有理数-有理数加减乘除四则混合运算习题大全
有理数的加减乘除乘方混合运算专题训练(带答案)
1. 先乘方,再乘除,最后加减;2. 同级运算,从左到右进行;3. 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
1、12411 ()()()23523+-++-+-2、4(81)( 2.25)()169-÷-⨯-÷3、11(22)3(11)+--⨯-4、31(12)()15(1)45+⨯--⨯-5、2232[3()2]23-⨯-⨯--6、 33102(4)8-÷--7、)]21)21[(122--÷ 8、121)]3()2[(2⨯-⨯-9、)6(]32)5.0[(22-⨯-- 10、23533||()14714-⨯-÷11、—22—(—2)2—23+(—2)3 12、2223116(1)(3)(1)(3)22-⨯---÷-⨯-13、199711(1)(10.5)()312----⨯÷- 14、33514(1)(8)(3)[(2)5]217---⨯+-÷-+15、-10 + 8÷(-2 )2 -(-4 )×(-3 ) 16、-49 + 2×(-3 )2 + (-6 )÷(-91)17、-14 + ( 1-0.5 )×31×[2×(-3)2] 18、(-2)2-2×[(-21)2-3×43]÷51.19、)8()4()6(52-÷---⨯ 20、0)132()43(2⨯+-+-21、6)12()4365127(÷-⨯+- 22、22)4()5(25.0)4()85(-⨯-⨯--⨯-23、)23232(21)21(2--⨯+- 24、[][]332)2(3)5(6)7(4-÷--+÷-⨯-25、6-(-12)÷2)2(- 26、(-48)÷ 8 -(-5)÷2)21(-27、42×)43()32(-+-÷ 0.25 28、()23)9181(-÷-29、()()333232÷---⨯- 30、(-5)×6+(-125) ÷(-5)3 31、)251(4)5(25.0-⨯⨯-⨯-- 32、22)3(61)2132(1-+÷-+- 1、【基础题】计算:(1)618-÷)(-)(-312⨯; (2))(-+51232⨯; (3))(-)(-49⨯+)(-60÷12; (4)23)(-×[ )+(--9532 ]. (1))(-)+(-2382⨯; (2)100÷22)(--)(-2÷)(-32;(3))(-4÷)(-)(-343⨯; (4))(-31÷231)(--3214)(-⨯. (1)36×23121)-(; (2)12.7÷)(-1980⨯; (3)6342+)(-⨯; (4))(-43×)-+(-31328; (5)1323-)(-÷)(-21; (6)320-÷34)(-81-;(7)236.15.02)-(-)(-⨯÷22)(-; (8))(-23×[ 2322-)(- ];(9)[ 2253)-(-)(- ]÷)(-2; (10)16÷)(-)-(-)(-48123⨯. (1)11+(-22)-3×(-11); (2)0313243⨯⨯)-(-)(-;(3)2332-)(-; (4)23÷[ )-(-)(-423]; (5))-(8743÷)(-87; (6))+()(-654360⨯; (7)-27+2×()23-+(-6)÷()231-; (8))(-)-+-(-4151275420361⨯⨯. (1))-(-258÷)(-5; (2)-33121)(--⨯; (3)223232)-(-)(-⨯⨯; (4)0132432⨯⨯)+(-)(-;(5))(-+51262⨯; (6)-10+8÷()22--4×3; (7)-51-()()[]55.24.0-⨯-; (8)()251--(1-0.5)×31;(1)(-8)×5-40; (2)(-1.2)÷(-13)-(-2);(3)-20÷5×14+5×(-3)÷15; (4)-3[-5+(1-0.2÷35)÷(-2)];(5)-23÷153×(-131)2÷(132)2; (6)-52+(1276185+-)×(-2.4)参考答案1、-1/52、-13、224、95、96、 07、-488、-19、-15 10、-15/34311、-24 12、-89 13、3 14、2 15、-20 16、23 17、2 18、24 19、-28 20、9/16 21、1 22、10 23、-1/12 24、104/3 25、9 26、14 27、-31 28、-81又1/81 29、-9 30、-29 31、-1/5 32、91、【答案】 (1)17; (2)511; (3)31; (4)-112、【答案】 (1)-10; (2)22; (3)-16; (4)-253、【答案】 (1)1; (2)0; (3)42; (4)23; (5)18; (6)0; (7)-4.64;(8)37; (9)8; (10)-25. 4、【答案】 (1)22; (2)0; (3)-17; (4)-423; (5)71; (6)-95; (7)-85;(8)6 .5、【答案】 (1)3; (2)1; (3)-54; (4)0; (5)526; (6)-20; (7)-2; (8)-67. 6、【答案】(1)-80; (2)5.6; (3)-2; (4)16; (5)-516; (6)-2.9复习 有理数的乘除、乘方运算测试题一、填空题(每小题3分,共30分) 1.3×(-2)=________,(-6)×(-31)=________. 2.(-3)2的底数是________,结果是________;-32的底数是________,结果是________.3.(-61)÷(+23)=________;-493÷(-176)=________;(+8)÷(-41)=________. 4.23×(-41)3=________;(-91)÷(+34)2=________.5.(-32)×________=1;(-32)×________=-16.-65×(-2.4)×(-53)=________.7.-32×(-5)2÷(-21)3=________.8.我国台湾省的面积约为3600平方公里,用科学记数法表示为________. 9.+121的倒数是________;________的倒数是-54. 10.用“>”“<”填空: ①23________22②(21)2________(21)3③32________22④(-2)3________(-2)2二、判断题(每小题1分,共5分) 11.零除以任何数都得零( )12.互为相反数的两个数的积为负数( ) 13.如果ab >0,则a >0且b >0( )14.1除以一个非零数的商叫做这个数的倒数( )15.(-3)5表示5个-3相乘( ) 三、选择题(每小题3分,共21分) 16.下列说法,其中错误的有①一个数与1相乘得原数;②一个数乘以-1得原数的相反数;③0乘以任何数得0;④同号两数相乘,符号不变.A .1个B .2个C .3个D .4个17.下列各对数:①1与1;②-1与1;③a -b 与b -a ;④-1与-1;⑤-5与|6|,其中互为倒数的是A .①②③B .①③⑤C .①③④D .①④ 18.下列各题中两个式子的值相等的是A .-23与(-2)3B .32与23C .(-2)2与 -22D .|-2|与-|-2| 19.下列结论中,其中正确的个数为①0的倒数是0;②一个不等于0的数的倒数的相反数与这个数的相反数的倒数相等;③其倒数等于自身的数是±1;④若a ,b 互为倒数,则-ab=-1.A .4B .3C .2D .1 20.下列各式中结果大于0的是A .1-910×3B .(1-910)×3C .1-(9×3)10D .(1-9)10×3 21.下列说法中正确的是 A .一个数的平方必为正数B .一个数的平方必小于这个数的绝对值C .一个数的平方必大于这个数D .一个数的平方不可能为负数22.用科学记数法表示的数2.89×104,原来是A .2890B .2890000C .28900D .289000 四、计算题(共35分)23.(3分)(-3)×(-5)×(+12)×(-21) 24.(3分)-6÷(+3)÷(-4)×(+2) 25.(3分)-5-6÷(-3)26.(3分)(-81)÷241×91÷(-16) 27.(3分)-22×(-3)÷5428.(3分)(-1)2000×(-1)2001×(-1)2002÷(-1)200329.(3分)(-2)×(-2001)×[-21-(-21)]×1-2002 30.(3分)-)45()45(5222-÷-⨯⨯ 31.(3分)(-5)2÷5×632.(3分)(-2.5)÷(-310)×(-3) 33.(5分)30×(21-31+53-109)五、解答题(9分) 34.已知A=a+a 2+a 3+……+a 2000(1)若a =1,求A 的值. (2)若a =-1,求A 的值.参考答案一、1.-6 2 2.-3 9 3 -9 3.-91 913 -32 4.-81 -161 5.-23 23 6.-1.2 7.1800 8.3.6×103平方公里9.32 -14110.> > > < 二、11.× 12.× 13.× 14.√ 15.√三、16.A 17.D 18.A 19.B 20.D 21.D 22.C 四、23.-90 24.1 25.-3 26.4127.15 28.1 29.-2002 30.1 31.30 32.-4933.-4 五、34.(1)2000 (2)0。
有理数的混合运算计算题(50题)(解析版)
有理数的混合运算的计算题(50题)1.(2022秋•靖西市期末)计算:(1)5﹣(+4)﹣(﹣2)+(﹣3);(2)6÷(﹣3)﹣(―12)×(﹣4)﹣22.【分析】(1)先把减法转化为加法,然后根据有理数加法计算即可;(2)根据有理数的乘方、有理数的乘除法和减法计算即可.【解答】解:(1)5﹣(+4)﹣(﹣2)+(﹣3)=5+(﹣4)+2+(﹣3)=0;(2)6÷(﹣3)﹣(―12)×(﹣4)﹣22一、有理数的混合运算(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.二、有理数混合运算的四种运算技巧:1.转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.2.凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.3.分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算.4.巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.=(﹣2)﹣2﹣4=﹣8.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序.2.(2022秋•大竹县校级期末)计算:(1)(―12+16―38)×(﹣24)(2)﹣13﹣2×[2﹣(﹣3)2].【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=12﹣4+9=8+9=17;(2)原式=﹣1﹣2×(﹣7)=﹣1+14=13.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.3.(2023•梧州二模)计算:(﹣3)×2+|﹣4|﹣(﹣2)3.【分析】先计算乘法、绝对值和有理数的乘方,再计算加减.【解答】解:(﹣3)×2+|﹣4|﹣(﹣2)3=﹣6+4﹣(﹣8)=﹣6+4+8=6.【点评】本题考查了有理数的混合运算,掌握有理数的混合运算顺序:先算乘方,再算乘除,最后计算加减,如果有括号,先计算括号里面的是关键.4.(2022秋•长顺县期末)计算(―1)3―(―1)+(―6)÷(―12 ).【分析】先算乘方,再算除法,最后算加减法即可.【解答】解:(―1)3―(―1)+(―6)÷(―1 2 )=(﹣1)+1+(﹣6)×(﹣2)=(﹣1)+1+12=12.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.5.(2023•兴宁区校级模拟)计算:(﹣2+4)×3+(﹣2)2÷4.【分析】先算乘方,再算乘除,最后算加减;如果有括号,要先做括号内的运算.【解答】解:(﹣2+4)×3+(﹣2)2÷4=2×3+4÷4=6+1=7.【点评】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.6.(2023•钦州一模)计算:﹣(﹣2)+22×(1﹣4).【分析】先计算乘方和括号内的运算,再计算乘法,最后计算减法即可.【解答】解:原式=2+4×(﹣3)=2﹣12=﹣10.7.(2023春•松江区期末)计算:(516―14)×(―4)2―32+14.【分析】先算括号内的和乘方,再算乘除法,最后算加法即可.【解答】解:原式=116×16﹣9+14=1﹣9+1 4=―31 4.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.8.(2022秋•海丰县期末)计算:﹣6÷2+(13―34)×12+(﹣3)2【分析】根据有理数混合运算顺序和运算法则计算可得.【解答】解:原式=﹣3+4﹣9+9=1.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数混合运算顺序和运算法则.9.(2023春•黄浦区期中)计算:229×(―1)9―(―115)2÷(―0.9)2.【分析】先算乘方,再算乘除,最后算加减.【解答】解:229×(―1)9―(―115)2÷(―0.9)2=209×(﹣1)―3625÷0.81=―209―169=―369=﹣4.【点评】本题考查了有理数的混合运算,掌握运算顺序和运算法则是解题的关键.10.(2023春•杨浦区期末)计算:―32―(23―32)÷|―16|.【分析】先算乘方,再化简绝对值算除法,最后算加减.【解答】解:原式=﹣9﹣(23―32)÷16=﹣9﹣(23―32)×6=﹣9﹣(23×6―32×6)=﹣9﹣(4﹣9)=﹣9﹣(﹣5)=﹣9+5=﹣4.【点评】本题考查了实数的运算,掌握实数的运算法则、运算律和运算顺序是解决本题的关键.11.(2023•七星区校级模拟)计算:(﹣2)3+|﹣8|+(﹣36)÷(﹣3).【分析】原式先算乘方及绝对值,再算除法,最后算加法即可得到结果.【解答】解:原式=﹣8+8+12=12.【点评】此题考查了有理数的混合运算,其运算顺序为:先乘方,再乘除,最后加减,有括号先算括号里边的,同级运算从左到右依次进行.12.(2023春•青秀区校级月考)计算:23×(―12+1)÷(2―3).【分析】先计算乘方和括号内的式子,然后按照乘除混合运算顺序计算即可.【解答】解:原式=8×12÷(―1)=4×(﹣1)=﹣4.【点评】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.13.(2022秋•西宁期末)计算:―14―16×[2―(―3)2].【分析】根据有理数的混合运算的顺序计算.【解答】解:―14―16×[2―(―3)2]=﹣1―16×(2﹣9)=﹣1―16×(﹣7)=﹣1+7 6=1 6.【点评】本题考查了有理数的混合运算,解题的关键是掌握有理数混合运算的顺序.14.(2023春•长宁区期末)计算:(2―0.4)×416÷(―123)―14.【分析】根据有理数的乘方、有理数的乘除法和减法可以解答本题.【解答】解:(2―0.4)×416÷(―123)―14=1.6×256×(―35)﹣1=85×256×(―35)﹣1=﹣4﹣1=﹣5.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法:先乘方、再乘除、最后加减.15.(2022秋•宁明县期末)―22+|5―8|+24÷(―3)×13【分析】先乘方和括号里的,再乘除,最后加减.【解答】解:―22+|5―8|+24÷(―3)×13=―4+3+24×(―13)×13=―1―83 =―113.【点评】本题考查的是有理数的混合运算的能力,要注意运算顺序及符号的处理.16.(2023•大连一模)计算:(―2)3―(16+38―0.75)×|―24|.【分析】先算括号里面的,再算乘方,乘法,最后算加减即可.【解答】解:原式=﹣8﹣(16+38―0.75)×24=﹣8﹣(16×24+38×24―34×24)=﹣8﹣(4+9﹣18)=﹣8﹣(﹣5)=﹣3.【点评】本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解题的关键.17.(2023春•长宁区期末)计算:―22+(―43)―13×[(―2)3+1].【分析】根据有理数的混合运算顺序,先计算乘方,再计算乘除,后计算加减,有括号的先计算括号内的,据此解答即可.【解答】解:原式=﹣4―43―13×(―8+1)=―4―43―13×(―7) =―4―43+73=―4+(73―43) =﹣4+1=﹣3.【点评】本题考查了有理数的混合运算,掌握相关运算法则是解答本题的关键.18.(2023•兰陵县二模)计算:﹣16÷(﹣2)3﹣22×|―12|+(﹣1)2023.【分析】根据有理数的混合运算法则计算即可.【解答】解:―16÷(―2)3―22×|―12|+(―1)2023=―16÷(―8)―4×12―1 =2﹣2﹣1=﹣1.【点评】本题主要考查了有理数的混合运算,掌握相应的运算法则是解答本题的关键.19.(2023春•普陀区期末)计算:―32+(―214)÷32+(38―512)×24.【分析】先算乘方,再利用除法法则、乘法分配律计算乘除法,最后算加减.【解答】解:原式=﹣9+(―94)×23+38×24―512×24=﹣9+(―32)+9﹣10=﹣9+9―32―10=﹣1112.【点评】本题考查了有理数的混合运算,掌握有理数的运算法则、运算律是解决本题的关键.20.(2023•桂平市三模)计算:―32×|―29|+(―1)2023―5+(―54).【分析】先根据平方运算、绝对值运算、(﹣1)n 计算,再由有理数加减运算法则求解即可得到答案.【解答】解:―32×|―29|+(―1)2023―5+(―54)=―9×29―1―5―54=―2―1―5―54=―(2+1+5+54) =―914.【点评】本题考查了有理数加减混合运算,平方运算、绝对值运算、(﹣1)n 计算,掌握相关运算法则是解决问题的关键.21.(2023春•普陀区期末)计算:―32+(―214)÷32+(38―512)×24.【分析】先算乘方,再利用除法法则、乘法分配律计算乘除法,最后算加减.【解答】解:原式=﹣9+(―94)×23+38×24―512×24=﹣9+(―32)+9﹣10=﹣9+9―32―10=﹣1112.【点评】本题考查了有理数的混合运算,掌握有理数的运算法则、运算律是解决本题的关键.22.(2023春•黄浦区期中)计算:(―1112+34)×(―42)+(―213)÷3.5【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:原式=(―1112+912)×(﹣16)―73×27=―16×(﹣16)―23=83―23=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.(2022秋•大冶市期末)计算:﹣14+[4﹣(38+16―34)×24]÷5.【分析】根据有理数的混合运算的运算方法,应用乘法分配律,求出算式的值是多少即可.【解答】解:﹣14+[4﹣(38+16―34)×24]÷5=﹣1+[4―38×24―16×24+34×24]÷5=﹣1+[4﹣9﹣4+18]÷5=﹣1+9÷5=﹣1+1.8=0.8【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.24.计算:﹣14﹣(0.5﹣1)÷13×[5﹣(﹣3)2].【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=﹣1﹣(―12)×3×(﹣4)=﹣1﹣6=﹣7.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.25.计算:|4﹣412|+(―12+23―16)÷112―22―(+5).【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:原式=|―12|+(―12+23―16)×12﹣4﹣5=12―6+8﹣2﹣4﹣5=﹣812.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.26.(2022秋•汝阳县期末)―14―(1―0.5)×(―113)×[2―(―3)2].【分析】原式先计算乘方运算以及括号中的运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:原式=﹣1―12×(―43)×(2﹣9)=﹣1―143=―173.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.27.(2022秋•滕州市校级期末)计算(1)(―79+56―34)×(﹣36);(2)﹣14﹣(1﹣0.5)×13×|1﹣(﹣5)2|.【分析】(1)根据乘法分配律计算即可;(2)先算乘方和括号内的式子、再算乘法、最后算减法即可.【解答】解:(1)(―79+56―34)×(﹣36)=―79×(﹣36)+56×(﹣36)―34×(﹣36)=28+(﹣30)+27=25;(2)﹣14﹣(1﹣0.5)×13×|1﹣(﹣5)2|=﹣1―12×13×|1﹣25|=﹣1―12×13×24=﹣1﹣4=﹣5.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序.28.(2022秋•禹城市期中)计算(1)36﹣27×(73―119+227)(2)﹣72+2×(﹣3)2﹣(﹣6)÷(―13)2.【分析】(1)利用乘法分配律化简即可;(2)先乘方,再乘除,最后算加减即可;【解答】解:(1)原式=36﹣63+33﹣2=4.(2)原式=﹣49+2×9﹣(﹣6)×9=﹣49+18+54=﹣31+54=23加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则进行计算,有时可以利用运算律来简化运算.29.(2022秋•武昌区期末)计算:(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10);(2)―24―(13―1)×13[6―(―3)].【分析】(1)利用有理数的加减运算的法则进行解答即可;(2)先算乘方,括号里的运算,再算乘法,最后算加减即可.【解答】解:(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10)=﹣7﹣5﹣4+10=﹣6;(2)―24―(13―1)×13[6―(―3)]=﹣16﹣(―23)×13×9=﹣16+2=﹣14.【点评】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.30.(2022秋•洛江区期末)计算:(1)(12―23―34)×(﹣24).(2)﹣14﹣(1﹣0.5)×13×[2﹣(﹣3)2].【分析】(1)利用乘法分配律展开,再进一步计算即可;(2)先计算乘方和括号内运算,再计算乘法,最后计算加法即可.【解答】解:(1)原式=12×(﹣24)―23×(﹣24)―34×(﹣24)=﹣12+16+18=22;(2)原式=﹣1―12×13×(2﹣9)=﹣1―16×(﹣7)=﹣1+76=16.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.31.(2022秋•运城期末)计算:(1)(―1)2023―12×14+|―3|;(2)―32÷(―2)2×|―113|×6+(―2)3.【分析】(1)先进行乘方,乘法,去绝对值运算,再进行加减运算;(2)先进行乘方,去绝对值运算,再进行乘除运算,最后算加减.【解答】解:(1)原式=﹣1﹣3+3=﹣1;(2)原式=―9÷4×43×6―8=―9×14×43×6―8=﹣18﹣8=﹣26.【点评】本题考查了有理数的混合运算,掌握有理数的运算法则是关键.32.(2022秋•通川区校级期末)计算:(1)(﹣72)+37﹣(﹣22)+(﹣17)(2)﹣32×(―13)2+(34―16+38)÷(―124)【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣72+37+22﹣17=﹣89+59=﹣30;(2)原式=﹣9×19+(34―16+38)×(﹣24)=﹣1﹣18+4﹣9=﹣28+4=﹣24.【点评】此题考查了有理数的混合运算,以及乘法分配律,熟练掌握运算法则是解本题的关键.33.(2022秋•庐江县期中)计算:(1)―12÷3×[3﹣(﹣3)2];(2)﹣52×|1―1615|―|―13|+34×[(―1)3―7].【分析】(1)先算乘方和括号内的式子,然后计算括号外的乘除法即可;(2)先算乘方和括号内的式子,然后计算括号外的乘法,最后算加减法即可.【解答】解:(1)―12÷3×[3﹣(﹣3)2]=―12×13×(3﹣9)=―16×(﹣6)=1;(2)﹣52×|1―1615|―|―13|+34×[(―1)3―7]=﹣25×115―13+34×(﹣1﹣7)=―53―13+34×(﹣8)=―53―13+(﹣6)=﹣8.【点评】本题考查有理数的混合运算,熟练掌握运算法则和运算顺序是解答本题的关键.34.(2022秋•鞍山期末)计算:(1)(134―78―712)÷(―78)+(―34);(2)(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2).【分析】(1)先把除法转为乘法,再利用乘法的分配律进行运算,最后算加减即可;(2)先算乘方,再算括号里的运算,接着算乘法与除法,最后算加减即可.【解答】解:(1)(134―78―712)÷(―78)+(―34)=(74―78―712)×(―87)+(―34)=74×(―87)―78×(―87)―712(―87)―34=﹣2+1+23―34=―1312;(2)(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)=﹣8﹣3×(16+2)﹣9÷(﹣2)=﹣8﹣3×18﹣9×(―12)=﹣8﹣54+4.5=﹣57.5.【点评】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.35.(2022秋•花山区校级期中)计算(1)32+5×(﹣6)﹣(﹣4)2÷(﹣8);(2)﹣22×|﹣3|+(﹣6)2×(―512)﹣|+18|÷(―12)3.【分析】(1)先算乘方,再算乘除法,最后算加减;(2)先算乘方化简绝对值,再算乘除法,最后算加减.【解答】解:(1)原式=9+5×(﹣6)﹣16÷(﹣8)=9﹣30+2=﹣19;(2)原式=﹣4×3+36×(―512)―18÷(―18)=﹣12﹣15+1=﹣26.【点评】本题考查了有理数数的混合运算,掌握有理数的运算法则、运算律及运算顺序是解决本题的关键.36.(2022秋•安陆市期中)计算:(1)﹣15+(﹣23)+32;(2)(﹣2)2×3﹣(﹣2)3÷4;(3)(―79+56―34)×(﹣36);(4)75×(13―12)×37÷54.【分析】(1)按照有理数加减法法则进行计算即可;(2)先乘方,再乘除,最后算减法即可;(3)运用乘法分配律进行计算即可;(4)先算括号,再进行乘除计算即可.【解答】解:(1)原式=﹣15﹣23+32=﹣38+32=﹣6;(2)原式=4×3﹣(﹣8)÷4=12﹣(﹣2)=14;(3)原式=―79×(―36)+56×(―36)―34×(―36)=28﹣30+27=25;(4)原式=75×(26―36)×37÷54=75×(―16)×37÷54=―110×45=―2 25.【点评】本题考查了有理数的混合运算,熟练有理数的混合运算法则是解题的关键.37.计算:(1)3+(﹣6)﹣(﹣7);(2)(﹣22)×(﹣114)÷13;(3)(34―13―56)×(﹣12);(4)﹣12021﹣(―13)×(﹣22+3)+12×|3﹣1|.【分析】(1)先把减法转化为加法,然后根据有理数加法法则计算即可;(2)先算乘方、再算乘除法即可;(3)根据乘法分配律可以解答本题;(4)先算乘方和括号内的式子,再算括号外的乘法和加减法即可.【解答】解:(1)3+(﹣6)﹣(﹣7)=3+(﹣6)+7=4;(2)(﹣22)×(﹣114)÷13=(﹣4)×(―54)×3=15;(3)(34―13―56)×(﹣12)=34×(﹣12)―13×(﹣12)―56×(﹣12)=(﹣9)+4+10=5;(4)﹣12021﹣(―13)×(﹣22+3)+12×|3﹣1|=﹣1﹣(―13)×(﹣4+3)+12×2=﹣1+13×(﹣1)+1=﹣1+(―13)+1=―1 3.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序.38.(2022秋•单县期中)计算:(1)24+(﹣14)﹣(﹣16)+8;(2)(﹣81)÷94×49÷(﹣16);(3)﹣42﹣3×22×(13―12)÷(﹣113).【分析】(1)利用有理数的加减运算计算;(2)先把除法变成乘法,再计算;(3)先算乘方和括号,再算乘除,最后算加减.【解答】解:(1)24+(﹣14)﹣(﹣16)+8=24﹣14+16+8=10+16+8=34;(2)(﹣81)÷94×49÷(﹣16)=(﹣81)×49×49×(―116)=1;(3)﹣42﹣3×22×(13―12)÷(﹣113)=﹣16﹣3×4×(―16)×(―34)=﹣16―3 2=﹣171 2.【点评】本题考查了有理数的混合运算,解题的关键是掌握有理数混合运算的法则和运算顺序.39.(2022秋•德州期中)计算:(1)―14―16×[3+(﹣3)2]÷(﹣112);(2)(―12+23―56)÷(―118);(3)(512+34―58+712)÷(―724)―227;(4)﹣12022﹣(1﹣0.5)×12×[2﹣(﹣3)2].【分析】(1)先算乘方,再算乘除,有括号先算括号里面的,最后算加减运算;(2)把除变成乘,去括号,再相乘,再加减运算;(3)把除变成乘,去括号,再相乘,再加减运算;(4)先算乘方和小括号,再算乘除,最后加减运算.【解答】解:(1)―14―16×[3+(﹣3)2]÷(﹣112)=﹣1―16×(3+9)×(―23)=﹣1―16×12×(―23)=﹣1+4 3=1 3;(2)(―12+23―56)÷(―118)=(―12+23―56)×(﹣18)=(―12)×(﹣18)+23×(﹣18)―56×(﹣18)=9﹣12+15=﹣3+15(3)(512+34―58+712)÷(―724)―227=(512+34―58+712)×(―247)―227=(―107)―187+157―2―227=﹣4+157―227―2=﹣4﹣1﹣2=﹣7;(4)﹣12022﹣(1﹣0.5)×12×[2﹣(﹣3)2]=﹣1―12×12×(2﹣9)=﹣1―12×12×(﹣7)=﹣1+7 4=3 4.【点评】本题考查了有理数的混合运算,解题的关键是掌握有理数的运算法则和混合运算的顺序.40.(2022秋•(1)﹣9﹣5﹣(﹣12)+(﹣3);(2)―14―16×[3―(―3)2];(3)(―60)×(34―56+112);(4)16÷(―2)2―(―12)3×(―4).【分析】(1)先化简符号,再算加减法;(2)先算乘方和括号内的,再算乘法,最后计算加减法;(3)利用乘法分配律展开计算;(4)先算乘方,再算乘除,最后计算加减.【解答】解:(1)﹣9﹣5﹣(﹣12)+(﹣3)=﹣9﹣5+12﹣3(2)―14―16×[3―(―3)2]=―1―16×(3―9) =―1―16×(―6) =﹣1+1=0;(3)(―60)×(34―56+112)=(―60)×34―(―60)×56+(―60)×112 =﹣45+50﹣5=0;(4)16÷(―2)2―(―12)3×(―4)=16÷4―(―18)×(―4) =4―12=72.加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时利用运算律来简化运算.41.(2022秋•新野县期中)计算题:(1)(―1)5+5÷(―14)―(1―4);(2)―22+313×(―65)+1÷(―14)2;(3)(75―2110―2815)÷(―710)+(―83);(4)[323÷(―2)―114×(―0.2)2÷110]÷(―13)―23.【分析】(1)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;(3)将除法变为乘法,根据乘法分配律简便计算;(4)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:(1)(―1)5+5÷(―14)―(1―4)=﹣1+5×(﹣4)+3=﹣1﹣20+3=﹣18;(2)―22+313×(―65)+1÷(―14)2=﹣4+103×(―65)+1×16=﹣4﹣4+16=8;(3)(75―2110―2815)÷(―710)+(―83)=(75―2110―2815)×(―107)+(―83) =75×(―107)―2110×(―107)―2815×(―107)+(―83)=―2+3+83+(―83) =1;(4)[323÷(―2)―114×(―0.2)2÷110]÷(―13)―23=[113×(―12)―54×(15)2×10]×(―3)―8 =[―116―120×10]×(―3)―8 =―116×(﹣3)―120×10×(﹣3)﹣8=112+32―8=﹣1.【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.42.计算:(1)﹣10﹣(﹣16)+(﹣24);(2)5÷(―35)×53;(3)﹣22×7﹣(﹣3)×6+5;(4)(113+18―2.75)×(﹣24)+(﹣1)2014+(﹣3)3.【分析】(1)根据有理数的加减混合运算进行计算即可;(2)根据有理数的乘除法进行计算即可;(3)根据有理数的混合运算进行计算即可;(4)根据有理数的混合运算进行计算即可.【解答】解:(1)原式=﹣10+16﹣24=﹣18;(2)原式=﹣5×53×53=―1259;(3)原式=﹣4×7+18+5=﹣28+18+5=﹣5;(4)原式=―43×24―18×24+114×24+1﹣27=﹣32﹣3+66﹣26=5.【点评】本题考查了有理数的混合运算,掌握有理数的运算法则是解题的关键.43.计算:(1)(18―13+16)×(―24);(2)|―2|×(―1)2013―3÷12×2;(3)―12―(1―0.5)×13×[2―(―3)]2;(4)7×(―36)×(―87)×16.【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算绝对值及乘方运算,再计算乘除运算,最后算加减运算,即可得到结果;(3)原式先计算乘方及括号中的运算,再计算乘法运算,最后算加减运算,即可得到结果;(4)原式约分即可得到结果.【解答】解:(1)原式=18×(﹣24)―13×(﹣24)+16×(﹣24)=﹣3+8﹣4=1;(2)原式=2×(﹣1)﹣3×2×2=﹣2﹣12=﹣14;(3)原式=﹣1―12×13×25=﹣1+7 6=―31 6;(4)原式=48.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.44.(2022秋•崇川区月考)计算:(1)(﹣20)+(+3)﹣(﹣5)﹣(+7);(2)314+(﹣235)+534+(﹣825);(3)(23―110+16―25)÷(―130);(4)﹣12020+(﹣2)3×(―12)﹣|﹣1﹣6|.【分析】(1)将有理数的加减混合运算统一成加法后,利用加法的运算律解答即可;(2)利用有理数加法的运算律解答即可;(3)将有理数的除法转换成乘法后,利用乘法的分配律解答即可;(4)先算乘方,再算乘法,最后算加减.【解答】解:(1)原式=﹣20+3+5﹣7=﹣(20+7)+(3+5)=﹣27+8=﹣19;(2)原式=(314+534)+(﹣235―825)=9+(﹣11)=﹣2;(3)原式=(23―110+16―25)×(﹣30)=23×(﹣30)―110×(﹣30)+16×(﹣30)―25×(﹣30)=﹣20﹣(﹣3)+(﹣5)﹣(﹣12)=﹣20+3﹣5+12=(﹣20﹣5)+(3+12)=﹣25+15=﹣10;(4)原式=﹣1+(﹣8)×(―12)―|﹣7|=﹣1+4﹣7=(﹣1﹣7)+4=﹣8+4=﹣4.【点评】本题主要考查了有理数的混合运算,正确利用有理数的混合运算的法则解答是解题的关键.45.(2022秋•邗江区月考)计算:(1)(―12―13+34)×(―60);(2)392324×(―12);(3)(―11)×(―25)+(―11)×235―(―11)×15;(4)―14―(1―0.5)×13×[2―(―2)2].【分析】(1)利用乘法的分配律解答即可;(2)将带分数适当变形后利用乘法的分配律解答即可;(3)利用乘法的分配律解答即可;(4)利用有理数的混合运算的法则:先算乘方,括号内的,再算乘法,最后算减法.【解答】解:(1)原式=―12×(﹣60)―13×(﹣60)+34×(―60)=30+20﹣45=50﹣45=5;(2)原式=(40―124)×(﹣12)=40×(﹣12)―124×(﹣12)=﹣480+1 2=﹣4791 2;(3)原式=(﹣11)×(―25+25―15)=(﹣11)×2=﹣22;(3)原式=﹣1―12×13×(2﹣4)=﹣1―12×13×(﹣2)=﹣1+1 3=―2 3.【点评】本题主要考查了有理数的混合运算,正确利用有理数的混合运算的法则解答是解题的关键.46.(2022秋•衡南县期中)计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13(2)(―45)×13+(―45)×2﹣(―45)×5(3)﹣22+5×(﹣3)﹣(﹣4)÷4(4)﹣14﹣(1﹣0.5)×13×[2﹣(﹣3)2].【分析】(1)从左向右依次计算即可.(2)应用乘法分配律,求出算式的值是多少即可.(3)首先计算乘方和乘除法,然后从左向右依次计算,求出算式的值是多少即可.(4)首先计算乘方和括号里面的运算,然后计算乘法和减法,求出算式的值是多少即可.【解答】解:(1)﹣20+(﹣14)﹣(﹣18)﹣13=﹣34+18﹣13=﹣29(2)(―45)×13+(―45)×2﹣(―45)×5=(―45)×(13+2﹣5)=(―45)×10=﹣8(3)﹣22+5×(﹣3)﹣(﹣4)÷4=﹣4﹣15+1=﹣18(4)﹣14﹣(1﹣0.5)×13×[2﹣(﹣3)2]=﹣1―16×(﹣7)=﹣1+7 6=1 6【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.47.(2022秋•魏都区校级月考)计算:(1)(+32)―512―52+(―712);(2)9+5×(﹣3)﹣(﹣2)2÷4;(3)(56+14―512―38)×(﹣24);(4)﹣14﹣1÷6×[3﹣(﹣3)2].【分析】(1)将有理数的加减混合运算统一成加法后,利用有理数的加法的运算律解答即可;(2)先算乘方,再算乘除,最后算加减;(3)利用乘法的分配律解答即可;(4)先算乘方与括号内的,再算乘除,最后做减法.【解答】解:(1)原式=32―512―52―712=(32―52)﹣(512+712)=﹣1﹣1=﹣2;(2)原式=9+(﹣15)﹣4÷4=9﹣15﹣1=﹣6﹣1=﹣7;(3)原式=56×(﹣24)+14×(﹣24)―512×(﹣24)―38×(﹣24)=﹣20﹣6+10+9=﹣26+19=﹣7;(4)原式=﹣1﹣1×16×(3﹣9)=﹣1﹣1×16×(﹣6)=﹣1﹣(﹣1)=0.【点评】本题主要考查了有理数的混合运算,正确利用有理数的混合运算法则运算是解题的关键.48.(2022秋•兰山区校级月考)计算.(1)3﹣(+63)﹣(﹣259)﹣(﹣41);(2)213―(+1013)+(﹣815)﹣(+325);(3)﹣12+|﹣8|÷(3﹣5)﹣(﹣2)3;(4)(―13+56―38)×(﹣24);(5)(14+16―12)×12+(﹣2)3÷(﹣4).【分析】(1)将有理数的加减混合运算统一成加法后,利用加法的运算律解答即可;(2)将有理数的加减混合运算统一成加法后,利用加法的运算律解答即可;(3)先算乘方与括号内的,再算加减即可;(4)利用乘方的分配律解答即可;(5)利用乘方的分配律解答,先算乘方,再算乘除,最后算加减.【解答】解:(1)原式=3﹣63+259+41=(3+259+41)﹣63=303﹣63=240;(2)原式=213―1013―815―325=(213―1013)+(﹣815―325)=﹣8﹣113 5=﹣193 5;(3)原式=﹣1+8÷(﹣2)﹣(﹣8)=﹣1+(﹣4)+8=﹣5+8=3;(4)原式=―13×(﹣24)+56×(﹣24)―38×(﹣24)=8+(﹣20)+9=17﹣20=﹣3;(5)原式=14×12+16×12―12×12+(﹣8)÷(﹣4)=(3+2+2)﹣6=7﹣6=1.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.49.(2022秋•宜兴市月考)计算:(1)(﹣2)×(﹣4)﹣(﹣5)×10;(2)7÷(―712)×(12―13);(3)﹣14+3×(﹣2)2﹣(﹣2)3.(4)112×57―(―57)×212+(―12)÷125;(5)(15―14―512)×60;(6)(―1.25)×25―23÷(―113)2.【分析】(1)先算乘法,再算减法即可;(2)先计算括号内的式子,然后计算乘除法即可;(3(4)先变形,然后根据乘法分配律计算即可;(5)根据乘法分配律计算即可;(6)先算乘方,再算乘除法,最后算减法即可.【解答】解:(1)(﹣2)×(﹣4)﹣(﹣5)×10=8+50=58;(2)7÷(―712)×(12―13)=7×(―127)×16=﹣2;(3)﹣14+3×(﹣2)2﹣(﹣2)3=﹣1+3×4﹣(﹣8)=19;(4)112×57―(―57)×212+(―12)÷125=32×57+57×52―12×57=(32+52―12)×57=72×57=52;(5)(15―14―512)×60=15×60―14×60―512×60=12﹣15﹣25=﹣28;(6)(―1.25)×25―23÷(―113)2=(―54)×25―8÷169=―12―8×916 =―12―92=﹣5.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键,注意乘法分配律的应用.50.(2022秋•渝中区校级月考)有理数的计算:(1)﹣42×|12―1|﹣(﹣5)+2;(2)(﹣56)×(﹣1516)÷(﹣134)×47;(3)﹣12020﹣[(﹣3)2×(―23)﹣(﹣7)×17];(4)(―34―59+712)÷136;(5)314×5+6×(﹣314)﹣(﹣3)×(﹣314);(6)(13―15)+(―15)2+|―13|+(﹣1)4+(0.25)2013×42014.【分析】(1)先算乘方和去绝对值,然后算乘法,最后算加减即可;(2)先把除法转化为乘法,然后根据乘法法则计算即可;(3)先算乘方和中括号内的式子,然后计算括号外的减法即可;(4)先把除法转化为乘法,然后根据乘法分配律计算即可;(5)先变形,然后根据乘法分配律计算即可;(6)先算乘方和括号内的式子,然后计算括号外的乘法,最后算加法即可.【解答】解:(1)﹣42×|12―1|﹣(﹣5)+2=﹣16×12+5+2=﹣8+5+2=﹣1;(2)(﹣56)×(﹣1516)÷(﹣134)×47=﹣56×2116×47×47=﹣24;(3)﹣12020﹣[(﹣3)2×(―23)﹣(﹣7)×17]=﹣1﹣[9×(―23)+1]=﹣1﹣(﹣6+1)=﹣1﹣(﹣5)=﹣1+5=4;(4)(―34―59+712)÷136=(―34―59+712)×36=―34×36―59×36+712×36=﹣27﹣20+21=﹣26;(5)314×5+6×(﹣314)﹣(﹣3)×(﹣314)=314×5﹣6×314―3×314=314×(5﹣6﹣3)=134×(﹣4)=﹣13;(6)(13―15)+(―15)2+|―13|+(﹣1)4+(0.25)2013×42014=215+125+13+1+(0.25×4)2013×4=215+125+13+1+12013×4=215+125+13+1+1×4=215+125+13+1+4=1075+375+2575+1+4=538 75.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键,注意乘法分配律的应用.。
有理数加减乘除混合运算200题[5篇材料]
有理数加减乘除混合运算200题[5篇材料]第一篇:有理数加减乘除混合运算200题计算题:1、(-9)+(-13)2、(-12)+273、(-28)+(-34)4、67+(-92)25、(-27.8)+43.96、(-23)+7+(-152)+657、|5+(-13)|28、(-5)+|―13| 9、38+(-22)+(+62)+(-78)10、(-8)+(-10)+2+(-1)11111、(-23)+0+(+4)+(-6)+(-2)12、(-8)+47+18+(-27)13、(-5)+21+(-95)+2914、(-8.25)+8.25+(-0.25)+(-5.75)+(-7.5)15、6+(-7)+(-9)+2 16、72+65+(-105)+(-28)17、(-23)+|-63|+|-37|+(-77)18、19+(-195)+4719、(+18)+(-32)+(-16)+(+26)20、(-0.8)+(-1.2)+(-0.6)+(-2.4)3122121、(-8)+(-312)+2+(-2)+1222、55+(-53)+45+(-3)23、(-6.37)+(-334)+6.37+2.7524、7-925、―7―9 26、0-(-9)127、(-25)-(-13)28、8.2―(―6.3)29、(-312)-30、(-12.5)-(-7.5)331、(-26)―(-12)―12―1832、―1―(-12)―(+2)5133、(-14)―(-8)―834、(-20)-(+5)-(-5)-(-12)35、(-23)―(-59)―(-3.5)36、|-32|―(-12)―72―(-5)34237、(+10)―(-7)―(-5)―10(-16738、5)―3―(-3.2)―732139、(+1(-0.5)-(-317)―(-7)―740、4)+6.75-523241、(+6.1)―(-4.3)―(-2.1)―5.142、(-23)―(-14)―(-13)―(+1.75)33721243、(-323)―(-24)―(-13)―(-1.75)44、-84-59+46-395121145、-434+6+(-3)―46、0.5+(-4)-(-2.75)+247、(+4.3)-(-4)+(-2.3)-(+4)48、-8-(-15)+(-9)-(-12);6211149、(-)-7-(-3.2)+(-1);50、---(-)-;51、(-9)×2536422152、(-13)×(-0.26)53、(-2)×31×(-0.5)54、13×(-5)+3×(-13)355、(-4)×(-10)×0.5×(-3)56、(-8)×43×(-1.8)374457、(-0.25)×(-7)×4×(-7)58、(-7)×(-5)×(-12)159、(-8)×4×(-12)×(-0.75)60、4×(-96)×(-0.25)×48361、(7-18+14)×5662、(6―41534―794)×3663、(-34)×(8-3-0.4)1164、(-66)×〔122-(-3)+(-11)〕65、25×34-(-25)×2+25×457757466、(-36)×(9+6-12)67、(18+3×72 68、3×(214-4-6+9)21151327)×(-5)×(-16)853269、18÷(-3)70、(-24)÷671、(-57)÷(-3)72、(-5)÷553973、(-42)÷(-6)74、(+21)÷(-7)75、(-13)÷976、0.25÷(-18)62477、-36÷(-11(-1)÷(-4)÷779、3÷(-7)×(-73)÷(-3)78、9)61180、0÷[(-31(-247)÷(-6)4)×(-7)]81、-3÷(3-4)82、7331183、2÷(5-18)×1884、113÷(-3)×(-3)85、-8×(-14)÷(-8)7533331186、(3(92-8+4)÷(-4)88、-3.5 ×(6-0.5)×7÷4-8)÷(-6)87、53521189、-17÷(-16)×18×(-7)90、65×(-3-2)÷4 5553922291、7÷(-25)-7×12-53÷4 92、0.8×11+4.8×(-7)-2.2÷7+0.8×11153⎛1⎫93、(-5)×(-7)-5÷ -⎪;94、(-+)⨯(-24)364⎝6⎭95、-3422⎡1⎛1⎫21⎤÷(-1)×(-4)96、⎢2⨯-⎪-⨯(-2)÷⎥⨯(-6)7335⎦⎣3⎝2⎭3⎛2⎫⎛3⎫⎛2⎫⎛1⎫⎛1⎫⎛1⎫97、 -3⎪--2⎪--1⎪-(+1.75)98、 -1⎪+-4⎪--2⎪⎝3⎭⎝4⎭⎝3⎭⎝2⎭⎝4⎭⎝3⎭化简:⎡⎛3⎫⎛5⎫⎛1⎫2⎤⎛7⎫⎛1⎫⎛1⎫⎛1⎫99、 -4⎪--5⎪+-4⎪-+3⎪100、3.75-⎢-⎪--⎪+-⎪+4⎥-0.1253⎦⎝8⎭⎝2⎭⎝4⎭⎝8⎭⎣⎝8⎭⎝6⎭⎝2⎭有理数混合运算37734101、(-16-20+5-12)×(-15×4)102、(-18)⨯7⨯(-2.4)34121103、2÷(-7)×7÷(-51[151]÷(-117)104、2-(14÷15+32)8)311121105、15×(-5)÷(-5)×5106、-(3-21+14-7)÷(-42)521107、-13×23-0.34×7+3×(-13)-7×0.34108、8-(-25)÷(-5)11111109、(-13)×(-134)×13×(-67)110、(-478)-(-52)+(-44)-3821111、(-16-50+35)÷(-2)112、(-0.5)-(-314)+6.75-52 2113、178-87.21+4321+5319(-6)×(-4)+(-32)÷(-8)-3 21-12.79 114、21115、-7-(-1(-9)×(-4)+(-60)÷122)+|-12| 116、9581117、[(-14)-17+21]÷(-42)118、-|-3|÷10-(-15)×133751119、-34×(8-23-0.04)120、-15×(32-16)÷2212211711(-11)-(-7)-12-(-4.2).121、(21-3+1)÷(-1)×(-7)122、2***1123、(-3)÷[(-)÷(-)];124、(-)⨯(-3)÷(-1)÷3;***、(-2)⨯(-)÷(-)÷(-5);126、(-56)⨯(-1)÷(-1)⨯***7、-1+5÷(-)⨯(-6);128、(-)÷1÷.***225129、(-+)÷;130、÷(-+).131、(-+)÷(-);***11111313÷[-(-)-].133、[1-(+-)⨯24]÷(-5);132、***1374134、-5⨯(-)⨯÷(1-).135、(-16-20+5-12)×(-15×4)2321147334)⨯7⨯(-2.4)137、2÷(-7136、(-18)×7÷(-517)121138、[151]÷(-112-(14÷15+32)8)311121139、15×(-5)÷(-5)×5140、-(3-21+14-7)÷(-42)521141、-13×23-0.34×7+3×(-13)-7×0.34 142、8-(-25)÷(-5)11111143、(-13)×(-134)×13×(-67)144、(-478)-(-52)+(-44)-3821145、(-16-50+35)÷(-2)146、(-0.5)-(-314)+6.75-52 2147、178-87.21+4321+5319(-6)×(-4)+(-32)÷(-8)-3 21-12.79 148、21149、-7-(-1(-9)×(-4)+(-60)÷122)+|-12|150、9581151、[(-14)-17+21]÷(-42)152、-|-3|÷10-(-15)×131153、-34×(8-23-0.04)37154、-15×(32-16)÷2211711155、(213-32+118)÷(-16)×(-7)有乘方的运算:33157、-2×32158、-22-(-1)159、34-43160、-13-2×(-1)161、(-3)÷(-4)162、-2×(-2)163、-32 +(-4)164、(-2)×(-2)×(-2)***5、-2×32-(-2⨯3)167、(-2)-2+(-2)+2168、-22-(-3)3×(-1)-(-1)22169、-[-(-1170、0-(-3)÷3×(-2)171、-2×(-1÷(-0.8))]+(-12)2)22232322321222×(-1172、-32×(-1-÷173、×(-+1)×0174、6+()-2)()()--35)32312525175、-10+8÷(-2)-4×3175、-15-[(-0.4)⨯(-2.5)]176、(-1)-(1-0.5)×332137177、(-2)×(-2×(-3178、4×(-3)+6179、(-1×38×(-2)×(-13)2)3)2)3212213×(-22)180、-72+2×(-3)+(-6)÷(-1181、÷(-8)-()-2)(-32)2475132242182、(-5)-42-(-3)×(÷)×(-7)183、(-2)-2[-3×]÷81145[]⎡⎤⎛1⎫32212184、(-6)÷9÷(-6÷9)185、36×(1186、-{}()-3-3+0.4⨯-1÷(-2))-⎪2⎢⎥⎝2⎭⎣⎦12333187、-14+(1-0.5)××[2×(-3)]188、-4×[(1-7)÷6]+(-5)-3÷(-2)3[]189、-33-8÷(-2)-1+(-3)×(-2)÷323[]1 0.25过关测试:一1241111190、-(-3)2⨯191、+(-)++(-)+(-)192、(-1.5)+4+2.75+(-5)235242125193、-8⨯(-5)-63194、4-5⨯(-)3195、(-)+(-)-(-4.9)-0.625623196、(-10)2÷5⨯(-)197、(-5)3⨯(-)2198、5⨯(-6)-(-4)2÷(-8)551612199、2⨯(-)÷(-2)200、(-16-50+3)÷(-2)47251122201、(-6)⨯8-(-2)3-(-4)2⨯5202、(-)2+⨯(--2)2233第二篇:1.5有理数加减乘除混合运算教案教师专用教案(复备稿)课题:1.5.3乘除混合运算主备人:张亮授课人:一、教学目标:1.能按照有理数的运算顺序,正确熟练地进行有理数的加、减、乘、除的混合运算。
有理数加减乘除混合运算计算题(有答案)整理版及答案
有理数加减乘除混合运算计算题(有答案)整理版及答案题目一:整数的加减运算将下面的整数进行相应的加减运算,并写出计算过程和结果。
1.12 + 5 =2.-8 + (-3) =3.50 - 25 =4.-12 - (-5) =5.36 + (-14) =6.-20 - (-10) =7.-15 + 9 =8.25 - (-10) =答案:1.12 + 5 = 172.-8 + (-3) = -113.50 - 25 = 254.-12 - (-5) = -75.36 + (-14) = 226.-20 - (-10) = -107.-15 + 9 = -68.25 - (-10) = 35题目二:分数的加减运算将下面的分数进行相应的加减运算,并写出计算过程和结果。
1.$\frac{2}{3} + \frac{1}{4} = $2.$\frac{5}{6} - \frac{2}{3} = $3.$\frac{7}{8} + \frac{3}{4} = $4.$\frac{5}{12} - \frac{1}{6} = $5.$\frac{3}{5} + \frac{1}{2} = $6.$\frac{4}{7} - \frac{2}{5} = $答案:1.$\\frac{2}{3} + \\frac{1}{4} = \\frac{8}{12} +\\frac{3}{12} = \\frac{11}{12}$2.$\\frac{5}{6} - \\frac{2}{3} = \\frac{10}{18} -\\frac{12}{18} = -\\frac{2}{18} = -\\frac{1}{9}$3.$\\frac{7}{8} + \\frac{3}{4} = \\frac{14}{16} +\\frac{12}{16} = \\frac{26}{16} = \\frac{13}{8}$4.$\\frac{5}{12} - \\frac{1}{6} = \\frac{5}{12} -\\frac{2}{12} = \\frac{3}{12} = \\frac{1}{4}$5.$\\frac{3}{5} + \\frac{1}{2} = \\frac{6}{10} +\\frac{5}{10} = \\frac{11}{10}$6.$\\frac{4}{7} - \\frac{2}{5} = \\frac{20}{35} -\\frac{14}{35} = \\frac{6}{35}$题目三:有理数的混合运算将下面的有理数进行相应的混合运算,并写出计算过程和结果。
有理数的四则运算练习
有理数的四则运算练习有理数是指可以表示为两个整数的比值的数。
四则运算是指加法、减法、乘法和除法这四种基本运算。
本文将提供一系列有理数四则运算的练,帮助学生加深对有理数运算的理解和熟练运用。
加法练1. 计算: $3+\frac{4}{5}$2. 计算: $-\frac{2}{3} + \frac{5}{6}$3. 计算: $-2 + \left(-\frac{1}{4}\right)$减法练1. 计算: $\frac{3}{4} - \left(-\frac{2}{3}\right)$2. 计算: $-\frac{5}{6} - \frac{1}{2}$3. 计算: $-\frac{7}{8} - \left(-\frac{2}{5}\right)$乘法练1. 计算: $3 \times \left(\frac{2}{5}\right)$2. 计算: $\left(-\frac{3}{4}\right) \times \left(-\frac{1}{2}\right)$3. 计算: $\left(-\frac{2}{3}\right) \times \left(-\frac{5}{8}\right)$除法练1. 计算: $\frac{2}{5} \div 3$2. 计算: $\left(-\frac{3}{4}\right) \div \left(-\frac{1}{2}\right)$3. 计算: $\left(-\frac{2}{3}\right) \div \left(-\frac{5}{8}\right)$以上是一些有理数四则运算的练题目,学生可以根据题目要求进行计算并填写答案。
通过大量练,学生可以对有理数的运算规则和方法有更深入的理解,提高计算的准确性和速度。
注意: 在进行计算时,需注意分子与分母的运算规则,对于负数的处理,以及分数的化简等。
: 在进行计算时,需注意分子与分母的运算规则,对于负数的处理,以及分数的化简等。
有理数的加减乘除混合运算100道
有理数的加减乘除混合运算100道以下是一篇关于有理数加减乘除混合运算的文章。
有理数的加减乘除混合运算100道在数学中,有理数是指可以表示为两个整数的比值的数字,包括整数、分数和小数。
有理数的运算是数学中的基础内容,掌握有理数的加减乘除混合运算是进行更高级别数学运算的前提。
本文将提供100道有理数的加减乘除混合运算题目,以帮助读者巩固相关知识。
1. 1/2 + 3/4 - 5/8答案:3/82. 12/5 - 3/4 × 2/3答案:33/103. -1.5 × 2/3 ÷ 0.5答案:-94. 5/6 + (-2/3) - (-2/3)答案:5/65. -4 + (-3) × 2/5答案:-22/56. 1/4 ÷ 2/3 × 1.5答案:3/8答案:8/38. -7/8 + (-1/4) + 1/2答案:-1/89. 3.5 × (-2) - 1/3 × (-4/5)答案:7/610. -2/5 ÷ (3/4 - 5/6)答案:10/911. 1/3 + (-0.25) + 0.4 - (-1/5)答案:1.8512. 3/4 - (1/2 + 1/8)答案:13/3213. -6 × (-0.25) ÷ (-1/3)答案:414. 2.5 - (-1/4) + (-3/8)答案:2.7515. (-4) ÷ (-0.25) × (1/2)答案:32答案:3/217. 5/6 × (-1/4 - 3/5)答案:-17/6018. 0.4 ÷ 0.2 + 1/5答案:7/519. (-3/4) + (-1/2) - 0.25答案:-7/420. -0.6 × 0.3 ÷ (-0.5)答案:0.3621. (-2/3) - 1/4 + 0.2 - (-1/5)答案:-13/6022. -1.25 - (1.5 - 1/3)答案:-0.416723. 1/2 + 3/4 + (-5/8)答案:7/824. 12/5 - (3/4 × 2/3)答案:3/10答案:-326. 5/6 + (-2/3) - (-2/3)答案:5/627. -4 + ((-3) × 2/5)答案:-22/528. (1/4 ÷ 2/3) × 1.5答案:3/829. 2/3 - 1.5 ÷ (-2/5)答案:8/330. -7/8 + (-1/4) + 1/2答案:-1/8⋮经过以上30道题目的训练,相信读者对有理数的加减乘除混合运算已经有了更深入的理解。
有理数加减法乘除法混合运算题
有理数加减法乘除法混合运算题一、基础运算1. 计算:(-5) + 3 - (-2) × 4解析:先计算乘法:(-2)×4 = -8;再计算加减法:-5 + 3 + 8 = -2 + 8 = 62. 计算:4 - 5×(-(1)/(2))解析:先计算乘法:5×(-(1)/(2)) = -(5)/(2);再计算减法:4 - (-(5)/(2)) = 4 + (5)/(2) = (8)/(2) + (5)/(2) = (13)/(2) 3. 计算:(-3)×(-4) - 6÷(-2)解析:先计算乘法和除法:(-3)×(-4) = 12,6÷(-2) = -3;再计算减法:12 - (-3) = 12 + 3 = 154. 计算:2×(-3) + 4×(-2)解析:先计算乘法:2×(-3) = -6,4×(-2) = -8;再计算加法:-6 + (-8) = -145. 计算:(-10)÷(-5) + (-2)解析:先计算除法:(-10)÷(-5) = 2;再计算加法:2 + (-2) = 06. 计算:5 - 8×(-(1)/(4))解析:先计算乘法:8×(-(1)/(4)) = -2;7. 计算:(-4)×3 - (-6)÷(-3)解析:先计算乘法和除法:(-4)×3 = -12,(-6)÷(-3) = 2;再计算减法:-12 - 2 = -148. 计算:3×(-2) + 5×(-1)解析:先计算乘法:3×(-2) = -6,5×(-1) = -5;再计算加法:-6 + (-5) = -119. 计算:(-6)÷2 + (-3)×(-4)解析:先计算除法和乘法:(-6)÷2 = -3,(-3)×(-4) = 12;再计算加法:-3 + 12 = 910. 计算:4 - 7×(-1) + 3×(-2)解析:先计算乘法:7×(-1) = -7,3×(-2) = -6;再计算加减法:4 - (-7) + (-6) = 4 + 7 - 6 = 11 - 6 = 5二、综合运算1. 计算:(-2)^2 - 3×(-4)÷(1)/(2)解析:先计算乘方:(-2)^2 = 4;再计算乘法和除法:3×(-4) = -12,-12÷(1)/(2) = -12×2 = -24;最后计算减法:4 - (-24) = 4 + 24 = 282. 计算:(1)/(2)×(-2)^3 + 3 - 5解析:先计算乘方:(-2)^3 = -8;最后计算加减法:-4 + 3 - 5 = -1 - 5 = -63. 计算:(-3)^2×(-(1)/(3)) - 8÷(-2)^2解析:先计算乘方:(-3)^2 = 9,(-2)^2 = 4;再计算乘法和除法:9×(-(1)/(3)) = -3,8÷4 = 2;最后计算减法:-3 - 2 = -54. 计算:2×(-3)^2 - 4×(-3) + 15解析:先计算乘方:(-3)^2 = 9;再计算乘法:2×9 = 18,4×(-3) = -12;最后计算加减法:18 + 12 + 15 = 30 + 15 = 455. 计算:(-(1)/(2))^3×(-8) + (-6)÷(-(1)/(3))^2解析:先计算乘方:(-(1)/(2))^3 = -(1)/(8),(-(1)/(3))^2 = (1)/(9);再计算乘法和除法:-(1)/(8)×(-8) = 1,(-6)÷(1)/(9) = -6×9 = -54;最后计算加法:1 + (-54) = -536. 计算:5 - 3×(-2)^2 + 4×(-3)^3÷(-1)解析:先计算乘方:(-2)^2 = 4,(-3)^3 = -27;再计算乘法和除法:3×4 = 12,4×(-27)÷(-1) = -108÷(-1) = 108;最后计算加减法:5 - 12 + 108 = -7 + 108 = 1017. 计算:(-1)^4 - (1 - 0.5)×(1)/(3)×[2 - (-2)^2]解析:先计算乘方:(-1)^4 = 1,(-2)^2 = 4;再计算括号内的式子:2 - 4 = -2;然后计算乘法:(1 - 0.5)×(1)/(3)×(-2) = 0.5×(1)/(3)×(-2) = -(1)/(3);最后计算减法:1 - (-(1)/(3)) = 1 + (1)/(3) = (4)/(3)8. 计算:(11)/(5)×((1)/(3) - (1)/(2))×(3)/(11)÷(5)/(4)解析:先计算括号内的式子:(1)/(3) - (1)/(2) = (2)/(6) - (3)/(6) = -(1)/(6);然后依次计算乘法和除法:(11)/(5)×(-(1)/(6))×(3)/(11)÷(5)/(4) = -(11)/(30)×(3)/(11)×(4)/(5) = -(1)/(10)×(4)/(5) = -(2)/(25)。
有理数加减乘除混合运算50题
有理数加减乘除混合运算题50题一、加法与乘法混合运算1. 2 + 3×4-解析:先算乘法3×4 = 12,再算加法2 + 12 = 14。
2. 5 + (-2)×3-解析:先算乘法(-2)×3 = -6,再算加法5 + (-6)= -1。
3.(-3)+4×2-解析:先算乘法4×2 = 8,再算加法(-3)+8 = 5。
4. 6 + (-1)×(-2)-解析:先算乘法(-1)×(-2)=2,再算加法6 + 2 = 8。
4.(-4)+3×(-2)-解析:先算乘法3×(-2)= -6,再算加法(-4)+(-6)= -10。
二、减法与乘法混合运算1. 8 - 2×3-解析:先算乘法2×3 = 6,再算减法8 - 6 = 2。
2. 7 - (-3)×2-解析:先算乘法(-3)×2 = -6,再算减法7 - (-6)= 13。
-解析:先算乘法4×2 = 8,再算减法(-5)-8 = -13。
4. 9 - (-1)×3-解析:先算乘法(-1)×3 = -3,再算减法9 - (-3)= 12。
4.(-6)-3×(-2)-解析:先算乘法3×(-2)= -6,再算减法(-6)-(-6)= 0。
三、加法与除法混合运算1. 4 + 8÷2-解析:先算除法8÷2 = 4,再算加法4 + 4 = 8。
2. 5 + (-6)÷3-解析:先算除法(-6)÷3 = -2,再算加法5 + (-2)= 3。
3.(-3)+12÷4-解析:先算除法12÷4 = 3,再算加法(-3)+3 = 0。
4. 6 + (-8)÷4-解析:先算除法(-8)÷4 = -2,再算加法6 + (-2)= 4。
有理数-有理数加减乘除四则混合运算习题大全
【有理数】➢ 四则混合运算综合练习 【基础练习】 1. 计算:(1)(-1155)÷[(-11)×(+3)×(-5)]; (2)375÷2332⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭;(3)61)3161(1⨯-÷ (4) 38(4)24⎛⎫⨯-⨯-- ⎪⎝⎭;2. 计算: (1) 38(4)(2)4-⨯-⨯-; (2) 38(4)(2)4⎛⎫⨯-⨯-⨯- ⎪⎝⎭.(3) 111382⎛⎫⎛⎫-÷--÷- ⎪ ⎪⎝⎭⎝⎭; (4) 11181339⎛⎫-÷-÷- ⎪⎝⎭.3. 计算1-3+5-7+9-11+…+97-99;4. 计算:(1)―82+72÷36 (2)721×143÷(-9+19)(3)25×43+(―25)×21+25×(-41) (4)(-79)÷241+94×(-29)5. 计算: (1)(6712743-+)×(-60) (2)3551()491236+÷--6. 计算:(1)1÷(-1)+0÷4-(-4)×(-1)(2)-3-[-5+(1-0.2×35)÷(-2)]7. 初一年级共100名学生,在一次数学测试中以90分为标准,超过的记为正,不足的记为负,成绩如下:请你算出这次考试的平均成绩。
8. 上午6点水箱里的温度是78℃,此后每小时下降4.5℃,求下午2点水箱内的温度.9. 在某地区,夏季高山上的温度从山脚起每升高100米平均降低0.8 ℃,已知山脚的温度是24 ℃,山顶的温度是4 ℃,试求这座山的高度.10.已知A.b 互为相反数,m 、n 互为倒数,x 绝对值为2,求x nm cb mn --++-2的值11.数a,b,c 在数轴上的位置如图所示,化简cc b b a a ++。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【有理数】
➢ 四则混合运算综合练习 【基础练习】 1. 计算:
(1)(-1155)÷[(-11)×(+3)×(-5)]; (2)375÷2332⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭
;
(3)61)3
161(1⨯-÷ (4) 38(4)24⎛⎫
⨯-⨯-- ⎪⎝⎭
;
2. 计算: (1) 38(4)(2)4-⨯-⨯-; (2) 38(4)(2)4⎛⎫
⨯-⨯-⨯- ⎪⎝⎭
.
(3) 111382⎛⎫⎛⎫-÷--÷- ⎪ ⎪⎝⎭⎝⎭; (4) 11181339⎛⎫-÷-÷- ⎪⎝⎭
.
3. 计算1-3+5-7+9-11+…+97-99;
4. 计算:
(1)―82+72÷36 (2)72
1×14
3÷(-9+19)
(3)25×4
3+(―25)×2
1+25×(-4
1) (4)(-79)÷24
1+9
4×(-29)
5. 计算: (1)(6712743-+)×(-60) (2)3551()491236
+÷--
6. 计算:
(1)1÷(-1)+0÷4-(-4)×(-1)
(2)-3-[-5+(1-0.2×3
5)÷(-2)]
7. 初一年级共100名学生,在一次数学测试中以90分为标准,超过的记为正,不足的记
为负,成绩如下:
请你算出这次考试的平均成绩。
8. 上午6点水箱里的温度是78℃,此后每小时下降4.5℃,求下午2点水箱内的温度.
9. 在某地区,夏季高山上的温度从山脚起每升高100米平均降低0.8 ℃,已知山脚的温度
是24 ℃,山顶的温度是4 ℃,试求这座山的高度.
10.已知A.b 互为相反数,m 、n 互为倒数,x 绝对值为2,求x n
m c
b mn --++-2的值
11.数a,b,c 在数轴上的位置如图所示,化简
c
c b b a a ++。
【培优练习】
12.设c b a ,,是非零有理数,求
c
c
b b a a ++的值;
13.已知A.B.c 是非零有理数,且a +b +c=0,求
abc
abc
c c b b a a +
++的值。
14.已知a 、b 、c 都不等于零,且abc
abc
c c b b a a x +
++=
,根据a 、b 、c 的不同取值,x 有______种不同的值。
15.计算 111111111111223344⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯+⨯-⨯+⨯-⨯+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭
16.计算111111111111234567⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯---⨯- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭
【课后作业】 1. 计算;
2. 计算
3. 计算
4. 计算
5. 计算)3
2
()109(45)2(-÷-⨯⨯-4
1)23(158)245(⨯-⨯÷-1213(5)6(5)33⎛⎫⎛⎫
-÷-+-÷- ⎪ ⎪⎝⎭⎝⎭
3
135443512+÷⎪⎭
⎫ ⎝⎛-+÷⎪⎭⎫ ⎝⎛-4
524414526÷⎪⎭⎫ ⎝⎛--+÷⎪⎭⎫ ⎝
⎛
-。