概率同步练习答案1-2章

合集下载

概率论与数理统计习题答案1-2

概率论与数理统计习题答案1-2

第一章 事件与概率1.1 写出下列随机试验的样本空间及表示下列事件的样本点集合。

(1)10件产品中有1件是不合格品,从中任取2件得1件不合格品。

(2)一个口袋中有2个白球、3个黑球、4个红球,从中任取一球,(ⅰ)得白球,(ⅱ)得红球。

解 (1)记9个合格品分别为 921,正正正,, ,记不合格为次,则,,,,,,,,,)()()(){(1913121次正正正正正正正 =Ω,,,,,,,,,)()()()(2924232次正正正正正正正 ,,,,,,,)()()(39343次正正正正正 )}()()(9898次正次正正正,,,,,,=A ){(1次正,,,,)(2次正)}(9次正,,(2)记2个白球分别为1ω,2ω,3个黑球分别为1b ,2b ,3b ,4个红球分别为1r ,2r ,3r ,4r 。

则=Ω{1ω,2ω,1b ,2b ,3b ,1r ,2r ,3r ,4r } (ⅰ) =A {1ω,2ω} (ⅱ) =B {1r ,2r ,3r ,4r }1.2 在数学系的学生中任选一名学生,令事件A 表示被选学生是男生,事件B 表示被选学生是三年级学生,事件C 表示该生是运动员。

(1) 叙述C AB 的意义。

(2)在什么条件下C ABC =成立?(3)什么时候关系式B C ⊂是正确的?(4) 什么时候B A =成立?解 (1)事件C AB 表示该是三年级男生,但不是运动员。

(2) C ABC = 等价于AB C ⊂,表示全系运动员都有是三年级的男生。

(3)当全系运动员都是三年级学生时。

(4)当全系女生都在三年级并且三年级学生都是女生时`。

1.3 一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是合格品(n i ≤≤1)。

用i A 表示下列事件:(1)没有一个零件是不合格品;(2)至少有一个零件是不合格品;(3)仅仅只有一个零件是不合格品;(4)至少有两个零件是不合格品。

解 (1) n i i A 1=; (2) n i i n i i A A 11===; (3) n i n ij j j i A A 11)]([=≠=;(4)原事件即“至少有两个零件是合格品”,可表示为 nj i j i j i A A ≠=1,;1.4 证明下列各式:(1)A B B A ⋃=⋃;(2)A B B A ⋂=⋂(3)=⋃⋃C B A )()(C B A ⋃⋃;(4)=⋂⋂C B A )()(C B A ⋂⋂(5)=⋂⋃C B A )(⋃⋂)(C A )(C B ⋂ (6) ni i n i i A A 11===证明 (1)—(4)显然,(5)和(6)的证法分别类似于课文第10—12页(1.5)式和(1.6)式的证法。

2019—2020年新课标北师大版高中数学选修1-2《条件概率与独立事件》课时同步练习及答案解析.docx

2019—2020年新课标北师大版高中数学选修1-2《条件概率与独立事件》课时同步练习及答案解析.docx

(新课标)2017-2018学年北师大版高中数学选修1-2§2 独立性检验 2.1 条件概率与独立事件课时目标 1.在具体情境中,了解条件概率的概念.2.利用条件概率公式解决一些简单的实际问题.1.条件概率定义:已知________________A 发生的概率,称为B 发生时A 发生的条件概率,记为P(A|B).2.公式P(A|B)=__________.一、选择题1.设P(A|B)=P(B|A)=12,P(A)=13,则P(B)等于( )A.12B.13C.14D.162.100件产品中有5件次品,不放回地抽取2次,每次抽1件,已知第1次抽出的是次品,则第2次抽出正品的概率为( )A.599B.120C.19396D.95993.甲乙两人独立地解同一道题,甲解对的概率为34,乙解对的概率为23,则恰有1人解对的概率为( )A.34B.23C.12D.512 4.某人独立射击三次,每次射中的概率为0.6,则三次中至少有一次射中的概率为( ) A .0.216 B .0.064 C .0.936D .0.0365.某零件加工由两道工序完成,第一道工序的废品率为a ,第二道工序的废品率为b ,假定这两道工序是否出废品彼此无关,那么产品的合格率为( )A .ab -a -b +1B .1-a -bC .1-abD .1-2ab二、填空题6.某种电子元件用满3 000小时不坏的概率为34,用满8 000小时不坏的概率为12.现有一只此种电子元件,已经用满3 000小时不坏,还能用满8 000小时的概率是________.7.一个家庭中有两个小孩,假定生男,生女是等可能的.已知这个家庭有一个是女孩,问这时另一个小孩是男孩的概率是________.8.设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相同,则事件A 发生的概率P(A)=________.三、解答题9.现有6个节目准备参加比赛,其中4个舞蹈节目,2个语言类节目,如果不放回地依次抽取2个节目,求(1)第1次抽到舞蹈节目的概率;(2)第1次和第2次都抽到舞蹈节目的概率;(3)在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率.10.甲、乙、丙三位学生用计算机联网进行数学测试,每天独立完成10道数学题,已知甲及格的概率是810,乙及格的概率是610,丙及格的概率是710,三人各答一次,求三人中只有一人答题及格的概率.能力提升11.根据历年气象资料统计,某地四月份刮东风的概率是830,既刮东风又下雨的概率是730.问该地四月份刮东风时下雨的概率是________.12.栽培甲、乙两种果树,先要培育成苗,然后再进行移栽.已知甲、乙两种果树成苗的概率分别为0.6,0.5,移栽后成活的概率分别为0.7,0.9.(1)求甲、乙两种果树至少有一种果树成苗的概率;(2)求恰好有一种果树能培育成苗且移栽成活的概率.1.所谓条件概率,是当试验结果的一部分信息已知(即在原随机试验的条件下,再加上一定的条件),求另一事件在此条件下的概率.2.已知事件A发生,在此条件下B发生,相当于AB发生,求P(B|A)时,除按公式外,还可把A看做新的基本事件空间来计算B发生的概率.3.事件A、B独立,B发生不影响A的概率.§2 独立性检验2.1 条件概率与独立事件答案知识梳理1.B 发生的条件下 2.P(AB)P(B)作业设计1.B [P(AB)=P(A)P(B|A)=13×12=16,由P(A|B)=P(AB)P(B),得P(B)=P(AB)P(A|B)=16×2=13,故选B.] 2.D [第1次抽出的是次品之后,还剩下4件次品,95件正品,所以所求概率为9599.]3.D [记“甲解对此题”为事件A ,“乙解对此题”为事件B ,它们相互独立. 则恰有1人解对为事件A B ∪A B , ∴P(A B ∪A B)=P(A B )+P(A B) =P(A)P(B )+P(A )P(B) =34×⎝⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-34×23=512.] 4.C [可以考虑利用对立事件的概率以及相互独立事件的关系来求. P =1-0.4×0.4×0.4=0.936.]5.A [合格率为(1-a)·(1-b)=ab -a -b +1.] 6.23解析 记事件A :“用满3 000小时不坏”,P(A)=34;记事件B :“用满8 000小时不坏”,P(B)=12.因为B ⊂A ,所以P(AB)=P(B)=12,则P(B|A)=P(AB)P(A)=1234=12×43=23.7.23解析 一个家庭的两个小孩只有4种可能{两个都是男孩},{第一个是男孩,第二个是女孩},{第一个是女孩,第二个是男孩},{两个都是女孩},由题意知,这4个事件是等可能的.设基本条件空间为Ω,A =“其中一个是女孩”,B =“其中一个是男孩”,则Ω={(男,男),(男,女),(女,男),(女,女)},A ={(男,女),(女,男),(女,女)},B ={(男,男),(男,女),(女,男)},AB ={(男,女),(女,男)},∴P(B|A)=P(AB)P(A)=2434=23.8.23解析 由已知P(A ·B )=P(A )P(B )=19①又P(A ·B )=P(A ·B),即[1-P(A )]·P(B )=P(A )[1-P(B )]② 由①②解得P(A )=P(B )=13,所以P(A)=23.9.解 设第1次抽到舞蹈节目为事件A ,第2次抽到舞蹈节目为事件B ,则第1次和第2次都抽到舞蹈节目为事件AB.(1)从6个节目中不放回地依次抽取2个的事件数为n(Ω)=6×5=30,n(A)=4×5=20, 于是P(A)=n(A)n(Ω)=2030=23.(2)因为n(AB)=4×3=12, 于是P(AB)=n(AB)n(Ω)=1230=25.(3)方法一 由(1)(2)可得,在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率为P(B|A)=P(AB)P(A)=2523=35.方法二 因为n(AB)=12,n(A)=20, 所以P(B|A)=n(AB)n(A)=1220=35.10.解 设甲、乙、丙三人答题及格分别为事件A 、B 、C , 则P(A)=810,P(B)=610,P(C)=710,设三人各答题一次,只有一人及格为事件D , 则D 的情况为:A B C 、A B C 、A B C. 所以P(D)=P(A B C )+P(A B C )+P(A B C) =P(A)P(B )P(C )+P(A )P(B)P(C )+P(A )·P(B )P(C)=810×⎝⎛⎭⎪⎫1-610⎝ ⎛⎭⎪⎫1-710+⎝ ⎛⎭⎪⎫1-810×610×⎝ ⎛⎭⎪⎫1-710+⎝ ⎛⎭⎪⎫1-810⎝ ⎛⎭⎪⎫1-610×710=47250.11.78解析 记“某地四月份刮东风”为事件A ,“某地四月份下雨”为事件B , 则P(A)=830,P(AB)=730,所以P(B|A)=P(AB)P(A)=78.12.解 分别记甲、乙两种果树成苗为事件A 1、A 2;分别记甲、乙两种果树苗移栽后成活为事件B 1、B 2,则P(A 1)=0.6,P(A 2)=0.5,P(B 1)=0.7,P(B 2)=0.9.(1)甲、乙两种果树至少有一种成苗的概率为 P(A 1+A 2)=1-P(A 1·A 2)=1-0.4×0.5=0.8.(2)分别记甲、乙两种果树培育成苗且移栽成活为事件A 、B ,则P(A)=P(A 1B 1)=0.42,P(B)=P(A 2B 2)=0.45.恰好有一种果树培育成苗且移栽成活的概率为P(A B +A B)=0.42×0.55+0.58×0.45=0.492.。

概率练习册1-2章答案精品文档14页

概率练习册1-2章答案精品文档14页

习题1-1 随机事件一、 判断题:1.A –B=A –A B =B A ( √ ) 2.(A –B) ∪(B –A)=(A ∪B) –AB ( √ ) 3.若A 与B 互斥,则A 与B 也互斥; ( × )4.若A 与B 对立,则A 与B 互斥。

反之亦然; ( × ) 5.若A ∪B=Ω,则A 与B 构成完备事件组。

( × ) 二、 填空题: 1.设A 、B 为某随机试验的两个事件,则A ∪B 可以看作是三个互不相容事件 、 、 之和的事件。

答案:AB B A B A ,,2.将一枚硬币掷两次,观察两次出现正、反面的情况,则其样本空间Ω所含的样本点总数为 个,具体的样本点构成为Ω={ }。

答案:4,正正、正反、反正、反反3.设某人像一把子射击三次,用A i 表示“第i 次射击击中靶子”(i=1,2,3)。

使用符号及其运算的形式表示以下事件: (1)“至少有一次击中靶子”可表示为 ; (2)“恰有一次击中靶子”可表示为 ; (3)“至少有两次击中靶子”可表示为 ; (4)“三次全部击中靶子”可表示为 ; (5)“三次均未击中靶子”可表示为 ; (6)“只在最后一次击中靶子”可表示为 ;答案:(1) 1A ∪2A ∪3A ; (2) 321321321A A A A A A A A A ;(3) 323121A A A A A A ; (4) 321A A A ; (5) 321A A A (6) 321A A A 4.一批产品有合格品也有废品,现从中又放回的依次抽取(即每次抽去一件观察后放回)三件产品,以A i 表示“第i 次抽到废品”的事件(i=1,2,3)。

试用文字语言描述下列事件:(1)1A 2A 3A 表示 ; (2)1A ∪2A ∪3A 表示 ; (3)1A 2A 3A 表示 ; (4)(1A ∪2A )∩3A 表示 ; (5)(1A ∪2A )∩3A 表示 ;答案:(1)三次均抽到废品; (2)至少有一次抽到废品; (3)只在第三次才抽到废品;(4)前两次至少抽到一件废品且第三次抽到废品; (5)前两次至少抽到一件正品且第三次抽到废品。

概率论第一、二章测试题答案

概率论第一、二章测试题答案

概率论第一、二章测试题(答案)一、选择题1.选B 。

因为A 与B 相互独立,故A 与B 也相互独立。

根据独立的定义(P(AB)=P(A)P(B)),所以有P(A B )=P(A)P(B )。

2.选B 。

因为P (A B )= P (A )- P (AB )⇒ P (AB )= P (A )-P (A B )=0.6-0.2=0.43.选A 。

因为P (AB )=P (A )P (B ),根据两个随机事件的相互独立的定义可知A 正确。

4 选B .A.P (A )=1-P (B )(正确) B.P (AB )=P (A )P (B )(因为互为逆事件,故AB=φ,又P (A )>0,P (B )>0;则P (AB )=0≠ P (A )P (B ),所以是错误的)C.P 1)(=AB (正确)(因为AB=φ)D.P (A ∪B )=1(正确)5.选B 。

与正态分布的概率密度公式f (x)=222)(21σμσπ--x e 相比较,可得4,12=-=σμ6.选C 。

因为根据正态分布的线性组合(Y=aX+b )也为正态分布,且服从N (22,σμa b a +), 现X~N (1,4),Y=2X+1,可知1,2,4,12====b a σμ。

代入N (22,σμa b a +)即可。

7.选A 。

用对立事件求解。

设A={3次独立重复试验中至少成功一次},则A ={3次独立重复试验中没有一次成功},在一次试验中成功的概率为p ,则不成功的概率为1-p 。

故P (A )=1- P (A )=3)1(1p --。

8.选D 。

由分布函数的定义,F (3)=P { X 3≤ }= P { X=0 }+ P { X=1 }+ P { X=2 }+ P { X=3 }=19.选C 。

因为P{|X-μ|<σ}= P{1<-σμX }=1)1(2-Φ为常数。

10.选C 。

因为一维随机变量的均匀分布的概率实际上是长度,但是一定要计算落入随机变量X 所在区间的长度 。

概率第一、二章测试题(含答案)

概率第一、二章测试题(含答案)

概率第⼀、⼆章测试题(含答案)第1章随机事件和概率、第2章条件概率与独⽴性⼀、选择题1.设A, B, C 为任意三个事件,则与A ⼀定互不相容的事件为(A )C B A ?? (B )C A B A ? (C ) ABC (D ))(C B A ?2.(01,难度值0.93)对于任意⼆事件A 和B ,与B B A =?不等价的是(A )B A ? (B )A ?B (C )φ=B A (D )φ=B A 3.设A 、B 是任意两个事件,A B ?,()0P B >,则下列不等式中成⽴的是().A ()()P A P A B < .B ()()P A P A B ≤ .C ()()P A P A B > .D ()()P A P A B ≥4.设()01P A <<,()01P B <<,()()1P A B P A B +=,则().A 事件A 与B 互不相容 .B 事件A 与B 相互独⽴ .C 事件A 与B 相互对⽴ .D 事件A 与B 互不独⽴5.设随机事件A 与B 互不相容,且()(),P A p P B q ==,则A 与B 中恰有⼀个发⽣的概率等于().A p q + .B p q pq +- .C ()()11p q -- .D ()()11p q q p -+-6.对于任意两事件A 与B ,()P A B -=().A ()()P A P B - .B ()()()P A P B P AB -+ .C ()()P A P AB - .D ()()()P A P A P A B +-7.若A 、B 互斥,且()()0,0P A P B >>,则下列式⼦成⽴的是().A ()()P A B P A = .B ()0P B A > .C ()()()P AB P A P B = .D ()0P B A =8.设()0.6,()0.8,()0.8P A P B P B A ===,则下列结论中正确的是().A 事件A 、B 互不相容 .B 事件A 、B 互逆.C 事件A 、B 相互独⽴ .D A B ?9.设A 、B 互不相容,()()0,0P A P B ≠≠,则下列结论肯定正确的是().A A 与B 互不相容 .B ()0P B A > .C ()()()P AB P A P B = .D ()()P A B P A -=10.设A 、B 、C 为三个事件,已知()()0.6,0.4P B A P C AB ==,则()P BC A=().A 0.3 .B 0.24 .C 0.5 .D 0.2111.(98,难度值0.69)设A ,B 是两个随机事件,且00,)|()|(A B P A B P =,则必有(A ))|()|(B A P B A P = (B ))|()|(B A P B A P ≠ (C ))()()(B P A P AB P = (D ))()()(B P A P AB P ≠ 12.随机事件A , B ,满⾜21)()(==B P A P 和1)(=?B A P ,则有(A )Ω=?B A (B )φ=AB (C ) 1)(=?B A P(D )0)(=-B A P13.设随机事件A 与B 互不相容,0)(>A P ,0)(>B P ,则下⾯结论⼀定成⽴的是(A )A ,B 为对⽴事件(B )A ,B 互不相容(C ) A, B 不独⽴(D )A, B 独⽴ 14.对于事件A 和B ,设B A ?,P(B)>0,则下列各式正确的是(A ))()|(B P A B P =(B ))()|(A P B A P = (C ) )()(B P B A P =+(D ))()(A P B A P =+15.设事件A 与B 同时发⽣时,事件C 必发⽣,则(A )1)()()(-+≤B P A P C P (B )1)()()(-+≥B P A P C P (C ) )()(AB P C P = (D ))()(B A P C P ?=16.(98,难度值0.62)设A,B,C 是三个相互独⽴的随机事件,且0(A )B A +与C (B )AC 与C (C )B A -与C (D )AB 与C17.(00,难度值0.42)设A, B, C 三个事件两两独⽴,则A, B, C 相互独⽴的充要条件是(A )A 与BC 独⽴(B )AB 与A+C 独⽴(C )AB 与AC 独⽴(D )A+B 与A+C 独⽴ 18.将⼀枚均匀的硬币独⽴地掷三次,记事件A=“正、反⾯都出现”,B=“正⾯最多出现⼀次”,C=“反⾯最多出现⼀次”,则下⾯结论中不正确的是(A )A 与B 独⽴(B )B 与C 独⽴(C )A 与C 独⽴(D )C B ?与A 独⽴ 19.进⾏⼀系列独⽴重复试验,每次试验成功的概率为p ,则在成功2 次之前已经失败3次的概率为(A )3)1(4p p - (B )3225)1(p p C -(C )3)1(p -(D )32)1(4p p -⼆、填空题1.(97,难度值0.73)⼀袋中有50个乒乓球,其中20个红球,30个⽩球,今两⼈从袋中各取⼀球,取后不放回,则第⼆个⼈取到红球的概率为__________ 2.(97,难度值0.68)设A ,B 是任意两个随机事件,则=++++)})()()({(B A B A B A B A P3.已知A 、B 两事件满⾜条件()()P AB P AB =,且()P A p =,则()_______P B = 4.已知13()()(),()()0,()416P A P B P C P A B P B C P A C ======,则,,A B C 都不发⽣的概率为__________5.随机事件A 、B 满⾜()0.4,()0.5,()()P A P B P A B P A B ===,则()P A B = 6.(99,难度值0.56)设两两相互独⽴的三事件A ,B 和C 满⾜条件:φ=ABC ,21)()()(<==C P B P A P ,且已知169)(=C B A P ,则P(A)=7.(00,难度值0.67)设两个相互独⽴的事件A 和B 都不发⽣的概率为91,A 发⽣B 不发⽣的概率与B 发⽣A 不发⽣的概率相等,则P(A)= 8.设事件A 和B 中⾄少有⼀个发⽣的概率为56,A 和B 中有且仅有⼀个发⽣的概率为23,那么A 和B 同时发⽣的概率为_________ 9.设随机事件A, B, C 满⾜41)()()(===C P B P A P ,0)()(==BC P AB P ,81)(=AC P ,则A, B, C 三个事件中⾄少出现⼀个的概率为。

大学概率论第一章答案

大学概率论第一章答案

习题1-21. 选择题(1) 设随机事件A ,B 满足关系A B ⊃,则下列表述正确的是( ).(A) 若A 发生, 则B 必发生. (B) A , B 同时发生.(C) 若A 发生, 则B 必不发生. (D) 若A 不发生,则B 一定不发生.解 根据事件的包含关系, 考虑对立事件, 本题应选(D).(2) 设A 表示“甲种商品畅销, 乙种商品滞销”, 其对立事件A 表示( ).(A) 甲种商品滞销, 乙种商品畅销. (B) 甲种商品畅销, 乙种商品畅销.(C) 甲种商品滞销, 乙种商品滞销.(D) 甲种商品滞销, 或者乙种商品畅销.解 设B 表示“甲种商品畅销”,C 表示“乙种商品滞销”,根据公式B C B C =I U ,本题应选(D).2. 写出下列各题中随机事件的样本空间:(1) 一袋中有5只球, 其中有3只白球和2只黑球, 从袋中任意取一球, 观察其颜色;(2) 从(1)的袋中不放回任意取两次球, 每次取出一个, 观察其颜色;(3) 从(1)的袋中不放回任意取3只球, 记录取到的黑球个数;(4) 生产产品直到有10件正品为止, 记录生产产品的总件数.解 (1) {黑球,白球}; (2) {黑黑,黑白,白黑,白白}; (3) {0,1,2};(4) 设在生产第10件正品前共生产了n 件不合格品,则样本空间为{10}.|0,1,2,n n +=L 3. 设A, B, C 是三个随机事件, 试以A, B, C 的运算关系来表示下列各事件:(1) 仅有A 发生;(2) A , B , C 中至少有一个发生;(3) A , B , C 中恰有一个发生;(4) A , B , C 中最多有一个发生;(5) A , B , C 都不发生;(6) A 不发生, B , C 中至少有一个发生.解 (1) ABC ; (2) ; (3) A B C U U ABC ABC ABC U U ; (4) ABC ABC ABC ABC U U U ; (5) ABC ; (6) ()A B C U .4. 事件A i 表示某射手第i 次(i =1, 2, 3)击中目标, 试用文字叙述下列事件:(1) A 1∪A 2; (2)A 1∪A 2∪A 3; (3)3A ; (4) A 2-A 3; (5)2A A U 3; (6)12A A . 解 (1) 射手第一次或第二次击中目标;(2) 射手三次射击中至少击中目标;(3) 射手第三次没有击中目标;(4) 射手第二次击中目标,但是第三次没有击中目标;(5) 射手第二次和第三次都没有击中目标;(6) 射手第一次或第二次没有击中目标.习题1-31. 选择题(1) 设A, B 为任二事件, 则下列关系正确的是( ).(A)()()()P A B P A P B −=−. (B)()()()P A B P A P B =+U .(C)()()()P AB P A P B =. (D)()()()P A P AB P AB =+.解 由文氏图易知本题应选(D).(2) 若两个事件A 和B 同时出现的概率P (AB )=0, 则下列结论正确的是( ).(A) A 和B 互不相容. (B) AB 是不可能事件.(C) AB 未必是不可能事件. (D) P (A )=0或P (B )=0.解 本题答案应选(C).2. 设P (AB )=P (AB ), 且P (A )=p ,求P (B ).解 因 ()1()1()()()()P AB P A B P A P B P AB P AB =−=−−+=U ,故. 于是()()1P A P B +=()1.P B p =−3. 已知()0.4P A =,,()0.3P B =()0P A B .4=U , 求()P AB .解 由公式()()()()P A B P A P B P AB =+−U 知()0.P AB 3=. 于是()()()0.1P AB P A P AB =−=..34. 设A , B 为随机事件,,()0.7P A =()0P A B −=, 求()P AB .解 由公式()()(P A B P A P AB )−=−可知,()0.4P AB =. 于是()0.6P AB =.5. 已知1()()()4P A P B P C ===,()0P AB =, 1()()12P AC P BC ==, 求A , B , C 全不发生的概率.解 因为,所以=0, 即有=0.ABC AB ⊂0()P ABC P AB ≤≤()()P ABC 由概率一般加法公式得()()()()()()()()7.12P A B C P A P B P C P AB P AC P BC P ABC =++−−−+=U U 由对立事件的概率性质知A ,B , C 全不发生的概率是5()()1()12P ABC P A B C P A B C ==−U U U U =.习题1-41. 选择题 在5件产品中, 有3件一等品和2件二等品. 若从中任取2件, 那么以0.7为概率的事件是( ).(A) 都不是一等品. (B) 恰有1件一等品.(C) 至少有1件一等品. (D) 至多有1件一等品.解 至多有一件一等品包括恰有一件一等品和没有一等品, 其中只含有一件一等品的概率为113225C C C ×, 没有一等品的概率为023225C C C ×, 将两者加起即为0.7.答案为(D ).2. 从由45件正品、5件次品组成的产品中任取3件. 求: (1) 恰有1件次品的概率; (2) 恰有2件次品的概率; (3) 至少有1件次品的概率; (4) 至多有1件次品的概率; (5) 至少有2件次品的概率.解 (1) 恰有1件次品的概率是12545350C C C ;(2) 恰有2件次品的概率是21545350C C C ; (3 )至少有1件次品的概率是1-03545350C C C ; (4) 至多有1件次品的概率是03545350C C C +12545350C C C ; (5) 至少有2件次品的概率是21545350C C C +30545350C C C . 3. 袋中有9个球, 其中有4个白球和5个黑球. 现从中任取两个球. 求:(1) 两个球均为白球的概率;(2) 两个球中一个是白的, 另一个是黑的概率;(3)至少有一个黑球的概率.解 从9个球中取出2个球的取法有种,两个球都是白球的取法有种,一黑一白的取法有种,由古典概率的公式知道29C 24C 1154C C (1) 两球都是白球的概率是2924C C ; (2) 两球中一黑一白的概率是115429C C C ; (3) 至少有一个黑球的概率是12924C C −. 习题1-51. 选择题(1) 设随机事件A , B 满足P (A |B )=1, 则下列结论正确的是( )(A) A 是必然事件. (B) B 是必然事件.(C) AB B =. (D)()(P AB P B )=.解 由条件概率定义可知选(D).(2) 设A , B 为两个随机事件, 且0()P A 1<<, 则下列命题正确的是( ).(A) 若((P AB P A =), 则A , B 互斥.(B) 若()P B A 1=, 则()0P AB =.(C) 若()()P AB P AB +1=, 则A , B 为对立事件.(D) 若(|)1P B A =, 则B 为必然事件.解 由条件概率的定义知选(B ).2. 从1,2,3,4中任取一个数, 记为X , 再从1,2,…,X 中任取一个数, 记为Y ,求P {Y =2}.解 解 P {Y =2}=P {X =1}P {Y =2|X =1}+P {X =2}P {Y =2|X =2}+P {X =3}P {Y =2|X =3}+P {X =4}P {Y =2|X =4}=41×(0+21+31+41)=4813. 3. 甲、乙、丙三人同时对某飞机进行射击, 三人击中的概率分别为0.4, 0.5, 0.7. 飞机被一人击中而被击落的概率为0.2, 被两人击中而被击落的概率为0.6, 若三人都击中, 飞机必定被击落. 求该飞机被击落的概率.解 目标被击落是由于三人射击的结果, 但它显然不能看作三人射击的和事件. 因此这属于全概率类型. 设A 表示“飞机在一次三人射击中被击落”, 则表示“恰有i 发击中目标”. (0,1,2,3i B i =)i B 为互斥的完备事件组. 于是没有击中目标概率为,0()0.60.50.30.09P B =××=恰有一发击中目标概率为1()0.40.50.30.60.50.30.60.50.70.36P B =××+××+××=,恰有两发击中目标概率为2()0.40.50.30.60.50.70.40.50.70.41P B =××+××+××=,恰有三发击中目标概率为3()0.40.50.70.14P B =××=.又已知 012(|)0,(|)0.2,(|)0.6,(|)1P A B P A B P A B P A B 3====,所以由全概率公式得到30()()(|)0.360.20.410.60.1410.458.i i i P A P B P A B ===×+×+×=∑4. 在三个箱子中, 第一箱装有4个黑球, 1个白球; 第二箱装有3个黑球, 3个白球; 第三箱装有3个黑球, 5个白球. 现任取一箱, 再从该箱中任取一球.(1) 求取出的球是白球的概率;(2) 若取出的为白球, 求该球属于第二箱的概率.解 (1)以A 表示“取得球是白球”,表示“取得球来至第i 个箱子”,i =1,2,3. i H 则P ()=i H 13, i =1,2,3, 1211(|),(|),(|)52P A H P A H P A H ==358=. 由全概率公式知P (A )=112233()(|)()(|)()(|)P H P A H P H P A H P H P A H ++=12053. (2) 由贝叶斯公式知 P ()=2|H A 222()()(|)20()()53P AH P H P A H P A P A == 5. 某厂甲、乙、丙三个车间生产同一种产品, 其产量分别占全厂总产量的40%, 38%, 22%, 经检验知各车间的次品率分别为0.04, 0.03, 0.05. 现从该种产品中任意取一件进行检查.(1) 求这件产品是次品的概率;(2) 已知抽得的一件是次品, 问此产品来自甲、乙、丙各车间的概率分别是多少?解 设A 表示“取到的是一件次品”, i B (i =1, 2, 3)分别表示“所取到的产品来自甲、乙、丙工厂”. 易知, 123,,B B B 是样本空间S 的一个划分, 且122()0.4,()0.38,()0.22P B P B P B ===,,.12(|)0.04,(|)0.03P A B P A B ==3(|)0.05P A B =(1) 由全概率公式可得112233()(|)()(|)()(|)()P A P A B P B P A B P B P A B P B =++0.40.040.380.030.220.050.0384.=×+×+×=. (2) 由贝叶斯公式可得111(|)()0.40.045(|)()0.038412P A B P B P B A P A ×===, 222(|)()0.380.0319(|)()0.038464P A B P B P B A P A ×===, 333(|)()0.220.0555(|)()0.0384192P A B P B P B A P A ×===. 习题1-61. 选择题(1) 设随机事件A 与B 互不相容, 且有P (A )>0, P (B )>0, 则下列关系成立的是( ).(A) A , B 相互独立. (B) A , B 不相互独立.(C) A , B 互为对立事件. (D) A , B 不互为对立事件.解 用反证法, 本题应选(B).(2) 设事件A 与B 独立, 则下面的说法中错误的是( ).(A) A 与B 独立. (B) A 与B 独立. (C) ()((P AB P A P B =). (D) A 与B 一定互斥.解 因事件A 与B 独立, 故A B 与,A 与B 及A 与B 也相互独立. 因此本题应选(D).(3) 设事件A 与 B 相互独立, 且0<P (B )<1, 则下列说法错误的是( ).(A) . (B) (|)()P A B P A =()()()P AB P A P B =.(C) A 与B 一定互斥. (D).()()()()()P A B P A P B P A P B =+−U 解 因事件A 与B 独立, 故A B 与也相互独立, 于是(B)是正确的. 再由条件概率及一般加法概率公式可知(A)和(D)也是正确的. 从而本题应选(C).2. 设三事件A , B 和C 两两独立, 满足条件:,ABC =∅1()()()2P A P B P C ==<, 且9()16P A B C =U U ,求.()P A 解 根据一般加法公式有()()()()()()()()P A B C P A P B P C P AC P AB P BC P ABC =++−−−+U U . 由题设可知 A , B 和C 两两相互独立, ,ABC =∅ 1()()()2P A P B P C ==<,因此有 2()()()[()],()()0,P AB P AC P BC P A P ABC P ====∅= 从而 29()3()3[()]16P A B C P A P A =−=U U , 于是3()4P A =或1()4P A =, 再根据题设1()2P A <, 故1()4P A =. 3. 甲、乙两人各自向同一目标射击, 已知甲命中目标的概率为 0.7, 乙命中目标的概率为0.8. 求:(1) 甲、乙两人同时命中目标的概率;(2) 恰有一人命中目标的概率;(3) 目标被命中的概率.解 甲、乙两人各自向同一目标射击应看作相互独立事件. 于是(1) ()()()0.70.80.56;P AB P A P B ==×= (2) ()()0.70.20.30.80.38;P AB P AB +=×+×=(3) ()()()()()0.70.80.560.94.P A B P A P B P A P B =+−=+−=U总 习 题 一1. 选择题:设是三个相互独立的随机事件, 且0(,,A B C )P C 1<<, 则在下列给定的四对事件中不相互独立的是( ).(A)A B U 与C . (B)AC 与C . (C) A B −与C . (D) AB 与C .解 由于A , B , C 是三个相互独立的随机事件, 故其中任意两个事件的和、差、交、并与另一个事件或其逆是相互独立的, 根据这一性质知(A), (C), (D)三项中的两事件是相互独立的, 因而均为干扰项, 只有选项(B)正确..2. 一批产品由95件正品和5件次品组成, 先后从中抽取两件, 第一次取出后不再放回.求: (1) 第一次抽得正品且第二次抽得次品的概率; (2) 抽得一件为正品, 一件为次品的概率.解 (1) 第一次抽得正品且第二次抽得次品的概率为9551910099396×=×. (1) 抽得一件为正品,一件为次品的概率为95559519.10099198×+×=× 3. 设有一箱同类型的产品是由三家工厂生产的. 已知其中有21的产品是第一家工厂生产的, 其它二厂各生产41. 又知第一、第二家工厂生产的产品中有2%是次品, 第三家工厂生产的产品中有4%是次品. 现从此箱中任取一件 产品, 求取到的是次品的概率.解 从此箱中任取一件产品, 必然是这三个厂中某一家工厂的产品. 设 A ={取到的产品是次品}, B i ={取到的产品属于第i 家工厂生产}, i =1, 2, 3. 由于B i B j =(i ≠j, i , j =1, 2, 3)且B ∅1∪B 2∪B 3=S , 所以B 1, B 2, B 3是S 的一个划分. 又 P (B 1)=21, P (B 2) =41, P (B 3)=41, P (A | B 1)=1002, P (A | B 2)=1002, P (A | B 3)=1004, 由全概率公式得P (A )=P (B 1)P (A |B 1)+P (B 2)P (A |B 2)+P (B 3)P (A | B 3)=100441100241100221×+×+×=0.025. 4. 某厂自动生产设备在生产前须进行调整. 假定调整良好时, 合格品为90%; 如果调整不成功, 则合格品有30%. 若调整成功的概率为75%, 某日调整后试生产, 发现第一个产品合格. 问设备被调整好的概率是多少?解 设A ={设备调整成功}, B ={产品合格}. 则全概率公式得到()()(|)()(|0.750.90.250.30.75P B P A P B A P A P B A =+=×+×=.由贝叶斯公式可得()0.750.9(|)0.9()0.75()(|)()P AB P A B P B P A P B A P B ×====. 5. 将两份信息分别编码为A 和B 传递出去. 接收站收到时, A 被误收作B 的概率为0.02, 而B 被误收作A 的概率为0.01, 信息A 与信息B 传送的频繁程度为2:1. 若接收站收到的信息是A , 问原发信息是A 的概率是多少?解 以D 表示事件“将信息A 传递出去”,以D 表示事件“将信息B 传递出去”,以R 表示事件“接收到信息A ”,以R 表示事件“接收到信息B ”.已知21()0.02,()0.01,(),()33P R D P R D P D P D ====. 由贝叶斯公式知()()()196()()197()()()()P R D P D P DR P D R P R P R D P D P R D P D ===+.。

概率课后习题答案(全)

概率课后习题答案(全)

随机事件及其概率1.1 随机事件习题1试说明随机试验应具有的三个特点.习题2将一枚均匀的硬币抛两次,事件A,B,C分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”,试写出样本空间及事件A,B,C中的样本点.1.2 随机事件的概率1.3 古典概型与几何概型1.4 条件概率1.5 事件的独立性复习总结与总习题解答习题3. 证明下列等式:习题6.习题7习题9习题10习题12习题13习题14习题15习题16习题18习题20习题21习题23习题24习题26第二章随机变量及其分布2.1 随机变量习题1随机变量的特征是什么?解答:①随机变量是定义在样本空间上的一个实值函数.②随机变量的取值是随机的,事先或试验前不知道取哪个值.③随机变量取特定值的概率大小是确定的.习题2试述随机变量的分类.解答:①若随机变量X的所有可能取值能够一一列举出来,则称X为离散型随机变量;否则称为非离散型随机变量.②若X的可能值不能一一列出,但可在一段连续区间上取值,则称X为连续型随机变量.习题3盒中装有大小相同的球10个,编号为0,1,2,⋯,9, 从中任取1个,观察号码是“小于5”,“等于5”,“大于5”的情况,试定义一个随机变量来表达上述随机试验结果,并写出该随机变量取每一个特定值的概率.解答:分别用ω1,ω2,ω3表示试验的三个结果“小于5”,“等于5”,“大于5”,则样本空间S={ω1,ω2,ω3},定义随机变量X如下:X=X(ω)={0,ω=ω11,ω=ω2,2,ω=ω3则X取每个值的概率为P{X=0}=P{取出球的号码小于5}=5/10,P{X=1}=P{取出球的号码等于5}=1/10,P{X=2}=P{取出球的号码大于5}=4/10.2.2 离散型随机变量及其概率分布习题1设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2}, 求λ.解答:由P{X=1}=P{X=2}, 得λe-λ=λ^2/2e^-λ,解得λ=2.习题2设随机变量X的分布律为P{X=k}=k15,k=1,2,3,4,5,试求(1)P{12<X<52; (2)P{1≤X≤3};(3)P{X>3}.解答:(1)P{12<X<52=P{X=1}+P{X=2}=115+215=15;(2)P{≤X≤3}=P{X=1}+P{X=2}+P{X=3}=115+215+315=25;(3)P{X>3}=P{X=4}+P{X=5}=415+515=35.习题3已知随机变量X只能取-1,0,1,2四个值,相应概率依次为12c,34c,58c,716c, 试确定常数c, 并计算P{X<1∣X≠0}.解答:依题意知,12c+34c+58c+716c=1, 即3716c=1,解得c=3716=2.3125.由条件概率知P{X<1∣X≠0}=P{X<1,X≠0}P{X≠0}=P{X=-1}P{X≠0}=12c1-34c=24c-3=26.25=0.32.习题4一袋中装有5只球,编号为1,2,3,4,5. 在袋中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.解答:随机变量X的可能取值为3,4,5.P{X=3}=C22⋅1C53=110, P{X=4}=C32⋅1C53=310, P{X=5}=C42⋅1C53=35,所以X的分布律为求因代营业务得到的收入大于当天的额外支出费用的概率.解答:因代营业务得到的收入大于当天的额外支出费用的概率为:P{3X>60}, 即P{X>20},P{X>20}=P{X=30}+P{X=40}=0.6.就是说,加油站因代营业务得到的收入大于当天的额外支出费用的概率为0.6.习题6设自动生产线在调整以后出现废品的概率为p=0.1, 当生产过程中出现废品时立即进行调整,X代表在两次调整之间生产的合格品数,试求:(1)X的概率分布;(2)P{X≥5};(3)在两次调整之间能以0.6的概率保证生产的合格品数不少于多少?解答:(1)P{X=k}=(1-p)kp=(0.9)k×0.1,k=0,1,2,⋯;(2)P{X≥5}=∑k=5∞P{X=k}=∑k=5∞(0.9)k×0.1=(0.9)5;(3)设以0.6的概率保证在两次调整之间生产的合格品不少于m件,则m应满足P{X≥m}=0.6,即P{X≤m-1}=0.4. 由于P{X≤m-1}=∑k=0m-1(0.9)k(0.1)=1-(0.9)m,故上式化为1-0.9m=0.4, 解上式得m≈4.85≈5,因此,以0.6的概率保证在两次调整之间的合格品数不少于5.习题7设某运动员投篮命中的概率为0.6, 求他一次投篮时,投篮命中的概率分布.解答:此运动员一次投篮的投中次数是一个随机变量,设为X, 它可能的值只有两个,即0和1.X=0表示未投中,其概率为p1=P{X=0}=1-0.6=0.4,X=1表示投中一次,其概率为p2=P{X=1}=0.6.则随机变量的分布律为习题8某种产品共10件,其中有3件次品,现从中任取3件,求取出的3件产品中次品的概率分布.解答:设X表示取出3件产品的次品数,则X的所有可能取值为0,1,2,3. 对应概率分布为P{X=0}=C73C103=35120, P{X=1}=C73C31C103=36120,P{X=2}=C71C32C103=21120, P{X=3}=C33C103=1120.X的分布律为2.3 随机变量的分布函数习题1F(X)={0,x<-20.4,-2≤x<01,x≥0,是随机变量X的分布函数,则X是___________型的随机变量.解答:离散.由于F(x)是一个阶梯函数,故知X是一个离散型随机变量.习题2设F(x)={0x<0x20≤1,1x≥1问F(x)是否为某随机变量的分布函数.解答:首先,因为0≤F(x)≤1,∀x∈(-∞,+∞).其次,F(x)单调不减且右连续,即F(0+0)=F(0)=0, F(1+0)=F(1)=1, 且F(-∞)=0,F(+∞)=1,(2)P{X<2∣X≠1}=P{X=-1}P{X≠1}=23.习题5设X的分布函数为F(x)={0,x<0x2,0≤x<1x-12,1≤x<1.51,x≥1.5,求P{0.4<X≤1.3},P{X>0.5},P{1.7<X≤2}.解答:P{0.4<X≥1.3}=P{1.3}-F(0.4)=(1.3-0.5)-0.4/2=0.6,P{X>0.5}=1-P{X≤0.5}=1-F(0.5)=1-0.5/2=0.75,P{1.7<X≤2}=F(2)-F(1.7)=1-1=0.习题6设随机变量X的分布函数为F(x)=A+Barctanx(-∞<x<+∞),试求:(1)系数A与B; (2)X落在(-1,1]内的概率.解答:(1)由于F(-∞)=0,F(+∞)=1,可知{A+B(-π2)A+B(π2)=1=0⇒A=12,B=1π,于是F(x)=12+1πarctanx,-∞<x<+∞;(2)P{-1<X≤1}=F(1)-F(-1)=(12+1πarctan1)-[12+1πarctanx(-1)]=12+1π⋅π4-12-1π(-π4)=12.习题7在区间[0,a]上任意投掷一个质点,以X表示这个质点的坐标.设这个质点落在[0,a]中任意小区间内的概率与这个小区间的长度成正比例,试求X的分布函数.解答:F(x)=P{X≤x}={0,x<0xa,0≤x<a.1,x≥a2.4 连续型随机变量及其概率密度习题1设随机变量X的概率密度为f(x)=12πe-(x+3)24(-∞<x<+∞),则Y=¯∼N(0,1). 解答:应填3+X2.由正态分布的概率密度知μ=-3,σ=2由Y=X-μσ∼N(0,1), 所以Y=3+X2∼N(0,1).习题2已知X∼f(x)={2x,0<x<10,其它, 求P{X≤0.5};P{X=0.5};F(x).解答:P{X≤0.5}=∫-∞0.5f(x)dx=∫-∞00dx+∫00.52xdx=x2∣00.5=0.25,P{X=0.5}=P{X≤0.5}-P{X<0.5}=∫-∞0.5f(x)dx-∫-∞0.5f(x)dx=0.当X≤0时,F(x)=0;当0<x<1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt=t2∣0x=x2;当X≥1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt+∫1x0dt=t2∣01=1,故F(x)={0,x≤0x2,0<x<1.1,x≥1习题3设连续型随机变量X的分布函数为F(x)={A+Be-2x,x>00,x≤0,试求:(1)A,B的值;(2)P{-1<X<1}; (3)概率密度函数F(x).解答:(1)\becauseF(+∞)=limx→+∞(A+Be-2x)=1, ∴A=1;又\becauselimx→0+(A+Be-2x)=F(0)=0, ∴B=-1.(2) P{-1<X<1}=F(1)-F(-1)=1-e-2.(3)f(x)=F′(x)={2e-x,x>00,x≤0.习题4服从拉普拉斯分布的随机变量X的概率密度f(x)=Ae-∣x∣, 求系数A及分布函数F(x).解答:由概率密度函数的性质知,∫-∞+∞f(x)dx=1,即∫-∞+∞Ae-∣x∣dx=1,而∫-∞+∞Ae-∣x∣dx=∫-∞0Aexdx+∫0+∞Ae-xdx=Aex∣-∞0+(-Ae-x∣0+∞)=A+A=2A或∫-∞+∞Ae-xdx=2∫0+∞Ae-xdx=-2Ae-x∣0+∞=2A,所以2A=1, 即A=1/2.从而f(x)=12e-∣x∣,-∞<x<+∞,又因为F(x)=∫-∞xf(t)dt,所以当x<0时,F(x)=∫-∞x12e-∣t∣dt=12∫-∞xetdt=12et∣-∞x=12ex;当x≥0时,F(x)=∫-∞x12e-∣x∣dt=∫-∞012etdt+∫0x12e-tdt=12et∣-∞0-12e-t∣0x=12-12e-x+12=1-12e-x,从而F(x)={12ex,x<01-12e-x,x≥0.习题5某型号电子管,其寿命(以小时计)为一随机变量,概率密度f(x)={100x2,x≥1000,其它,某一电子管的使用寿命为X, 则三个电子管使用150小时都不需要更换的概率.解答:设电子管的使用寿命为X, 则电子管使用150小时以上的概率为P{X>150}=∫150+∞f(x)dx=∫150+∞100x2dx=-100x∣150+∞=100150=23,从而三个电子管在使用150小时以上不需要更换的概率为p=(2/3)3=8/27.习题6设一个汽车站上,某路公共汽车每5分钟有一辆车到达,设乘客在5分钟内任一时间到达是等可能的,试计算在车站候车的10位乘客中只有1位等待时间超过4分钟的概率.解答:设X为每位乘客的候车时间,则X服从[0,5]上的均匀分布. 设Y表示车站上10位乘客中等待时间超过4分钟的人数. 由于每人到达时间是相互独立的.这是10重伯努力概型. Y服从二项分布,其参数n=10,p=P{X≥4}=15=0.2,所以P{Y=1}=C101×0.2×0.89≈0.268.习题7设X∼N(3,22).(1)确定C, 使得P{X>c}=P{X≤c};(2)设d满足P{X>d}≥0.9,问d至多为多少?解答:因为X∼N(3,22), 所以X-32=Z∼N(0,1).(1)欲使P{X>c}=P{X≤c},必有1-P{X≤c}=P{X≤c},即P{X≤c}=1/2,亦即Φ(c-32)=12, 所以 c-32=0, 故c=3.(2)由P{X>d}≥0.9可得1-P{X≤d}≥0.9,即P{X≤d}≤0.1.于是Φ(d-32)≤0.1,Φ(3-d2)≥0.9.查表得3-d2≥1.282,所以d≤0.436.习题8设测量误差X∼N(0,102), 先进行100次独立测量,求误差的绝对值超过19.6的次数不小于3的概率.解答:先求任意误差的绝对值超过19.6的概率p,p=P{∣X∣>19.6}=1-P{∣X∣≤19.6}=1-P{∣X10∣≤1.96=1-[Φ(1.96)-Φ(-1.96)]=1-[2Φ(1.96)-1]=1-[2×0.975-1]=1-0.95=0.05.设Y为100次测量中误差绝对值超过19.6的次数,则Y∼b(100,0.05).因为n很大,p很小,可用泊松分布近似,np=5=λ,所以P{Y≥3}≈1-50e-50!-51e-51!-52e-52!=1-3722-5≈0.87.习题9某玩具厂装配车间准备实行计件超产奖,为此需对生产定额作出规定. 根据以往记录,各工人每月装配产品数服从正态分布N(4000,3600).假定车间主任希望10%的工人获得超产奖,求:工人每月需完成多少件产品才能获奖?解答:用X表示工人每月需装配的产品数,则X∼N(4000,3600).设工人每月需完成x件产品才能获奖,依题意得P{X≥x}=0.1,即1-P{X<x}=0.1,所以1-F(x)=0.1, 即1-Φ(x-400060)=0.1, 所以Φ(x-400060)=0.9.查标准正态人分布表得Φ(1.28)=0.8997,因此x-400060≈1.28,即x=4077件,就是说,想获超产奖的工人,每月必须装配4077件以上.习题10某地区18岁女青年的血压(收缩压,以mm-HG计)服从N(110,122). 在该地区任选一18岁女青年,测量她的血压X.(1)求P{X≤105},P{100<X≤120};(2)确定最小的x, 使P{X>x}≤0.005.解答:已知血压X∼N(110,122).(1)P{X≤105}=P{X-11012≤-512≈1-Φ(0.42)=0.3372,P{100<X≤120}=Φ(120-11012)-Φ(100-11012)=Φ(0.833)-Φ(-0.833)=2Φ(0.833)-1≈0.595.(2)使P{X>x}≤0.05,求x, 即1-P{X≤x}≤0.05, 亦即Φ(x-11012)≥0.95,查表得x-10012≥1.645,从而x≥129.74.习题11设某城市男子身高X∼N(170,36), 问应如何选择公共汽车车门的高度使男子与车门碰头的机会小于0.01.解答:X∼N(170,36), 则X-1706∼N(0,1).设公共汽车门的高度为xcm,由题意P{X>x}<0.01, 而P{X>x}=1-P{X≤x}=1-Φ(x-1706)<0.01,即Φ(x-1706)>0.99, 查标准正态表得x-1706>2.33, 故x>183.98cm.因此,车门的高度超过183.98cm时,男子与车门碰头的机会小于0.01.习题12某人去火车站乘车,有两条路可以走. 第一条路程较短,但交通拥挤,所需时间(单位:分钟)服从正态分布N(40,102); 第二条路程较长,但意外阻塞较少,所需时间服从正态分布N(50,42), 求:(1)若动身时离开车时间只有60分钟,应走哪一条路线?(2)若动身时离开车时间只有45分钟,应走哪一条路线?解答:设X,Y分别为该人走第一、二条路到达火车站所用时间,则X∼N(40,102),Y∼N(50,42).哪一条路线在开车之前到达火车站的可能性大就走哪一条路线.(1)因为P{X<60}=Φ(60-4010)=Φ(2)=0.97725,P{Y<60}=Φ(60-504)=Φ(2.5)=0.99379,所以有60分钟时应走第二条路.(2)因为P{X<45}=Φ(45-4010)=Φ(0.5)=0.6915,P{X<45}=Φ(45-504)=Φ(-1.25)=1-Φ(1.25)=1-0.8925=0.1075所以只有45分钟应走第一条路.2.5 随机变量函数的分布设随机变量X服从[a,b]上的均匀分布,令Y=cX+d(c≠0),试求随机变量Y的密度函数. 解答:fY(y)={fX(y-dc)⋅1∣c∣,a≤y-dc≤b0,其它,当c>0时,fY(y)={1c(b-a),ca+d≤y≤cb+d0,其它,当c<0时,fY(y)={-1c(b-a),cb+d≤y≤ca+d0,其它.习题4设随机变量X服从[0,1]上的均匀分布,求随机变量函数Y=eX的概率密度fY(y).解答:f(x)={1,0≤x≤10,其它,f=ex,x∈(0,1)是单调可导函数,y∈(1,e), 其反函数为x=lny, 可得f(x)={fX(lny)∣ln′y,1<y<e0,其它={1y,1<y<e0,其它.习题5设X∼N(0,1),求Y=2X2+1的概率密度.解答:因y=2x2+1是非单调函数,故用分布函数法先求FY(y).FY(y)=P{Y≤y}=P{2X2+1≤y}(当y>1时)=P{-y-12≤X≤y-12=∫-y-12y-1212πe-x2dx,所以fY(y)=F′Y(y)=22πe-12⋅y-12⋅122y-1,y>1, 于是fY(y)={12π(y-1)e-y-14,y>10,y≤1.习题6设连续型随机变量X的概率密度为f(x), 分布函数为F(x), 求下列随机变量Y的概率密度:(1)Y=1X; (2)Y=∣X∣.解答:(1)FY(y)=P{Y≤y}=P{1/X≤y}.①当y>0时,FY(y)=P{1/X≤0}+P{0<1/X≤y}=P{X≤0}+P{X≥1/y}=F(0)+1-F(1/y),故这时fY(y)=[-F(1y)]′=1y2f(1y);;②当y<0时,FY(y)=P{1/y≤X<0}=F(0)-F(1/y),故这时fY(y)=1y2f(1y);③当y=0时,FY(y)=P{1/X≤0}=P{X<0}=F(0),故这时取fY(0)=0, 综上所述fY(y)={1y2⋅f(1y),y≠00,y=0.(2)FY(y)=P{Y≤y}=P{∣X∣≤y}.①当y>0时,FY(y)=P{-y≤X≤y}=F(y)-F(-y)这时fY(y)=f(y)+f(-y);②当y<0时,FY(y)=P{∅}=0, 这时fY(y)=0;③当y=0时,FY(y)=P{Y≤0}=P{∣X∣≤0}=P{X=0}=0,故这时取FY(y)=0, 综上所述fY(y)={f(y)+f(-y),y>00,y≤0.习题7某物体的温度T(∘F)是一个随机变量, 且有T∼N(98.6,2), 已知θ=5(T-32)/9, 试求θ(∘F)的概率密度.解答:已知T∼N(98.6,2). θ=59(T-32), 反函数为T=59θ+32,是单调函数,所以fθ(y)=fT(95y+32)⋅95=12π⋅2e-(95y+32-98.6)24⋅95=910πe-81100(y-37)2.习题8设随机变量X在任一区间[a,b]上的概率均大于0, 其分布函数为FY(x), 又Y在[0,1]上服从均匀分布,证明:Z=FX-1(Y)的分布函数与X的分布函数相同.解答:因X在任一有限区间[a,b]上的概率均大于0, 故FX(x)是单调增加函数,其反函数FX-1(y)存在,又Y在[0,1]上服从均匀分布,故Y的分布函数为FY(y)=P{Y≤y}={0,y<0y,0≤y≤11,y>0,于是,Z的分布函数为FZ(z)=P{Z≤z}=P{FX-1(Y)≤z}=P{Y≤FX(z)}={0,FX(z)<0FX(z),0≤FX(z)≤1,1,FX(z)>1由于FX(z)为X的分布函数,故0≤FX(z)≤1.FX(z)<0和FX(z)>1均匀不可能,故上式仅有FZ(z)=FX(z), 因此,Z与X的分布函数相同.总习题解答习题1从1∼20的整数中取一个数,若取到整数k的概率与k成正比,求取到偶数的概率.解答:设Ak为取到整数k, P(Ak)=ck, k=1,2,⋯,20.因为P(⋃K=120Ak)=∑k=120P(Ak)=c∑k=120k=1,所以c=1210,P{取到偶数}=P{A2∪A4∪⋯∪A20} =1210(2+4+⋯+20)=1121.习题2若每次射击中靶的概率为0.7, 求射击10炮,(1)命中3炮的概率;(2)至少命中3炮的概率;(3)最可能命中几炮.解答:若随机变量X表示射击10炮中中靶的次数. 由于各炮是否中靶相互独立,所以是一个10重伯努利概型,X服从二项分布,其参数为n=10,p=0.7, 故(1)P{X=3}=C103(0.7)3(0.3)7≈0.009;(2)P{X≥3}=1-P{X<3}=1-[C100(0.7)0(0.3)10+C101(0.7)1(0.3)9+C102(0.7)2(0.3)8]≈0.998;(3)因X∼b(10,0.7), 而k0=[(n+1)p]=[(10+1)]×0.7=[7.7]=7,故最可能命中7炮.习题3在保险公司里有2500名同一年龄和同社会阶层的人参加了人寿保险,在1年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交120元保险费,而在死亡时家属可从保险公司里领20000元赔偿金,求:(1)保险公司亏本的概率;(2)保险公司获利分别不少于100000元, 200000元的概率.解答:1)以“年”为单位来考虑,在1年的1月1日,保险公司总收入为2500×120元=30000元.设1年中死亡人数为X, 则X∼b(2500,0.002), 则保险公司在这一年中应付出200000X(元),要使保险公司亏本,则必须200000X>300000即X>15(人).因此,P{保险公司亏本}=P{X>15}=∑k=162500C2500k(0.002)k×(0.998)2500-k≈1-∑k=015e-55kk!≈0.000069,由此可见,在1年里保险公司亏本的概率是很小的.(2)P{保险公司获利不少于100000元}=P{300000-200000X≥100000}=P{X≤10}=∑k=010C2500k(0.002)×(0.998)2500-k≈∑k=010e-55kk!≈0.986305,即保险公司获利不少于100000元的概率在98%以上.试求:(1)q的值;(2)X的分布函数.解答:(1)\because离散型随机变量的概率函数P{X=xi}=pi, 满足∑ipi=1,且0≤pi≤1,∴{1/2+1-2q+q2=10≤1-2q≤1q2≤1,解得q=1-1/2. 从而X的分布律为下表所示:(2)由F(x)=P{X≤x}计算X的分布函数F(x)={0,1/2,2-1/2,1,x<-1-1≤x<00≤x<0x≥1.习题7设随机变量X的分布函数F(x)为F(x)={0,x<0Asinx,0≤x≤π/2,1,x>π/2则A=¯,P{∣X∣<π/6}=¯.解答:应填1;1/2.由分布函数F(x)的右连续性,有F(π2+0)=F(π2)⇒A=1.因F(x)在x=π6处连续,故P{X=π6=12,于是有P{∣X∣<π6=P{-π6<X<π6=P{-π6<X≤π6=F(π6)-F(-π6)=12..习题8使用了x小时的电子管,在以后的Δx小时内损坏的概率等于λΔx+o(Δx),其中λ>0是常数,求电子管在损坏前已使用时数X的分布函数F(x),并求电子管在T小时内损坏的概率.解答:因X的可能取值充满区间(0,+∞),故应分段求F(x)=P{X≤x}.当x≤0时,F(x)=P{X≤x}=P(∅)=0;当x>0时,由题设知P{x<X≤x+Δx/X}=λΔx+o(Δx),而P{x<X≤x+Δx/X}=P{x<X≤x+Δx,X>x}P{X>x}=P{x<X≤x+Δx}1-P{X≤x}=F(x+Δx)-F(x)1-F(x),故F(X+Δx)-F(x)1-F(x)=λΔx+o(Δx),即F(x+Δx)-F(x)Δx=[1-F(x)][λ+o(Δx)Δx],令o(Δx)→0,得F′(x)=λ[1-F(x)].这是关于F(x)的变量可分离微分方程,分离变量dF(x)1-F(x)=λdx,积分之得通解为C[1-F(x)]=e-λx(C为任意常数).注意到初始条件F(0)=0, 故C=1.于是F(x)=1-e-λx,x>0,λ>0,故X的分布函数为F(x)={0,x≤01-e-λx,x>0(λ>0),从而电子管在T小时内损坏的概率为P{X≤T}=F(T)=1-e-λT.习题9设连续型随机变量X的分布密度为f(x)={x,0<x≤12-x,1<x≤20,其它,求其分布函数F(x).解答:当x≤0时,F(x)=∫-∞x0dt=0;当0<x≤1时,F(x)=∫-∞xf(t)dt=∫-∞00tdt+∫0xtdt=12x2;当1<x≤2时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫01tdt+∫1x(2-t)dt=0+12+(2t-12t2)∣1x=-1+2x-x22;当x>2时,F(x)=∫-∞00dt+∫01tdt+∫12(2-t)dt+∫2x0dt=1,故F(x)={0,x≤212x2,0<x≤1-1+2x-x22,1<x≤21,x>2.习题10某城市饮用水的日消费量X(单位:百万升)是随机变量,其密度函数为:f(x)={19xe-x3,x>00,其它,试求:(1)该城市的水日消费量不低于600万升的概率;(2)水日消费量介于600万升到900万升的概率.解答:先求X的分布函数F(x). 显然,当x<0时,F(x)=0, 当x≥0时有F(x)=∫0x19te-t3dt=1-(1+x3)e-x3故F(x)={1-(1+x3)e-x3,x≥00,x<0,所以P{X≥6}=1-P{X<6}=1-P(X≤6}=1-F(6)=1-[1-(1+x3)e-x3]x=6=3e-2,P{6<X≤9}=F(9)-F(6)=(1-4e-3)-(1-3e-2)=3e-2-4e-3.习题11已知X∼f(x)={cλe-λx,x>a0,其它(λ>0),求常数c及P{a-1<X≤a+1}.解答:由概率密度函数的性质知∫-∞+∞f(x)dx=1,而∫-∞+∞f(x)dx=∫-∞a0dx+∫a+∞cλe-λxdx=c∫a+∞e-λxd(λx)=-ce-λx\vlinea+∞=ce-λa,所以ce-λa=1,从而c=eλa.于是P{a-1<X≤a+1}=∫a-1a+1f(x)dx=∫a-1a0dx+∫aa+1λeλae-λxdx=-eλae-λx\vlineaa+1=-eλa(e-λ(a+1)-e-λa)=1 -e-λ.注意,a-1<a, 而当x<a时,f(x)=0.习题12已知X∼f(x)={12x2-12x+3,0<x<10,其它, 计算P{X≤0.2∣0.1<X≤0.5}.解答:根据条件概率;有P{X≤0.2∣0.1<X≤0.5}=P{X≤0.2,0.1<X≤0.5}P{0.1<X≤0.5}=P{0.1<X≤0.2}P{0.1<X≤0.5}=∫0.10.2(12x2-12x+2) dx∫0.10.5(12x2-12x+3)dx=(4x3-6x2+3x)∣0.10.2(4x3-6x2+3x)∣0.10.5=0.1480.256=0.578125.习题13若F1(x),F2(x)为分布函数,(1)判断F1(x)+F2(x)是不是分布函数,为什么?(2)若a1,a2是正常数,且a1+a2=1. 证明:a1F1(x)+a2F2(x)是分布函数.解答:(1)F(+∞)=limx→+∞F(x)=limx→+∞F1(x)+limx→+∞F2(x)=1+1=2≠1故F(x)不是分布函数.(2)由F1(x),F2(x)单调非减,右连续,且F1(-∞)=F2(-∞)=0,F1(+∞)=F2(+∞)=1,可知a1F1(x)+a2F2(x)单调非减,右连续,且a1F1(-∞)+a2F2(-∞)=0,a1F1(+∞)+a2F2(+∞)=1.从而a1F1(x)+a2F2(x)是分布函数.习题14设随机变量X的概率密度ϕ(x)为偶函数,试证对任意的a>0, 分布函数F(x)满足:(1)F(-a)=1-F(a); (2)P{∣X∣>a}=2[1-F(a)].解答:(1)F(-a)=∫-∞-aϕ(x)dx=∫a+∞ϕ(-t)dt=∫a+∞ϕ(x)dx=1-∫-∞aϕ(x)dx=1-F(a).(2)P{∣X∣>a}=P{X<-a}+P{X>a}=F(-a)+P{X≥a}F(-a)+1-F(a)=2[1-F(a)].习题15设K在(0,5)上服从均匀分布,求x的方程4x2+4Kx+K+2=0有实根的概率.解答:因为K∼U(0,5), 所以fK(k)={1/5,0<k<50,其它,方程4x2+4Kx+K+2=0有实根的充要条件为(4K)2-4⋅4(K+2)≥0,即K2-K-2≥0,亦即(k-2)(K+1)≥0,解得K≥2(K≤-1舍去), 所以P{方程有实根}=P{K≥2}=∫2515dx=35.习题16某单位招聘155人,按考试成绩录用,共有526人报名,假设报名者考试成绩X∼N(μ,σ2), 已知90分以上12人,60分以下83人,若从高分到低分依次录取,某人成绩为78分,问此人是否能被录取?解答:要解决此问题首先确定μ,σ2, 因为考试人数很多,可用频率近似概率.根据已知条件P{X>90}=12/526≈0.0228,P{X≤90}=1-P{X>90}≈1-0.0228}=0.9772;又因为P{X≤90}=P{X-μσ≤90-μσ, 所以有Φ(90-μσ)=0.9772, 反查标准正态表得90-μσ=2 ①同理:P{X≤60}=83/526≈0.1578; 又因为P{X≤60}=P{X-μσ≤60-μσ,故Φ(60-μσ)≈0.1578.因为0.1578<0.5,所以60-μσ<0, 故Φ(μ-60σ)≈1-0.1578=0.8422, 反查标准正态表得μ-60σ≈1.0 ②联立①,②解得σ=10,μ=70, 所以,X∼N(70,100).某人是否能被录取,关键看录取率. 已知录取率为155526≈0.2947, 看某人是否能被录取,解法有两种:方法1:P{X>78}=1-P{X≤78}=1-P{x-7010≤78-7010=1-Φ(0.8)≈1-0.7881=0.2119,因为0.2119<0.2947(录取率), 所以此人能被录取.方法2:看录取分数线. 设录取者最低分为x0, 则P{X≥x0}=0.2947(录取率),P{X≤x0}=1-P{X≥x0}=1-0.2947=0.7053,P{X≤x0}=P{x-7010≤x0-7010=Φ{x0-7010=0.7053,反查标准正态表得x0-7010≈0.54, 解得x0≈75. 此人成绩78分高于最低分,所以可以录取.习题17假设某地在任何长为t(年)的时间间隔内发生地震的次数N(t)服从参数为λ=0.1t的泊松分布,X表示连续两次地震之间间隔的时间(单位:年).(1)证明X服从指数分布并求出X的分布函数;(2)求今后3年内再次发生地震的概率;(3)求今后3年到5年内再次发生地震的概率.解答:(1)当t≥0时,P{X>t}=P{N(t)=0}=e-0.1t,∴F(t)=P{X≤t}=1-P{X>t}=1-e-0.1t;当t<0时,F(t)=0,∴F(x)={1-e-0.1t,x≥00,x<0,X服从指数分布(λ=0.1);(2)F(3)=1-e-0.1×3≈0.26;(3)F(5)-F(3)≈0.13.习题18100件产品中,90个一等品,10个二等品,随机取2个安装在一台设备上,若一台设备中有i个(i=0,1,2)二等品,则此设备的使用寿命服从参数为λ=i+1的指数分布.(1)试求设备寿命超过1的概率;(2)已知设备寿命超过1,求安装在设备上的两个零件都是一等品的概率 .解答:(1)设X表示设备寿命. A表示“设备寿命超过1”,Bi表示“取出i个二等品”(i=0,1,2),则X的密度函数为fX(x)={λe-λx,x>00,x≤0 (λ=i+1,i=0,1,2),P(B0)=C902C1002, P(B1)=C901C102C1002, P(B2)=C102C1002,P(A∣B0)=∫1+∞e-xdx=e-1, P(A∣B1)=∫1+∞2e-2xdx=e-2,P(A∣B2)=∫1+∞3e-3xdx=e-3,由全概率公式:P(A)=∑i=02P(Bi)P(A∣Bi)≈0.32.(2)由贝叶斯公式:P(B0∣A)=P(B0)P(A∣B0)P(A)≈0.93.试求Y=X2的分布律.解答:所以注:随机变量的值相同时要合并,对应的概率为它们概率之和.习题20设随机变量X的密度为fX(x)={0,x<02x3e-x2,x≥0,求Y=2X+3的密度函数.解答:由Y=2X+3, 有y=2x+3,x=y-32,x′=12,由定理即得fY(x)={0,y<3(y-32)3e-(y-32),y≥3.习题21设随机变量X的概率密度fX(x)={e-x,x>00,其它,求Y=eX的概率密度.解答:因为α=min{y(0),y(+∞)}=min{1,+∞}=1,β=max{y(0),y(+∞)}=max{1,+∞}=+∞.类似上题可得fY(y)={fX[h(y)]∣h′(y)∣,1<y<+∞0,其它={1/y2,1<y<+∞0,其它.习题22设随便机变量X的密度函数为fX(x)={1-∣x∣,-1<x<10,其它,求随机变量Y=X2+1的分布函数与密度函数.解答:X的取值范围为(-1,1), 则Y的取值范围为[1,2). 当1≤y<2时,FY(y)=P{Y≤y}=P{X2+1≤y}=P{-Y-1≤x≤y-1}=∫-y-1y-1(1-∣x∣)dx=2∫0y-1(1-x)dx=1-(1-y-1)2,从而Y的分布函数为FY(y)={0,y<11-(1-y-1)2,1≤y<2,1,其它Y的概率密度为fY(y)={1y-1-1,1<y<20,其它.。

概率论第二章课后习题答案

概率论第二章课后习题答案

概率论与数理统计第二章习题[])()()()()式,有利用(显然)()(则若))(()()(从而)()()()(的可加性,有:互不相容,因此由概率与而)(则解:AB P A P AB A P B A P A AB AB A P B A P A B B P A P B A P B A P B P B A B P A P B A B C A B A A B -=-=-⊂-=-⊄-=--+=-=--=⊂**.132)(1)()()(1)()()()|()4(2.05.01.0)()()|()3(25.04.01.0|)2(8.0)1(.2=--=--=========-+=B P AB P A P B P B A P B P B A P B A P A P AB P A B P B P AB P B A P AB P B P A P B A P )()()()()()()(解:7.0)(1)|(1)|()4(4.0)(1)|(1)|()3(72.0)()()()()()()()()2(3.0)()()()()()()|(1.3=-=-==-=-==⋅-+=-+===⋅==A PB A P B A P B P A B P A B P B P A P B P A P AB P B P A P B A P B P B P B P A P B P AB P B A P )解:()()()()()(”成立时“或当)()(”成立时“)(当)()()()()()()(解:B P A P B A P A P AB P A AB B A B AB P A P B A A AB P B A P B P A P AB P B P A P B A P +≤≤≤∴⊆=∅==≤∴⊆==≥+∴-+= 0.4)()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()解:(C P B A P C P B A P C P B P A P C B A P C B A P C P AB P C P B P A P ABC P C AB P B A P C P AB P B P A P C P B P A P B P A P C P C P B P A P C P B P C P A P ABC P BC P AC P BC AC P C B A P ⋅-=⋅=⋅⋅==-⋅=⋅⋅===-+=-+=-+=-+==][][3][2][][][1.7832.04.03.06.03.04.03.06.04.06.03.04.06.0)()()()()()()()()(3.04.0200150)(4.06.0150100)(6.020*******.8=⨯⨯+⨯-⨯-⨯-++=+---++===⨯==⨯======ABC P CA P BC P AB P C P B P A P C B A P D P C P B P A P D C B A )(“击中目标”米处射击”“相距米处射击”“相距米处射击”“相距解:设2112632112|31812|6)2(3.0185|8)1(.9222222222222111111111=++++============ )()()()()()()(”“点数和大于“点数和为奇数”)()()()()(”“点数和为“点数和为偶数”解:B P B A P B A P A P B A P A B P B A A P B P A P B A P A B P B A5360160126047514131413141513151413151413151.10=+-=⨯⨯+⨯-⨯-⨯-++=+---++=======)()()()()()()()()(,)(,)(“丙破译密码”“乙破译密码”“甲破译密码”解:ABC P BC P AC P AB P C P B P A P C B A P C P B P A P C B A61|1011|.11110=====)()()()()()(解:B P AB P B A P C A P AB P A B P1025515510530520|12C C C C C A B P A P AB P B A ⋅⋅=⋅===)()()(球各半”“第二次取出的黄、白球”“第一次取出的全是黄。

人教版九年级数学上册《25-1-2 概率》作业同步练习题及参考答案

人教版九年级数学上册《25-1-2 概率》作业同步练习题及参考答案

1.下列说法正确的是( )25.1.2 概率A.袋中有形状、大小、质地完全一样的5 个红球和1 个白球,从中随机取出一个球,一定是红球B.天气预报“明天降水概率10%”,是指明天有10%的时间会下雨C.某地发行一种福利彩票,中奖概率是千分之一.买这种彩票1 000 张,一定会中奖D.连续掷一枚均匀硬币,若5 次都是正面朝上,则第六次仍然可能正面朝上2.事件A:打开电视,它正在播广告;事件B:抛掷一枚均匀的正方体骰子,朝上的点数小于7;事件C:在标准大气压下,温度低于0 ℃时冰融化.三个事件的概率分别记为P(A),P(B),P(C),则P(A),P(B),P(C)的大小关系正确的是( )A.P(C)<P(A)=P(B)B.P(C)<P(A)<P(B)C.P(C)<P(B)<P(A)D.P(A)<P(B)<P(C)3.在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2 只、红球6 只、黑球4 只.将袋中的球搅匀,闭上眼睛随机从袋中取出1 只球,则取出黑球的概率是( )A.12 B.14C.13D.164.如图,在4×4 正方形网格中,任选一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是( )613C.413513D.3135.抛掷一枚质地均匀的硬币,落地后正面朝上的概率是.6.小明把如图所示的矩形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖击中阴影区域的概率是.A.B.7.从-1,1,2 三个数中任取一个,作为一次函数y=kx+3 中的k 值,则所得一次函数中y 随x 的增大而增大的概率是.8.袋子里装有红、黄、蓝三种颜色的小球,其形状、大小、质量、质地等完全相同,每种颜色的小球各5 个,且分别标有数字1,2,3,4,5.从中随机摸出一个球,求:(1)摸出蓝色球的概率;(2)摸出红色1 号球的概率;(3)摸出5 号球的概率.9.如图,一个转盘被分成4 个相同的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止.其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动转盘), 求下列事件的概率:(1)指针指向绿色;(2)指针指向红色或黄色;(3)指针不指向红色.10.在一个不透明的口袋中装有除颜色外其他都相同的红球和黄球共10 个,其中6 个红球.从口袋中任意摸出一个球,请问:10 (1)“摸出的球是白球”是什么事件?它的概率是多少? (2)“摸出的球是黄球”是什么事件?它的概率是多少?(3)“摸出的球是红球或黄球”是什么事件?它的概率是多少?11. 某校九年级(1)班 50 名学生中有 20 名团员,他们都积极报名参加学校开展的“文明劝导活动”.根据要求,该班从团员中随机抽取 1 名参加,则该班团员京京被抽到的概率是( )A .150B .1 2C .1 20D .2 512. 如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,那么它最终停留在黑色区域的概率是 ( )A.1 4B .3 4C .1 2D .3 813.(2018·湖南张家界中考)在一个不透明的袋子里装有 3 个白色乒乓球和若干个黄色乒乓球,若从这个袋子里随机摸出一个乒乓球,恰好是黄色的概率为 7,则袋子内共有乒乓球个.14. 在▱ABCD 中,AC ,BD 是它的两条对角线,现有以下四个关系式:①AB=BC ,②AC=BD ,③AC ⊥BD ,④AB ⊥BC ,从中任取一个作为条件,即可推出▱ABCD 是菱形的概率为 .15. 一个不透明的袋中装有红、黄、白三种颜色的球共 100 个,它们除颜色外都相同,其中黄球个数是白球个数的 2 倍少 5 个.已知从袋中摸出一个球是红球的概率是 3.10(1) 求袋中红球的个数;(2) 求从袋中摸出一个球是白球的概率;(3)取走10 个球(其中没有红球)后,求从剩余的球中摸出一个球是红球的概率.★16.如图,一个被等分成4 个扇形的圆形转盘,其中3 个扇形分别标有数字2,5,6,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动转盘).(1)转动这个转盘,转盘自由停止后,求指针指向没有数字的扇形的概率;(2)请在4,7,8,9 这4 个数字中选出一个数字填在没有数字的扇形内,使得分别转动转盘2 次,转盘自由停止后指针所指扇形的数字和分别为奇数与偶数的概率相等,并说明理由.★17.某超市开展购物摸奖活动,规则为:购物时每消费2 元可获得一次摸奖机会,每次摸奖时,购物者从标有数字1,2,3,4,5 的5 个小球(小球之间只有号码不同)中摸出一球,若摸到的号码是2 就中奖,奖品为精美图片一张.(1)摸奖一次时,得到一张精美图片的概率是多少?得不到精美图片的概率是多少?(2)一次,小聪购买了10 元钱的物品,前4 次摸奖都没有摸中,他想:“第5 次摸奖我一定能摸中.”你同意他的想法吗?说说你的想法.2415 3442 参考答案夯基达标1.D 选项A,“取到红球”是随机事件,且可能性较大,但不是必然事件,所以从中随机取出一个球,不一定是红球,A 选项错误;选项B,“明天降水概率10%”,是指下雨的可能性为10%,而不是10%的时间会下雨,所以B 选项错误; 选项C,“中奖概率是千分之一”是指这批彩票总体平均每1 000 张有一张中奖,而不是买这种彩票1 000 张一定会中奖,所以C 选项错误;选项D,“投掷一枚质地均匀的硬币正面朝上”是随机事件,所以第六次仍然可能正面朝上,D 选项正确. 故选D.2.B3.C4.B5.16.17.2 3 因为-1,1,2 三个数中有1,2 两个数使y 随x 的增大而增大,所以所求概率为2.38.解(1)P(摸出蓝色球)= 5(2)P(摸出红色1 号球)= 1 .15= 1.(3)P(摸出5 号球)= 315 = 1.59.分析转一次转盘,它的可能结果有4 种,是有限个,并且各种结果发生的可能性相等.因此,它可以应用“P(A)=�”求概率.�解(1)P(指针指向绿色)=1.(2)P(指针指向红色或黄色)=3.(3)P(指针不指向红色)=1.10.解(1)“摸出的球是白球”是不可能事件,它的概率为0.2 P 1=(2) “摸出的球是黄球”是随机事件,它的概率为2.5(3) “摸出的球是红球或黄球”是必然事件,它的概率为 1.培优促能11.C 12.D 13.10 14.115.解 (1)100× 3=30(个),所以红球有 30 个.10(2) 设白球有 x 个,则黄球有(2x-5)个,根据题意得 x+2x-5=100-30,解得 x=25.故摸出一个球是白球的概率 25100 = 1. 4(3) 从剩余的球中摸出一个球是红球的概率 P 2=30100-10 = 1. 316.解 (1) 1.指针指向没有数字的扇形的概率为 4(2)选数字 7 或 9.已知三个扇形区域的数字有 2 个偶数,1 个奇数,要达到题目的要求,没有数字的扇形内必须填奇数,所以应选数字 7 或 9. 创新应用17.解 (1)每次摸奖时,有 5 种情况,只有摸到的号码是 2 才中奖,所以得到一张精美图片的概率是1,得 5不到一张精美图片的概率是4.5(2)不同意,因为小聪第 5 次得到一张精美图片的概率仍是1,所以他第 5 次不一定中奖.5。

概率论练习册答案第二章

概率论练习册答案第二章

习题2-21. 设A 为任一随机事件, 且P (A )=p (0<p <1). 定义随机变量1,,0,A X A =⎧⎨⎩发生不发生. 写出随机变量X 的分布律.解 P {X =1}=p , P {X =0}=1-p . 或者2. 已知随机变量X 只能取-1,0,1,2四个值, 且取这四个值的相应概率依次为cc c c 167,85,43,21. 试确定常数c , 并计算条件概率}0|1{≠<X X P . 解 由离散型随机变量的分布律的性质知,13571,24816c c c c+++= 所以3716c =. 所求概率为 P {X <1| X 0≠}=258167852121}0{}1{=++=≠-=cc c c X P X P . 3. 设随机变量X 服从参数为2, p 的二项分布, 随机变量Y 服从参数为3, p的二项分布, 若{P X ≥51}9=, 求{P Y ≥1}.解 注意p{x=k}=k k n k n C p q -,由题设5{9P X =≥21}1{0}1,P X q =-==-故213q p =-=. 从而{P Y ≥32191}1{0}1().327P Y =-==-=4. 在三次独立的重复试验中, 每次试验成功的概率相同, 已知至少成功一次的概率为1927, 求每次试验成功的概率.解 设每次试验成功的概率为p , 由题意知至少成功一次的概率是2719,那么一次都没有成功的概率是278. 即278)1(3=-p , 故 p =31. 5. 若X 服从参数为λ的泊松分布, 且{1}{3}P X P X ===, 求参数λ. 解 由泊松分布的分布律可知6=λ.6. 一袋中装有5只球, 编号为1,2,3,4,5. 在袋中同时取3只球, 以X 表示取出的3只球中的最大号码, 写出随机变量X 的分布律.解 从1,2,3,4,5中随机取3个,以X 表示3个数中的最大值,X 的可能取值是3,4,5,在5个数中取3个共有1035=C 种取法.{X =3}表示取出的3个数以3为最大值,P{X =3}=2235C C =101;{X =4}表示取出的3个数以4为最大值,P{X =4}=1033523=C C ;{X =5}表示取出的3个数以5为最大值,P{X =5}=533524=C C .X 的分布律是1. 设解 (1) F (x )=0,1,0.15,10,0.35,01,1,1.x x x x <-⎧⎪-<⎪⎨<⎪⎪⎩≤≤≥(2) P {X <0}=P {X =-1}=0.15;(3) P {X <2}= P {X =-1}+P {X =0}+P {X =1}=1; (4) P {-2≤x <1}=P {X =-1}+P {X =0}=0.35. 2. 设随机变量X 的分布函数为F (x ) = A +B arctan x -∞<x <+∞.试求: (1) 常数A 与B ; (2) X 落在(-1, 1]内的概率.解 (1) 由于F (-∞) = 0, F (+∞) = 1, 可知()0112,.2()12A B A B A B πππ⎧+-=⎪⎪⇒==⎨⎪+=⎪⎩ 于是 11()arctan ,.2F x x x π=+-∞<<+∞(2) {11}(1)(1)P X F F -<=--≤1111(arctan1)(arctan(1))22ππ=+-+-11111().24242ππππ=+⋅---=3. 设随机变量X 的分布函数为F (x )=0, 0,01,21,1,,x xx x <<⎧⎪⎪⎨⎪⎪⎩ ≤ ≥求P {X ≤-1}, P {0.3 <X <0.7}, P {0<X ≤2}.解 P {X 1}(1)0F -=-=≤,P {0.3<X <0.7}=F (0.7)-F {0.3}-P {X =0.7}=0.2,P {0<X ≤2}=F (2)-F (0)=1.5. 假设随机变量X 的绝对值不大于1; 11{1},{1}84P X P X =-===; 在事件{11}X -<<出现的条件下, X 在(-1,1)内任一子区间上取值的条件概率与该区间的长度成正比. (1) 求X 的分布函数(){F x P X =≤x }; (2) 求X 取负值的概率p .解 (1) 由条件可知, 当1x <-时, ()0F x =;当1x =-时, 1(1)8F -=;当1x =时, F (1)=P {X ≤1}=P (S )=1.所以 115{11}(1)(1){1}1.848P X F F P X -<<=---==--= 易见, 在X 的值属于(1,1)-的条件下, 事件{1}X x -<<的条件概率为{1P X -<≤|11}[(1)]x X k x -<<=--,取x =1得到 1=k (1+1), 所以k =12. 因此 {1P X -<≤|11}12x X x -<<=+. 于是, 对于11x -<<, 有{1P X -<≤}{1x P X =-<≤,11}x X -<<{11}{1|11}≤P X P X x X =-<<-<-<< 5155.8216x x ++=⨯=对于x ≥1, 有() 1.F x = 从而0,1,57(),11,161,1.x x F x x x <-+=-<<⎧⎪⎪⎨⎪⎪⎩≥ (2) X 取负值的概率7{0}(0){0}(0)[(0)(0)](0).16p P X F P X F F F F =<=-==---=-=习题2-41. 选择题 (1) 设2, [0,],()0, [0,].x x c f x x c ∈=∉⎧⎨⎩ 如果c =( ), 则()f x 是某一随机变量的概率密度函数. (A)13. (B) 12. (C) 1. (D) 32. 解 由概率密度函数的性质()d 1f x x +∞-∞=⎰可得02d 1cx x =⎰, 于是1=c ,故本题应选(C ).(2) 设~(0,1),X N 又常数c 满足{}{}P X c P X c =<≥, 则c 等于( ).(A) 1. (B) 0. (C)12. (D) -1.解 因为{}{}P X c P X c =<≥, 所以1{}{}P X c P X c -<=<,即2{}1P X c <=, 从而{}0.5P X c <=,即()0.5c Φ=, 得c =0. 因此本题应选(B).(3) 下列函数中可以作为某一随机变量的概率密度的是( ).(A) cos ,[0,],()0,x x f x π∈=⎧⎨⎩其它.(B) 1,2,()20,x f x <=⎧⎪⎨⎪⎩其它.(C) 22()2,0,()0,0.≥x x f x x μσ--=<⎧⎩ (D) e ,0,()0,0.≥x x f x x -=<⎧⎨⎩解 由概率密度函数的性质()1f x dx +∞-∞=⎰可知本题应选(D).(4) 设随机变量2~(,4)X N μ, 2~(,5)Y N μ, 1{X P P =≤4μ-}, {2P P Y =≥5μ+}, 则( ).(A) 对任意的实数12,P P μ=. (B) 对任意的实数12,P P μ<. (C) 只对实数μ的个别值, 有12P P =. (D) 对任意的实数12,P P μ>. 解 由正态分布函数的性质可知对任意的实数μ, 有12(1)1(1)P P ΦΦ=-=-=. 因此本题应选(A).(5) 设随机变量X 的概率密度为()f x , 且()()f x f x =-, 又F (x )为分布函数, 则对任意实数a , 有( ).(A) 0()1d ()∫aF a x f x -=-. (B) 01()d 2()∫aF a x f x -=-.(C) ()()F a F a -=. (D) ()2()1F a F a -=-. 解 由分布函数的几何意义及概率密度的性质知答案为(B).(6) 设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且12{1}{1},P X P Y μμ-<>-< 则下式中成立的是( ).(A) σ1 < σ2. (B) σ1 > σ2. (C) μ1 <μ2. (D) μ1 >μ2.解 对μ1=μ2时, 答案是(A).(7) 设随机变量X 服从正态分布N (0,1), 对给定的正数)10(<<αα, 数αu 满足{}P X u αα>=, 若{}P X x α<=, 则x 等于( ).(A) 2u α . (B) 21α-u. (C) 1-2u α. (D) α-1u .解 答案是(C).2. 设连续型随机变量X 服从参数为λ的指数分布, 要使1{2}4P k X k <<=成立, 应当怎样选择数k ?解 因为随机变量X 服从参数为λ的指数分布, 其分布函数为1e ,0,()0,0.≤x x F x x λ-->=⎧⎨⎩由题意可知221{2}(2)()(1e )(1e )e e 4k k k k P k X k F k F k λλλλ----=<<=-=---=-. 于是 ln 2k λ=.3. 设随机变量X 有概率密度34,01,()0,x x f x <<=⎧⎨⎩其它, 要使{}{}≥P X a P X a =<(其中a >0)成立, 应当怎样选择数a ?解 由条件变形,得到1{}{}P X a P X a -<=<,可知{}0.5P X a <=, 于是304d 0.5ax x =⎰,因此a =. 4. 设连续型随机变量X 的分布函数为20,0,()01,1,1,,≤≤x F x x x x <=>⎧⎪⎨⎪⎩求: (1) X 的概率密度; (2){0.30.7}P X <<.解 (1) 根据分布函数与概率密度的关系()()F x f x '=, 可得 2,01,()0,其它.x x f x <<⎧=⎨⎩(2) 22{0.30.7}(0.7)(0.3)0.70.30.4P X F F <<=-=-=.5. 设随机变量X 的概率密度为f (x )= 2,01,0,x x ⎧⎨⎩≤≤ 其它,求P {X ≤12}与P {14X <≤2}.解 {P X ≤12201112d 2240}x x x ===⎰;1{4P X <≤12141152}2d 1164x x x ===⎰. 6. 设连续型随机变量X 具有概率密度函数,01,(),12,0,x x f x A x x <=-<⎧⎪⎨⎪⎩≤≤其它.求: (1) 常数A ;(2) X 的分布函数F (x ).解 (1) 由概率密度的性质可得12221121111d ()d []122x x A x x xAx x A =+-=+-=-⎰⎰,于是 2A =;(2) 由公式()()d x F x f x x -∞=⎰可得当x <0时, ()0F x =; 当0≤x<1时, 201()d 2x F x x x x ==⎰;当1≤x <2时, 211()d (2)d 212x x F x x x x x x =+-=--⎰⎰;当x ≥2时, ()1F x =.所以 220,0,1()221,2.1,021,12x F x x x x x x x =-≥⎧⎪⎪<⎪⎨⎪-<⎪⎪⎩<≤,≤,7. 设随机变量X 的概率密度为1(1),02,()40,x x f x ⎧⎪⎨⎪⎩+<<=其它,对X 独立观察3次, 求至少有2次的结果大于1的概率.解 2115{1}(1)d 48P X x x >=+=⎰.所以, 3次观察中至少有2次的结果大于1的概率为223333535175()()()888256C C +=. 8. 设~(0,5)X U , 求关于x 的方程24420x Xx ++=有实根的概率.解 随机变量X 的概率密度为105,()50,,x f x <=⎧⎪⎨⎪⎩≤其它,若方程有实根, 则 21632X -≥0, 于是2X ≥2. 故方程有实根的概率为P {2X ≥2}=21{2}P X -<1{P X =-<<1d 5x =-15=-. 9. 设随机变量)2,3(~2N X .(1) 计算{25}P X <≤, {410}P X -<≤, {||2}P X >, }3{>X P ; (2) 确定c 使得{}{};P X c P X c >=≤ (3) 设d 满足{}0.9P X d >≥, 问d 至多为多少?解 (1) 由P {a <x ≤b }=P {33333}()()22222a Xb b a ΦΦ-----<=-≤公式, 得到P {2<X ≤5}=(1)(0.5)0.5328ΦΦ--=, P {-4<X ≤10}=(3.5)( 3.5)0.9996ΦΦ--=, {||2}P X >={2}P X >+{2}P X <-=123()2Φ--+23()2Φ--=0.6977,}3{>X P =133{3}1()1(0)2P X ΦΦ-=-=-≤=0.5 . (2) 若{}{}≤P X c P X c >=,得1{}{}P X c P x c -=≤≤,所以{}0.5P X c =≤由(0)Φ=0推得30,2c -=于是c =3. (3) {}0.9≥P Xd > 即13()0.92d Φ--≥, 也就是3()0.9(1.282)2d ΦΦ--=≥,因分布函数是一个不减函数, 故(3)1.282,2d --≥ 解得 32( 1.282)0.436d +⨯-=≤.10. 设随机变量2~(2,)X N σ, 若{04}0.3P X <<=, 求{0}P X <.解 因为()~2,X N σ2,所以~(0,1)X Z N μσ-=. 由条件{04}0.3P X <<=可知02242220.3{04}{}()()X P X P ΦΦσσσσσ---=<<=<<=--,于是22()10.3Φσ-=, 从而2()0.65Φσ=.所以 {{}2020}P P X X σσ==--<<22()1()0.35ΦΦσσ-=-=. 习题2-51. 选择题(1) 设X 的分布函数为F (x ), 则31Y X =+的分布函数()G y 为( ). (A) 11()33F y -. (B) (31)F y +.(C) 3()1F y +. (D)1133()F y -. 解 由随机变量函数的分布可得, 本题应选(A). (2) 设()~01,X N ,令2Y X =--, 则~Y ( ).(A)(2,1)N --. (B)(0,1)N . (C)(2,1)N -. (D)(2,1)N . 解 由正态分布函数的性质可知本题应选(C).2. 设~(1,2),23X N Z X =+, 求Z 所服从的分布及概率密度.解 若随机变量2~(,)X N μσ, 则X 的线性函数Y aX b =+也服从正态分布, 即2~(,()).Y aX b N a b a μσ=++ 这里1,μσ==所以Z ~(5,8)N .概率密度为()f z=2(5)16,x x ---∞<<+∞.3. 已知随机变量X 的分布律为(1) 解 (1)(2)4. ()X f x =1142ln 20x x <<⎧⎪⎨⎪⎩, , , 其它,且Y =2-X , 试求Y 的概率密度.解 先求Y 的分布函数)(y F Y :)(y F Y ={P Y ≤}{2y P X =-≤}{y P X =≥2}y -1{2}P X y =-<-=1-2()d yX f x x --∞⎰.于是可得Y 的概率密度为()(2)(2)Y X f y f y y '=---=12(2)ln 20,.,124,其它y y -⎧<-<⎪⎨⎪⎩即 121,2(2)ln 20, ,()其它.Y y y f y -<<-⎧⎪=⎨⎪⎩5. 设随机变量X 服从区间(-2,2)上的均匀分布, 求随机变量2Y X =的概率密度.解 由题意可知随机变量X 的概率密度为()0,.1,22,4其它X f x x =⎧-<<⎪⎨⎪⎩因为对于0<y <4,(){Y F y P Y =≤2}{y P X =≤}{y P =X(X X F F =-.于是随机变量2Y X =的概率密度函数为()Y fy (X X f f =+0 4.y =<<即()04,0,.其它f y y =<<⎩总习题二1. 一批产品中有20%的次品, 现进行有放回抽样, 共抽取5件样品. 分别计算这5件样品中恰好有3件次品及至多有3件次品的概率.解 以X 表示抽取的5件样品中含有的次品数. 依题意知~(5,0.2)X B .(1) 恰好有3件次品的概率是P {X =3}=23358.02.0C .(2) 至多有3件次品的概率是k k k k C-=∑5358.02.0.2. 一办公楼装有5个同类型的供水设备. 调查表明, 在任一时刻t 每个设备被使用的概率为0.1. 问在同一时刻 (1) 恰有两个设备被使用的概率是多少? (2) 至少有1个设备被使用的概率是多少? (3) 至多有3个设备被使用的概率是多少? (4) 至少有3个设备被使用的概率是多少?解 以X 表示同一时刻被使用的设备的个数,则X ~B (5,0.1),P {X =k }=kk k C -559.01.0,k =0,1, (5)(1) 所求的概率是P {X =2}=0729.09.01.03225=C ;(2) 所求的概率是P {X ≥1}=140951.0)1.01(5=--; (3) 所求的概率是 P {X ≤3}=1-P{X =4}-P {X =5}=0.99954;(4) 所求的概率是P {X ≥3}=P {X =3}+P {X =4}+P {X =5}=0.00856. 3. 设随机变量X 的概率密度为e ,0,()00,≥,x k x f x x θθ-=<⎧⎪⎨⎪⎩且已知1{1}2P X >=, 求常数k , θ.解 由概率密度的性质可知0e d 1xkx θθ-+∞=⎰得到k =1.由已知条件111e d 2xx θθ-+∞=⎰, 得1ln 2θ=.4. 某产品的某一质量指标2~(160,)X N σ, 若要求{120P ≤X ≤200}≥0.8, 问允许σ最大是多少?解 由{120P ≤X ≤}200120160160200160{}X P σσσ---=≤≤=404040()(1())2()1ΦΦΦσσσ--=-≥0.8,得到40()Φσ≥0.9, 查表得40σ≥1.29, 由此可得允许σ最大值为31.20.5. 设随机变量X 的概率密度为φ(x ) = A e -|x |, -∞<x <+∞.试求: (1) 常数A ; (2) P {0<X <1}; (3) X 的分布函数.解 (1) 由于||()d e d 1,x x x A x ϕ+∞+∞--∞-∞==⎰⎰即02e d 1x A x +∞-=⎰故2A = 1,得到A =12.所以 φ(x ) =12e -|x |.(2) P {0<X <1} =111111e e d (e )0.316.0222xxx ----=-=≈⎰(3) 因为||1()e d ,2xx F x x --∞=⎰ 得到 当x <0时, 11()e d e ,22x x xF x x -∞==⎰当x ≥0时, 00111()e d e d 1e ,222x x x xF x x x ---∞=+=-⎰⎰所以X的分布函数为1,0,2()11,0.2xxxF xx-⎧<⎪⎪=⎨⎪-⎪⎩ee≥。

概率第一、二章测试题(含答案)

概率第一、二章测试题(含答案)

第1章 随机事件和概率、第2章 条件概率与独立性一、选择题1.设A, B, C 为任意三个事件,则与A 一定互不相容的事件为 (A )C B A ⋃⋃ (B )C A B A ⋃ (C ) ABC (D ))(C B A ⋃ 2.(01,难度值0.93)对于任意二事件A 和B ,与B B A =⋃不等价的是 (A )B A ⊂ (B )A ⊂B (C )φ=B A (D )φ=B A3.设A 、B 是任意两个事件,A B ⊂,()0P B >,则下列不等式中成立的是( ).A ()()P A P A B < .B ()()P A P A B ≤ .C ()()P A P A B > .D ()()P A P A B ≥4.设()01P A <<,()01P B <<,()()1P A B P A B +=,则( ).A 事件A 与B 互不相容 .B 事件A 与B 相互独立 .C 事件A 与B 相互对立 .D 事件A 与B 互不独立5.设随机事件A 与B 互不相容,且()(),P A p P B q ==,则A 与B 中恰有一个发生的概率等于( ).A p q + .B p q pq +- .C ()()11p q -- .D ()()11p q q p -+-6.对于任意两事件A 与B ,()P A B -=( ).A ()()P A P B - .B ()()()P A P B P AB -+ .C ()()P A P AB - .D ()()()P A P A P A B +-7.若A 、B 互斥,且()()0,0P A P B >>,则下列式子成立的是( ).A ()()P A B P A = .B ()0P B A > .C ()()()P AB P A P B = .D ()0P B A =8.设()0.6,()0.8,()0.8P A P B P B A ===,则下列结论中正确的是( ).A 事件A 、B 互不相容 .B 事件A 、B 互逆.C 事件A 、B 相互独立 .D A B ⊃9.设A 、B 互不相容,()()0,0P A P B ≠≠,则下列结论肯定正确的是( ).A A 与B 互不相容 .B ()0P B A > .C ()()()P AB P A P B = .D ()()P A B P A -=10.设A 、B 、C 为三个事件,已知()()0.6,0.4P B A P C AB ==,则()P BC A=( ).A 0.3 .B 0.24 .C 0.5 .D 0.2111.(98,难度值0.69)设A ,B 是两个随机事件,且0<P(A)<1,P(B)>0,)|()|(A B P A B P =,则必有(A ))|()|(B A P B A P = (B ))|()|(B A P B A P ≠ (C ))()()(B P A P AB P = (D ))()()(B P A P AB P ≠ 12.随机事件A , B ,满足21)()(==B P A P 和1)(=⋃B A P ,则有(A )Ω=⋃B A (B )φ=AB (C ) 1)(=⋃B A P(D )0)(=-B A P13.设随机事件A 与B 互不相容,0)(>A P ,0)(>B P ,则下面结论一定成立的是 (A )A ,B 为对立事件 (B )A ,B 互不相容 (C ) A, B 不独立 (D )A, B 独立 14.对于事件A 和B ,设B A ⊃,P(B)>0,则下列各式正确的是 (A ))()|(B P A B P = (B ))()|(A P B A P = (C ) )()(B P B A P =+(D ))()(A P B A P =+15.设事件A 与B 同时发生时,事件C 必发生,则 (A )1)()()(-+≤B P A P C P (B )1)()()(-+≥B P A P C P (C ) )()(AB P C P = (D ))()(B A P C P ⋃=16.(98,难度值0.62)设A,B,C 是三个相互独立的随机事件,且0<P(C)<1。

概率练习册1-2章答案

概率练习册1-2章答案

(n 1 ) ! ,而事 (2)n 个朋友随机的围绕圆桌而坐,样本空间样本点总数为
件 B 为甲、乙、丙三人坐在一起,可将三人“捆绑”在一起,看成是“一个”人
3 (n 3)! 占“一个”座位,有利于事件 B 发生的样本点个数为 A3 3 A3 (n 3)! 6 于是 P ( B ) (n 1)! (n 1)(n 2)
S ( A) P ( A) S ( )
Y
习题 1-4
条件概率
一、填空题: 一盒中有新旧两种乒乓球 100 只,其中新球中有 40 只白的和 30 只黄的,旧球中有 20 只白的和 10 只黄的。现从中任取一只,则: (1)取到一只新球的概率是 0.7 ; (2)取到一只黄球的概率是 0.4 ; (3)已知取到的是新球,该球是黄球的概率是
(4) ( A1 ∪ A2 )∩ A3 表示 (5)( A1 ∪ A2 )∩ A3 表示
; ;
答案: (1)三次均抽到废品; (2)至少有一次抽到废品; (3)只在第三次才抽到废品; (4)前两次至少抽到一件废品且第三次抽到废品; (5)前两次至少抽到一件正品且第三次抽到废品。 5.设事件 A,B,C 满足 ABC≠ф将下列事件分解为互斥事件和的形式: A∪B∪C 可表示为 ; A-BC 可表示为 ;
P ( A1 A2 An ) P ( A1 ) P ( A2 A1 ) P ( A3 A1 A2 ) P ( A1 A2 An ) 1 2 3 n 1 n 2 3 4 n n 1 1 n 1
2.市场上某种产品分别有甲、乙、丙三个厂所生产,其产量结构为 2:4:5,已知三个厂 的次品率分别为 4%、5%和 3%,求: (1)市场上该种产品总的次品率是多少? (2)若从该市场上任取一件这种产品发现是次品,则该次品最可能是哪个厂生产的? 解:设 Ai (i 1,2,3) 分别表示分别有甲、乙、丙三个厂所生产的产品

概率练习册1-2章答案

概率练习册1-2章答案

(n 1 ) ! ,而事 (2)n 个朋友随机的围绕圆桌而坐,样本空间样本点总数为
件 B 为甲、乙、丙三人坐在一起,可将三人“捆绑”在一起,看成是“一个”人
3 (n 3)! 占“一个”座位,有利于事件 B 发生的样本点个数为 A3 3 A3 (n 3)! 6 于是 P ( B ) (n 1)! (n 1)(n 2)
1 2
P ( A) P ( B ) [ P ( A) P ( AB )] 3 1 5 4 12 6 1 1 15 , P ( AB ) P ( BC ) P ( AC ) , P ( A B C ) , 4 8 16
4.设 P ( A) P ( B ) P (C ) 求 P ( A B C ).
P ( A B ) P ( AB ) 1 P ( AB ) 1 P ( A) P ( B ) P ( A B ) 1 1 1 1 11 3 4 2 12
P( A B ) P( A B) 1 P( A B) P ( A B ) P ( A) P ( B.) P ( A B )
解 设 Ai (i 0,1,2, ) 表示箱中有 i 件次品, B 表示顾客买下该箱玻璃杯 (1)由全概率公式
一、判断题: (1)若 ABC=ф,则 P(A∪B∪C)=P(A)+P(B)+P(C) (2) A B ,则 P ( A ) P ( B ) (3)若 AB=ф,则 P ( A B ) 1 P ( A) P ( B ) 二、计算与求解题: 1.已知 P(A)=0.5, P ( A B ) 0.3 ,求 P ( A B ), P ( AB ), P ( A B ). 解: P ( AB ) P ( B ) P ( AB ) 0.3,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一次1设A,B,表示三随机事件,表示下列随机事件 (1)A 出现,B ,C 不出现(2)A ,B 都出现,C 不出现(3)三事件都出现(4)三事件至少有一个出现(5)三事件都不出现(6)不多于一个事件出现(7)A ,B ,C 中恰好有两个出现解 (1){A 出现,B ,C 不出现}C B A = (2){A ,B 都出现,C 不出现}C AB = (3){三事件都出现}ABC =(4){三事件至少有一个出现}C B A ++= (5){三事件都不出现}C B A =(6){不多于一个事件出现}C B A C B A C B A C B A +++= (7){A ,B ,C 中恰好有两个出现}C AB C B A BC A ++=2 写出下列随机试验的样本空间 (1)记录一个班的数学考试平均成绩(2)同时抛三个骰子,记录点数之和 (3)10件产品中有3件次品,每次从中取一件(不放回)直到将三件次品取出,记录抽取次数 (4)生产产品直到有10件正品为止,记录生产产品的总件数 ,(5)在单位圆内任意取一点,记录它的坐标解 (1) }1000|{1≤≤=x x S (2)}18...5,4,3{2=S (3)}10,...5,4,3{3=S(4) ...}13,12,11,10{4=S (5)}1|),{(225≤+=y x y x S3 随机抽查三件产品,A={三件中至少有一件废品} B={三件中至少有二件废品} C={三件正品},问 A , B C A C A B A - 各表示什么事件(用文字描述) 解 A ----- 三件产品全为正品 B -----三件中至多一件废品S C A = Φ=C A B A -----恰有一件废品4 下列各式是否成立 (1)(A-B )+B=A (2) (A+B )-C=A+(B-C ) 解 如图(1)B A B B A +=+-)( (2))()(C B A C B A -+⊆-+ 5 下列各式说明什么关系?(1) AB=A (2) A+B=A (3) A+B+C=A解 (1)AB=A B A ⊂⇒ (2) A+B=A A B ⊂⇒(3) A+B+C=A A B ⊂⇒且A C ⊂⇒第二次1 罐中有围棋子8白子4黑子,今任取3子 ,求下列事件的概率 (1) 全是白子 (2) 取到2黑子1白子 (3)至少有一颗黑子解 A={全是白子} B={2白子1黑子} C={至少有一颗黑子}(1) 3831214()=55C P A C = (2) 218431228()=165C C P B C = (3) 3831241()1()1=55C P C P A C =-=-2 从1至200的正整数中任取一数,求此数能被6或8整除的概率 解 A={此数能被6整除} B={此数能被8整除} )()()()(AB P B P A P B A P -+=+20082002520033-+==41= 3 设21)(=A P ,31)(=B P 试求下列三种情况下)(B A P -的值 (1)φ=AB (2)B A ⊃ (3)41)(=AB P解 (1)φ=AB A B A =- , 21)(=-⇒B A P(2)B A ⊃ 613121)()()(=-=-=-B P A P B A P(3)41)(=AB P 414121)()()()(=-=-=-=-AB P A P AB A P B A P4 袋中有9红球3白球,任取5球,求(1) 其中至少有1个白球的概率(2) 其中至多有2个白球的概率解 A={至少有1个白球} B={至多有2个白球}5951237()1()1=44C P A P A C =-=- 323951221()1()1=22C C P B P B C =-=-5设A,B 为两个事件,且5.0)(=A P , 4.0)(=B P ,8.0)(=+B A P 求 (1) )(B A P + (2) )(AB P解 (2))()()()(AB P B P A P B A P -+=+ 1.0)(=∴AB P(1) 如图 AB A B A +=+Φ=)(AB A)()()(AB P A P B A P +=+∴=1-0.5+0.1=0.68.0)(=C B P ,6若C A B A ⊃⊃,,且P (A )=0.9 ,求 )(BC A P -解 如图:BC S C B -= 2.0)(1)(=-=C B P BC P7.02.09.0)()()(=-=-=-BC P A P BC A P 参考题 设 21)()(==B P A P , 求证 )()(B A P AB P = 证明 )()()()(AB P B P A P B A P -+=+)(1)(AB P B A P -=+∴)(1)(1)(B A P B A P B A P -=+-=+ )()(B A P AB P =∴第三次1 袋中有3红球2白球,不放回地抽取2次,每次取一个,求(1) 第二次取红的概率 (2) 已知第一次取白球,求第二次取红球的概率 解 A i ={第i 次取红球} (i=1,2)(1) )|()()|()()(1211212A A P A P A A P A P A P +=5343524253=⨯+⨯= (2) )|(12A A P 43=2 袋中有3红球2白球,抽取3次,每次取一个,取出后不放回,再放入与取出与取出的球颜色相同的两个球, 求 连续3次取白球的概率 解 A i ={第i 次取白球} (i=1,2,3) )|()|()()(213121321A A A P A A P A P A A A P =746352⨯⨯=435= 3 10件产品中有7件正品,3件次品(1)不放回地每次从中取一个,共取三次,求取到3件次品的概率 (2)有放回地每次从中取一个,共取三次,求取到3件次品的概率 解 A i ={第i 次取次品} (i=1,2,3)(1) 1231213123211()()(|)(|)=1098120P A A A P A P A A P A A A ==⨯⨯ (2) 12312131233327()()(|)(|)=1010101000P A A A P A P A A P A A A ==⨯⨯ 4 100件产品中有10件次品90件正品,每次取1件,取后不放回,求第三次才去到正品的概率解 A i ={第i 次取正品} (i=1,2,3)123121312109909()()(|)(|)=10099981078P A A A P A P A A P A A A ==⨯⨯ 5某人有一笔资金,他投入基金的概率为0.58,买股票的概率为0.28,两项同时投入的概率为0.19, 求(1)已知他买入基金的条件下,他再买股票的概率 (2) 已知他买入股票的条件下,他再买基金的概率解 A={买基金} B={买股票} (1))()()|(A P AB P A B P =0.190.58= (2))()()|(B P AB P B A P =28.019.0=6某厂有编号为1,2,3的三台机器生产同种产品,其产量分别占总产量的25%, 35% 40%,次品率分别为5%,4% 2%,今从总产品中取一件 (1) 产品为次品的概率 (2) 若抽取的为次品求它是编号为2的机器生产的概率解 A i (i=1,2,3)B={任取一件产品为次品}(1))|()()|()()|()()(332211A B P A P A B P A P A B P A P B P ++=25%5%35%4%40%2%=0.0345=⨯+⨯+⨯(2))()|()()()()|(2222B P A B P A P B P B A P B A P ==35%4%0.40625%5%35%4%40%2%⨯=≈⨯⨯+⨯第四次1设 4.0)(=A P ,7.0)(=+B A P 在下列条件下求)(B P (1) A,B 互不相容 (2) A,B 独立 解 (1) A,B 互不相容 则7.0)()()(=+=+B P A P B A P 3.0)(=⇒B P(2)A,B 独立 则)()()()(AB P B P A P B A P -+=+7.0)()()()(=-+=B P A P B P A P5.0)(=⇒B P2设 3.0)(=A P ,6.0)(=+B A P 在下列条件下求)(B P (1) A,B 互不相容 (2) A,B 独立 (3) B A ⊂解 (1) A,B 互不相容 则6.0)()()(=+=+B P A P B A P 3.0)(=⇒B P(2)A,B 独立 则)()()()(AB P B P A P B A P -+=+6.0)()()()(=-+=B P A P B P A P73)(=⇒B P (3) B A ⊂ B B A =+ 6.0)()(==+∴B P B A P3两种花籽,发芽率分别为0.8,0.9 , 从中各取一粒,设花籽发芽独立,求(1)两颗都发芽的概率 (2)至少有一颗发芽的概率(3)恰有一颗发芽的概率 解 A={第一种花籽发芽} B={第二种花籽发芽}(1) ()()()0.80.9=0.72P AB P A P B ==⨯(2) )()()()()()()()(B P A P B P A P AB P B P A P B A P -+=-+=+ 0.80.90.80.9=0.98=+-⨯(3) )()()()()()()(B P A P B P A P B A P B A P B A B A P +=+=+ 0.80.10.20.9=0.26=⨯+⨯ 4 甲,乙,丙三人独自破译某个密码,他们各自破译的概率是21,31,41,求密码被破译的概率 解 A={密码被甲破译} B={密码被乙破译} C={密码被丙破译} {密码被破译}=A+B+C)(1)(1)(C B A P C B A P C B A P -=++-=++11131(1)(1)(1)=2344=----5 加工某零件要经过第一 ,第二 ,第三 ,第四道工序,次品率分别为2%, 3% ,4% ,5% ,各道工序独立,求加工出来的零件为次品的概率解 A i ={第i 道工序出次品} ( i=1,2,3,4) B={加工出来的零件为次品} B=A 1+A 2+ A 3+A 4)(1)(1)()(432143214321A A A A P A A A A P A A A A P B P -=+++-=+++= 12341()()()()1(12%)(13%)(14%)(15%)0.133P A P A P A P A =-=-----≈ 6 3次独立重复试验,事件A 至少出现一次的概率为6463,求A 在一次试验中出现的概率 解 A 在一次试验中出现的概率为pX 表示3次实验中A 出现的次数 ,则X~B(3,p)6463)1(1)0(1)1(3=--==-=≥p X P X P 43=⇒p 第五次1解 等比数列求和公式为q q a S nn --=1)1(1 143511)51(153limlim ≠=--=∞→∞→nn n n S 所以上述表不是分布表2已知离散型随机变量的分布律如下,求常数a=?(1) 5}{am X P == m=1,2,3…25 (2) !}{m am X P == m=0,1,2,3…解 (1)1255=⨯a 51=⇒a (2) 注意到: e n =++++++...!1...!31!21!1111...!...!3!2!1==++++++ae n a a a a a ea 1=⇒3 袋中有2红球4白球,取3球,求取到的红球数X 的分布律 解4 某人有6发子弹,射击一次命中率为0.8 ,如果命中了就停止射击,否则一直到子弹用尽,求耗用子弹数Y 的分布律解 8.02.0}{1⨯==-i i Y P i=1,2,3,4,5652.08.02.0}6{+⨯==Y P5患某种病的死亡率为0.002,试求2000名患者中死亡人数大于8的概率 解 X-----2000患者中死亡的人数 则X~B(2000,0.002) 4np λ==8200020000{8}1{8}10.002(10.002)10.97860.0214ii ii P X P X C -=>=-≤=-•-≈-=∑6一本合订本100页,平均每页上有2个印刷错误,假定每页上的错误服从泊松分布,计算合订本各页错误都不超过4个的概率解 A={合订本各页错误都不超过4个}i X -----合订本第i 页错误, 则 2=λ )2(~P X i223442222202222(4)20.9473!2!3!4!k i k e P X e e e e e k ------=≤==++++=∑ 100()0.94730.004454P A =≈第六次1 若a 在(1,6)上服从均匀分布,求x 2+ax+1=0有实根的概率解 012=++ax x 有实根的充分必要条件是: 042≥-=∆a 即 2-≤a 或 2≥aa 在(1,6)上服从均匀分布, 则其概率密度函数为: ⎪⎩⎪⎨⎧≤≤=其余06151)(a x p aP{2-≤a 或 2≥a }= 5451}6P{262==≤≤⎰dx a2设随机变量X 的概率密度为 ⎪⎩⎪⎨⎧>≤≤<=101000)(x x Cx x x p(1) 求常数C (2) P{0.4<X<0.6} (3) 若4.0}|5.0{|=<-a X P ,求a (4) 若}{}{b X P b X P <=>,求b 解 (1) c=2(2) }6.04.0{<<X P =⎰6.04.02xdx 220.60.40.2=-=(3) 4.0}5.05.0{}|5.0{|=+<<+-=<-a X a P a X P 显然 0<0.5- a<x<0.5+a<1 =⎰+-aaxdx 5.05.024.0)5.0()5.0(22=--+=a a2.0=⇒a(4) }{}{b X P b X P <=> 显然 0<b<15.02}{0==<⎰bxdx b X P 22=b 3 已知)4,5.1(~N X 求 (1)}5.3{<X P , (2)}5.35.2{<<X P (3) {3}P X ≥ (4)}3|{|<X P解 (1) 8413.0)1()25.15.3(}5.3{=Φ=-Φ=<X P (2) )5.0()1()25.15.2()25.15.3(}5.35.2{Φ-Φ=-Φ--Φ=<<X P1498.06915.08413.0=-=(3)()3 1.5{3}1{3}110.750.22662P X P X -⎛⎫≥=-≥=-Φ=-Φ= ⎪⎝⎭(4) 3 1.53 1.5{||3}()()(0.75)( 2.25)22P X ---<=Φ-Φ=Φ-Φ- 7612.019878.07734.01)25.2()75.0()]25.2(1[)75.0(=-+=-Φ+Φ=Φ--Φ=4设投影仪的寿命X 服从参数为20001=λ的指数分布 (1) 投影仪能正常使用500小时的概率(2) 若投影仪已经正常使用500小时,求它还能至少使用500小时的概率解 ⎪⎩⎪⎨⎧≥<=-02000100)(20001x e x x x ϕ记号(1) 41200012000150050020001}500{---∞+=∞+-==≥⎰e e dx e X P x x(2) 记}500{≥=X A }1000{≥=X B )()()()()|(A P B P A P AB P A B P ==2120001200011000100020001}1000{)(---∞+=∞+-==≥=⎰e e dx e X P B P x x414121)()()()()|(---====e e eA PB P A P AB P A B P 5 ),(~2σμN X ,且 975.0}9{=<X P 062.0}2{=<X P求 }6{>X P 解 975.0)9(}9{=-Φ=<σμX P 96.19=-⇒σμ062.0)2(}2{=-Φ=<σμX P 显然02<-σμ062.0)2(1=-Φ-σμ , 938.0)2(=-Φσμ 54.12=-⇒σμ 2=σ 08.5=μ6772.0)46.0()208.56()6(}6{=Φ=-Φ=-Φ=<σμX P 3228.0}6{=>X P6 设最高洪水水位X 有概率密度为: ⎪⎩⎪⎨⎧≥<=1210)(3x x x x f今要修建河堤能防100年一遇的洪水(即:遇到的概率不超过0.01),河堤至少要修多高?解 设河堤至少要修H 米 则 01.012}{23≤==>⎰+∞H dx x H X P H10≥⇒H第7次1 X -12 4 P41 21 41求X 解 ⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<=414243214110)(x x x x x F2设随机变量X 的分布函数为 ⎩⎨⎧≥+-<=-0)1(100)(x ex x x F x求 (1) 概率密度函数 (2) (1)}1{≤X P , (3)}12{≤≤-X P解 (1) ⎩⎨⎧≥<=-000)(x xex x f x(2) 121)1(}1{--==≤e F X P(3) 121)2()1(}12{--=--=≤≤-e F F X P3设随机变量X 的概率密度为 ⎪⎪⎩⎪⎪⎨⎧≥<≤-<≤<=202121000)(x x x x x x x p(1) 求X 的分布函数F(x),并绘图 (2) )21(F )23(F (3){1 1.5}P X -<< 解 注意F(x)连续且1)(,0)(=+∞=-∞F F⎪⎪⎩⎪⎪⎨⎧≥<≤--<≤<=⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤+-<≤+<==⎰2121121210210022121210210)()(22332221x x x x x x x x c x c x x x c x x c dx x p x F81)21(=F 87)23(=F 7{1 1.5}8P X -<<= 4求下列随机变量的分布律(1)||1X Y = (2) )2cos(2π+=X Y5 设随机变量X 的分布函数为 ⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<=31323212314110)(x x x x x F求 X 的分布律 解6设随机变量X 的概率密度为 ⎪⎩⎪⎨⎧>+≤=0)1(200)(2x x x x p π求X Y ln =的概率密度解法一 )(}{}{ln }{)(yX y Y e F e X P y X P y Y P y F =<=<=<=)1(2)(])([)()(2yyyyX yX Y Y e e e e p e F y F y p +=•='='=π )(+∞<<-∞y解法二 x y ln = 单调上升 ,其反函数为y e x = )(+∞<<-∞y , ye x =')1(2)()(2yyyyX Y e e e e p y p +=•=π )(+∞<<-∞y 第10次1求(1))1(+-X E (2))(2X E解 (1))1(+-X E 1+-=EX 321)4121211615.0610311(=+•+•+•+•+•--= (2))(2X E 2435412121161)5.0(61031)1(22222=•+•+•+•+•-= 2设随机变量X 的概率密度为 )(21)(||+∞<<-∞=-x e x p x ,求(1)EX (2) )(2X E解 021||==⎰+∞∞--dx e x EX x202221202||22=∞+---===---∞+-∞+∞--⎰⎰x x x x x e xe e x dx e x dx e x EX3设随机变量X 的分布函数为 ⎪⎩⎪⎨⎧>≤<≤=414040)(x x xx x F求 (1)EX (2) )53(+X E解 ⎪⎩⎪⎨⎧>≤<≤=4040410)(x x x x f 24140==⎰dx x EX )53(+X E 1153=+=EX4 对圆的直径作测量,设其值均匀地分布在区间[a,b]内,求圆面积的期望解 X-----直径 则X~U[a, b])(12)(31)(414)2(33322a b a b a b x a b dx a b x X E ES b a --=•-=-==⎰ππππ 5 按规定某车站每天8:00---9:00, 9:00---10:00恰有一辆客车到站,各车到站的时刻是随机的,(1) 旅客8:00到站,求他候车时间的数学期望 (2) 旅客8:20到站,求他候车时间的数学期望解则344.0=⨯(分)(2)8.3008.09008.0=⨯+(分)第11次1 求(1))(X D - (2))32(+X D解 4.22.044.031.022.011.00=⨯+⨯+⨯+⨯+⨯=EX4.72.044.031.022.011.00222222=⨯+⨯+⨯+⨯+⨯=EX 64.1)(22=-=EX EX DX64.1)(==-DX X D 56.64)32(==+DX X D2设随机变量X 的概率密度为 ⎪⎩⎪⎨⎧<<=其余020cos )(πx x k x p ,求(1)?=k (2) }30{π<<x P (2) EX ,DX(3) )23(+X E )23(+-X D解 (1)102sin cos 20==⎰ππx k xdx k 1=⇒k (2) 2303sin cos }30{30===<<⎰πππx xdx x P(3) 1202cos sin cos 20-=+==⎰πππx x x xdx x EX2402cos sin cos 22022-=+==⎰πππx x x xdx x EX3)12(24)(2222-=---=-=πππEX EX DX(3) 12323)23(-=+=+πEX X E 2799)23(-==+-πDX X D3设随机变量X 服从参数为λ的泊松分布,且P{X=1}=P{X=2}求 ,EX ,DX 解 }2{}1{===X P X P !2!12λλλλ--=e e 2=⇒λ2=EX , 2=DX4 设随机变量)9,2(~N X 求 X Y 3=的概率密度函数 解 )9,2(~N X 则X Y 3=也是正态分布,且 EY=6 DY=81即)9,6(~32N X Y = 29621291)(⎪⎭⎫ ⎝⎛--=∴y Y e y f π5 设随机变量X 的概率密度为 ⎪⎩⎪⎨⎧<≤+<<=其余04220)(x b cx x axx p ,已知2=EX ,43}31{=<<X P 求??,?,===c b a 解 2356638)(4220=++=++=⎰⎰c b a dx b cx x xaxdx EX (1)432523)(}31{3221=++=++=<<⎰⎰c b a dx b cx axdx X P (2)16223)()(4221=++=++=⎰⎰⎰+∞∞-c b a dx b cx axdx x p (3)11,1,44a b c ===-。

相关文档
最新文档