仪器分析-原子发射光谱法教材

合集下载

大学《仪器分析》课件:第3章 原子光谱

大学《仪器分析》课件:第3章 原子光谱
10
例:钠原子,一个外层电子, S =1/2;因此: 2S +1 = 2;双重线; 碱土金属:两个外层电子, 自旋方向相同时, S =1/2 + 1/2 =1, M = 3;三重线; 自旋方向相反时, S =1/2 - 1/2 =0, M = 1;单重线;
11
一条谱线是原子的外层电子在两个能级之间的跃迁产生的, 可用两个光谱项符号表示这种跃迁或跃迁谱线:
第3章 原子光谱法基础
原子发射光谱法--依据每种化学元素的 原子或离子在热激发或电激发下,发射 特征的电磁辐射,进行元素定性、定量 分析的方法。 它是光学分析中产生与发展最早的一种 分析方法
1
❖ 原子发射光谱法包括三个主要的过程: 1.由光源提供能量使试样蒸发,形成气态原子,并进一步
使气态原子激发而产生光辐射;
14
四、谱线的自吸与自蚀
❖ 自吸:中心发射的辐射被 边缘的同种基态原子吸收, 使辐射强度降低的现象。
❖ 元素浓度低时,不出现自 吸。随浓度增加,自吸越 严重,当达到一定值时, 谱线中心完全吸收,如同 出现两条线,这种现象称 为自蚀。
❖ 基态原子对共振线的吸收 最严重。
15
第三节 原子发射光谱仪
❖ 光源、分光仪和检测器
的谱线,III表示二次电离离子发射的谱线。
3
二、能级与能级图
➢ 能级:电子在稳定状态所具有的能量称为能级。 ➢ 能级图:把原子系统内所有可能存在的能量为
零,高于基态的所有能量状态为激发态。
➢ 原子的能级通常用光谱项符号表示:n2S+1Lj n:主量子数;M(2S+1):谱线多重性符号; L:总角量子数; j:内量子数
例 钠原子的双重线 Na 588.996nm ; 32S1/ 2 — 32P3/ 2; Na 589.593nm ; 32S1/ 2 — 32P1/ 2;

仪器分析原子发射光谱法

仪器分析原子发射光谱法
等离子体与一般气体不同,能够导电。当电流通过时, 可以达到很高温度(10000 K)。具有类似火焰的外形, 实质是一个放电过程,而不是一个燃烧过程。具有和火 焰一样或比火焰更好的在空间和时间上的稳定性,而温 度要比火焰高得多,会增加更多的激发态原子数。等离 子体光源包括电感耦合等离子体(ICP)、直流等离子 体(DCP)和微波等离子体(MIP)。
ICP的焰炬一般具有环状结构,环状结构是ICP具有 优良分析性能的根本保证。
ICP光源分析特点

检出限低:由于ICP温度高,样品在中央通道受热而激发, 谱线强度大。检出限10-7 ~10-9g。(ICP-MS可达10-9 ~10-12g) 准确度好:温度高,基体效应小,可得到低干扰水平和高准 确度的分析结果。
7.3 分析方法
一、定性分析
不同元素的原子由于结构不同而发射各自不同的特征光谱, 根据元素的特征谱线可以确定该元素是否存在于样品中。
⒈ 灵敏线:信号强的谱线。 ⒉ 共振线:电子由高能态跃迁至基态所发射谱线。 ⒊ 第一(主)共振线:电子从最低高能态至基态所发射的 谱线。 ⒋ 最后线:被测元素含量逐渐降低时最后出现的谱线,即 最灵敏线。

各种激发光源的比较:
直流电弧 差 高 4000~7000 固体 定性 交流电弧 较好 中 4000~7000 固体 定量 火花 好 低 10000 固体 定量 ICP 良好 很高 6000~10000 溶液 定量
稳定性 蒸发温度 激发温度
分析应用
二、光谱仪
⒈ 光谱仪的基本结构
平行光管、色散元件、暗箱
2. 内标法:
按分析线与内标线强度比进行光谱定量分析的方法。 分析线对:分析线与内标线的强度比。
设分析线和内标线的强度分别为I1和I2,则 I1 = a1 C1b1, I2 = a2 C2b2, I1/ I2= a1 C1b1 /a2 C2b2

仪器分析第4章 原子发射光谱分析法

仪器分析第4章 原子发射光谱分析法

第四章原子发射光谱分析法光谱的产生主要由分析试样的蒸发过程(把样品首先挥发为气态原子或离子)及气体原子和离子的激发过程两部分组成。

发射光谱的分类:(一)线光谱:由物质的气态原子(或者离子)被激发而产生的具有一定波长的不连续的线条,又称为原子(或离子)光谱。

(二)带光谱:气态分子被激发而产生的,由一些波长非常相近的光带和暗区相间而组成,也叫分子光谱。

(三)连续光谱:固态或者液态物质激发后产生的连续的无法分辨出明显谱线的光谱。

比如炽热的碳电极发射的光谱极为连续光谱。

原子发射光谱的研究对象是被分析物质发出的线光谱,利用特征谱线的波长和强度来进行定量和定性分析。

1原理、特点和应用范围1.1原理把样品首先挥发为气态原子或离子,这些原子或离子受到高温激发或电激发会产生外层电子的跃迁,外层电子跃迁到高能态(激发态)。

处于激发态不稳定(寿命小于10-8s),迅速回到基态时,就要释放出多余的能量,若此能量以光的形式出显,既得到发射光谱。

ΔE=E2-E1=hc/λ=hυ=hσch为普朗克常数(6.626×10-34J·s),c为光速(2.997925×108m·s-1)1.2光谱分析法的特点和应用范围①分析速度快,能同时测定多种元素。

②选择性好。

③灵敏度高。

④准确度较好。

⑤另外测定试样消耗少,一般只需几毫克~几十毫克,且可在基本不损坏试样的情况下进行分析。

1.3光谱分析法的局限性➢光谱分析是一种相对的分析方法,一般需要用一套已知准确含量的标准样品对照测定,而标准样品的标定却需要用化学分析方法作基础➢理论上,所有元素都有它特征的发射光谱,但对于惰性气体和一些非金属元素,如硫、硒、碲、卤素等,因很难得到他们的测量条件,这些元素的测定灵敏度很低,或根本无法测定➢对于高含量的元素,光谱分析的准确度较差(5%~10%)➢发射光谱法只能用于元素分析,而不能确定这些元素在样品中的化合物状态2光谱分析的仪器设备2.1光源➢作用:提供足够的能量使得试样蒸发、解离、原子化、激发产生光谱会使价电子脱离原子核的束缚,使得原子成为离子,这个过程为电离。

清华大学化学系2 仪器分析-发射光谱

清华大学化学系2 仪器分析-发射光谱

1、火焰光源
2、电弧光源 分为直流光源和交流光源两种
(1)直流光源 L 阳极
220V E DC < 30A
V R A
G
阴极
分析特性 •电极温度高,弧焰中心温度为 5000-7000, 有利于试 样的蒸发 •除石墨电极产生的氰带光谱外,背景比较浅 •电弧在电极表面无常游动,且有分馏效应,重现性比 较差 •谱线容易发生自吸收现象
4、基体效应 基体效应指试样组成对谱线强度的影响。这种影 响主要发生在试样的蒸发和激发过程中。 (1)光源蒸发温度与试样成分有关 基体含大量低沸点物质——电极由低沸点物质控制, 蒸发温度低 基体含大量高沸点物质——电极由高沸点物质控制, 蒸发温度高 基体含不同沸点物质—— 出现不同的蒸发顺序,影 响谱线强度 (2)光源激发温度与试样主体成分的电离电位有关 电离电位越高,光源激发温度越高,影响谱线 强度。
S为总自旋量子数,多个价电子的总自旋量 子数是单个价电子自旋量子数的矢量和,取值为:
1 3 0, , 1, , 2,......... 2 2
J为内量子数,是原子的各价电子总轨道角动量L与 总自旋角动量S相耦合得出的,取值为:
J ( L S ), ( L S 1), ( L S 2),...... L S
冷却气(10-19 l/min) 辅助气(0-1 l/min) 气溶胶 载气(0.5-3.5 l/min)
ICP的工作原理:
当有高频电流通过线圈时,产生轴向磁场, 这时若用高频点火装置产生火花,形成的载流子( 离子与电子)在电磁场作用下,与原子碰撞并使之 电离,形成更多的载流子,当载流子多到足以使气 体有足够的导电率时,在垂直于磁场方向的截面上 就会感生出流经闭合圆形路径的涡流,强大的电流 产生高热又将气体加热,瞬间使气体形成最高温度 可达10000K的稳定的等离子炬。感应线圈将能量耦 合给等离子体,并维持等离子炬。当载气载带试样 气溶胶通过等离子体时,被后者加热至6000-7000K ,并被原子化和激发产生发射光谱。

仪器分析-第六章 原子发射光谱-zcq-3

仪器分析-第六章 原子发射光谱-zcq-3
数n ,常数,不随波长改变,均排光谱(优于棱镜之处)。 ;线色散率还与仪器的焦距有关。
00:42:12
• (a)物镜焦距f越大,线 色散率也越大.f=1m 的光栅光谱仪,称为 一米光栅光谱仪.
• (b) 光谱级次越高,线 色散率越大,实际工 作中,习惯采用倒线 色散率表示.
• © 光栅色散率不随波 长而改变,光栅光谱 为均匀色散光谱
00:42:12
(一)棱镜摄谱仪 • 组成
1、照明系统 2、准光系统3、色散系统 4、记录系统
00:42:12
棱镜
棱镜对不同波长的光具有不同的折射率,波长长的光, 折射率小;波长短的光,折射率大。
平行光经过棱镜后按波长顺序排列成为单色光;经聚焦 后在焦面上的不同位置上成像,获得按波长展开的光谱;
00:42:12
光栅的分辨率R
光栅的分辨率R 等于光谱级次(n)与光栅刻痕条数(N)
的乘积:
R nN
光栅越宽、单位刻痕数越多、R 越大。
宽度50mm,N=1200条/mm, 一级光谱的分辨率: R=1×50×1200=6×104
00:42:12
例题:某光栅光谱仪,光栅刻数为600条/mm,光栅面积 5×5 cm2,试问:
等离子体中包含分子、原子、离子、电子等各种粒子, 它具有电中性和导电性。
等离子体光源:将高频电能通过电感,耦合到等离子体,使 等离子体放电的一种装置。
00:42:12
1、 ICP-AES的结构
structure of ICP-AES
1. 高频发生器和感应圈 由高频发生器产生高频
振荡电流:通过感应线圈耦 合到等离子体炬管上,产生 交变磁场。
当载气+试样,通过中间通道时,被 加热、解离、激发,产生发射光谱。

仪器分析笔记 《原子发射光谱分析》

仪器分析笔记 《原子发射光谱分析》

第三章原子发射光谱分析§3.1 光化学分析法概述3.1.1 光化学分析法概述1、光学分析法的分类光学分析法分为光谱法和非光谱法两类。

✓光谱法:基于物质与辐射能作用时,测量由物质内部发生量子化的能级之间的跃迁而产生的发射、吸收或散射辐射的波长和强度进行分析的方法。

✓非光谱法:不涉及物质内部能级的跃迁,是基于物质与辐射相互作用时,电磁辐射只改变了传播方向、速度或某些物理性质,如折射、散射、干涉、衍射、偏振等变化的分析方法(即测量辐射的这些性质)。

属于这类分析方法的有折射法、偏振法、光散射法、干涉法、衍射法、旋光法和圆二向色性法等。

2、电磁波谱电磁辐射按照波长(或频率、波数、能量)大小的顺序排列就得到电磁波谱。

表3-1-1 各光谱区的光谱分析方法3、各种光分析法简介A、发射光谱法∙γ射线光谱法∙x射线荧光分析法∙ 原子发射光谱分析 ∙ 原子荧光分析法 ∙ 分子荧光分析法 ∙ 分子磷光分析法 ∙ 化学发光分析 B 、吸收光谱法 ∙ 莫斯堡谱法∙ 紫外可见分光光度法 ∙ 原子吸收光谱法 ∙ 红外光谱法∙ 顺磁共振波谱法 ∙ 核磁共振波谱法 C 、散射∙ Roman 散射4、原子发射光谱分析法的特点①可多元素同时检测:各元素同时发射各自的特征光谱;②分析速度快:试样不需处理,同时对几十种元素进行定量分析(光电直读仪); ③选择性高:各元素具有不同的特征光谱;④检出限较低:10~0.1μg ⋅g -1(一般光源);ng ⋅g -1(ICP ) ⑤准确度较高:5%~10% (一般光源); <1% (ICP);⑥ICP-AES 性能优越:线性范围4~6数量级,可测高、中、低不同含量试样; ⑦非金属元素不能检测或灵敏度低。

3.1.2 原子光谱与原子光谱分析法直接相关的原子光谱理论,主要指原子光谱的产生和谱线强度理论,这就是光谱定性、定量分析的理论依据。

1、原子光谱的产生量子力学认为,原子光谱的产生,是原子发生能级跃迁的结果,而跃迁几率的大小则影响谱线的强度,并决定了跃迁规则。

第二章+原子发射光谱分析法

第二章+原子发射光谱分析法
J 的取值范围: L + S, (L + S – 1), (L + S – 2), …, L - S
(2) 钠原子的第一激发态 :(3p)1 n=3 L=l=1 S = 1/2 (2S+1) = 2 J = 3/2,1/2
光谱项:32P
光谱支项 : 32P1/2 和 32P3/2
由于轨道运动和自旋运动的相互作用, 这两个光 谱支项代表两个能量有微小差异的能级状态。
J 的取值范围:
L + S, (L + S – 1), (L + S – 2), …, L - S
谱线多重性符号:2S+1(M)
钠原子由第一激发态向基态跃迁发射两条谱线
第一激发态光谱支项 : 32P1/2 和 32P3/2 基态光谱项:32S1/2
589.593 nm ,588.996 nm
能量 原子能级图 实际光谱项
主量子数 n: 1,2,3…
电子运动状态的描述
原子轨道描述: n、l、m
角量子数 l : 0,1,2, …n-1 磁量子数 ml(m): l~-l 自旋量子数 ms(s): 1/2
基态Na原子的核外电子排布: (1s)2(2s)2(2p)6(3s)1
单价电子原 子电子能级
5
(二)原子能级和能级图
单、多价电子 原子电子能级
光谱定量公式推导:
激发光源中的电离
气体(等离子体)
离解
MX
M+ X
试样
元素浓度: C
M + e 电离 M+ + 2e
NMX NM NM +
NM = N0 + N2 + ···+ Ni + ···

仪器分析 第7章 原子发射光谱分析

仪器分析 第7章 原子发射光谱分析

摄谱法原理 ⑴ 摄谱步骤
安装感光板在摄谱仪的焦面上
激发试样,产生光谱而感光
显影,定影,制成谱板 特征波长—定性分析 特征波长下的谱线强度—定量分析
⑵ 感光板 玻璃板为支持体,涂抹感光乳剂(AgBr+明胶+增感剂) 感光:
2AgX+2hυ→ Ag(形成潜影中心)+X2
OH
O
显影: 对苯二酚
乳剂特性曲线:
感光板的反衬度
以黑度S与曝光量的对数lgH作图 在正常曝光部分:
γ
S lg H lg H i lg H i
α
乳 剂 特 性 曲 线
S lg( It ) i
Hi为感光板的惰延量
谱线黑度与辐射强度的关系:
S lg( It ) i
定量分析中,更主要是采用 内标法,测量分析线对的相 对强度
磁辐射,通过测定其波长或强度进行分析的方法
不涉及能级跃迁,物质与辐射作用,使其传播方 向等物理性质发生变化,利用这些改变进行分析 的方法
光分析法
非光谱分析法
光谱分析法
圆 折 二 射 色 法 性 法
X 射 干 线 涉 衍 法 射 法
原子光谱分析法 旋 光 法
X 射 线 荧 光 光 谱
分子光谱分析法
分 子 荧 光 光 谱 法 分 子 磷 光 光 谱 法 核 磁 共 振 波 谱 法
e. 波长尽可能靠近
(3) 摄谱法中的内标法基本关系式
• 摄谱法中谱线黑度S与辐射强度、浓度、曝光时间 、感光板的乳剂性质及显影条件有关,固定其他 条件不变,则感光板上谱线的黑度仅与照射在感 光板上的辐射强度有关
i0 S lg i
i0 未曝光部分的透光强度 i 曝光部分的透光强度

第4章 原子发射光谱法

第4章 原子发射光谱法

23:23
6. 弧焰中原子、离子浓度的比例与元素的电离电位有关。电离 电位越低,离子浓度越大,离子线越强,电离电位越高,离子 浓度越小,原子线越强。
元素的电离电位,在周期表中,从左到右逐渐增加,从上到下 逐渐减少,故周期表中左下角元素Cs、Fr最易发出离子线,右 上角的元素B、C、Si、P很难发出离子线,即使原子线也很难激 发,多发生在200 nm以下的远紫外区。
23:23
三、 发射光谱法的局限性 (1)不宜定量分析,误差30~50%。 由于发射光谱法是建立在经验基础上,且样品组成的影响一般 比较严重,必须采用其组成与分析样品相匹配的参比样品,这 是限制该法检出能力、准确度及分析速度进一步提高的主要障 碍之一。 (2) 不适宜非金属元素分析。 理论上周期表中所有元素都可用发射光谱法测定。但是对于一 些非金属元素一般很难得到分析它们所必须的条件,这些元素 检出限很差或者无法分析。目前可用发射光谱法分析的元素仍 然主要局限在金属和少数非金属元素。 (3) 发射光谱法只能用于元素分析,而不能确定这些元素在样品 中存在的化合物状态。
I
Pj P0
A h N 0 e

E j E0 kT
(4 - 3)
(3)基态原子数
谱线强度与基态原子数成正比。
在一定条件下,基态原子数与试样中该元素浓度成正
比。
因此 在一定的实验条件下谱线强度与被测元素浓度成正 比,这是光谱定量分析的依据。
23:23
4.3 元素的光谱性质 一、元素的光谱性质与元素周期表的关系 所谓元素的光谱性质是指元素的电离电位、激发难易、谱线特 征、谱线强度以及元素的挥发性等。元素的这些性质与元素的 原子结构有关,因而,它与周期表有一定关系,而且有一定规 律性。

第七章 原子发射光谱分析

第七章 原子发射光谱分析
1 、电磁辐射(电磁波,光) :以巨大速度通过空间、不需要 任何物质作为传播媒介的一种能量1Βιβλιοθήκη 仪器分析-原子发射光谱分析
2、电磁辐射的性质:具有波、粒二象性
(1)波动性
(2)粒子性

c

E h h
c

c:光速;:波长;ν:频率;E :能量; h:普朗克常数 (6.6262×10-34 J ·s) 3、电磁波谱:电磁辐射按波长的顺序排列
3.光谱法与非光谱法的区别:


光谱法:内部能级发生变化 原子吸收/发射光谱法:原子外层电子能级跃迁 分子吸收/发射光谱法:分子外层电子能级跃迁 非光谱法:内部能级不发生变化 仅测定电磁辐射性质改变
6
仪器分析-原子发射光谱分析
§ 7-2 原子发射光谱分析的基本原理
一、定义 根据待测物质的气态原子或离子受激发后所发射的
31
仪器分析-原子发射光谱分析
三、摄谱法的观测设备
1、光谱投影仪(映谱仪)——放大投影谱片 光谱定性分析,一般放大倍数为20倍 2、测微光度计(黑度计)——测量感光板上所记录的谱线的 黑度,用于光谱定量分析
(1)感光板
玻璃板为支持体,涂抹感光乳剂 (AgBr+明胶+增感剂)。
激发态
基态

(3)散射:丁铎尔散射、拉曼散射 (4)折射和反射 (5)干涉和衍射 根据特征光谱的波长可进行定 性分析;根据光谱峰的强弱与 物质含量的关系进行定量分析。
4
仪器分析-原子发射光谱分析
三、光学分析法分类
1、光谱法:
光谱法与非光谱法
利用物质与电磁辐射作用时,物质内部发生量子化能级跃迁而 产生的吸收、发射或散射辐射等电磁辐射的强度随波长变化的 定性、定量分析方法。

仪器分析-原子光谱法

仪器分析-原子光谱法

吸收光谱法
紫外可见分光光度法 原子吸收光谱法 红外光谱法 顺磁共振波谱法 核磁共振波谱法
散射
Roman 散射
迁 能 级 波长λ 类型 核能级 <0.005nm
KL层电 0.005~10nm 子跃迁 10~200nm
外 层 电 200~400nm 子跃迁
400~800nm
分子振 动能级
(2)检测元件
摄谱法之感光板
光电法之光电管,光电倍增管
固体成像器件 电荷注入检测器(CID) 电荷耦合检测器(CCD)
262000个点阵
(3)光谱仪(分光元件和检测元件的组合) 平面光栅(棱镜)+摄谱
凹面光栅+光电倍增管(二极管)阵列
全谱直读光谱仪- 中阶梯光栅+CID/CCD
化合物离解(气态、基态原子)—激发 (激发态原子)—基态(发射光谱)
摄谱 分析(包括定性和定量)
二、光谱分析仪器
光源与样品→单色器→检测器→读出器件
1. 光源
(1)概述
光源的作用: 蒸发、解离、原子化、激发、 跃迁。光源是决定分析的灵敏度和准确度 的重要因素。
光源的要求:比较稳定,>5000K,重现性 好,背景小,谱线简单,安全
(2)常用光源
直流电弧 交流电弧 电火花 电感耦合等离子体
ห้องสมุดไป่ตู้
直流电弧
电路结构及工作原理: 优点:分析绝对灵敏度高 缺点:重现性差、不宜定量 应用范围
试样引入激发光源的方法: 固体试样 溶液试样 气体试样:放电管
交流电弧
电路结构及工作原理: 优点:稳定性较好,适合定量。操作安全简便,
2.基本原理

《现代仪器分析教学》3.原子发射光谱分析法

《现代仪器分析教学》3.原子发射光谱分析法
整理课件
2、光谱定量分析
(1) 发射光谱定量分析的基本关系式
在条件一定时,谱线强度I 与待测元素含量c关系为: I=ac
a为常数(与蒸发、激发过程等有关),考虑到发射光谱 中存在着自吸现象,需要引入自吸常数 b ,则:
I acb
(自吸:原子在高温时被激发,发射某一波长的谱 线,而处于低温状态的同类原子又能吸收这一波长的 辐射,这种现象称为自吸现象整理)课件
3.激发电位:原子中的电子从基态跃迁至激发态所需的 能量称为激发电位。
整理课件
4、原子发射光谱的产生:气态原子或离子的核外层电 子当获取足够的能量后,就会从基态跃迁到各种激发 态,处于各种激发态不稳定的电子(寿命<10-8s)迅速回 到低能态时,就要释放出能量,若以电磁辐射的形式
释放能量,即得到原子发射光谱。
(quantitative spectrometric analysis)
1.光谱半定量分析
与目视比色法相似;测量试样中元素的大致浓度范 围;
谱线强度比较法:将被测元素配制成质量分数分别 为1%,0.1%,0.01%,0.001%四个标准。将配好的标样 与试样同时摄谱,并控制相同条件。在摄得的谱线 上查出试样中被测元素的灵敏线,根据被测元素的 灵敏线的黑度和标准试样中该谱线的黑度,用目视 进行比较。
2)光栅摄谱仪
光栅摄谱仪采用衍射光栅代替棱镜作为色散元件。 特点:适用波长范围广,色散和分辨能力大
整理课件
3.4 发射光谱分析的应用
3.4.1 光谱定性分析
1、定性依据:元素不同→电子结构不同→光谱不同 →特征光谱 2、定性分析基本概念 分析线:复杂元素的谱线可能多至数千条,只选择其 中几条特征谱线检验,称其为分析线; 最后线:浓度逐渐减小,谱线强度减小,最后消失的 谱线;

仪器分析第三章发射光谱

仪器分析第三章发射光谱
试样蒸发、激发产生辐射→色散分光形成 光谱→检测、记录光谱→根据光谱进行定性 或定量分析
发射光谱的分析基础:
定性分析:特征谱线的波长 定量分析:特征谱线的强度(黑度),主要的
26
二、原子发射光谱的分析仪器
光源 分光系统 检测器 信号显示系统
27
光源
作用:提供稳定,重现性好的能量,使试样中的被 测元素蒸发、解离、原子化和激发,产生电子跃迁, 发生光辐射
19
4、原子发射光谱图
元素标准光谱图
20
21
5、谱线的自吸和自蚀
自吸和自蚀
影响自吸和自蚀的因素 谱线的固有强度 弧层厚度 溶液浓度
22
自吸和自蚀
发射光谱是通过物质的蒸发、激发、 迁移和射出弧层而得到的。在一般光 源中,是在弧焰中产生的,弧焰具有 一定的厚度,如下图:
a b
23
a
自吸和自蚀
发射光谱的分析过程 发射线的波长 发射谱线的强度 原子发射光谱图 谱线的自吸和自蚀
3
1、发射光谱的分析过程
激发态原子
外 层 电 子 跃 迁
基态原子
光电法 摄谱法
原子化
热或电
光电倍增管 感光板
气态分子
气 化
样品分子
4
原子发射光谱示意图
5
一般情况下,原子处于基态, 在激发光源作用下,原子获得能 量,外层电子从基态跃迁到较高 能态变为激发态 ,约经10-8 s,外 层电子就从高能级向较低能级或 基态跃迁,多余的能量的发射可 得到一条光谱线。
第三章 原子发射光谱法
Atomic Emission Spectrometry,AES
1
特点: 优点——灵敏度高、简便快速、可靠性高、

仪器分析第三章AES

仪器分析第三章AES
粒子束增强AES技术
将样品离子束引入电离室,通过测量离子能量和电荷态来分析元素 组成。
AES分析方法
定量分析
通过测量特征X射线的强度,确定样品中元素的含 量。
半定量分析
利用特征X射线确定样品中是否存在某种元素,但 不给出具体含量。
表面成分分析
利用AES分析样品表面的元素组成,适用于表面污 染、镀层等研究。
02
AES仪器设备
AES仪器的基本结构
激发源
真空系统
用于产生高能电子束或X 射线束,激发样品中的
原子或分子。
保持分析区域的超高真 空,减少背景干扰。
检测器
用于捕捉和分析被激发 的原子或分子的特征辐
射。
数据处理系统
用于处理和显示实验数 据,提供最终的分析结
果。
AES仪器的工作原理
样品激发
辐射的检测与数据分析
样品处理过程
干燥
去除样品中的水分,以免影响 AES分析结果。
研磨
将样品研磨成细粉末,以提高AES 信号的强度。
过滤
去除样品中的杂质和颗粒物,以提 高AES分析的纯度和分辨率。
样品制备与处理中的注意事项
防止污染
在整个样品制备与处理过程中, 要确保使用的工具、容器和实验
室环境清洁无污染。
保持干燥
对于某些样品,干燥是非常重要 的步骤,要确保使用适当的干燥
AES实验操作流程
实验设置
根据实验需求选择合适的电子 束能量、扫描速率等参数。
数据处理
对采集的数据进行背景校正、 校正标定等处理,提取元素含 量信息。
样品准备
选择适当的样品制备方法,如 研磨、抛光等,以暴露出干净 的表面。
数据采集

分析化学(仪器分析)第六章原子发射光谱法

分析化学(仪器分析)第六章原子发射光谱法

2. 光谱定量分析
(1) 发射光谱定量分析的基本关系式
在条件一定时,谱线强度I 与待测元素含量c关系为:
I=ac
a为常数(与蒸发、激发过程等有关),考虑到发射光谱中 存在着自吸现象,需要引入自吸常数 b ,则:
I a cb lg I b lg c lg a
发射光谱定量分析的基本关系式,称为塞伯-罗马金公式 (经验式)。自吸常数 b 随浓度c增加而减小(自吸越大,b 值越小);当浓度很小,自吸消失,b=1。
长小的则衍射角小,谱线靠近0级;波长大的,衍射角大 ,谱线距0级较远; 同样对于二级光谱而言,也有同样的情况。但可能造成二 级光谱与一级光谱的重叠,而且具有最大强度的光处于0级 (为未分开的白光)
平面反射光栅(闪耀光栅)
将平行的狭缝刻制成具有相同形状的刻槽(多为三角形 ),这时入射线的小反射面与光栅平面夹角一定,反射线 集中于一个方向,从而使光能集中于所需要的一级光谱上。
E1
由激发态直接跃迁至基态时辐射的谱线称为共振线。
由第一激发态直接跃迁至基态的谱线称为第一共振线。
3. 最灵敏线、最后线、分析线
E0
第一共振线一般也是元素的最灵敏线。
当该元素在被测物质里降低到一定含量时,出现的最后一条谱线, 这是最后线,也是最灵敏线。用来测量该元素的谱线称分析线。
4. 原子线、离子线
Iij ∝ C 定量分析的依据
不同温度(T)下的原子发射光谱(nm)
1.4 谱线的自吸与自蚀
等离子体:以气态形式存在的包含分子、离子、电子等粒子 的整体电中性集合体。
自吸:原子在高温时被激发,发射某一波长的谱线,而处于 低温状态的同类原子又能吸收这一波长辐射的现象。
I = I0e-ad

仪器分析教案第四章原子发射光谱1

仪器分析教案第四章原子发射光谱1

21:01:57
(4)投影系统:感光板或光电倍增管。
作用:使经过色散后不同波长的单色平行光束聚焦 在感光板上,形成按波长顺序排列的狭缝像——光 谱,或变成电信号进行记录。
21:01:57
三、检测器 按接受光辐射的方式分类,常用的检测方法有: 目视法、摄谱法和光电法 A.目视法→看谱仪;可见光谱区,钢铁及冶金现 场分析。 B.摄谱法 →摄谱仪;感光板作检测器。
The rationale of Atomic emission spectrum
三、原子发射光谱分析的 一般步骤
The process of Atomic emission spectrum analysis
21:01:57
第一节
原子发射光谱的基本原理
激发态
1.原子发射光谱
定义:原子发射光谱分
析(AES)是根据原子所发射
体炬管、雾化器三部分组成。
21:01:57
高频磁场→感应线圈产生电火花触发少 量气体产生电离→带电粒子在高频交变电场 的作用下高速运动→碰撞气体原子→迅速、 大量电离→产生一股垂直于管轴方向的环形 涡电流→形成几百安的感应电流→瞬间就将 气体加热到近10000K的高温→在管口形成一 个火炬状的稳定的等离子体→试样由焰炬内 管喷射到等离子体内进行蒸发、原子化和激 发。
21:01:57
Ⅰ主要部件:四部分组成
(1)照明系统:由透镜组成。一个或三个。
作用:使光源发射的辐射均匀地照明人射狭缝,使 感光板所得的谱线每部分都很均匀。
(2)准光系统:包括入射狭缝和准直镜。 作用:把入射光变成平行光束照射到棱镜上。 (3)色散系统:由一个或多个棱镜或光栅组成。 作用:使通过的复合光,成为按一定波长顺序排列 的单色平行光束。

仪器分析原子发射光谱法

仪器分析原子发射光谱法

△E = E2-E1 = hυ= hc/λ Na (1s)2 (2s)2 (2p)6 (3s)1, 3p1、3d1、4s1、4p1、4d1、4f1、 ……
每一条发射谱线的波长取决于跃迁前后两个能级(E2, E1)的差。由于各种元素的原子具有不同的核外电子结构, 根据光谱选律,特定元素的原子可产生一系列不同波长的特 征光谱(组)。原子的能级是量子化的,原子光谱是线状光 谱。通过光谱的辨认和谱线强度的测量可进行元素的定性、 定量分析,这就是原子发射光谱法(AES)。
原子光谱是原子外层电子在不同能级间跃迁的结果。在量 子力学中,电子的运动状态可用四个量子数, 即主量子数n、 角量子数l、磁量子数ml和自旋量子数ms来描述。
主量子数n表示核外电子离核的远近,n值越大,电子的能 量越高,电子离核越远。n值取为1,2,3,…任意正整数。
角量子数l 表示电子在空间不同角度出现的几率,即电子云 的形状,也代表电子绕核运动的角动量。 l 取小于n的整数, 0,1,2,…,n-1。相对应的符号是什么?
在n、L、S、J四个量子数中,n、L、S 确定后,原子 的能级也就基本确定了,所以根据n、L、S 三个量子数 就可以得出描述原子能级的光谱项:
n2S+1L
式中2S+1叫做谱项的多重性。在L≥S 时,2S+1就是内 量子数J可取值的数目,也就是同一光谱项中包含的J 值相同、能量相近的能量状态数。习惯上将多重性为1、 2、3的光谱项分别称作单重态、双重态和三重态。把J 值不同的光谱项称为光谱支项。用下式表示:
1、光源 将试样中的元素转变为原子(或离子) 的过程称为原子化。原子化、激发和发射是在 光源中进行的。
原子发射光谱分析使用的仪器设备主要包括 激发光源和光谱仪两个部分。

仪器分析原子发射光谱

仪器分析原子发射光谱
对原子化器旳基本要求:必须具有足够高旳原子化效率; 必须具有良好旳稳定性和重现性;操作简便及低旳干扰水平等。
一、 火焰原子化器
预混合型原子化器 由雾化器、雾化室和燃 烧器三部分构成。
(1)雾化器 又称喷雾器,其作用是吸入试样溶液并将其 雾化,使之形成直径为微米级旳气溶胶。目前应用最广旳是气 动同心型喷雾器,如图所示。
19世纪,1929年瑞典农学家 Lwndegardh 用空气乙炔火焰,气动喷雾摄谱法进行火焰光度分析。
1955年 由澳大利亚物理学家 Walsh 和 荷兰科 学家 Alkemade 发明了原子吸收光谱分析技术, 并用于化学物质旳定量分析。
1976以来,因为微电子技术旳发展使原子吸收技 术旳应用不断进步,衍生出了石墨炉原子化技术、 塞曼效应背景校正等先进技术,尤其在临床检验、 环境保护、生物化学等方面应用广泛。
• 程序升温方式
• 通常在100~1800℃内进行灰化,以除去基体或其 先通小 它干扰元素;
电流
进行试 • 温度可根据需要选定,最高可达3000℃。
样原子 化
• 测定后,在下一个试样进样前,将石墨管加高温空烧一段时
高温除 残
间,以便将前一试样所遗留的待测元素挥发掉,以减小或除 去上一试样对下一试样所产生的记忆效应。
2、 劳伦茨变宽
被测元素原子与其他元素旳原子(异种粒子)相互碰撞引 起旳谱线变宽。劳伦茨变宽随原子区内原子蒸气压力增大和温 度升高而增大。在一种大气压下,在常用火焰温度下,大多数 元素共振线旳劳伦茨变宽ΔνL与多普勒变宽具有相同旳数量级。
8.2.3 积分吸收和峰值吸收
一条原子吸收线是由若干极为精细旳、频率相差甚小旳 光波所构成(左下图)。若按吸收定律求得各相应旳吸收系 数,则可绘制出相应旳吸收曲线(右下图)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当原子发射谱线的强度与发射粒子的浓度相关时, 则便可能利用该谱线的强度进行定量分析。当原子 外层电子在高能级Em和低能级Ek之间跃迁时,其发 射谱线的强度正比于:
1、两能级之间的能量差;
2、在高能级Em上的粒子总数nm; 3、单位时间内在两能级间可能的跃迁次数,其数值 以跃迁几率Amk表示。
第二节 光谱分析仪器
磁量子数ml表示电子云在空间的不同取向。ml值取为- l ≤ml ≤+l ,可以取ml =0,±1,±2,……±l。同一个l 值,磁量 子数 ml 有(2l+1)个不同的数值。
自旋量子数ms表示电子的自旋。ms的取值为ms=±1/2,分别 表示电子的自旋运动有顺时针方向和反时针方向。
钠原子价电子的运动状态
(2) L的差值为1,即△L=±1,跃迁只允许在S与P、P与S 或D与P之间,等等。
(3) △S=0,单重态只能跃迁到单重态,三重态只能跃迁到 三重态。
(4) J值相等或差值为1,即△J=0,±1。但当J=0,△J=0 的跃迁是禁阻的。
以上条件称为原子光谱选律或选择定则。
每一光谱支项还包括(2J+1)个可能的状态,在 无外加磁场时它们的能级是相同的。当在外加磁 场作用下可分裂为(2J+1)个能级,一条谱线分 裂为(2J+1)条谱线,这种效应称为Zeeman效 应。当在外加强电场作用下,也可产生谱线分裂 效应,这种效应称为Stark效应。
△E = E2-E1 = hυ= hc/λ Na (1s)2 (2s)2 (2p)6 (3s)1, 3p1、3d1、4s1、4p1、4d1、4f1、 ……
每一条发射谱线的波长取决于跃迁前后两个能级(E2, E1)的差。由于各种元素的原子具有不同的核外电子结构, 根据光谱选律,特定元素的原子可产生一系列不同波长的特 征光谱(组)。原子的能级是量子化的,原子光谱是线状光 谱。通过光谱的辨认和谱线强度的测量可进行元素的定性、 定量分析,这就是原子发射光谱法(AES)。
在n、L、S、J四个量子数中,n、L、S 确定后,原子 的能级也就基本确定了,所以根据n、L、S 三个量子数 就可以得出描述原子能级的光谱项:
n2S+1L
式中2S+1叫做谱项的多重性。在L≥S 时,2S+1就是内 量子数J可取值的数目,也就是同一光谱项中包含的J 值相同、能量相近的能量状态数。习惯上将多重性为1、 2、3的光谱项分别称作单重态、双重态和三重态。把J 值不同的光谱项称为光谱支项。用下式表示:
1、光源 将试样中的元素转变为原子(或离子) 的过程称为原子化。原子化、激发和发射是在 光源中进行的。
原子发射光谱分析使用的仪器设备主要包括 激发光源和光谱仪两个部分。
对于多外价电子的原子要比单价电子的原子复杂。 价电子可用量子数n,L,S和J来描述。
n为主量子数,与描述核外电子运动状态的主量子数n的 意义相同。
L为总轨道角量子数。各价电子角动量相互作用,按照 一定的方式耦合成原子总的量子化轨道角动量。
如:对于两个价电子的原子,L只能取下列数值:
(l1 l2 ),(l1l2 1),(l1 l2 2) , l1 l2
S可取下列数据:
S
N 2
,
N 2
1,
N 2
2, 1 2
或0
当价电子数为偶数时,S值为零或正整数,价电子数
为奇数时,S值为半整数。
J为总内量子数。它是原子中各价电子总轨道角动量与 总自旋角动量相耦合得到的原子总角动量的量子数。J 可取以下数值。
J=L+S,L+S-1,L+S-2,…… |L-S|
原子光谱是原子外层电子在不同能级间跃迁的结果。在量 子力学中,电子的运动状态可用四个量子数, 即主量子数n、 角量子数l、磁量子数ml和自旋量子数ms来描述。
主量子数n表示核外电子离核的远近,n值越大,电子的能 量越高,电子离核越远。n值取为1,2,3,…任意正整数。
角量子数l 表示电子在空间不同角度出现的几率,即电子云 的形状,也代表电子绕核运动的角动量。 l 取小于n的整数, 0,1,2,…,n-1。相对应的符号是什么?
n2S+1LJ
在磁场作用下,同一光谱项会分裂成2J+1个不同的支 能级。外磁场消失,分裂支能消失,此种现象称为能 级简并。2J+1为能级的简并度。
原子内电子的跃迁不可能在所有的两个能级之间发生,有些 跃迁是禁阻的,有些跃迁是允许的。只有符合下列规则的两 光谱项之间才能发生跃迁。
(1)△n=0或任意正整数。
即可取l1+l2到|l1-l2|,依次递减1的所有数值。
例如,对价电子组态为np1nd1的原子,l1=1,l2=2,于是 L可取3、2、1三个数值。L的数值0、1、2、3…分别用 大写旋角动量耦合后
所得自旋角动量的量子数。若原子有N个价电子,其
原子光谱法
原子吸收光谱法(AAS) 原子荧光光谱法(AFS) 与原子外层电子跃迁有关 原子发射光谱法(AES) X-射线光谱法——与原子内层电子跃迁有关
一般情况下,原子的核外电子处于最低的能量状态,称为 基态。当外层电子吸收能量时会跃迁到较高的电子能态而转变 为激发态(这个过程称为激发)。处于激发态的电子很不稳定, 会迅速返回基态或较低的能态,并释放出多余的能量,这种能 量往往以一定波长的电磁波的形式辐射出去,产生线光谱。
原子发射光谱法
Atomic Emission Spectrometry, AES
第一节 基本原理 AES的原理 第二节 光谱分析仪器
1、 光源 2、 光谱仪 第三节 原子发射光谱分析方法 一、 光谱定性分析 二、 光谱定量分析 第四节 应用
3、 观测设备
第一节 基本原理
一、 AES的原理
利用原子(离子)所发射的辐射或辐射与原子(离子) 的相互作用而进行分析的一类方法称为原子光谱法。
激发电位/eV,共振线,离子线 原子发射谱线(Ⅰ),一次电离的离子发射的谱线(Ⅱ),二次 电离的离子发射的谱线(Ⅲ),…/ Å或nm。
当辐射跃迁的低能级是原子的基态能级时, 该跃迁称为共振跃迁,所发射的谱线称为共 振线。从最低激发态跃迁到基态所发射的谱 线称为第一共振线或主共振线。
二、 谱线的强度
相关文档
最新文档