高二数学数列练习题含答案

合集下载

(完整版)高二数学数列专题练习题(含答案),推荐文档

(完整版)高二数学数列专题练习题(含答案),推荐文档

高中数学《数列》专题练习1.与的关系:,已知求,应分时;n S n a 11(1)(1)n n n S n a S S n -=⎧⎪=⎨->⎪⎩n S n a 1=n 1a =1S 时,=两步,最后考虑是否满足后面的.2≥n n a 1--n n S S 1a n a 2.等差等比数列等差数列等比数列定义()1n n a a d--=2n ≥*1()n na q n N a +=∈通项,dn a a n )1(1-+=(),()n m a a n m d n m =+->mn m n n n q a a q a a --==,11中项如果成等差数列,那么叫做与,,a A b A a 的等差中项.。

b 2a b A +=等差中项的设法:da a d a +-,,如果成等比数列,那么叫做与的等,,a G b G a b 比中项.abG =2等比中项的设法:,,aq a aq前项n 和,)(21n n a a nS +=d n n na S n 2)1(1-+=时;时1=q 1,na S n =1≠q qqa a q q a S n n n --=--=11)1(,11*(,,,,)m n p q a a a a m n p q N m n p q +=+∈+=+若,则2m p q =+qp ma a a +=2若,则q p n m +=+qp nm a a a a =2*2,,(,,,)m p q m p q a a a p q n m N =+=⋅∈若则有性质、、为等差数列n S 2n n S S -32n n S S -、、为等比数列n S 2n n S S -32n n S S -函数看数列12221()()22n n a dn a d An B d d s n a n An Bn=+-=+=+-=+111(1)11nn n n n n a a q Aq q a as q A Aq q q q===-=-≠--判定方法(1)定义法:证明为常数;)(*1N n a a n n ∈-+(2)等差中项:证明,*11(2N n a a a n n n ∈+=+-)2≥n (1)定义法:证明为一个常数)(*1N n a a n n ∈+(2)等比中项:证明21n n a a -=*1(,2)n a n N n +⋅∈≥(3)通项公式:均是不为0常数)(,nn a cq c q =3.数列通项公式求法:(1)定义法(利用等差、等比数列的定义);(2)累加法;(3)累乘法(型);n n n c a a =+1(4)利用公式;(5)构造法(型);(6)倒数法等11(1)(1)n n n S n a S S n -=⎧⎪=⎨->⎪⎩b ka a n n +=+14.数列求和(1)公式法;(2)分组求和法;(3)错位相减法;(4)裂项求和法;(5)倒序相加法。

高二数学数列专题练习题(含答案)

高二数学数列专题练习题(含答案)

高二数学数列专题练习题(含答案)高中数学《数列》专题练1.数列基本概念已知数列的前n项和S_n和第n项a_n之间的关系为:a_n=S_n-S_{n-1} (n>1),当n=1时,a_1=S_1.通过这个关系式可以求出任意一项的值。

2.等差数列和等比数列等差数列和等比数列是两种常见的数列类型。

对于等差数列,有通项公式a_n=a_1+(n-1)d,其中d为公差。

对于等比数列,有通项公式a_n=a_1*q^{n-1},其中q为公比。

如果a、G、b成等比数列,那么G叫做a与b的等比中项。

如果a、A、b、B成等差数列,那么A、B叫做a、b的等差中项。

3.求和公式对于等差数列,前n项和S_n=n(a_1+a_n)/2.对于等比数列,前n项和S_n=a_1(1-q^n)/(1-q),其中q不等于1.另外,对于等差数列,S_n、S_{2n}-S_n、S_{3n}-S_{2n}构成等差数列;对于等比数列,S_n、S_{2n}/S_n、S_{3n}/S_{2n}构成等比数列。

4.数列的函数看法数列可以看作是一个函数,通常有以下几种形式:a_n=dn+(a_1-d),a_n=An^2+Bn+C,a_n=a_1q^n,a_n=k*n+b。

5.判定方法对于数列的常数项,可以使用定义法证明;对于等差中项,可以证明2a_n=a_{n-1}+a_{n+1};对于等比中项,可以证明2a_n=a_{n-1}*a_{n+1}。

最后,对于数列的通项公式,可以使用数学归纳法证明。

1.数列基本概念和通项公式数列是按照一定规律排列的一列数,通常用{ }表示。

其中,第n项表示为an,公差为d,公比为q。

常用的数列有等差数列和等比数列。

等差数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差。

等比数列的通项公式为an = a1q^(n-1),其中a1为首项,q为公比。

2.数列求和公式数列求和是指将数列中的所有项加起来的操作。

高二数学等差数列试题答案及解析

高二数学等差数列试题答案及解析

高二数学等差数列试题答案及解析1.等差数列中有两项和满足,,则该数列前mk项之和是()A.B.C.D.【答案】A【解析】设等差数列的首项为,公差为,由等差数列的性质以及已知条件得,∵,∴,∴,∴.【考点】等差数列的性质.2.等差数列{an }中,已知a1=,a2+a5=4,an=33,则n的值为( ).A.50B.49C.48D.47【答案】A【解析】由于是等差数列,所以a2+a5=a1+a6=4,a1=,可得,,又an=,解这个方程可得n=50.故选A.【考点】等差数列的通项公式.3.已知数列为等差数列,公差,、、成等比,则的值为()A.B.C.D.【答案】C【解析】,,解之得,.【考点】等差数列的通项公式的应用.4.已知是首项的递增等差数列,为其前项和,且.(1)求数列的通项公式;(2)设数列满足,为数列的前n项和.若对任意的,不等式恒成立,求实数的取值范围.【答案】(1);(2)。

【解析】(1)把式中的、用和进行代换得与联立方程组解出,即可求出通项公式;(2)由(1)可得的通项公式,通过观察求的前项和可通过裂项求得,求得后代入不等式,得到一个关于和的二元一次不等式,要求的取值范围可通过将分离出来,然后用不等式的基本性质及函数的基本性质即可求出的取值范围。

试题解析:(1)由,得(2分)(4分)(2)由(1)得所以(6分)由已知得:恒成立,因,所以恒成立,(7分)令,则当为偶数时,当且仅当,即时,,所以;(8分)当为奇数时,可知随的增大而增大,所以,所以(9分)综上所诉,的取值范围是(10分)(其他解法请酌情给分)【考点】1、等差数列通项公式及前项和公式;2、列项求和法;3、基本不等式;4、函数的单调性。

5.已知等差数列的前项和为,,,(1)求数列的通项公式;(2)若,求数列的前100项和.【答案】(1);(2).【解析】(1)由及得,,求解方程组可求出和;利用等差数列的通项公式即可求出;(2)由,利用裂项求和即可求解.试题解析:(1)由及得,,解得,所以.(2),从而有:.故数列的前100项和为.【考点】数列的求和;数列的概念及简单表示法.6.已知猜想的表达式为()A.B.C.D.【答案】B【解析】∵,,∴.∴数列是以为首项,为公差的等差数列.∴,.【考点】本题主要考查抽象函数求解析式,进而转化为数列研究数列的通项,考查灵活应用知识分析解决问题的能力和运算能力,知识的迁移能力.7.等差数列的前项和为,且,则为()A.-6B.-4C.-2D.2【答案】A【解析】由题意,得,解得,所以,故选A.【考点】1、等数列的通项公式;2、等数列的前项和公式.8.已知是等差数列,,,设,则数列的通项公式【答案】【解析】数列的公差为,则由题意可得,,【考点】等差(比)数列的通项公式9.已知数列是等差数列,且.(1)求数列的通项公式; (2)令,求数列前n项和.【答案】(1);(2)【解析】(1)数列{an}是等差数列,且a1=2,设公差为d,代入a1+a2+a3=12,求出d,求出数列{an}的通项公式;(2)数列{an }的通项公式为an=n+2n,可以利用数列的分组求和法,分别求一个等差数列与一个等比数列的前n项和.试题解析:(1)由已知 5分(2)10分【考点】(1)等差数列;(2)数列求和.10.已知数列的前n项和(1)求数列的通项公式,并证明是等差数列;(2)若,求数列的前项和.【答案】(1)通项公式,证明过程详见试题解析;(2).【解析】(1)先根据,求出当时的表达式;再验证时是否满足;证明是等差数列,即证明是定值即可;(2)先求出的表达式,再用裂项相消法求数列前n项和.试题解析:(1)当时, 3分当时,适合上式,所以 4分因为当时,为定值,所以是等差数列 6分(2),所以所以 10分【考点】数列通项公式的求和、数列求和.11.两个正数a、b的等差中项是,一个等比中项是,且则双曲线的离心率e 等于___________;【答案】【解析】因为两个正数a、b的等差中项是,一个等比中项是,所以,又所以,即,因此双曲线的离心率e等于【考点】等差中项及等比中项的概念12.为等差数列的前项和,,则 .【答案】21【解析】根据等差数列的求和公式和等差数列性质:可得.【考点】等差数列的求和公式和性质.13.已知等差数列满足:.的前项和为。

【必刷题】2024高二数学上册数列与数学归纳法专项专题训练(含答案)

【必刷题】2024高二数学上册数列与数学归纳法专项专题训练(含答案)

【必刷题】2024高二数学上册数列与数学归纳法专项专题训练(含答案)试题部分一、选择题:1. 已知数列{an}为等差数列,a1=3,a5=15,则公差d为()A. 3B. 4C. 5D. 62. 数列{an}的通项公式为an = 2n 1,则数列{an}的前5项和为()A. 25B. 30C. 35D. 403. 若数列{an}满足an+1 = 2an,且a1=1,则数列{an}是()A. 等差数列B. 等比数列C. 既不是等差数列也不是等比数列D. 无法确定4. 用数学归纳法证明1+3+5+…+(2n1)=n²,下列步骤中错误的是()A. 验证n=1时等式成立B. 假设n=k时等式成立C. 证明n=k+1时等式成立D. 直接得出结论1+3+5+…+(2n1)=n²5. 已知数列{an}的通项公式为an = n² + n,则数列{an+1 an}的前5项和为()A. 20B. 25C. 30D. 356. 数列{an}为等比数列,a1=2,a3=8,则a5=()A. 16B. 24C. 32D. 647. 已知数列{an}满足an+2 = an+1 + an,a1=1,a2=1,则a5=()A. 3B. 4C. 5D. 68. 若数列{an}的通项公式为an = 3n 2,则数列{an}的前n项和为()A. n(3n1)/2B. n(3n+1)/2C. n(3n2)/2D. n(3n+2)/29. 用数学归纳法证明等式2^n > n²,下列步骤中错误的是()A. 验证n=1时等式成立B. 假设n=k时等式成立C. 证明n=k+1时等式成立D. 直接得出结论2^n > n²10. 已知数列{an}的通项公式为an = 2^n,则数列{an+1 / an}的值为()A. 1B. 2C. 3D. 4二、判断题:1. 数列{an}的通项公式为an = n²,则数列{an}是等差数列。

高二数学等差数列试题答案及解析

高二数学等差数列试题答案及解析

高二数学等差数列试题答案及解析1.等差数列的前n项和为,且=6,=4,则公差等于()A.3B.C.1D.-2【答案】D【解析】由等差数列前项和公式可知【考点】等差数列求和点评:等差数列求和公式的考查,,题目很简单2.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案,则第个图案中有白色地面砖的块数是 .【答案】【解析】观察规律可知:第一个图形6块白砖,第二个图形10块白砖,第三个图形14块白砖,后一个比前一个多4块,白砖块数构成等差数列,首项为6,公差为4,所以第块有块【考点】归纳推理与数列点评:求解本题首先要根据题目中给定的图形找到其一般规律,即数列的通项,再由通项求得第个图案中有白色地面砖的块数3.在公差不为0的等差数列中,,且依次成等差数列.(Ⅰ)求数列的公差;(Ⅱ)设为数列的前项和,求的最小值,并求出此时的值【答案】(1)2 (2)6或7.【解析】(Ⅰ)由依次成等差数列知即,整理得.因为,所以. 从而,即数列的公差为2 6分(Ⅱ)解:由(Ⅰ)可知因为且,所以当或7时,有最小值.因此,的最小值为,此时的为6或7.【考点】等差数列的通项公式和求和点评:解决的关键是熟练的借助于等差数列的公式来求解计算,属于基础题。

4.下列说法中正确的是()A.满足方程的值为函数的极值点B.“”是“复数为纯虚数”的充要条件C.由“,”,推出“”的过程是演绎推理D.“若成等差数列,则”类比上述结论:若成等比数列,则【答案】D【解析】对于A、满足方程的值为函数的极值点,错误,比如y= ,在x=0处不是极值点。

B、“”是“复数为纯虚数”的充要条件故是充分不必要条件,错误。

C、由“,”,推出“”的过程是演绎推理,错误,这是类比推理。

D、“若成等差数列,则”类比上述结论:若成等比数列,则成立故选D.【考点】复数的概念,演绎推理,等差数列,等比数列点评:解决的关键是对于复数的概念,演绎推理,等差数列,等比数列概念的熟练运用,属于基础题。

高二数学数列试题答案及解析

高二数学数列试题答案及解析

高二数学数列试题答案及解析1.设等差数列的公差为d,前项和为,等比数列的公比为.已知,,,.(Ⅰ)求数列,的通项公式;(Ⅱ)当时,记,求数列的前项和.【答案】(Ⅰ)或;(Ⅱ).【解析】(Ⅰ)由题意有,即,解得或故或.(Ⅱ)由,知,,故,于是,①.②①-②可得,故.【考点】本题综合考查等差数列、等比数列和错位相减法求和,属中档题.2.已知数列的前项和构成数列,若,则数列的通项公式________.【答案】【解析】当时,,当时,,综上所述,,故答案为.【考点】数列通项与前项和之间的关系以及公式的应用.【方法点睛】本题主要考查数列通项与前项和之间的关系以及公式的应用,属于难题.已知求的一般步骤:(1)当时,由求的值;(2)当时,由,求得的表达式;(3)检验的值是否满足(2)中的表达式,若不满足则分段表示;(4)写出的完整表达式.3.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第n个图案中有白色地面砖块.【答案】4n+2【解析】第个图案有块,第个图案有块,第个图案有块,所以第个图案有块【考点】观察数列的通项4.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共为3升,下面3节的容积共4升,则第5节的容积为升.【答案】【解析】由题意可知,解得,所以.【考点】等差数列通项公式.5.在等差数列{an }中,S15>0,S16<0,则使an>0成立的n的最大值为 ().A.6B.7C.8D.9【答案】C【解析】依题意得S15==15a8>0,即a8>0;S16==8(a1+a16)=8(a8+a9)<0,即a8+a9<0,a9<-a8<0.因此使an>0成立的n的最大值是8,选C.6.已知数列是等比数列,,是和的等差中项.(1)求数列的通项公式;(2)设,求数列的前项和.【答案】(1)(2)【解析】(1)求等比数列通项公式,一般方法为待定系数法,即列出两个独立条件,解方程组即可,本题可利用等比数列通项公式广义定义求解,即,而是和的等差中项,都转化为:(2)先代入求解,再根据错位相减法求和,注意项的符号变化,项数的确定.试题解析:(1)设数列的公比为,因为,所以,.因为是和的等差中项,所以.即,化简得.因为公比,所以.所以().(2)因为,所以.所以.则,①. ②①-②得,,所以.【考点】等比数列通项公式,错位相减法求和7.等差数列,的前n项和分别为和,若则=________.【答案】.【解析】根据等差数列的性质,由.【考点】等差数列的性质.8.数列的一个通项公式是()A.B.C.D.【答案】B【解析】设此数列为,其符号为其绝对值为,可得通项公式.选B【考点】数列的通项公式9.《九章算术》是我国古代内容极为丰富的一部数学专著,书中有如下问题:今有女子善织,日增等尺,七日织28尺,第二日,第五日,第八日所织之和为15尺,则第九日所织尺数为A.8B.9C.10D.11【答案】B【解析】该数列为等差数列,且,即,解得.【考点】等差数列,数学文化.10.等差数列{an}共有2n+1项,其中奇数项之和为4,偶数项之和为3,则n的值是()A.3B.5C.7D.9【答案】A【解析】利用等差数列的求和公式和性质得出,代入已知的值即可.解:设数列公差为d,首项为a1,奇数项共n+1项,其和为S奇===(n+1)an+1=4,①偶数项共n项,其和为S偶===nan+1=3,②得,,解得n=3故选A【考点】等差数列的前n项和.11.数列的一个通项公式是()A.B.C.D.【答案】B【解析】观察数列的前6项知,该数列是以1为首项2为公比的等比数列,所以.故选B.【考点】观察法求数列的通项公式.12.数列是等差数列,若,且它的前项和有最大值,那么当取得最小正值时,值等于( )A.11B.17C.19D.21【答案】C【解析】由于前项和有最大值,所以,根据,有,,,所以,,结合选项可知,选C.【考点】等差数列的基本性质.13.设等差数列的公差为d,若数列为递减数列,则()A.B.C.D.【答案】C【解析】因为是等差数列,则,又由于为递减数列,所以,故选C.【考点】1.等差数列的概念;2.递减数列.14.设数列{an },{bn}都是等差数列,且a1=25,b1=75,a2+b2=100,那么由an+bn所组成的数列的第37项的值为()A.0B.37C.100D.-37【答案】C【解析】数列{an }和{bn}都是等差数列,所以是等差数列,首项,所以数列是常数列,所以第37项的值为100【考点】等差数列15.设是等差数列的前项和,已知,则等于()A.13B.35C.49D.63【答案】C【解析】依题意有,解得,所以.【考点】等差数列的基本概念.【易错点晴】本题主要考查等差数列的基本概念. 在解有关等差数列的问题时可以考虑化归为和等基本量,通过建立方程(组)获得解.即等差数列的通项公式及前项和公式,共涉及五个量,知其中三个就能求另外两个,即知三求二,多利用方程组的思想,体现了用方程的思想解决问题,注意要弄准它们的值.运用方程的思想解等差数列是常见题型,解决此类问题需要抓住基本量、,掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算.16.设等差数列{an }的前n项和为Sn,若S3=9,S6=36.则a7+a8+a9等于()A.63B.45C.36D.27【答案】B【解析】设公差为d,则解得a1=1,d=2,则a7+a8+a9=3a8=3(a1+7d)=45.17.已知等差数列中,,公差,则使前项和为取最小值的正整数的值是()A.4和5B.5和6C.6和7D.7和8【答案】C【解析】,所以使前项和取最小值的正整数的值为6和7【考点】数列性质18.设是等差数列的前项和,已知,则等于()A.13B.35C.49D.63【答案】C【解析】依题意有,解得,所以.【考点】等差数列的基本概念.【易错点晴】本题主要考查等差数列的基本概念. 在解有关等差数列的问题时可以考虑化归为和等基本量,通过建立方程(组)获得解.即等差数列的通项公式及前项和公式,共涉及五个量,知其中三个就能求另外两个,即知三求二,多利用方程组的思想,体现了用方程的思想解决问题,注意要弄准它们的值.运用方程的思想解等差数列是常见题型,解决此类问题需要抓住基本量、,掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算.19.已知数列的通项公式为,记数列的前项和为,若对任意的恒成立,则实数的取值范围_________.【答案】【解析】由题意可得,,即求的最大值,所以当n=3时,,所以,填。

高二数学等差数列试题答案及解析

高二数学等差数列试题答案及解析

高二数学等差数列试题答案及解析1.在等差数列3,7,11,…中,第5项为( ).A.15B.18C.19D.23【答案】C【解析】由等差数列3,7,11,…,得=3,d=4,则=19.故选C.【考点】等差数列的通项公式.2.等差数列{an }中,a2+a6=8,a3+a4=3,那么它的公差是( ).A.4B.5C.6D.7【答案】B【解析】由a2+a6=8,得a3+a5=8,又a3+a4=3,两式相减得d=5.故选B.【考点】等差数列的性质.3.在等差数列{an }中,a2=1,a4=5,则{an}的前5项和S5=()A.7B.15C.20D.25【答案】B【解析】由可知,答案选B.【考点】等差数列的通项公式(或性质)与求和公式4.已知数列的前n项和,那么数列()A.是等差数列但不是等比数列B.是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列也不是等比数列【答案】B【解析】当时,,当时,,而也满足,所以的通项公式为;所以本题选B.【考点】数列的前项和与通项公式;5.已知等差数列的公差和首项都不等于0,且,,成等比数列,则( ) A.2B.3C.5D.7【答案】A【解析】设等差数列的公差为,由于成等差数列,整理的由于【考点】等差数列和等比数列的性质.6.已知数列的前项和,(1)写出数列的前5项;(2)数列是等差数列吗?说明理由.(3)写出的通项公式.【答案】(1),,,,;(2)不是等差数列,理由详见解析;(3).【解析】(1)题中条件给出了前项和的表达式,从而可以利用,可以写出数列的前项:,,,,;(2)若数列是等差数列,则须满足对所有的恒成立,而由(1)可知从而可以说明数列不是等差数列;(3)考虑到当时,,当时,,可得,,即数列的通项公式为.试题解析:(1)∵,∴,,,,;由(1)可知,,,∴,∴数列不是等差数列;(3)∵当时,,∴,,∴数列的通项公式为.【考点】1.等差数列的判断;2.数列通项公式.7.某体育馆第一排有5个座位,第二排有7个座位,第三排有9个座位,依次类推,那么第十五排有()个座位.A.27B.33C.45D.51【答案】B【解析】由题意,体育馆内从第一排起,每排的座位数构成首项为5,公差为2的等差数列,所以第十五排有个座位,故选B.【考点】等差数列的概念及通项公式.8.以下各数不能构成等差数列的是 ( )A.4,5,6B.1,4,7C.,,D.,,【答案】D【解析】显然A,B,C选项中,给出的三数均能构成等差数列,故选D.事实上,,,不能构成等差数列,证明如下:假设,,成等差数列,则2=+⇔12=7+2⇔5=2⇔25=40.这是不可能的.9.数列的前项和为,.(1)求数列的通项公式;(2)设求数列的前项和.【答案】(1);(2).【解析】(1)先由算出,当时,由得到,两式相减可得,从而可判断数列是一个等比数列,再由等比数列的通项公式可写出即可;(2)由(1)中求出的,计算出,这是一个关于的一次函数,故数列为等差数列,利用等差数列的前项和公式求和即可.试题解析:(1)当时,,∴ 2分当时,∴∴ 5分∴数列是首项为2,公比为2的等比数列∴ 7分(2) 9分11分∴ 13分.【考点】1.数列的通项公式;2.等比数列的定义及通项公式;3.等差数列的前项和公式.10.等差数列中,若,则等于()A.3B.4C.5D.6【答案】C【解析】等差数列中,若,则,因此,所以【考点】等差数列性质11.已知等差数列中满足,.(1)求和公差;(2)求数列的前10项的和.【答案】(1);(2).【解析】本题是等差数列基本量的计算问题.(1)将题中条件用首项与公差表示,可得,然后求解即可;(2)由(1)中计算得的,结合等差数列的前项和公式计算即可.试题解析:(1)由已知得 3分所以 5分(2)由等差数列前项和公式可得 8分所以数列的前10项的和为 10分.【考点】等差数列的通项公式及其前项和.12.在等差数列中,若,则数列的通项公式为( )A.B.C.D.【答案】A【解析】公差,所以。

高二数学数列试题答案及解析

高二数学数列试题答案及解析

高二数学数列试题答案及解析1.已知等比数列的前项为,,,则= .【答案】31【解析】【考点】等比数列通项公式求和公式2.在数列中,已知等于的个位数,则的值是()A.8B.6C.4D.2【答案】A【解析】根据已知条件可知,,,,,,,,,因此次数列从第三项起,以循环,则为还余下,所以的值为.【考点】简单逻辑连接词.3.观察下列各式:,,则的末两位数字为()A.01B.43C.07D.49【答案】B【解析】根据题意得,,发现的末两位数字是49,的末两位数字是43,的末两位数字是01,,的末两位数字为43,故选B。

【考点】归纳推理4.数列{an }满足a1=2,an+1=an2+6an+6(n∈N×)(Ⅰ)设Cn =log5(an+3),求证{Cn}是等比数列;(Ⅱ)求数列{an}的通项公式;(Ⅲ)设,数列{bn }的前n项的和为Tn,求证:.【答案】(Ⅰ)证明如下;(Ⅱ);(Ⅲ)证明如下;【解析】(I)由已知可得,,利用构造法,令,则可得,从而可证数列为等比数列;(II)由(I)可先求数列,代入可求;(III)把(II)中的结果代入整理可得,,则代入相消可证;试题解析:(Ⅰ)由得,于是,即,因此是以2为公比的等比数列;(Ⅱ)又,于是,即,因此,即;(Ⅲ)因为,于是,又,即;【考点】•数列的求和 等比关系的确定 数列递推式5.(本小题满分12分)已知首项都是1的两个数列,,满足.(1)令,求数列的通项公式;(2)若,求数列的前n项和【答案】(1);(2)【解析】(1)将已知条件变形可得,由等差数列的定义可知数列即数列是等差数列.由等差数列的通项公式可求得.(2)由已知可求得,分析的通项公式可知应用错位相减法求数列前项和.试题解析:(1)因为,,所以,即,所以数列是以首相,公差的等差数列,故.(2)由知,于是数列前项和两式相减可得所以【考点】1等差数列的定义,通项公式;2错位相减法求数列的和.6.已知数列满足条件,则.【答案】【解析】,可知数列是以为首相,以1为公差的等差数列...【考点】1构造法求数列的通项公式;2等差数列的定义;3等差数列的通项公式.7.设是等差数列的前n项和,若()A.B.C.D.【答案】A【解析】设等差数列的首项为,由等差数列的性质得:,,∴.【考点】等差数列的性质.8.等差数列中,,则中的最大值是()A.B.或C.D.【答案】A【解析】因为是等差数列,,又,所以中的最大值是.【考点】等差数列的前项的和9.已知数列满足,,若,则().A.B.C.D.【答案】A【解析】,故选A【考点】递推公式求数列各项10.已知数列满足,则.【答案】【解析】时,当时由得,两式相减得,经验证符合上式,因此通项公式为【考点】数列的通项公式求法11.(本小题满分为10分)设等差数列的公差为,前项和为,等比数列的公比为.已知,,,.(Ⅰ)求数列,的通项公式;(Ⅱ)当时,记,求数列的前项和.【答案】(Ⅰ)或(Ⅱ)【解析】(Ⅰ)将已知条件转化为等差数列的首项和公差表示,通过解方程组得到基本量,从而得到通项公式;(Ⅱ)将数列,的通项公式代入得到,根据特点采用错位相减法求和试题解析:(Ⅰ)由题意有,即,解得或,故或(Ⅱ)由知,故,于是,①∴②∴由①-②可得故【考点】1.等差等比数列通项公式;2.错位相减法求和【方法点睛】在等差等比数列中由各项满足的条件求通项公式时,一般将已知条件转化为基本量,首项和公差公比表示,通过解方程组得到基本量的值,从而确定通项公式,解决非等差等比数列求和问题,主要有两种思路:其一,转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解(即分组求和)或错位相减来完成,其二,不能转化为等差等比数列的,往往通过裂项相消法,倒序相加法来求和12.已知数列是各项均为正数的等差数列,其中,且成等比数列;数列的前项和为,满足.(1)求数列、的通项公式;(2)如果,设数列的前项和为,求证:.【答案】(1),;(2)详见解析.【解析】(1)由成等比数列可得成等比数列,将其转化为关于公差的方程即可求得公差,由等差数列的通项公式可求得.由公式即可求得与间关系式.由等比数列的定义可知为等比数列,从而可得.(2)由题意可知应用错位相减法求和.比较大小应用作差法即即可.试题解析:解:(1)设数列的公差为,依条件有,即,解得(舍)或,所以.由,得,当时,,解得,当时,,所以,所以数列是首项为,公比为的等比数列,故.(2)由(1)知,,所以①②得.又.所以,所以.【考点】1等差数列的通项公式;2等比数列的定义,通项公式;3错位相减法求和.13.在等比数列{bn }中,S4=4,S8=20,那么S12= .【答案】84【解析】由等比数列性质可知成等比数列,所以代入已知数据得【考点】等比数列性质14.已知数列满足,.令.(1)求证:数列为等差数列;(2)求证:.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)现将代入可得,再展开,两边同除以即可证数列为等差数列;(2)先由(1)可得数列的通项公式,进而可得的通项公式,再利用裂项法可得,进而可证明.试题解析:(Ⅰ),(Ⅱ)由(Ⅰ)知,由于于是【考点】1、等差数列的定义;2、等差数列的通项公式;3、数列的“裂项”求和;4、不等式的证明.15.已知数列是首项为的等比数列,其前项和为,且,则数列的前5项和为A.或B.或C.D.【答案】D【解析】由可知公比,数列是等比数列,公比为,首项为1,所以【考点】等比数列及求和16.(2015秋•宁德校级期中)已知公差不为零的等差数列{an },若a1=1,且a1,a2,a5成等比数列.(1)求数列{an}的通项公式;(2)设bn =2n,求数列{an+bn}的前n项和Sn.【答案】(1)an =1+2(n﹣1)=2n﹣1;(2)Sn=n2+2n+1﹣2.【解析】(1)通过a2=1+d、a5=1+4d,利用a1,a2,a5成等比数列计算可知公差d=2,进而可得结论;(2)分别利用等差数列、等比数列的求和公式计算,相加即可.解:(1)依题意可知,a2=1+d,a5=1+4d,∵a1,a2,a5成等比数列,∴(1+d)2=1+4d,即d2=2d,解得:d=2或d=0(舍),∴an=1+2(n﹣1)=2n﹣1;(2)由(1)可知等差数列{an }的前n项和Pn==n2,∵bn=2n,∴数列{bn }的前n项和Qn==2n+1﹣2,∴Sn=n2+2n+1﹣2.【考点】数列的求和;等差数列的通项公式.17.函数图象上存在不同三点到原点的距离构成等比数列,则以下不可能成为公比的数是A.B.C.D.【答案】B【解析】根据平面几何切割线定理,从圆外一点做圆的切线和割线,则切线长是割线与它的圆外部分的比例中项,原点做半圆的切线长为设割线与半圆的另外两个交点到原点的距离分别是,则,设,所以,所以,根据图像分析,或是分别得到或,只有不在范围内,故选B.【考点】1.等比数列的性质;2.切割线定理.18.已知等差数列的公差为,且,若,则()A.8B.4C.6D.12【答案】A【解析】根据等差数列的性质可知,即,又,所以.【考点】等差数列的性质.19.在数列中,,则等于()A.B.C.D.【答案】D【解析】试题分析,,,,,,,故选D.【考点】数列通项及归纳推理.【思路点晴】本题主要考查数列通项的基本含意,属于难题,解题时一定要注意的三个特点:(1)正负间隔出现;(2)分母成公差为等差数列;(3)每增加“”,就增加两项.解决本题是利用特点(3)可知在的基础上多出了两项得出结论的.20.已知各项不为0的等差数列,满足,数列是等比数列且,则()A.16B.8C.4D.2【答案】A【解析】【考点】等比数列等差数列性质21.(2015秋•滑县期末)设等差数列{an }的前n项和为Sn,若a1=﹣3,ak+1=,Sk=﹣12,则正整数k=()A.10B.11C.12D.13【答案】D【解析】根据数列的概念直接求解.解:∵等差数列{an }的前n项和为Sn,a1=﹣3,,∴解得k=13.故选:D.【考点】等差数列的性质.22.(2007•山东)设数列{an }满足a1+3a2+32a3+…+3n﹣1an=,n∈N*.(1)求数列{an}的通项;(2)设,求数列{bn }的前n项和Sn.【答案】(1).(2).【解析】(1)由a1+3a2+32a3+…+3n﹣1an=⇒当n≥2时,a1+3a2+32a3+…+3n﹣2an﹣1=,两式作差求出数列{an}的通项.(2)由(1)的结论可知数列{bn}的通项.再用错位相减法求和即可.解:(1)∵a1+3a2+32a3+…+3n﹣1an=,①∴当n≥2时,a1+3a2+32a3+…+3n﹣2an﹣1=.②①﹣②,得3n﹣1an=,所以(n≥2),在①中,令n=1,得也满足上式.∴.(2)∵,∴bn=n•3n.∴Sn =3+2×32+3×33+…+n•3n.③∴3Sn =32+2×33+3×34+…+n•3n+1.④④﹣③,得2Sn=n•3n+1﹣(3+32+33+…+3n),即2Sn=n•3n+1﹣.∴.【考点】数列的求和;数列递推式.23.已知数列的前项和.(Ⅰ)求数列的通项公式;(Ⅱ)记,若对于一切的正整数,总有成立,求实数的取值范围.【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ)由利用能求出an=3n;(Ⅱ)先求出再求出中的最大值为,由此能求出实数m的取值范围试题解析:(Ⅰ)当时,,∴,又时,满足上式,所以.(Ⅱ),当时,,当时,,∴时,,时,,时,,∴中的最大值为.要使对于一切的正整数恒成立,只需,∴.【考点】1.数列的求和;2.数列递推式24.已知为等比数列,是它的前项和.若,且与的等差中项为,则等于( )A.B.C.D.【答案】C【解析】由,得,即;与的等差中项为,可得,得;所以,,得.故选C.【考点】等比数列的通项公式和前n项和公式;等差中项.25.已知等差数列中,等于()A.15B.30C.31D.64【答案】A【解析】根据等差数列的性质,得,所以.故选A.【考点】等差数列的性质.26.已知满足,,(1)求证:是等比数列;(2)求这个数列的通项公式.【答案】(1)见解析;(2).【解析】(1)由已知,变形为;且,所以;即数列是首项为4,公比为2的等比数列;(2)由(1)知:,所以.试题解析:(1)证明:由已知,变形为;且,所以;即数列是首项为4,公比为2的等比数列;(2)由(1)知:数列是首项为4,公比为2的等比数列,所以,所以.【考点】等比数列的定义;数列的通项公式.27.若数列满足,若数列的最小项为1,则的值为 .【答案】【解析】由题意得,数列,令,则,由,解得,此时函数单调递增;由,解得,此时函数单调递减,所以对于来说,最小值是或中的最小值,又,所以为的最小值,即,解得.【考点】利用导数研究函数的单调性及其极值(最值).【方法点晴】本题主要考查了利用导数研究函数的单调性、极值与最值问题,着重考查了转化与化归的思想方法和推理与运算能力,属于中档试题,本题的解答中,根据给定的数列,转化为函数,利用导数研究函数的单调性,确定函数的单调性,得出数列的最小值,列出方程即可求解实数的值.28.已知等差数列中,.(1)求数列的通项公式及前项和的表达式;(2)记数列的前项和为,求的值.【答案】(1)(2)【解析】(1)由已知条件利用等差数列的通项公式求出首项与公差,由此能求出数列的通项公式及前n项和的表达式;(2)由(1)得,由此利用裂项求和法能求出的值试题解析:(1)∵等差数列中,,∴,解得,∴..(2)由(1)得,∴∴.【考点】数列的求和;等差数列的性质29.等差数列中,,则的值是()A.15B.30C.31D.64【答案】A【解析】由题意,根据等差数列的性质得,所以,故选A.【考点】等差数列的性质.30.已知数列的前项和,.(1)求的通项公式;(2)若,,求数列的前项和.【答案】(1),;(2),.【解析】(1)利用当时,和时,,即可求解的通项公式;(2)由(1)得,利用乘公比错位相减法,即可求解数列的和.试题解析:(1)由,得当时,;当时,,.所以,.(2)由(1)知,,.所以,,.故,.【考点】等差数列的通项公式;数列的求和.31.已知等差数列的公差为前n项的和为Sn,若则d = ,= ,Sn= .【答案】; ;.【解析】由题意,可知,可知,所以,.【考点】等差数列的通项公式和前项和.32.等差数列{an }中,,{bn}为等比数列,且b7=a7,则b6b8的值为()A.4B.2C.16D.8【答案】A【解析】由于是等差数列,所以,所以,或,又是等比数列,所以,.故选A.【考点】等差数列与等比数列的性质.33.已知数列各项均为正数,为其前项和,且对任意的,都有.(1)求数列的通项公式;(2)若对任意的恒成立,求实数的最大值.【答案】(1);(2)实数的最大值为.【解析】(1)利用的关系求出通项公式;(2)通过恒成立转化为求的最小值.试题解析:解:(1)当时,,又各项均为正数;数列是等差数列,;(2),若对于任意的恒成立,则法(一):令,因,所以数的最大值为【考点】1.利用的关系求出通项公式;2.恒成立问题的转化.34.对于等差数列有如下命题:“若是等差数列,,是互不相等的正整数,则有”.类比此命题,给出等比数列相应的一个正确命题是:“若是等比数列,,是互不相等的正整数,则有”.【答案】【解析】由类比推理的格式可知,等差数列是差,则等比数列是比,等差数列的差是,则等比数列的商是,故应填答案.【考点】类比推理及运用.【易错点晴】本题是一道合情推理中的类比推理题,类比的内容是等差数列与等比数列的之间的类比.所谓类比推理是指运用两个或两类对象之间在某些方面的相似或相同,推演出它们在其它方面也相似或相同的推理方法.本题的解答就是借助等差和等比数列之间的这种相似进行类比推理的.解答时将差与比进行类比,将零与进行类比,从而使得问题巧妙获解.当然这需要对类比的内涵具有较为深刻的理解和把握.35.已知数列是等比数列,是1和3的等差中项,则=A.B.C.D.【答案】D【解析】由是1和3的等差中项,得,则;由数列是等比数列,得.故选D.【考点】等差数列和等比数列的性质.36.已知等比数列中,各项都是正数,且成等差数列,则()A.B.C.D.【解析】因为等比数列中,各项都是正数,且成等差数列,所以,得,因此,故选A.【考点】1、等比数列的通项公式;2、等比、等差数列的性质.37.在等差数列中,.(1)数列的前多少项和最大?(2)求数列的前项和;【答案】(1)数列的前项和最大;(2).【解析】(1)根据题设条件,列出方程组,求得,利用等差数列的通项公式,求得通项公式,令,得出当时,,当时,,即可得到结论;(2)当,时,求得,当,时,数列的前项和为,即可得出结论.试题解析:(1)由,得,∴,令,得,∴当,时,,当,时,,∴数列的前17项和最大;(2)当,时,;当,时,,∴当,时,数列的前项和为;当,时,数列的前项和为,故.【考点】等差数列的通项公式;数列的求和.【方法点晴】本题主要考查了等差数列的通项公式的应用、数列的求和,其中解答中着重考查了分类讨论的数学思想、函数与方程思想的应用,以及学生的推理与运算能力和分析问题、解答问题的能力,试题有一点的难度,属于中档试题,本题的解答中,求出数列的通项公式,根据通项公式判断出数列的正项与负项,合理分类讨论是解答的关键.38.设数列是集合中所有的数从小到大排列成的数列,即,,,,,,…,将数列中各项按照上小下大,左小右大的原则排成如下等腰直角三角形数表:410 1228 30 36…的值为()A.B.C.D.【解析】试题分析:因为且,所以在第行,第个数,因此根据数表的数据的规律可知,应填.【考点】归纳猜想等合情推理及运用.【易错点晴】本题以等腰直角三角形数列为背景,考查的是归纳猜想的合情推理等知识的综合运用的综合问题.求解时充分借助题设条件中的有效信息,利用题设观察出每一行的数的特征和规律为,然后再确定数列中的项是第行,第个数,最后再运用数列中各项的规律,写出数.39.等差数列的前n项和为,若,则等于()A.12B.18C.24D.42【答案】C【解析】等差数列的前n项和为,则也成等差数列,即,,有,选C.【考点】等差数列的性质40.在数列中,,,则的值为()A.49B.50C.51D.52【答案】D【解析】由,得,故数列为首项为,公差为的等差数列,所以.故选 D.【考点】数列递推式.41.若是等差数列,下列数列中仍为等差数列的有()①;②;③(,为常数);④.A.1个B.2个C.3个D.4个【答案】C【解析】根据等差数列的定义,对于①当时,不是等差数列;②是常数,故是等差数列;③是常数,故是等差数列;④是常数,故是等差数列.故选:C.【考点】等差关系的确定.【方法点睛】本题主要考查了等差数列的定义和性质以及等差数列的判定,注重强调对基础的考查,属于容易题;一般地,如果一个数列从第二项起,每一项减去它的前一项所得的差都等于一个常数,那么这个数列就是等差数列,通过定义逐个验证;或者由等差数列通项公式的性质:若数列为等差数列,也可得到结果.42.在等差数列中,已知,则=A.10B.18C.20D.28【答案】C【解析】由题意得,设等差数列的公差为,则,则,故选C.【考点】等差数列的通项公式.43.已知数列的前项和为,,等差数列中,,且,又成等比数列.(1)求数列,的通项公式;(2)求数列的前项和.【答案】(1);(2).【解析】(1)由题意可知,利用恒等式构造出两者作差得出,从而可求出数列的通项公式,数列的通项公式可通过联立方程组求解;(2)可利用错位相减法对前项和进行处理进而求解.试题解析:(1)∵,∴,∴,∴,而,∴.∴数列是以为首项,为公比的等比数列,∴,∴,在等差数列中,∵,∴,又因为成等比数列,设等差数列的公差为,∴,解得或.∵,∴舍去,取,∴,∴.(2)由(1)知,,①,②①-②得,∴.【考点】1.等差数列的综合;2.等比数列的综合;3.错位相减法的运用.【方法点睛】本题主要考查的是等差数列的综合,等比数列的综合,错位相减法求数列前项和,考查学生分析解决问题的能力,属于中档题,对于数列中给出的递推关系式求数列的通项公式,我们要熟练掌握常见的九种递推关系式求数列的通项公式的方法,只有求出了通项公式后面才能求数列前项和,另一方面凡是遇到等差数列和等比数列相乘做为一个数列,求这个数列的前项和,只有一个方法,错位相减的方法求解,因此正确求出数列的通项公式是解此类题目的关键.44.已知数列满足,前项和是,则满足不等式的最小正整数为______【答案】7【解析】根据题意,,化简可得;则是首项为,公比为的等比数列,进而可得,即;依题意,即,且n∈N*,分析可得n>7;即满足不等式的最小正整数n是7【考点】数列的应用;数列的求和45.设等差数列的前项和,且满足,对任意正整数,都有,则的值为()A.B.C.D.【答案】D【解析】由等差数列的求和公式及性质,可得,所以,同理可得,所以,所以,对任意正整数,都有,则,故选D.【考点】等差数列的求和公式.46.已知函数满足且.(1)当时,求的表达式;(2)设,,求证:…;(3)设,,为的前项和,当最大时,求的值.【答案】(1);(2)证明见解析;(3)或时取得最大值.【解析】(1)令,则,得到,即,即可利用等比数列的通项公式,求的表达式;(2)由(1)可知,利用乘公比错位相减法求解数列的和,即可证明结论;(3)由(1)可得,得到数列是一个首项是,公差为的等差数列,判定出时,当时,当时,即可得出的值.试题解析:(1)令,则,∴,即,∴(3分)(2)证明:设,则(5分)∴∴即(8分)(3)由(1)可得,∴数列是一个首项是4,公差为的等差数列,∴当时,当时,当时(10分)故或时取得最大值18. (12分)【考点】数列的综合问题.【方法点晴】本题主要考查了数列的综合应用问题,其中解答中涉及到抽象函数的性质的应用,等比数列的通项公式、数列的乘公比错位相减法求和和数列的性质等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,试题有一定的难度,属于难题,其中合理赋值、准确计算是解答本题的关键.47.在等比数列中,,则()A.5B.6C.7D.8【答案】C【解析】由等比数列的通项公式,令,解得,故选C.【考点】等比数列的通项公式.48.设数列前项和为,如果那么_____________.【答案】【解析】由,即,所以当时,,两式相减,可得,即,所以,又因为,所以.【考点】数列通项公式的应用.【方法点晴】本题主要考查了数列通项公式的应用,其中解答中涉及数列的递推关系式的应用、数列的累积法等知识点的综合考查,着重考查学生分析问题和解答问题的能力,以及推理与运算能力,试题有一定的难度,属于中档试题,本题的解答中,利用数列的递推关系式,得到,进而得到是解答的关键.49.在等差数列中,,,则的前项和()A.B.C.D.【答案】D【解析】由,即,解得,所以的前项和,故选D.【考点】等差数列的前项和.50.给出下列命题:①是的内角,且,则;②是等比数列,则也为等比数列;③在数列中,如果前项和,则此数列是一个公差为的等差数列;④是所在平面上一定点,动点P满足:,,则直线一定通过的内心;则上述命题中正确的有(填上所有正确命题的序号).【答案】①④【解析】①中,根据三角形的性质可得,再由正弦定理可得,所以是正确的;②中,当等比数列的公比为时,此时,此时数列不是等比数列,所以是错误的;③中,由,则此数列从第二项开始是一个公差为的等差数列,所以是错误的;④中,是所在平面上一定点,动点满足:,,则直线为角的平分线,所以一定通过的内心,所以是正确的,故选①④.【考点】命题的真假判定.【方法点晴】本题主要考查了命题的真假判定,其中解答中涉及到平面向量的运算、三角形的正弦定理、等比数列的定义、以及等差数列的判定及前项和公式,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,试题有一定的难度,属于中档试题,其中熟记数列的概念和向量的基本运算是解答的关键.51.在数列中,已知对任意,则()A.B.C.D.【答案】B【解析】由于,所以,两式相减得,所以是以为首项,公比为的等比数列,其前项和为.【考点】等比数列.52.设为等差数列的前项和,若,则().A.13B.14C.15D.16【答案】C【解析】设等差数列的首项是、公差是,因为,所以,解得,则=-1+8×2=15【考点】等差数列的性质;等差数列的前n项和53.《张邱建算经》是我国古代数学著作,大约创作于公元五世纪.书中有如下问题:“今有女善织,日益功疾,初日织五尺,今一月,日织九匹三丈,问日益几何?”该题大意是:一女子擅长织布,一天比一天织的快,而且每天增加的量都一样,已知第一天织了五尺,一个月后,共织布390尺,问该女子每天增加尺.(一月按30天计)【答案】【解析】由题意得,女子织布两构成一个等差等数列,设等差数列的公差为,则一个月的织布总量为,即,解得.【考点】等差数列的求和的应用.【方法点晴】本题主要考查了数列的实际应用问题,其中解答中等差数列数列的通项公式、等差数列的求和公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力、以及转化与化归思想的应用,本题的解答中把实际问题转化为女子织布两构成一个等差等数列,再根据等差数列的求和公式,求出公差是解答的关键,属于基础题.54.设等比数列的前项和为,,且,,成等差数列,数列满足.(1)求数列的通项公式;(2)设,求数列的前项和.【答案】(1);(2).【解析】(1)设数列的公比为,由,,称等差数列,求解,即可求解数列的通项公式;(2)由(1)可知,利用乘公比错位相减法,求解数列的和.试题解析:(1)设数列的公比为,∵,,称等差数列,∴,∴,∵,∴,∴,∴.(2)设数列的前项和为,则,又,∴,,两式相减得w,∴.【考点】等比数列的通项公式;数列求和.【方法点晴】本题主要考查了等比数列的通项公式及数列求和,其中解答中涉及到等比数列的通项公式、等比数列的性质、数列的乘公比错位相减法求和、等知识点的综合考查,着重中考查了学生分析问题和解答问题的能力,以及学生转化与化归思想的应用,本题的解答中利用乘公比错位相减法求得数列的和,准确计算是解答的关键,试题有一定的难度,属于中档试题.55.已知数列中,,,其前项和满足.(1)求证:数列为等差数列,并求的通项公式;(2)设为数列的前项和,求;(3)若对一切恒成立,求实数的最小值.【答案】(1);(2);(3)【解析】(1)利用等差数列的定义证明数列,并求数列的通项公式.(2)利用裂项法求数列的和.(3)将不等式条件转化为,进而求实数的最小值.试题解析:解:⑴由已知,,且,∴数列是以为首项,公差为1的等差数列,∴…………3分⑵,………………6分⑶∵,∴,∴,又,∴的最小值为.【考点】1.数列的求和;2.等差数列的性质.56.已知是等差数列,是等比数列,且,,,.(1)求的通项公式;(2)设,求数列的前项和.【答案】(1);(2).【解析】(1)借助题设条件运用等差数列等比数列的有关知识求解;(2)借助题设运用等差数列等比数列的求和公式探求.试题解析:(1)等比数列的公比,所以,,设等差数列的公差为,因为,,所以,即,所以……………………………………………………………………5分(2)由(1)知,,,因此,从而数列的前项和.…………………10分【考点】等差数列等比数列的通项及前项和公式等有关知识的综合运用.57.已知(为常数,且),设是首项为4,公差为2的等差数列.(Ⅰ)求证:数列是等比数列;(Ⅱ)若,记数列的前n项和为,当时,求;【答案】(Ⅰ)详见解析(Ⅱ)【解析】(1)根据等差数列的通项公式可求得f(x)的解析式,进而求得,进而根据推断出数列是以为首项,为公比的等比数列;(2)把(1)中的代入求得,把m代入,进而利用错位相减法求得.试题解析:(Ⅰ)由题意即∴∴∵且,∴为非零常数,∴数列是以为首项,为公比的等比数列(Ⅱ)由题意,当∴①①式乘以2,得②②-①并整理,得。

高二数学数列试题

高二数学数列试题

高二数学数列试题1.已知等比数列的前项为,,,则= .【答案】31【解析】【考点】等比数列通项公式求和公式2.设数列是等差数列,是的前项和,且,则下列结论错误的是A.B.C.均为的最小值D.【答案】D【解析】由,得,则.【考点】等差数列.3.数列满足,若,则()A.B.C.D.【答案】B【解析】由已知得:,,,,所以数列为周期为4的周期数列.,所以.【考点】1.周期数列;2.数列的递推公式;4.已知等差数列的前n项和为,且=()A.18B.36C.54D.72【答案】D【解析】,由等差数列的性质可得,所以.故D正确.【考点】1等差数列的性质;2等差数列的前项和.5.设数列中,,,则通项=_____.【答案】【解析】∵,∴,,,,,∴,∴.【考点】累加法求通项公式.【方法点睛】通过分析发现已知条件与等差数列的公差形式差不多,故想到用累加法求解,利用,先写出的表达式,再令这些表达式相加,消去一些项,得出的值,等号右边利用等差数列或等比数列的前n项和公式求和,再求的值.6.(本题满分16分)设数列的前项的和,已知.(1)求的值;(2)证明:数列是等差数列,并求出数列的通项公式;(3)证明:对一切正整数,有.【答案】(1)4;(2);(3)详见解析【解析】(1)令n=1,代入即可求的值;(2)根据递推数列,结合等差数列的定义即可证明数列是等差数列,找到数列的首项和公差,从而得到通项公式,整理得的通项公式;(3)求出的通项公式,利用放缩法以及裂项法,即可证明不等式成立试题解析:(1)解:依题意:当时,解得:… 3分(2)证明:两式相减得:整理得:又对任意都有故数列是以1为首项1为公差的等差数列,所以(3)证明:由(2)得:所以得证.【考点】1.数列的求和;2.等差关系的确定;3.放缩法证明不等式7.等比数列中,,则()A.4B.8C.16D.32【答案】C【解析】由等比数列性质可知【考点】等比数列性质8.数列,满足,,则数列的前10项的和为A.B.C.D.【答案】D【解析】,所以数列的前项的和为,故选D【考点】裂项相消法求和9.在2和8之间插入3个数,使它们与这两个数依次构成等比数列,则这3个数的积为()A.64B.±64C.16D.±16【答案】A【解析】设中间三数为,由等比数列性质可知【考点】等比数列性质10.已知数列的前项和,,则()A.B.C.D.【答案】B【解析】因为,所以即,且,所以,即,所以,即,运用累乘法可得,,故应选.【考点】1、由数列的递推公式求数列通项公式.11.在数列中,已知,,且数列是等比数列,则.【答案】【解析】数列中第二项,第三项,所以公比为3,【考点】数列求通项公式12.已知为数列的前n项和,且,.(1)求数列的通项公式;(2)设,求数列的前n项和.【答案】(1);(2).【解析】(1)已知条件是数列的项与和的关系求通项公式,常有两种做法:一、消和留项,从而得到数列的递推公式,然后求通项即可;二、当方法一比较困难时,可以消项留和,从而求出的递推公式,进而求出,然后问题等价于已知数列的前n项和求数列通项公式.(2)由(1)可得,,用裂项相消的方法即可求数列的前n项和.试题解析:(1)当时,,可得或(舍),由,两式相减得,∵,∴,数列是以3为首项,2为公差的等差数列,∴.(2)∵,∴.【考点】求数列的通项公式;求数列的前n项和.13.设数列{an }的前n项和为Sn.已知a1=1,Sn+1=4a n+2.(1)设bn =an+1-2a n,证明数列{b n}是等比数列;(2)求数列{an}的通项公式.【答案】(1)证明过程详见解析;(2)an=(3n-1)·2n-2.【解析】(1)运用,并结合Sn+1=4a n+2,得到数列{a n}的递推公式,a n+2=4a n+1-4a n.然后由b n=a n+1-2a n,即可证明;(2)由(1)得,a n+1-2a n=3×2n-1,于是-=,从而构造新数列求出通项公式.试题解析:(1)由已知,得a1+a2=4a1+2,解得a2=3a1+2=5,故b1=a2-2a1=3.又an+2=S n+2-S n+1=4a n+1+2-(4a n+2)=4a n+1-4a n,于是an+2-2a n+1=2(a n+1-2a n),即b n+1=2b n.因此数列{bn}是首项为3,公比为2的等比数列.(2)由(1)知等比数列{bn }中b1=3,公比q=2,所以an+1-2a n=3×2n-1,于是-=,因此数列{}是首项为,公差为的等差数列,=+(n-1)×=n-,所以an=(3n-1)·2n-2.【考点】①证明数列是等比数列;②构造新数列求数列通项公式.14.设为等比数列{}的前n项和,,则=()A.10B.-5C.9D.-8【答案】A【解析】【考点】等比数列通项公式求和公式15.已知数列满足,,,,成等差数列,则数列的通项公式为.【答案】【解析】:∵数列满足,(n∈N*,p为常数),.∵,,成等差数列,∴,∴,解得p=2,∴,∴当n≥2时,.∴【考点】1.等比数列的通项公式及其前n项和公式;2.累加求和16.已知数列的首项,前项和为,且.(Ⅰ)求数列的通项公式;(Ⅱ)设函数,是函数的导函数,令,求数列的通项公式,并研究其单调性.【答案】(Ⅰ);(Ⅱ),是单调递增数列.【解析】(Ⅰ)根据求得,两式相减求得,判断出是一个等比数列,进而根据首项和公比求得数列的通项公式;(Ⅱ)化简得.用错位相减法得出通项公式,然后利用导数确定其单调性.试题解析:(I)由()得(),两式相减得,可得(),又由已知,所以,即是一个首项为,公比的等比数列,所以().(II)因为,所以,令,则,所以,作差得,所以,即,而所以,作差得,所以是单调递增数列.【考点】1、数列的递推公式;2、等差数列和等比数列定义及求和;3、数列的求和.【方法点晴】根据题目中的条件,出现时经常会先写出的关系式,两式相减,利用或进行转化,得到关于数列项的递推关系式,判断构造适当的等差或等比数列,进而求出数列的通项公式.当一个等差数列和一个等比数列对应项相乘得到新数列,进行求和时应想到用错位相减法,由乘数列公比得到,相减得到,利用等比数列求和公式运算之后不要忘了除以.17.设为等比数列的前n项和,,则()A.11B.-8C.5D.-11【答案】D【解析】设等比数列的公比为,首项为,由题意可得解得,故,故选 D.【考点】1、等比数列的通项;2、等比数列的前项和公式.18.(2015秋•如东县期末)已知数列{an },{bn}满足a1=,an+bn=1,bn+1=(n∈N*),则b2015= .【答案】.【解析】由已知条件推导出bn+1=,b1=,从而得到数列{}是以﹣2为首项,﹣1为公差的等差数列,由此能求出b2015.解:∵an +bn=1,且bn+1=,∴bn+1=,∵a1=,且a1+b1=1,∴b1=,∵bn+1=,∴﹣=﹣1,又∵b1=,∴=﹣2.∴数列{}是以﹣2为首项,﹣1为公差的等差数列,∴=﹣n﹣1,∴bn =.则b2015=.故答案为:.【考点】数列递推式.19.已知正项等比数列,且,,则=A.B.C.D.2【答案】C【解析】【考点】等比数列性质20.已知数列{an }的前n项和Sn=n2·an(n≥2),而a1=1,通过计算a2,a3,a4猜想an等于()A.B.C.D.【答案】B【解析】由题意得,因为,所以当时,;所以当时,;所以当时,;所以,可猜想,故选B.【考点】归纳推理.方法点晴:本题主要考查了数列的递推计算及归纳推理的应用,属于中档试题,着重考查了推理与运算能力,对于归纳推理的一般步骤是:(1)通过观察个别情况法相事物具有某些相同的性质;(2)从已知的相同性中推出一个明确的表达的一般性的命题(猜想),本题的解答中,利用数列的递推关系,求解,进而推出一般性的结论.21.在等差数列{an }中,Sn为其前n项和,已知a6=S6=﹣3;数列{bn}满足:bn+1=2bn,b2+b4=20.(1)求数列{an }和{bn}的通项公式;(2)设,求数列{cn }前n项和Tn.【答案】(1)3﹣n;(2)【解析】(1)设等差数列{an }的公差为d,从而可得,从而求an,再由等比数列的通项公式求bn;(2)化简,从而可得数列{cn}是首项为4,公比为的等比数列,从而求前n项和.解:(1)设等差数列{an}的公差为d,则,解得,;∴an =2﹣(n﹣1)=3﹣n;∵bn+1=2bn,∴数列{bn }是公比为2的等比数列,∵b2+b4=2b1+8b1=20,∴b1=2,∴;(2)∵,∴,∴数列{cn}是首项为4,公比为的等比数列,∴.【考点】数列的求和.22.已知等比数列满足,,则()A.2B.1C.D.【答案】C【解析】【考点】等比数列通项公式23.数列{an } 满足a1=1,an+1=2an+3(n∈N*),则a4= .【答案】29【解析】解:∵an+1=2an+3,∴an+1+3=2(an+3),∴数列{an +3}是等比数列,公比为2,首项为4,∴an +3=4×2n﹣1,即an=2n+1﹣3,∴﹣3=29.故答案为:29.【点评】本题考查了递推关系、等比数列的通项公式,考查了推理能力与计算能力,属于中档题.24.设等比数列中,前项和为,已知,则()A.B.C.D.【答案】A【解析】因为是等比数列,所以成等比数列,则,即,解得,即,故选A.【考点】等比数列的性质及其应用.25.数列{an }的前n项和为Sn,若an=,则S100等于()A.B.C.2D.【答案】B【解析】解:∵an==2(﹣),∴S100=2(1﹣+…+)=2(1﹣)=,故选:B【点评】本题主要考查数列求和的计算,利用裂项法是解决本题的关键.26.等差数列中,已知,,则使得的最小正整数为()A.7B.8C.9D.10【答案】B【解析】因为等差数列中,已知,,所以,由等差数列的性质可得,再由题意可得,此等差数列为递增数列,所以使得的最小正整数为,故选B.【考点】等差数列的性质.27.已知数列满足,则()A.0B.C.D.【答案】B【解析】由题意得,所以,故此数列的周期为,所以.【考点】数列的递推公式.【方法点晴】本题主要考查了数列的递推关系式的应用,其中解答中根据数列的首项和数列的递推关系式,可计算得出的值,着重考查了学生的分析问题和解答问题的能力,以及学生的应变能力和不完全归纳法,可能大部分学生想直接求解数列的通项公式,然后求解,但此法不通,很难入手,属于易错题型.28.在公差为d的等差数列{an }中有:an=am+(n-m)d (m、n N+),类比到公比为q的等比数列{b}中有:n【答案】【解析】由题意可得,符合类比的要求;【考点】1.等差,等比数列的通项公式的熟练变形;2.类比变形;29.设数列,都是等差数列,若,则_____________.【答案】【解析】因为数列,都是等差数列,所以数列仍是等差数列,所以.【考点】等差数列的性质.30.设等差数列的前项和,且满足,对任意正整数,都有,则的值为()A.B.C.D.【答案】D【解析】由等差数列的求和公式及性质,可得,所以,同理可得,所以,所以,对任意正整数,都有,则,故选D.【考点】等差数列的求和公式.31.已知数列的前项和,且满足.(1)求证:是一个等差数列;(2)求的通项公式.【答案】(1)证明见解析;(2).【解析】(1)根据题设条件,化简,即可利用等差数列的定义,证得数列是一个等差数列;(2)根据数列和的关系,即可求解数列的通项公式.试题解析:提示:(1)........................6分(2),不适合上式.............12分【考点】数列的概念;数列的通项公式.32.设数列前项和为,如果那么_____________.【答案】【解析】由,即,所以当时,,两式相减,可得,即,所以,又因为,所以.【考点】数列通项公式的应用.【方法点晴】本题主要考查了数列通项公式的应用,其中解答中涉及数列的递推关系式的应用、数列的累积法等知识点的综合考查,着重考查学生分析问题和解答问题的能力,以及推理与运算能力,试题有一定的难度,属于中档试题,本题的解答中,利用数列的递推关系式,得到,进而得到是解答的关键.33.数列满足并且.则数列的第100项为()A.B.C.D.【答案】B【解析】为等差数列,首项为,第二项为【考点】数列求通项公式34.在数列{an }中,若a1=1,an+1=2a n+3(n≥1),则该数列的通项a n=_______.【答案】【解析】递推公式an+1=2a n+3转化为为等比数列,首项为4,公比为2【考点】求数列通项公式35.已知数列满足,(),数列前项和为,则.【答案】【解析】当时,,,故应填.【考点】数列求和.36.己知等差数列的公差,且成等比数列,若,为数列的前项和,则的最小值为()A.B.C.D.【答案】C【解析】因为成等比数列且,可得,即,解得,所以,所以,利用函数在区间上单调递减,在单调递增,所以当时,有最小值,故选C.【考点】等差数列的通项公式与前项和.【方法点晴】本题主要考查了等差数列的通项公式与前项和,其中解答中涉及到等比中项公式的应用,数列的单调性、基本不等式和函数的单调性等知识点的综合考查,试题综合性强,有一定的难度,属于中档试题,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,同时掌握函数的性质是解答一个难点.37.已知各项均为正数的等比数列中,,,则()A.B.C.D.【答案】A【解析】根据等比中项,有.【考点】等比数列.38.已知数列的首项,且满足.(1)设,证明数列是等差数列;(2)求数列的前项和.【答案】(1)详见解析;(2)【解析】(1)根据等差数列的定义进行证明即可;(2)利用(1)中求得的数据可以推知.利用错位相减法来求.试题解析:解:(1)………………4分∴数列是以为首项,3为公差的等差数列。

高二数学等差数列试题答案及解析

高二数学等差数列试题答案及解析

高二数学等差数列试题答案及解析1.在等差数列中,,公差为,前项和为,当且仅当时取最大值,则的取值范围_________.【答案】【解析】由题可知,,即。

【考点】等差数列性质应用2.设是等差数列的前项和,公差,若,若,则正整数的值为()A.B.C.D.【答案】A【解析】∵等差数列{an }中,公差d≠0,S11=132,∴,∴a1+5d=12,∵a3+ak=24,∴2a1+2d+(k-1)d=24,∴2a1+(2+k-1)d=2a1+10d,∴2+k-1=10,解得k=9.故选:A.【考点】等差数列的性质.3.已知等比数列满足且是的等差中项(1)求数列的通项公式;(2)若求使成立的正整数的最小值.【答案】(1);(2)10.【解析】(1)设出等比数列的公比,根据条件且是的等差中项列出方程组求出和就可得到数列的通项公式;(2)由(1)可得可用分组求和法求出,从而可由不等式解出的取值范围.试题解析:解(1)设等比数列的公比为由得由①得解得或当时,不合题意舍去,当时,代入②得则(2)因为所以因为,所以<0即,解得或又,故使成立的正整数的最小值为10.【考点】1、等比数列及通项公式;2、等差数列及其前项和公式;3、一元二次不等式的解法.4.已知等差数列{}的前项和为,且,则( )A.B.C.D.【答案】A【解析】由,又因为若时,等差数列中有,所以,选A.【考点】1.等差数列的前项和公式;2.等差数列的性质.5.在等差数列中,已知,则( )A.B.C.D.【答案】A【解析】.【考点】等差数列性质;等差数列前项和公式.6.若等差数列的前n项和为Sn ,且S3=6,a1=4,则公差d等于 ( )A.1B.C.-2D.3【答案】C【解析】,解得。

故C正确。

【考点】等差数列前项和公式。

7.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为( ) A.6B.5C.4D.3【答案】D【解析】由等差数列的定义可知,其公差,故正确答案为D.【考点】等差数列定义、前项和的性质.8.已知等比数列的公比,则等于( )A.B.C.D.【答案】B【解析】由等比数列的通项公式,可得,所以正确答案为B.另解:由等比数列的性质可知数列与分别是以首项为、,公比均为的等比数列,所以.【考点】等比数列通项公式、前前项和公式.9.设是等差数列,是各项都为正数的等比数列,且,,. (1)求,的通项公式;(2)求数列的前项和.【答案】(1),(2)【解析】(1)根据,联立方程组,求出.进而得出,的通项公式;(2)用错位相减法求出数列的前项和.试题解析:(1)设等差数列的公差为,等比数列的公比为,则依题意有且,解得.所以.(2)①.②②-①,得.【考点】数列通项公式求法,数列求和10.设是公比大于1的等比数列,为数列的前项和.已知,且构成等差数列.(Ⅰ)求数列的通项公式;(Ⅱ)令,求数列的前项和.【答案】(1)(2)【解析】(1)求等差等比数列的通项公式只要求出基本量就可以.由已知条件可以构建方程组求出和.利用通项公式能够求解通项.(2)因为所以一个等差乘以一个等比,利用错位相减法求和.试题解析:(Ⅰ)由已知解得.设数列的公比为,由,可得.又,可知,即,解得.由题意得..故数列的通项为. 6分(Ⅱ)由于,所以两式相减得:12分【考点】等比数列求通项、数列求和11.已知数列是等差数列,且(1)求数列的通项公式(2)令,求数列前n项和.【答案】(1);(2).【解析】(1)直接利用等差数列的通项公式求出公差,再写出通项公式;(2)数列可看作是由一个等差数列和等比数列对应项相加得到的数列,其前和可用分组求和法求和.试题解析:(1),又,.∴. 5分(2),∴. 12分【考点】(1)等差数列的通项公式;(2)分组求和法.12.设是等差数列的前项和,且,则=【答案】【解析】根据题意,由于是等差数列的前项和,且,,故可知答案为25.【考点】等差数列点评:主要是考查了等差数列的求和公式的运用,属于基础题。

高二数学数列试题

高二数学数列试题

高二数学数列试题1.已知等差数列中,前15项之和为,则等于()A.B.6C.12D.【答案】B【解析】略2.按照下列三种化合物的结构式及分子式的规律,写出后一种化合物的分子式是()A.C4H9B.C4H10C.C4H11D.C6H12【答案】B【解析】略3.等比数列的前项和为,且成等差数列.若,则=()A.7B.8C.15D.16【答案】C【解析】∵成等差数列,∴,∴,即,∴,∴.【考点】等差数列的性质、等比数列的前n项和.4.已知等差数列满足,则下列选项错误的是( )A.B.C.D.【答案】C【解析】根据等差数列的性质,可知,,,所以有A,B,D是正确的,只有C是错误的,故选C.【考点】等差数列的性质.5.在一个数列中,如果对任意,都有为常数,那么这个数列叫做等积数列,叫做这个数列的公积.已知数列是等积数列,且,公积为,记的前项和为,则:(1).(2).【答案】2;4700【解析】由题意可知,可知数列是以3为周期的循环数列..【考点】新概念.6.数列{an }中的前n项和Sn=n2-2n+2,则通项公式an=__________.【答案】【解析】当时,.当,所以数列的通项公式为【考点】已知数列的前n项和求数列通项公式.【方法点睛】已知数列的前n项和求通项的步骤:•当n=1时,;‚当时,,然后验证n=1是否满足时式子,如果满足合并为一个式子,如果不满足则结果写成分段函数的形式.7.已知等比数列中,,则()A.-2B.1C.2D.5【答案】D【解析】【考点】等比数列通项公式8.设是等差数列的前项和,若,则()A.B.C.D.【答案】A【解析】【考点】等差数列性质及求和公式9.已知数列{an }的前n项和Sn=a n-1(a是不为零的常数),则数列{an}()A.一定是等差数列B.一定是等比数列C.或者是等差数列,或者是等比数列D.既非等差数列,也非等比数列【答案】C【解析】当时,,,∴数列是等差数列.当时,,∴数列是等比数列.综上所述,数列或是等差数列或是等比数列【考点】等差数列等比数列的判定10.在等差数列{an }中,已知a3+a8>0,且S9<0,则S1、S2、…S9中最小的是()A.S4B.S5C.S6D.S7【答案】B【解析】,数列为递减数列,前5项为负数,因此最小的是【考点】数列性质11.设等差数列满足,且,为其前n项和,则数列的最大项是()A.B.C.D.【答案】B【解析】由题意易得数列的公差,可得等差数列前27项为正数,从第28项起为负数,可得答案.设等差数列的公差为d,令∴递减的等差数列前27项为正数,从第28项起为负数,∴数列的最大项为,故选D.【考点】等差数列的函数特征【方法点睛】求等差数列前n项和Sn最值的两种方法(1)函数法:利用等差数列前n项和的函数表达式Sn=an2+bn,通过配方或借助图象求二次函数最值的方法求解.(2)邻项变号法:①a1>0,d<0时,满足的项数m使得Sn取得最大值为Sm;②当a1<0,d>0时,满足的项数m使得Sn取得最小值为Sm.12.在等比数列{an}中,各项均为正值,且,,则.【答案】【解析】因为,,所以由等比数列的性质有,,所以,因为等比数列{an}中,各项均为正值,所以.【考点】等比数列的性质.【思路点晴】本题主要考查的是等比数列的性质,属于中档题.解本题需要掌握的知识点是{an}中,若,则,特别地,若,则.解题时要注意整体思想的运用,利用乘法公式,间接求出结果.【易错点晴】本题主要考查等比数列的性质,要注意“等比数列{an}中,各项均为正值”这一条件,否则很容易出现错误.13.(2015秋•宁德校级期中)已知公差不为零的等差数列{an },若a1=1,且a1,a2,a5成等比数列.(1)求数列{an}的通项公式;(2)设bn =2n,求数列{an+bn}的前n项和Sn.【答案】(1)an =1+2(n﹣1)=2n﹣1;(2)Sn=n2+2n+1﹣2.【解析】(1)通过a2=1+d、a5=1+4d,利用a1,a2,a5成等比数列计算可知公差d=2,进而可得结论;(2)分别利用等差数列、等比数列的求和公式计算,相加即可.解:(1)依题意可知,a2=1+d,a5=1+4d,∵a1,a2,a5成等比数列,∴(1+d)2=1+4d,即d2=2d,解得:d=2或d=0(舍),∴an=1+2(n﹣1)=2n﹣1;(2)由(1)可知等差数列{an }的前n项和Pn==n2,∵bn=2n,∴数列{bn }的前n项和Qn==2n+1﹣2,∴Sn=n2+2n+1﹣2.【考点】数列的求和;等差数列的通项公式.14.等差数列中,若,则.【解析】设公差为,,,.【考点】等差数列的通项公式.15.设是等比数列的各项和,则等于A.B.C.D.【答案】B【解析】时等比数列首项为1,公比为2,项数为,所以【考点】等比数列求和16.设x、、、y成等差数列,x、、、y成等比数列,则的取值范围是()A.4,+∞)B.(-∞,0∪4,+∞)C.0,4)D.(-∞,-4)∪4,+∞)【答案】B【解析】依题意,,,则,又,若,则,于是,故≥4,当且仅当x=y时取“”号;若,则,于是,故≤0,当且仅当时取“”号,综上所述,的取值范围是.【考点】等差、等比数列的性质及基本不等式的应用.【方法点晴】本题主要考查了等差数列及等比数列的性质及其有意义、利用基本不等式求解最值问题,属于中档试题,着重考查了转化思想及构造的数学思想方法、分类讨论的思想方法,本题的解答中,由题意,又由可分和两种情况分类讨论,求解取“”号成立的条件是解答本题的关键.17.已知数列{an }的各项均为正数,Sn为其前n项和,对于任意的n∈N*,满足关系式2Sn=3an﹣3.(I)求数列{an}的通项公式;(Ⅱ)设数列{bn }的通项公式是bn=,前n项和为Tn,求证:对于任意的n∈N*总有Tn<1.【答案】(I)an=3n(n∈N*)(Ⅱ)证明见解析【解析】(I)由已知得,故2(Sn ﹣Sn﹣1)=2a n=3a n﹣3a n﹣1.由此可求出an=3n(n∈N*).(Ⅱ),所以Tn =b1+b2+…+bn=1﹣.解:(I)由已知得故2(Sn ﹣Sn﹣1)=2a n=3a n﹣3a n﹣1即an =3an﹣1,n≥2故数列an为等比数列,且q=3又当n=1时,2a1=3a1﹣3,∴a1=3,∴an=3n,n≥2.而a1=3亦适合上式∴an=3n(n∈N*).(Ⅱ)所以Tn =b1+b2+…+bn==1﹣.【考点】数列的应用;数列的求和;数列递推式.18.已知数列、、、、…根据前三项给出的规律,则实数对(2a,2b)可能是()A.(,-)B.(19,﹣3)C.(,)D.(19,3)【答案】D【解析】根据前三项的规律判定数列的通项公式是,所以,解得,所以选D.【考点】数列19.已知各项不为零的数列的前项和为,且满足.(1)求数列的通项公式;(2)设数列满足,求数列的前项和.【答案】(1);(2).【解析】(1)已知与的关系,可令求得,当时,由可得到数列的递推式:,这正好是一个等比数列,易得通项公式;(2)由于,是一个等差数列与一个等比数列相乘所得,其前项和可用错位相减法求得,即写出,两边乘以公比,得,两式相减后借助等比数列前项和公式可求得.试题解析:(1)当时,当时,………①………②① -②得数列是首项为2,公比为2的等比数列(2)两式相减得【考点】已知与关系,求通项公式,等比数列的通项公式,错位相减法.20.等差数列中,,则的值是()A.15B.30C.31D.64【答案】A【解析】由题意,根据等差数列的性质得,所以,故选A.【考点】等差数列的性质.21.已知在等差数列中,.(1)求;(2)令,判断数列是等差数列还是等比数列,并说明理由.【答案】(1);(2)数列是等比数列,理由见解析.【解析】(1)设数列的公差为,根据题设求出,即可求解数列的通项公式.(2)由(1)得,得,所以根据等比数列的定义可判定数列为等比数列.试题解析:(1)设数列的公差是,则,故(2)由(1)可得,所以是一常数,故数列是等比数列【考点】等比数列的定义及等差数列通项公式.22.已知为等差数列,且,则的最大值为()A.8B.10C.18D.36【答案】C【解析】,设等差数列的公差为,则,即的最大值为,故选C.【考点】1.等差数列的性质;2.二次函数.23.已知数列中,由此归纳.【答案】【解析】由,得,即.又,所以,所以数列是首项为1,公比为2的等数列,所以,所以.【考点】1、递推数列;2、等比数列的定义及通项公式.24.等差数列的前项和为,,则的值为()A.B.C.D.【答案】C【解析】因为,所以,,,故选C.【考点】1、等差数列的性质;2、等差数列和的性质.25.设数列满足,且.(1)证明:数列为等比数列;(2)求数列的前项和.【答案】(1)证明见解析;(2).【解析】(1)由,变形为,即可证明;(2)由等比数列的通项公式可得于是,因此,再利用“裂项求和”即可得出.试题解析:(1)证明:因为,所以.又所以数列是公比为3的等比数列.(2)因为数列是首项为,公比为3的等比数列,所以,即,所以,所以,所以.【考点】1、等比数列的证明;2、裂项相消法求数列和.26.已知是奇函数,且当时,有最小值.(1)求的表达式;(2)设数列满足,.令,求证;(3)求数列的通项公式.【答案】(1);(2)详见解析;(3).【解析】(1)若函数是奇函数,所以,经过化简整理为对恒成立. ∴有,化简后的函数再根据基本不等式求最小值,得到的取值,最后得到函数的表达式;(2)根据(1)的结果,化简为①,再求得,再将①代入,可证明;(3)根据(2)的证明,两边取对数,可得,说明数列是等比数列,根据的通项求数列的通项公式.试题解析:(1)∵是奇函数,∴有,即有.整理得对恒成立. ∴有,∴.∴.∵,∴当时,,∴,∴.∴.…………4分(2).∵,∴.(3)∵,∴.取对数得.由得,∴. ∴有为常数.∴数列为等比数列.∵,∴.∴.【考点】1.函数的性质;2.函数与数列的关系;3.数列的递推公式求通项公式.27.已知数列的通项,则()A.0B.C.D.【答案】D【解析】由已知条件可推导出数列{}的通项公式,由此能求出的值故选D【考点】1.数列求和;2.分类讨论思想。

高二数学数列试题答案及解析

高二数学数列试题答案及解析

高二数学数列试题答案及解析1.等比数列的前项和为,且成等差数列.若,则=()A.7B.8C.15D.16【答案】C【解析】∵成等差数列,∴,∴,即,∴,∴.【考点】等差数列的性质、等比数列的前n项和.2.将一个骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率为.【答案】【解析】一个骰子连续抛掷三次它落地时向上的点数情况共有种, 若落地时向上的点数依次成等差数列时情况有: 可能为连续的三个数组成的递增数列,还可能不连续的三个数组成的递增数列, .同理可得以上两种情况的递减数列,另外还有可能是三个数相同的常数列,所以共有种情况,所以所求概率为.【考点】1排列组合;2概率.3.在等比数列中,对于任意都有,则.【答案】【解析】令,得;由等比数列的性质,得.【考点】1.赋值法;2.等比数列的性质.4.已知数列满足,则= ()A.B.C.D.【答案】【解析】∵,∴,∴,所以数列的奇数项与偶数项分别成等比数列,公比为2,又,故,所以.【考点】递推公式,等比数列,分组求和,等比数列的前项和5.已知为等比数列,,,则()A.B.C.D.【答案】D【解析】因为为等比数列,所以,或.设公比为,当时,,当时,综上可得.故D正确.【考点】1等比数列的通项公式;2等比数列的性质.6.已知数列中,函数.(1)若正项数列满足,试求出,,,由此归纳出通项,并加以证明;,且,求证:(2)若正项数列满足(n∈N*),数列的前项和为Tn.【答案】(1)证明详见解析;(2)证明详见解析.【解析】本题主要考查数列的通项及前n项和等基础知识,考查学生的运算求解能力,注意解题方法的积累,属于中档题.第一问,通过对两边同时取倒数、变形可知数列是以1为首项、为公比的等比数列,进而计算可得结论;第二问,通过(n∈N*)变形可知,进而累乘得:,进而,通过裂项、放缩可知,并项相加即得结论.试题解析:(1)依题意,,,,由此归纳得出:;证明如下:∵,∴,∴,∴数列是以1为首项、为公比的等比数列,∴,∴;(2)∵(n∈N*),∴,∴,累乘得:,∴,即,∴,∵,∴.【考点】数列的求和;归纳推理.7.设数列的前项和为,已知(Ⅰ)求数列的通项公式;(Ⅱ)若数列满足,数列的前项和为.求【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)由可得,,而,则(Ⅱ)由及可得利用错位相减即可求出结果,即可求出结果.试题解析:(Ⅰ)由可得,而,则(Ⅱ)由及可得..【考点】1.数列的递推公式;2.错位相减法求和.【方法点睛】本题主要考查了利用数列递推公式求出数列的通项公式,在解决此类问题时,一般利用来求数列的通项公式;在数列求和时如果通项公式可换成,其中数列分别是等差数列和等比数列,一般采用错位相减法进行求和.8.(本小题满分12分)已知正项数列的首项为,前项和为满足.(1)求证:为等差数列,并求数列的通项公式;(2)记数列的前项和为,若对任意的,不等式恒成立,求实数的取值范围.【答案】(1);(2).【解析】(1)当时,由代入已知式分解因式可得,由此可证数列是等差数列,并求出数列的通项公式,再由即可求出数列数列的通项公式;(2)由,即用裂项相消法求出,又可得,解之即可.试题解析:(1)当时,,即,数列是首项为,公差为的等差数列,故,故,当时也成立,(6分)(2), (8分)(10分)又,,解得或,即所求实数的取值范围为(12分)【考点】1.与关系;2.等差数列的定义与性质;3.裂项相消法求和;4.数列与不等式.【名师】本题主要考查数列中与关系、等差数列的定义与性质、裂项相消法求和以及数列与不等式的综合应用等知识.解题时首先利用与关系进行转化,得到数列前后项之间的关系,从而讲明数列是等差数列,进一步求出数列的退项公式;由于数列是等差数列,所以在求数列的前项和为时,可用裂项相消法求解.9.(本小题满分12分)等差数列的前n项和记为,已知,求n.【答案】【解析】本题主要考查等差数列的通项公式及前n项和公式等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.利用等差数列的通项公式将和展开,列出方程组,解出和d的值,即得到等差数列的通项公式,由,利用等差数列的前n项和得,解方程求得项数n的值.试题解析:由,得方程组,解得,所以.,得,解得或(舍去).【考点】等差数列的通项公式及前n项和公式.10.数列1,,,,,,,,,……的前100项之和为()A.10B.C.11D.【答案】A【解析】观察数列特点可知分母为1的有一项,分母为3的有三项,分母为5的有五项,以此类推分母为的有项,所以,即分母为19的分数写完后刚好100项,因此前100项求和时将分母相同的分组求和可得到和为10【考点】数列求和11.在等比数列{an }中,如果a1+a2=40,a3+a4=60,那么a5+a6=()A.80B.90C.95D.100【答案】B【解析】等比数列中【考点】等比数列性质12.(本题满分13分)设数列和满足:,(1)求数列和的通项公式;(2)当时,不等式恒成立,试求常数的取值范围.【答案】(1);(2).【解析】(1)由已知可得,又因为,所以为首项为,公比为的等比数列,从而可得的通项公式;由可得当时,两式相减得,,当时也满足,.记,又因为,所以,再将其左右两边同时乘以得,然后利用错位相减得,,可化简得即,,.试题解析:(1),为首项为,公比为的等比数列,又①令令②①-②得,,当时,满足此式。

最全面高二数学数列练习题(含答案)(精华版)

最全面高二数学数列练习题(含答案)(精华版)

高二 《数列 》专题(n 1) S 1 S nS n 求 a n , 应分 n 1 时 a 1; n 2 时 ,1 . S n 与 a n 的关系 : a n, 已知 S n (n 1)1 a n =两步 , 最后考虑 a 1 是否满足后面的 a n .2. 等差等比数列等差数列 等比数列a n a nN *)1 q(n d ( n2 )定义a n a n 1通项a na 1 ( n 1)d , a na m (n m)d ,( n m),如果 a, G,b 成等比数列 , 那么 G 叫做 a 与 a, A, b A 叫做 a 与 b 的 等差中如果 成等差数列 , 那么 a b b 的等比中项 . 项. 中项 A 。

2aq等比中项的设法 : , a , aq等差中项的设法 :前 nn 2n( n 1) 2, S n( a 1a n ) S nna 1d项和 m n p q , 则若 性*a m a na p a q (m, n, p ,q N , m n p q)若2*若 2m q,则有ap a p a q ,( p, q , n , m N )质m2m p q , 则S n 、 S 2nS n 、 S 3 nS 2 n 为等差数列S n 、 S 2 n S n 、 S 3nS 2n 为等比数列函数a 1 qnq nAqa a ndn 2(a 1 d) An B n看数dd 222 a 1a 1 qs nn( a 1) n An Bnq n Aq n(q s A 1)2n1 q 1 列a n N * ) 1( n为一个常数 (1 )定义法 :证明*N ) (n 为一个常数 ; ( 1 ) 定义法 : 证明 a a a n 1n n( 2 ) 中项 : 证 明*( 2 ) 等 差 中 项 : 证 明 2a na n a n 1 (n N ,1 2*ana n a n 1 (n N , n 2)判定1 n 2)n(c , q 均是不为 0 常(3 )通项公式 : a ncq方法*b ( k , b 为常数 ( 3 ) 通项公式 : a n kn )( n N )数) 2*n( A, B 为常数 )( n N ( 4 ) s nAnBn s n AqA )(A,q( 4 )为 常 数 ,0,1 )A 0,q 3. 数列通项公式求法 。

高二数学数列试题

高二数学数列试题

高二数学数列试题1.(本小题满分15分)已知数列的首项,,.(1)求数列的通项公式;(2)求数列的前n项和;(3)求证:,.【答案】(1)(2)(3)详见解析【解析】(1)将递推公式取倒数变形为,由等差数列定义可知数列为等差数列,公差为,通过等差数列的通项公式后变形即可得到数列通项(2)数列的通项公式为,变形后采用裂项相消的方法求和(3)中不等式的证明主要思路是将各项适当的放缩,转会化可以采用裂项相消的方法求和的形式,试题解析:⑴由,得, 2分所以是首项,公差的等差数列 3分4分,所以, 5分(2) 9分(3) 11分时,由以上不等式得13分14分因为是递增数列,所以, 15分.【考点】1.递推求通项;2.裂项相消法求和;3.放缩法证明不等式2.数列的通项公式,已知它的前项和,则项数()A.B.C.D.【答案】B【解析】,,又,即,得,故选B.【考点】裂项相消求和.3.(本小题12分)等差数列中,a3=2,a11=2a5(I)求的通项公式;(II)设.Co【答案】(I);(II).【解析】(I)设公差为d,由题中的两个条件即可得出和d的方程组,从而求出首项和公差,从而求出通项公式;(II)由(I)得,根据通项公式的特点,用裂项法求和即可.试题解析:(Ⅰ)设等差数列的公差为d,则解.所以的通项公式为.(Ⅱ),所以.【考点】等差数列通项公式及前n项和的计算问题.4.(本小题满分12分)已知数列的前n项和为,点均在函数的图像上(1)求数列的通项公式;(2)设,求数列的前n项和【答案】(1);(2).【解析】(1)已知数列的前n项和求通项公式的方法是:当n=1时,;当时,,然后验证n=1是否满足时的公式,最后总结结论;(2)裂项法求数列的前n 项和.试题解析:(1)由已知得:当时,,即;当时,两式相减得即经检验:满足综上:数列的通项公式为.(2)由已知得:=【考点】•已知数列的前n项和求通项公式;‚裂项法求数列的前n项和.【方法点睛】(1)已知数列的前n项和求通项的步骤:•当n=1时,;‚当时,,然后验证n=1是否满足时式子,如果满足合并为一个式子,如果不满足则结果写成分段函数的形式.(2)常见的裂项法求前n项和的数列:•.5.等比数列的公比为q,前n项和为Sn ,若Sn+1,Sn,Sn+2成等差数列,则q的值为.【答案】【解析】Sn+1,Sn,Sn+2成等差数列,所以【考点】等比数列等差数列性质6.已知数列满足,,则= .【答案】【解析】,,累和得【考点】累和法求数列的通项公式【方法点睛】本题考察的是由数列的递推公式求通项公式,此类题型是数列章节的重点,常见的求解方法有如下几种:累和法,适用于的形式,累乘法,适用于的形式,构造法,适用于的形式,适当的配凑常数使其变形为,转化等比数列求解,形如的递推公式可两边同除以指数式,转化为的形式,形如的递推公式可通过两边取倒数的方法转化为的形式7.(本小题满分14分)已知数列,,其前项和满足,其中.(Ⅰ)设,证明:数列是等差数列;(Ⅱ)设,为数列的前n项和,求证:;(Ⅲ)设(为非零整数,),试确定的值,使得对任意,都有成立.【答案】(Ⅰ);(Ⅱ)略(Ⅲ)-1【解析】(Ⅰ)由题根据时,,可得,可得,所以是首项为2,公差为1的等差数列,得到;(Ⅱ)结合(Ⅰ)可得,然后根据错位相消法求得;(Ⅲ)由得,即恒成立,讨论得到存在λ=-1,使得对任意,都有成立试题解析:(Ⅰ)当时,,∴当时,,∴,即,∴(常数),又,∴是首项为2,公差为1的等差数列,.(Ⅱ),所以,,相减得,∴.(Ⅲ)由得,,,(i)当n为奇数时,即恒成立,当且仅当n=1时,有最小值为1,;(ii)当n为偶数时,即恒成立,当且仅当n=2时,有最大值-2,.,又λ为非零整数,则λ=-1. 综上所述:存在λ=-1,使得对任意,都有成立. 【考点】数列递推式;数列的通项与求和;恒成立问8. 已知等差数列中,,则的值是( ) A .20 B .22 C .24D .-8【答案】C 【解析】【考点】等差数列性质9. 已知等差数列的前n 项和为,若,,则( )A .150B .180C .210D .240【答案】B【解析】等差数列中构成等差数列,所以有【考点】等差数列性质10. (2015秋•宁城县期末)设f n (x )是等比数列1,x ,x 2,…,x n 的各项和,则f n (2)等于( )A .2n ﹣1B .2n+1﹣1C .2n ﹣2D .2n+1﹣2【答案】B【解析】由已知得∴f n (2)=1+2+22+…+2n ,由此利用等比数列性质能求出结果. 解:∵f n (x )是等比数列1,x ,x 2,…,x n 的各项和, ∴f n (2)=1+2+22+…+2n ==2n+1﹣1.故选:B .【考点】数列的求和.11. 等差数列{a n },{b n }的前n 项和分别为S n 、T n ,若=,则=_______.【答案】【解析】【考点】等差数列性质及求和12. 数列和函数,已知,,试判断是否为等差数列,并求的前项和的最大值。

高二数学数列试题答案及解析

高二数学数列试题答案及解析

高二数学数列试题答案及解析1.下列解析式中不是数列,的通项公式的是()A.B.C.D.【答案】A【解析】根据正负号变化规律,【考点】本题主要考查数列的概念及数列的简单表示法。

点评:集合与数列是两个不同的概念,数列中的数具有有序性,数列可以看做是一个定义域为正整数集(或其有限子集)的函数。

2.已知,,则的第五项为 .【答案】5【解析】因为,,所以,=5.【考点】本题主要考查数列的概念、数列的简单表示法及对数性质。

点评:先求得通项公式,再确定所求项。

具有一定综合性,注意对数性质的应用。

3.已知数列中,,,通项是项数的一次函数,①求的通项公式,并求;②若是由组成,试归纳的一个通项公式.【答案】(1);(2)【解析】设,则,解得,∴,∴,又∵,,,,即为5,9,13,17,…,∴.【考点】本题主要考查数列的概念、数列的简单表示法及待定系数法。

点评:先利用待定系数法求得式中的k,b,再利用通项公式确定所求项,并归纳出新数列的通项公式。

4.数列{an }中,a1,a2-a1,a3-a2,…,an-an-1…是首项为1、公比为的等比数列,则a n等于。

【答案】(1-).【解析】an =a1+(a2-a1)+(a3-a2)+…+(an-an-1)=(1-)。

【考点】本题主要考查等比数列的概念、通项公式及前n项求和公式。

点评:简单题,套用公式。

5.等比数列的前项和Sn= .【答案】【解析】公比为,当,即时,当,即时,,则.【考点】本题主要考查等比数列的概念、通项公式及前n项求和公式。

点评:等比数列的基本问题。

从公比是否为1出发,分析讨论a的多种可能情况是关键。

易忽视,即时的情况。

6.已知等比数列的首项为8,是其前n项和,某同学经计算得,,,后来该同学发现其中一个数算错了,则算错的那个数是__________,该数列的公比是________.【答案】;。

【解析】设等比数列的公比为,若计算正确,则有,但此时,与题设不符,故算错的就是,此时, 由可得,且也正确.【考点】本题主要考查等比数列的概念、通项公式及前n项求和公式。

高二数学等差数列试题答案及解析

高二数学等差数列试题答案及解析

高二数学等差数列试题答案及解析1.等差数列{an }中,已知a1=,a2+a5=4,an=33,则n的值为( ).A.50B.49C.48D.47【答案】A【解析】由于是等差数列,所以a2+a5=a1+a6=4,a1=,可得,,又an=,解这个方程可得n=50.故选A.【考点】等差数列的通项公式.2.已知等差数列的首项为,若此数列从第项开始小于,则公差的取值范围【答案】【解析】由于是等差数列,根据此数列从第项开始小于,可以判断出此数列从第15项大于或者等于,可得,解此不等式组,即可得出答案.试题解析:设首项是,公差是d,有题意,得,将代入,得,解得【考点】等差数列的通项公式.3.在等差数列{an }和等比数列{bn}中,a1=1,b1=2,bn>0(n∈N*),且b1,a2,b2成等差数列,a 2,b2,a3+2成等比数列,数列{bn}的前n项和为Sn.(Ⅰ)求数列{an },{bn}的通项公式;(Ⅱ)若Sn +an>m对任意的正整数n恒成立,求常数m的取值范围.【答案】(Ⅰ)an =3n﹣2,bn=2•3n﹣1;(Ⅱ){m|m<3}【解析】(Ⅰ)设等差数列{an }的公差为d,等比数列{bn}的公比为q(q>0),由已知得,解得d=q=3,所以an =3n﹣2,bn=2•3n﹣1;(Ⅱ)由(Ⅰ)知,从而,则3n+3n﹣3>m对任意的正整数n恒成立,构造函数f (n)=3n+3n﹣3,则f(n+1)﹣f(n)=2•3n﹣3>0即f(n)单调递增,所以m<f(1)=3,答案为{m|m<3}.试题解析:(Ⅰ)设等差数列{an }的公差为d,等比数列{bn}的公比为q(q>0).由题意,得,解得d=q=3.∴a n =3n ﹣2,b n =2•3n ﹣1;(Ⅱ)∵S n +a n >m 对任意的正整数n 恒成立, ∴3n +3n ﹣3>m 对任意的正整数n 恒成立,令f (n )=3n +3n ﹣3,则f (n+1)﹣f (n )=2•3n ﹣3>0, ∴f (n )单调递增, ∴m <f (1)=3.∴常数m 的取值范围{m|m<3}【考点】1.等差数列和等比数列的通项公式;2.等比数列的求和公式;3.与正整数有关的不等式恒成立问题4. 在等差数列{a n }和等比数列{b n }中,a 1=b 1=1,b 4=8,{a n }的前10项和S 10=55. (1)求a n 和b n ;(2)现分别从{a n }和{b n }的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值 相等的概率. 【答案】,;(2)【解析】(1)根据等差数列的首项和公差求通项公式;(2)根据等比数列的首项和公比求通项公式;注意题中限制条件;(3)古典概型的概率问题,关键是正确找出基本事件总数和所求事件包含的基本事件数,然后利用古典概型的概率计算公式计算;(4)当基本事件总数较少时,用列举法把所有的基本事件一一列举出来,要做到不重不漏,有时可借助列表,树状图列举,当基本事件总数较多时,注意去分排列与组合;试题解析:解:(1)设{a n }的公差为d ,{b n }的公比为q.依题意得 S 10=10+d =55,b 4=q 3=8, 2分解得d =1,q =2, 4分 所以a n =n ,b n =2n -1. 6分(2)分别从{a n },{b n }的前3项中各随机抽取一项,得到的基本事件有9个: (1,1),(1,2),(1,4),(2,1),(2,2),(2,4),(3,1),(3,2),(3,4). 8分 符合题意的基本事件有2个:(1,1),(2,2). 10分 故所求的概率P = 12分【考点】(1)等差数列和等比数列的通项公式;(2)古典概型概率公式的应用.5. 已知数列中,,,若为等差数列,则( )A .B .C .D .【答案】A【解析】设等差数列的公差为,则,从而,所以,选择A.【考点】等差数列及通项公式.6. 已知等差数列的前项和为,,,(1)求数列的通项公式; (2)若,求数列的前100项和. 【答案】(1);(2). 【解析】(1)由及得,,求解方程组可求出和;利用等差数列的通项公式即可求出;(2)由,利用裂项求和即可求解.试题解析:(1)由及得,,解得,所以. (2),从而有:.故数列的前100项和为.【考点】数列的求和;数列的概念及简单表示法.7.已知数列满足,,则A.B.C.D.【答案】B【解析】因为,所以数列是以为首项,公差为3的等差数列故【考点】等差数列的定义及前n项和公式8.已知数列是等差数列,且.(1)求数列的通项公式; (2)令,求数列前n项和.【答案】(1);(2)【解析】(1)数列{an}是等差数列,且a1=2,设公差为d,代入a1+a2+a3=12,求出d,求出数列{an}的通项公式;(2)数列{an }的通项公式为an=n+2n,可以利用数列的分组求和法,分别求一个等差数列与一个等比数列的前n项和.试题解析:(1)由已知 5分(2)10分【考点】(1)等差数列;(2)数列求和.9.在ABC中,三个内角A,B,C的对边分别为,且A,B,C成等差数列,成等比数列,求证ABC为等边三角形.【答案】证明过程详见试题解析.【解析】由已知条件可得,即;而成等比数列,得,由余弦定理可得,即 A="C" ,所以ABC为等边三角形.试题解析:证明:由A,B,C成等差数列,有2B=A+C ①因为A,B,C为ABC的内角,所以A+B+C=②由①②,得 B=③由成等比数列,有④ 6分由余弦定理及③,可得再由④,得即因此从而有A=C ⑤由②③⑤,得A=B=C=所以ABC为等边三角形.(本题为选修1-2 P37例3) 12分【考点】等差中项、等比中项、余弦定理.10.已知等差数列,为其前项和,若,且,则()A.B.C.D.【答案】C【解析】由,得,∵==,∴,∴.【考点】等差数列的性质、前n项和.11.已知等比数列中,,.(1)求数列的通项公式;(2)若,分别为等差数列的第3项和第5项,试求数列的通项公式及前项和.【答案】(1) ;(2) , .【解析】(1) 设等比数列的公比为,由求出公比的值,从而得到等比数列的通项公式.(2)首先根据(1)所得通项公式求出,,从而得出等差数列的第3项和第5项.设等差数列的公差为,则有解方程组得和公差,即可代入公式求数列的通项公式及前项和.试题解析:(1)设等比数列的公比为由,得解得 3分∴数列的通项公式,即 5分(2)由(1)得,,则, 6分设等差数列的的公差为,则有∴,解得 8分∴数列的通项公式 9分∴数列的前项和 10分12分【考点】1、等差数列、等比数列的定义及通项公式;2、等差数列的前项和.12.等差数列{}的公差不为零,首项=1,是和的等比中项,则数列的前10项之和是( )A.90B.100C.145D.190【答案】B【解析】设等差数列的公差为,由是和的等比中项得,又,所以,即,解得(不合题意),所以,故正确答案为B.【考点】1.等差数列;2.等比中项公式.13.三个数成等比数列,其积为512,如果第一个数与第三个数各减2,则成等差数列,求这三个数.【答案】或,【解析】根据等比数列的定义,巧设所求三个数为,,,则有,解此方程可得、的值,从而得到所求的三个数.试题解析:设三数为或则三数为或,【考点】1.等比数列中项公式;2.等差数列中项公式.14.设是公比大于1的等比数列,为数列的前项和.已知,且构成等差数列.(Ⅰ)求数列的通项公式;(Ⅱ)令,求数列的前项和.【答案】(1)(2)【解析】(1)求等差等比数列的通项公式只要求出基本量就可以.由已知条件可以构建方程组求出和.利用通项公式能够求解通项.(2)因为所以一个等差乘以一个等比,利用错位相减法求和.试题解析:(Ⅰ)由已知解得.设数列的公比为,由,可得.又,可知,即,解得.由题意得..故数列的通项为. 6分(Ⅱ)由于,所以两式相减得:-----12分【考点】等比数列求通项、数列求和15.已知等差数列的前n项和为等于()A.-90B.-27C.-25D.0【答案】C【解析】设数列的首项为,公差为,则,所以,.【考点】等差数列的通项公式,前项和公式.16.已知等差数列,公差不为零,,且成等比数列;⑴求数列的通项公式;⑵设数列满足,求数列的前项和.【答案】(1) ;(2).【解析】(1)利用等差数列的通项公式,和等比数列的中项知识.(2)通过裂项法求数列的前n项和.试题解析:⑴由成等比数列得,,即,解得,或(舍), ,(2)=,.【考点】1.等差数列的通项公式.2.等比中项.3.裂项求和法.17.在等差数列中,已知,则____________________.【答案】20【解析】解法(一)设首项为,公差为d,由可得2+9d=10,又因为=20.解法(二)数列是等差数列,所以,由==20.【考点】1.等差数列的通项公式.2.等差数列的性质.18.在等差数列中,若,则的值为()A.20B.22C.24D.28【答案】C【解析】利用等差数列的性质:是等差数列,,本题显然有,故,.【考点】等差数列的性质.19.已知为等差数列,且,为的前项和.(Ⅰ)求数列的通项公式及;(II)设,求数列的通项公式及其前项和.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)确定等差数列需要两个独立的条件,由,可得,代入,中可得;(Ⅱ)由(Ⅰ)可得,求数列前项和,要根据通项公式的具体形式,选择适合的求和方法,常用的数列求和法有①裂项相消法;②错误相减法;③分组求和法;④奇偶项分析法等,该题=,利用裂项相消法.试题解析:(Ⅰ)设数列的公差为d,由题意得,解得, 2 分所以, 4分, 6分(Ⅱ)=, 8分∴=. 10分.【考点】1、等差数列的通项公式和前项和;2、裂项相消法求数列前项和.20. .等差数列满足则()A.17B.18C.19D.20【答案】B【解析】由,又,带入可得,或者根据推广后的通项公式,直接带入可得:,可得,故选B.【考点】等差数列的通项公式.21.观察下表12 3 43 4 5 6 74 5 6 7 8 9 10…………则第________________行的个数和等于20092。

高二数学数列练习题及答案

高二数学数列练习题及答案

高二数学数列练习题及答案一、选择题1. 已知数列的通项公式为an = 2n + 1,其中n为正整数,则该数列的首项是:a) 1b) 2c) 3d) 42. 数列{an}的前4项依次是3,6,9,12,其通项公式为:a) an = 3nb) an = 3n + 1c) an = 3n - 1d) an = 2n + 13. 数列{an}的公差为2,首项为3,若a4 = 9,则数列的通项公式为:a) an = n + 2b) an = 2n + 1c) an = 3nd) an = 2n + 3二、填空题1. 数列{an}的首项为5,公差为3,若a7 = 23,则数列的通项公式为______。

2. 如果数列{an}满足an + 1 = an + 3,且a2 = 7,那么数列的首项为______。

3. 数列{an}满足公差为-2,首项为6,若a5 = -4,则数列的通项公式为______。

三、解答题1. 求等差数列{an}的前n项和公式。

解析:设数列{an}的首项为a1,公差为d。

根据等差数列的性质,第n项an可以表示为an = a1 + (n - 1)d。

前n项和Sn可以表示为Sn = (a1 + an) * n / 2。

因此,等差数列的前n项和公式为Sn = (a1 + a1 + (n - 1)d) * n / 2。

2. 已知数列{an}的通项公式为an = 2^n,则数列的公差为多少?解析:设数列{an}的首项为a1,通项公比为r。

根据等比数列的性质,第n项an可以表示为an = a1 * r^(n - 1)。

因此,已知通项公式为an = 2^n,可得到a1 * r^(n - 1) = 2^n。

考虑到a1 = 2^0 = 1,将其代入上式,得到r^(n - 1) = 2^(n - 1)。

可得到r = 2,因此数列的公差为2。

四、答案选择题:1. c) 32. a) an = 3n3. b) an = 2n + 1填空题:1. an = 172. a1 = 43. an = 12 - 2n解答题:1. 等差数列的前n项和公式为Sn = (a1 + an) * n / 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二《数列》专题1.n S 与n a 的关系:11(1)(1)n n n S n a S S n -=⎧⎪=⎨->⎪⎩ ,已知n S 求n a ,应分1=n 时1a = ;2≥n 时,n a =两步,最后考虑1a 是否满足后面的n a . 2.等差等比数列 3.数列通项公式求法。

(1)定义法(利用等差、等比数列的定义);(2)累加法(3)累乘法(n n n c a a =+1型);(4)利用公式11(1)(1)n n n S n a S S n -=⎧⎪=⎨->⎪⎩;(5)构造法(b ka a n n +=+1型)(6) 倒数法 等4.数列求和 (1)公式法;(2)分组求和法;(3)错位相减法;(4)裂项求和法;(5)倒序相加法。

5. n S 的最值问题:在等差数列{}n a 中,有关n S 的最值问题——常用邻项变号法求解:(1)当0,01<>d a 时,满足⎩⎨⎧≤≥+001m m a a 的项数m 使得m S 取最大值.(2)当 0,01><d a 时,满足⎩⎨⎧≥≤+001m m a a 的项数m 使得m S 取最小值。

也可以直接表示n S ,利用二次函数配方求最值。

在解含绝对值的数列最值问题时,注意转化思想的应用。

6.数列的实际应用现实生活中涉及到银行利率、企业股金、产品利润、人口增长、工作效率、图形面积、等实际问题,常考虑用数列的知识来解决.训练题一、选择题1.已知等差数列{}n a 的前三项依次为1a -、1a +、23a +,则2011是这个数列的 ( B ) A.第1006项B.第1007项C. 第1008项D. 第1009项2.在等比数列}{n a 中,485756=-=+a a a a ,则10S 等于 (A ) A .1023 B .1024 C .511 D .5123.若{a n }为等差数列,且a 7-2a 4=-1,a 3=0,则公差d =( )A .-2B .-12 C.12 D .2由等差中项的定义结合已知条件可知2a 4=a 5+a 3,∴2d =a 7-a 5=-1,即d =-12.故选B.4.已知等差数列{a n }的公差为正数,且a 3·a 7=-12,a 4+a 6=-4,则S 20为( A )A.180B.-180C.90D.-905.(2010青岛市)已知{}n a 为等差数列,若π=++951a a a ,则28cos()a a +的值为( A ) A .21-B .23-C .21D .236.在等比数列{a n }中,若a 3a 5a 7a 9a 11=243,则a 29a 11的值为( )A .9B .1C .2D .3 解析 由等比数列性质可知a 3a 5a 7a 9a 11=a 57=243,所以得a 7=3,又a 29a 11=a 7a 11a 11=a 7,故选D.7.已知等差数列{a n }的前n 项和为S n ,a 1+a 5=12S 5,且a 9=20,则S 11=( )A .260B .220C .130D .110解析 ∵S 5=a 1+a 52×5,又∵12S 5=a 1+a 5,∴a 1+a 5=0.∴a 3=0,∴S 11=a 1+a 112×11=a 3+a 92×11=0+202×11=110,故选D.8各项均不为零的等差数列{a n }中,若a 2n -a n -1-a n +1=0(n ∈N *,n ≥2),则S 2 009等于A .0B .2C .2 009D .4 018解析 各项均不为零的等差数列{a n },由于a 2n -a n -1-a n +1=0(n ∈N *,n ≥2),则a 2n -2a n=0,a n =2,S 2 009=4 018,故选D.9.数列{a n }是等比数列且a n >0,a 2a 4+2a 3a 5+a 4a 6=25,那么a 3+a 5的值等于A .5B .10C .15D .20解析 由于a 2a 4=a 23,a 4a 6=a 25,所以a 2·a 4+2a 3·a 5+a 4·a 6=a 23+2a 3a 5+a 25=(a 3+a 5)2=25.所以a 3+a 5=±5.又a n >0,所以a 3+a 5=5.所以选A.10. 首项为1,公差不为0的等差数列{a n }中,a 3,a 4,a 6是一个等比数列的前三项,则这个等比数列的第四项是( )A .8B .-8C .-6D .不确定答案 B解析 a 24=a 3·a 6⇒(1+3d )2=(1+2d )·(1+5d ) ⇒d (d +1)=0⇒d =-1,∴a 3=-1,a 4=-2,∴q =2. ∴a 6=a 4·q =-4,第四项为a 6·q =-8.11.在△ABC 中,tan A 是以-4为第三项,4为第七项的等差数列的公差,tan B 是以31为第三项,9为第六项的等比数列的公比,则这个三角形是(B ) A.钝角三角形 B.锐角三角形C.等腰三角形D.非等腰的直角三角形12、(2009澄海)记等差数列{}n a 的前项和为n s ,若103s s =,且公差不为0,则当n s 取最大值时,=n ( )CA .4或5B .5或6C .6或7D .7或813.在等差数列{a n }中,前n 项和为S n ,且S 2 011=-2 011,a 1 007=3,则S 2 012的值为A .1 006B .-2 012C .2 012D .-1 006答案 C 解析 方法一 设等差数列的首项为a 1,公差为d ,根据题意可得, 即⎩⎨⎧ a 1+1 005d =-1,a 1+1 006d =3,解得⎩⎨⎧a 1=-4 021,d =4. 所以,S 2 012=2 012a 1+2 012×(2 012-1)2d=2 012×(-4 021)+2 012×2 011×2 =2 012×(4 022-4 021)=2012.方法二 由S 2 011=2 011(a 1+a 2 011)2=2 011a 1 006=-2 011, 解得a 1 006=-1,则S 2 012=2 012(a 1+a 2 012)2=2 012(a 1 006+a 1 007)2=2 012×(-1+3)2=2 012.14.设函数f (x )满足f (n +1)=2f (n )+n 2(n ∈N *),且f (1)=2,则f (20)=( B )A .95B .97C .105D .192 解析 f (n +1)=f (n )+n 2,∴⎩⎪⎨⎪⎧f (20)=f (19)+192,f (19)=f (18)+182,……f (2)=f (1)+12.累加,得f (20)=f (1)+(12+22+…+192)=f (1)+19×204=97.15.已知数列{}n a 的前n 项和n S 满足1)1log 2+=+n S n (,则通项公式为(B )A.)(2*N n a n n ∈= B. ⎩⎨⎧≥==)2(2)1(3n n a n nC. )(2*1N n a n n ∈=+ D. 以上都不正确16.一种细胞每3分钟分裂一次,一个分裂成两个,如果把一个这种细胞放入某个容器内,恰好一小时充满该容器,如果开始把2个这种细胞放入该容器内,则细胞充满该容器的时间为 ( D )A .15分钟B .30分钟C .45分钟D .57分钟 二、填空题1、等差数列{a n }的前n 项和为S n ,若a 2=1,a 3=3,则S 4= 8.2.(2008·广东理,2)记等差数列{a n }的前n 项和为S n ,若a 1=21,S 4=20,则S 6= . 48 3..(2010广州一模).在等比数列{}n a 中,11a =,公比2q =,若64n a =,则n 的值为 .7 4.(2008·海南、宁夏理,4)设等比数列{a n }的公比q =2,前n 项和为S n ,则24a S = . 2155.等差数列{a n },{b n }的前n 项和分别为S n 和T n ,若S n T n =2n 3n +1,则a 100b 100=________.答案 199299 解析 a 100b 100=a 1+a 1992b 1+b 1992=S 199T 199=1992996、数列{}n a 的前n 项和记为()11,1,211n n n S a a S n +==+≥则{}n a 的通项公式 解:(Ⅰ)由121n n a S +=+可得()1212n n a S n -=+≥,两式相减得()112,32n n n n n a a a a a n ++-==≥又21213a S =+= ∴213a a = 故{}n a 是首项为1,公比为3得等比数列 ∴13n n a -=7.已知各项都为正数的等比数列{a n }中,a 2·a 4=4,a 1+a 2+a 3=14,则满足a n ·a n +1·a n +2>19的最大正整数n 的值为________.答案 4解析 设等比数列{a n }的公比为q ,其中q >0,依题意得a 23=a 2·a 4=4.又a 3>0,因此a 3=a 1q 2=2,a 1+a 2=a 1+a 1q =12,由此解得q =12,a 1=8,a n =8×(12)n -1=24-n ,a n ·a n +1·a n +2=29-3n.由于2-3=18>19,因此要使29-3n >19,只要9-3n ≥-3,即n ≤4,于是满足a n ·a n +1·a n +2>19的最大正整数n 的值为4.8.等比数列{a n }的首项为a 1=1,前n 项和为S n ,若S 10S 5=3132,则公比q 等于________.答案 -12 解析 因为S 10S 5=3132,所以S 10-S 5S 5=31-3232=-132,即q 5=(-12)5,所以q =-12.三、解答题1(2010山东理数)(18)(本小题满分12分)已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S .(Ⅰ)求n a 及n S ; (Ⅱ)令b n =211n a -(n ∈N *),求数列{}n b 的前n 项和n T . 1【解析】(Ⅰ)设等差数列{}n a 的公差为d ,因为37a =,5726a a +=,所以有112721026a d a d +=⎧⎨+=⎩,解得13,2a d ==, 所以321)=2n+1n a n =+-(;n S =n(n-1)3n+22⨯=2n +2n 。

相关文档
最新文档