遥感实验报告

合集下载

遥感实验报告裁剪拼接(3篇)

遥感实验报告裁剪拼接(3篇)

第1篇一、实验目的本次实验旨在学习遥感影像处理中的裁剪与拼接技术,通过对遥感影像进行裁剪和拼接,提高遥感数据的可用性和分析效率。

二、实验背景遥感技术是获取地球表面信息的重要手段,广泛应用于资源调查、环境监测、灾害评估等领域。

遥感影像经过处理和提取后,才能为实际应用提供有价值的信息。

裁剪与拼接是遥感影像处理中的基本操作,通过对影像进行裁剪和拼接,可以去除无关信息,提高影像的可用性。

三、实验材料1. 遥感影像数据:包括多景遥感影像,如Landsat、Sentinel-2等;2. 裁剪与拼接软件:如ENVI、ArcGIS等;3. 实验环境:计算机、遥感数据处理软件等。

四、实验步骤1. 数据准备(1)选择遥感影像数据,确保影像质量良好、覆盖范围完整;(2)对遥感影像进行预处理,包括辐射校正、大气校正等,提高影像质量。

2. 裁剪操作(1)确定裁剪范围:根据实验需求,选择合适的裁剪范围,如行政区域、研究区域等;(2)使用裁剪工具对遥感影像进行裁剪,生成新的影像。

3. 拼接操作(1)选择拼接方式:根据实际情况,选择合适的拼接方式,如同名像元拼接、重叠区域拼接等;(2)使用拼接工具对遥感影像进行拼接,生成新的影像。

4. 质量评估(1)检查拼接后的影像是否完整,是否存在缝隙、错位等问题;(2)分析拼接区域的地物特征,确保拼接效果良好。

五、实验结果与分析1. 裁剪结果经过裁剪操作,生成了新的遥感影像,去除了无关信息,提高了影像的可用性。

2. 拼接结果经过拼接操作,生成了新的遥感影像,拼接区域地物特征良好,拼接效果满意。

3. 质量评估(1)拼接后的影像完整,无缝隙、错位等问题;(2)拼接区域地物特征良好,拼接效果满意。

六、实验结论通过本次实验,掌握了遥感影像的裁剪与拼接技术,提高了遥感数据的可用性和分析效率。

在实际应用中,可根据具体需求选择合适的裁剪与拼接方法,为遥感数据处理提供有力支持。

七、实验心得1. 裁剪与拼接是遥感影像处理中的基本操作,对于提高遥感数据的可用性具有重要意义;2. 在实际操作中,应根据具体需求选择合适的裁剪与拼接方法,确保拼接效果良好;3. 学习遥感影像处理技术,有助于提高遥感数据的分析和应用水平。

《遥感原理与应用》实验报告

《遥感原理与应用》实验报告

《遥感原理与应用》实验报告实验报告:遥感原理与应用一、实验目的通过实验了解遥感的基本原理,掌握遥感技术的基本应用方法。

二、实验仪器和材料1.遥感软件:ENVI、ERDAS、IDRISI等2.遥感数据:卫星遥感影像数据三、实验内容1.遥感影像地理信息提取通过遥感软件导入遥感影像数据,利用图像处理方法提取地理信息,如土地利用类型、植被覆盖度等。

2.遥感影像分类利用遥感影像数据进行分类分析,将影像中的不同对象或地物进行分类,如建筑物、农田、水域等。

3.遥感影像变化检测利用不同时间的遥感影像数据进行变化检测,观察地物变化的情况,如城市扩张、植被变化等。

四、实验步骤1.打开遥感软件,导入遥感影像数据。

2.使用图像处理方法提取地理信息,如选择适当的阈值进行植被覆盖度的提取。

3.利用分类分析方法将影像中的不同对象进行分类,可以使用最大似然分类方法或支持向量机分类方法等。

4.比较不同时间的遥感影像数据,通过图像差异分析方法进行变化检测。

五、实验结果通过实验,我们成功使用遥感软件导入遥感影像数据,并提取了植被覆盖度等地理信息。

同时,我们还使用分类分析方法将影像中的不同对象进行了分类,得到了建筑物、农田、水域等分类结果。

最后,我们通过比较不同时间的遥感影像数据,成功进行了变化检测,观察到了城市扩张和植被变化的情况。

六、实验感想通过这次实验,我们深入了解了遥感技术的基本原理和应用方法。

遥感技术具有非常广泛的应用领域,如环境监测、农业管理、城市规划等。

遥感影像数据可以提供大量的地理信息,通过图像处理和分类分析可以提取出有用的地理信息,同时通过变化检测可以观察到地物的变化情况。

掌握遥感技术对于我们理解地球变化、环境保护和资源利用具有重要意义。

总结:通过这次实验,我们不仅学习到了遥感技术的基本原理和应用方法,还亲自进行了实验操作,掌握了使用遥感软件进行遥感影像地理信息提取、分类分析和变化检测的基本技能。

希望今后能够将所学的遥感知识应用到实际工作中,为地球环境的保护和资源的利用做出贡献。

遥感实验报告实验成果

遥感实验报告实验成果

一、实验背景随着遥感技术的不断发展,遥感技术在环境监测、资源调查、灾害预警等领域得到了广泛应用。

本实验旨在通过遥感技术,对某地区进行地表覆盖分类,为该地区的环境监测和资源调查提供数据支持。

二、实验目的1. 熟悉遥感图像处理软件的基本操作;2. 掌握遥感图像分类方法;3. 对某地区进行地表覆盖分类,为该地区的环境监测和资源调查提供数据支持。

三、实验内容1. 数据准备本实验选用某地区Landsat 8卫星影像作为实验数据,该影像覆盖范围约为1000平方公里,分辨率为30米。

实验过程中,首先对影像进行预处理,包括辐射校正、几何校正和大气校正等。

2. 遥感图像分类(1)选择合适的分类器本实验选用支持向量机(SVM)作为分类器,因为SVM在处理小样本数据时具有较好的性能。

(2)训练样本选择为提高分类精度,需要选择具有代表性的训练样本。

本实验采用随机抽样方法,从预处理后的影像中随机选取1000个样本作为训练样本。

(3)分类结果分析将训练样本输入SVM分类器进行训练,得到分类模型。

然后,将测试样本输入分类模型进行分类,得到分类结果。

3. 分类结果验证为验证分类结果的准确性,采用混淆矩阵对分类结果进行评价。

混淆矩阵是一种用于评估分类结果的方法,它能够直观地反映分类精度、召回率和F1值等指标。

四、实验结果与分析1. 分类精度通过计算混淆矩阵,得到分类精度为90.5%。

这说明本实验采用SVM分类器对某地区进行地表覆盖分类的效果较好。

2. 分类结果分析(1)地表覆盖类型分布通过分析分类结果,可以看出该地区地表覆盖类型主要有耕地、林地、草地、水域、建筑用地和未利用地等。

(2)地表覆盖变化分析与历史影像对比,可以看出该地区耕地面积有所增加,林地和草地面积有所减少,建筑用地面积显著增加。

这可能与当地经济发展和城市化进程有关。

3. 分类结果应用(1)环境监测通过地表覆盖分类结果,可以监测该地区土地利用变化,为环境监测提供数据支持。

遥感原理实验报告

遥感原理实验报告

一、实验目的1. 理解遥感的基本原理和概念;2. 掌握遥感数据的获取方法及遥感图像的处理技术;3. 了解遥感在环境监测、资源调查等方面的应用;4. 培养遥感图像分析和解译能力。

二、实验原理遥感技术是利用电磁波在地球表面及其大气层中的传播特性,通过遥感器获取地球表面及其大气层的信息,然后进行图像处理、分析和解译,以达到对地球表面及其大气层进行监测、研究和利用的目的。

遥感原理主要包括以下几个方面:1. 电磁波辐射与散射:地球表面及其大气层对太阳辐射的吸收、反射和散射,形成各种电磁波;2. 遥感器:利用电磁波探测地球表面及其大气层的信息;3. 电磁波传播:电磁波在空间传播过程中,会受到大气、云层等因素的影响;4. 遥感图像处理:对遥感数据进行预处理、增强、分类等处理,提高遥感图像的质量和应用效果;5. 遥感图像分析:对遥感图像进行解译、识别和提取信息,实现对地球表面及其大气层的监测和研究。

三、实验内容及步骤1. 实验内容(1)遥感图像的获取:通过遥感卫星、航空摄影等方式获取遥感图像;(2)遥感图像的预处理:包括辐射校正、几何校正、大气校正等;(3)遥感图像增强:通过对比度增强、亮度增强、滤波等手段提高遥感图像的质量;(4)遥感图像分类:采用监督分类和非监督分类方法对遥感图像进行分类;(5)遥感图像分析:对分类后的遥感图像进行解译、识别和提取信息。

2. 实验步骤(1)遥感图像的获取:通过遥感卫星、航空摄影等方式获取遥感图像;(2)遥感图像的预处理:利用ENVI软件进行辐射校正、几何校正和大气校正;(3)遥感图像增强:利用ENVI软件进行对比度增强、亮度增强和滤波处理;(4)遥感图像分类:采用监督分类和非监督分类方法对遥感图像进行分类;(5)遥感图像分析:对分类后的遥感图像进行解译、识别和提取信息。

四、实验结果与分析1. 遥感图像的预处理效果通过对遥感图像进行辐射校正、几何校正和大气校正,提高了遥感图像的质量,为后续的图像增强和分类奠定了基础。

遥感实验报告几何校正

遥感实验报告几何校正

遥感实验报告几何校正1. 引言遥感技术在地球科学领域中起着至关重要的作用,可以提供大量的空间信息。

然而,由于地球曲率、地表高程、投影效果等原因,遥感图像中存在一定的几何失真。

为了解决这些问题,需要对遥感图像进行几何校正,以确保图像的精确度和准确性。

本实验旨在通过软件工具进行遥感图像的几何校正,以便更好地分析和解读遥感图像所提供的信息。

2. 实验目标本实验的主要目标是对给定的遥感图像进行几何校正,达到以下几个具体目标:1. 去除图像中的地理畸变,使图像上的物体形状和比例与现实世界相符合;2. 将图像从传感器坐标系转换到地理坐标系,使图像可以与其他地理数据进行叠加分析;3. 评估图像几何校正的效果,验证几何校正的有效性。

3. 实验步骤3.1 数据准备在实验开始前,我们需要准备一幅遥感图像和其对应的地理坐标信息。

安装并配置合适的遥感图像处理软件,以便进行后续的操作。

3.2 图像去畸变首先,需要对图像进行去畸变处理,以消除地理畸变对图像造成的影响。

根据实际情况选择适合的去畸变算法,对图像进行处理,并保存处理后的图像。

3.3 坐标系转换将处理后的图像从传感器坐标系转换到地理坐标系。

选择合适的坐标转换方法和参数,进行坐标系转换,并保存转换后的图像。

3.4 评估几何校正效果通过对比几何校正前后的图像,评估几何校正的效果。

可以采用多种指标进行评估,如虚拟控制点对比、图像配准精度等。

4. 实验结果经过上述实验步骤,我们成功实现了对遥感图像的几何校正。

通过图像去畸变和坐标系转换,我们得到了一幅与现实世界相符合的几何校正后的遥感图像。

评估几何校正效果时,通过与虚拟控制点对比和图像配准精度的测量,我们发现几何校正的效果符合预期,并且达到了较好的精度要求。

5. 结论与展望本实验通过对遥感图像进行几何校正,成功消除了图像中的地理畸变,实现了图像的空间精确定位。

几何校正的结果具有较高的精度和准确性,可以为后续的遥感图像分析和解读提供可靠的基础。

遥感实验报告(总24页)

遥感实验报告(总24页)

遥感实验报告(总24页)一、背景近年来,遥感技术的发展为人们研究地表环境提供了可靠的信息和丰富的空间数据,深化了人们对地表环境的理解。

近年来,有关耕地变化的空间数据分析研究得到了越来越多的关注。

使用遥感技术可以更加迅速、准确和有效地统计分析相关的数据,并能够从多个方面反映土地使用变化。

为了探索耕地变化的规律,对哈尔滨市某农村耕地变化进行遥感实验,利用遥感技术提取准确的空间数据,分析耕地变化的规律,评估农村耕地变化的影响因素,以维护农业的可持续发展。

二、实验目的就哈尔滨市某乡镇山区耕地变化进行遥感科学研究,包括遥感影像的处理、对耕地的提取、耕地变化的分析处理、影响因素分析等,以查找此区域耕地变化的一般规律和空间分布规律,研究该区域耕地变化的影响因素,为农业可持续发展提供参考意见。

三、实验材料本次实验使用的哈尔滨市某乡镇山区的遥感影像,已经完成影像的处理工作,影像的一致性检验完成,根据遥感原理和方法,利用遥感软件确定区域内植被覆盖率,用栅格数据处理技术提取耕地空间分布数据,运用面积、角点和中心点分析技术,进行耕地变化的空间分析,并根据时序差异更新岛,此外,还对耕地变化影响因素进行相关分析,以获得耕地变化的规律和机理。

四、实验方法(1)首先,利用遥感影像处理技术,对哈尔滨市某乡镇的遥感影像进行处理,包括图像校正、去燥、充色等处理。

(2)利用遥感原理和方法,结合多媒体航摄影图像,确定区域内植被覆盖率,并计算实时植被覆盖率,以识别土地利用情况;(3)采用栅格数据处理技术,提取区域内的耕地空间分布数据,采用面积、角点和中心点分析技术,进行耕地变化的空间分析,画出耕地变化图;(4)运用拟合技术,对耕地变化的时序差异进行检验,更新耕地空间分布,利用ArcGIS工具箱进行属性数据叠加,分析耕地变化影响因素;(5)最后分析耕地变化幅度,统计出耕地变换情况,绘制耕地变化临时图,分析出耕地变化规律和空间规律,找出耕地变化影响因素,从多个角度对耕地变化进行评价,以反映耕地变化的情况。

遥感学实验报告

遥感学实验报告

一、实验名称遥感影像地理坐标定位和配准二、实验目的1. 熟悉遥感影像地理坐标定位和配准的基本原理。

2. 掌握使用ENVI软件进行遥感影像地理坐标定位和配准的方法。

3. 学会利用全色影像生成影像地图。

三、实验原理遥感影像地理坐标定位是指将遥感影像上的像点坐标转换为地面实际地理位置的过程。

配准则是将不同时间、不同传感器或不同区域的遥感影像进行空间配准,以便进行对比分析。

四、实验内容1. 选取实验数据:选取一幅哈尔滨市TM影像,成像时间为2013年7月19日,分辨率为30m,各波段的波长为0.45~0.52μm、0.52~0.60μm、0.63~0.69μm、0.76~0.90μm、1.55~1.75μm。

2. 影像地理坐标定位:(1)打开ENVI软件,导入实验数据。

(2)在“地理信息”菜单中选择“地理坐标定位”。

(3)设置影像的投影类型为UTM,投影分带为北51区。

(4)输入图像左上角的公里网坐标(9819 8092)和地理坐标(经度125.4941,纬度47.0930)。

(5)点击“确定”进行地理坐标定位。

3. 影像配准:(1)打开ENVI软件,导入实验数据。

(2)在“图像处理”菜单中选择“配准”。

(3)选择“影像到影像配准”。

(4)选择参与配准的影像,设置配准精度。

(5)点击“确定”进行配准。

4. 影像到地图校正:(1)打开ENVI软件,导入实验数据。

(2)在“地理信息”菜单中选择“影像到地图校正”。

(3)选择参与校正的影像,设置校正精度。

(4)点击“确定”进行校正。

5. 生成影像地图:(1)打开ENVI软件,导入实验数据。

(2)在“图像处理”菜单中选择“生成影像地图”。

(3)选择参与生成影像地图的影像,设置地图投影、分辨率等参数。

(4)点击“确定”生成影像地图。

五、实验数据处理及成果1. 成功将哈尔滨市TM影像进行地理坐标定位和配准。

2. 利用ENVI软件生成哈尔滨市TM影像的影像地图。

六、体会及建议1. 通过本次实验,熟悉了遥感影像地理坐标定位和配准的基本原理,掌握了使用ENVI软件进行操作的方法。

遥感概论实验报告envi 基础

遥感概论实验报告envi 基础

遥感概论实验报告envi 基础
一、引言
1.1 实验目的
1.2 实验原理
1.3 实验背景
二、envi 基础
2.1 什么是envi
2.2 envi的功能和特点
2.3 envi的应用领域
三、envi的安装和配置
3.1 envi的安装步骤
1.下载envi安装程序
2.双击安装程序并按照提示进行安装
3.完成安装后,打开envi软件
3.2 envi的配置
1.设置数据文件路径
2.设置显示界面样式
3.配置工具栏和快捷键
四、envi的基本操作
4.1 打开遥感影像文件
1.导入多光谱遥感影像
2.导入高光谱遥感影像
4.2 遥感影像的显示和增强
1.调整影像的亮度和对比度
2.使用伪彩色方案显示遥感影像
4.3 执行空间过滤和图像分类
1.应用滤波器对遥感影像进行平滑处理
2.使用图像分类算法对遥感影像进行分类
4.4 遥感影像的几何校正和地理配准
1.对遥感影像进行几何校正
2.进行地理配准操作
4.5 遥感影像的特征提取与分析
1.提取遥感影像的植被指数
2.进行土地利用/覆盖分类等分析
五、实验结果与讨论
5.1 打开遥感影像并进行显示和增强5.2 实施空间过滤和图像分类
5.3 进行影像的几何校正和地理配准
5.4 进行特征提取与分析
六、结论
七、参考文献
八、致谢。

遥感实验报告

遥感实验报告

遥感实验报告引言:遥感技术是利用卫星、飞机等遥感平台获取地球表面信息的一种技术手段。

通过对不同波段的电磁辐射进行探测和分析,遥感技术可以获取地表的空间分布、物质组成以及变化情况等信息。

本次实验旨在通过遥感图像的获取和解译,了解和掌握遥感技术的基本原理和应用。

一、遥感数据获取:1. 数据来源:本次实验使用的遥感数据来源于卫星遥感图像,通过开源的遥感数据平台获得。

2. 数据类型:本次实验使用的遥感数据为多光谱遥感图像,包含多个波段的信息。

通过不同波段的数据分析,可以获取地表的不同特征和信息。

二、遥感图像解译:1. 图像预处理:图像预处理是遥感图像解译的基础工作,包括图像几何校正、辐射校正和大气校正等过程。

这些预处理步骤可以提高图像质量,减少噪声和失真。

2. 地物分类:地物分类是遥感图像解译的关键环节。

通过对遥感图像中的像元进行分类,可以将地表物体分为不同的类别,如水体、植被、建筑等。

常用的分类方法包括监督分类和非监督分类。

3. 特征提取:特征提取是对地物进行进一步分析和描述的过程。

通过提取地物的形状、颜色、纹理等特征,可以对地物进行进一步分类和识别。

三、遥感技术应用:1. 土地利用与覆盖变化研究:通过遥感图像的获取和解译,可以对土地利用与覆盖变化进行研究。

通过对多时相的遥感数据进行对比分析,可以了解土地利用变化的趋势和驱动因素。

2. 自然资源调查与监测:遥感技术在自然资源调查与监测中有着广泛的应用。

通过遥感图像的获取和解译,可以对森林、湿地和土地等自然资源进行调查和监测,为资源管理和保护提供科学依据。

3. 灾害监测与评估:遥感技术在灾害监测与评估中具有重要作用。

通过遥感图像的获取和解译,可以实时监测和评估自然灾害的影响范围和程度,为灾害应对和救援提供决策支持。

结论:本次实验通过遥感图像的获取和解译,了解了遥感技术的基本原理和应用。

遥感技术在土地利用与覆盖变化研究、自然资源调查与监测和灾害监测与评估等方面具有广泛的应用前景。

遥感实验报告

遥感实验报告

一、实验背景随着科技的飞速发展,遥感技术作为一种获取地球表面信息的重要手段,在地理信息系统、资源调查、环境监测等领域发挥着越来越重要的作用。

为了更好地了解遥感技术的基本原理和应用,我们进行了本次遥感实验。

二、实验目的1. 掌握遥感图像的获取和处理方法;2. 熟悉遥感图像处理软件ENVI的基本操作;3. 学习遥感图像的分类和提取信息的方法;4. 培养团队合作精神和实际操作能力。

三、实验原理遥感技术是利用电磁波对地球表面进行探测和监测的技术。

通过遥感传感器获取的图像数据,可以反映地表物体的物理、化学和生物特性。

遥感图像处理主要包括图像校正、分类、提取信息等步骤。

四、实验内容1. 图像获取实验中,我们使用了ENVI软件,从美国地质调查局(USGS)的地球观测系统数据和信息(EOSDIS)中下载了北京市的Landsat 8卫星影像。

2. 图像校正首先,我们对下载的遥感图像进行了几何校正,以消除图像中的几何畸变。

通过选择地面控制点,将遥感图像与实际地理位置相对应。

3. 图像分类接着,我们进行了遥感图像的分类。

采用监督分类方法,利用ENVI软件中的分类器,对遥感图像进行分类。

分类过程中,我们选取了地物特征明显的区域作为训练样本,以指导分类器进行分类。

4. 信息提取最后,我们利用遥感图像提取了北京市的地物信息,包括水体、植被、建筑等。

通过对提取信息的分析,可以了解北京市的地表环境状况。

五、实验结果与分析1. 图像校正通过几何校正,我们成功地将遥感图像与实际地理位置相对应,消除了图像中的几何畸变。

校正后的图像可以更准确地反映地表物体的真实位置。

2. 图像分类在遥感图像分类过程中,我们共分为三个类别:水体、植被和建筑。

经过分类,我们得到了较为准确的分类结果。

通过分析分类结果,可以看出北京市的水体主要分布在北部地区,植被主要分布在山区和郊外,建筑主要集中在城市中心区域。

3. 信息提取通过对遥感图像提取的地物信息进行分析,我们可以了解到北京市的地表环境状况。

实验报告遥感影像融合(3篇)

实验报告遥感影像融合(3篇)

第1篇一、实验背景随着遥感技术的发展,遥感影像在资源调查、环境监测、城市规划等领域发挥着越来越重要的作用。

然而,由于遥感传感器类型、观测时间、观测角度等因素的限制,同一地区获取的遥感影像往往存在光谱、空间分辨率不一致等问题。

为了充分利用这些多源遥感影像数据,提高遥感信息提取的准确性和可靠性,遥感影像融合技术应运而生。

遥感影像融合是将不同传感器、不同时间、不同分辨率的多源遥感影像进行综合处理,以获得对该区域更为准确、全面、可靠的影像描述。

本文通过实验验证了遥感影像融合技术在提高遥感信息提取准确性和可靠性方面的作用。

二、实验目的1. 了解遥感影像融合的基本原理和方法;2. 掌握常用遥感影像融合算法;3. 通过实验验证遥感影像融合技术在提高遥感信息提取准确性和可靠性方面的作用。

三、实验原理遥感影像融合的基本原理是将多源遥感影像数据进行配准、转换和融合,以获得具有更高空间分辨率、更丰富光谱信息的融合影像。

具体步骤如下:1. 影像配准:将不同源遥感影像进行空间配准,使其在同一坐标系下;2. 影像转换:将不同传感器、不同时间、不同分辨率的遥感影像转换为同一分辨率、同一波段的影像;3. 影像融合:采用一定的融合算法,将转换后的多源遥感影像数据进行融合,生成具有更高空间分辨率、更丰富光谱信息的融合影像。

四、实验方法1. 实验数据:选取我国某地区的高分辨率多光谱遥感影像和全色遥感影像作为实验数据;2. 融合算法:选用Brovey变换、主成分分析(PCA)和归一化植被指数(NDVI)三种常用遥感影像融合算法进行实验;3. 融合效果评价:采用对比分析、相关系数、信息熵等指标对融合效果进行评价。

五、实验步骤1. 数据预处理:对实验数据进行辐射校正、大气校正等预处理;2. 影像配准:采用双线性插值法对多光谱影像和全色影像进行配准;3. 影像转换:对多光谱影像进行波段合成,得到与全色影像相同分辨率的影像;4. 影像融合:分别采用Brovey变换、PCA和NDVI三种算法对转换后的多源遥感影像数据进行融合;5. 融合效果评价:对比分析三种融合算法的融合效果,并采用相关系数、信息熵等指标进行定量评价。

遥感影像处理实验报告(3篇)

遥感影像处理实验报告(3篇)

第1篇一、实验背景与目的随着遥感技术的不断发展,遥感影像已成为获取地球表面信息的重要手段。

遥感影像处理是对遥感影像进行一系列技术操作,以提高影像质量、提取有用信息的过程。

本实验旨在通过实践操作,让学生掌握遥感影像处理的基本原理和常用方法,提高学生对遥感影像数据的应用能力。

二、实验内容与步骤本次实验主要包括以下内容:1. 数据准备:获取实验所需的遥感影像数据,包括光学影像、红外影像等。

2. 影像预处理:对原始遥感影像进行辐射校正、几何校正、图像增强等处理。

3. 影像分割:对预处理后的影像进行分割,提取感兴趣的目标区域。

4. 影像分类:对分割后的影像进行分类,识别不同的地物类型。

5. 结果分析:对分类结果进行分析,评估分类精度。

三、实验步骤1. 数据准备- 获取实验所需的遥感影像数据,包括光学影像、红外影像等。

- 确保影像数据具有较好的质量和分辨率。

2. 影像预处理- 辐射校正:对原始遥感影像进行辐射校正,消除大气、传感器等因素对影像辐射强度的影响。

- 几何校正:对原始遥感影像进行几何校正,消除地形起伏、地球曲率等因素对影像几何形状的影响。

- 图像增强:对预处理后的影像进行图像增强,提高影像对比度、清晰度等。

3. 影像分割- 选择合适的分割方法,如基于阈值分割、基于区域生长分割、基于边缘检测分割等。

- 对预处理后的影像进行分割,提取感兴趣的目标区域。

4. 影像分类- 选择合适的分类方法,如监督分类、非监督分类等。

- 对分割后的影像进行分类,识别不同的地物类型。

5. 结果分析- 对分类结果进行分析,评估分类精度。

- 分析分类结果中存在的问题,并提出改进措施。

四、实验结果与分析1. 影像预处理结果- 经过辐射校正、几何校正和图像增强处理后,遥感影像的质量得到显著提高,对比度、清晰度等指标明显改善。

2. 影像分割结果- 根据实验所采用的分割方法,成功提取了感兴趣的目标区域,分割效果较好。

3. 影像分类结果- 通过选择合适的分类方法,对分割后的影像进行分类,成功识别了不同的地物类型。

遥感变化监测实验报告

遥感变化监测实验报告

一、实验目的本次实验旨在通过遥感技术对某区域进行变化监测,分析该区域在特定时间段内的变化情况,验证遥感技术在环境监测和资源调查中的应用价值。

二、实验原理遥感变化监测是利用遥感影像分析技术,通过对同一地区在不同时间获取的遥感影像进行比较,识别和分析区域内的变化信息。

实验主要采用以下原理:1. 光谱分析:遥感影像的光谱信息反映了地表物质的物理和化学特性,通过分析光谱变化可以识别地表物质的变化。

2. 图像处理:通过图像增强、滤波、分类等方法对遥感影像进行处理,提高图像质量和信息提取能力。

3. 变化检测:通过比较不同时间遥感影像的相似性,识别和分析区域内的变化信息。

三、实验数据实验数据包括以下内容:1. 遥感影像:选择不同时间段的遥感影像,如Landsat、Sentinel-2等。

2. 地理信息系统(GIS)数据:包括研究区域的行政区划、道路、水体等地理要素。

四、实验步骤1. 数据预处理:对遥感影像进行辐射校正、几何校正等预处理,确保影像质量。

2. 图像处理:对遥感影像进行增强、滤波等处理,提高图像质量和信息提取能力。

3. 变化检测:采用图像差异法、变化向量分析(CVA)等方法,识别和分析区域内的变化信息。

4. 结果分析:对变化信息进行分类、统计分析,揭示区域变化规律。

五、实验结果与分析1. 变化区域识别:通过变化检测,识别出研究区域内的变化区域,如城市扩张、土地退化、水体变化等。

2. 变化类型分析:对变化区域进行分类,分析不同类型变化的空间分布和时序变化规律。

3. 影响因素分析:结合GIS数据和社会经济数据,分析影响区域变化的主要因素。

六、结论1. 遥感变化监测技术可以有效识别和分析区域内的变化信息,为环境监测、资源调查等领域提供科学依据。

2. 实验结果表明,遥感技术在城市扩张、土地退化、水体变化等领域的监测具有显著优势。

3. 遥感变化监测技术具有广泛应用前景,可为政府部门、企业和科研机构提供决策支持。

遥感实验报告

遥感实验报告

遥感实验报告一、实验目的。

本实验旨在通过遥感技术对地球表面进行观测和数据获取,以探究遥感技术在环境监测、资源调查和自然灾害预警等方面的应用。

二、实验原理。

遥感技术是利用卫星、飞机等远距离传感器获取地球表面信息的一种技术手段。

通过接收地面反射、辐射或散射的电磁波,可以获取地表地貌、植被覆盖、土地利用等信息。

三、实验步骤。

1. 选择合适的遥感影像数据,包括多光谱影像、高光谱影像等。

2. 对影像数据进行预处理,包括辐射定标、大气校正等。

3. 利用遥感软件进行影像解译,提取地表信息。

4. 对提取的地表信息进行分析和应用,如环境监测、资源调查等。

四、实验结果与分析。

通过实验,我们成功获取了地表的多光谱影像数据,并对其进行了预处理和解译。

最终得到了地表的植被覆盖、土地利用等信息。

这些信息对于环境监测、资源调查等方面具有重要意义。

五、实验结论。

遥感技术在地球科学领域具有重要的应用价值,能够为环境保护、资源管理等提供有力支持。

通过本次实验,我们深入了解了遥感技术的原理和应用,对其在实际工作中的应用有了更深刻的认识。

六、实验总结。

本次实验不仅让我们掌握了遥感技术的基本原理和操作方法,还加深了我们对地球表面信息获取和分析的认识。

未来,我们将进一步学习遥感技术,探索其更广泛的应用领域,为地球科学研究和环境保护做出更大的贡献。

七、参考文献。

1. 《遥感原理与应用》,XXX,XXX出版社,2018年。

2. 《遥感技术在环境监测中的应用》,XXX,XXX期刊,2020年。

以上为本次遥感实验的报告内容,希望对大家有所帮助。

感谢各位的阅读和支持!。

遥感影像实验报告

遥感影像实验报告

一、实验目的本次实验旨在通过遥感影像处理软件ENVI,学习遥感影像的基本处理方法,掌握遥感影像的辐射校正、几何校正、分类和变化检测等关键技术,提高遥感影像处理能力,为后续遥感应用研究打下基础。

二、实验内容1. 辐射校正(1)实验原理:辐射校正是指消除遥感影像中由于传感器、大气、太阳等因素引起的辐射失真,使影像数据真实反映地物辐射特性。

(2)实验步骤:① 打开ENVI软件,导入遥感影像数据;② 选择“Radiometric Correction”模块;③ 选择“Flattening”方法进行辐射校正;④ 保存校正后的影像数据。

2. 几何校正(1)实验原理:几何校正是指消除遥感影像中由于传感器姿态、地球曲率等因素引起的几何失真,使影像数据真实反映地物空间位置。

(2)实验步骤:① 打开ENVI软件,导入遥感影像数据;② 选择“Geometric Correction”模块;③ 选择“Warp”方法进行几何校正;④ 输入校正参数,如坐标系统、校正方法等;⑤ 保存校正后的影像数据。

3. 分类(1)实验原理:遥感影像分类是指根据遥感影像数据中地物光谱和纹理信息,将影像分割为不同地物类别的过程。

(2)实验步骤:① 打开ENVI软件,导入遥感影像数据;② 选择“Classification”模块;③ 选择“Supervised Classification”方法进行监督分类;④ 输入训练样本,设置分类变量;⑤ 选择分类结果输出格式,如分类图层、分类报告等;⑥ 保存分类结果。

4. 变化检测(1)实验原理:遥感影像变化检测是指通过对比同一地区不同时期的遥感影像,分析地物变化信息的过程。

(2)实验步骤:① 打开ENVI软件,导入遥感影像数据;② 选择“Change Detection”模块;③ 选择“Image Difference”方法进行变化检测;④ 输入对比影像,设置变化阈值;⑤ 保存变化检测结果。

三、实验结果与分析1. 辐射校正:通过辐射校正,影像数据的光谱特性得到了有效恢复,地物辐射特性得到了真实反映。

遥感解译标志实验报告(3篇)

遥感解译标志实验报告(3篇)

第1篇一、引言遥感技术作为一种非接触式、远距离探测地球表面信息的手段,在现代地理信息科学、资源调查、环境监测等领域发挥着越来越重要的作用。

遥感解译标志作为遥感影像解译的重要依据,能够帮助我们快速、准确地识别和提取地物信息。

本实验旨在通过实践操作,掌握遥感解译标志的基本原理和方法,提高遥感影像解译能力。

二、实验目的1. 理解遥感解译标志的概念和作用。

2. 掌握遥感解译标志的类型和识别方法。

3. 提高遥感影像解译的准确性和效率。

三、实验材料1. 遥感影像数据:包括多时相、多波段、多分辨率遥感影像。

2. 遥感解译标志图谱:包括地物形状、大小、颜色、纹理等特征。

3. 实验软件:遥感图像处理软件(如ENVI、ArcGIS等)。

四、实验步骤1. 影像预处理:对遥感影像进行几何校正、辐射校正等预处理,以提高影像质量和解译精度。

2. 地物识别:根据遥感解译标志图谱,识别遥感影像中的地物类型,包括植被、水体、建筑、道路等。

3. 特征提取:提取地物的形状、大小、颜色、纹理等特征,为后续分类提供依据。

4. 分类与解译:利用遥感图像处理软件,对遥感影像进行分类和解译,提取地物信息。

5. 结果验证:对解译结果进行验证,确保解译的准确性和可靠性。

五、实验结果与分析1. 地物识别:通过实验,成功识别了遥感影像中的多种地物类型,如植被、水体、建筑、道路等。

2. 特征提取:提取的地物特征包括形状、大小、颜色、纹理等,为后续分类提供了丰富的信息。

3. 分类与解译:利用遥感图像处理软件,对遥感影像进行分类和解译,提取了地物信息。

4. 结果验证:通过对解译结果的实地调查和验证,发现解译结果具有较高的准确性和可靠性。

六、实验总结1. 本实验通过实践操作,掌握了遥感解译标志的基本原理和方法,提高了遥感影像解译能力。

2. 遥感解译标志在遥感影像解译中具有重要作用,能够帮助我们快速、准确地识别和提取地物信息。

3. 在实际应用中,应根据具体情况进行遥感解译标志的选择和调整,以提高解译精度。

遥感实验报告

遥感实验报告

遥感原理与应用
实验报告
(适用专业测绘工程)
此页不打印
姓名:田海燕
班级:测绘14-2班
实验报告(实验六)
[实验名称]
[实验目的与内容]
[实验数据处理及成果]
1、从哈尔滨市遥感影像图上截取某一部分影像,用K-mean和Isodata法对建设物、植被、水体等主要地物进行分类。

2、简述遥感图像Isodata分类的原理及在ENVI中的操作步骤
[体会及建议]
[实验成绩]
实验报告(实验四)
[实验名称]
[实验目的与内容]
[实验数据处理及成果]
1、以哈尔滨市TM影像为例,进行真、假彩色合成。

2、对哈尔滨市TM影像进行密度分割。

3、以TM7(R)、4(G)、1(B)组合进行HLS、HSV色彩变换。

4、简述密度分割、HLS色彩变换的原理及在ENVI中的操作步骤。

[体会及建议]
[实验成绩]
实验报告(实验五)
[实验名称]
[实验目的与内容]
[实验数据处理及成果]
1、以哈尔滨市TM影像为例,求出植被指数影像。

2、求哈尔滨市TM影像绿度分量及亮度分量影像图。

3、简述K—T变换的原理、意义及在ENVI中的操作步骤。

[体会及建议]
[实验成绩]。

遥感实验报告

遥感实验报告

遥感原理与应用实验报告姓名:班级:实验报告(实验一)[实验名称]ENVI窗口的基本操作[实验目的与内容]目的:熟悉ENVI软件的窗口操作方法,掌握影像信息、像元信息浏览方法,影像上距离和面积量算方法。

内容:1、熟悉遥感图像处理软件ENVI的窗口基本操作。

2、查看影像信息和像元信息。

3、距离测量与面积测量。

1、哈尔滨市TM影像成像的时间、分辨率 30m ,各波段的波长。

波段名称:波段:(um)Band 1 Coastal 0.433–0.453Band 2 Blue 0.450–0.515Band 3 Green 0.525–0.600Band 4 Red 0.630–0.680Band 5 NIR 0.845–0.885Band 6 SWIR 1 1.560–1.660Band 7 SWIR 2 2.100–2.300Band 8 Pan 0.500–0.680Band 9 Cirrus 1.360–1.390 Array 2、哈尔滨市TM影像使用的投影类型 UTM 、投影分带北52区。

3、哈尔滨市TM影像使用的坐标系,图像左上角的公里网坐标176685 5221815、地理坐标124º4′30"E,47º0′15"N 。

4、测量狗岛的周长 14233.5074 m面积 4635450 m2。

[体会及建议]通过本次实验我学会对于ENVI的使用,会加载遥感图像,能够用ENVI测量长度与距离,熟悉了ENVI的基本操作。

实验报告(实验二)[实验名称]遥感影像地理坐标定位和配准[实验目的与内容]目的:熟悉在ENVI中对影像进行地理校正,添加地理坐标,以及如何使用ENVI进行影像到影像的配准和影像到地图的校正。

掌握使用ENVI生成影像地图的步骤,学会利用全色影像和多光谱影像进行HSV融合的步骤。

内容:本实验主要涉及遥感图像处理中影像校正、配准功能,通过实验进一步掌握这类处理的理论原理。

卫星海洋遥感实验报告(3篇)

卫星海洋遥感实验报告(3篇)

第1篇一、实验背景随着海洋资源的日益开发和海洋环境问题的日益突出,海洋遥感技术作为一项重要的探测手段,在海洋科学研究和海洋资源管理中发挥着越来越重要的作用。

本实验旨在通过卫星海洋遥感技术,对海洋环境进行观测和分析,为海洋科学研究和海洋资源管理提供数据支持。

二、实验目的1. 了解卫星海洋遥感的基本原理和方法。

2. 掌握卫星海洋遥感数据的获取和处理技术。

3. 分析卫星海洋遥感数据在海洋环境监测中的应用。

4. 提高对海洋环境变化的认识和应对能力。

三、实验内容1. 卫星海洋遥感基本原理- 卫星海洋遥感是利用卫星平台对海洋进行观测的技术,通过遥感传感器获取海洋表面的物理、化学和生物信息。

2. 卫星遥感数据获取- 利用遥感卫星获取海洋遥感数据,包括可见光、红外、微波等波段。

3. 卫星遥感数据处理- 对获取的遥感数据进行预处理,包括辐射校正、几何校正、大气校正等。

4. 海洋环境监测与分析- 利用处理后的遥感数据,对海洋环境进行监测和分析,包括海表温度、海洋污染、海洋动力环境等。

四、实验步骤1. 数据准备- 选择合适的遥感卫星数据,如Landsat、MODIS、SeaWiFS等。

2. 数据预处理- 对遥感数据进行辐射校正、几何校正、大气校正等预处理。

3. 数据处理- 利用遥感数据处理软件(如ENVI、ArcGIS等)进行数据处理。

4. 数据分析- 利用遥感数据分析软件(如IDL、Python等)对遥感数据进行统计分析。

5. 结果展示- 利用可视化工具(如图表、地图等)展示实验结果。

五、实验结果与分析1. 海表温度分析- 通过遥感数据获取的海表温度数据,分析海洋热力环境变化。

2. 海洋污染分析- 利用遥感数据监测海洋污染情况,如油膜、赤潮等。

3. 海洋动力环境分析- 分析海洋动力环境变化,如海流、波浪等。

六、实验结论1. 卫星海洋遥感技术在海洋环境监测中具有重要作用。

2. 通过遥感数据预处理和数据分析,可以获取海洋环境变化信息。

遥感方法对比实验报告

遥感方法对比实验报告

一、实验背景随着遥感技术的不断发展,遥感方法在资源调查、环境监测、城市规划等领域得到了广泛应用。

为了提高遥感图像处理的效果,本文对比了三种常用的遥感方法:基于人工特征的方法、基于深度学习的方法和基于机器学习的方法。

通过对这三种方法的实验对比,旨在为遥感图像处理提供理论依据和实践指导。

二、实验方法1. 数据准备本文选用2019年深圳市宝安区0.2m高分辨率遥感影像作为实验数据。

数据预处理包括辐射校正、几何校正和裁剪等步骤。

2. 实验方法(1)基于人工特征的方法人工特征方法主要利用遥感图像的纹理、颜色、形状等特征进行分类。

本文选取了纹理、颜色和形状三种特征,分别使用灰度共生矩阵(GLCM)、颜色特征和边缘特征进行分类。

(2)基于深度学习的方法深度学习方法利用神经网络自动提取图像特征,具有较好的分类性能。

本文选取了卷积神经网络(CNN)作为深度学习方法,对遥感图像进行分类。

(3)基于机器学习的方法机器学习方法利用统计方法对遥感图像进行分类。

本文选取了支持向量机(SVM)、随机森林(RF)和梯度提升决策树(GBDT)三种机器学习方法进行分类。

三、实验结果与分析1. 分类精度对比本文选取了混淆矩阵和Kappa系数作为分类精度的评价指标。

实验结果表明,三种方法在分类精度方面存在一定差异。

(1)基于人工特征的方法:分类精度相对较低,约为70%。

(2)基于深度学习的方法:分类精度较高,约为85%。

(3)基于机器学习的方法:分类精度介于两者之间,约为80%。

2. 计算效率对比(1)基于人工特征的方法:计算效率较高,但特征提取过程较为复杂。

(2)基于深度学习的方法:计算效率较低,需要大量计算资源。

(3)基于机器学习的方法:计算效率介于两者之间,需要一定计算资源。

3. 实时性对比(1)基于人工特征的方法:实时性较好。

(2)基于深度学习的方法:实时性较差。

(3)基于机器学习的方法:实时性介于两者之间。

四、结论与建议1. 结论通过对三种遥感方法的实验对比,可以得出以下结论:(1)基于深度学习的方法在分类精度方面具有优势,但计算效率和实时性较差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

遥感原理与应用实验报告姓名:学号:学院:专业:年月日实验一: erdas视窗的认识实验一、实验目的初步了解目前主流的遥感图象处理软件erdas的主要功能模块,在此基础上,掌握几个视窗操作模块的功能和操作技能,为遥感图像的几何校正等后续实习奠定基础。

二、实验步骤打开imagine 视窗启动数据预处理模块启动图像解译模块启动图像分类模块imagine视窗1.数据预处理(data dataprep)2.图像解译(image interpreter)主成份变换色彩变换3.图像分类(image classification)非监督分类4. 空间建模(spatial modeler)模型制作工具三、实验小结通过本次试验初步了解遥感图象处理软件erdas的主要功能模块,在此基础上,基本掌握了几个视窗操作模块的功能和用途。

为后续的实验奠定了基础。

实验二遥感图像的几何校正掌握遥感图像的纠正过程二、实验原理校正遥感图像成像过程中所造成的各种几何畸变称为几何校正。

几何校正就是将图像数据投影到平面上,使其符合地图投影系统的过程。

而将地图投影系统赋予图像数据的过程,称为地理参考(geo-referencing)。

由于所有地图投影系统都遵循一定的地图坐标系统,因此几何校正的过程包含了地理参考过程。

几何校正包括几何粗校正和几何精校正。

地面接收站在提供给用户资料前,已按常规处理方案与图像同时接收到的有关运行姿态、传感器性能指标、大气状态、太阳高度角对该幅图像几何畸变进行了几何粗校正。

利用地面控制点进行的几何校正称为几何精校正。

一般地面站提供的遥感图像数据都经过几何粗校正,因此这里主要进行一种通用的精校正方法的实验。

该方法包括两个步骤:第一步是构建一个模拟几何畸变的数学模型,以建立原始畸变图像空间与标准图像空间的某种对应关系,实现不同图像空间中像元位置的变换;第二步是利用这种对应关系把原始畸变图像空间中全部像素变换到标准图像空间中的对应位置上,完成标准图像空间中每一像元亮度值的计算。

三、实验内容根据实验的数据,对两张图片进行几何纠正四、实验流程显示图像模型→调用几何纠正模型→启动控制点工具→采集地面控制点和地面检查点→计算变换参数→灰度重采样→纠正精度评定实验步骤。

几何校正前的图像参考图像篇二:遥感实验报告 - 副本遥感实验报告专业班级:姓名:学号:实验时间:实验一、erdas imagine 8.4软件总体介绍实验内容:总体了解erdas imagine遥感图像处理软件。

熟悉erdas imagine软件的工作界面,大致了解该软件的功能和包含的主要模块。

主要包括视窗功能介绍;文件菜单操作;实用菜单操作;显示菜单操作;矢量和删格菜单操作;图像裁剪等。

视窗操作是 erdas 软件操作的基础,erdas 所有模块都涉及到视窗操作。

本实验要求掌握视窗的基本功能,熟练掌握图像显示操作和矢量菜单操作,从而为深入理解和学习 erdas软件打好基础。

实验方法:一、图像显示操作( display an image )1:启动程序( start program )视窗菜单条: file→open→ raster layer→select layer to add 对话框。

2:确定文件( determine file )3:设置参数( raster option )4:打开图像( open raster layer )二、实用菜单操作掌握工具栏的所有功能选项。

三、显示菜单操作掌握文件显示顺序(图 1-3 );依次打开lanier.img、 lndem.img、lnlandc.img三副图像,注意每次打开时其中的clear display不能勾选。

这样三副图像都显示在窗口中了。

然后选择菜单view下的arrange layers,进行图层显示,并且可以调节当前图层的显示顺序。

四、规则分幅裁剪(rectangle subset image)1、主工具条选择dataprep图标,subset image2、input file为lanier.img3、output file为lanier_sub1.img4、coordinate type为file5、lrx为250(数值的大小均根据需要来确定)6、lry为2507、ok五、不规则分幅裁剪(polygon subset image)1、在viewer中,利用aoi工具设定需要的多边形;2、主工具条选择dataprep图标,subset image3、input file为lanier.img4、output file为lanier_sub2.img5、coordinate type为file6、点击aoi按钮,选择事先在viewer中设定的aoi7、ok实验结论:一、图像显示操作三、显示菜单操作四、规则分幅裁剪五、不规则分幅裁剪实验二、图像几何校正实验内容:对图像进行几何校正实验方法:一、显示文件(display files)1、打开两个viewer,session | tile viewers使两个视窗平铺放置2、在viewer1中需要校正的 lantsat 图像,选择tmatlanta.img,gray scale,displaylayer为2。

(要纠正的图像)3、在viewer2中作为地理参考的校正过的 spot 图像,选择panatlanta.img(已经纠正的参考图像)4、在viewer1中,选择raster | geometric correction, 启动几何校正模块。

打开 setgeometric model 对话框5、选择多项式几何校正模型: polynomial→ok 。

同时打开 geo correction tools 对话框和 polynomial model properties 对话框。

6、在 polynomial model properties 对话框中,定义多项式模型参数以及投影参数。

7、在 gcp tool referense setup 对话框中选择采点模式:选择视窗采点模式 existingviewer,ok。

打开 viewer selection instructions 指示器。

8、在显示作为地理参考图像 panatlanta,img 的 viewer2 中点击左键(选择参考图像)9、在弹出的reference map information dialog提示框中ok10、此时,整个屏幕将自动变化为如图所示的状态,表明控制点工具被启动,进入控制点采点状态。

出现chip extraction viewers和gcp tool 第二步:采集地面控制点gcp 的具体采集过程:1、在 gcp 工具对话框中,点击 select gcp 图标,进入 gcp 选择状态; 2、在 gcp 数据表中,将输入 gcp 的颜色设置为比较明显的黄色或红色。

3、在 viewer1 中移动关联方框位置,寻找明显的地物特征点,作为输入 gcp 。

4、在 gcp 工具对话框中,点击 create gcp 图标,并在 viewer3 中点击左键定点, gcp 数据表将记录一个输入 gcp ,包括其编号、标识码、 x 坐标和 y 坐标。

5、在 gcp 对话框中,点击 select gcp 图标,重新进入 gcp 选择状态。

6、在 gcp 数据表中,将参考 gcp 的颜色设置为比较明显的红色, 7、在 viewer2 中,移动关联方框位置,寻找对应的地物特征点,作为参考 gcp 。

8、在 gcp 工具对话框中,点击 create gcp 图标,并在 viewer4 中点击左肩顶巅,系统将自动将参考点的坐标( x 、 y )显示在 gcp 数据表中。

9 、在 gcp对话框中,点击 selectgcp 图标,重新进入 gcp 选择状态,并将光标移回到 viewer1 中,准备采集另一个输入控制点。

10 、不断重复 1-9 ,采集若干控制点 gcp ,直到满足所选定的几何模型为止,尔后,每采集一个 inputgcp ,系统就自动产生一个相关误差 ref. gcp ,通过移动 ref. gcp 可以优化校正模型。

第三步:采集地面检查点1、在最后一行改变颜色为yellow2、edit | set point type | check,则下面刺的点都为check points3、edit | point matching4、在gcp matching dialog中,correlation threshold 为0.8,5、选中discard unmatched point,close6、画出5对 check points第五步:图像重采样( resample the image )图像重采样的过程:首先,在 geo-correction tools 对话框中选择 image resample 图标。

然后,在 image resample 对话框中,定义重采样参数;→输出图像文件名( outputfile ):rectify.img →选择重采样方法( resample method ):bilinear interpolation →定义输出图像范围:→定义输出像元的大小:→设置输出统计中忽略零值:选择ignore zero in stats →定义重新计算输出缺省值:第六步:保存几何校正模式( save rectification model )在 geo-correction tools 对话框中点击 exit 按钮,推出几何校正过程,按照系统提示,选择保存图像几何校正模式,并定义模式文件,以便下一次直接利用。

第七步:检验校正结果( verify rectification result )基本方法:同时在两个视窗中打开两幅图像,一幅是矫正以后的图像,一幅是当时的参考图像,通过视窗地理连接功能,右键选择link的方法,及查询光标功能inquire cursor进行目视定性检验。

实验结论:篇三:遥感图像处理实验报告《遥感数字图像处理》实习报告学院:环境与资源学院班级:地理1002学号:周颖智姓名: 20101171 西南科技大学环境与资源学院遥感实习2013年5月11日目录1、实验目的 (2)2、实验内容 (15)3、实验步骤 (26)4、实验体会 (38)《某地区森林资源遥感动态监测》一、实验目的熟练掌握envi4.7软件中对遥感数字图像进行图像预处理、图像分类、分类后处理以及对分类后的图像进行必要的综合分析得到我们想要的信息。

二、实验内容对00年森林资源遥感图像july_00_quac.img进行图像增强处理得到图像00i_k-l.img,然后选择合适的图像分类方法,对增强后的图像进行分类,得到分类后图像00ml1,接着对分类后图像进行分类后处理的最终的分类结果图00mmn。

相关文档
最新文档