最新大学生高等数学竞赛试题汇总及答案

合集下载

数学竞赛高数试题及答案

数学竞赛高数试题及答案

数学竞赛高数试题及答案试题一:极限的计算问题:计算极限 \(\lim_{x \to 0} \frac{\sin x}{x}\)。

解答:根据洛必达法则,我们可以将原式转换为 \(\lim_{x \to 0} \frac{\cos x}{1}\),由于 \(\cos 0 = 1\),所以极限的值为 1。

试题二:导数的应用问题:若函数 \( f(x) = 3x^2 - 2x + 1 \),求其在 \( x = 1 \) 处的导数值。

解答:首先求导数 \( f'(x) = 6x - 2 \),然后将 \( x = 1 \) 代入得到 \( f'(1) = 6 \times 1 - 2 = 4 \)。

试题三:不定积分的求解问题:求不定积分 \(\int \frac{1}{x^2 + 1} dx\)。

解答:这是一个基本的积分形式,可以直接应用反正切函数的积分公式,得到 \(\int \frac{1}{x^2 + 1} dx = \arctan(x) + C\),其中\( C \) 是积分常数。

试题四:级数的收敛性判断问题:判断级数 \(\sum_{n=1}^{\infty} \frac{1}{n^2} \) 是否收敛。

解答:根据比值测试,我们有 \(\lim_{n \to \infty}\frac{1}{(n+1)^2} / \frac{1}{n^2} = \lim_{n \to \infty}\frac{n^2}{(n+1)^2} = 1\),由于极限值为 1,小于 1,所以级数收敛。

试题五:多元函数的偏导数问题:设函数 \( z = f(x, y) = x^2y + y^3 \),求 \( f \) 关于\( x \) 和 \( y \) 的偏导数。

解答:对 \( x \) 求偏导,保持 \( y \) 为常数,得到 \( f_x =2xy \)。

对 \( y \) 求偏导,保持 \( x \) 为常数,得到 \( f_y = x^2 + 3y^2 \)。

大学生高等数学竞赛试题汇总及答案

大学生高等数学竞赛试题汇总及答案

前三届高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

)2009-2010年 第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(16/15,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=,⎰-=12d 1u uu (*) 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,2.设)(x f 是连续函数,且满足⎰--=222d )(3)(x x f x x f , 则=)(x f ____________.解: 令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A 。

因此3103)(2-=x x f 。

3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 解: 因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====, 即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。

全国大学生数学竞赛试题及答案

全国大学生数学竞赛试题及答案

河北省大学生数学竞赛试题及答案一、(本题满分10 分) 求极限))1(21(1lim222222--++-+-∞→n n n n nn 。

【解】 ))1(21(1222222--++-+-=n n n n nS n因21x -在]1,0[上连续,故dx x ⎰102-1存在,且dx x ⎰12-1=∑-=∞→-121.)(1lim n i n n n i ,所以,=∞→n n S limn dx x n 1lim-112∞→-⎰4-1102π==⎰dx x 。

二、(本题满分10 分) 请问c b a ,,为何值时下式成立.1sin 1lim 220c tdt t ax x x b x =+-⎰→【解】注意到左边得极限中,无论a 为何值总有分母趋于零,因此要想极限存在,分子必 须为无穷小量,于是可知必有0=b,当0=b 时使用洛必达法则得到2202201)(cos lim1sin 1lim xa x x t dt t ax x x x x +-=+-→→⎰, 由上式可知:当0→x 时,若1≠a ,则此极限存在,且其值为0;若1=a ,则21)1(cos lim 1sin 1lim 22220-=+-=+-→→⎰xx x t dt t ax x x x b x ,综上所述,得到如下结论:;0,0,1==≠c b a 或2,0,1-===c b a 。

三、(本题满分10 分) 计算定积分⎰+=22010tan 1πxdxI 。

【解】 作变换t x -=2π,则=I2220ππ=⎰dt ,所以,4π=I 。

四、(本题满分10 分) 求数列}{1nn-中的最小项。

【解】 因为所给数列是函数xxy 1-=当x 分别取 ,,,3,2,1n 时的数列。

又)1(ln 21-=--x xy x且令e x y =⇒='0,容易看出:当e x <<0时,0<'y ;当e x >时,0>'y 。

大学生高等数学竞赛试题汇总与答案

大学生高等数学竞赛试题汇总与答案
令x=1/t,则
原式=
(ln(1t)t)1/(1t)111
2
2(1t)
t2t2
limelimelimee
t0t0t0
(3)
11
sxnnsxnsxsxn
Iexdx()xde()[xe|edx]
n0
000
ss
nnn(n1)n!n!
sxn1
exdxIII
n12n2n0n1
sssss
0
二、(15分)设函数f(x)在(,)上具有二阶导数,并且
''()(2'
t2t)2(t)''()(2'
3
dxdx/dt(22t)
=。。。
上式可以得到一个微分方程,求解即可。
四、(15分)设
n
a0,Sa,证明:
nnk
k1
(1)当1时,级数
a
n
S
nn
1
收敛;
(2)当1且()
sn时,级数
n
a
n
S
nn
1
发散。
解:
(1)
a>0,
n
s单调递增
n

n1
a收敛时,
n
aa
nn
一、(25分,每小题5分)
(1)设
n
22
x(1a)(1a)(1a),其中|a|1,求limxn.
n
n
(2)求
x
lim e1
x
1
x
2
x

(3)设s0,求
sxn
Iexdxn。
(1,2,)
0
(4)设函数f(t)有二阶连续导数,

大学生数学竞赛经典题库

大学生数学竞赛经典题库

10月16日1:求极限30sin arctan lim x xx x -→.2:已知,0)0(,1)0(=='f f 求)2(lim nnf n ∞→. 3:设数列}{n x 满足: ),,2,1(sin ,011 ==<<+n x x x n n π求:(1)证明n n x ∞→lim 存在, (2)计算11)(lim n x n n n x x +∞→ 4:已知)(x f 在0=x 的某个邻域内连续,且,2cos 1)(lim ,0)0(0=-=→xx f f x 则在点0=x 处)(x f(A) 不可导 (B) 可导,且,0)0(≠'f(C) 取得最大值 (D) 取得最小值 5:设,3)(22x x x x f +=则使)0()(n f 存在的最高阶数n 为 .6:求对数螺线θρe =在点)2,(2ππe 处得切线的直角方程.7:计算dx e e x x )(0cos cos ⎰--π.8:计算dx x x ⎰++42)2()1ln(. 9: 计算dx x x ⎰-π53sin sin .10: 化三重积分⎰⎰⎰Ω),,(z y x f 为累次积分,其中Ω为六个平面2,,42,1,2,0===+===z x z y x y x x 围成的区域..11:求222a z y =+在第一卦限中被)0(,),0(,0>=>==b b y m my x x截下部分面积. 12计算,)(22dxdydz y x I⎰⎰⎰Ω+=其中Ω是曲线0,22==x z y 绕OZ 轴旋转一周而成的曲面与两平面8,2==z z 所围的立体.级数部分 13:设1,32,1,11221≥+===++n a a a a a n n n ,求n n n x a ∑∞=1的收敛半径、收敛域及和函数。

解:把1,3212≥+=++n a a a n n n 化为),3(3112n n n n a a a a --=-+++则123++-n n a a 是以 -2为首项,-1为公比的等比数列,所以n n n a a )1(2312--=-++此式又可以化为])1(21[3])1(21[1122++++-+=-+n n n n a a 则1)1(21n n a -+是以 21为首项,3为公比的等比数列,所以1321)1(21-⨯+--=n nn a 由于,3lim =∞→n n n a所以nn nx a ∑∞=1的收敛半径是31,收敛域是)31,31[-,和函数是 )31)(1()1(31361121)3(61)(21111x x x x x x x x x x x a nn nn nn n-+-=-⨯++-⨯-=+--=∑∑∑∞=∞=∞= 14已知)(x f n 满足xn n n e xx f x f 1)()(-+='(n 为正整数),且nef n =)1(,求函数项级数)(1x fn n∑∞=之和(2001,3).解:由已知条件可见x n n n e x x f x f 1)()(-=-'其通解为)()(1c n x e c dx e e x e x f nx dx x n dx n +=⎪⎭⎫ ⎝⎛+⎰⎰=⎰-- 由条件n e f n =)1(,得0=c ,故ne x xf xn n =)(。

第四届全国大学生数学竞赛决赛试题及答案(非数学组)

第四届全国大学生数学竞赛决赛试题及答案(非数学组)

于是 I = I1 + I 2 = 1 + π
3 8
六、 (本题 15 分) 若对任意收敛于 0 的数列 { xn } 级数 ∑ an xn 都收敛,证明级数 ∑ an 收敛.
n =1 n =1
∞ ∞
令 Sn = ∑ ak ,xn = 证明: 用反证法. 若级数 ∑ an 发散,
n =1 k =1

而 g (0) = f 2 (0) + [ f '(0)] = 4 且 0 ∈ [ξ1 , ξ 2 ] , 知 g (ξ ) = max g ( x) ≥ 4 , 由此可得 ξ ∈ (ξ1 , ξ 2 ) , 根据 Fermat
2
x∈[ξ1 ,ξ 2 ]
定理, g '(ξ ) = 0 ,即
g '(ξ ) = 2 f (ξ ) f '(ξ ) + 2 f '(ξ ) f ''(ξ ) = 0 .
3 2
3 2 2
⋅ 2dxdy =
=
G ρ 2π 2 1 ⋅ rdr = G ρπ ln 2. 2 ∫0 ∫1 r 2
三、 (本题 15 分)
f ( x) 在 [1, +∞] 连续可导, f ' ( x) =
x
⎡ 1 1 1 ⎤ − ln(1 + ) ⎥ , 证明 ⎢ 2 x ⎦ 1 + f ( x) ⎣ ⎢ x ⎥
证明:在 [−2,0] 和 [0, 2] 上分别使用 Lagrange 中值定理,分别 ∃ξ1 ∈ (−2,0), ξ 2 ∈ (0, 2) 使得 f (0) − f (−2) = 2 f '(ξ1 ), f (2) − f (0) = 2 f '(ξ 2 ) . 令 g ( x) = f 2 ( x) + [ f '( x)] ,考虑 g ( x) 在闭区间 [ξ1 , ξ 2 ] 上的最大值,记 g (ξ ) = M = max g ( x) . 由于

高等数学竞赛最新试题及答案

高等数学竞赛最新试题及答案

高等数学竞赛最新试题及答案高等数学竞赛试题一、选择题(每题3分,共30分)1. 函数\( f(x) = x^2 - 4x + 3 \)的顶点坐标是:A. (2, -1)B. (1, 0)C. (2, 1)D. (2, -1)2. 已知\( \lim_{x \to 0} \frac{\sin x}{x} = 1 \),求\( \lim_{x \to 0} \frac{\sin 3x}{3x} \)的值是:A. 1B. 0C. 3D. 无法确定3. 曲线\( y = x^3 - 2x^2 + x \)在点(1,0)处的切线斜率是:A. 0B. -1C. 1D. 24. 以下哪个级数是发散的?A. \( \sum_{n=1}^{\infty} \frac{1}{n^2} \)B. \( \sum_{n=1}^{\infty} \frac{1}{n} \)C. \( \sum_{n=1}^{\infty} (-1)^n \frac{1}{n} \)D. \( \sum_{n=1}^{\infty} \frac{1}{2^n} \)5. 函数\( f(x) = \sin x + \cos x \)的周期是:A. \( \pi \)B. \( 2\pi \)C. \( \frac{\pi}{2} \)D. \( \pi \)6. 以下哪个函数是奇函数?A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = |x| \)D. \( f(x) = \sin x \)7. 已知\( \int_{0}^{1} x^2 dx = \frac{1}{3} \),求\( \int_{0}^{1} x^3 dx \)的值是:A. \( \frac{1}{4} \)B. \( \frac{1}{3} \)C. \( \frac{1}{2} \)D. \( 1 \)8. 以下哪个是二阶常系数线性微分方程?A. \( y'' + 3y' + 2y = 0 \)B. \( y' + y = x^2 \)C. \( y'' + y' = 0 \)D. \( y'' - 2y' + y = \sin x \)9. 以下哪个是二元函数的偏导数?A. \( \frac{\partial^2 f}{\partial x \partial y} \)B. \( \frac{\partial f}{\partial x} \)C. \( \frac{\partial f}{\partial y} \)D. \( \frac{d^2f}{dx^2} \)10. 已知\( \lim_{x \to \infty} \frac{f(x)}{x} = 0 \),那么\( f(x) \)是:A. 常数B. 有界函数C. 无穷小量D. 无穷大量二、填空题(每题4分,共20分)11. 函数\( f(x) = \sqrt{x} \)的定义域是_________。

高数竞赛练习题答案(函数、极限、连续)

高数竞赛练习题答案(函数、极限、连续)

高数竞赛练习题答案(函数、极限、连续)第一篇:高数竞赛练习题答案(函数、极限、连续)函数、极限、连续1.f(x),g(x)∈C[a,b],在(a,b)内二阶可导且存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明:(1)∃η∈(a,b),使f(η)=g(η)(2)∃ξ∈(a,b),使f''(ξ)=g''(ξ)证明:设f(x),g(x)分别在x=c,x=d处取得最大值M,不妨设c≤d(此时a<c≤d<b),作辅助函数F(x)=f(x)-g(x),往证∃ξ∈(a,b),使F''(ξ)=0令F(x)=f(x)-g(x),则F(x)在[a,b]上连续,在(a,b)二阶可导,且F(a)=F(b)=0,① 当c<d,由于F(c)=f(c)-g(c)=M-g(c)≥0F(d)=f(d)-g(d)=f(d)-M≤0由“闭.连.”零点定理,∃η∈[c,d]⊂(a,b),使f(η)=g(η)② 当c=d,由于F(c)=f(c)-g(c)=f(c)-g(d)=M-M=0即∃η∈(a,b),使f(η)=g(η) 对F(x)分别在[a,η],[η,b]上用罗尔定理,∃ξ1∈(a,η),ξ2∈(η,b),使在[ξ1,ξ2]上对F(x)在用罗尔定理,F'(ξ1)=F'(ξ2)=0,∃ξ∈(ξ1,ξ2)⊂(a,b),使F''(ξ)=0,∃ξ∈(a,b),使f''(ξ)=g''(ξ).2.设数列{xn}满足0<x1<π,xn+1=sinxn,n=1,2,Λxn存在,并求该极限(1)证明limn→∞xn+1x1n(2)计算lim()n→∞xn分析:(1)确定{xn}为单调减少有下界即可1xn,用洛必达法则.(2)利用(1)确定的limn→∞解:易得0<xn≤1(n=2,3,Λ),所以xn+1=sinxn<xn,n=(2,3,Λ),即{xn}为xn存在,并记为limxn=a,则a∈[0,1],单调减少有下界的数列,所以 lim n→∞n→∞对等式xn+1=sinxn<xn,两边令n→∞取极限,得a=sina,a∈[0,1],所以a=0,即limxn=0.n→∞lim((2)n→∞xn+1sinxn)=lim()n→∞xnxn2xn2xn令t=xn=lim(t→0sint)=et→0ttlimln()tt2由于limt→0tln(sin)ttsintln[1+(sin-1)]-1-1t2sint-t洛cost-11tt2=lim=lim=lim=lim=lim=- t→0t→0t→0t→0t→03t2t2t2t33t26 xn+1xn-1所以lim()=e.n→∞xn3.已知f(x)在[0,1]连续,在(0,1)可导,且f(0)=0,f(1)=1,证明:(1)∃ξ∈(0,1),使f(ξ)=1-ξ,(2)存在两个不同点η,ζ∈(0,1),使f'(η)f'(ζ)=1证:(1)令F(x)=f(x)+x-1,则F(x)在[0,1]上连续,且F(0)=-1<0,F(1)=1>0,由“闭.连.”零点定理,∃ξ∈(0,1),使F(ξ)=0,即f(ξ)=1-ξ(2)f(x)在[0,ξ],[ξ,1]上都满足拉格朗日中值定理,所以∃η∈(0,ξ),ζ∈(ξ,1),使f(ξ)-f(0)=f'(η)(ξ-0),f(1)-f(ξ)=f'(ζ)(1-ξ),即f'(η)=f'(ζ)=f(ξ)ξ=1-ξξ1-f(ξ)1-(1-ξ)ξ==1-ξ1-ξ1-ξ∴f'(η)f'(ζ)=1-ξξ⋅ξ1-ξ=14.设方程xn+nx-1=0,其中n为正整数,证明此方程存在唯一的正α实根xn,并证明当α>1时,级数∑xn收敛.n=1∞证:令f(x)=xn+nx-1,则f(x)在(0,+∞)上连续,且f(0)=-1<0,f()=()n>0nn所以由连续函数的零点定理,所给方程在(0,)内有根,又由f'(x)=n(xn-1+1)>0,即f(x)在(0,)内单调递增,所以所给方程(0,)内只有唯一的根,在(,∞)上无根,即所给方程存在唯一的正实根xn.α<由上述知,对n=1,2,Λ,有0<xn<,有0<xn∞1n1n1n1n1n1,nα此外,由α>1知,级数∑收敛,所以由正项级数比较审敛法,知αn=1n∑xα收敛.nn=1∞5.求lim(cosx)x→01ln(1+x)x→0ln(1+x)解:lim(cosx)x→01ln(1+x)=elimlncosx,其中limln(1+xx→0lncosx)=limx→0ln[1+(cosx-1)]ln(1+x)=limx→0-x22x=-(cosx)所以,limx→0ln(1+x)=e-6.f(x)在x=0的某邻域内具有一阶连续导数,且f(0)≠0,f'(0)≠0,若af(h)+bf(2h)-f(0)在h→0时是比h高阶的无穷小,试确定a,b的值.解1:(利用导数定义)0=limaf(h)+bf(2h)-f(0)af(h)-af(0)+af(0)+bf(2h)-bf(0)+bf(0)-f(0)=limh→0h→0hhaf(h)-af(0)bf(2h)-bf(0)[(a+b)-1]f(0)[(a+b)-1]f(0)=l im+lim+lim=(a+b)f'(0)+limh→0h→0h→0h→0hhhh⎧a+b=1'由f(0)≠0,f(0)≠0,得⎨,即a=2,b=-1a+2b=0⎩解2:按解1,只要假定f(x)在x=0处可导即可,但在题中“f(x)在x=0的某邻域内具有一阶连续导数”的假定下,有以下解法:由lim h→0h→0af(h)+bf(2h)-f(0)=0得 limaf(h)+bf(2h)-f(0)=0h→0h即0=limaf(h)+bf(2h)-f(0)=(a+b-1)f(0),由f(0)≠0,得a+b=1(1)af(h)+bf(2h)-f(0)洛=limaf'(h)+2bf'(2h)=(a+2b)f'(0)且f'(0)≠0,又由0=limh→0h→0h所以 a+2b=0(2)由(1)、(2)得a=2,b=-1.⎛2+esinx⎫⎪.7.求lim 4+x→0x⎪⎝1+e⎭解:⎛2e-+e-sinx⎫⎛2+esinx⎫⎪=1⎪=lim lim+4+4++-x→0x→0 x⎪x⎪⎝1+e⎭⎝e+1⎭⎛2+esinx⎫⎛2+esinx⎫ ⎪⎪=1 lim=lim4+4---⎪x→0x⎭x→0⎝1+ex⎪⎝1+e⎭所以原式 = 18.求limx→0143+x+-x-2.2x解1:(泰勒公式)因+x+-x-2=[1+1111x-x2+o(x2)]+[1-x-x2+o(x2)]-22828(x→0)=-x2+o(x2)~-x2所以1-x2+x+-x-2=-1lim=limx→0x→0x2x24解2:(洛必达法则)-+x+-x-2洛必达lim=limx→0x→0x22x1-x-+x1⋅lim=lim x→0+x-x4x→0x1-2x1=lim.=-4x→0x(-x++x)4第二篇:高数课件-函数极限和连续一、函数极限和连续自测题1,是非题(1)无界变量不一定是无穷大量()(2)若limf(x)=a,则f(x)在x0处必有定义()x→x012x(3)极限lim2sinx=limx=0()x→+∞x→+∞33x2,选择题(1)当x→0时,无穷小量1+x-1-x是x的()A.等价无穷小B.同阶但不等价C.高阶无穷小D.低价无穷小⎧x+1-1x≠0⎪(2)设函数f(x)=⎨,则x=0是f(x)的()x⎪0x=0⎩A.可去间断点 B.无穷间断点C 连续点D 跳跃间断点⎧exx<0(3)设函数f(x)=⎨,要使f(x)在x0处连续,则a=()⎩a+xx≥0A.2B 1C 0D -13n2-5n+1=()(4)lim2n→∞6n+3n-2A 151B -C -D ∞ 2321⎧xsinx<0⎪⎪x(5)设f(x)=⎨,则在x=0处f(x) ()⎪1sinx-1x>0⎪⎩xA 有定义B 有极限C 连续D左连续3(6)x=1是函数y=x-1的()x-1A 可去间断点B 无穷间断点C 连续D跳跃间断点3.求下列极限(1)limx→∞x+sinxsin(-2x)x+2-3(2)lim(3)limx→0x→12xln(1+2x)x-1e-2x-1(4)lim(5)limn[ln(1+n)-lnn](6)lim(sinn+1-sinn)n→∞n→∞x→0x2x+3x+2(sinx3)tanx2lim()(7)lim (8)(9)limx(x+1-x)x→∞2x+1x→01-cosx2x→∞cosx-cosaarctanxex-ex0(10)lim(11)lim(12)limx→ax→∞x→x0x-xx-ax0x2+32x2+1sin(x-1))(13)lim(14)lim(2x→∞x→1x-1x+24,求满足下列条件的a,b的值1x2+x+a=b(2)lim(3x-ax2-x+1)=(1)limx→+∞x→26x-2⎧tanaxx<0ax+b⎪=2(4)已知f(x)=⎨x(3)lim且limf(x)存在x→0x→1x-2⎪x+2x≥0⎩x<-1⎧-2⎪2(5)已知f(x)=⎨x+ax+b-1≤x≤1在(-∞,+∞)内连续⎪2x≥1⎩⎧sin2x+e2ax-1x≠0⎪(6)函数f(x)=⎨在x=0点连续x⎪ax=0⎩5.求下列函数的间断点并判断其类型⎧x-1x≤11-cosxx2-1(1)y=2(2)y=⎨(3)f(x)=sinxx-3x+2⎩3-xx>1⎧1x>0x⎪(4)f(x)=⎨ex-1(5)y=tanx⎪⎩ln(1+x)-1<x≤026.已知x→-1时,x+ax+5x+1是同阶无穷小,求a7.证明方程x-4x+2=0在区间(1,2)内至少有一个根8.当x→0时,e+ln(1-x)-1与x是同阶无穷小,求n 9.设函数f(x)=a,(a>0,a≠1),求limxxn41ln[f(1)f(2)K f(n)]n→∞n2第三篇:高数极限和连续第二章极限和连续【字体:大中小】【打印】2.1 数列极限一、概念的引入(割圆术)“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣” ——刘徽正六边形的面积A正十二边形的面积A2n-1正6×2形的面积AnA1,A2,A3,…,An,…→…S二、数列的定义定义:按自然数1,2,3...编号依次排列的一列数x1,x2,...,xn, (1)称为无穷数列,简称数列。

数学竞赛预赛试题及答案

数学竞赛预赛试题及答案

数学竞赛预赛试题及答案试题一:代数问题题目:解下列方程组:\[ \begin{cases}x + y = 5 \\2x - y = 1\end{cases} \]答案:首先将方程①和方程②相加,得到3x = 6,解得x = 2。

将x = 2代入方程①,得到y = 3。

因此,方程组的解为:\[ \begin{cases}x = 2 \\y = 3\end{cases} \]试题二:几何问题题目:已知直角三角形ABC,其中∠A为直角,AB = 6,AC = 8,求斜边BC的长度。

答案:根据勾股定理,直角三角形的斜边长度可以通过以下公式计算:\[ BC = \sqrt{AB^2 + AC^2} = \sqrt{6^2 + 8^2} = \sqrt{36 + 64} = \sqrt{100} = 10 \]所以,斜边BC的长度为10。

试题三:数列问题题目:数列1, 1, 2, 3, 5, 8, ... 被称为斐波那契数列。

求第10项的值。

答案:斐波那契数列的定义是每一项都是前两项的和。

已知第9项为34,第8项为21,第7项为13,第6项为8,第5项为5,第4项为3,第3项为2,第2项为1,第1项为1。

根据定义,第10项为第8项和第9项的和,即:\[ 34 + 21 = 55 \]所以,斐波那契数列的第10项是55。

试题四:概率问题题目:一个袋子里有5个红球和3个蓝球,随机抽取一个球,求抽到红球的概率。

答案:总共有8个球,其中5个是红球。

抽到红球的概率是红球数量除以总球数,即:\[ P(\text{红球}) = \frac{5}{8} \]试题五:组合问题题目:有7个人参加一个会议,需要选出3个人组成一个委员会。

求不同的委员会组合数。

答案:这是一个组合问题,可以用组合公式计算:\[ C(n, k) = \frac{n!}{k!(n-k)!} \]其中n是总人数,k是委员会的人数。

将数值代入公式,得到:\[ C(7, 3) = \frac{7!}{3!(7-3)!} = \frac{7 \times 6 \times5}{3 \times 2 \times 1} = 35 \]所以,可以组成35种不同的委员会组合。

高数竞赛题

高数竞赛题

1、设函数 f(x) 在区间 [a, b] 上连续,在 (a, b) 内可导,且 f(a) = 0,f(b) = 1。

若存在ξ∈ (a,b) 使得 f'(ξ) = 2,则以下哪个结论必然成立?A. ∀x ∈ (a, b), f(x) ≤ 2x - aB. ∃x₁, x₂∈ (a, b), f(x₁) < f(x₂)C. ∀x ∈ (a, ξ), f(x) < (x - a)/(b - a)D. ∃x₀∈ (a, b), f(x₀) = 1/2 且 f'(x₀) = 0(答案)2、设数列 {a_n} 满足 a_1 = 1,a_{n+1} = a_n + 2/a_n,则以下关于数列 {a_n} 的说法正确的是?A. {a_n} 是递减数列B. 对任意正整数 n,有 a_n < n + 1C. 存在正整数 k,使得 a_k < k 但 a_{k+1} > k + 1D. 对任意正整数 n,有 a_n ≥√(2n + 1)(答案)3、设函数 f(x, y) = x2 + y2 - 2x - 2y + 1,则 f(x, y) 在区域 D = {(x, y) | x2 + y2 ≤ 2} 上的最小值为?A. -1B. 0C. 1 - √2(答案)D. 2 - 2√24、设向量 a = (1, 2),b = (2, 1),c = (1, -2),若 (a + λb) ⊥ c,则实数λ的值为?A. -1/2B. 1/2(答案)C. -2D. 25、设函数 f(x) = x3 - 3x2 + 2,则 f(x) 的极值点个数为?A. 0B. 1C. 2(答案)D. 36、设矩阵 A = [1 2; 3 4],B = [2 0; 1 1],则 AB - BA =?A. [0 -2; 2 0](答案)B. [2 2; -2 -2]C. [0 2; -2 0]D. [-1 -2; 3 4]7、设函数 f(x) = ex - x - 1,则不等式 ex > x2 + x + 1 的解集为?A. (-∞, 0)B. (0, +∞)(答案)C. (-∞, -1) ∪ (1, +∞)D. (-1, 0) ∪ (0, 1)8、设函数 f(x) = (x - a)(x - b)(x - c),其中 a, b, c 是互不相等的实数。

高数竞赛试题集

高数竞赛试题集

高等数学竞赛一、填空题 若 lim sin x (cosx -b) =5,则 a = i 0e X -a 设 f(X)= lim (n 2 "x,贝U f (x)的间断点为 x= ______ . nx +1 曲线y=lnx 上与直线X+y=1垂直的切线方程为 ________________________________ . 已知 f (e X ) =xe 」,且 f(1)= 0,贝u f (X)= ___________ . l x =t 3+3t +1设函数y(x)由参数方程彳 3确定,则曲线y = y(x)向上凸的x 取值[y =t -3t +11. 2.3. 4.5.范围为6.i 2x 设y =arctane X - InV e 2x17.若 X T 0时,(1 -ax2)4 -1xe x 2设 f (x) - {-1与xsinx 是等价无穷小,则a=1 < —2,则2B f(x —1)dx =29. 由定积分的定义知,和式极限lim ^n n 2+k 210. '1 8 dx X J X 2-1 二、单项选 择题 X x -— X T 0 时的无穷小量 a = Lcost 2dt,P = T tan 寸tdt,Y = 11 .把是前一个的高阶无穷小,则正确的排列次序是 【】(A)a ,P ,Y . (B) a ,Y , P . (C) P^J . 12•设函数f(x)连续,且f(0) :>0,则存在6 >0,使得 【 (A) f(x)在(0, 6)内单调增加. (C )对任意的 X 忘(0, 5)有 f(x)>f(0).13 .设 f(X)=|x(1-X)| ,贝U 【<x3 [si nt dt ,使排在后面的】(B ) f(x)在(-■& ,0)内单调减少.(D)对任 意的 X 亡(一6,0)有f(x)>f(0). (A ) (B) (C) (D ) =0是f (X)的极值点,但(0, 0)不是曲线y = f (X)的拐点. =0不是f (X)的极值点,但(0, 0)是曲线y = f(x)的拐点. =0是f (X)的极值点,且(0, 0)是曲 =0不是f (X)的极值点,(0, 0)也不 线y = 是曲线 f ( x)的拐点. y = f (x)的拐点. 14 . lim In 『(1+丄)2(1+2)2|II (1+卫)2等于 ¥ n n n 血X2 n2 (B) Zjxdx . [(c)2J In(1+x)dx .2 2(D)J In2(1 + x)dx15 .函数 (A)(一、| x |sin(x -2)亠 f(X)= --- --- 一在下列哪个区X (X -1)(X -2)21 , 0). (B ) (0 , 1).间内有界.【(C) (1 ,2). (D) (2,3).16.设 f(X)在(+ )内有定义,且lim f(x)=a ,ggJGw 0,则【】高等数学竞赛试卷Y [ 0 ,x=0 (B) X = 0必是g(x)的第二类间断点. (D) g(x)在点X = 0处的连续性与a 的取值有关. 】 (A) X = 0必是 (C) X = 0必是 17 .设f '(X)在[a , b ]上连续,且f "(a) >0, f'(b) v0,则下列结论中错误的是【 X 0 € (a, b),X 0 (a,b), X 0 丘(a,b), X 0 亡(a,b),g(x)的第一类间断点. g(x)的连续点. (A ) (B ) (C )(D ) 18 .设 (A) (B) (C) (D) 至少存在一点 至少存在一点 至少存在一点至少存在一点 使得 使得 使得 使得 f (X 0) > f (a). f (X 0)> f (b). f'(X 0)=O . f (X 0)=0. ,1, X >0 f(x) =40,x =0,F(x) [-1, x <0 点不连续.)内连续,但在X = 0点不可导.)内可导,且满足 F(x) = f(x).)内可导,但不一定满足F'(X)= f (x). F(x)在 X = 0 F(x)在( F(x)在(F(x)在( 三、解答题 1 r< 2 19.求极限ljm —(一 20 •设函数f (X)在(—壬 +再上有定义,在区间[0, 2]上,f(X)= x(x — 4),若对任意的X 都满足 f(X)=kf(X +2),其中k 为常数.(I )写出f (X)在[—2, 0]上的表达式;(n )问k 为何值时,f(x)在x = 0处可导.21 .设f ( X ),g (X )均在[a, b :上连续,证明柯西不等式 2 + COSX f 「b (x)dx h a 2 2 2 4 22 .设 ecacbce ,证明 ln b-ln a 》一f(b-a). e f (x)g(x)dx i 兰 if f 2 g 2(x)dx j X 丄 — e 中e 23曲线y =— ---- --- 与直线x=0, x = t(t> 0)及 y = 0围成一曲 边梯形.该曲边梯形绕x 轴旋转一周得一旋转体,其 体积为V(t),侧面积为S(t),在x=t 处的底面积为F(t).( I )求 V(t) X X24 .设 f (X) , g(x)在[a , b ]上连续,且满足 J f (t)dt > Jg(t)dt ,x a a 的值;(n ) lim -S(^). t -就 F(t) bb[a ,b),J a f(t)dt = J a g(t)dt .证明:[b xf(x)dx < f bxg(x)dx . •a 'a25. 速并停下.现有一质量为9000kg 飞机的速度成正比(比例系数为 表示千米/小时.尾部张开 减速伞,以增大阻 力,使飞机迅速减 经测试,减速伞打开后, 某种飞机在机场降落时,为了减少滑行距离,在触地的 瞬间,飞机的飞机,着陆时的水平 速度为 700km/h. k=6.0x106).问从着陆点算起,飞机滑行的最长距离是多少?飞机所受的总阻力与 注 kg 表示 千克,km/h 一、单项选择题 2 X -ax — b 尸 0 1、若 %+1 (A ) a =1, b =1(B) a=T, b =1 (C) a =1, b =—1 (D)a = —1, b=—1F(x )2、设 F (x )詔 x ,[f(0),(A ) 连续点 (B )3、设常数k A O ,函数 X 工0 c,其中f (x )在X =0处可导且f '(0) H 0X := 0 第一类间断点(C ) 第二类间断点 (D )以上都不X f (X )= In X —一 +k 在(0, xc )内零点的个数为e f (0) =0,贝U X = 0 是 F(X)的 (C) 4、若在[0,1]上有 f ( 0 > g (0=) 0, 4 g) = ab)且 f''X 另,0 g”(x)c0 ,I1 =f (X )dx ,I 2 5、 1 = J o g(x)dx ,I 3 I 1 > l 2> 图形0<a<x<b, 0<y<f(x 绕y 轴旋转所成 的旋转体 bb(A) 由平面 (A) 6、 7、1、 2、 3、 4、 5、 6、 7、1=f ax dx 的大小关系为 j 0 ------------------I 3 ( B ) I 2 > I 3 二 I 1 ( C )V =2兀 J xf(Mdx( B ) V =2和 f ( x) d X C )VP(1,3,4)关于平面 3x + y —2z =0的对称点是_( A ) (5, —1,0) 设D 为 X 2 + y 2<R 2,D 1 是 D 位于第一象限的部分,f (X)连续, 2(A)8JJf(X 2)dcrD 1(B ) 0( C )a 为常数,则级数二、填空题3 l :m tan 2x (1 hm —4—(1X —30 X y r sin(na) 1 1n 2"T n J13 — 12 — 11 的体积为 ___________ b2=兀 Ja f (x)dX (B ) (5,1,0) 则 JJ f (x 2D R R 2Jdxjj(x+ y 2)dy(D)bV " Ja f (x)dx (C ) (-5,-1,0) ( D ) (-5,1,0) + y 2)dcr = _______ (D ) (D )4JJf(x 2 D 1+ y 2)db绝对收敛(B )发散C )条件收敛(D )收敛性与a 的取值有关个。

大三数学竞赛试题及答案

大三数学竞赛试题及答案

大三数学竞赛试题及答案题目一:极限问题题目描述:求下列极限:\[ \lim_{x \to 0} \frac{\sin x}{x} \]答案:根据洛必达法则,当分子分母同时趋向于0或无穷大时,可以使用洛必达法则。

由于分子和分母都趋向于0,我们可以对分子和分母同时求导数,得到:\[ \lim_{x \to 0} \frac{\cos x}{1} = 1 \]题目二:微分方程问题题目描述:解下列微分方程:\[ y'' - y' - 6y = 0 \]答案:这是一个二阶线性常系数齐次微分方程。

设其特征方程为:\[ r^2 - r - 6 = 0 \]解得特征根为 \( r_1 = 3 \) 和 \( r_2 = -2 \)。

因此,微分方程的通解为:\[ y(x) = C_1 e^{3x} + C_2 e^{-2x} \]题目三:级数问题题目描述:判断级数 \( \sum_{n=1}^{\infty} \frac{1}{n(n+1)} \) 的收敛性,并求其和。

答案:这个级数可以通过部分分式分解来化简:\[ \frac{1}{n(n+1)} = \frac{A}{n} + \frac{B}{n+1} \]解得 \( A = 1 \) 和 \( B = -1 \),因此:\[ \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1} \]利用级数的可加性,我们发现这是一个可裂项求和的级数,其和为:\[ S = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \cdots = 1 \]题目四:多元函数微分问题题目描述:设函数 \( f(x, y) = x^2y + y^3 - 3x \),求 \( f \) 在点\( P(1, 1) \) 处的偏导数 \( f_x \) 和 \( f_y \)。

大学数学竞赛试题及答案

大学数学竞赛试题及答案

大学数学竞赛试题及答案一、选择题(每题5分,共30分)1. 已知函数\( f(x) = x^2 - 4x + 3 \),则\( f(x) \)的最小值是:A. 0B. 1C. 2D. 32. 若\( \int_{0}^{1} x dx = \frac{1}{2} \),则\( \int_{0}^{2} x dx \)的值是:A. 1B. 2C. 3D. 43. 设\( A \)为3阶方阵,且\( \det(A) = 2 \),则\( \det(2A) \)的值是:A. 2B. 4C. 8D. 164. 以下哪个选项不是\( \mathbb{R}^3 \)中的向量?A. \( \vec{a} = (1, 2, 3) \)B. \( \vec{b} = (1, 2, 3, 4) \)C. \( \vec{c} = (1, 2) \)D. \( \vec{d} = (1, 2, 3) \)5. 集合\( A = \{1, 2, 3\} \),\( B = \{2, 3, 4\} \),则\( A \cap B \)的元素个数是:A. 0B. 1C. 2D. 36. 圆的方程为\( x^2 + y^2 - 6x - 8y + 24 = 0 \),圆心坐标是:A. (3, 4)B. (-3, -4)C. (3, -4)D. (-3, 4)二、填空题(每题5分,共20分)1. 函数\( f(x) = \sin(x) \)在区间\( [0, \pi] \)上的最大值是______。

2. 若\( \lim_{x \to 0} \frac{\sin(x)}{x} = 1 \),则\( \lim_{x \to 0} \frac{\sin(2x)}{x} \)的值为______。

3. 矩阵\( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \)的行列式\( \det(A) \)的值是______。

大学数学竞赛题库及答案

大学数学竞赛题库及答案

大学数学竞赛题库及答案大学数学竞赛通常涵盖了高等数学、线性代数、概率论与数理统计、数学分析等多个领域。

以下是一些典型的大学数学竞赛题目及其答案。

# 题目一:高等数学题目:求函数 \( f(x) = 3x^2 - 2x + 1 \) 在区间 \( [1, 2] \)上的最大值和最小值。

答案:首先,我们找到函数的导数 \( f'(x) = 6x - 2 \)。

令导数等于零,解得 \( x = \frac{1}{3} \)。

这个点不在给定区间内,所以我们需要检查区间端点的函数值。

在 \( x = 1 \) 时,\( f(1) = 3(1)^2 - 2(1) + 1 = 2 \)。

在 \( x = 2 \) 时,\( f(2) = 3(2)^2 - 2(2) + 1 = 9 \)。

因此,函数在区间 \( [1, 2] \) 上的最大值为 9,最小值为 2。

# 题目二:线性代数题目:求解线性方程组:\[ \begin{cases}x + y + z = 6 \\2x - y + z = 1 \\3x + y + 2z = 8\end{cases} \]答案:我们可以使用高斯消元法来解这个方程组。

首先将方程组写成增广矩阵的形式,然后进行行操作:\[ \left[\begin{array}{ccc|c}1 & 1 & 1 & 6 \\2 & -1 & 1 & 1 \\3 & 1 & 2 & 8\end{array}\right] \rightarrow \left[\begin{array}{ccc|c}1 & 1 & 1 & 6 \\0 & -3 & -1 & -11 \\0 & 1 & 1 & 2\end{array}\right] \]继续行操作,得到:\[ \left[\begin{array}{ccc|c}1 & 0 & -2 & -5 \\0 & 1 & 1 & 2 \\0 & 0 & 3 & 13\end{array}\right] \]最后,我们得到解为 \( x = 1, y = 2, z = 3 \)。

全国大学生数学竞赛赛试题(1-9届)

全国大学生数学竞赛赛试题(1-9届)

全国大学生数学竞赛赛试题(19届)一、试题概述全国大学生数学竞赛是由中国数学会主办的一项面向全国高校本科生的数学竞赛。

自2009年首届竞赛举办以来,已成功举办九届。

竞赛旨在激发大学生对数学的兴趣,提高他们的数学素养和综合能力,同时选拔优秀数学人才。

每届竞赛均设有预赛和决赛两个阶段,预赛为全国范围内的统一考试,决赛则在全国范围内选拔出的优秀选手中进行。

二、竞赛内容全国大学生数学竞赛的试题内容主要包括高等数学、线性代数、概率论与数理统计等基础数学知识。

试题难度适中,既考查参赛选手的基础知识掌握程度,又注重考查他们的综合应用能力和创新思维能力。

三、竞赛特点1. 公平公正:竞赛试题由全国数学教育专家命题,确保试题质量,保证竞赛的公平公正。

2. 注重基础:竞赛试题主要考查参赛选手对基础数学知识的掌握程度,有利于引导大学生重视基础数学学习。

3. 综合应用:试题设计注重考查参赛选手的综合应用能力,培养他们的创新思维和实践能力。

4. 激发兴趣:竞赛通过丰富多样的试题形式,激发大学生对数学的兴趣,培养他们的数学素养。

四、竞赛组织全国大学生数学竞赛由各省、市、自治区数学会负责组织本地区的预赛,中国数学会负责全国范围内的决赛。

竞赛组织工作包括试题命制、竞赛宣传、选手选拔、竞赛监督等环节,确保竞赛的顺利进行。

五、竞赛影响全国大学生数学竞赛自举办以来,受到了广大高校和数学爱好者的广泛关注和热情参与。

竞赛不仅为优秀数学人才提供了展示才华的舞台,也为全国高校数学教育提供了有益的借鉴和启示。

通过竞赛,大学生们不仅提高了自己的数学水平,还结识了许多志同道合的朋友,拓宽了视野,激发了学习热情。

六、竞赛历程自2009年首届全国大学生数学竞赛举办以来,竞赛规模逐年扩大,影响力不断提升。

参赛选手涵盖了全国各大高校的本科生,包括综合性大学、理工科院校、师范院校等。

随着竞赛的普及,越来越多的学生开始关注并参与其中,竞赛逐渐成为衡量高校数学教育水平和学生数学素养的重要标志。

大学数学竞赛试题及答案非数学类

大学数学竞赛试题及答案非数学类

大学数学竞赛试题及答案非数学类大学数学竞赛试题及答案(非数学类专业)一、选择题(每题2分,共10分)1. 已知函数\( f(x) = x^2 - 4x + 3 \),求\( f(2) \)的值。

A. -1B. 1C. 3D. 52. 一个圆的半径为5,求其面积。

A. 25πB. 50πC. 75πD. 100π3. 以下哪个是等差数列1, 4, 7, ...的第10项?A. 27B. 28C. 29D. 304. 已知\( \sin(\theta) = \frac{3}{5} \),求\( \cos(\theta) \)的值(假设\( \theta \)在第一象限)。

A. \( \frac{4}{5} \)B. \( -\frac{4}{5} \)C. \( \frac{3}{5} \)D. 05. 一个直角三角形的两条直角边分别是3和4,求斜边的长度。

A. 5B. 6C. 7D. 8答案:1. B2. B3. A4. A5. A二、填空题(每题3分,共15分)6. 圆的周长公式是 \( C = \) ________ 。

7. 已知\( a \)和\( b \)是两个正整数,且\( a > b \),若\( a \)和\( b \)的最大公约数是3,最小公倍数是90,则\( a \)和\( b \)的值分别是________ 和 ________ 。

8. 已知\( \log_{10}100 = 2 \),求\( \log_{10}1000 \)的值是________ 。

9. 将\( 0.\overline{3} \)(即0.333...)转换为分数形式是________ 。

10. 一个等比数列的首项是2,公比是3,求第5项的值是________ 。

答案:6. \( 2\pi r \)7. 15, 68. 39. \( \frac{1}{3} \)10. 162三、解答题(每题10分,共20分)11. 证明:对于任意实数\( a \)和\( b \),不等式\( a^2 + b^2\geq 2ab \)总是成立。

最近五届全国大学生高等数学竞赛真题及答案(非数学类)

最近五届全国大学生高等数学竞赛真题及答案(非数学类)

目录第一届全国大学生数学竞赛预赛试卷 ........................................................................................... 1 第二届全国大学生数学竞赛预赛试卷 ........................................................................................... 7 第三届全国大学生数学竞赛预赛试卷 ......................................................................................... 11 第四届全国大学生数学竞赛预赛试卷 ......................................................................................... 18 第五届全国大学生数学竞赛预赛试卷 .. (23)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

)2009年 第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫ ⎝⎛-=, v u uvu u u y x yx x yy x DDd d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=1021000d 1)ln (1ln d )d ln 1d 1ln (u uu u u u u u u u v v uuv u u u u u ⎰-=12d 1u uu (*) 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,⎰+--=0142d )21(2(*)tt t⎰+-=1042d )21(2t t t 1516513221053=⎥⎦⎤⎢⎣⎡+-=t t t 2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.解: 令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

前三届高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

)2009-2010年第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分)1.计算=--++⎰⎰y x yx x yy x D d d 1)1ln()(16/15,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解:令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=,⎰-=102d 1u uu (*) 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f ,则=)(x f ____________.解:令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A 。

因此3103)(2-=x x f 。

3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________.解:因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由xz x =,yz y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面 022=-+z y x 的切平面方程是0122=--+z y x 。

4.设函数)(x y y =由方程29ln )(y y f e xe =确定,其中f 具有二阶导数,且1≠'f ,则=22d d xy________________.解:方程29ln )(y y f e xe =的两边对x 求导,得因)(29ln y f y xe e =,故y y y f x'=''+)(1,即))(1(1y f x y '-=',因此二、(5分)求极限x enx x x x ne e e )(lim 20+++→ ,其中n 是给定的正整数. 解:因 故 因此三、(15分)设函数)(x f 连续,⎰=10d )()(t xt f x g ,且A xx f x =→)(lim,A 为常数,求)(x g '并讨论)(x g '在0=x 处的连续性.解:由A x x f x =→)(lim和函数)(x f 连续知,0)(limlim )(lim )0(0===→→→xx f x x f f x x x 因⎰=10d )()(t xt f x g ,故0)0(d )0()0(10===⎰f t f g ,因此,当0≠x 时,⎰=xu u f xx g 0d )(1)(,故 当0≠x 时,xx f u u f x x g x )(d )(1)(02+-='⎰, 这表明)(x g '在0=x 处连续.四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证:(1)⎰⎰-=---Lx y Lx y x ye y xe x ye y xe d d d d sin sin sin sin ;(2)2sin sin 25d d π⎰≥--Ly y x ye y xe .证:因被积函数的偏导数连续在D 上连续,故由格林公式知 (1)y x ye y xe x x ye y xe Dx y Lx y d d )()(d d sin sin sin sin ⎰⎰⎰⎥⎦⎤⎢⎣⎡-∂∂-∂∂=---而D 关于x 和y 是对称的,即知 因此 (2)因 故 由 知即2sin sin 25d d π⎰≥--Ly y x ye y xe五、(10分)已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.解设x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是二阶常系数线性非齐次微分方程的三个解,则x x e e y y 212-=--和x e y y -=-13都是二阶常系数线性齐次微分方程的解,因此0=+'+''cy y b y 的特征多项式是0)1)(2(=+-λλ,而0=+'+''cy y b y 的特征多项式是因此二阶常系数线性齐次微分方程为02=-'-''y y y ,由)(2111x f y y y =-'-''和 x x x e xe e y 212++=',x x x e xe e y 2142++='' 知,1112)(y y y x f -'-''=)(2)2(42222x x x x x x x x e xe e e xe e e xe +-++-++= 二阶常系数线性非齐次微分方程为六、(10分)设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形的面积为31.试确定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积最小.解因抛物线c bx ax y ln 22++=过原点,故1=c ,于是 即而此图形绕x 轴旋转一周而成的旋转体的体积 即 令0)1(278)21(3152)(=---+='a a a a V πππ, 得 即 因此45-=a ,23=b ,1=c .七、(15分)已知)(x u n 满足),2,1()()(1 =+='-n e x x u x u x n n n,且neu n =)1(,求函数项级数∑∞=1)(n n x u 之和.解x n n ne x x u x u 1)()(-+=', 即由一阶线性非齐次微分方程公式知 即 因此由)1()1(nC e u n e n +==知,0=C , 于是下面求级数的和:令 则即由一阶线性非齐次微分方程公式知令0=x ,得C S ==)0(0,因此级数∑∞=1)(n n x u 的和八、(10分)求-→1x 时,与∑∞=02n n x 等价的无穷大量.解令2)(t x t f =,则因当10<<x ,(0,)t ∈+∞时,2()2ln 0t f t tx x '=<,故xt t ex t f 1ln22)(-==在(0,)+∞上严格单调减。

因此即()d ()1()d n f t t f n f t t ∞+∞+∞=≤≤+∑⎰⎰,又2()n n n f n x ∞∞===∑∑,21ln1d 1ln1d d d )(01ln222πxt e xt et x t t f t xt t ====⎰⎰⎰⎰∞+-∞+-∞+∞+,所以,当-→1x 时,与∑∞=02n n x 等价的无穷大量是x-121π。

2010-2012年第二届全国大学生数学竞赛预赛试卷 (参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

) 一、(25分,每小题5分)(1)设22(1)(1)(1),nn x a a a =+++其中||1,a <求lim .n n x →∞(2)求21lim 1x x x e x -→∞⎛⎫+ ⎪⎝⎭。

(3)设0s >,求0(1,2,)sx n I e x dx n ∞-==⎰。

(4)设函数()f t 有二阶连续导数,1(,)r g x y f r⎛⎫== ⎪⎝⎭,求2222g gx y∂∂+∂∂。

(5)求直线10:0x y l z -=⎧⎨=⎩与直线2213:421x y z l ---==--的距离。

解:(1)22(1)(1)(1)nn x a a a =+++=22(1)(1)(1)(1)/(1)nn x a a a a a =-+++-=222(1)(1)(1)/(1)na a a a -++-==12(1)/(1)n a a +--(2)22211ln (1)ln(1)1lim 1lim lim x x x e x x x x xx x x e e e x -++--→∞→∞→∞⎛⎫+== ⎪⎝⎭令x=1/t,则原式=21(ln(1))1/(1)112(1)22lim lim lim t t t t ttt t t e eee +-+---+→→→===(3)0000112021011()()[|](1)!!sx n n sx n sx sx n n sx n n n n n I e x dx x de x e e dx s sn n n n n n e x dx I I I s s s s s ∞∞∞---∞-∞----+==-=--=-=====⎰⎰⎰⎰二、(15分)设函数()f x 在(,)-∞+∞上具有二阶导数,并且()0,lim ()0,lim ()0,x x f x f x f x αβ→+∞→-∞''''>=>=<且存在一点0x ,使得0()0f x <。

证明:方程()0f x =在(,)-∞+∞恰有两个实根。

解:二阶导数为正,则一阶导数单增,f(x)先减后增,因为f(x)有小于0的值,所以只需在两边找两大于0的值。

将f(x)二阶泰勒展开: 因为二阶倒数大于0,所以lim ()x f x →+∞=+∞,lim ()x f x →-∞=-∞证明完成。

三、(15分)设函数()y f x =由参数方程22(1)()x t t t y t ψ⎧=+>-⎨=⎩所确定,其中()t ψ具有二阶导数,曲线()y t ψ=与22132t u y e du e-=+⎰在1t =出相切,求函数()t ψ。

相关文档
最新文档