个完全剩余系,证明:{a1b1,a2b2, , a m b m}不是模m地完全剩余系.6.设m1,m2, ,m n是两两互素地正整数,δi(1≤i≤n)是整数,并且δi≡1 (mod m i),1≤i≤n,δi≡0 (mod m j),i≠j,1≤i, j≤n.证明:当b i通过模m i(1≤i≤n)地完全剩余系时,b1δ1+b2δ2+ +b nδn通过模m =m1m2 m n地完全剩余系.第 3 节1.证明定理1.2.设m1, m2, , m n是两两互素地正整数,x i分别通过模m i地简化剩余系(1 ≤i≤n),m = m1m2 m n,M i =,则M1x1+M2x2+ + M n x n通过模m地简化剩余系.3.设m>1,(a, m) = 1,x1, x2, ⋯, xϕ(m)是模m地简化剩余系,证明:.其中{x}表示x地小数部分.4.设m与n是正整数,证明:ϕ(mn)ϕ((m, n)) = (m, n)ϕ(m)ϕ(n).5.设a,b是任意给定地正整数,证明:存在无穷多对正整数m与n,使得aϕ(m) = bϕ(n).6.设n是正整数,证明:(ⅰ) ϕ(n) >;(ⅱ) 若n是合数,则ϕ(n)≤n-.第 4 节1. 证明:1978103- 19783能被103整除.2.求313159被7除地余数.3.证明:对于任意地整数a,(a, 561) = 1,都有a560≡ 1 (mod 561),但561是合数.4. 设p,q是两个不同地素数,证明:p q- 1+q p- 1≡ 1 (mod pq).5.将612- 1分解成素因数之积.6.设n∈N,b∈N,对于b n+1地素因数,你有甚麽与例6相似地结论?第 5 节1.证明例2中地结论.2.证明定理2.3.求.4.设f(n)是积性函数,证明:(ⅰ)(ⅱ).5.求ϕ(n)地Mobius变换.第3章第 1 节1.证明定理3.2.写出789地二进制表示和五进制表示.3.求地小数地循环节.4.证明:七进制表示地整数是偶数地充要条件是它地各位数字之和为偶数.5.证明:既约正分数地b进制小数(0.a-1a-2a-3 )b为有限小数地充要条件是n地每个素因数都是b地素因数.第 2 节1.设连分数〈α1, α2, ,αn, 〉地第k个渐近分数为,证明:,2.设连分数〈α1, α2, ,αn, 〉地第k个渐近分数为,证明:,k≥ 2.3.求连分数〈 1, 2, 3, 4, 5, 〉地前三个渐近分数.4.求连分数〈 2, 3, 2, 3, 〉地值.5.解不定方程:7x- 9y = 4.第 3 节1.证明定理4.2.求地连分数.3.求地误差≤ 10- 5地有理逼近.4.求sin18︒地误差≤ 10- 5地有理逼近.5.已知圆周率π = 〈 3, 7, 15, 1, 292, 1, 1, 1, 21, 〉,求π地误差≤ 10- 6地有理逼近.6.证明:连分数展开地第k个渐近分数为.此处{F n}是Fibonacci数列.第 4 节1.将方程3x2+ 2x- 2 = 0地正根写成连分数.2.求α = 〈〉之值.3.设a是正整数,求地连分数.4.设无理数= 〈a1, a2, ,a n, 〉地第k个渐近分数为,证明:地充要条件是p n = a1q n+q n-1,dq n = a1p n+p n-1.5.设无理数= 〈a1, a2, ,a n, 〉地第k个渐近分数为,且正整数n使得p n = a1q n+q n-1,dq n = a1p n+p n-1,证明:(ⅰ) 当n为偶数时,p n,q n是不定方程x2-dy2 = 1地解;(ⅱ) 当n为奇数时,p2n,q2n是不定方程x2-dy2 = 1地解.第4章第 1 节1.将写成三个既约分数之和,它们地分母分别是3,5和7.2.求方程x1+ 2x2+ 3x3 = 41地所有正整数解.3.求解不定方程组:.4.甲班有学生7人,乙班有学生11人,现有100支铅笔分给这两个班,要使甲班地学生分到相同数量地铅笔,乙班学生也分到相同数量地铅笔,问应怎样分法?5. 证明:二元一次不定方程ax+by = n,a > 0,b > 0,(a, b) = 1地非负整数解地个数为+ 1.6.设a与b是正整数,(a, b) = 1,证明:1, 2, , ab-a-b中恰有个整数可以表示成ax+by(x≥ 0,y≥ 0)地形式.第 2 节1.证明定理2推论.2.设x,y,z是勾股数,x是素数,证明:2z-1,2(x+y +1)都是平方数.3.求整数x,y,z,x > y > z,使x-y,x-z,y-z都是平方数.4.解不定方程:x2+3y2 = z2,x > 0,y > 0,z > 0,(x, y ) = 1.5.证明下面地不定方程没有满足xyz ≠0地整数解.(ⅰ)x2+y2+z2 = x2y2;(ⅱ) x2+y2+z2 = 2xyz.6.求方程x2+y2 = z4地满足(x, y ) = 1,2∣x地正整数解.第 3 节1. 求方程x2+xy -6 = 0地整数解.2. 求方程组地整数解.3. 求方程2x-3y = 1地正整数解.4.求方程地正整数解.5.设p是素数,求方程地整数解.6. 设2n+ 1个有理数a1, a2, , a2n+ 1满足条件P:其中任意2n个数可以分成两组,每组n个数,两组数地和相等,证明:a1 = a1 = = a2n+ 1.第5章第 1 节1.证明定理1.2.解同余方程:(ⅰ) 31x≡ 5 (mod 17);(ⅱ) 3215x≡ 160 (mod 235).3.解同余方程组:.4.设p是素数,0<a<p,证明:(mod p).是同余方程ax≡b (mod p)地解.5.证明:同余方程a1x1+a2x2+ +a n x n≡b (mod m)有解地充要条件是(a1, a2, , a n, m) = d∣b.若有解,则恰有d⋅m n-1个解,mod m.6.解同余方程:2x+ 7y≡ 5 (mod 12).第 2 节1. 解同余方程组:2.解同余方程组:3.有一队士兵,若三人一组,则余1人;若五人一组,则缺2人;若十一人一组,则余3人.已知这队士兵不超过170人,问这队士兵有几人?4. 求一个最小地自然数n,使得它地是一个平方数,它地是一个立方数,它地是一个5次方数.5. 证明:对于任意给定地n个不同地素数p1, p2, …, p n,必存在连续n个整数,使得它们中地第k个数能被p k整除.6.解同余方程:3x2+ 11x - 20≡0 (mod 105).第 3 节1.证明定理地推论.2.将例2中略去地部分补足.3.将例4中略去地部分补足.4.解同余方程x2≡-1 (mod 54).5.解同余方程f(x) = 3x2+ 4x-15 ≡ 0 (mod 75).6.证明:对于任意给定地正整数n,必存在m,使得同余方程x2≡1 (mod m)地解数T > n.第 4 节1.解同余方程:(ⅰ)3x11+2x8+ 5x4-1 ≡0 (mod 7);(ⅱ)4x20+3x12+ 2x7+ 3x-2 ≡0 (mod 5).2.判定(ⅰ) 2x3-x2+ 3x-1 ≡0 (mod 5)是否有三个解;(ⅱ) x6+2x5- 4x2+ 3 ≡0 (mod 5)是否有六个解?3.设(a, m) = 1,k与m是正整数,又设x0k≡a (mod m),证明同余方程x k≡a(mod m)地一切解x都可以表示成x≡yx0(mod m),其中y满足同余方程y k≡1 (mod m).4.设n是正整数,p是素数,(n, p-1) = k,证明同余方程x n≡ 1 (mod p)有k个解.5.设p是素数,证明:(ⅰ) 对于一切整数x,x p- 1-1 ≡ (x-1) (x-2) (x-p+ 1) (mod p);(ⅱ) (p-1)! ≡-1 (mod p).6.设p≥ 3是素数,证明:(x-1)(x-2) (x-p+ 1)地展开式中除首项及常数项外,所有地系数都是p地倍数.第 5 节1.同余方程x2≡ 3 (mod 13)有多少个解?2.求出模23地所有地二次剩余和二次非剩余.3.设p是奇素数,证明:模p地两个二次剩余地乘积是二次剩余;两个二次非剩余地乘积是二次剩余;一个二次剩余和一个二次非剩余地乘积是二次非剩余.4.设素数p≡ 3 (mod 4),= 1,证明x≡±(mod p)是同余方程x2≡n (mod p)地解.5.设p是奇素数,(n, p) = 1,α是正整数,证明同余方程x2≡n (mod pα)有解地充要条件是= 1.6.设p是奇素数,证明:模p地所有二次剩余地乘积与对模p同余.第 6 节1.已知769与1013是素数,判定方程(ⅰ) x2≡ 1742 (mod 769);(ⅱ) x2≡ 1503 (mod 1013).是否有解.2.求所有地素数p,使得下面地方程有解:x2≡ 11 (mod p).3.求所有地素数p,使得-2∈QR(p),-3∈QR(p).4.设(x, y) = 1,试求x2- 3y2地奇素数因数地一般形式.5.证明:形如8k+ 5(k∈Z)地素数无穷多个.6.证明:对于任意地奇素数p,总存在整数n,使得p∣(n2+ 1)(n2+ 2)(n2- 2).第7 节1.证明定理地结论(ⅱ),(ⅲ),(ⅳ).2.已知3019是素数,判定方程x2≡ 374 (mod 3019)是否有解.3.设奇素数为p = 4n+ 1型,且d∣n,证明:= 1.4.设p,q是两个不同地奇素数,且p = q+ 4a,证明:.5.设a > 0,b > 0,b为奇数,证明:6.设a,b,c是正整数,(a, b) = 1,2b,b<4ac,求地关系.第6章第 1 节1.设n是正整数,证明:不定方程x2+y2 = z n总有正整数解x,y,z.2.设p是奇素数,(k, p) = 1,则,此处是Legender符号.3.设素数p≡ 1(mod 4),(k, p) = 1,记,则2∣S(k),并且,对于任何整数t,有,此处是Legender符号.4.设p是奇素数,,则构成模p地一个简化剩余系.5.在第3题地条件下,并沿用第2题地记号,有.即上式给出了形如4k+ 1地素数地二平方和表示地具体方法.6.利用题5地结论,试将p = 13写成二平方和.第 2 节1.若(x, y, z) = 1,则不存在整数n,使得x2+y2+ z2 = 4n2.2.设k是非负整数,证明2k不能表示三个正整数平方之和.3.证明:每一个正整数n必可以表示为5个立方数地代数和.4.证明:16k+ 15型地整数至少需要15个四次方数地和表之.5.证明:16k⋅31不能表示为15个四次方数地和.第7章第 1 节2.求模14地全部原根.3.设m> 1,模m有原根,d是ϕ(m)地任一个正因数,证明:在模m 地简化剩余系中,恰有ϕ(d)个指数为d地整数,并由此推出模m地简化剩余系中恰有ϕ(ϕ(m))个原根.4.设m≥ 3,g是模m地原根,x1, x2, , xϕ(m)是模m地简化剩余系,证明:(ⅰ) ≡-1 (mod m);(ⅱ) x1x2 xϕ(m)≡-1 (mod m).5.设p = 2n+ 1是一个奇素数,证明:模p地全部二次非剩余就是模p 地全部原根.6.证明:(ⅰ) 设p奇素数,则M p = 2p- 1地素因数必为2pk+ 1型;(ⅱ) 设n≥ 0,则F n =+ 1地素因数必为2n+ 1k+ 1型.第 2 节1.求模29地最小正原根.2. 分别求模293和模2⋅293地原根.3.解同余方程:x12≡ 16 (mod 17).4.设p和q = 4p+ 1都是素数,证明:2是模q地一个原根.5.设m≥ 3,g1和g2都是模m地原根,则g = g1g2不是模m地原根.6.设p是奇素数,证明:当且仅当p- 1n时,有1n+ 2n+ + (p- 1)n≡0 (mod p).第8章第 1 节1.补足定理1地证明.2.证明定理2.3.证明:有理数为代数整数地充要条件是这个有理数为整数.第 2 节1.证明例中地结论.2.证明连分数是超越数.3.设ξ是一个超越数,α是一个非零地代数数,证明:ξ+α,ξα,都是超越数.第 3 节1.证明引理1.2.证明定理3中地F+F(0)是整数.第9章第 1 节1.问:1948年2月14日是星期几?2.问:1999年10月1日是星期几?第 2 节1.编一个有十个球队进行循环赛地程序表.2.编一个有九个球队进行循环赛地程序表.第 3 节1.利用例1中地加密方法,将“ICOMETODAY”加密.2. 已知字母a,b, ,y,z,它们分别与整数00,01, ,24,25对应,又已知明文h与p分别与密文e与g对应,试求出密解公式:P≡a'E+b' (mod 26),并破译下面地密文:“IRQXREFRXLGXEPQVEP”.第 4 节1.设一RSA地公开加密钥为n = 943,e = 9,试将明文P = 100加密成密文E.2. 设RSA(n A, e A) = RSA(33, 3),RSA(n B, e B) = RSA(35, 5),A地签证信息为M = 3,试说明A向B发送签证M地传送和认证过程.第 5 节1.设某数据库由四个文件组成:F1 = 4,F2 = 6,F3 = 10,F4 = 13.试设计一个对该数据库加密地方法,但要能取出个别地F i(1≤i≤4),同时不影响其他文件地保密.2.利用本节中地秘密共享方案,设计一个由三方共管文件M = 3地方法,要求:只要有两方提供他们所掌握地数据,就可以求出文件M,但是,仅由任何一方地数据,不能求出文件M.(提示:取p = 5,m1 = 8,m2 = 9,m3 = 11)第 6 节1.设明文P地二进制表示是P= (p1p2p3p4p5p6p7p8)2,与P对应地密文是E是E =a1p1+a2p2+ +a8p8,如果这里地超增背包向量(a1, a2, a3, a4, a5, a6, a7, a8) = (5, 17, 43, 71, 144, 293, 626, 1280),并且已知密文E = 1999,求明文P.2.给定超增背包向量(2, 3, 7, 13, 29, 59),试设计一个背包型加密方法,将明文P = 51加密.(提示:取M = 118,k =77).版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.fjnFL。

初等数论习题与答案、及测试卷

初等数论习题与答案、及测试卷

初等数论习题与答案、及测试卷1 证明:n a a a ,,21 都是m 的倍数。

∴存在n 个整数n p p p ,,21使n n n m p a m p a m p a ===,,,222111又n q q q ,,,21 是任意n 个整数m p q p q q p a q a q a q n n n n )(22112211+++=+++∴即n n a q a q a q +++ 2211是m 的整数2 证:)12)(1()12)(1(-+++=++n n n n n n n )1()1()2)(1(+-+++=n n n n n n )1()1/(6),2)(1(/6+-++n n n n n n1()1()2)(1(/6+-+++∴n n n n n n从而可知12)(1(/6++n n n3 证: b a , 不全为0∴在整数集合{}Z y x by ax S ∈+=,|中存在正整数,因而有形如by ax +的最小整数00by ax +Z y x ∈?,,由带余除法有00000,)(by ax r r q by ax by ax +<≤++=+则b q y y a q x x r ∈-+-=)()(00,由00by ax +是S 中的最小整数知0=rax by ax ++∴/00 下证8P 第二题by ax by ax ++/00 (y x ,为任意整数)b by ax a by ax /,/0000++∴ ,/(00b a by ax +∴ 又有b b a a b a /),(,/),( 0/),(by ax ba +∴故),(00b a by ax =+4 证:作序列 ,23,,2,0,23,b b b b b b ---则a 必在此序列的某两项之间即存在一个整数q ,使b q a b q 212+<≤成立(i 当q 为偶数时,若.0>b 则令b q a bs a t q s 2 ,2-=-==,则有22220b t b q b q a b q a t bs a <∴<-=-==-≤若0,2+=-=-=,则同样有2b t <)(ii 当q 为奇数时,若0>b 则令b q a bs a t q s 2 1,21+-=-=+=,则有21212b t b q a b q a bs a t b ≤∴<+-=+-=-=≤-若 01,21++=-=+-=则同样有 2b t ≤综上存在性得证下证唯一性当b 为奇数时,设11t bs t bs a +=+=则b s s b t t >-=-)(11而b t t t t b t b t ≤+≤-∴≤≤1112,2矛盾故11,t t s s ==当b 为偶数时,t s ,不唯一,举例如下:此时2b 为整数 2,2),2(2212311b t b t b b b b b ≤=-+?=+=?2,2,222211b t b t t bs t bs a ≤-=+=+=5.证:令此和数为S ,根据此和数的结构特点,我们可构造一个整数M ,使MS 不是整数,从而证明S 不是整数(1)令S=n14131211+++++,取M=p k 75321-这里k 是使n k≤2最大整数,p 是不大于n 的最大奇数。

初等数论习题解答

初等数论习题解答

《初等数论》习题解答作业3一.选择题1,B 2,C 3,D 4,A二.填空题1,自反律 2,对称性 3,13 4,十进位 5,3 6,2 7,1三.计算题1, 解:由Euler 定理知:(a,m )=1 则 a φ (m)≡1 (modm)∵(3,100)=1. 3φ (100)=340≡13360≡13364=3360×34≡34 (mod 100)∴34≡81 (mod 100)故:3364的末两位数是81.2, 解:132=169≡4 (mod 5)134=16≡1 (mod 5)1316≡1 (mod 5)1332≡1 (mod 5)1348≡1 (mod 5)1350=1348×1321350≡132≡4 (mod 5)3, 解: ∵(7,9)=1. ∴只有一个解7X -5≡9Y (mod 9)7X -9Y ≡5 (mod 9)解之得:X=2,Y=1∴X=2+9≡11=2 (mod 9)4, 解: ∵(24,59)=1 ∴只有一个解24X ≡7 (mod 59)59Y ≡﹣7 (mod 24)11Y=﹣7 (mod 24)24Z=7 (mod 11)2Z=7 (mod 11)11W=﹣7 (mod 2)W =﹣7 (mod 2)W=﹣1 (mod 2)Z=2711+-= -2 Y=117242-⨯-=-5X=247595+⨯-=2288-=-12 =47(mod59)5 解 ∵(45,132)=3,∴同余式有三个解。

45X ≡21(mod32)15x ≡7 (mod44)44y ≡-7 (mod15)14y ≡-7 (mod15)15z ≡-7 (mod14)z ≡7 (mod14) y=147715-⨯=7 x=157744+⨯=21 ∴x=21+31322⨯=109 (mod132) x=21+31321⨯=65 (mod132) x=21 (mod132)6、解 ∵(12,45)=3, ∴同余式有三个解。

初等数论习题答案

初等数论习题答案

初等数论习题答案初等数论习题答案数论作为数学的一个重要分支,研究整数的性质和关系,涉及到许多有趣而复杂的问题。

在初等数论中,我们经常会遇到一些习题,这些习题既能帮助我们巩固数论知识,又能培养我们的逻辑思维和问题解决能力。

下面我将为大家提供一些初等数论习题的答案,希望对大家的学习有所帮助。

1. 证明:如果一个整数能被4整除,那么它一定能被2整除。

答案:这个问题可以通过数学归纳法来证明。

首先,4能被2整除,显然成立。

假设对于任意的正整数n,如果n能被4整除,那么n也能被2整除。

现在我们考虑n+1能否被4整除。

如果n能被4整除,那么n+1与n相差1,显然n+1不能被4整除。

如果n不能被4整除,那么n+1与n相差1,显然n+1能被4整除。

综上所述,对于任意的正整数n,如果n能被4整除,那么n也能被2整除。

因此,原命题成立。

2. 证明:如果一个整数能被6整除,那么它一定能被2和3整除。

答案:这个问题也可以通过数学归纳法来证明。

首先,6能被2和3整除,显然成立。

假设对于任意的正整数n,如果n能被6整除,那么n也能被2和3整除。

现在我们考虑n+1能否被6整除。

如果n能被6整除,那么n+1与n相差1,显然n+1不能被6整除。

如果n不能被6整除,那么n+1与n相差1,显然n+1能被6整除。

综上所述,对于任意的正整数n,如果n能被6整除,那么n也能被2和3整除。

因此,原命题成立。

3. 证明:如果一个整数的平方是偶数,那么这个整数一定是偶数。

答案:这个问题可以采用反证法来证明。

假设存在一个整数n,它的平方是偶数,但是n本身是奇数。

根据奇数的定义,我们知道奇数可以表示为2k+1的形式,其中k是整数。

那么n的平方可以表示为(2k+1)^2=4k^2+4k+1。

根据整数的性质,4k^2和4k都是偶数,所以4k^2+4k也是偶数。

那么(2k+1)^2就是一个奇数加上一个偶数,根据奇数加偶数的性质,它一定是奇数。

然而,我们已知n的平方是偶数,与(2k+1)^2是奇数的结论相矛盾。

初等数论练习题答案

初等数论练习题答案

初等数论练习题答案DOC 格式, 初等数论练习题一一、填空题1、d(2420)=12; ?(2420)=_880_2、设a,n 是大于1的整数,若a n -1是质数,则a=_2.3、模9的绝对最小完全剩余系是_{-4,-3,-2,-1,0,1,2,3,4}.4、同余方程9x+12≡0(mod 37)的解是x ≡11(mod 37)。

5、不定方程18x-23y=100的通解是x=900+23t ,y=700+18t tZ 。

. 6、分母是正整数m 的既约真分数的个数为_(m )_。

7、18100被172除的余数是_256。

8、??10365 =-1。

9、若p 是素数,则同余方程x p1 1(mod p )的解数为 p-1 。

二、计算题1、解同余方程:3x 211x 20 0 (mod 105)。

解:因105 = 357,同余方程3x 211x 20 0 (mod 3)的解为x 1 (mod 3),同余方程3x 211x 38 0 (mod 5)的解为x 0,3 (mod 5),同余方程3x 211x 20 0 (mod 7)的解为x 2,6 (mod 7),故原同余方程有4解。

作同余方程组:x b 1 (mod 3),x b 2 (mod 5),x b 3 (mod 7),其中b 1 = 1,b 2 = 0,3,b 3 = 2,6,由子定理得原同余方程的解为x 13,55,58,100 (mod 105)。

2、判断同余方程x 2≡42(mod 107)是否有解?11074217271071107713231071107311072107710731072107732107422110721721107213)(=∴-=-=-==-=-=-==??≡-?--?-)()()()(),()()()(),()())()(()(解:故同余方程x 2≡42(mod 107)有解。

3、求(127156+34)28除以111的最小非负余数。

初等数论练习题一含答案

初等数论练习题一含答案

《初等数论》期末练习二、单项选择题 1、 (0,b)().A bB bC b D02、如果 (a, b) 1,则(ab, a b )=() A a B b C 1 Dab 3、小于 30的素数的个数( ). A 10 B 9 C 8 D 7二、填空题1、 有理数旦,0 a b,(a,b )1,能写成循环小数的条件是(b2、 同余式12x 15 0(mod45)有解,而且解的个数为 ().3、 不大于545而为13的倍数的正整数的个数为().4、 设n 是一正整数,Euler 函数(n )表示所有()n ,而且与n (5、 设 a,b 整数,则(a,b ) ()= ab.6、 一个整数能被 3整除的充分必要条件是它的()数码的和能被A 3B 3 与 9C 9D 3或9 7、 如果ba , ab ,则().A a bB a bC a bD ab& 公因数是最大公因数的().A 因数B 倍数C 相等D 不确定9、 大于20且小于40的素数有( ).A 4个B 5个C 2个D 3个10、模7的最小非负兀全剩余系是 ().A -3,-2,-1,0,1,2,3B -6, -5,-4,-3,-2,-1 C1,2,3,4,5,6 D 11、因为(),所以不定方程 12x 15y 7没有解. A [12,15]不整除7 B (12,15)不整除 7C 7不整除(12,15)D 7不整除[12,15]12、 同余式 x 438(mod 593)( ).A 有解B 无解C 无法确定D 有无限个解4、 如果a b (modm ) ,c 是任意整数 贝U A ac bc (mod m ) B a b C ac bc (mod m ) D a b5、 不定方程 525x 231y 210(). A 有解 B 无解 C 有正数解D 有负数解6、 整数5874192能被()整除. 0,1,2,3,4,5,6).)的正整数的个数3整除.7、x [x]().8、同余式111x 75(mod321)有解,而且解的个数().9、在176与545之间有()是17的倍数.10、如果ab 0 则[a,b](a,b)=().11、a,b的最小公倍数是它们公倍数的().12、如果(a,b) 1,那么(ab, a b)=().三、计算题1、求24871与3468的最小公倍数?2、求解不定方程107x 37y 25. (8分)4293、求——,其中563是素数.(8分)5634、解同余式111x 75(mod321).(8 分)5、求[525,231]=?6、求解不定方程6x 11y 18.2 __________________________7、判断同余式x 365(mod 1847)是否有解?8、求11的平方剩余与平方非剩余•四、证明题1、任意一个n位数a n a n 1a2a1与其按逆字码排列得到的数a1a2 a n 1a n的差必是9的倍数.(11分)2、证明当n是奇数时,有3(2n1) .(10分)3、一个能表成两个平方数和的数与一个平方数的乘积,仍然是两个平方数的和;两个能表成两个平方数和的数的乘积,也是一个两个平方数和的数•(11分)4、如果整数a的个位数是5,则该数是5的倍数•5、如果a,b是两个整数,b 0,则存在唯一的整数对q, r,使得a bq r,其中0r b .《初等数论》期末练习二答案、单项选择题1、C2、C3、A4、A5、A6、B7、D8、A9、A 10、D 11、B 12、B二、填空题1、有理数-,0 a b,(a,b)1,能写成循环小数的条件是((b,10) 1 ).b2、同余式12x 15 0(mod45)有解,而且解的个数为(3 ).3、不大于545而为13的倍数的正整数的个数为(41 ).4、设n是一正整数,Euler函数(n)表示所有(不大于)n,而且与n (互素)的正整数的个数•5、设a,b 整数,则(a,b)([a,b] )=ab.6、一个整数能被3整除的充分必要条件是它的(十进位)数码的和能被3整除•7、x [x] ({x}).8、同余式111x 75(mod321)有解,而且解的个数(3 ).9、在176与545之间有(12 )是17的倍数.10、如果ab 0 则[a,b](a,b) =( ab ).11、a,b的最小公倍数是它们公倍数的(因数).12、如果(a,b) 1,那么(ab, a b)=( 1 ).三、计算题1、求24871与3468的最小公倍数?解:因为(24871,3468)=17比24871 3468所以[24871,3468]= =507368417所以24871与3468的最小公倍数是5073684。

(完整版)初等数论练习题答案

(完整版)初等数论练习题答案

初等数论练习题一一、填空题1、d(2420)=12;(2420)=_880_ϕ2、设a,n 是大于1的整数,若a n -1是质数,则a=_2.3、模9的绝对最小完全剩余系是_{-4,-3,-2,-1,0,1,2,3,4}.4、同余方程9x+12≡0(mod 37)的解是x ≡11(mod 37)。

5、不定方程18x-23y=100的通解是x=900+23t ,y=700+18t t ∈Z 。

.6、分母是正整数m 的既约真分数的个数为_ϕ(m )_。

7、18100被172除的余数是_256。

8、 =-1。

⎪⎭⎫⎝⎛103659、若p 是素数,则同余方程x p - 1 ≡1(mod p )的解数为 p-1 。

二、计算题1、解同余方程:3x 2+11x -20 ≡ 0 (mod 105)。

解:因105 = 3⋅5⋅7,同余方程3x 2+11x -20 ≡ 0 (mod 3)的解为x ≡ 1 (mod 3),同余方程3x 2+11x -38 ≡ 0 (mod 5)的解为x ≡ 0,3 (mod 5),同余方程3x 2+11x -20 ≡ 0 (mod 7)的解为x ≡ 2,6 (mod 7),故原同余方程有4解。

作同余方程组:x ≡ b 1 (mod 3),x ≡ b 2 (mod 5),x ≡ b 3 (mod 7),其中b 1 = 1,b 2 = 0,3,b 3 = 2,6,由孙子定理得原同余方程的解为x ≡ 13,55,58,100 (mod 105)。

2、判断同余方程x 2≡42(mod 107)是否有解?11074217271071107713231071107311072107710731072107732107422110721721107213)(=∴-=-=-==-=-=-==⨯⨯≡-∙--∙-()()()(),()()()(,(()()(()(解: 故同余方程x 2≡42(mod 107)有解。

《初等数论》习题集及答案

《初等数论》习题集及答案

《初等数论》习题集及答案《初等数论》习题集第1章第 1 节1. 证明定理1。

2. 证明:若m - p ∣mn + pq ,则m - p ∣mq + np 。

3. 证明:任意给定的连续39个自然数,其中至少存在一个自然数,使得这个自然数的数字和能被11整除。

4. 设p 是n 的最小素约数,n = pn 1,n 1 > 1,证明:若p >3n ,则n 1是素数。

5. 证明:存在无穷多个自然数n ,使得n 不能表示为a 2 + p (a > 0是整数,p 为素数)的形式。

第 2 节1. 证明:12∣n 4 + 2n 3 + 11n 2 + 10n ,n ∈Z 。

2. 设3∣a 2 + b 2,证明:3∣a 且3∣b 。

3. 设n ,k 是正整数,证明:n k 与n k + 4的个位数字相同。

4. 证明:对于任何整数n ,m ,等式n 2 + (n + 1)2 = m 2 + 2不可能成立。

5. 设a 是自然数,问a 4 - 3a 2 + 9是素数还是合数?6. 证明:对于任意给定的n 个整数,必可以从中找出若干个作和,使得这个和能被n 整除。

第 3 节1. 证明定理1中的结论(ⅰ)—(ⅳ)。

2. 证明定理2的推论1, 推论2和推论3。

3. 证明定理4的推论1和推论3。

4. 设x ,y ∈Z ,17∣2x + 3y ,证明:17∣9x + 5y 。

5. 设a ,b ,c ∈N ,c 无平方因子,a 2∣b 2c ,证明:a ∣b 。

6. 设n 是正整数,求1223212C ,,C ,C -n n n n 的最大公约数。

第 4 节1. 证明定理1。

2. 证明定理3的推论。

3. 设a ,b 是正整数,证明:(a + b )[a , b ] = a [b , a + b ]。

4. 求正整数a ,b ,使得a + b = 120,(a , b ) = 24,[a , b ] = 144。

5. 设a ,b ,c 是正整数,证明:),)(,)(,(),,(],][,][,[],,[22a c c b b a c b a a c c b b a c b a =。

初等数论习题集答案

初等数论习题集答案

初等数论习题集答案初等数论习题集答案数论作为数学的一个分支,研究的是整数的性质和关系。

初等数论是数论中的一个重要分支,它主要研究整数的基本性质和简单的数学关系。

在学习初等数论的过程中,习题集是一个非常好的辅助工具,通过解答习题可以加深对数论知识的理解和掌握。

本文将为大家提供一些初等数论习题的答案,希望对大家的学习有所帮助。

1. 证明:若a和b是整数,且a|b,则|a|≤|b|。

证明:根据整除的定义,如果a|b,那么存在一个整数k,使得b=ak。

由此可得:|b|=|ak|=|a||k|。

由于k是一个整数,所以|k|≥1,因此有|b|≥|a|。

2. 证明:若a、b和c是整数,且a|b,b|c,则a|c。

证明:根据整除的定义,如果a|b,那么存在一个整数k1,使得b=ak1。

同理,如果b|c,那么存在一个整数k2,使得c=bk2。

将b的表达式代入c的表达式中,得到c=(ak1)k2=ak1k2。

由此可见,c也是a的倍数,即a|c。

3. 证明:如果一个整数能被2和3整除,那么它一定能被6整除。

证明:假设一个整数能被2和3整除,那么可以分别表示为2m和3n,其中m和n是整数。

将2m和3n相加得到2m+3n=6(m/2+n/3),由此可见,这个整数可以被6整除。

4. 证明:如果一个整数的平方是偶数,那么这个整数本身就是偶数。

证明:假设一个整数的平方是偶数,那么可以表示为n^2=2m,其中n和m是整数。

如果n是奇数,那么可以表示为n=2k+1,其中k是整数。

将n代入n^2=2m中,得到(2k+1)^2=4k^2+4k+1=2(2k^2+2k)+1,由此可见,这个整数的平方是奇数,与题设矛盾。

因此,假设不成立,这个整数本身一定是偶数。

5. 证明:对于任意的正整数n,n^2+n+1一定不能被2整除。

证明:假设n^2+n+1能被2整除,那么可以表示为n^2+n+1=2m,其中n和m是整数。

将n^2+n+1拆开得到n(n+1)+1=2m,由此可见,左边是一个奇数加上1,得到一个偶数。

初等数论测试(带答案)

初等数论测试(带答案)

,其中
563
是素数.
(8 分)
四、证明题(第 1 小题 10 分,第 2 小题 11 分,第 3 小题 11 分,共 32 分)
n n2 n3 17、证明对于任意整数 n ,数 3 2 6 是整数.
18、证明相邻两个整数的立方之差不能被 5 整除. 19、证明形如 4n 1 的整数不能写成两个平方数的和.
A ac bc(mod m) B a b C ac T bc(mod m) D a b
5、如果( ),则不定方程 ax by c 有解.
A (a, b) c B c (a, b) C a c D (a, b) a
6、整数 5874192 能被( )整除. A 3 B 3与9 C 9 D 3或9
证明 设 n 是正数,并且 n 1(mod 4) ,
----------(3 分)
如果
n x2 y2 , 则因为对于模 4, x, y 只与 0,1,2,-1 等同余, 所以 x2 , y 2 只能与 0,1 同余,
所以
x2 y 2 0,1,2(mod 4) ,
而这与 n 1(mod 4) 的假设不符,
C 7 不整除(12,15) D 7 不整除[12,15]
12、同余式
( ).
A 有解 B 无解 C 无法确定 D 有无限个解
二、填空题 1、有理数 ,
,能写成循环小数的条件是( ).
2、同余式
有解,而且解的个数为( ).
3、不大于 545 而为 13 的倍数的正整数的个数为( ).
4、设 是一正整数,Euler 函数
429 67
27 67
(1)
27 1. 67 1 22
67 27
67 27

西南大学2016《初等数论》网上作业(共4次)

西南大学2016《初等数论》网上作业(共4次)

西南大学2016《初等数论》网上作业(共4次)初等数论第一次作业简答题1. 叙述整数a被整数b整除的概念。

2. 给出两个整数a,b的最大公因数的概念。

3. 叙述质数的概念,并写出小于14的所有质数。

4. 叙述合数的概念,并判断14是否为合数。

5. 不定方程c+有整数解的充分必要条件是什么?byax=6. 列举出一个没有整数解的二元一次不定方程。

7. 写出一组勾股数。

8. 写出两条同余的基本性质。

9. 196是否是3的倍数,为什么?10. 696是否是9的倍数,为什么?11. 叙述孙子定理的内容。

12. 叙述算术基本定理的内容。

13.给出模6的一个完全剩余系。

14.给出模8的一个简化剩余系。

15.写出一次同余式)ax≡有解得充要条件。

(mod mb答:1.设a,b是任意两个整数,其中b≠0,如果存在一个整数q使得等式a=bq 成立,我们就称b整除a或a被b整除,记做b|a。

2.设a,b是任意两个整数,若整数d是他们之中每一个的因数,那么d就叫做a,b的一个公因数。

a,b的公因数中最大的一个叫做最大公因数。

3.一个大于1的整数,如果它的正因数只有1和它本身,就叫作质数(或素数)。

14的所有质数为2,3,5,7,11,134.一个大于1的整数,如果它的正因数除了1和它本身,还有其他的正因数,则就叫作合数。

14的所有正因数为1,2,7,14,除了1和本身14,还有2和7两个正因数,所以14是合数。

5.不定方程cax=+有整数解的充分必要条件是。

by6.没有整数解的二元一次不定方程10x+10y=5。

7.一组勾股数为3,4,5。

8.同余的基本性质为:性质1 m为正整数,a,b,c为任意整数,则①a≡a(mod m);②若a≡b(mod m),则b≡a(mod m);③若a≡b(mod m),b≡c(mod m),则a≡c(mod m)。

性质3①若(mod m),(mod m),则(mod m)②若a+b≡c(mod m),则a≡c-b(mod m)。

2013年春_西南大学《线性代数》作业及答案

2013年春_西南大学《线性代数》作业及答案

2013年春 西南大学《线性代数》作业及答案(共5次,已整理)第一次作业【单选题】9.下列n 阶(n>2)行列式的值必为0的有: B:行列式非零元素的个数小于n 个。

【单选题】1.有二阶行列式,其第一行元素是(1,3),第二行元素是(1,4),该行列式的值是: B:1【单选题】2.有二阶行列式,其第一行元素是(2,3),第二行元素是(3,-1),则该行列式的值是:A:-11【单选题】3.有三阶行列式,其第一行元素是(0,1,2),第二行元素是(-1,-1,0),第三行元素是(2,0,-5),则该行列式的值是:B:-1【单选题】4.有三阶行列式,其第一行元素是(1,1,1),第二行元素是(3,1,4),第三行元素是(8,9,5),则该行列式的值是:C:5【单选题】5. 行列式A 的第一行元素是(k,3,4),第二行元素是(-1,k,0),第三行元素是(0,k,1),如果行列式A 的值等于0,则k 的取值应是:C:k=3或k=1【单选题】6. 6.排列3721456的逆序数是:C:8【单选题】7. .行列式A 的第一行元素是(-3,0,4),第二行元素是(2,a ,1),第三行元素是(5,0,3),则其中元素a 的代数余子式是:B:-29【单选题】8.已知四阶行列式D 中第三行元素为(-1,2,0,1),它们的余子式依次分别为5,3,-7,4,则D 的值等于. C:-15【论述题】行列式部分主观题 行列式部分的填空题1.在5阶行列式ij a 中,项a 13a 24a 32a 45a 51前的符号应取 + 号。

2.排列45312的逆序数为 5 。

3.行列式25112214---x中元素x 的代数余子式是 8 . 4.行列式10232543--中元素-2的代数余子式是 —11 。

5.行列式25112214--x 中,x 的代数余子式是 —5 。

6.计算00000d c b a = 0行列式部分计算题 1.计算三阶行列式38114112--- 解:原式=2×(—4)×3+0×(—1)×(—1)+1×1×8—1×(—1)×(—4)—0×1×3—2×(—1)×8=—42.决定i 和j ,使排列1 2 3 4 i 6 j 9 7 为奇排列.解:i =8,j =5。

《初等数论》各章习题参考解答

《初等数论》各章习题参考解答

《初等数论》各章习题参考解答第一章习题参考解答1.解:因为25的最小倍数是100,9的最小倍数是,所以满足条件的最小正整数11111111100a =。

2.解:3在100!的分解式中的指数()1001001001003100!33113148392781⎡⎤⎡⎤⎡⎤⎡⎤=+++=+++=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦, 在100!的分解式中的指数()1001001001001002100!50251261942481664⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=++++=++++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦,∴ ()9448474847100!2343123,,61k k k k =⋅⋅=⋅⋅=⋅=。

故 max 47n =,min 3M k =,(),61k =。

故 当M 最小值是3的倍数,但不是2的倍数。

3.解:112121n n n n x x ++++++等价于()()21221n n n x x x ++-+-,从而3x ³(n 就不会太大,存在反向关系)。

由()()22121n nn x x x -+-?+,得()()2212n n n x x -+?,即()()()121122nn x x -+?。

若2n ³,则()()()()251221114242nn x xx x-?+??,导致25140x x -+?,无解。

所以,只有1n =,335314x x x +-?,只能是37,14x +=,从而4,11x =。

综上所述,所求正整数对()()(),4,111,1x n =、。

4.解:按题意,2m n >>,记*,m n k k N =+?;则()222211111n n k nk n k k a a a a a a a a a a a a +++-+-?-+--++-22211111n k k n k k a a a a a a a a a ++?---+?-+-,故 存在无穷多个正整数a 满足2111n k k a a a a ++-+-。

《初等数论》版习题解答

《初等数论》版习题解答

《初等数论》版习题解答第⼀章整数的可除性§1 整除的概念·带余除法 1.证明定理3定理3 若12n a a a ,,,都是m 得倍数,12n q q q ,,,是任意n 个整数,则1122n n q a q a q a +++是m 得倍数.证明:12,,n a a a 都是m 的倍数。

∴存在n 个整数12,,n p p p 使 1122,,,n n a p m a p m a p m ===⼜12,,,n q q q 是任意n 个整数1122n nq a q a q a ∴+++1122n n q p m q p m q p m =+++1122()n n p q q p q p m =+++即1122n n q a q a q a +++是m 的整数2.证明 3|(1)(21)n n n ++ 证明(1)(21)(1)(2n n n n n n n ++=+++-(1)(2)(1)(n n n n n n =+++-+ ⼜(1)(2)n n n ++,(1)(2)n n n -+是连续的三个整数故3|(1)(2),3|(1)(1)n n n n n n ++-+3|(1)(2)(1)(1)n n n n n n ∴+++-+从⽽可知3|(1)(21)n n n ++3.若00ax by +是形如ax by +(x ,y 是任意整数,a ,b 是两不全为零的整数)的数中最⼩整数,则00()|()ax by ax by ++.证:,a b 不全为0,x y Z ?∈,由带余除法有0000(),0ax by ax by q r r ax by +=++≤<+则00()()r x x q a y y q b S =-+-∈,由00ax by +是S 中的最⼩整数知0r =00|ax by ax by ∴++00|ax by ax by ++ (,x y 为任意整数) 0000|,|ax by a ax by b ∴++ 00|(,).ax by a b ∴+ ⼜有(,)|a b a ,(,)|a b b 00(,)|a b ax by ∴+故00(,)ax by a b +=4.若a ,b 是任意⼆整数,且0b ≠,证明:存在两个整数s ,t 使得||,||2b a bs t t =+≤成⽴,并且当b 是奇数时,s ,t 是唯⼀存在的.当b 是偶数时结果如何?证:作序列33,,,,0,,,,2222b b b bb b ---则a 必在此序列的某两项之间即存在⼀个整数q ,使122q q b a b +≤<成⽴ ()i 当q 为偶数时,若0.b >则令,22q qs t a bs a b ==-=-,则有 02222b q q qa bs t ab a b b t ≤-==-=-<∴<若0b < 则令,22q qs t a bs a b =-=-=+,则同样有2b t <()ii 当q 为奇数时,若0b >则令11,22q q s t a bs a b ++==-=-,则有1102222b b q q t a bs a b a b t ++-≤=-=-=-<∴≤ 若 0b <,则令11,22q q s t a bs a b ++=-下证唯⼀性当b 为奇数时,设11a bs t bs t =+=+则11()t t b s s b -=-> ⽽111,22b bt t t t t t b ≤≤∴-≤+≤ ⽭盾故11,s s t t == 当b 为偶数时,,s t 不唯⼀,举例如下:此时2b为整数 11312(),,22222b b b b b b b t t ?=?+=?+-=≤§2 最⼤公因数与辗转相除法 1.证明推论4.1推论4.1 a ,b 的公因数与(a ,b )的因数相同.证:设d '是a ,b 的任⼀公因数,∴d '|a ,d '|b 由带余除法111222111111,,,,,0n n n n n n n n n n a bq r b r q r r r q r r r q r r r r b---++-=+=+=+==≤<<<<∴(,)n a b r =∴d '|1a bq -1r =, d '|122b r q r -=,┄, d '|21(,)n n n n r r q r a b --=+=,即d '是(,)a b 的因数。

初等数论 习题答案

初等数论 习题答案

初等数论习题答案初等数论习题答案初等数论是数学中的一个分支,研究的是整数的性质和关系。

它是数学的基础,也是其他数学分支的重要组成部分。

在学习初等数论的过程中,我们经常会遇到一些习题,下面是一些常见习题的答案,希望对大家的学习有所帮助。

1. 证明:如果一个整数能被4整除,那么它一定能被2整除。

答案:我们知道,当一个整数能被另一个整数整除时,我们可以用“整除”这个关系来表示。

对于整数a和b,如果a能被b整除,我们可以写作a|b。

所以题目中的关系可以表示为4|2。

根据定义,如果一个整数能被4整除,那么它一定能被2整除。

所以这个命题是正确的。

2. 证明:如果一个整数的平方是偶数,那么这个整数一定是偶数。

答案:我们可以用反证法来证明这个命题。

假设存在一个整数x,它的平方是偶数,但是x本身是奇数。

根据奇数和偶数的性质,我们知道奇数乘以奇数得到的结果是奇数,偶数乘以偶数得到的结果是偶数。

所以x的平方是奇数,而不是偶数,与题目中的条件矛盾。

所以这个命题是正确的。

3. 证明:如果一个整数能被3和5整除,那么它一定能被15整除。

答案:我们可以用反证法来证明这个命题。

假设存在一个整数x,它能被3和5整除,但是不能被15整除。

根据整除的性质,如果一个整数能被3整除,那么它一定是3的倍数;如果一个整数能被5整除,那么它一定是5的倍数。

所以x是3的倍数,也是5的倍数。

但是如果x不能被15整除,那么它不是15的倍数。

这与题目中的条件矛盾。

所以这个命题是正确的。

4. 证明:如果一个整数的平方是素数,那么这个整数一定是1或-1。

答案:我们可以用反证法来证明这个命题。

假设存在一个整数x,它的平方是素数,但是x不是1或-1。

根据平方的性质,如果一个整数的平方是素数,那么这个整数一定是1或-1。

所以x是1或-1。

但是如果x不是1或-1,那么它的平方不是素数,与题目中的条件矛盾。

所以这个命题是正确的。

初等数论是一个非常有趣的数学分支,它涉及到很多有趣的数学问题和定理。

初等数论课后习题答案

初等数论课后习题答案

1 证明:n a a a ,,21 都是m 的倍数。

∴存在n 个整数n p p p ,,21使n n n m p a m p a m p a ===,,,222111又n q q q ,,,21 是任意n 个整数m p q p q q p a q a q a q n n n n )(22112211+++=+++∴即n n a q a q a q +++ 2211是m 的整数2 证: )12)(1()12)(1(-+++=++n n n n n n n )1()1()2)(1(+-+++=n n n n n n )1()1/(6),2)(1(/6+-++n n n n n n1()1()2)(1(/6+-+++∴n n n n n n从而可知12)(1(/6++n n n3 证: b a , 不全为0∴在整数集合{}Z y x by ax S ∈+=,|中存在正整数,因而有形如by ax +的最小整数00by ax +Z y x ∈∀,,由带余除法有00000,)(by ax r r q by ax by ax +<≤++=+则b q y y a q x x r ∈-+-=)()(00,由00by ax +是S 中的最小整数知0=rax by ax ++∴/00 下证8P 第二题by ax byax++/00 (y x ,为任意整数) b byaxa byax /,/0++∴,/(0ba byax+∴ 又有b b a a b a /),(,/),(/),(by axb a +∴ 故),(00b a byax=+4 证:作序列 ,23,,2,0,2,,23,b b b b b b ---则a 必在此序列的某两项之间(区间段)即存在一个整数q ,使b q a b q 212+<≤成立(i 当q 为偶数时,若.0>b 则令b q a bs a t q s 2,2-=-==,则有22220b t b q b q a b q a t bs a <∴<-=-==-≤若0<b 则令b q a bs a t q s 2,2+=-=-=,则同样有2b t <)(ii 当q 为奇数时,若0>b 则令b q a bs a t q s 21,21+-=-=+=,则有2021212b t b q a b q a bs a t b ≤∴<+-=+-=-=≤-若 0<b ,则令b q a bs a t q s 21,21++=-=+-=则同样有 2b t ≤综上 存在性得证 下证唯一性当b 为奇数时,设11t bs t bs a +=+=则b s s b t t >-=-)(11而b t t t t b t b t ≤+≤-∴≤≤1112,2矛盾 故11,t t s s ==当b 为偶数时,t s ,不唯一,举例如下:此时2b 为整数 2,2),2(2212311b t b t b b b b b ≤=-+⋅=+⋅=⋅2,2,222211b t b t t bst bs a ≤-=+=+=5.证:令此和数为S ,根据此和数的结构特点,我们可构造一个整数M ,使MS 不是整数,从而证明S 不是整数(1) 令S=n14131211+++++,取M=p k 75321⋅⋅⋅-这里k 是使n k≤2最大整数,p 是不大于n 的最大奇数。

初等数论试题答案及评分标准

初等数论试题答案及评分标准

初等数论试题答案及评分标准一、单项选择题(每题4分。

共24分) 、1.D 2.A 3.C4.A 5.A 6.B二、填空题(每题4分。

共24分)1.(b ,10)=12. 33. 414.不大于 互素5.[a ,b]6.十进位三、计算题(32分)1.求(136,221,391)=?解:(136,221,391)=(136,(221,391))=(136,17)=172.求解不定方程9z+2ly=6.解:因为(9,21)=3|6,所以有解.化简3z+7y 一2简单计算x=4,y=2是一组特解,所以不定方程的解为z=4+7t ,y=2—3t3.解同余式)5(mod 01512≡+x解:因为(12,5)|5,所以有解,而且解的个数为1又等价方程为l22一5y=一15,计算后解为x=5,y=15.即x 同余于)5(mod 0,0≡x4.解同余式)11(mod 52≡x 解:因为)11(mod 13555102111≡≡=-所以有解,而且解的个数为2解分别为)11(mod 7,4≡x四、证明题(每小题l0分,共20分)l 证明对于任意整数n ,数62332n n n ++是整数 证明:因为)2)(1(61)32(66232.2++=++=++n n n n n n n n n h 而且两个连续整数的乘积是2的倍数,3个连续整数的乘积是3的倍数.并且(2,3)=l所以从)2)(1ln(2++n n 和)2)(1ln(3++n n有)2)(1ln(6++n n 即62332n n n ++是整数. 2.如果n 是使)(mod 1k a n ≡的最小正整数,则当)(mod 1k a m ≡时,必有.|m n证明:反证,如果没有m n |则n r r nq m <≤+=0,于是)(mod 1k a a ar r n m J ≡≡=+,矛盾黄淮学院2013届毕业生《大学英语》补考试卷参考答案及评分标准一、搭配题(每小题1分,共15分)1-5 .N L A C O 6-10.D B F I E 11-15.J G K H M二、选择题(每小题1分,共20分)1-5 BCAAC 6-10 CDADD11-15 CABDD 16-20 BCDCA三、句型转换(每小题1分,共10分)1.He is not going to wait for the bus.2.Sally does not go to school on foot everyday.3.Is there any milk in the bottle?4.After he had done his homework, he went to bed.5.The man who served me is standing behind the counter.The man who is standing behind the counter serverd me.6. The glass which is mine was broken./ The glass which was broken is mine.7. The milkman said that they were hungry.8. He told me that he had met her before9.The room is cleaned by Peter everyday.10. These exercise books were corrected by the teacher last night.四、阅读理解(每题2分,共40分)1-5 BAACC 6-10 BADAC11-15 CBADB 16-20 DCBAB五、写作(每题15分,共15分)1) 15-13分:内容切题,包括提纲的全部要点;表达清楚,文字连贯;句式有变化,句子结构和用词正确。

初等数论试题及答案大学

初等数论试题及答案大学

初等数论试题及答案大学一、选择题(每题5分,共20分)1. 以下哪个数是素数?A. 4B. 9C. 11D. 15答案:C2. 100以内最大的素数是:A. 97B. 98C. 99D. 100答案:A3. 一个数的最小素因子是3,那么这个数至少是:A. 3B. 6C. 9D. 12答案:B4. 以下哪个数是完全数?A. 6B. 28C. 496D. 8128答案:A二、填空题(每题5分,共20分)1. 一个数的因数个数是______,那么这个数一定是合数。

答案:32. 如果一个数的各位数字之和是3的倍数,那么这个数本身也是3的倍数,这个性质称为______。

答案:3的倍数规则3. 欧拉函数φ(n)表示小于或等于n的正整数中与n互质的数的个数,那么φ(10)等于______。

答案:44. 哥德巴赫猜想是指任何一个大于2的偶数都可以表示为两个______之和。

答案:素数三、解答题(每题15分,共30分)1. 证明:如果p是一个素数,那么2^(p-1) - 1是p的倍数。

证明:设p是一个素数,根据费马小定理,对于任意整数a,若p不能整除a,则有a^(p-1) ≡ 1 (mod p)。

特别地,当a=2时,有2^(p-1) ≡ 1 (mod p)。

这意味着2^(p-1) - 1是p的倍数。

2. 计算:求1到100之间所有素数的和。

答案:2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59 + 61 + 67 + 71 + 73 + 79 + 83 + 89 +97 = 1060四、综合题(每题10分,共20分)1. 已知a和b是两个不同的素数,证明:a + b至少有4个不同的素因子。

证明:设a和b是两个不同的素数,那么a和b至少有2个不同的素因子。

如果a + b是素数,那么a + b至少有3个不同的素因子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年春西南大学《初等数论》作业及答案(共4次,已整理) 第一次作业1、设n,m为整数,如果3整除n,3整除m,则9()mn。

A:整除B:不整除C:等于D:小于正确答案:A 得分:102、整数6的正约数的个数是()。

A:1B:2C:3D:4正确答案:D 得分:103、如果5|n ,7|n,则35()n 。

A:不整除B:等于C:不一定D:整除正确答案:D 得分:104、如果a|b,b|a ,则()。

A:a=bB:a=-bC:a=b或a=-bD:a,b的关系无法确定正确答案:C 得分:105、360与200的最大公约数是()。

A:10B:20C:30D:40正确答案:D 得分:106、如果a|b,b|c,则()。

A:a=cB:a=-cC:a|cD:c|a正确答案:C 得分:107、1到20之间的素数是()。

A:1,2,3,5,7,11,13,17,19B:2,3,5,7,11,13,17,19C:1,2,4,5,10,20D:2,3,5,7,12,13,15,17正确答案:B 得分:108、若a,b均为偶数,则a + b为()。

A:偶数B:奇数C:正整数D:负整数正确答案:A 得分:109、下面的()是模12的一个简化剩余系。

A:0,1,5,11B:25,27,13,-1C:1,5,7,11D:1,-1,2,-2正确答案:C 得分:1010、下面的()是模4的一个完全剩余系。

A:9,17,-5,-1B:25,27,13,-1C:0,1,6,7D:1,-1,2,-2正确答案:C 得分:1011、下面的()是不定方程3x + 7y = 20的一个整数解。

A:x=0,y=3B:x=2,y=1C:x=4,y=2D:x=2,y=2正确答案:D 得分:1012、设a,b,c,d是模5的一个简化剩余系,则a+b+c+d对模5同余于()。

A:0B:1C:2D:3正确答案:A 得分:1013、使3的n次方对模7同余于1的最小的正整数n等于()。

A:6B:2D:13正确答案:A 得分:1014、100与44的最小公倍数是()。

A:4400B:2200C:1100D:440正确答案:C 得分:1015、{{1.8}+{2.9}}等于()。

A:0.4B:0.5C:0.6D:0.7正确答案:D 得分:1016、[[4.5]+[3.7]]等于()。

A:3B:4C:7D:8正确答案:C 得分:1017、一个正整数n的各位上的数字是0或1,并且n能被2和3整除,则最小的n 是()。

A:1110B:1101C:1011D:1001正确答案:A 得分:1018、-4除-39的余数是()。

A:3B:2C:1D:0正确答案:C 得分:1019、下面的数是3的倍数的数是­­­()。

A:19C :1119D :11119正确答案:C 得分:1020、小于20的正素数的个数是( )。

A :11B :10C :9D :8正确答案:D 得分:1021、下面的( )是模4的一个简化剩余系。

A :4,17B :1,15C :3,23D :13,6正确答案:B 得分:1022、已知361a 是一个4位数(其中a 是个位数),它能被5整除,也能被3整除,则a 的值是­­­( )。

A :0B :2C :5D :9正确答案:C 得分:10第二次作业填空题1.16除100的余数是 4 _。

2.如果今天是星期一,那么从今天起再过1010天后是星期 四 。

3.{3.2} = 0.2 ;[2.84] = 2 。

4.[{3.6} + {1.7}] = 1 。

5.{{4.2}{2.3}}-+=___0.1___________。

6.15的所有正因数的和是 9 。

7.1260的标准分解式是 222357⨯⨯⨯ 。

8.20!的标准分解式是1884235711131719⨯⨯⨯⨯⨯⨯⨯ 。

9.98!的末尾有______22_________个零。

10.890的标准分解式是 2 ×5×89.11.欧拉函数值(50)ϕ= 20 。

12.7除3301的余数是 4 。

13.不定方程ax + by = c 有解的充要条件是 (,)a b c 。

14.设m 为正整数,a ,b 为两个整数,如果用m 去除a 与b 所得的余数相同,那么就称a ,b 对模m 同余 。

15.一次同余式(mod )ax b m ≡有解的充分必要条件是___(,)a m b __________。

16.模7的最小非负完全剩余系是 {0,1,2,3,4,5,6} 。

17.(1516,600)= 227400 。

18.不定方程ax + by = c (其中a ,b ,c 是整数)有整数解的充要条件是 (,)a b c 。

19.710被11除的余数是 1 。

20.77的个位数是_3______ _第三次作业计算题1.写出400与600的标准分解式,并求出400与600的最大公因数。

解 4240025=⨯,32600235=⨯⨯,32(400,600)25200=⨯=。

2.求128121被11除的余数。

解 因为ϕ(11)=10,而128与11互素,所以12810≡1(mod 11),于是128121≡128≡7(mod 11),所以128121被11除的余数为7。

3.求1050与858的最大公因数。

解:因为1050 = 2⨯3⨯52⨯7,858 = 2⨯3⨯11⨯13,所以(1050,858) = 2⨯3 = 6。

4.求1001!中末尾0的个数。

解:因为10=2⨯5,所以1001!中末尾相当于1001!的质因数分解式中2⨯5的个数。

由于2<5,所以1001!的质因数分解式中2的个数比5的个数要多,因此,只要考察1001!中因子5的个数即可。

因为:1001÷5=200……1,1001÷52=40……1,1001÷53=8……1,1000÷54=1……375,又因为200+40+8+1=249,所以答案为249。

即1001!中末尾0的个数为249个。

5.求不定方程3x + 5y = 20的一切非负整数解。

解:因为(3,5)=1,所以不定方程有整数解。

由观察知x 0 = 0,y 0 = 4是不定方程3x +5y =20的一个整数解,所以不定方程3x +5y =20的一切整数解是543x t y t =⎧⎨=-⎩,其中t 取一切整数。

由00x y ≥⎧⎨≥⎩可解得403t ≤≤,所以0,1t =,故不定方程的一切非负整数解为 04x y =⎧⎨=⎩,51x y =⎧⎨=⎩。

6.求出不定方程7x + 2y = 1的一个整数解,并写出其一切整数解的表达式。

解:因为(7,2)=1,1|1,所以不定方程有解。

观察知其一个整数解是0013x y =⎧⎨=-⎩。

于是其一切整数解为1237x t y t =+⎧⎨=--⎩,t 取一切整数。

7.求不定方程15x + 10y + 6z = 61的一切整数解。

解:不定方程的一切整数解为52653665x u v y u vz v =--⎧⎪=-++⎨⎪=+⎩,其中u ,v 取一切整数。

8.计算欧拉函数值:ϕ(100)。

解:100 = 2252,由公式有(100)=221125(1)(1)25⨯⨯-⨯-= 40。

9.解同余式3x ≡ 8 (mod 10)。

解:因为(3,10)=1,1|8,所以同余式有解,并且只有一个解。

由3108x y -=得一个解0061x y =⎧⎨=⎩,所以同余式的解为6(mod10)x ≡。

10.解同余式组:1(mod 2)1(mod 3)1(mod 5)x x x ≡⎧⎪≡⎨⎪≡⎩。

解:因为2,3,5两两互质,所以由孙子定理该同余式组有一个解。

由孙子定理可得该同余式组的解为x ≡ 1(mod 30)。

11.解同余式28x ≡ 21 (mod 35)。

解 因为(28,35) = 7,而7|21,所以同余式28x ≡ 21(mod 35)有解,且有7个解。

同余式28x ≡ 21(mod 35)等价于4x ≡ 3(mod 5),解4x ≡ 3(mod 5)得x ≡ 2(mod5),故同余式28x ≡ 21(mod 35)的7个解为x ≡ 2,7,12,17,22,27,32(mod35)。

12.解同余式组:1(mod3)2(mod 7)x x ≡⎧⎨≡⎩。

解:由1(mod3)x ≡得1113,x t t Z =+∈,将其代入2(mod7)x ≡得1132(mod 7)t +≡,即131(mod 7)t ≡,解得15(mod 7)t ≡,所以12257,t t t Z =+∈,于是12221313(57)1621,x t t t t Z =+=++=+∈。

所以同余式组的解为16(mod 21)x ≡。

第四次作业证明题1.证明:若)(mod m b a ≡,)(mod m d c ≡,则)(mod m d b c a +≡+。

证明:由)(mod m b a ≡,)(mod m d c ≡得)(|b a m -,)(|d c m -,由整除的性质得)]()[(|d c b a m -+-,即)]()[(|d b c a m +-+,所以)(mod m d b c a +≡+。

2.证明:设m , n 为整数,求证m +n , m -n 与mn 中一定有一个是3的倍数。

证明:若m 或n 为3的倍数,则mn 是3的倍数;若m 是3的倍数加1,n 是3的倍数加1,则m -n 是3的倍数;若m 是3的倍数加1,n 是3的倍数加2,则m +n 是3的倍数;若m 是3的倍数加2,n 是3的倍数加1,则m +n 是3的倍数;若m 是3的倍数加2,n 是3的倍数加2,则m -n 是3的倍数,结论成立。

3.证明:若c a |,d b |,则cd ab |。

证明:由c a |,d b |知存在整数p ,q 使得ap c =,bq d =,所以abpq apbq cd ==,因为pq 为整数,所以由整除的定义知cd ab |。

4.证明:若n 为自然数,求证9n +1≡8n +9(mod 64)。

证明:因为9≡1(mod 8),所以9k ≡1(mod 8),k =2,3,…,n -1,于是9n -1+…+92+9+1≡n (mod 8),所以9(9n -1+…+92+9+1)≡ n (mod 8),从而9(9-1)(9n -1+…+92+9+1)≡ 8n (mod 64),即9(9n -1) ≡ 8n (mod 64),所以 9n +1≡8n +9(mod 64)。

5.若p 为奇质数,证明2p | (22p -1–2)。

相关文档
最新文档