第5章 梁的弯曲问题(1)-剪力图与弯矩图
工程力学弯曲强度1(剪力图与弯矩图
05 剪力图与弯矩图的计算与分析
CHAPTER
剪力与弯矩的计算方法
要点一
剪力计算
根据受力分析,通过力的平衡原理计算剪力。在梁的截面 上,剪力方向与梁的轴线垂直,大小等于通过截面形心的 剪切面上的剪力。
要点二
弯矩计算
弯矩是描述梁弯曲变形的量,其计算方法包括截面法、力 矩分配法等。弯矩的计算需要考虑梁的长度、截面尺寸、 材料属性以及外力分布等因素。
在工程实践中,许多结构和设备都需 要承受弯曲负荷,如桥梁、建筑、车 辆等,因此弯曲强度的研究具有重要 意义。
弯曲强度的基本原理
弯曲强度的基本原理包括剪力和弯矩 的分析。剪力是指在弯曲过程中垂直 于轴线的力,而弯矩则是指弯曲过程 中产生的力矩。
剪力和弯矩的分析是确定结构在弯曲 负荷下的应力和变形的重要手段,也 是进行结构设计和优化的基础。
谢谢
THANKS
剪力图与弯矩图的受力分析
剪力图
通过绘制剪力随梁长度变化的曲线图,可以直观地表示 出梁在不同位置受到的剪力大小和方向。根据剪力图, 可以分析梁在受力过程中的稳定性以及剪切破坏的可能 性。
弯矩图
弯矩图表示弯矩随梁长度变化的曲线图,可以用来分析 梁在不同位置的弯曲变形程度以及弯曲应力分布情况。 通过弯矩图,可以判断梁在受力过程中是否会发生弯曲 失稳或弯曲破坏。
CHAPTER
剪力图与弯矩图在结构设计中的应用
结构设计是工程中非常重要的环节,剪力图 与弯矩图是进行结构设计的关键工具。通过 分析剪力和弯矩的分布和大小,可以确定结 构的受力情况和变形趋势,从而优化结构设 计,提高结构的稳定性和安全性。
在进行结构设计时,需要综合考虑多种因素 ,如载荷、材料属性、连接方式等。剪力图 与弯矩图可以帮助工程师更好地理解和分析
梁的剪力图与弯矩
目录 CONTENT
• 梁的剪力与弯矩的基本概念 • 梁的剪力图 • 梁的弯矩图 • 剪力与弯矩的关系 • 梁的剪力与弯矩的实例分析
01
梁的剪力与弯矩的基本概 念
剪力与弯矩的定义
剪力
剪力是作用在梁上的垂直力,它 使梁产生剪切变形。剪力通常用 Q表示,单位为牛顿或千牛顿。
弯矩
弯矩是作用在梁上的力矩,它使 梁产生弯曲变形。弯矩通常用M 表示,单位为牛顿米或千牛顿米 。
在梁的跨中位置,剪力图的峰值最大,而在梁的 支座位置,剪力图的谷值最小。
随着梁上载荷的增加,剪力图的峰值逐渐增大, 谷值逐渐减小。
03
梁的弯矩图
弯矩图的绘制方法
1 2
截面法
通过分析梁在不同截面上的弯矩值,绘制出弯矩 图。
叠加法
将多个弯矩值叠加起来,绘制出弯矩图。
3
微分法
利用弯矩函数的微分性质,绘制出弯矩图。
剪力与弯矩的符号规定
剪力的正负号规定
在截面左侧上作用的剪力为正,反之 为负。
弯矩的正负号规定
在截面左侧上作用的弯矩为正,反之 为负。
剪力与弯矩的计算公式
剪力计算公式
Q = F * sinθ(F为作用在梁上的外力,θ为外力与梁轴线的夹角)。
弯矩计算公式
M = F * d / 2(F为作用在梁上的外力,d为梁的跨度)。
考察,从而为实际工程设计提供依据。
梁的剪力与弯矩的模拟计算
01
模拟计算是利用计算机软件对梁的剪力和弯矩进行数值模拟分 析的方法。通过模拟计算,可以快速得到梁在不同载荷条件下
的剪力和弯矩分布情况。
02
模拟计算可以采用不同的计算方法,如有限元法、有限差分法 和边界元法等。其中,有限元法是最常用的一种方法,能够考
剪力、弯矩方程与剪力、弯矩图
截面位置对剪力和弯矩的影响
总结词
截面位置对剪力和弯矩具有显著影响。不同的截面位置会导致剪力和弯矩的大小和方向发生变化。
详细描述
在结构分析中,截面位置是影响剪力和弯矩的重要因素之一。不同的截面位置会导致剪力和弯矩的大小和方向发 生变化,从而影响结构的整体受力性能。例如,在梁中选取不同的截面位置进行支撑或固定,会对梁的剪力和弯 矩产生显著影响。
05 剪力、弯矩与材料力学性 能的关系
材料弹性对剪力和弯矩的影响
弹性材料在剪力和弯矩作用下会发生弹性变形,变形量与外力成正比,当外力去 除后,材料能够恢复原状。
弹性材料的剪切模量和弯曲刚度决定了剪力和弯矩的大小,剪切模量越大,材料 抵抗剪切变形的能力越强;弯曲刚度越大,材料抵抗弯曲变形的能力越强。
根据绕顺时针方向观察确定,使上侧 纤维受拉时为正。
02 剪力方程与弯矩方程
剪力图与弯矩图的绘制
1
剪力图和弯矩图是表示梁上剪力和弯矩随截面位 置变化的图形。
2
这些图的绘制基于剪力方程和弯矩方程的计算结 果,通过将计算得到的剪力和弯矩值标在图中相 应的位置上,并连接成线。
3
剪力图和弯矩图的绘制有助于直观地了解梁在不 同截面位置的受力状态和应力分布情况。
弯矩
在梁或结构中,由于弯曲而产生 的力矩,表示弯曲变形的大小。
剪力与弯矩在力学中的作用
剪力
主要影响结构的剪切变形,对梁的剪切承载能力有重要影响 。
弯矩
主要影响结构的弯曲变形,对梁的弯曲承载能力有重要影响 。
剪力与弯矩的符号规定
剪力正方向
根据右手定则确定,从杆件的受压一 侧指向受拉一侧。
弯矩正方向
02
材料强度越高,抵抗剪力和弯矩等外力的能力越强, 所能承受的剪力和弯矩越大。
材料力学第5章-剪力图与弯矩图
第5章 梁的强度问题
剪力方程与弯矩方程
建立剪力方程和弯矩方程的方法与过程,实际上与前面所 介绍的确定指定横截面上的剪力和弯矩的方法和过程是相似的 ,所不同的,现在的指定横截面是坐标为x的横截面。
需要特别注意的是,在剪力方程和弯矩方程中,x是变量, 而FQ(x)和M(x)则是x的函数。
第5章 梁的强度问题
剪力方程与弯矩方程
例题2
MO=2FPl
FP
B
A
C
l
l
悬臂梁在B、C两处分别承受集中力FP和集中力偶M=2FPl
的作用。梁的全长为2l。 试写出:梁的剪力方程和弯矩方程。
第5章 梁的强度问题
剪力方程与弯矩方程
y
MO=2FPl
O
A
C
l
FP
B l
解:1.确定控制面和分段
本例将通过考察截开截面的右
边部分平衡建立剪力方程和弯矩方 程,因此可以不必确定左端的约束 力。
本章首先介绍如何建立剪力方程和弯矩方程;讨论载荷、 剪力、弯矩之间的微分关系;怎样根据载荷、剪力、弯矩之间 的微分关系绘制剪力图与弯矩图;然后应用平衡、变形协调以 及物性关系,建立确定弯曲的应力和变形公式;最后介绍弯曲 强度设计方法。
第5章 梁的强度问题
工程中的弯曲构件 梁的内力及其与外力的相互关系 剪力方程与弯矩方程 载荷集度、剪力、弯矩之间的微分关系 剪力图与弯矩图 刚架的内力与内力图 结论与讨论(1)
根据以上分析,不难得到结论: 杆件各截面上内力变化规律随着外力的 变化而改变。
第5章 梁的强度问题
梁的内力及其与外力的相互关系
所谓剪力和弯矩变化规律是指表示剪力和弯矩变 化的函数或变化的图线。这表明,如果在两个外力 作用点之间的梁上没有其他外力作用,则这一段梁 所有横截面上的剪力和弯矩可以用同一个数学方程 或者同一图线描述。
材料力学第五章
F l a x
l
材料力学
第五章 梁的剪力图与弯矩图
梁的横截面上位于横截面 内的内力FS是与横截面左右两 侧的两段梁在与梁轴相垂直方 向的错动(剪切)相对应,故称 为剪力;梁的横截面上作用在 纵向平面内的内力偶矩是与梁 的弯曲相对应,故称为弯矩。
材料力学
第五章 梁的剪力图与弯矩图
为使无论取横截面左边或右边为分离体,求得同一横
截面上的剪力和弯矩其正负号相同,剪力和弯矩的正负号
要以其所在横截面处梁的微段的变形情况确定,如下图。
材料力学
第五章 梁的剪力图与弯矩图
综上所述可知: (1) 横截面上的剪力——使截开部分梁产生顺时针方向
转动为正;产生逆时针方向转动为负。
(2) 横截面上的弯矩——作用在左侧面上使截开部分 逆时针方向转动,或者作用在右侧截面上使截开部分顺时 针方向转动者为正;反之为负。
图d,e所示梁及其约束力不能单独利用平衡方程确定, 称为超静定梁。
材料力学
第五章 梁的剪力图与弯矩图
§5.2 梁的内力及其与外力的相互关系
Ⅰ. 梁的剪力和弯矩(梁的横截面上的两种内力)
图a所示跨度为l的简支梁其
约束力为:
FA
Fl
l
a,
FB
Fa l
梁的左段内任一横截面m-
m上的内力,由m-m左边分离
杆件:某一方向尺寸远大于其它方向尺寸的构件。 直杆:杆件的轴线为直线。 杆的可能变形为:
轴向拉压—内力为轴力。如拉、撑、活塞杆、钢缆、柱。
扭转 —内力为扭矩。如各种传动轴等。
(轴)
弯曲 —内力为弯矩。如桥梁、房梁、地板等。(梁)
材料力学
梁的分类
F
q
第五章 梁的剪力图与弯矩图
范钦珊版材料力学习题全解 第5章 梁的弯曲问题(1)-剪力图与弯矩图
M A = ql 2
| FQ | max = 5 ql 4
| M | max = ql 2
题(c)
∑ F y = 0 , FRA = ql (↑)
9
∑ M A = 0 , M A = ql 2
∑ M D = 0 , ql 2 + ql ⋅ l − ql ⋅ − M D = 0
3 2 ql 2 | FQ | max = ql MD =
C
4000 4000
B
FB
习题 5-8 载荷图之二
5-9 试作图示刚架的剪力图和弯矩图,并确定 FQ
max
、 M
max
12
习题 5-9 图
解:题(a) :
∑M A = 0
FRB ⋅ 2l − FP ⋅ l − FP ⋅ l = 0
FRB = FP (↑)
∑ F y = 0 , F Ay = FP (↓)
∑ Fx = 0 , FAx = FP (←)
C
2
1
B
C
-
B
1
D
M(FPl)
1 +
D
FQ(FP)
A
A
习题 5-9a 的弯矩图
剪力图和弯矩图如图所示,其中 | M | max = 2 FP l , 位于刚节点 C 截面;
| FQ |max = FP
题(b) : ∑ F y = 0 , F Ay = ql (↑)
8
习题 5-6c、e 解图
习题 5-6d、f 解图
题(b)
∑ M A = 0 − ql 2 − ql ⋅ l + ql ⋅ l + FRB ⋅ 2l = 0
2
FRB
材料力学第五章梁的剪力图与弯矩图
29
§5-3
剪力和弯矩及其方程
为了建立剪力方程和弯矩方程,必须首先 建立Oxy坐标系。其中O为坐标原点,x坐 标轴与梁的轴线一致,坐标原点O一般取 在梁的左端,x坐标轴的正方向自左向右, y坐标轴铅垂向上。
30
§5-3
剪力和弯矩及其方程
建立剪力方程和弯矩方程,需要根据梁上的外 力(包括载荷和约束力)作用状况,确定控制 面,从而确定要不要分段,以及分几段建立剪 力方程和弯矩方程。
FBy
F 0 M 0
y A
FAy FBy 2F
FSE O FAy ME
FBy
F 5F FAy 3 3
分析右段得到:
FBy
O
ME FSE
F
FBy
y
0
FSE FBy 0
M
o
0
3a M E FBy Fa 2
27
§5-3 剪力和弯矩及其方程
F FBy 3
3、平面弯曲(对称弯曲):若梁上所有外力都作用在纵向对称面内,
梁变形后轴线形成的曲线也在该平面内的弯曲。
4、非对称弯曲:若梁不具有纵向对称面,或梁有纵向对称面上但外力
并不作用在纵向对称面内的弯曲。
13
工程实际中的弯曲问题简图
P
P P P
P P P
P
14
平面弯曲
•具有纵向对称面 •外力都作用在此面内 •弯曲变形后轴线变成对称面内的平面曲线
M M M
M
弯矩为正
弯矩为负
22
梁的控制面
集中力作用点两侧的截面
集中力偶作用点两侧的截面 集度相同的均布载荷起点和终点截面处
23
梁的剪力和弯矩剪力图和弯矩图
F AX
l
F
FS x F B M x Fx
kN
FL
0 xL 0x L
kNm
8
例题 4.6
图示外伸梁,,试作剪力图和弯矩图.
20kN 40kN m
X1 A 1m 35kN
15
20
kN
20
10kN m
4m
2.5
FS x1 20kN
X2
B
0 x1 1
25kN
M x1 20x1
F+qL
1/2qL2+FL
FL
q B
l
qL
1/2qL2
19
例题 4.14
F A
m 1 Fl
4A
F
C
B
B
l2 l2
1 Fl 4
-
+ 1 Fl 8
l2 l2
+
1 Fl 4
A C
m 1 Fl 4 C
l
1 Fl
-4
20
例题 4.15
6kN
6kN 2kN m
AC
B
D
2m 2m 2m
4
+
-
6
+
4
2kN m 2m 2m 2m
M2 M1
x2 x1
FS x
11
dx
q
A
C
D
B
FA
a
c
l
b
FB
FA +
x
-
FB
+
FAa
FBb
12
例题
4.7 4.8
a
F
材料力学第五章
FSC
q0 x q ( x) l
是否可以将梁上的分布荷载全部用静力等效后的 合力代替来求截面C的内力?
§5-3 剪力和弯矩
例题 解: 1. 确定支反力 Fy 0 FAy FBy 2 F
M
FAy 2. 用截面法研究内力 FSE ME FAy FBy
A
0
FBy 3a Fa 2 F a F 5F FBy FAy 3 3 F 5F F 0 F 2 F F y SE SE 3 3 a 5F 3a M 0 2 F M O E 2 3 2 3Fa ME 2
a
F
b
A
FAY
x1
C x2
l
B
FBY
例题5-3 图示简支梁C点受集中力作用。 试写出剪力和弯矩方程,并画 出剪力图和弯矩图。 解:1.确定约束力 M A=0, M B=0
FS
Fb / l
FAy=Fb/l
FBy=Fa/l
Fa / l
Fab / l
M
2.写出剪力和弯矩方程 =Fb / l 0 x1 a x AC FS x1 M x1 =Fbx1 / l 0 x1 a FS x2 = Fa / l a x2 l CB M x2 =Fal x2 / l a x2 l
FCy
D
FBy 29kN
§5-2
受弯杆件的简化
q =20kN/m F MA Me=5kN· m C A B FAx D E K FBy FAy 1m 3m 1m 1m
AB梁
F F
0.5m
x y
0 0 0
FAx 0
第五章梁(受弯构件)
选定高度:hmin≤h≤hmax;h≈he,并认为h0≈he
3、确定腹板厚度(假定剪力全部由腹板承受),则有:
max
VS I xtw
1.2 V h0tw
fV
或按经验公式: tw h0 3.5
tw
1.2
V h0 fV
3、确定翼缘宽度 确定了腹板厚度后,可按抗弯要求确定翼缘板面积Af,已
工字型截面为例:
V1
ctw
T
lztw
tw
T
lz
( T1 2 0.7hf
)2
(
f
V1 2 0.7hf
)2
f
w f
1
hf
1.4
f
w f
T12
( V1
f
)2
第六章 拉弯与压弯构建
第一节 概述 第二节 拉弯与压弯构件的强度与刚度 第三节 实腹式压弯构件的整体稳定 第四节 实腹式压弯构件的局部稳定 第五节 实腹式压弯构件的截面设计 第六节 格构式压弯构件
根据验算结果调整截面,再进行验算,直至满足。
二、组合梁的截面设计
1、根据受力情况确定所需的截面抵抗矩
WT
M max
x f
2、截面高度的确定
最小高度:hmin由梁刚度确定;
最大高度:hmax由建筑设计要求确定;
经济高度:he由最小耗钢量确定;
he 25 WT2 2WT0.4
he 23 W T 30mm
W
2I h
2
twh03
h 12
2
Af
h0 2
t
2
WT
Af
WT h0
h0tw 6
有了Af ,只要选定b、t中的其一,就可以确定另一值。 4、截面验算
材料力学-5-弯矩图与剪力图
从所得到的剪力图和 弯矩图中不难看出:
在集中力作用点两 侧截面上的剪力是不相 等的,而在集中力偶作 用处两侧截面上的弯矩 是不相等的,其差值分 别为集中力与集中力偶 的数值。
例题5
q
A
4a FAy
梁由一个固定铰链支座和一个辊轴支座所
支承,但是梁的一端向外伸出,这种梁称为外 伸梁(overhanging beam)。梁的受力以及各部 分尺寸均示于图中。
工程中的弯曲构件
工程中可以看作梁的杆件是很多的:
桥式吊车的大梁 可以简化为两端饺支 的简支梁。在起吊重 量(集中力FP)及大梁自 身重量(均布载荷q)的 作用下,大梁将发生弯 曲。
工程中可以看作梁的杆件是很多的:
石油、化工设备中各种直立式反应塔,底部与地面固定 成一体,因此,可以简化为一端固定的悬臂梁。在风力载荷 作用下,反应塔将发生弯曲变形。
Nanjing University of Technology
材料力学 课堂教学(5)
2020年8月12日
第5章 梁的弯曲问题(1)-剪力图与弯矩图
杆件承受垂直于其轴线的外力或位于其轴线所在平面内的 力偶作用时,其轴线将弯曲成曲线,这种受力与变形形式称为 弯曲(bending)。
主要承受弯曲的杆件称为梁(beam)。
得到梁的剪力方程和弯 矩方程分别为:
M(x)
FQ x=FRA qx=ql-qx 0 x 2l
FRA x
M x=qlx-qx2
0 x 2l
2
这一结果表明,梁上的剪力方程是x的线性函数;弯矩方程是x的 二次函数。
载荷集度、剪力、弯矩之间的 微分关系
绘制剪力图和弯矩图有两种方法:
第一种方法是:根据剪力方程和弯矩方程,在FQx和M-x坐标系中绘制出相应的图线,便得到所需要的 剪力图与弯矩图。
第五章 弯曲应力1
§5–4 弯曲切应力
一、梁横截面上的切应力
1、矩形截面梁
(1)两个假设 (a)切应力与剪力平行 (b)切应力沿截面宽度均匀分布
(2)分析方法
F1 F2 m n
q(x)
z
m
n
mn
x
dx
h yo
A1
B1
x
z
y
x
A
B
A1
B1
y bm
n
dx
FN1
A
ym
B
FN2
n
z
z
m
n
y
x
A1 dFS’
B1
FN1
A
B FN2
查型钢表中,20a号工字钢,有
Iz
S
* z
max
17.2cm
d=7mm
F
AC
B
5m
FSmax
据此校核梁的切应力强度
*
F S F Smax z ,max
max
I d ( I )d z
Smax z
+
S* z ,max
30 103
24.9MPa [ ] 以上两方面的强度条件都满
D
z
4
1
1
22
a1
Wz3
bh2 6
4a13 6
1.67Wz1
合理放置截面
bh2 WZ 左 6
WZ 右
hb2 6
三、采用等强度梁
梁各横截面上的最大正应力都相等,并均达到材料的许用应力,
则称为等强度梁. 例如,宽度b保持不变而高度可变化的矩形截面简支梁,若设
梁的内力图-剪力图和弯矩_OK
2021/9/10
2
2021/9/10
返回 3
返回
2. 直梁在简单荷载作用下的内力图特征 直梁在简单荷载作用下的内力图特征见表4-2。
2021/9/10
4
返回
3. 梁内力图的规律 (1) 无荷载区:剪力图为零线,弯矩图为水平直线;剪力图为 水平直线,弯矩图为斜直线。 (2) 集中力作用处:剪力图突变,突变的绝对值等于集中力的 大小,突变的方向与集中力方向相同;弯矩图折成尖角,尖角 方向与集中力方向相同。 (3) 集中力偶作用处:剪力图无变化;弯矩图突变,突变的绝 对值等于力偶矩的大小,突变的方向为顺时针力偶向下降,逆 时针力偶向上升。 (4) 均布荷载区:当均布荷载作用方向向下时,剪力图为下倾 斜直线,变化的绝对值等于均布荷载的合力;弯矩图为向下凸 的抛物线。 (5) 剪力与弯矩的关系:当剪力图为正时,弯矩图斜向右下方; 当剪力图为负时,弯矩图斜向右上方;剪力为零的截面,弯矩 有极值;梁后控制截面弯矩等于前控制截面弯矩加上前后截面 间剪力图的“面积”。
通过观察本例 可以发现:因为该外伸梁结构的几何 形状、受到的竖向荷载均左右相同,具有对称性, 所以弯矩图在对称位置的弯矩数值和符号相等,具 有对称性(工程上把这种对称称为正对称),剪力 图在对称位置的剪力数值相等、符号相反,也具有 对称性(工程上把这种对称称为反对称)。土木工 程中对称结构使用非常广泛,一方面对称美符合人 们的审美要求,另一方面结构受力合理,不仅可以 简化计算,而且也可以简化设计计算和提高施工的 效率。
15
2021/9/10
5
返回
记住:梁的两端无集中力偶作用,弯矩必为零。这 种通过对特定梁的内力图的讨论,探究内力图的一 般规律,并用该规律简捷绘制梁的内力图的方法, 是工作中分析问题、解决问题的一种常用方法。
材料力学_梁的弯曲问题
2 梁的任一横截面上的弯矩在数值上等于该截面左 侧(或右侧)所有竖向力对该截面形心力矩的代数和 (包括外力偶、约束反力偶);且截面左边顺时针 (右边逆时针)的力矩使截面产生正号的弯矩。
例2 试利用上述结论写出图示梁1-1截面上的剪力和 弯矩的表达式。
e
c
l
q
1 F1 FQ
d b
M1
Me
f
α
FRB
F2
的代数和。
2、区段叠加法作弯矩图:
设简支梁同时承受跨间荷
MB
载q与端部力矩MA、MB的作用 。其弯矩图可由简支梁受端部
力矩作用下的直线弯矩图与跨
间荷载单独作用下简支梁弯矩
图叠加得到。即:
M x M x M 0x MB
B
l
B
+ MA
+
M0
+ MA M0
1 q(x)=0 FQ x C 1 FQ x 0
F2=10kN,试计算指定截面1-1、2-2的内力。
0.5m F1 1
F2 2
1m
A
FRA 1
2
B FRB
1m
1.5m
3m
解:(1) 求支座反力
M B 0 F1 2.5 F2 1.5 FRA 3 0 Fy 0 FRA FRB F1 F2 0
FRA 15kN FRB 7kN
(2)求1-1截面上的内力
实际支承→理想支承 ⑶ 以简化后的荷载代替实际的荷载。
三、梁的分类 ●按支座情况 ⑴简支梁:一端固定铰,一端可动铰
⑵外伸梁:一端或两端向外伸出的简支梁
⑶悬臂梁:一端固定支座,另一端自由
●按支座反力的求解方法
⑴静定梁:用平衡方程可求出未知反力的梁;
梁弯矩图梁内力图(剪力图和弯矩图)
简单载荷梁力图(剪力图与弯矩图)各种载荷下剪力图与弯矩图的特征表2表3 各种约束类型对应的边界条件常用截面几何与力学特征表表2-5注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。
基本计算公式如下:⎰•=AdA yI 22.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:maxy I W =3.i 称截面回转半径(mm ),其基本计算公式如下:AIi =4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。
5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。
2.单跨梁的力及变形表(表2-6~表2-10)(1)简支梁的反力、剪力、弯矩、挠度表2-6(2)悬臂梁的反力、剪力、弯矩和挠度表2-7(3)一端简支另一端固定梁的反力、剪力、弯矩和挠度表2-8(4)两端固定梁的反力、剪力、弯矩和挠度表2-9(5)外伸梁的反力、剪力、弯矩和挠度表2-103.等截面连续梁的力及变形表(1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14)1)二跨等跨梁的力和挠度系数表2-11注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ;EIw 100ql 表中系数4⨯=。
2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EIw 100Fl 表中系数3⨯=。
[例1] 已知二跨等跨梁l =5m ,均布荷载q =11.76kN/m ,每跨各有一集中荷载F =29.4kN ,求中间支座的最大弯矩和剪力。
[解] M B 支=(-0.125×11.76×52)+(-0.188×29.4×5)=(-36.75)+(-27.64)=-64.39kN ·m V B 左=(-0.625×11.76×5)+(-0.688×29.4)=(-36.75)+(-20.23)=-56.98kN[例2] 已知三跨等跨梁l =6m ,均布荷载q =11.76kN/m ,求边跨最大跨中弯矩。
工程力学 第五章 弯曲内力(FS)
楼房的横梁:
阳台的挑梁:
(Internal Forces in Beams) 二、弯曲的概念:
受力特点——作用于杆件上的外力都垂直于杆的轴线。 变形特点——杆轴线由直线变为一条平面的曲线。
P M
q
主要产生弯曲变形的杆--- 梁。 RA 三、平面弯曲的概念:
NB
(Internal Forces in Beams) F1 q
A
a m l m x
F
B
F
x
0,
XA 0
Fa M A 0 , RB l F (l a ) Fy 0 , YA l
XA A
YA
F
B
RB
(Internal Forces in Beams) 求内力——截面法 F (l a ) Fy 0 , FS YA l m XA=0A F (l a ) M C 0 , M YA x l x m YA 1、 剪力(Shear force) FS x 构件受弯时,横截面上其作用线平行 于截面的内力. FS 2、弯矩(Bending moment )M M C 构件受弯时,横截面上其作用面垂直 YA 于截面的内力偶矩. M 剪力 C 弯曲构件内力 Fs 弯矩
m (受拉)
m
按变形:当dx 微段的弯曲上凸(即该段的下 半部受压)时,横截面m-m 上的弯矩为负 注:横截面上的弯矩:
-
m
“左顺右逆”为正;反之为负 按受力:“上压下拉”为正,反之为负
(受压)
(Internal Forces in Beams) 例题2 图示梁的计算简图。已知 F1、F2,且 F2 > F1 , 尺寸a、b、c和 l 亦均为已知.试求梁在 E 、 F 点处横截面处 的剪力和弯矩. RA F2 RB F1 a 解: (1)求支反力 R 和 R
材料力学-5-弯矩图与剪力图
第5章 梁的弯曲问题(1)-剪力图与弯矩图
工程中的弯曲构件
架在空中的悬臂梁
第5章 梁的弯曲问题(1)-剪力图与弯矩图
工程中的弯曲构件
架在空中的悬臂梁
第5章 梁的弯曲问题(1)-剪力图与弯矩图
工程中的弯曲构件
第5章 梁的弯曲问题(1)-剪力图与弯矩图
工程中的弯曲构件
第5章 梁的弯曲问题(1)-剪力图与弯矩图
工程中的弯曲构件
屋顶大梁上的 孔为什么开在中间? 上、下两边各开一 个半圆孔可以吗?
第5章 梁的弯曲问题(1)-剪力图与弯矩图
工程中的弯曲构件
梁为什么做成变截面的? 梁为什么可以开孔? 孔开在哪里最合理?
第5章 梁的弯曲问题(1)-剪力图与弯矩图
工程中的弯曲构件
工程中可以看作梁的杆件是很多的:
桥式吊车的大梁 可以简化为两端饺支 的简支梁。在起吊重 量(集中力FP)及大梁自 身重量(均布载荷q)的 作用下,大梁将发生弯 曲。
第5章 梁的弯曲问题(1)-剪力图与弯矩图
工程中的弯曲构件
工程中可以看作梁的杆件是很多的:
石油、化工设备中各种直立式反应塔,底部与地面固定 成一体,因此,可以简化为一端固定的悬臂梁。在风力载荷 作用下,反应塔将发生弯曲变形。
第5章 梁的弯曲问题(1)-剪力图与弯矩图
梁的内力及其与外力的相互关系
第5章 梁的弯曲问题(1)-剪力图与弯矩图
梁的内力及其与外力的相互关系
应用平衡的概念和截面法,不仅可以确定梁上 任意横截面上的内力——剪力和弯矩,而且可以确 定剪力和弯矩沿梁长度方向的变化规律。 平衡包括:整体平衡和局部平衡。
第5章 梁的弯曲问题(1)-剪力图与弯矩图
梁的剪力和弯矩概念讲解(剪力图弯矩图,含例题)
X2
40 kN m
A
35kN
B
FS x1 20kN
M x1 20 x1
0 x1 1 0 x1 1
1m
15
4m
2.5
25kN
FS x2 25 10 x2
25
2 x2 M x2 25 x2 10 2
20
20
kN
0 x2 4
F=8kN
2、计算1-1
截面的内力 F A
3、计算2-2
FS1
q=12kN/m
M 1 F F F 7kN S1 A M1 FA 2 F (2 1.5) 26kN m
FS2 q 1.5 FB 11kN
FB
截面的内力
M2
FS2
M 2 FB 1.5 q 1.5
M >0
M<0
剪力:使脱离体有顺时针转动趋势的剪力为正,反之为负; 弯矩:使脱离体产生向下凸变形的弯矩为正,反之为负。
6.2
例 题
试确定截面C及截面D上的剪力和弯矩
2 Fl
F
A
l
FCs
C
l
D
B
截面法求解
2 Fl
D
FCs F
C截面
F
B
M C Fl
FDs F
MC C
FDs
MD
D
l
F
B
D截面
2q1 x FA 2 x
x
l 2m a 0 .6 m
2 l a M C FA l a q
2
0
2q1 x 1.4 2 1.4 q 0 2 x 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
| M | max =
1 2 ql 8
5 - 7 静定梁承受平面载荷但无集中力作用,其剪力图如图所示.若已知 A 端弯矩
M ( A) = 0 ,试确定梁上的载荷及梁的弯矩图,并指出梁在何处有约束,且为何种约束。
FRA = 20 kN(↑)
课
后 答
案
FRB = 40 kN(↑)
题(b) : ∑ F y = 0 , F Ay = ql (↑)
dFQ
w. kh d
(B)
aw .
。 正确答案是 b、c、d
3
四种答案中哪几种是正确的:
课
后 答
5-2 对于图示承受均布载荷 q 的简支梁,其弯矩图凹凸性与哪些因素相关?试判断下列
案
网
习题 5-2 图
co m
。
5-3 已知图示梁的剪力图以及 a、e 两截面上的弯矩 M a 和M e ,现有下列四种答案, 试分析哪一种是正确的。
A 截面- FQ = qa , M = 0
5
ww
M0 , M =0 a+b
M0 a , M= M0 a+b a+b M0 b , M= M0 a+b a+b M0 , M =0 a+b
w. kh d
b FP , M = 0 a+b b ab C 截面- FQ = FP , M = FP a+b a+b a ab D 截面- FQ = − FP , M = FP a+b a+b a B 截面- FQ = − FP , M = 0 a+b
上述各式中 Aa∼ b ( FQ ) 为截面 a、b 之间剪力图的面积,以此类推。 解:根据微分关系的定积分以及 a、b 之间剪力图的面积为负值,有
因为 d、e 之间剪力图的面积为正值,所以有
以及
课
改写后为
因此,正确答案是 (B)。
后 答
M b=M a − Aa →b ( FQ )
M e=M d + Ad → e ( FQ )
FRA = 5 ql (↑) 4
1 − ql ⋅ l = 0 2
| FQ | max =
| M | max =
题(e)
5 ql 4
25 2 ql 32
案
∑ F y = 0 ,FRC = 0
网
后 答
∑ M C = 0 , − ql ⋅
M C = ql 2
1 2 ql 2
课
∑MB =0 ,MB =
∑ F y = 0 , FQB = ql
10
∑MD =0, MD =
25 2 ql 32
aw .
q 2 ∑MB =0 , MB = l 2
co m
∑ F y = 0 , FRB = ql (↑)
3 4
FQB =
1 ql 2
l l l 1 ql ⋅ − q ⋅ + M D = 0 2 2 2 4
∑MD =0,
1 M D = − ql 2 8 1 M E = ql 2 8
(0 ≤ x ≤ l ) ( l ≤ x ≤ 2l )
1. FQ ( x ) = −
aw .
ql + qx , 2 ql 2. FQ ( x ) = − + q ( 2l − x ) , 2
1 1 M ( x ) = − qlx + qx 2 2 2 ql 1 2 M ( x ) = ( 2l − x )− q ( 2l − x ) 2 2
aw .
co m
q = 15 kN/m 由 FQ 图 D、B 处为零可知,M 在 D、B 处取极值
M D = 20 ×
40 4 1 4 − 15 × ( ) 2 = kN·m 3 2 3 3
MB =−
1 q × 12 = −7.5 kN·m 2
梁上载荷及梁的弯矩图分别如图所示。
5-8 已知静定梁的剪力图和弯矩图,试确定梁上的载荷及梁的支承。. 解:由 FQ 图知,全梁有向下均布 q 载荷,由 FQ 图中 A、B、C 处突变,知 A、B、C 处 有向上集中力,且
∑ Fx = 0 , FAx = FP (←)
网
ww
w. kh d
aw . 案
1
解:题(a) :
co m
C
-
习题 5-9 图
C
2
B
B
1
后 答
D
M(FPl)
1 +
D
课
FQ(FP)
A
A
习题 5-9a 的弯矩图
剪力图和弯矩图如图所示,其中 | M | max = 2 FP l , 位于刚节点 C 截面;
| FQ |max = FP
4000
习题 5-8 载荷图之一
q A
4000
课
习题 5-8 图
C
4000
B
FB
习题 5-8 载荷图之二
5-9 试作图示刚架的剪力图和弯矩图,并确定 FQ
max
、 M
max
12
∑M A = 0
FRB ⋅ 2l − FP ⋅ l − FP ⋅ l = 0
FRB = FP (↑)
∑ F y = 0 , F Ay = FP (↓)
9
w. kh d
aw .
co m
∑ M A = 0 , M A = ql 2
∑ M D = 0 , ql 2 + ql ⋅ l − ql ⋅ − M D = 0
3 2 ql 2 | FQ | max = ql MD =
| M | max = 3 2 ql 2
l 2
题(d)
∑ M B = 0 , FRA ⋅ 2l − q ⋅ 3l ⋅
案
网
∑ M A = 0 , FRB =
Hale Waihona Puke wwM (↑) 2l M = (↓) 2l
8
w. kh d
aw .
习题 5-6b 解图
co m
后 答
习题 5-6c、e 解图
案
网
ww
习题 5-6d、f 解图
课
题(b)
∑ M A = 0 − ql 2 − ql ⋅ l + ql ⋅ l + FRB ⋅ 2l = 0
2
FRB
1 = ql (↑) 4
∑ F y = 0 , FRA =
M C = FRB ⋅ l =
1 ql (↓) , 4
1 1 ql ⋅ l = ql 2 (+) 4 4
M A = ql 2
| FQ | max = 5 ql 4
| M | max = ql 2
题(c)
∑ F y = 0 , FRA = ql (↑)
q=
0.3 − (−0.5) = 0.2 kN/m(↓) 4
w. kh d
aw .
q C FC
由 MA = MB = 0,可知 A、B 简支,由此得梁上载荷及梁的支承如图所示。
co m
4000
FRA = 0.3 kN(↑) FRC = 1 kN(↑) FRB = 0.3 kN(↑)
A
B
网 案
ww 后 答
由
∑ Fy = 0
FRA + FRB − q × 4 = 0
11
网
习题 5-7 图
ww
w. kh d
解:由 FQ 图线性分布且斜率相同知,梁上有向下均布载荷 q,由 A、B 处 FQ 向上突变 知,A、B 处有向上集中力;又因 A、B 处弯矩无突变,说明 A、B 处为简支约束,由 A、B 处 FQ 值知
aw .
co m
B 截面- FQ = 0 , M = 0 题(e) A 截面- FQ = −2 FP , M = FP l C 截面- FQ = −2 FP , M = 0 B 截面- FQ = FP , M = 0 A 截面- FQ = 0 , M =
题(f)
FPl 2
C 截面- FQ = 0 , M =
(A) M b = M a + Aa∼ b ( FQ ), M d = M e + Ae∼ d ( FQ ); (B) M b = M a − Aa∼ b ( FQ ), M d = M e − Ae∼ d ( FQ ); (C) M b = M a + Aa∼ b ( FQ ), M d = M e − Ae∼ d ( FQ ); (D) M b = M a − Aa∼ b ( FQ ), M d = M e + Ae∼ d ( FQ ).
习题 5-1 图 (A)
ww
正确答案是
dM =FQ ; dx dx dF dM (B) Q =-q ( x) , =-FQ ; dx dx dFQ dM (C) =- q ( x) , =FQ ; dx dx dFQ dM (D) =q ( x ) , =-FQ ; dx dx =q ( x ) ,
( 0 ≤ x ≤ 2l ) ( 2l ≤ x ≤ 3l )
题(e)
1. FQ ( x ) = qx , 2. FQ ( x ) = ql − q ( x − l ) ,
题(f)
1 M ( x ) = qx 2 2 l⎞ 1 2 ⎛ M ( x ) = ql ⎜ x − ⎟− q ( x − l ) 2⎠ 2 ⎝
Ad → e ( FQ ) = Ae → d ( FQ )
M d =M e − Ae → d ( FQ )
案
网
ww
4
习题 5-3 图
w. kh d
aw .
co m
5- 4
试求图示各梁中指定截面上的剪力、弯矩值。