解一元一次方程(二)

合集下载

解一元一次方程(2)

解一元一次方程(2)
7x=5x-4
5x+2=7x-8
2x+5=25-8x
8x-2=7x-2
2x+3=11-6x
3x-4+2x=4x-3
10y+7=12-5-3y
学生尝试解答,讨论辨析
先让学生自主探求,学生自主总结出移项法则——移项要变号.
认真听讲,注意格式
进一步认识到解方程的基本变形,感悟了解方程过程中的转化思想,求方程的解就是将方程变形为x=a的形式
3、合并同类项法则学生可能已淡忘,适时进行整式的加减法的专项训练.教训:不要求学生“-x+2x=(-1+2)x=1x=x”谨小慎微,步子小了,也会拌自己的脚.
4、以练促讲,以练代讲.当堂检测,即时反馈.
教师活动
学生活动
解方程(写出解答过程中的第一步):
(1)x+2=7→;(2)3+2x=1+x→;
(3)-x+3=-2→;(4)2x-3=1→;
(5)-2x+9=-5→;(6)3+4x=1-2x→.
结合上面问题与课本
例2解方程4x-15=9
例3解方程2x=5x-21
牢记:从等式左边移到等式右边的项要变号;从等式右边移到等式左边的项也要变号.“叛变”了嘛!
板书设计
情境创设
1、
2、
例1:……
……
……
例2:……
……
……
习题……
……
……
作业布置
P102
课后随笔
1、学生从利用逆运算解方程到用移项法则解方程要有个过程,不宜操之过急.在移项时,学生常犯的错误是忘记变号,这主要是学生不熟悉移项法则,要解题策略的多样化.另外,注意解题格式的规范化和检验的必要性.
能否直接把等式左边的-15改变符号移到等式右边?方程4x-15=9与4x=9+15的差别在哪儿?

3.3-解一元一次方程—去括号与去分母(第1、2、3课时合集)

3.3-解一元一次方程—去括号与去分母(第1、2、3课时合集)
如何正确地去括号以及实际问题中的相等关系的寻找和确定.
(一)提出问题,建立模型
问题1:某工厂加强节能措施,去年下半年与上半年
相比,月平均用电量减少2 000 kW·h(千瓦·时),
全年用电15 万 kW·h.这个工厂去年上半年每月平均
用电是多少?
温馨提示:1 kW·h的电量是指1 kW的电器1 h的用电量.
作业:
教科书第99页习题3.3第1,2题.
3.3 解一元一次方程(二)
——去括号与去分母 (第2课时)
解下列方程: (1) 10x-4(3-x)-5(2+7x)=15x-9(x-2); (2) 3(2-3x)-3[3(2x-3)+3]=5.
(1)10x-4(3-x)-5(2+7x)=15x-9(x-2);
题目:一个两位数,个位上的数是2,十位 上的数是x,把2和x对调,新两位数的2倍 还比原两位数小18,你能想出x是几吗去?括号错
移项错
小方: 解:(10x+2)-2( x+20)=18
去括号,得 10x+2-2 x-20=18
移项,得 10x-2x=18+20+2
合并同类项,得 8 x=40
系数化为1,得
系数化为1
x= 7 16
思考:解含分数系数的一元一次方程的步骤包括哪些?
1.解一元一次方程的一般步骤包括: 去分母、去括号、移项、合并同类项,系数化为1.
2.通过这些步骤可以使以x为未知数的方程逐步向 着x=a的形式转化,这个过程主要依据等式的基本 性质和运算律等.
3.巩固新知 例题规范
例3 解下列方程:
2(x+3)=2.5(x-3) 去括号,得 2x+6=2.5x-7.5
往返路程相等
移项及合并,得 0.5x=13.5

人教版数学七年级上学期: 解一元一次方程(二)同步练习

人教版数学七年级上学期: 解一元一次方程(二)同步练习

3.3 解一元一次方程 水平检测试题一、精心选一选(每小题5分,共30分)1.解方程时,移项法则的依据是( ).(A )加法交换律 (B )加法结合律 (C )等式性质1 (D )等式性质22. 解方程2(3)5(1)3(1)x x x +--=-,去括号正确的是( ).(A )265533x x x +-+=- (B )23533x x x +-+=-(C )265533x x x +--=- (D )23531x x x +-+=-3.解方程371123x x -+-=的步骤中,去分母一项正确的是( ). (A )3(37)226x x --+= (B )37(1)1x x --+=(C )3(37)2(1)1x x ---= (D )3(37)2(1)6x x --+=4.若312x +的值比223x -的值小1,则x 的值为( ). (A )135 (B )-135 (C )513 (D )-5135.解方程14(1)2()2x x x --=+步骤下: ①去括号,得4421x x x --=+②移项,得4214x x x +-=+③合并同类项,得35x =④系数化为1,得53x =检验知:53x =不是原方程的根,说明解题的四个步骤有错,其中做错的一步是( ).(A )① (B )② (C )③ (D )④6. 某项工作由甲单独做3小时完成,由乙独做4小时完成,乙独做了1小时后,甲乙合做完成剩下的工作,这项工作共用( )小时完成.(A )79 (B )67 (C )167 (D )157二、耐心填一填(每小题5分,共30分) 7.当x =_____时,28x +的值等于-14的倒数. 8.已知236(3)0x y -++=,则32x y +的值是________.9.当x =_____时,式子1(12)3x -与式子2(31)7x +的值相等. 10. 在公式y=kx+b 中,b=-3,x=2,y=3,则k=_______.11.一列火车匀速驶入长300米的隧道,从它开始进入到完全通过历时25秒钟,隧道顶部一盏固定灯在火车上垂直照射的时间为10秒钟,则火车的长为________.12. 一艘轮船航行在A 、B 两码头之间,已知水流速度是3千米/小时,轮船顺水航行需要5小时,逆水航行需要7小时,则A 、B 两码头之间的航程是_________千米.三、用心想一想(40分)13.(10分)解下列方程:(1)5(2)3(27)x x -=-;(2)123123x x +--=; 14.(8分)已知关于x 的方程132233x m m x x x -+=+=-与 的解互为倒数,求m 的值. 15. (12分)有一个只允许单向通过的窄道口,通常,每分钟可通过9人,一天,王老师到达通道口时,发现由于拥挤,每分钟只能3人通过道口,此时, 自己前面还有36人等待通过(假定先到先过,王老师过道口的时间忽略不计),通过道口后, 还需7分钟到学校.(1)此时,若绕道而行,要15分钟到达学校,以节省时间考虑, 王老师应选择绕道去学校还是选择通过拥挤的道口去学校?(2)若在王老师等人的维持下,几分钟后,秩序恢复正常(维护秩序期间, 每分钟仍有3 人通过道口),结果王老师比拥挤的情况提前了6分钟通过道口, 向维持秩序的时间是多少?16.(10分)我校初中一年级120名同学,在植树节那天要栽50棵树, 其中有30 棵小树,20棵大树,两位同学一起可以完成一棵小树的栽植,3位同学一起可以完成一棵大树的栽植,结果当天顺利地完成了全部任务.阅读上面的材料,编制适当的题目,利用数学知识求解.参考答案:一、题号1 2 3 4 5 6 答案C AD B B C二、7.-6;8.0;9.132; 10. k=3; 11. 200;12.105;三、13.(1)11x =;(2)79x =; 14. 解: 2323x x +=-,得x=1,与1互为倒数的仍为1. 即1123m m -=+,得m=-35. 15. 解:(1)王老师过道口去学校要3673+(分钟), 而绕道只需15分钟,因19>15, 故从节省时间考虑他应该绕道去学校.(2)设维持秩序时间为x 分,则维持时间内过道口有3x 人,则王老师维持好时间内地道 口有(36-3x)人,由题意,得36363639x x -=++, 解得x=3.因此,维持秩序时间是3分钟.16.略.备选题:某园林的门票规定如下:40人以下每人10元,40人以上享受团体优惠,其中40~80人九折优惠,80人以上八折优惠,初一甲、乙两班共101人去该园林春游,且甲班人数多于乙班人数,但小于总数的32,若两班都以班为单位购票,则共付948元.①若两班联合起来作为一个团体购票,则可省多少钱?②两班各有多少学生?解:①省140元②甲班62人,乙班39人.3.3解一元一次方程(二)——去括号与去分母一、选择题1.化简(x -1)-(1-x)+(x +1)的结果等于( )A .3x -3B .x -1C .3x -1D .x -32.当m =1时,-2m 2-[-4m 2+(-m)2]等于( )A .-7B .3C .1D .23.下列四组变形中,属于去括号的是( )A .5x +4=0,则5x =-4B .3x =2,则x =6C .3x -(2-4x)=5,则3x +4x -2=5D .5x =2+1,则5x =34.将方程(3+m -1)x =6-(2m +3)中,x =2时,m 的值是( )A .m =-14 B .m =14 C .m =-4 D .m =45.当x >3时,化简3423x x ---为( )A .x -5B .x -1C .7x -1D .5-7x6.解方程:4(x -1)-x =2(x +12),步骤如下:(1)去括号,得4x -4-x =2x +1 (2)移项,得4x -x +2x =1+4(3)合并,得3x =5 (4)系数化1,得x =53经检验知x =53不是原方程的解,证明解题的四个步骤中有错,其中做错的一步是 ( )A .(1)B (2)C .(3)D .(4)7.不改变式子a -(2b -3c)的值,把它括号前面的符号变成相反的符号应为 ( )A .a +(-2b +3c)B .a +(-2b)-3cC .a +(2b +3c)D .a +[-(2b +3c) ]二、填空题1.已知关于x 的多项式ax -bx 合并后结果为0,则a 与b 的关系是________。

人教版数学七年级上册33《解一元一次方程(二)》同步练习(有答案)

人教版数学七年级上册33《解一元一次方程(二)》同步练习(有答案)

《解一元一次方程(二)》同步练习一、选择题1.解方程1443312=---x x 时,去分母正确的是( ) A .1129)12(4=---x x B .12)43(348=---x xC .1129)12(4=+--x xD .12)43(348=-+-x x2.将方程5)24(32=--x x 去括号正确的是( )A .52122=--x xB .56122=--x xC .56122=+-x xD .5632=+-x x3.将方程131212=--+x x 去分母正确的是( ) A .62216=+-+x x B .62236=--+x xC .12236=+-+x xD .62236=+-+x x4.解方程256133x x x -=--+,去分母所得结果正确的是( ) A .x x x -=+-+15132 B .x x x 315162-=+-+C .x x x -=--+15162D .x x x 315132-=+-+5.下列解方程的过程中正确的是( )A .将5174732+-=--x x 去分母得)17(4)75(52+-=--x x B .由102.07.015.03.0=--x x 得10027015310=--x x C .)28(2)73(540+=--x x 去括号得41671540+=--x xD .552=-x ,得225-=x 6.下列方程,解是0=x 的是( )A .8.034.057x x =- B .13423--=-x x C .()[]{}98765432=---x D .x x 322)73(72-=+ 7.方程)1(332+=-y y 的解是( )A .-6B .6C .54 D .0 8.式子33+x 的值比式子512-x 的值大1,则x 为( ) A .3 B .4 C .5 D .6 9.若代数式23-y 的值比312-y 的值大1,则y 的值是( ) A .15 B .13 C .-13 D .-1510.方程60)1(4)2(4=+--x x 的解是( )A .7=xB .76=x C .76-=x D .7-=x 11.若213+x 比322-x 小1,则x 的值为( ) A .513 B .-135 C .-513 D .135 12.某项工作甲单独做4天完成,乙单独做6天完成,若甲先做一天,然后甲、乙合作完成此项工作,若甲乙共做了x 天,所列方程为( )A .1641=++x x B .1614=++x x C .1614=-+x x D .161414=+++x x 13.有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①1431040-=+m m ②4314010+=+n n ③4314010-=-n n ④1431040+=+m m 其中符合题意的是( ) (A )①② (B )③④ (C )①③ (D )②④14.若方程)23()12(3+-=++a x a x 的解是0,则a 的值等于( )A .51B .53C .-51D .-53 15.甲、乙两人骑自行车同时从相距65千米的两地相向而行,2小时相遇,若甲比乙每小时多骑2.5千米,则乙的时速是( )A .12.5千米/时B .15千米/时C .17.5千米/时D .20千米/时二、填空题1.____=m 时,式子212-m 的值是3; 2.如果4是关于x 的方程a a x x a 2)(353++=-的解,则____=a ;3.若x y x y -=+=8,3521,当1y 比2y 大于1时,____=x ;4.关于x 的方程054)2(2=-++k kx x k 是一元一次方程,则____=k5.若)9(312y --与)4(5-y 的值相等,则____=y6.当____=x 时,31-x 的值比21+x 的值大-3 7.当____=m 时,方程3445-=+x x 和方程)2(2)1(2-=-+m m x 的解相同.8.要使21+m 与23-m 不相等,则m 不能取的值是_______ 9.方程332=-x 与方程0331=--x a 有相同的解,则____=a . 10.某数x 的21倍比另一数y 的23倍多5,则____=y . 11.一个两位数,两个数位上的数字之和为12,且个位数字比十位数字大2,则这个两位数为________________;12.某商品先按批发价a 元提高10%零售,后又按零售价降低10%出售,则它最后的单价是___________.13.甲能在11天内完成此项工作,乙的工作效率比甲高10%,那么乙完成这项工作的天数为_______天.14.某超市规定,如果购买不超过50元的商品时,按全额收费,购买超过50元的商品时,超过部分按九折消费,某顾客在一次消费中向售货员交纳了212元,那么在此消费中该顾客购买的是价值________________元的商品.15.下面是甲商场电脑产品的进货单,其中进价一栏被墨迹污染.读了进货单后,请你求出这台电脑的进价,是__________元.甲商场商品进货单供货单位乙单位 品名与规格P4200 商品代码 DN-63D7 商品归属 电脑专柜进价(商品的进货价格)元 标价(商品的预售价格) 5850元折扣8折 利润(实际销售后的利润)210元 售后服务 终生保修,三年内免收任何费用,三年后收取材料费,五日快修,周转机备用,回访. 三、计算题1.解下列方程(1)521215++=--y y y (2)13.02.18.12.06.02.1=-+-x x (3)5162.15.032.08+-=--+x x x (4)23241233431=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-x 2.解下列方程(1)250)104(2)3010(5-=--+x x(2)2233)5(54--+=--+x x x x (3)1612213-+=-x x (4)⎥⎦⎤⎢⎣⎡+-=⎪⎭⎫ ⎝⎛---4)3(551014224123x x x x (5)5:63:2=m(6)7:23:4t =(7))1(27)1(4)1(31)1(3+--=--+x x x x (8))1(32)1(2121-=⎥⎦⎤⎢⎣⎡--x x x 3.利用等式的性质解方程:(1))1(9)14(3)2(2x x x -=--- (2)37615=-y (3)14126110312-+=+--x x x (4)x x 5.12)73(72-=+(5)103.02.017.07.0+-=x x (6)y y 535.244.2=-- 4.列方程求解:(1)已知6--x 的值与71互为倒数,求x ; (2)x 等于什么数时,133-+x 等于1752++x 的值? (3)x 取何值时,235x -和[])53(521--x x 互为相反数? (4)a 为何值时,关于x 的方程03=+a x 的解比方程0432=--x 的解大2? 5.已知2021at t v S +=,如果81,4,13===a t S ,求0v . 6.若4=y 是方程)(532m y m y -=-+的解,求13-m 的值. 四、应用题1.小王在超市中买了单价是2.8元的某品牌鲜奶若干袋,过了一段时间再去超市,发现这种鲜奶正进行让利销售,每袋让利0.3元,于是他比上次多买了2袋,却只比上次多花了2元钱,问上次买了多少袋这样的鲜奶?2.冷饮厅中A 种冰激凌比B 种冰激凌贵1元,小明和同学要了3个B 种冰激凌、2个A 种冰激凌,一共花了16元.两种冰激凌每个多少钱?3.班级的书架宽88厘米,某一层上摆满一种历史书和一种文学书,共90本.小明量得一本历史书厚0.8厘米,一本文学书厚1.2厘米.你知道这层书架上历史书和文学书各有多少本吗?4.一个两位数,十位上的数比个位上的数小1,十位与个位上的数的和是这个两位数的51,求这个两位数. 5.元旦期间,某商场搞优惠促销,决定由顾客抽奖确定折扣.某顾客购买甲、乙两种商品,分别抽到7折和9折,共付款386元,这两种商品的原销售价之和为500元.问,这两种商品的原销售价分别为多少钱?6.一个蓄水池装有甲、乙、丙三个进水管.单独开放甲管,45分钟可以注满全池;单独开放乙管,60分钟可以注满全池;单独开放丙管,90分钟可以注满全池.现将三管一齐开放,多少分钟可以注满水池?7.某中学开展校外植树活动,六年级学生单独种植,需要7.5小时完成;七年级学生单独种植,需要5小时完成.现在六年级、七年级学生先一起种植1小时,再由七年级学生单独完成剩余部分.共需多少时间完成?8.朝阳中学在预防“非典”的活动中,初二(2)班45名同学被平均分配到甲、乙、丙三处打扫环境卫生.甲处的同学最先完成打扫任务,班卫生委员根据实际情况及时把甲处的同学全部调到乙、丙两处支援,调动后乙处的人数恰好为丙处人数的1.5倍.问从甲处调往乙、丙两处各多少人?9.国家从多方面保障农民的根本利益,重视农业的发展.王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,共用去了44 000元.其中种茄子每亩用了1700元,获纯利2 400元;种西红柿每亩用了1800元,获纯利2 600元.你知道王大伯今年一共获纯利多少元吗?10.我国古代数学问题:有大小两种盛米的桶,已经知道5个大桶加上1个小桶可以盛3斛米,1个大桶加上5个小桶可以盛2斛米.问1个大桶、1个小桶分别可以盛多少斛米?选自《九章算术》卷七“盈不足”.“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”11.我国古代数学问题:好马每天走240里,劣马每天走150里.劣马先走12天,好马几天可以追上劣马?选自《算学启蒙》.“良马日行二百四十里,劣马日行一百五十里.努马先行一十二日,问良马几何日追及之.”12.在城市中公交车的发车间隔时间是一定的.小明放学后走在回家的路上,他发现每隔6分钟从后面开来一辆公交车,每隔2分钟从前面开来一辆公交车,他想,公交车到底是几分钟发车一辆呢?你能帮他计算一下吗?13.某工程队每天安排120个劳力修建水库,平均每天每个劳力能挖土5方或运土3方,为了使挖出的土及时运走,问应如何安排挖土和运土的劳力?14.一个两位数,十位数字比个位数字的4倍多1,将两个数字调换顺序后所得数比原数小63,求原数.15.某商店为了促销G牌空调机,2021年元旦那天购买该机可分期付款,在购买时先付一笔款,余下部分及它的利息(年利率为5.6%)在2021年元旦付清,该空调机售价每台8224元.若两次付款数相同,问每次应付款多少元?16.某商场出售某种文具,每件可盈利2元,为了支援贫困山区,现在按原售价的7折出售给一山区学校,结果每件盈利0.2元.问该文具每件的进货价是多少元?17.某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同.在安全检查中,对4道门进行了测试.当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生;当同时开启一道正门和一道侧门时,1分钟内可以通过200名学生.(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤(尽管有老师组织),出门的效率将降低10%;安全检查规定,在紧急情况下全大楼的师生应在5分钟内通过这4道门安全撤离.假设每间教室可容纳50名学生,此校教师是学生数的10%,教师通过门的速度快于学生,问:建造的这4道门是否符合安全规定?参考答案一、选择题1.B 2.C 3.D 4.B 5.D 6.D 7.A 8.A 9.C10.D 11.C 12. A 13.B 14.D 15.B二、填空题1.27 2.-16 3.1 4.-2 5.25 6.413 7.38- 8.1 9.2 10.310-x 11.57 12.0.99a 13.10 14.答案:230.利用等量关系50元+九折消费=212元.设购买的是价值x 元的商品,则去括号整理得2079.0=x ,解得230=x (元).15.4470(设进价为x 元,则2101085850+=⨯x ,解得4470=x 三、计算题1.(1)两边乘以10得)2(210)1(52++=--y y y 去括号,得95-=y 所以,59-=y (2)转化为1312182612=-+-x x 简化为14636=-+-x x 解得32=x (3)转化为5162.153********+-=--+x x x去分母,得)16(212)3010(2)8010(5+-=--+x x x去括号整理得48032-=x ,解得15-=x(4)两边同乘以3,去掉中括号得32-移到右边再乘以43,去掉小括号得 解得27=x 2.(1)10-=x (2)6=x (3)72-=x (4)4=x (5)8.1=m (6)314=t (7)5-=x (8)511=x 3.(1)10-=x (2)3=y (3)61=x (4)0=x (5)1714=x (6)4=y 4.(1)13,1)6(71-==--x x (2)36,1752133=++=-+x x x (3)10,0)]53(5[21235==--+-x x x x (4)解03=+a x 得,3a x -=,解0432=--x 得,6-=x ,依题意得2)6(3=---a ,∴12=a 5.3,48121413020=⨯⨯+=v v 6.将4=y 代入方程得)4(5324m m -=-+ 整理得m m 5202-=-,所以,29=m , 则22513=-m 四、应用题1.设上次买了x 袋鲜奶,则128.2)2)(3.08.2(=+=+-x x x2.设A 种冰激凌每个x 元,则8.3=x3.设书有x 本,则5088)90(2.18.0==-+x x x4.设个位数字为x ,则5])1(10[511=+-=-+x x x x x ,此数为45 5.设甲种商品的原售价为x 元,则320%38)500%(90%70==-+x x x6.设x 分可以注满水池,则201904560==++x x x x 7.设共需x 小时完成,则313)1(51515.711=-=⎪⎭⎫ ⎝⎛+-x x8.设甲种调往乙处x 人,则12)1515(5.115=-+=+x x x9.设种茄子x 亩,则1044000)5(18001700==-+x x x ,总获利为:630002600)1025(240010=⨯-+⨯ 10.设1个小桶盛y 斛米,则247,3)52(5==+-y y y ,大桶可盛米:241352=-y 11.设好马x 天可以追上劣马,则1.20240)12(150==+⨯x x x12.设公交车x 分钟发车一辆,则32266=-=-x x x13.设安排x 人挖土,则安排)120(x -人运土,则75120,45),120(35=-=-=x x x x (人)14.设个位数字为x ,则十位数字为14+x .2,63])14(10[1410=-=++-++x x x x x ,所以原数是92.15.分析:设第一次付款x 元,则第二次付款%)6.51)(8224(+-x 元,由两次付款数相同,可得 %)6.51)(8224(+-=x x .解:设第一次付款x 元,则%)6.51)(8224(+-=x x解得4224=x答:每次应付款4224元.说明:本题是分期付款问题,是一道紧扣生活实际和社会热点的好题.16.分析:利用等量关系盈利=售价-进价.解:设每件文具进货价为x 元,则标价为)2(+x 元,则x x -⨯+=%70)2(2.0, 整理后,2.13.0=x ,所以,4=x (元).因此,该文具每件的进价为4元.17.(1)设平均每分钟一道正门可以通过x 名学生,则一道侧门可以通过)200(x -名学生,则解得120=x (名) 80200=-x 名所以,平均每分钟一道正门可以通过120名学生,一道侧门可以通过80名学生(2)这栋楼可容纳50×8×4=1 600(名)师生总和为1 600+1 600×10%=1 760(名)5分钟4道门能通过(120+80)×2×5=2 000(名)拥护时可通过2 000×(1-10%)=1 800(名)而17601800 且教师出门又快于学生所以,建造的4道门符合规定.。

解一元一次方程(二)—去分母习题

解一元一次方程(二)—去分母习题

第2课时 去分母要点感知1 去分母的方法:依据等式的性质2.方程两边各项都乘以所有分母的 ,将分母去掉.预习练习1-1 解方程3y -14-1=2y +76,去分母时,方程两边都乘以( ) A .10 B .12 C .24 D .61-2 解方程13-x -12=1,去分母正确的是( ) A .1-(x -1)=1 B .2-3(x -1)=6C .2-3(x -1)=1D .3-2(x -1)=6要点感知2 解一元一次方程的一般步骤:(1) ;(2) ;(3) ;(4) ;(5) .预习练习2-1 解方程:2x -13=x +24.知识点1 利用去分母解一元一次方程1.方程3-1-x 2=0可以变形为( ) A .3-1-x =0 B .6-1-x =0C .6-1+x =0D .6-1+x =22.解方程13-x -12=1的结果是( ) A .x =12 B .x =-12C .x =13D .x =-133.若a 3+1与2a +13互为相反数,则a 等于( ) A.43 B .10 C .-43D .-10 4.要将方程2t -53+3-2t 5=3的分母去掉,在方程的两边最好是乘以 . 5.方程3x +12-x -16=1去分母后所得的结果是 . 6.(滨州中考)依据下列解方程0.3x +0.50.2=2x -13的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据.解:原方程可变形为3x +52=2x -13.( ) 去分母,得3(3x +5)=2(2x -1).( )去括号,得9x +15=4x -2.( )( ),得9x -4x =-15-2.( )合并同类项,得5x =-17.( ),得x =-175.( )7.解下列方程:(1)x -32-4x +15=1; (2)2x +13=1-x -15.知识点2 解一元一次方程的步骤8.一队学生去校外进行军事野营训练,他们以5千米/时的速度行进,走了18分的时候,学校要将一个紧急通知传给队长.通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去.通讯员用多少时间可以追上学生队伍?9.解方程x -34-1+2x 3=1时,去分母正确的是( )A .3(x -3)-4(1+2x)=1B .3(x -3)-4(1+2x)=12C .3x -9-1-2x =12D .3(x -3)-1+2x =1210.若关于x 的一元一次方程2x -k 3-x -3k 2=1的解是x =-1,则k 的值是( ) A .27 B .1 C .-1311D .0 11.如果规定“*”的意义为:a*b =a +2b 2(其中a ,b 为有理数),那么方程3*x =52的解是x = . 12.解下列方程:(1)x -13-x +26=4-x 2; (2)x -x -12=2-x +25;(3)x -32-4x +15=1; (4)x +12=6-2x -13.13.某同学在解方程2x -13=x +a 3-2去分母时,方程右边的-2没有乘3,因而求得的方程的解为x =2,试求a 的值,并求出原方程的正确的解.14.小明以每小时8千米的速度从甲地到达乙地,回来时走的路程比去时多3千米,已知速度为9千米/时,这样回来时比去时多用18小时,求甲、乙两地的原路长.挑战自我15.(武昌模拟)有一些相同房间需要粉刷,一天3名师傅(每名师傅的工作效率相同)去粉刷8个房间,结果其中有40 m 2墙面未来得及刷;同样的时间内5名徒弟(每名徒弟的工作效率相同)粉刷了9个房间的墙面.每名师傅比徒弟一天多刷30 m 2的墙面.(1)求每个房间需要粉刷的墙面面积为多少;(2)已知一名师傅一天的工钱比一名徒弟的一天的工钱多40元,现有36间房需要粉刷,全部请徒弟粉刷比全部请师傅粉刷少付300元工钱,求一名徒弟一天的工钱是多少?参考答案要点感知1 最小公倍数预习练习1-1 B1-2 B要点感知2 去分母;去括号;移项;合并同类项;系数化为1预习练习2-1 去分母,得8x -4=3x +6.移项,得8x -3x =4+6.合并同类项,得5x =10.系数化为1,得x =2.1.C 2.D 3.C 4.15 5.3(3x +1)-(x -1)=66.分式的基本性质,等式的性质2,去括号法则或乘法分配律,移项,等式的性质1,系数化为1,等式的性质27.(1)去分母,得5(x -3)-2(4x +1)=10.去括号,得5x -15-8x -2=10.移项,得5x -8x =15+2+10.合并同类项,得-3x =27.系数化为1,得x =-9.(2)去分母,得5(2x +1)=15-3(x -1).去括号,得10x +5=15-3x +3.移项,得10x +3x =-5+15+3.合并同类项,得13x =13.系数化为1,得x =1.A8.设通讯员需x 小时追上学生队伍,则其行进了14x 千米,学生在通讯员出发后又走了5x 千米,根据题意,得14x =5×310+5x.解得x =16. 答:通讯员用16小时(即10分钟)可以追上学生队伍9.B 10.B 11.112.(1)去分母,得2(x -1)-(x +2)=3(4-x).去括号,得2x -2-x -2=12-3x.移项,得2x -x +3x =2+2+12.合并同类项,得4x =16.系数化为1,得x =4.(2)去分母,得10x -5(x -1)=20-2(x +2).去括号,得10x -5x +5=20-2x -4.移项,得10x -5x +2x =-5+20-4.合并同类项,得7x =11.系数化为1,得x =117. (3)去分母,得5(x -3)-2(4x +1)=10.去括号,得5x -15-8x -2=10.移项,得5x -8x =15+2+10.合并同类项,得-3x =27.系数化为1,得x =-9.(4)去分母,得3(x +1)=36-2(2x -1).去括号,得3x +3=36-4x +2.移项,得3x +4x =-3+36+2.合并同类项,得7x =35.系数化为1,得x =5.13.根据该同学的做法,去分母,得2x -1=x +a -2.解得x =a -1.因为x =2是方程的解,所以a =3.把a =3代入原方程,得2x -13=x +33-2,解得x =-2. 14.设甲、乙两地的原路长为x 千米,则x 8+18=x +39.解得x =15. 答:甲、乙两地的原路长为15千米.挑战自我15.(1)设每个房间需要粉刷的墙面面积x m 2,依题意,得8x -403-30=9x 5,解得x =50. 答:每个房间需要粉刷的墙面面积为50 m 2.(2)1名师傅一天粉刷面积为8×50-403=120 m 2,1名徒弟一天粉刷面积为9×505=90 m 2, 36间房需粉刷面积为36×50=1 800 m 2.设一名徒弟一天的工钱是y 元,由题意得1800120(y +40)-300=1 80090y.解得y =60. 答:一名徒弟一天的工钱是60元.9.解方程x -34-1+2x 3=1时,去分母正确的是(B) A .3(x -3)-4(1+2x)=1B .3(x -3)-4(1+2x)=12C .3x -9-1-2x =12D .3(x -3)-1+2x =1210.若关于x 的一元一次方程2x -k 3-x -3k 2=1的解是x =-1,则k 的值是(B) A .27 B .1 C .-1311D .0 11.如果规定“*”的意义为:a*b =a +2b 2(其中a ,b 为有理数),那么方程3*x =52的解是x =1. 12.解下列方程:(1)x -13-x +26=4-x 2; 解:去分母,得2(x -1)-(x +2)=3(4-x).去括号,得2x -2-x -2=12-3x.移项,得2x -x +3x =2+2+12.合并同类项,得4x =16.系数化为1,得x =4.(2)x -x -12=2-x +25; 解:去分母,得10x -5(x -1)=20-2(x +2).去括号,得10x -5x +5=20-2x -4.移项,得10x -5x +2x =-5+20-4.合并同类项,得7x =11.系数化为1,得x =117. (3)x -32-4x +15=1; 解:去分母,得5(x -3)-2(4x +1)=10.去括号,得5x -15-8x -2=10.移项,得5x -8x =15+2+10.合并同类项,得-3x =27.系数化为1,得x =-9.(4)x +12=6-2x -13. 解:去分母,得3(x +1)=36-2(2x -1).去括号,得3x +3=36-4x +2.移项,得3x +4x =-3+36+2.合并同类项,得7x =35.系数化为1,得x =5.13.某同学在解方程2x -13=x +a 3-2去分母时,方程右边的-2没有乘3,因而求得的方程的解为x =2,试求a 的值,并求出原方程的正确的解.解:根据该同学的做法,去分母,得2x -1=x +a -2.解得x =a -1.因为x =2是方程的解,所以a =3.把a =3代入原方程,得2x -13=x +33-2,解得x =-2. 14.小明以每小时8千米的速度从甲地到达乙地,回来时走的路程比去时多3千米,已知速度为9千米/时,这样回来时比去时多用18小时,求甲、乙两地的原路长. 解:设甲、乙两地的原路长为x 千米,则x 8+18=x +39.解得x =15. 答:甲、乙两地的原路长为15千米.挑战自我15.(武昌模拟)有一些相同房间需要粉刷,一天3名师傅(每名师傅的工作效率相同)去粉刷8个房间,结果其中有40 m 2墙面未来得及刷;同样的时间内5名徒弟(每名徒弟的工作效率相同)粉刷了9个房间的墙面.每名师傅比徒弟一天多刷30 m 2的墙面.(1)求每个房间需要粉刷的墙面面积为多少;解:设每个房间需要粉刷的墙面面积x m 2,依题意,得8x -403-30=9x 5,解得x =50. 答:每个房间需要粉刷的墙面面积为50 m 2.(2)已知一名师傅一天的工钱比一名徒弟的一天的工钱多40元,现有36间房需要粉刷,全部请徒弟粉刷比全部请师傅粉刷少付300元工钱,求一名徒弟一天的工钱是多少?解:1名师傅一天粉刷面积为8×50-403=120 m 2, 1名徒弟一天粉刷面积为9×505=90 m 2, 36间房需粉刷面积为36×50=1 800 m 2.设一名徒弟一天的工钱是y 元,由题意得1800120(y +40)-300=1 80090y.解得y =60. 答:一名徒弟一天的工钱是60元.。

解一元一次方程(二)去分母

解一元一次方程(二)去分母
去分母过程
将方程两边同时乘以6(最小公倍数)得到 $3x 18 = 14$
求解
解得 $x = frac{32}{3}$
实例二:复杂方程的去分母
方程
01
$frac{x + 1}{3} - frac{2x - 5}{6} = frac{4}{5}$
去分母过程
02
将方程两边同时乘以15(最小公倍数)得到 $5(x + 1) - 5(2x -
两边同时乘以4得
$4x - 6 = 20$。
化简得
$x = 6$。
Part
04
去分母的注意事项
确保公分母不为零
在去分母的过程中,需要确保公分母不为零,否则会导致方 程无意义。
如果公分母为零,需要检查方程是否正确或者是否需要重新 设定方程。
注意符号问题
在去分母时,需要注意符号问题,确保等式两边的符号一 致。
使用一元一次方程的解公式求解。
交叉相乘法
将方程两边的分母分别相乘。 将乘积代入原方程,消去分母。
化简方程,得到最简结果。
Part
03
去分母的步骤
找公分母
01
确定方程中各项的分母,找出其 中最大的分母作为公分母。
02
将每个分数的分母与公分母进行 约分,简化方程。
将所有项移到同一边
将方程中的所有项移到等号的同一边 ,以便进行合并和化简。
解一元一次方程(二) 去分母
• 去分母的必要性 • 去分母的方法 • 去分母的步骤 • 去分母的注意事项 • 去分母的实例解析
目录
Part
01
去分母的必要性
理解分母的含义
分母在方程中代表了每个 项的系数或常数。
分母为零意味着该项在方 程中不存在,会导致方程 无解或解不唯一。

3.3解一元一次方程(二)第2课时去分母(导学案)七年级数学上册(人教版)

3.3解一元一次方程(二)第2课时去分母(导学案)七年级数学上册(人教版)

3.3 解一元一次方程(二)第2课时去分母导学案1. 掌握含有分数系数的一元一次方程的解法.2. 熟练利用解一元一次方程的步骤解各种类型的方程.★知识点1:去分母解一元一次方程通过去分母使方程的系数化为整数,减少分数参与计算,降低计算的难度,另外把握去分母的理论依据是等式的性质2,两边同乘以的数应为所有分母的最小公倍数.注意:①去分母时要注意分数线的括号作用;②去分母时不要漏乘不含分母的项.★知识点2:解一元一次方程的一般步骤去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a转化.1. 解一元一次方程的过程中,去分母的具体做法是:,依据是.2. 解一元一次方程的一般步骤是:①,②,③,④,⑤.英国伦敦博物馆保存着一部极其珍贵的文物——纸草书,这是古代埃及人用象形文字写在一种特殊的草上的著作,它于公元前1700年左右写成,至今已有三千七百多年.草片文书中记载了许多有关数学的问题,其中有如下一道著名的求未知数的问题.问题1:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33,这个数是多少?追问1:题中涉及哪些相等关系?追问2:应怎样设未知数?如何根据相等关系列出方程?问题2:这个方程与前面学过的一元一次方程有什么不同?怎样解这个方程呢?问题3:不同的解法各有什么特点?通过比较你认为采用什么方法比较简便?追问1:怎样去分母呢?追问2:去分母的依据是什么?问题4:解方程:31322322105x x x+-+-=-.追问1:解含分数系数的一元一次方程的步骤包括哪些?追问2:以x为未知数的方程逐步向着x=a的形式转化的主要依据是什么?例1:解下列方程:(1)121224x x+--=+;(2)1213323x xx--+=-.解下列方程:(1)121163x x-+-=;(2)490.30.250.32x x x++--=.1. 方程5717324x x++-=-去分母正确的是( )A. 3-2(5x+7) = -(x+17)B. 12-2(5x+7) = -x+17C. 12-2(5x+7) = -(x+17)D. 12-10x+14 = -(x+17)2. 若代数式12x-与65的值互为倒数,则x= .3. 解下列方程:(1)334515x x-+=-;(2)5415523412y y y+--+=-.4. 某单位计划“五一”期间组织职工到东江湖旅游,如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车则可以少租一辆,并且有40个剩余座位.该单位参加旅游的职工有多少人?5. 有一人问老师,他所教的班级有多少学生,老师说:“一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在学外语,还剩六位学生正在操场踢足球.”你知道这个班有多少学生吗?“坟中安葬着丢番图,多么令人惊讶,它忠实地记录了所经历的道路. 上帝给予的童年占六分之一. 又过十二分之一,两颊长胡. 再过七分之一,点燃结婚的蜡烛.五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进入冰冷的墓.悲伤只有用数论的研究去弥补,又过四年,他也走完了人生的旅途.”1.(2022•黔西南州)小明解方程12123x x+--=的步骤如下:解:方程两边同乘6,得3(x+1)-1=2(x-2)①去括号,得3x+3-1=2x-2②移项,得3x-2x=-2-3+1③以上解题步骤中,开始出错的一步是()A.①B.②C.③D.④2. (4分)(2020•重庆A卷7/26)解一元一次方程11(1)123x x+=-时,去分母正确的是()A.3(x+1)=1-2x B.2(x+1)=1-3xC.2(x+1)=6-3x D.3(x+1)=6-2x(1)本节课学习了哪些主要内容?(2)去分母的依据是什么?去分母的作用是什么?(3)用去分母解一元一次方程时应该注意什么?(4)去分母时,方程两边所乘的数是怎样确定的?【参考答案】1. 方程各项都乘所有分母的最小公倍数;等式的性质2;2. 去分母;去括号;移项;合并同类项;系数化为1.例1:解:(1)去分母(方程两边乘4),得2(x+1) -4 = 8+ (2 -x). 去括号,得2x+2 -4 = 8+2 -x.移项,得2x+x= 8+2 -2+4.合并同类项,得3x = 12.系数化为1,得x = 4.(2)去分母(方程两边乘6),得18x+3(x-1) =18-2 (2x-1).去括号,得18x+3x-3 =18-4x +2.移项,得18x+3x+4x =18 +2+3.合并同类项,得25x = 23.系数化为1,得2325x=.解:(1)去分母(方程两边乘6),得(x-1) -2(2x+1) = 6. 去括号,得x-1-4x-2 = 6.移项,得x-4x = 6+2+1.系数化为1,得 x = -3.(2)整理方程,得49325532x x x ++--=, 去分母(方程两边乘30),得 6 (4x +9) -10(3+2x ) = 15(x -5). 去括号,得 24x+54-30-20x = 15x -75.移项,得 24x -20x -15x =-75-54+30 .合并同类项,得 -11x = -99.系数化为1,得 x = 9.1. C ;2. 83; 3. (1)56x =;(2)47y =. 4. 解:设该单位参加旅游的职工有x 人,由题意得方程: 4014050x x +-=, 解得x =360.答:该单位参加旅游的职工有360人.5. 解:这个班有x 名学生,依题意得6247x x x x +++=, 解得x =56.答:这个班有56个学生.解:设丢番图活了x 岁,据题意得5461272x x x x x +++++=, 解得x =84.答:丢番图活了84岁.1.【解答】解:方程两边同乘6应为:3(x +1)-6=2(x -2), 所以出错的步骤为:①,故选:A .2. 【解答】解:方程两边都乘以6,得:3(x+1)=6-2x,故选:D.。

解一元一次方程(二)

解一元一次方程(二)

3.3 解一元一次方程(二)――去括号和去分母教学任务分析教学流程安排教学过程设计一、创设问题情景,激发学生研究问题的兴趣,引出本节要研究的主要的两种方程的形式请利用方程解决下列问题:问题1:顾客用540元买了两种布料共138尺,其中蓝布料每尺3元,黑布料每尺5元.两种布料各买了多少尺?问题2:某厂22名工人,每人每天可以生产螺钉1200个或螺母2000个,如何安排才能使一天生产的螺钉和螺母配套?问题3:整理一批数据,由一人做需要80小时完成.现在计划先由一部分人做2小时,再增加5人做8小时,完成这项工作的四分之三,怎样安排参与整理数据的具体人数? 学生活动设计:对于问题1:学生会发现问题中有两个等量关系:一是两种布料共138尺;二是两种布料的费用共是540元,于是可以考虑设买蓝布料x 尺,则买黑布料(138-x )尺,根据相等关系:两种布料的费用共是540元,可以得到方程3x +5(138-x )=540.或设用x 元买蓝布料,则用540-x 元买黑布料,则根据相等关系:两种布料共138尺,得到方程13855403=-+xx.对于问题2:当螺钉和螺母配套时,螺母的数量应是螺钉数量的2倍(这就是相等关系) 于是可以设安排x 人生产螺钉,则有22-x 人生产螺母,根据上述相等关系可以得到方程 2×1200x =1800(22-x )(或设总共生产的螺母有x 个).对于问题3:可以考虑先安排x 人作2小时,由于每人的工效相同,一个人1小时完成总工作量的801,则工作两个小时后完成了总工作量的802x ,后来由(5+x )人工作,工作了8小时完成总工作量的80)5(8880)5(x x +=⨯+,根据这10个小时共完成总工作量的四分之三,得到方程802x +4380)5(8=+x (或设x 人先工作了2小时,则有2x +8(5+x )=80×43).教师活动设计:由于已经有了列方程解决实际问题的经验,所有可以让学生自主探究,寻找解决问题的思路,在解决问题的过程中可能产生不同的形式,此时可以分析不同方法中异同,让学生比较不同方法间的简单程度,进而引导学生在解决问题的过程中尽量采用简单的方法解决问题.二、问题引申,探究、归纳解方程的方法,培养学生的探究能力 活动1:对上述问题中涉及的方程,如何解这些方程呢?你能找到解这些方程的方法吗?1.3x +5(138-x )=540; 2.2×1200x =1800(22-x );3.2x +8(5+x )=80×43; 4.13855403=-+xx;5.802x +4380)5(8=+x .学生活动设计:由于这些方程和前面接触的方程在形式上有区别,1、2和3中存在括号,4、5中存在分母,则可以考虑把方程中的括号、分母去掉就可以转化为熟悉的形式,对于1、2和3可以利用乘法分配律把括号去掉,然后进行移项、合并、系数化为1,对于4和5可以利用等式的性质2,把方程两边同时乘以各个分母的最小公倍数,就可以把分去掉,于是问题可以解决.教师活动设计:在活动中,主要让学生探究如何把新的知识转化为旧的知识来解决,从而让学生体会数学中的转化思想,同时培养学生的勇于探究的精神.〔解答〕1. 3x +5(138-x )=540,去括号得,3x +5×138-5x =540,移项得,3x -5x =540-5×138,合并得,-2x =-150,系数化为1,x =75.2. x =10;3.x =2.4. 13855403=-+xx,两边同时乘以15(去分母)得,5x +3(540-x )=138×15,去括号得,5x +1620-3x =2070,移项得,5x -3x =2070-1620,合并得,2x =450,系数化为1,x =225.5.x =2.活动2:通过以上解方程的过程,你能总结出解方程的一般步骤吗?学生活动设计:学生通过观察思考,总结出解方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.教师活动设计:让学生充分发表自己的看法,然后在总结时进行必要的补充和说明. 活动3:根据上述总结,请解下列方程:(1)3x -7(x -1)=3-2(x +3);(2))131(72)421(6--=+-x x x ; (3)53210232213+--=-+x x x ;(4)31232213--=--+x x x .学生活动设计:让四位同学黑板进行板演,其余学生独立完成,完成后根据黑板上的解法进行交流和总结,发现问题,寻找问题出现的原因,分析原因,特别是去带有负号的括号时的变号规律.教师活动设计:分析解决问题的过程,让学生自主发现问题所在,从而培养学生的严谨的精神.〔解答〕(1)x =5; (2)x =6; (3)167=x ; (4)2523=x .三、拓展提高,应用创新,培养学生思维的深刻性和灵活性 问题4:现将连续自然数1~2006按如图所示的方式排成一个长方形阵列,用一个正方形框出16个数:1 2 78 9 1415 16 2122 23 2829 30 3536 37 38 39 40 41 42…………………………………………2003 2004 2005 2006(1) 图中这16个数的和是多少?(2) 要使一个正方形框出的16个数的和分别等于2000和2008是否可能,若不可能,说明理由,若可能求出该正方形中最小数和最大数.学生活动设计:(1)计算框出的16个数的和,可能会有两种方式,方式1:依次把这16个数加起来;方式2:可以设第1个数为a ,则这16个数分别是:a a +1 a +2 a +3a +7 a +8 a +9 a +10a +14 a +15 a +16 a +17a +21 a +22 a +23 a +24把这些加起来得到16a +192,当a =10时得到,这16个数的和是352.(2)有(1)可以发现若16a +192=2000,则有a =113,若16a +192=2008则有 x =113.5.因为a 是自然数,所以结果可能是2000,但不可能是2008,问题5(对问题2的变式思考):变式思考1:某车间有28名工人,生产一种螺母和螺栓,每人每天平均能够生产螺栓12个货螺母18个,第一天安排14名工人生产螺栓、14名工人生产螺母,问第二天应安排生产多少工人生产螺栓、多少人生产螺母,才能使当天生产的螺栓和螺母与第一天生产的刚好配套?(已知每个螺栓要配两个螺母)?教师活动:启发学生进行独立思考,学生活动:学生在已经熟悉的情景下进行独立思考,同样在独立思考后由学生提出自己的看法,再交流中逐步完善自己 的看法,解:第1天生产后,螺栓、螺母不能刚好配套,螺栓应有剩余,不难计算螺栓剩余的数量为42个,然后第二天要安排x 人生产螺栓,(28-x )人生产螺母,则12(14)18[14(28)]12x x ++-=.解之得 x =10,思考:遇到这类配套问题,应该怎样解决?问题:若解出的未知数是分数(不是整数),怎么办?引出变式2.变式思考2:某车间有27名工人,生产一种螺母和螺栓,每人每天平均能够生产螺栓12个货螺母18个,问应安排生产多少工人生产螺栓、多少人生产螺母,才能使当天生产的螺栓和螺母刚好配套?(已知每个螺栓要配两个螺母)?学生活动:学生对这个问题的解决应该没有问题,主要考虑解得的数是分数,如何处理? 解:设应分配x 人生产螺栓,则(27-x )人生产螺母,根据题意得:1218(27)12xx -= 解得 4117x =,如何处理?可以由学生讨论最后的结论.变式思考3:某车间有27名工人,生产一种螺母和螺栓,每人每天平均能够生产螺栓12个货螺母18个,假设y 天作为一个生产周期,问在这个生产周期内,应如何安排,才能使生产的螺栓和螺母刚好配套?(已知每个螺栓要配两个螺母)?学生活动:在平均生产率不变的前提下,一个生产周期为y 天,且每天有27名工人参加工作,则工作总量相当于一天内有27y 名工人参加工作的总工作量,这样问题就化归为问题的情形.教师活动:引导、启发.解:在一个生产周期内,安排x 名工人生产螺栓,(27y -x )名工人生产螺母,则1218(27)12xy x -=. 得 817x y =. (此时考虑方程的整数解问题).所以y 必须是7的倍数才行.若y =7则有x =81,于是可以用81327=(天)时间安排全部工人生产螺栓,用4天时间安排全部工人生产螺母. 四、小结与作业小结:1. 解方程的一般步骤:去分母、去括号、移项、合并、系数化为1.2. 列方程解实际问题中关键:找等量关系.作业:习题3.3.。

人教版七年级数学上《解一元一次方程(二)——去括号与去分母》第2课时课堂练习

人教版七年级数学上《解一元一次方程(二)——去括号与去分母》第2课时课堂练习

《解一元一次方程(二)——去括号与去分母》第2课时课堂练习基础训练1.全班同学去划船,如果减少一条船,每条船正好坐9个同学,如果增加一条船,每条船正好坐6个同学,问原有多少条船?2.将一箱苹果分给一群小朋友,若每个小朋友分5个苹果,则还剩12个苹果;若每个小朋友分8个苹果,则最后一个小朋友只分到2个苹果.求这群小朋友的人数.3.东坡中学组织七年级师生春游.如果单独租用45座客车若干辆,刚好坐满;如果单独租用60座客车,可少租1辆,且余15个座位.(1)求参加春游的人数;(2)已知租用45座客车的日租金为每辆250元,60座客车的日租金为每辆300元,问租用哪种客车更合算?4.有这样一道题:假如井不知深,先将绳三折入井,绳长四尺;后将绳四折入井,亦长一尺.问井深及绳长各若干?请你解答这个问题.5.一艘轮船航行在A、B两个码头之间,已知该船在静水中每小时航行12 km,轮船顺水航行需用6 h,逆水航行需用10 h,求水流速度和A、B两码头之间的距离.6.一艘船从甲码头到乙码头顺流行驶用4小时,从乙码头到甲码头逆流行驶用4小时40分钟,已知水流速度为3千米/小时,则船在静水中的平均速度是多少?7.一架战斗机的贮油量最多够它在空中飞行4.6 h,飞机出航时顺风飞行,在无风时的速度是575 km/h,风速为25 km/h,这架飞机最远能飞出多少千米就应返回?提升训练8. A,B两地间的路程为360 km,甲车从A地出发开往B地,每小时行驶72 km;甲车出发25 min后,乙车从B地出发开往A地,每小时行驶48 km,两车相遇后,各自按原来速度继续行驶,那么相遇以后,两车相距100 km时,甲车从出发开始共行驶了多少小时?9.甲、乙两人在一环形公路上骑自行车,环形公路长为42 km,甲、乙两人的速度分别为21 km/h、14 km/h.(1)如果两人从公路的同一地点同时反向出发,那么经几小时后,两人首次相遇?(2)如果两人从公路的同一地点同时同向出发,那么出发后经几小时两人第二次相遇?10.甲、乙两列火车的长分别为144米和180米,甲车比乙车每秒多行4米.(1)两列车相向而行,从相遇到完全错开需9秒,问甲、乙两列车的速度各是多少?(2)若同向而行,甲车的车头从乙车的车尾追到甲车完全超过乙车,需要多少秒?11.“健康出行,绿色环保”,星期天小李骑自行车从家出发到郊区去游玩,他先在某景区待了2 h,再绕道到某农家特色小吃处品尝风味小吃用去了30分钟,然后愉快地返程.已知去时的速度为6 km/h,返回时的速度为10 km/h,往返共用了4 h,返回时因绕道多走了1 km,求去时的路程.12.有甲、乙两艘船,现同时由A地顺流而下,乙船到B地时接到通知,须立即逆流而上返回C 地执行任务,甲船继续顺流航行.已知甲、乙两船在静水中的速度都是每小时7.5 km,水流速度为每小时2.5 km,A、C两地间的距离为10 km.如果乙船由A地经B地再到达C地共用了4 h,问:乙船从B地到达C地时,甲船距离B地有多远?13.某同学在做作业时,不慎将墨水瓶打翻,使一道作业题只看到如下字样:“甲、乙两地相距40 km,小轿车的速度为45 km/h,运货汽车的速度为35 km/h,?”(涂黑部分表示被墨水覆盖的若干文字,请将这道作业题补充完整,并列方程解答)参考答案基础训练1.解:设原有x条船.由题意,得9(x-1)=6(x+1),解得x=5.答:原有5条船.2.解:设这群小朋友有x个人.由题意得:5x+12=8(x-1)+2.解得:x=6.答:这群小朋友有6个人.3.解:(1)设租用45座客车x辆.由题意,得45x=60(x-1)-15.解得x=5.所以45x=225.答:参加春游人数为225人.(2)由(1)可知x=5,则x-1=4.因为5×250>4×300,所以租用60座客车更合算.4.解:设井深x尺.根据题意,得3(x+4)=4(x+1).解得x=8.所以3(x+4)=3×(8+4)=36.答:井深8尺,绳长36尺.5.解:设水流速度为x km/h,由题意,得6(12+x)=10(12-x),解得x=3.所以6×(12+3)=90(km).答:水流速度为3 km/h,A、B两码头之间的距离为90 km.6.解:设船在静水中的平均速度是x千米/小时,根据题意,得4(x+3)=(x-3),解得x=39. 答:船在静水中的平均速度是39千米/小时.7.解:(方法一)设这架飞机最远能飞出x km就应返回.依题意,有+=4.6.解得x=1320.答:这架飞机最远能飞出1 320 km就应返回.(方法二)设飞机顺风飞行的时间为t h.依题意,有(575+25)t=(575-25)(4.6-t).解得t=2.2.则(575+25)t=600×2.2=1 320.答:这架飞机最远能飞出1 320 km就应返回.提升训练8.解:设甲车共行驶了x h,则乙车行驶h.依题意,有72x+48=360+100.解得x=4.答:甲车共行驶了4 h.点拨:根据题意画出示意图如图,再利用相遇问题的等量关系建立方程.(第8题)9.解:(1)设经过x h后,两人首次相遇.依题意,得21x+14x=42.解得x=1.2.答:经过1.2 h后,两人首次相遇.(2)设出发后经y h两人第二次相遇.依题意,得21y-14y=42×2.解得y=12.答:出发后经12 h两人第二次相遇.10.解:(1)设乙车的速度为x米/秒,则甲车的速度为(x+4)米/秒.依题意得,得9x+9(x+4)=180+144.解得x=16,则x+4=20.答:甲、乙两列车的速度分别为20米/秒、16米/秒.(2)设需要y秒,则有20y-16y=180+144.解得y=81.答:需要81秒.11.解:设去时的路程为x km,依据题意,得+2++=4,解得x=5.25,答:去时的路程为5.25 km.12.解:设乙船由B地航行到C地用了x h,那么甲、乙两船由A地到B地都用了(4-x)h. (1)若C地在A、B两地之间,则乙船由A地航行到B地的距离是(7.5+2.5)(4-x)km,乙船由B地返回到C地的距离是(7.5-2.5)x km.根据乙船从A地航行到B地的距离-乙船从B地返回到C地的距离=A、C两地间的距离,得(7.5+2.5)(4-x)-(7.5-2.5)x=10.整理,得10(4-x)-5x=10.去括号,得40-10x-5x=10.移项、合并同类项,得-15x=-30.系数化为1,得x=2.所以甲船距离B 地有(7.5+2.5)×2=20(km)远.(2)若C地不在A、B两地之间,则乙船由A地航行到B地的距离是(7.5+2.5)(4-x)km,乙船由B地返回到C地的距离是(7.5-2.5)x km,根据乙船从B地返回到C地的距离-乙船由A地航行到B地的距离=A、C两地间的距离,得(7.5-2.5)x-(7.5+2.5)(4-x)=10.整理,得5x-10(4-x)=10.去括号,得5x-40+10x=10.移项、合并同类项,得15x=50.系数化为1,得x=.所以甲船距离B 地有×(7.5+2.5)=(km)远.答:乙船从B地到达C地时,甲船距离B地有20 km或km远.13.解:(方法一)补充部分:若两车分别从甲、乙两地同时开出,相向而行,经几小时两车相遇? 设经x h两车相遇,根据题意,得45x+35x=40.解得x=.答:经h两车相遇.(方法二)补充部分:如果两车同时从甲地出发,同向而行,当小轿车到达乙地时,运货汽车距乙地还有多远?设运货汽车距乙地还有x km远,则该车行驶了(40-x) km,此时运货汽车与小轿车所用时间相等,依题意,得=.解得x=.答:运货汽车距乙地还有km远.。

解一元一次方程(二)_教学设计_第一课时

解一元一次方程(二)_教学设计_第一课时
其次,这里面还渗透着数学学习中一个重要的数学思想方法——化归思想,就是把一个新的未知的问题,转化为一个已知的问题去解决.
练习
1.2(x3)5x;
2.4x3(2x3)12(x4);
3.23(y1)12(10.5y);
4.2a (a3)a3.
课堂
总结
本节课,我们学习了解带有括号的一元一次方程.解这样的方程的基本步骤为,去括号、移项、合并同类项、系数化为1.其中去括号这一步,是本节课我们学习的主要内容,它的依据是:整式加减的去括号法则和乘法分配律.去括号需要注意,1.去括号前后的符号变化,2.乘法分配律不要漏乘.另外,本节课的学习内容还体现了一个重要的数学思想——化归思想,当遇到一个新的问题时,我们要通过观察、分析、类比等思维过程,把它转化为在已知知识范围内已经解决或容易解决的问题.
小结
首先对于含有括号的一元一次方程,它的一般步骤是这样的.第一步去括号,去括号利用的去括号法则和乘法分配律,要注意符号的变化,在使用乘法分配律的时候,注意不要漏乘;第二步移项,利用的等式性质1,把含有未知数的项和常数项分列等号两边,注意移项要变号;第三步合并同类项,
利用的是乘法分配律;第四步系数化为1,利用等式性质2,注意结果的符号,结果如果表示为分数形式,还要注意不要将分子分母上的数写颠倒.
例题
1.2x(x10)5x2(x1);
2.3x7(x1)32(x3);
3.3.5y0.71.3(5y);
4. (3y6) y3.
解方程中要注意,当括号前的因数是负数时,去括号后,原括号里的各项与原来的符号相反,使用乘法分配律时,不要漏乘.最后系数化1时,两边同时除以未知数的系数,一是要注意结果的符号,二是要注意,若不能整除,写成分数时,注意除数与被除数的位置.

解一元一次方程(二)_教学设计_第二课时

解一元一次方程(二)_教学设计_第二课时

一.列方程解决实际问题的一般步骤:
1.找出已知量和未知量;
2.找出相等关系;
3.设未知数;
4.根据相等关系列方程.
二.解带有括号的一元一次方程:
去括号移项合并同类项系数化为 1.
问题:某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000 千瓦时,全年用电15 万千瓦时,这个工厂上半年每月平均用电是多少?
分析:还有没有其它设未知数、列方程的方法?
①设去年上半年每月平均用电x kw ∙h.
(150000 - 6x) = x - 2000 .
②设去年下半年每月平均用电x kw ∙h.
x = (150000 - 6x) - 2000 .
③设去年下半年每月平均用电x kw ∙h.
6(x + 2000) + 6x = 150000
对比发现,直接设去年上半年每月平均用电x kw ∙h,利用“全年用电量15 万千瓦时”列方程,得到的方程更简单,易解,直接得到问题的答案.
一般情况下,求哪个未知量,就设它为x ,并选择适当的相等关系列方程.
1.解方程:
去括号移项合并同类项系数化为 1.
2.列方程:
圈画关键字,找出涉及的量;
找出相等关系;
设未知数;
列方程;
解方程,检验,答题.
3.数学建模思想:
分析实际问题,设出未知数,列方程,把实际问题转化为一元一次方程模型,通过解方程解决实际问题.。

解一元一次方程(二)

解一元一次方程(二)

3.3 解一元一次方程(二)——去括号与去分母第1课时 利用去括号解一元一次方程01 教学目标1.经历从实际问题中抽象出一元一次方程,且用去括号法则化简、求解方程的过程.2.会解含有括号的一元一次方程.02 预习反馈阅读教材P93~94“问题1及例1”,完成下列内容.1.要去括号,就要根据去括号法则及乘法分配律,特别是当括号前是“-”号时,去括号时,各项都要变号,若括号前有数字,则要乘遍括号内所有项,不能漏乘并注意符号.2.补全下列解方程的过程:(1)2(x -2)=-(x +3);解:去括号,得2x -4=-x -3.移项,得2x +x =-3+4.合并同类项,得3x =1.系数化为1,得x =13.(2)2(x -4)+2x =7-(x -1).解:去括号,得2x -8+2x =7-x +1.移项,得2x +2x +x =7+1+8.合并同类项,得5x =16.系数化为1,得x =165.03 例题讲解例 (教材P94例1变式)解方程:(1)4x +2(x -2)=12-(x +4);(2)6(12x -4)+2x =7-(13x -1);(3)3(x -2)+1=x -(2x -1).解:(1)x =127. (2)x =6. (3)x =32.【点拨】【跟踪训练】 解下列方程:(1)3(x -4)=12;解:去括号,得3x -12=12.移项,得3x =12+12.合并同类项,得3x =24.系数化为1,得x =8.(2)2(3x -2)-5x =0;解:去括号,得6x -4-5x =0.移项,得6x -5x =4.合并同类项,得x =4.(3)5-(2x -1)=x ;解:去括号,得5-2x +1=x.移项,得-2x -x =-5-1.合并同类项,得-3x =-6.系数化为1,得x =2.(4)12(x -2)=3-12(x -2).解:去括号,得12x -1=3-12x +1.移项,得12x +12x =3+1+1.合并同类项,得x =5.04 巩固训练1.将方程3(x -1)=6去括号,正确的是(D)A .3x -1=6B .x -3=6C .3x +3=6D .3x -3=62.方程2(x -1)=x +2的解是(D)A .x =1B .x =2C .x =3D .x =43.解方程:3(3x +5)=2(2x -1).解:去括号,得9x +15=4x -2.移项,得9x -4x =-2-15.合并同类项,得5x =-17.系数化为1,得x =-175.4.解下列方程:(1)2-(1-x)=-2; (2)4(2-x)-4(x+1)=60.解:(1)x=-3. (2)x=-7.05课堂小结用去括号解一元一次方程的步骤:(1)去括号;(2)移项;(3)合并同类项;(4)系数化为1.第2课时利用去括号解一元一次方程的实际问题01教学目标经历解决在水中航行的问题的过程,会列含括号的一元一次方程解决实际问题.02预习反馈阅读教材P94“例2”,完成下列内容.学校团委组织65名团员为学校建花坛搬砖,初一的同学每人搬6块,其他年级的同学每人搬8块,总共搬了400块,问初一的同学有多少人参加了搬砖?解:设初一的同学有x人参加了搬砖.根据题意,得6x+8(65-x)=400.去括号,得6x+520-8x=400.移项,得6x-8x=400-520.合并同类项,得-2x=-120.系数化为1,得x=60.答:初一的同学有60人参加了搬砖.03例题讲解例(教材P94例2变式)一艘船从甲码头到乙码头顺流而行,用了2 h;从乙码头返回甲码头逆流而行,用了2.5 h.已知水流的速度是3 km/h,求甲、乙两码头之间的距离.解:设船在静水中的速度为x km/h,则,顺流速度为(x+3)km/h,逆流速度为(x-3)km/h,依题意,得2(x+3)=2.5(x-3),解得x=27,2(x+3)=60.答:甲、乙两码头之间的距离为60 km.【点拨】解决水中航行问题的关键:(1)弄清以下数量关系:①路程=速度×时间.②顺流行驶速度=静水中的速度+水的速度,即v顺=v静+v水;逆流行驶速度=静水中的速度-水的流速,即v逆=v静-v水.③v顺-v水=v逆+v水.(2)确定建立方程的根据:①求速度时,根据往返的路程相等列方程.②求两码头间的距离时,既可设间接未知数,也可设直接未知数,若是前者,则根据往返路程相等列方程;若是后者,则根据“表示静水中速度的两个不同的式子相等”列方程.【跟踪训练】丽水市为打造“浙江绿谷”品牌,决定在省城举办农副产品展销活动.某外贸公司推出品牌产品“山山牌”香菇、“奇尔”惠明茶共10吨前往参展,用6辆汽车装运,每辆汽车规定满载,且只能装运一种产品.因包装限制,每辆汽车满载时能装香菇1.5吨或茶叶2吨.问装运香菇、茶叶的汽车各需多少辆?解:设装运香菇的汽车需x辆.根据题意,得1.5x+2(6-x)=10.解得x=4.所以6-x =2.答:装运香菇、茶叶的汽车分别需要4辆和2辆.04 巩固训练1.一艘船从甲码头到乙码头顺流而行,用了2 h ;从乙码头返回甲码头逆流而行,用了2.5 h .已知船在静水中的平均速度为27 km/h ,求水流的速度.解:设水流的速度为x km/h.根据题意,得2(27+x)=2.5(27-x)解得x =3.答:水流的速度为3 km/h.2.甲粮仓存粮1 000吨,乙粮仓存粮798吨,现要从两个粮仓中共运走212吨粮食,使两仓库剩余的粮食数量相等,那么应从这两个粮仓各运出多少吨? 解:设从甲粮仓运出x 吨,则从乙粮仓运出(212-x)吨.由题意,得1000-x =798-(212-x).解得x =207.212-207=5(吨).答:从甲仓库运出207吨,从乙仓库运出5吨.3.杭州新西湖建成后,某班40名同学去划船游湖,一共租了8条小船,其中有可坐4人的小船和可坐6人的小船,40名同学刚好坐满8条小船,问这两种小船各租了几条?解:设可坐4人的小船租了x 条.根据题意,得4x +6(8-x)=40.解得x =4,所以8-x =4.答:可坐4人的小船租了4条,可坐6人的小船租了4条.05 课堂小结通过这节课,你在用一元一次方程解决实际问题方面又有哪些收获?第3课时 利用去分母解一元一次方程01 教学目标1.经历利用等式的性质2,将方程中系数都化为整数并求解的过程,会解含有分母的一元一次方程.2.经历用一元一次方程解决实际问题的过程,会列含分母的一元一次方程解决实际问题.02 预习反馈阅读教材P95~97“问题2及例3”,完成下列内容.1.解一元一次方程的一般步骤包括:去分母、去括号、移项、合并同类项、系数化为1等.通过这些步骤可以使以x 为未知数的方程逐步向着x =a 的形式转化,这个过程主要依据等式的基本性质和运算律等.2.解方程:3x +x -12=x +14-2x -13.解:两边都乘12,去分母,得12×3x +6(x -1)=3(x +1)-4(2x -1). 去括号,得36x +6x -6=3x +3-8x +4.移项,得36x +6x -3x +8x =3+4+6.合并同类项,得47x =13.系数化为1,得x =1347.3.碧空万里,一群大雁在飞翔,迎面又飞来一只小灰雁,它对群雁说:“你们好,百只雁!你们百雁齐飞,好气派!可怜我是孤雁独飞.”群雁中一只领头的老雁说:“不对!小朋友,我们远远不足100只.将我们这一群加倍,再加上半群,又加上四分之一群,最后还得请你也凑上,那才一共是100只呢”.请问这群大雁有多少只?解:设这群大雁有x 只.由题意,得2x +12x +14x +1=100.解得x =36.答:这群大雁有36只.03 例题讲解例1 (教材P97例3变式)解方程: (1)5x -14=3x +12-2-x 3; (2)2x +13-x +26=1;(3)3x -2x -12=2-x -25. 解:(1)x =-17.(2)x =2.(3)x =1922.【点拨】 解含分母的一元一次方程的注意点:(1)去分母时,如果分子是一个多项式,要将分子作为一个整体加上括号;(2)去分母时,整数项不要漏乘各分母的最小公倍数;(3)去括号时容易出现漏乘现象和符号错误.【跟踪训练1】 解下列方程: (1)2x -13=x +24;解:去分母,得8x -4=3x +6.移项,得8x -3x =4+6.合并同类项,得5x =10.系数化为1,得x =2. (2)2x -12=x +24-1;解:去分母,得4x -2=x +2-4.移项,得4x -x =2+2-4.合并同类项,得3x =0.系数化为1,得x =0.(3)x -32-4x +15=1;解:去分母,得5(x -3)-2(4x +1)=10.去括号,得5x -15-8x -2=10.移项,得5x -8x =15+2+10.合并同类项,得-3x =27.系数化为1,得x =-9.(4)2x +13=1-x -15.解:去分母,得5(2x +1)=15-3(x -1).去括号,得10x +5=15-3x +3.移项,得10x +3x =-5+15+3.合并同类项,得13x =13.系数化为1,得x =1.例2 (教材补充例题)书正和子轩两人登一座山,书正每分钟登高10米,并且先出发30分钟,子轩每分钟登高15米,两人同时登上山顶.这座山有多高?解:设这座山高x 米,依题意,有x -10×3010=x 15,解得x =900. 答:这座山高900米.【跟踪训练2】 某船从A 地顺流而下到达B 地,然后逆流返回,到达A 、B 两地之间的C 地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时.A 、C 两地之间的距离为10千米,求A 、B 两地之间的距离.解:设A 、B 两地之间的距离为x 千米,则B 、C 两地之间的距离为(x -10)千米,由题意,得x 8+2+x -108-2=7,解得x =32.5. 答:A 、B 两地之间的距离为32.5千米.04 巩固训练1.解方程3x -72-1+x 3=1,去分母后的方程为(D)A .3(3x -7)-2+2x =6B .3x -7-(1+x)=1C .3(3x -7)-2(1-x)=1D .3(3x -7)-2(1+x)=62.如果式子1-2x 3的值等于5,那么x 的值是(B)A .-5B .-7C .3D .53.解下列方程:(1)y -12=y +25; (2)2x -23-2x -36=1.解:(1)y =3. (2)x =72.4.一块金银合金重770克,金放在水中质量减轻119,银放在水中质量减轻110,这块合金放在水中质量一共减轻50克,这块合金中金、银各多少?解:设合金中含金x克,则含银(770-x)克.根据题意,得119x+110×(770-x)=50.解得x=570.所以770-x=770-570=200.答:这块合金中含金570克,含银200克.05课堂小结1.去分母解一元一次方程时要注意什么?2.去分母解一元一次方程时,在方程两边同时乘各分母最小公倍数的目的是什么?。

4.2解一元一次方程(2)

4.2解一元一次方程(2)

例4.如果关于x的方程-3x+4=5x-4与3(x+1)+4k=11 的解相同,试求k的值.
1.如果代数式5x-7与4x+9的值互为相反数,则x的值 等于 n是
3.解方程:
2 1 (1)6x=3x+15 (2) x-1= x+3 3 2 13 9 (3)3x-7+6x=4x-8 (4) x-0.6= x+0.5 8 8
练习1:解下列方程: (1) 5x+2=-8; (2) 3x=5x-14;
(3) 7-2x=3-4x; (5) x 1 1 x 1 3 2 3
1 (4) x 1 3 x 2
(6)32x-12=-10x-47
例3.x为何值时,代数式4x+3与-5x+6的值 (1)相等? (2)互为相反数? (3)和为3?
项移动时一定要变号。
例1 解下列方程: (1) 5x+3=4x+7
1 1 (2) x x 3 4 2
含未知数的项宜向左移、常数项往右移。
左边对含未知数的项合并、右边对常数项合并。
解下列方程: (1) 1=9-10x; (2) 2—3x =4-2x;
(3) x 3 x 16 ; 2
3 5 (4) 1 x 3 x . 2 2
解一元一次方程
议一议
解题后的反思
,
• (1) 移项实际上是对方程两边进行 同加减 • 使用的是等式的性质
(2) 系数 化为 1 实际上是对方程两边进行 同乘除 , 使用的是等式的性质
本节课你的收获是什么?
这节课我们学习了解一元一次方程的 移项。
移项实际上是我们早已熟悉的利用等式的性质 “对方程两边进行同加同减”,只不过在格式上更为简 捷。 移项是把项从方程的一边移到另一边。

七年级数学《解一元一次方程(二)》教案 (公开课获奖)3

七年级数学《解一元一次方程(二)》教案 (公开课获奖)3

解一元一次方程一、温故互查 (二人小组完成) 1. 解以下方程:〔1〕5(3x+1)-20=(3x-2)-2〔2x+3〕;(2)18x+3(x-1)=18-2(2x-1)2.在上节课的例2中,如果假设甲码头到乙码头的距离为x 千米,所列的方程是35.232+=-x x 么?你是怎样解的?有更好的方法吗?二、设问导读阅读教材P97-98完成以下问题:33712132=+++x x x x 中,各分母分别是: , , ,它们的最小公倍数是 。

53210232213+--=-+x x x 中,各分母分别是: , , ,它们的最小公倍数是 。

3.如何去掉以上方程的分母?依据是什么?需要注意什么问题? 4.一元一次方程解法的一般步骤是: 〔1〕 ,依据: ; 〔2〕 ,依据: ;〔3〕 ,依据: ; 〔4〕 ,依据: ; 〔5〕 ,依据: ;5.以下去分母的过程中有几处错误,怎样做可以防止这些错误?3123213--=-+x x x三、自我检测 1.解以下方程: 〔1〕31253+=-x x 〔2〕122312=--+x x四、稳固训练 1.解方程33523=-x , 可以把方程两边都乘以35,得到方程是〔 〕 A.7〔3x-2〕=15 B .5(3x-2)=21 C.7(3x-2)=5 D.3(3x-2)=35 2. 解方程4431212-=+--xx , 去分母后得到的方程是〔 〕 A.2〔2x-1〕-1+3x=-4 B .2(2x-1)-1+3x=-1 C.2(2x-1)-1-3x=-16 D.2(2x-1)-(1+3x)=-43.解以下方程: 〔1〕232)73(72x x -=+; 〔2〕353235xx --- 〔3〕161242=--+y y ; 〔4〕31819615xx x --+=+五、拓展训练课外活动中一些学生分组参加活动,原来每组8人,后来又增加4人,需要重新编组,每组12人,这样比原来减少2组。

解一元一次方程(二)_—去括号11

解一元一次方程(二)_—去括号11
注意: 1.移项时要变号; 2.合并同类项时只合并系数,字母部分不变; 3.系数化为1时方程两边同时除以未知数的系数。
思考: 如果在方程6x-7=4x-1后加上一个括号得 6x-7=4(x-1)或在前面再加上一个负号得6x-7= -4(x-1)会解吗?
知识回顾2:
练习:
2x+16 1、2(x+8) =________ -9x-12 2、-3(3x+4) = _______ 2y-7y+5 ________ -5y+5 3、2y-(7y-5) =________= 11-4x 4、3- 4(x-2)= 3-4x+8 ________=________ 注意: 去括号,看符号:是“+”号,不变号; 是“―”号,全变号。分配系数时不要漏乘。 (正系数:不漏乘,负系数,全变号,不漏乘)
练习2(比一比):
下列方程的解法对不对?如果不对,应怎样改正? 解方程 2(x+3)-5(1-x)=3(x-1)
解:去括号,得 2x+3-5-5x=3x-3 2x+6-5+5x=3x-3 移项,得 2x+5x-3x= -3+5-6 2x-5x-3x= -3+5-3 合并同类项,得 4x= -4 -6x= -1 1 x= -1 系数化为1,得 x 6
Байду номын сангаас习1:
(1)下列去括号正确的是 ( D ) A、2x-(3x+3)=2x-3x+3 B、3-2(3x-2)=3-6x-4 C、-2(-3y+4)+4y=6y+8+4y D、5x-3(-4x-3)=5x+12x+9 (2)下列去括号错误的是 ( C ) A、3-2(-x+3)=3+2x-6 B、-3(-4x+2)-5=12x-6-5 C、4x-3(-4x+2)=4x+12x+6 D、3x-(-3x+4)=3x+3x-4

解一元一次方程(二)

解一元一次方程(二)

问题一:
• 某工厂加强节能措施,去年下半年与上半
年相比,月平均用电量减少2000度,全年 用电15万度,这个工厂去年上半年每月平 均用电多少度? • 你会用方程解这道题吗? • 题目中的等量关系是什么?
上半年用电+下半年用电=15万度
• 设上半年每月平均用电x度,则下半年每月平均用
电_____度;上半年共用电___度,下半年共用电 ___度。 • 依据上面的等量关系得方程: 6x+6(x-2000)=150000 • 你会解这个方程吗? • 再解这个方程是需要先解决什么?
• 例1 解方程3x-7(x-1)=3-2(x+3) • 去括号得: • 3x-7x+7=3-2x-6 • 移项得: • 3x-7x+2x=3-6-7 • 合并同类项得; • -2x=-10 • 系数化为1得: • X=5
尝试应用:
1.P97练习 2.解下列方程方程 (1)x-3(1-2x)=9 (2)2(x-3)-3(x-5)=7(x-1) 3.同步学习P81
解一元一次方程(二)
——去括号与去分母
知识回顾
• 1.去括号法则是什么? • 2、“移项”要注意什么?
• 3、等式的性质2是什么?
• 1去括号法则 • • • • • • •
1.括号前面有"+"号,把括号和它前面的"+"号去掉,括号里各项的 符号不改变
2.括号前面是"-"号,把括号和它前面的"-"号去掉,括号里各项的符 号都要改变为相反的符号 注: 要注意括号前面的符号,它是去括号后括号内各项是否变号的 依据. 去括号时应将括号前的符号连同括号一起去掉. 要注意,括号前面是"-"时,去掉括号后,括号内的各项均要改变符号, 不能只改变括号内第一项或前几项的符号,而忘记改变其余的符号. 若括号前是数字因数时,应利用乘法分配律先将数与括号内的各项 分别相乘再去括号,以免发生错误. 数. 遇到多层括号一般由里到外,逐层去括号,也可由外到里.数"-"的个

3.3解一元一次方程(二)——去括号习题

3.3解一元一次方程(二)——去括号习题

3.3解一元一次方程(二)一一去括号与去分母第1课时去括号Ol课前预习要点感知解方程时的去括号和有理数运算中的去括号类似,都是逆用,其方法:括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号—;括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号—.预习练习1—1解方程l-(2x+3)=6,去括号的结果是()A.l÷2χ-3=6B.1—2χ-3=6C.l-2x+3=6D.2x+l-3=61-2填空:5(X-4)-3(2X+1)=2(1-2X)-1.解:去括号,得.移项,得.合并同类项,得.系数化为1,得.02巧堂训练学问点1利用去括号解一元一次方程1.将方程2χ-3(4-2x)=5去括号正确的是()A.2χ-12—6x=5B.2χ-12~2x=5C.2χ-12÷6x=5D.2χ-3÷6x=52.方程2(χ-3)+5=9的解是()A.x=4B.x=5C.x=6D.x=73.解方程4(x—1)-χ=2(x+]),步骤如下:①去括号:得4x—1—x=2x+1;②移项,得4x—2x—X=1+2;③合并,得x=5,其中做错的一步是()A.①B.②C.③D.①②4.解方程-2(x—l)—4(x—2)=1时,去括号,得.5.解方程4(χ-2)=2(x+3),去括号,得.移项,得.合并同类项,得.系数化为1,得.6.(厦门中考)方程x+5=](x+3)的解是.7.解下列方程:(l)2(3χ-2)-5x=0;(2)∣(χ-2)=3—∣(χ-2).学问点2去括号解方程的应用8.甲、乙两人骑自行车同时从相距65千米的两地相向而行,2小时相遇,若乙每小时比甲少骑2.5千米,则乙每小时行()A.20千米B.17.5千米C.15千米D.12.5千米9.元代朱世杰所著的《算学启蒙》中有这样一道题:“良马日行二百四十里,驾马日行一百五十里,鸳马先行一十二日,问良马几何追及之?”请你回答:良马一天可以追上驾马.10.(济南中考)2014年世界杯足球赛在巴西实行,小李在网上预定了小组赛和淘汰赛两个阶段的球票共10张,总价为5800元.其中小组赛球票每张550元,淘汰赛球票每张700元,问小李预定了小组赛和淘汰赛的球票各多少张?03课后作业11.下列是四个同学解方程2(X—2)—3(4x—1)=9的去括号的过程,其中正确的是()A.2χ-4-12x+3=9B.2χ-4-12χ-3=9C.2χ-4-12x+l=9D.2χ-2-12x+l=912.对于非零的两个有理数a,6,规定ab=2b_3a,若1 (x+l)=l,则X的值为()C 1 1A.-1B.1C,-D.--13.式子4—3(x—1)与式子x+12的值相等,则X=—.14.解下列方程:(l)3χ-2(10-χ)=5;(2)3(2y+l)=2(l÷y)+3(y+3);Λ31(3)-[-(-χ-2)-6]=l.15.(荷泽中考)食品平安是关乎民生的问题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B 饮料每瓶需加该添加剂3克.己知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?16.一架飞机在两城市之间飞行,风速为24千米/时,顺风飞行须要2小时50分,逆风飞行须要3小时.求无风时飞机的飞行速度和两城之间的航程.挑战自我17.(株洲中考)家住山脚下的孔明同学想从家动身登山游玩,据以往的阅历,他获得如下信息:(1)他下山时的速度比上山时的速度每小时快1千米;(2)他上山2小时到达的位置,离山顶还有1千米;(3)抄近路下山,下山路程比上山路程近2千米;⑷下山用1个小时;依据上面信息,他作出如下安排:(1)在山顶巡游1个小时;⑵中午12:00回到家吃中餐.若依据以上信息和安排登山游玩,请问:孔明同学应当在什么时间从家动身?参考答案Ol课前预习要点感知乘法安排律,相同;相反.预习练习1-1B1—25χ-20—6χ-3=2—4χ-1,5χ-6x+4x=2-1÷20÷3,3x=24,x=802巧堂训练1.C2.B3.A4.-2x÷2-4x+8=l5.4χ-8=2x÷6.4χ-2x=6÷8.2x=14.x=7 6.x=-77(1)去括号,得6x—4—5x=0.移项,得6x—5x=4.合并同类项,得x=4.⑵去括号,得%—1=3—gx+l.移项,得$+$=3+1+1.合并同类项,得x=5.8.C9.2010.设小李预定了小组赛球票X张,淘汰赛球票(10—X)张.依据题意,得550x+700(10-χ)=5800.解得x=8.10—X=IO-8=2.答:小李预定了小组赛球票8张,淘汰赛球票2张.03课后作业511.A12.B3.--14.(1)去括号,得3x—20+2x=5.移项,得3x+2x=20+5.合并同类项,得5x=25.系数化为1,得x=5.(2)去括号,得6y+3=2+2y+3y+9.移项,得6y—2y—3y=-3+2+9.合并同类项,得y=8.(3)去括号,得《一2—8=1.移项,得4=2+8+1.合并同类项,得9=11.系数化为1,得x=55.O D O15.设A饮料生产了X瓶,则B饮料生产了(IO0—x)瓶.依据题意,得2x+3(100-χ)=270.解得x=30.100—x=70.答:A饮料生产了30瓶,B饮料生产了70瓶.16.设无风时飞机的飞行速度为X千米/时,则顺风飞行的速度为(x+24)千米/时,逆风飞行的速度为(x—24)千米/时.依据题意,得17—(x+24)=3(χ-24).解得x=840.所以3(χ-24)=2448.O答:无风时飞机的飞行速度为840千米/时,两城间的航程为2448千米.挑战自我17.设上山的速度为:xkm/h,则下山的速度为:(x+l)km∕h,则整个山路长为(2x+l)km.依题意得:1X(x+1)=(2x÷l)—2,解得x=2.所以山路长为2X2+1=5km,路途上总用时为:5÷2+3÷3=3.5(三).总用时为:3.5+1=4.5(三),故动身时的时间为:12-4.5=7.5.答:孔明同学应当在早晨7:30从家里动身.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.3 解一元一次方程(二)
――去括号和去分母
教学任务分析
教学流程安排
教学过程设计
一、创设问题情景,激发学生研究问题的兴趣,引出本节要研究的主要的两种方程的形式
请利用方程解决下列问题:
问题1:顾客用540元买了两种布料共138尺,其中蓝布料每尺3元,黑布料每尺5元.两种布料各买了多少尺?
问题2:某厂22名工人,每人每天可以生产螺钉1200个或螺母2000个,如何安排才能使一天生产的螺钉和螺母配套?
问题3:整理一批数据,由一人做需要80小时完成.现在计划先由一部分人做2小时,再增加5人做8小时,完成这项工作的四分之三,怎样安排参与整理数据的具体人数? 学生活动设计:
对于问题1:学生会发现问题中有两个等量关系:一是两种布料共138尺;二是两种布料的费用共是540元,于是可以考虑设买蓝布料x 尺,则买黑布料(138-x )尺,根据相等关系:两种布料的费用共是540元,可以得到方程3x +5(138-x )=540.或设用x 元买蓝布料,则用540-x 元买黑布料,则根据相等关系:两种布料共138尺,得到方程1385
5403=-+x x . 对于问题2:当螺钉和螺母配套时,螺母的数量应是螺钉数量的2倍(这就是相等关系) 于是可以设安排x 人生产螺钉,则有22-x 人生产螺母,根据上述相等关系可以得到方程 2×1200x =1800(22-x )(或设总共生产的螺母有x 个).
对于问题3:可以考虑先安排x 人作2小时,由于每人的工效相同,一个人1小时完成总工作量的
80
1,则工作两个小时后完成了总工作量的802x ,后来由(5+x )人工作,工作了8小时完成总工作量的80
)5(8880)5(x x +=⨯+,根据这10个小时共完成总工作量的四分之三,得到方程802x +4
380)5(8=+x (或设x 人先工作了2小时,则有 2x +8(5+x )=80×43). 教师活动设计:由于已经有了列方程解决实际问题的经验,所有可以让学生自主探究,寻找解决问题的思路,在解决问题的过程中可能产生不同的形式,此时可以分析不同方法中异同,让学生比较不同方法间的简单程度,进而引导学生在解决问题的过程中尽量采用简单的方法解决问题.
二、问题引申,探究、归纳解方程的方法,培养学生的探究能力 活动1:对上述问题中涉及的方程,如何解这些方程呢?你能找到解这些方程的方法吗?
1.3x +5(138-x )=540; 2.2×1200x =1800(22-x );
3.2x +8(5+x )=80×43 ; 4.1385
5403=-+x x ;
5.802x +4
380)5(8=+x . 学生活动设计:由于这些方程和前面接触的方程在形式上有区别,1、2和3中存在括号,4、5中存在分母,则可以考虑把方程中的括号、分母去掉就可以转化为熟悉的形式,对于1、2和3可以利用乘法分配律把括号去掉,然后进行移项、合并、系数化为1,对于4和5可以利用等式的性质2,把方程两边同时乘以各个分母的最小公倍数,就可以把分去掉,于是问题可以解决.
教师活动设计:在活动中,主要让学生探究如何把新的知识转化为旧的知识来解决,从而让学生体会数学中的转化思想,同时培养学生的勇于探究的精神.
〔解答〕1. 3x +5(138-x )=540,
去括号得,
3x +5×138-5x =540,
移项得,
3x -5x =540-5×138,
合并得,
-2x =-150,
系数化为1,
x =75.
2. x =10;
3.x =2.
4. 1385
5403=-+x x , 两边同时乘以15(去分母)得,
5x +3(540-x )=138×15,
去括号得,
5x +1620-3x =2070,
移项得,
5x -3x =2070-1620,
合并得,
2x =450,
系数化为1,
x =225.
5.x =2.
活动2:
通过以上解方程的过程,你能总结出解方程的一般步骤吗?
学生活动设计:
学生通过观察思考,总结出解方程的一般步骤:
去分母、去括号、移项、合并同类项、系数化为1.
教师活动设计:让学生充分发表自己的看法,然后在总结时进行必要的补充和说明. 活动3:根据上述总结,请解下列方程:
(1)3x -7(x -1)=3-2(x +3);
(2))13
1
(72)421(6--=+-x x x ;
(3)53210232213+--=-+x x x ;
(4)3
1232213--=--+x x x . 学生活动设计:让四位同学黑板进行板演,其余学生独立完成,完成后根据黑板上的解法进行交流和总结,发现问题,寻找问题出现的原因,分析原因,特别是去带有负号的括号时的变号规律.
教师活动设计:分析解决问题的过程,让学生自主发现问题所在,从而培养学生的严谨的精神.
〔解答〕(1)x =5; (2)x =6; (3)167=x ; (4)25
23=x . 三、拓展提高,应用创新,培养学生思维的深刻性和灵活性 问题4:现将连续自然数1~2006按如图所示的方式排成一个长方形阵列,用一个正方形框出16个数:
1 2 7
8 9 14
15 16 21
22 23 28
29 30 35
36 37 42
……………………
……………………
2003 2004 2005 2006
(1) 图中这16个数的和是多少?
(2) 要使一个正方形框出的16个数的和分别等于2000和2008是否可能,若不可能,
说明理由,若可能求出该正方形中最小数和最大数.
学生活动设计:(1)计算框出的16个数的和,可能会有两种方式,
方式1:依次把这16个数加起来;
方式2:可以设第1个数为a ,则这16个数分别是:
a a +1 a +2 a +3
a +7 a +8 a +9 a +10
a +14 a +15 a +16 a +17
a +21 a +22 a +23 a +24
把这些加起来得到16a +192,当a =10时得到,这16个数的和是352.
(2)有(1)可以发现若16a +192=2000,则有a =113,若16a +192=2008则有 x =113.5.
因为a 是自然数,所以结果可能是2000,但不可能是2008,
问题5(对问题2的变式思考):
变式思考1:
某车间有28名工人,生产一种螺母和螺栓,每人每天平均能够生产螺栓12个货螺母18个,第一天安排14名工人生产螺栓、14名工人生产螺母,问第二天应安排生产多少工人生产螺栓、多少人生产螺母,才能使当天生产的螺栓和螺母与第一天生产的刚好配套?(已知每个螺栓要配两个螺母)?
教师活动:启发学生进行独立思考,
学生活动:学生在已经熟悉的情景下进行独立思考,同样在独立思考后由学生提出自己
的看法,再交流中逐步完善自己 的看法,
解:第1天生产后,螺栓、螺母不能刚好配套,螺栓应有剩余,不难计算螺栓剩余的数量为42个,然后第二天要安排x 人生产螺栓,(28-x )人生产螺母,则
12(14)18[14(28)]12
x x ++-=. 解之得 x =10,
思考:遇到这类配套问题,应该怎样解决?
问题:若解出的未知数是分数(不是整数),怎么办?引出变式2.
变式思考2:
某车间有27名工人,生产一种螺母和螺栓,每人每天平均能够生产螺栓12个货螺母18个,问应安排生产多少工人生产螺栓、多少人生产螺母,才能使当天生产的螺栓和螺母刚好配套?(已知每个螺栓要配两个螺母)?
学生活动:学生对这个问题的解决应该没有问题,主要考虑解得的数是分数,如何处理? 解:设应分配x 人生产螺栓,则(27-x )人生产螺母,根据题意得:
1218(27)12
x x -= 解得 4117
x =, 如何处理?可以由学生讨论最后的结论.
变式思考3:
某车间有27名工人,生产一种螺母和螺栓,每人每天平均能够生产螺栓12个货螺母18个,假设y 天作为一个生产周期,问在这个生产周期内,应如何安排,才能使生产的螺栓和螺母刚好配套?(已知每个螺栓要配两个螺母)?
学生活动:在平均生产率不变的前提下,一个生产周期为y 天,且每天有27名工人参加工作,则工作总量相当于一天内有27y 名工人参加工作的总工作量,这样问题就化归为问题的情形.
教师活动:引导、启发.
解:在一个生产周期内,安排x 名工人生产螺栓,(27y -x )名工人生产螺母,则
1218(27)12
x y x -=. 得 817
x y =. (此时考虑方程的整数解问题).
所以y 必须是7的倍数才行.
若y =7则有x =81,于是可以用
81327
=(天)时间安排全部工人生产螺栓,用4天时间安排全部工人生产螺母. 四、小结与作业
小结:
1. 解方程的一般步骤:去分母、去括号、移项、合并、系数化为1.
2. 列方程解实际问题中关键:找等量关系.
作业:
习题3.3.。

相关文档
最新文档