人教版八年级数学上册 第27章 相似专题练习:相似三角形的判定与性质(含答案)

合集下载

人教版八年级数学上册 第27章 相似周周练(27.1~27.2)(含答案)

人教版八年级数学上册 第27章 相似周周练(27.1~27.2)(含答案)

周周练 (27、1~27、2)(时间:40分钟 满分:100分)一、选择题(每小题4分,共32分)1.(保定高阳月考)下面图形中,形状相同的一组是(D )2.(新疆生产建设兵团)如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,下列说法中不正确的是(D )A .DE =12BCB 、AD AB =AE ACC .△ADE ∽△ABCD .S △ADE ∶S △ABC =1∶23.(河北中考)在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3,4,5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.对于两人的观点,下列说法正确的是(A )A .两人都对B .两人都不对C .甲对,乙不对D .甲不对,乙对4.(安徽中考)如图,△ABC 中,AD 是中线,BC =8,∠B =∠DAC ,则线段AC 的长为(B )A .4B .4 2C .6D .4 35.如图,已知:DE ∥AC ,DF ∥AB ,则下列比例式中正确的是(B )A 、AE EB =BD DC B 、DF AB =DC BCC 、AE AB =AF ACD 、BD DC =FC AF6.(巴彦淖尔中考)如图,P 为▱ABCD 的边AD 上的一点,E ,F 分别为PB ,PC 的中点,△PEF ,△PDC ,△P AB 的面积分别为S ,S 1,S 2、若S =3,则S 1+S 2的值为(B )A .24B .12C .6D .37.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CF =14CD ,下列结论:①∠BAE =30°;②△ABE ∽△AEF ;③AE ⊥EF ;④△ADF ∽△ECF 、其中正确的个数为(B )A .1B .2C .3D .48.(台湾中考)如图,矩形ABCD 中,E 点在CD 上,且AE <AC 、若P 、Q 两点分别在AD 、AE 上,AP ∶PD =4∶1,AQ ∶QE =4∶1,直线PQ 交AC 于R 点,且Q 、R 两点到CD 的距离分别为q 、r ,则下列关系正确的是(D )A .q <r ,QE =RCB .q <r ,QE <RC C .q =r ,QE =RCD .q =r ,QE <RC二、填空题(每小题4分,共24分)9.如图,若△ABC ∽△DEF ,则∠D 的度数为30°.10.(邢台临城县一模)已知c 4=b 5=a 6≠0,则b +c a 的值为32.11.(临沂中考)如图,已知AB ∥CD ,AD 与BC 相交于点O 、若BO OC =23,AD =10,则AO =4.12.在长8 cm ,宽6 cm 的矩形中,截去一个矩形,使留下的矩形与原矩形相似,那么留下的矩形面积是27cm 2、13.如图,AB 是半圆直径,半径OC ⊥AB 于点O ,AD 平分∠CAB 交弧BC 于点D ,连接CD 、OD ,给出以下四个结论:①AC ∥OD ;②CE =OE ;③△ODE ∽△ADO ;④2CD 2=CE ·AB 、其中正确结论的序号是①④.14.如图,正五边形的边长为2,连接对角线AD ,BE ,CE ,线段AD 分别与BE 和CE 相交于点M ,N ,则MN =3-5.三、解答题(共44分)15.(10分)如图,在△ABC 中,D 为AC 边上一点,∠DBC =∠A 、(1)求证:△BDC ∽△ABC ;(2)如果BC =6,AC =3,求CD 的长.解:(1)证明:∵∠DBC =∠A ,∠C =∠C , ∴△BDC ∽△ABC 、 (2)∵△BDC ∽△ABC , ∴BC AC =CD BC、 ∴63=CD6、∴CD =2、16.(10分)(白银、张掖中考)如图,已知EC ∥AB ,∠EDA =∠ABF 、(1)求证:四边形ABCD 是平行四边形; (2)求证:OA 2=OE ·OF 、证明:(1)∵EC ∥AB , ∴∠C =∠ABF 、 ∵∠EDA =∠ABF , ∴∠C =∠EDA 、 ∴DA ∥CF 、 ∵EC ∥AB ,∴四边形ABCD 是平行四边形.(2)∵DA ∥CF ,∴△OBF ∽△ODA 、∴OA OF =ODOB 、∵EC ∥AB ,∴△OAB ∽△OED 、∴OE OA =ODOB 、∴OA OF =OE OA, 即OA 2=OE ·OF 、17.(12分)(秦皇岛海港区月考)如图,△ABC 中,CD 是边AB 上的高,且AD CD =CD BD、(1)求证:△ACD ∽△CBD ; (2)求∠ACB 的大小;(3)若AD =3,BD =2,求BC 的长.解:(1)证明:∵CD 是边AB 上的高, ∴∠ADC =∠CDB =90°、 又∵AD CD =CD BD ,∴△ACD ∽△CBD 、 (2)∵△ACD ∽△CBD , ∴∠A =∠BCD 、在△ACD 中,∠ADC =90°,∴∠A +∠ACD =90°、 ∴∠BCD +∠ACD =90°,即∠ACB =90°、 (3)∵AD CD =CDBD, ∴CD 2=AD ·BD =6,即CD =6、 ∴BC =BD 2+CD 2=10、18.(12分)(六盘水中考)如图,在Rt △ACB 中,∠ACB =90°,点O 是AC 边上的一点,以O为圆心,OC 为半径的圆与AB 相切于点D ,连接OD 、(1)求证:△ADO ∽△ACB ;(2)若⊙O 的半径为1,求证:AC =AD ·BC 、解:(1)证明:∵AB 是⊙O 的切线,∴OD ⊥AB 、 ∴∠ADO =90°、 ∵∠ACB =90°, ∴∠ACB =∠ADO 、 又∵∠A =∠A ,∴△ADO ∽△ACB 、(2)由(1)知:△ADO ∽△ACB , ∴AD AC =OD BC、 ∴AD ·BC =AC ·OD 、 又∵OD =1, ∴AC =AD ·BC 、。

自学初中数学资料-相似三角形的性质和判定综合-(资料附答案)

自学初中数学资料-相似三角形的性质和判定综合-(资料附答案)

自学资料一、相似三角形的性质和判定综合【知识探索】1.(1)三角形相似的判定方法①定义法:对应角相等,对应边成比例的两个三角形相似②平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似③判定定理1:如果一个三角形的对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。

④判定定理2:如果一个三角形的对应成比例,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。

⑤判定定理3:如果一个三角形的对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似。

(2)直角三角形相似的判定方法①以上各种判定方法均适用②垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。

【错题精练】例1.如图,在矩形ABCD中,E、F分别是CD、BC上的点.若∠AEF=90°,则一第1页共23页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训定有()A. △ADE∽△ECFB. △ECF∽△AEFC. △ADE∽△AEFD. △AEF∽△ABF【解答】解:在矩形ABCD中,∵∠D=∠C=90°,∠AEF=90°,∴∠DEA+∠CEF=90°,∠DEA+∠DAE=90°,∴∠DAE=∠CEF,∴△ADE∽△ECF.故选:A.【答案】A例2.如图,已知AB、CD分别是半圆O的直径和弦,AD和BC相交于点E,若∠AEC=α,则S△CDE:S△ABE等于()A. sinαB. cosαC. sin2αD. cos2α【答案】D例3.折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F 处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=______.【解答】解:设AD=x,则AB=x+2,∵把△ADE翻折,点A落在DC边上的点F处,第2页共23页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训∴DF=AD,EA=EF,∠DFE=∠A=90°,∴四边形AEFD为正方形,∴AE=AD=x,∵把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,∴DH=DC=x+2,∵HE=1,∴AH=AE-HE=x-1,在Rt△ADH中,∵AD2+AH2=DH2,∴x2+(x-1)2=(x+2)2,整理得x2-6x-3=0,解得x1=3+2√3,x2=3-2√3(舍去),即AD的长为3+2√3.故答案为3+2√3.【答案】3+2√3例4.如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为4,△D′PH的面积为1,则矩形ABCD的面积等于______.【解答】解:∵四边形ABC是矩形,∴AB=CD,AD=BC,设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,∵△A′EP的面积为4,△D′PH的面积为1,∴A′E=4D′H,设D′H=a,则A′E=4a,∵△A′EP∽△D′PH,∴D′HPA′=PD′EA′,∴ax =x4a,∴x2=4a2,∴x=2a或-2a(舍弃),∴PA′=PD′=2a,∵12•a•2a=1,∴a=1,∴x=2,∴AB=CD=2,PE=√22+42=2√5,PH=√12+22=√5,第3页共23页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训∴AD=4+2√5+√5+1=5+3√5,∴矩形ABCD的面积=2(5+3√5)=10+6√5.故答案为10+6√5【答案】10+6√5例5.如图,在正方形ABCD中,AB=2,点E为AB的中点,AF⊥DE于点O,则AO=______.【解答】解:∵四边形ABCD是正方形,∴AD=BC=2,∠DAE=90°,∵AE=EB=1,∴DE=√22+12=√5,∵AO⊥DE,∴12×DE×AO=12×AE×AD,∴AO=2√55.故答案为2√55.【答案】2√55例6.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于BC的中点处.①如图甲,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;②如图乙,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N.求证:△ECN∽△MEN.第4页共23页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训【答案】证明:(1)∵△ABC是等腰直角三角形,∴∠B=45°,∴∠1+∠2=135°又∵△DEF是等腰直角三角形,∴∠3=45°∴∠1+∠4=135°∴∠2=∠4,∵∠B=∠C=45°,∴△BEM∽△CNE;(2)与(1)同理△BEM∽△CNE,∴BECN =EMNE,又∵BE=EC,∴ECCN =EMNE,∴ECEM =CNNE,又∵∠ECN=∠MEN=45°,∴△ECN∽△MEN.例7.如图,△ABC内接于⊙O,AD是边BC上的高,AE是⊙O的直径,连BE.(1)求证:△ABE与△ADC相似;(2)若AB=2BE=4DC=8,求△ADC的面积.【答案】第5页共23页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训例8.如图,AB是⊙O的直径,BE⊥CD于E.(1)求证:AB•BE=BC•BD;(2)若AB=26,CD=24,求sin∠CBD.【答案】(1)证明:连接AD,∵AB是直径,∴∠ADB=90°,∵BE⊥CD∴∠ADB=∠CEB∵∠A=∠C∴△CBE∽△ABD∴ABBC =BD BE∴AB•BE=BC•BD;(2)解:连接DO并延长交⊙O于点F,∵DF是直径,∴∠FCD=90°∴∠F=∠CBD AB=DF=26∴CD=24∴sin∠CBD=sin∠F=CDDF =2426=1213【举一反三】第6页共23页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训第7页 共23页 自学七招之智慧树神拳:知识内容体系化,思维导图来助力 非学科培训1.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,AE ⊥EF ,则S △ABE :S △ECF 等于( )A. 1:2B. 4:1C. 2:1D. 1:4【答案】B2.矩形ABCD 中,AD=2AB=2√2,E 是AD 的中点,Rt ∠FEG 顶点与点E 重合,将∠FEG 绕点E 旋转,角的两边分别交AB ,BC (或它们的延长线)于点M ,N ,设∠AME=α(0°<α<90°),有下列结论:①BM=CN ;②AM+CN=√2;③S △EMN =1sin 2α,其中正确的是( )A. ①B. ②③C. ①③D. ①②③【解答】解:在矩形ABCD 中,AD=2AB ,E 是AD 的中点, 作EF ⊥BC 于点F ,则有AB=AE=EF=FC ,∵∠AEM+∠DEN=90°,∠FEN+∠DEN=90°,∴∠AEM=∠FEN ,在Rt △AME 和Rt △FNE 中,{∠AEM =∠FENAE =EF ∠MAE =∠NFE,∴Rt △AME ≌Rt △FNE ,∴AM=FN ,∴MB=CN ,故①正确;∴CF=AM+CN=12BC=√2,当点M 在AB 的延长线上时,AM-CN=√2,故②错误;∵Rt△AME≌Rt△FNE,∴EM=EN,∴△EMN是等腰直角三角形,∵∠AME=α,∴sinα=AEEM,∴EM=√2sinα,∴S△EMN=12EM2=1sin2α,故③正确,故选:C.【答案】C3.如图,AB是⊙的直径,CD是∠ACB的平分线交⊙O于点D,过D作⊙O的切线交CB的延长线于点E.若AB=4,∠E=75°,则CD的长为.【答案】2√34.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE×CA.(1)求证:BC=CD(2)分别延长AB,DC交于点P,若PB=OB,CD=2√2,求⊙O的半径.【答案】(1)证明:∵DC2=CE•CA,∴DCCE =CADC,而∠ACD=∠DCE,第8页共23页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训∴△CAD∽△CDE,∴∠CAD=∠CDE,∵∠CAD=∠CBD,∴∠CDB=∠CBD,∴BC=DC;(2)解:连结OC,如图,设⊙O的半径为r,∵CD=CB,∴CD̂=CB̂,∴∠BOC=∠BAD,∴OC∥AD,∴PCCD =POOA=2rr=2,∴PC=2CD=4√2,∵∠PCB=∠PAD,∠CPB=∠APD,∴△PCB∽△PAD,∴PCPA =PBPD,即4√23r=r6√2,∴r=4,即⊙O的半径为4.5.如图,AB⊥BC,DC⊥BC,E是BC上一点,使得AE⊥DE;(1)求证:△ABE∽△ECD;(2)若AB=4,AE=BC=5,求CD的长;(3)当△AED∽△ECD时,请写出线段AD、AB、CD之间数量关系,并说明理由.第9页共23页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训【答案】(1)证明:∵AB⊥BC,DC⊥BC,∴∠B=∠C=90°,∠BAE+∠AEB=90°,∵AE⊥DE,∴∠AED=90°,∴∠AEB+∠DEC=90°,∴∠DEC=∠BAE,∴△ABE∽△ECD;(2)解:Rt△ABE中,∵AB=4,AE=5,∴BE=3,∵BC=5,∴EC=5-3=2,由(1)得:△ABE∽△ECD,∴ABBE =ECCD,∴43=2CD,∴CD=32;(3)解:线段AD、AB、CD之间数量关系:AD=AB+CD;理由是:过E作EF⊥AD于F,∵△AED∽△ECD,∴∠EAD=∠DEC,∵∠AED=∠C,∴∠ADE=∠EDC,∵DC⊥BC,∴EF=EC,∵DE=DE,∴Rt△DFE≌Rt△DCE(HL),∴DF=DC,同理可得:△ABE≌△AFE,∴AF=AB,∴AD=AF+DF=AB+CD.6.已知,正方形DEFG内接于△ABC中,且点E、F在BC上,点D,G分别在AB,AC上.第10页共23页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训(1)如图①,若△ABC是直角三角形,∠A=90°,AB=4,AC=3,求正方形的边长;(2)如图②,若S△ADG=1,S△BDE=3,S△FCG=1,求正方形的边长.【答案】解:(1)设正方形DEFG的边长是x,∵△ABC是直角三角形,∠A=90°,AB=4,AC=3,∴由勾股定理得:BC=5,过A作AM⊥BC于M,交DG于N,由三角形面积公式得:12AB×AC=12BC×AM,∵AB=4,AC=3,BC=5,∴AM=2.4,∵四边形DEFG是正方形,∴DG=GF=EF=DE=MN=x,DG∥BC,∴△ADG∽△ABC,∴DGBC =AN AM,∴x5=2.4−x2.4,x=6037,即正方形DEFG的边长是6037;(2)过A作AM⊥BC于M,交DG于N,设正方形DEFG的边长是a,AN=b,∵四边形DEFG是正方形,∴DG=GF=EF=DE=MN=a,DG∥BC,∵S△ADG=1,S△BDE=3,S△FCG=1,∴12ab=1,12BE•a=3,12CF•a=1,∴BE=3b,CF=b,∴S△ADG+S△BED+S CFG=12ab+32ab+12ab=1+3+1=5,∴ab=2,∴b=2a①,=1(BE+EF+CF)×(AN+MN)-(S△ADG+S△BDE+S△CFG)2(a+4b)(a+b)-5=a2,=12∴a=2b②,由①②得:a=2,即正方形的边长是2.7.如图,在长方形ABCD中,点E,F分别是BC,DC上的动点.沿EF折叠△CEF,使点C的对称点G落在AD上,若AB=3,BC=5,求CF的取值范围.【答案】解:∵四边形ABCD是矩形,∴∠C=90°,BC=AD=5,CD=AB=3,当点D与F重合时,CF最大值为3,如图1所示:当B与E重合时,CF最小,如图2所示:在Rt△ABG中,∵BG=BC=5,AB=3,∴AG=√BG2−AB2=4,∴DG=AD-AG=1,设CF=FG=x,在Rt△DFG中,∵DF2+DG2=FG2,∴(3-x)2+12=x2,,∴x=53∴5≤CF≤3.≤CF≤3.故答案为:538.如图,在⊙O中,直径AB垂直于弦CD,垂足为点E,点F在AC上从A点向C点运动(点A、C 除外),AF与DC的延长线相交于点M.(1)求证:△AFD∽△CFM;(2)点F在运动中是否存在一个位置使△FMD为等腰三角形?若存在,给予证明;若不存在,请说明理由.【答案】1.如图,正方形ABCD中,E为CD的中点,EF⊥AE,交BC于点F,则∠1与∠2的大小关系为()A. ∠1>∠2B. ∠1<∠2C. ∠1=∠2D. 无法确定【解答】解:∵∠AED+∠CEF=90°,∠DAE+∠ADE=90°,∴∠DAE=∠CEF,∵∠ADE=∠ECF=90°,又∵∠ADE=∠AEF,∴△ADE∽△AEF,∴∠1=∠2.【答案】C2.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交CD于点F,交AD的延长线于点E,若AB=4,BM=2,则△DEF的面积为()A. 9B. 8C. 15D. 14.5【答案】A3.如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1、S2的大小关系是()A. S1=S2B. S1>S2C. S1<S2D. 3S1=2S2S矩形AEFC,即S1=S2,【解答】解:矩形ABCD的面积S=2S△ABC,而S△ABC=12故选:A.【答案】A4.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,且E为AD的中点,FC=3DF,连接EF并延长交BC的延长线于点G(1)求证:△ABE∽△DEF;(2)若正方形的边长为4,求△BEG的面积.=FCDF=3,∴CG=6,∴BG=BC+CG=10,∴△BEG的面积=12×BG×AB=20.5.如图,在正方形ABCD中,AB=4,点P、Q分别在直线CB与射线DC上(点P不与点C、点B重合),且保持∠APQ=90°,CQ=1,则线段BP的长为______.【解答】解:分三种情况:设BP=x,①当P在线段BC上时,如图1,∵四边形ABCD是正方形,∴∠B=∠C=90°,∴∠BAP+∠APB=90°,∵∠APQ=90°,∴∠APB+∠CPQ=90°,∴∠BAP=∠CPQ,∴△ABP∽△PCQ,∴ABBP=PCCQ,∴4x=4-x1,∴x1=x2=2,∴BP=2;②当P在CB的延长线上时,如图2,同瑆得:△ABP∽△PCQ,6.已知,如图,在圆O中,AB=CD。

人教版八年级数学上册 第27章 相似专题练习:相似三角形的基本模型(含答案)

人教版八年级数学上册 第27章 相似专题练习:相似三角形的基本模型(含答案)

小专题(三) 相似三角形的基本模型下面仅以X 字型.A 字型.双垂型.M 字型4种模型设置练习,帮助同学们认识相似三角形的基本模型,并能从复杂的几何图形中分辨出相似三角形,进而解决问题. 模型1 X 字型及其变形(1)如图1,对顶角的对边平行,则△ABO ∽△DCO ;(2)如图2,对顶角的对边不平行,且∠OAB =∠OCD ,则△ABO ∽△CDO .1.(滨州中考)如图,矩形ABCD 中,AB =3,BC =6,点E 在对角线BD 上,且BE =1.8,连接AE 并延长交DC 于点F ,则CF CD =13.2.如图,已知∠ADE =∠ACB ,BD =8,CE =4,CF =2,求DF 的长.解:∵∠ADE =∠ACB , ∴180°-∠ADE =180°-∠ACB , 即∠BDF =∠ECF . 又∵∠BFD =∠EFC , ∴△BDF ∽△ECF . ∴BD CE =DF CF ,即84=DF 2. ∴DF =4.模型2 A 字型及其变形(1)如图1,公共角所对应的边平行,则△ADE ∽△ABC ;(2)如图2,公共角的对边不平行,且有另一对角相等,则△ADE ∽△ABC ;(3)如图3,公共角的对边不平行,两个三角形有一条公共边,且有另一对角相等,则△ACD ∽△ABC .3.(潍坊中考)如图,在△ABC 中,AB ≠AC ,D ,E 分别为边AB ,AC 上的点,AC =3AD ,AB =3AE ,点F 为BC 边上一点,添加一个条件:答案不唯一,如:∠A =∠BDF ,∠A =∠BFD ,∠ADE =∠BFD ,∠EDA =∠BFD ,DF ∥AC ,BD AE =BF ED ,BD DE =BF AE 等,可以使得△FDB 与△ADE相似.(只需写出一个)4.(福州中考)如图,在△ABC 中,AB =AC =1,BC =5-12,在AC 边上截取AD =BC ,连接BD .(1)通过计算,判断AD 2与AC ·CD 的大小关系;(2)求∠ABD 的度数.解:(1)∵AD =BC =5-12, ∴AD 2=(5-12)2=3-52. ∵AC =1, ∴CD =1-5-12=3-52. ∴AD 2=AC ·CD . (2)∵AD 2=AC ·CD , ∴BC 2=AC ·CD ,即BC AC =CD BC .又∵∠C =∠C ,∴△ABC ∽△BDC . ∴AB BD =AC BC. 又∵AB =AC ,∴BD =BC =AD .∴∠A =∠ABD ,∠ABC =∠C =∠BDC .设∠A=∠ABD=x,则∠BDC=∠A+∠ABD=2x,∴∠ABC=∠C=∠BDC=2x.∴∠A+∠ABC+∠C=x+2x+2x=180°.解得x=36°.∴∠ABD=36°.模型3双垂型直角三角形被斜边上的高分成两个直角三角形与原三角形相似,即△ACD∽△ABC∽△CBD.5.如图,在△ABC中,∠C=90°,D是AC上一点,DE⊥AB于点E,若AC=8,BC=6,DE=3,则AD的长为(C)A.3B.4C.5D.66.如图,在Rt△ABC中,CD⊥AB,D为垂足,且AD=3,AC=35,则斜边AB的长为(B) A.3 6 B.15C.9 5 D.3+3 57.如图,△ABC中,∠ACB=90°,CD是斜边AB上的高,AD=9,BD=4,那么CD=6,AC=313.模型4M字型及其变形(1)如图1,Rt△ABD与Rt△BCE的斜边互相垂直,则有△ABD∽△CEB;(2)如图2,点B,C,E在同一条直线上,∠ABC=∠ACD,则再已知一组条件,可得△ABC与△DCE相似.8.如图,已知AB ⊥BD ,ED ⊥BD ,C 是线段BD 的中点,且AC ⊥CE ,ED =1,BD =4,求AB 的长.解:∵AB ⊥BD ,ED ⊥BD , ∴∠B =∠D =90°. ∴∠ACB +∠A =90°. ∵AC ⊥CE ,∴∠ACB +∠ECD =90°. ∴∠A =∠ECD . ∴△ABC ∽△CDE . ∴AB CD =BC DE. 又∵C 是线段BD 的中点,ED =1,BD =4,∴BC =CD =2. ∴AB =4.9.如图,在正方形ABCD 中,E 为边AD 的中点,点F 在边CD 上,且∠BEF =90°.(1)求证:△ABE ∽△DEF ;(2)若AB =4,延长EF 交BC 的延长线于点G ,求BG 的长.解:(1)证明:∵四边形ABCD 为正方形, ∴∠A =∠D =90°.∴∠ABE +∠AEB =90°. ∵∠BEF =90°,∴∠AEB +∠DEF =90°. ∴∠ABE =∠DEF . ∴△ABE ∽△DEF .(2)∵AB =AD =4,E 为AD 的中点,∴AE=DE=2.由(1)知,△ABE∽△DEF,∴ABDE=AEDF,即42=2DF.∴DF=1.∴CF=3. ∵ED∥CG,∴△EDF∽△GCF.∴EDCG=DFCF,即2GC=13.∴GC=6.∴BG=BC+GC=10.。

人教版八年级数学上册 27.2 相似三角形(1)同步练习(附答案解析)

人教版八年级数学上册 27.2 相似三角形(1)同步练习(附答案解析)

27.2相似三角形同步练习(一)一、单项选择题(本大题共有15小题,每小题3分,共45分)1、如图,在中,已知于点,则图中相似三角形共有( ).A. 对B. 对C. 对D. 对2、如图,已知直线,直线、与、、分别交于点、、、、、,,,,则的值是().A.B.C.D.3、如图,已知,,则( ).A.B.C.D.4、同一时刻,身高1.6米的小华在阳光下的影长为0.8米,一棵树的影长为4.8米,则这棵树的高度为( ).A. 米B. 米C. 米D. 米5、下列四组线段中,不成构成比例线段的是( ).A.B.C.D.6、若,则可得比例式().A.B.C.D.7、在运动会上,裁判员测得小明与小华跳远成绩分别是米,厘米,则线段与的比值是().A.B.C.D.8、若将的三个顶点的纵坐标保持不变,横坐标分别乘以,依次连接新的这些点,则所得三角形与原三角形的位置关系是()A. 原三角形向轴的负方向平移一个单位即为所得三角形B. 关于原点对称C. 关于轴对称D. 关于轴对称9、如图,在中,,若,则()A.B.C.D.10、如果一个直角三角形的两条边长分别是和,另一个与它相似的直角三角形边长分别是和及,那么的值()A. 有无数个B. 有个以上,但有限C. 可以有个D. 只有个11、与是位似图形,且与的位似比是,已知的面积是,则的面积是()A.B.C.D.12、如图,为测量学校旗杆的高度,小东用长为的竹竿作测量工具,移动竹竿,使竹竿顶端与旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距,与旗杆相距,则旗杆的高为().A.B.C.D.13、三角尺在灯泡的照射下在墙上形成的影子如图所示.若,则这个三角尺的周长与它在墙上形成的影子的周长的比是()A.B.C.D.14、若,且,则的值是()A.B.C.D.15、如图,已知,那么添加下列一个条件后,仍无法判定的是()A.B.C.D.二、填空题(本大题共有5小题,每小题5分,共25分)16、已知两相似多边形的相似比为,则它们对应边的比等于_________,周长比等于______,面积的比等于______.17、测量旗杆高度的方法都是依据___________的原理而设计的.18、引理:平行于三角形一边,并且和其他两边相交的直线,所的三边与原三角形三边对应成比例.即,已知:如图,,交于点、于点.则有.19、已知在坐标平面内三顶点的坐标分别为、、.以为位似中心,画出与相似(与图形同向),且相似比是的三角形,它的三个对应顶点的坐标分别是( , )、( , )、( , )20、已知,则.(分数写成a/b形式)三、解答题(本大题共有3小题,每小题10分,共30分)21、小李家到学校的距离是,在本市地图上的距离为,问这张地图的比例尺是多少?22、如图,是一块锐角三角形的材料,边,高,要把它加工成正方形零件,使正方形的一边在上,其余两个顶点分别在、上,这个正方形零件的边长是多少.23、如图,,是的内切圆,分别切于点,连接.的延长线交于点,.(1) 求证:四边形为正方形.(2) 求的半径.(3) 求的长.27.2相似三角形同步练习(一) 答案部分一、单项选择题(本大题共有15小题,每小题3分,共45分)1、如图,在中,已知于点,则图中相似三角形共有( ).A. 对B. 对C. 对D. 对【答案】B【解析】解:,,,,.故正确答案是对.2、如图,已知直线,直线、与、、分别交于点、、、、、,,,,则的值是().A.B.C.D.【答案】C【解析】解:,,,,,,,.故正确答案是.3、如图,已知,,则( ).A.B.C.D.【答案】B【解析】解:,.,,即,,.故正确答案是.4、同一时刻,身高1.6米的小华在阳光下的影长为0.8米,一棵树的影长为4.8米,则这棵树的高度为( ).A. 米B. 米C. 米D. 米【答案】D【解析】解:根据题意得人的身高和人的影长与树的高度和影长成比例得到树的高度为(米).故正确答案是9.6米.5、下列四组线段中,不成构成比例线段的是( ).A.B.C.D.【答案】B【解析】解:,这四条线段是能构成比例的线段.,这四条线段是能构成比例的线段.,这四条线段是能构成比例的线段.,这四条线段不是能构成比例的线段.故正确答案是.6、若,则可得比例式().A.B.C.D.【答案】A【解析】解:把等积式,转化成比例式,可以是:、、、、等.故正确答案为:.7、在运动会上,裁判员测得小明与小华跳远成绩分别是米,厘米,则线段与的比值是().A.B.C.D.【答案】B【解析】解:求两条线段的比值时,两条线段的长度单位必须统一故正确答案为.8、若将的三个顶点的纵坐标保持不变,横坐标分别乘以,依次连接新的这些点,则所得三角形与原三角形的位置关系是()A. 原三角形向轴的负方向平移一个单位即为所得三角形B. 关于原点对称C. 关于轴对称D. 关于轴对称【答案】D【解析】解:∵横坐标都乘以,纵坐标不变,∴对应点的横坐标互为相反数,纵坐标不变,∴对应点关于轴对称,∴所得图形关于轴对称,9、如图,在中,,若,则()A.B.C.D.【答案】C【解析】解:,.10、如果一个直角三角形的两条边长分别是和,另一个与它相似的直角三角形边长分别是和及,那么的值()A. 有无数个B. 有个以上,但有限C. 可以有个D. 只有个【答案】C【解析】解:根据题意,两条边长分别是和的直角三角形有两种可能,一种是和为直角边,那么根据勾股定理可知斜边为;另一种可能是是直角边,而是斜边,那么根据勾股定理可知另一条直角边为.所以另一个与它相似的直角三角形也有两种可能,第一种是,解得;第二种是,解得.所以可以有个.11、与是位似图形,且与的位似比是,已知的面积是,则的面积是()A.B.C.D.【答案】A【解析】解:与是位似图形,且与的位似比是,的面积是,与的面积比为,则的面积是.12、如图,为测量学校旗杆的高度,小东用长为的竹竿作测量工具,移动竹竿,使竹竿顶端与旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距,与旗杆相距,则旗杆的高为().A.B.C.D.【答案】B【解析】解:因为竹竿和旗杆均垂直于地面,所以构成两个相似三角形,若设旗杆高米,则,.13、三角尺在灯泡的照射下在墙上形成的影子如图所示.若,则这个三角尺的周长与它在墙上形成的影子的周长的比是()A.B.C.D.【答案】C【解析】解:如图,,,三角尺与影子是相似三角形,三角尺的周长与它在墙上形成的影子的周长的比为.14、若,且,则的值是()A.B.C.D.【答案】A【解析】解:设,则,又,则,得,即,所以.15、如图,已知,那么添加下列一个条件后,仍无法判定的是()A.B.C.D.【答案】C【解析】解:,,中两边分别不是夹这两个角的边,不能证明两个三角形相似.其他选项均可以证明,故为正确答案.二、填空题(本大题共有5小题,每小题5分,共25分)16、已知两相似多边形的相似比为,则它们对应边的比等于_________,周长比等于______,面积的比等于______.【答案】,,【解析】已知两相似多边形的相似比为,则它们对应边的比等于,周长比等于,面积比等于.故答案为:,,.17、测量旗杆高度的方法都是依据___________的原理而设计的.【答案】相似三角形的对应边成比例【解析】解:测量旗杆高度的方法都是依据相似三角形对应边成比例的原理而设计的.故答案为:相似三角形的对应边成比例.18、引理:平行于三角形一边,并且和其他两边相交的直线,所的三边与原三角形三边对应成比例.即,已知:如图,,交于点、于点.则有.【答案】截得的三角形【解析】解:平行线分线段成比例定理有一个推论是:平行于三角形一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.故答案为截得的三角形.19、已知在坐标平面内三顶点的坐标分别为、、.以为位似中心,画出与相似(与图形同向),且相似比是的三角形,它的三个对应顶点的坐标分别是( , )、( , )、( , )【答案】-6、0、3、3、0、-3【解析】解:把原三角形的三边对应的缩小或放大一定的比例即可得到对应的相似图形.所画图形如下所示:它的三个对应点的坐标分别是:、、.20、已知,则.(分数写成a/b形式)【答案】6【解析】解:由比例的性质,得,.三、解答题(本大题共有3小题,每小题10分,共30分)21、小李家到学校的距离是,在本市地图上的距离为,问这张地图的比例尺是多少?【解析】解:,根据比例尺图上距离:实际距离得这张地图的比例尺是.即它的比例尺是.答:这张地图的比例尺是.22、如图,是一块锐角三角形的材料,边,高,要把它加工成正方形零件,使正方形的一边在上,其余两个顶点分别在、上,这个正方形零件的边长是多少.【解析】解:设正方形的边长为,则,是正方形,,,,即,解得,所以,这个正方形零件的边长是.23、如图,,是的内切圆,分别切于点,连接.的延长线交于点,.(1) 求证:四边形为正方形.【解析】证明:是的内切圆,分别切于点,,四边形是矩形,,四边形为正方形.(2) 求的半径.【解析】解:由题意可得:,,,设的半径为,则,解得:,故的半径为.(3) 求的长.【解析】解:的半径为,,,,设,在中,,解得:,.。

人教版八年级数学上册 27.2 相似三角形(3)同步练习(附答案解析)

人教版八年级数学上册 27.2 相似三角形(3)同步练习(附答案解析)

27.2相似三角形同步练习(三)一、单项选择题(本大题共有15小题,每小题3分,共45分)1、如果,则下列各式中不成立的是()A.B.C.D.2、若四条线段成比例,且则线段的长为()A.B.C.D.3、如图,四边形的对角线、相交于点,且将这个四边形分成①、②、③、④四个三角形.若,则下列结论中一定正确的是( )A. ②和④相似B. ①和④相似C. ①和③相似D. ①和②相似4、已知,点、、对应点分别是、、,,等于( )A.B.C.D.5、若将的三个顶点的纵坐标保持不变,横坐标分别乘以,依次连接新的这些点,则所得三角形与原三角形的位置关系是()A. 原三角形向轴的负方向平移一个单位即为所得三角形B. 关于原点对称C. 关于轴对称D. 关于轴对称6、如图,已知,与相交于点,,那么下列式子正确的是()A.B.C.D.7、如图,直线,两直线和与分别相交于点和点.下列各式中,不一定成立的是()A.B.C.D.8、如图,已知,,,,则的值为()A.B.C.D.9、以下列长度(同一单位)为长的四条线段中,不成比例的是()A.B.C.D.10、若,则等于()A.B.C.D.11、如图,在中,,以为直径的交于点.过点作,在上取一点,使,连接.对于下列结论:①;②;③;④为的切线,一定正确的结论全部包含其中的选项是()A. ①②B. ①②③C. ①④D. ①②④12、阳光通过窗口照射到室内,在地面上留下米的亮区(如图所示),已知亮区到窗口下的墙角的距离米,窗口高米,则窗口底边离地面的高为()A. 米B. 米C. 米D. 米13、如图,一个斜边长为的红色三角形纸片,一个斜边长为的蓝色三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形,则红、蓝两张纸片的面积之和是()A.B.C.D.14、如图,、分别是的边、上的点,,若,则的值为()A.B.C.D.15、如图,在平行四边形中,,,的平分线交于点,交的延长线于点,,垂足为.若,则的面积是()A.B.C.D.二、填空题(本大题共有5小题,每小题5分,共25分)16、如图,在平行四边形中,,与相交于点,则_______.17、将边长为的正三角形各边三等分,以这六个分点为顶点构成一个正六边形,则这个正六边形的面积为_________.18、如图,已知,,,且,则.19、已知在坐标平面内三顶点的坐标分别为、、.以为位似中心,画出与相似(与图形同向),且相似比是的三角形,它的三个对应顶点的坐标分别是(, )、(, )、(, )20、如图,在中,,,为边上的高.动点从点出发,沿→方向以的速度向点运动.设的面积为,矩形的面积为,运动时间为秒(),则秒时,.三、解答题(本大题共有3小题,每小题10分,共30分)21、阳光下,小亮测量“望月阁”的高.(如图),由于观测点与“望月阁”底部间的距离不易测得,因此他首先在直线上点处固定平放一平面镜,在镜面上做了一个标记,小亮看着镜面上的标记,他来回走动,走到点时,看到“望月阁”顶端点在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度米,米.然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:小亮从点沿方向走了米,到达“望月阁”影子的末端点处,此时,测得小亮身高的影长米,米.已知,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高的长度.22、如图,已知、分别是等边的边、上的点,,,,求的边长.23、如图,是一块锐角三角形的材料,边,高,要把它加工成正方形零件,使正方形的一边在上,其余两个顶点分别在、上,这个正方形零件的边长是多少.27.2相似三角形同步练习(三) 答案部分一、单项选择题(本大题共有15小题,每小题3分,共45分)1、如果,则下列各式中不成立的是()A.B.C.D.【答案】D【解析】解:根据题意,可设,,,选项正确,不能选;,选项正确,不能选;,选项正确,不能选;,选项错误;故正确答案为:.2、若四条线段成比例,且则线段的长为()A.B.C.D.【答案】B【解析】解:根据题意得:,即,解得,故答案为:.3、如图,四边形的对角线、相交于点,且将这个四边形分成①、②、③、④四个三角形.若,则下列结论中一定正确的是( )A. ②和④相似B. ①和④相似C. ①和③相似D. ①和②相似【答案】C【解析】解:,又,.故正确答案是:①和③相似.4、已知,点、、对应点分别是、、,,等于( )A.B.C.D.【答案】A【解析】解:,,故选:.5、若将的三个顶点的纵坐标保持不变,横坐标分别乘以,依次连接新的这些点,则所得三角形与原三角形的位置关系是()A. 原三角形向轴的负方向平移一个单位即为所得三角形B. 关于原点对称C. 关于轴对称D. 关于轴对称【答案】D【解析】解:∵横坐标都乘以,纵坐标不变,∴对应点的横坐标互为相反数,纵坐标不变,∴对应点关于轴对称,∴所得图形关于轴对称,6、如图,已知,与相交于点,,那么下列式子正确的是()A.B.C.D.【答案】B【解析】解:,,,.7、如图,直线,两直线和与分别相交于点和点.下列各式中,不一定成立的是()A.B.C.D.【答案】C【解析】解:直线,,,,故选项不一定成立.故正确答案是:8、如图,已知,,,,则的值为()A.B.C.D.【答案】D【解析】解:,,,即,解得.9、以下列长度(同一单位)为长的四条线段中,不成比例的是()A.B.C.D.【答案】B【解析】解:,故本选项正确;,故本选项正确;,故本选项错误;,故本选项正确.10、若,则等于()B.C.D.【答案】A【解析】解:,,.11、如图,在中,,以为直径的交于点.过点作,在上取一点,使,连接.对于下列结论:①;②;③;④为的切线,一定正确的结论全部包含其中的选项是()A. ①②B. ①②③C. ①④【答案】D【解析】解:为直径,,,而,,所以①正确;,,而,,,,,,所以②正确;不能确定为直角三角形,不能确定等于,与不能确定相等,所以③错误;,点在以为直径的圆上,,,而,,为的切线,所以④正确.综上,正确的有①②④.12、阳光通过窗口照射到室内,在地面上留下米的亮区(如图所示),已知亮区到窗口下的墙角的距离米,窗口高米,则窗口底边离地面的高为()A. 米B. 米C. 米D. 米【答案】A【解析】解:连接、,光是沿直线传播的,,,,即,解得:.13、如图,一个斜边长为的红色三角形纸片,一个斜边长为的蓝色三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形,则红、蓝两张纸片的面积之和是()A.B.C.D.【答案】D【解析】解:如图,正方形的边,,,,,,设,则,,,在中,,即,解得,红、蓝两张纸片的面积之和为.14、如图,、分别是的边、上的点,,若,则的值为()A.B.C.D.【答案】D【解析】解:,,,,,,,,.故正确答案是:15、如图,在平行四边形中,,,的平分线交于点,交的延长线于点,,垂足为.若,则的面积是()A.B.C.D.【答案】B【解析】解:平分,;又四边形是平行四边形,,,,,垂足为,.在中,,,,,;.,,,.,,,则.二、填空题(本大题共有5小题,每小题5分,共25分)16、如图,在平行四边形中,,与相交于点,则_______.【答案】【解析】解:四边形是平行四边形,,,,,,,又两个三角形以为顶点时高相同,,故正确答案为:.17、将边长为的正三角形各边三等分,以这六个分点为顶点构成一个正六边形,则这个正六边形的面积为_________.【答案】【解析】解:如图,、、、、、分别为各边的三等分点,,,为等边三角形,,,,,为等边三角形,同理,都是边长为的等边三角形,.正确答案是:.18、如图,已知,,,且,则.【答案】10【解析】解:过点作的平行线,分别交于点、交于点、交于点.,,,,,,,四边形、、都是平行四边形,.,即,,.,,即,,,,.,.,,,,,,..故答案为:.19、已知在坐标平面内三顶点的坐标分别为、、.以为位似中心,画出与相似(与图形同向),且相似比是的三角形,它的三个对应顶点的坐标分别是(, )、(, )、(, )【答案】-6、0、3、3、0、-3【解析】解:把原三角形的三边对应的缩小或放大一定的比例即可得到对应的相似图形.所画图形如下所示:它的三个对应点的坐标分别是:、、.20、如图,在中,,,为边上的高.动点从点出发,沿→方向以的速度向点运动.设的面积为,矩形的面积为,运动时间为秒(),则秒时,.【答案】6【解析】解:中,,,为边上的高,,又,则,,,,,,,,,解得.三、解答题(本大题共有3小题,每小题10分,共30分)21、阳光下,小亮测量“望月阁”的高.(如图),由于观测点与“望月阁”底部间的距离不易测得,因此他首先在直线上点处固定平放一平面镜,在镜面上做了一个标记,小亮看着镜面上的标记,他来回走动,走到点时,看到“望月阁”顶端点在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度米,米.然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:小亮从点沿方向走了米,到达“望月阁”影子的末端点处,此时,测得小亮身高的影长米,米.已知,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高的长度.【解析】解:,,由题意得:,,故,则,即解得:答:“望月阁”的高的长度为.22、如图,已知、分别是等边的边、上的点,,,,求的边长.【解析】解:为等边三角形,,.设的边长,那么,.,,.,,..又,....即的边长是.23、如图,是一块锐角三角形的材料,边,高,要把它加工成正方形零件,使正方形的一边在上,其余两个顶点分别在、上,这个正方形零件的边长是多少.【解析】解:设正方形的边长为,则,是正方形,,,,即,解得,所以,这个正方形零件的边长是.。

相似三角形的判定及习题精讲(含答案)

相似三角形的判定及习题精讲(含答案)

14.75或27, 提示:当小多边形的周长为45时,大多边形的周长为 ×45=75;当大多边形的周长为45时,小多边形的周长为 ×45=27。 15.100cm和40cm
(二)选择题: 1. D 2.A 。 提示:过E作EG//AD交BD于G,则 = = ,设BG=2k, GD=3k, 则BD=5k, CD=15k,
A、 B、 C、 D、
6.正方形ABCD中,E是AD中点,BM⊥CE于M,AB=6cm, 则BM的长为 ( )。
A、12 cm B、
cm C、3 cm D、 cm 7.要把一个三角形的面积扩大到原来面积的8倍,而它的形状不变, 那么它的边长要增大到原来的( )倍。
A、2 B、4 C、2 D、64 8.梯形ABCD中,AD//BC,AC、BD交于E点,SΔADE∶SΔADC=1∶3, 则SΔADE∶SΔDBC=( )。 A、1∶3 B、1∶4 C、1∶5 D、1∶6 (三)已知:如图,在ΔABC中,AD为中线,E在AB上,AE=AC,CE交 AD于F,EF∶FC=3∶5,
(五)略 (六)提示:过点D作DM//AC交BC于M,证ΔBDM∽ΔBAC及 ΔQDM∽ΔQBD,通过等比代换可得。
(七)本题由正方形在三角形中的位置不同引起分类讨论。提示如 下: 解:直角三角形内接正方形有两种不同的位置。 如下图:
(1)如图(1),作CP⊥AB于P,交GF于H,则CH⊥GF, ∵ GF//AB, ∴ ΔCGF∽ΔCAB, ∴ = , ∵ ∠ACB=90°,AC=8,BC=6由勾股定理得AB=10, ∵ AC·BC=AB·CP, ∴ CP= = = , 设GF=x, 则CH=
∵ EG//PD,∴ = = =
3.C 4. A 5.D
6.B。 提示:如图,易证ΔBMC∽ΔCDE, ∵ ED=

相似三角形性质与判定专项练习30题(有答案)

相似三角形性质与判定专项练习30题(有答案)

相似三角形性质与判定专项练习30题(有答案)1.在三角形ABC中,点D在边BC上,且∠BAC=∠DAG,∠XXX∠BAD。

证明:=。

当GC⊥BC时,证明:∠BAC=90°。

2.在三角形ABC中,∠ACB=90°,点D在边BC上,CE⊥AB,CF⊥AD,E、F分别是垂足。

证明:AC^2=AF•AD。

联结EF,证明:AE•DB=AD•EF。

3.在三角形ABC中,PC平分∠ACB,PB=PC。

证明:△APC∽△ACB。

若AP=2,PC=6,求AC的长。

4.在平行四边形ABCD中,过B作BE⊥CD,垂足为点E,连接AE,F为AE上一点,且∠XXX∠C。

证明:△ABF∽△EAD。

若AB=4,∠BAE=30°,求AE的长。

5.在三角形ABC中,∠ABC=2∠C,BD平分∠ABC。

证明:AB•BC=AC•CD。

6.在直角三角形ABC中,AC=BC,点E、F在AB上,∠ECF=45°,设△ABC的面积为S。

说明AF•BE=2S的理由。

7.在等边三角形ABC中,边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P。

若AE=CF,证明:AF=BE,并求∠APB的度数。

若AE=2,试求AP•AF的值。

若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长。

8.在钝角三角形ABC中,AD,BE是边BC上的高。

证明。

9.在三角形ABC中,AB=AC,DE∥BC,点F在边AC 上,DF与BE相交于点G,且∠XXX∠ABE。

证明:(1)△DEF∽△BDE;(2)DG•DF=DB•EF。

10.在等边三角形ABC、△DEF中,点D为AB的中点,E在BC上运动,DF和EF分别交AC于G、H两点,BC=2.问E在何处时CH的长度最大?11.在AB和CD交于点O的图形中,当∠A=∠C时,证明:OA•OB=OC•OD。

12.在等边三角形△AEC中,以AC为对角线做正方形ABCD(点B在△AEC内,点D在△AEC外)。

相似三角形的判定与性质练习题(附答案)

相似三角形的判定与性质练习题(附答案)

相似三角形的判定与性质练习题一、单选题1.如果两个相似三角形的相似比是1:2, 那么这两个相似三角形的面积比是( ) A.2:1 B. 1:2C.1:2D.1:42.如图,点D 是△ABC 的边AB 上的一点,过点D 作BC 的平行线交AC 于点E,连接BE,过点D 作BE 的平行线交AC 于点F,则下列结论错误的是( )A. AD AE BD EC= B. AF DF AE BE= C. AE AF EC FE= D. DE AF BC FE = 3.下列四条线段中,不能组成比例线段的是( )A.3,6,2,4a b c d ====B.1,2,3,6a b c d ====C.4,6,5,10a b c d ====D.2,5,23,15a b c d ====4.如图,在ABC ∆中,点D 、E 分别在边AB 、AC 上,下列条件中不能判断ABC AED ~△△ ( )A. AED B ∠=∠B. ADE C ∠=∠C. AD AC AE AB =D. AD AE AB AC= 5.如图27-4-4,在四边形ABCD 中,BD 平分,90,ABC BAD BDC E ∠∠=∠=°为BC 的中点,AE 与BD 相交于点F.若4,30BC CBD =∠=°,则DF 的长为( )A.235B.233C.334D.4356.如图,在中,E是边AD的中点,EC交对角线BD于点F,则:EF FC等于( )A.3:2B.3:1C.1:1D.1:27.如图,点A,B,C,D的坐标分别是(1,7),(11),,(41),,(61),,以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是()A.(60),B.(63),C.(65),D.(42),8.如图,在正方形网格上,若使△ABC∽△PBD,则点P应在处( )A.P1B.P2C.P3D.P49.如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=( )A.1:3B.1:4C.2:3D.1:210.如图,在等边三角形ABC 中,D 、E 分别在AC 、AB 上,且AD ︰AC=1︰3,AE=BE,则有( )A.△AED∽△BEDB.△AED∽△CBDC.△AED∽△ABDD.△BAD∽△BCD11.如图所示,四边形ABCD 是正方形,E 是CD 的中点,P 是BC 边上的一点,下列条件:①∠APB=∠EPC;②∠APE=∠APB;③P 是BC 的中点;④BP:BC=2:3.其中能推出△ABP∽△ECP 的有( )A.4个B.3个C.2个D.1个12.如图,在ABC △中,CB CA =,90ACB ∠︒=,点D 在边BC 上(与,B C 不重合),四边形ADEF 为正方形,过点F 作FG CA ⊥,交CA 的延长线于点G ,连接FB ,交DE 于点Q ,给出以下结论:AC FG =;四边形1:2FAB 四边形CBFG S :S =△③ABC ABF ∠=∠;④2AD FQ AC =,其中正确结论有( ) A.1个 B.2个C.3个D.4个13.如图,点A 在线段BD 上.在BD 的同侧作等腰Rt ABC △和等腰Rt ADE △,CD 与BE ,AE 分别交于点,P M .对于下列结论:① BAE CAD △△;②MP MD MA ME ⋅=⋅;③22CB CP CM =⋅.其中正确的是( )A.①②③B.①C.①②D.②③14.如图,在平行四边形ABCD 中, E 为CD 上一点,连接AE 、BE 、BD ,且AE 、BD 交于点F ,:4:25DEF ABF S S ∆∆=,则:?DE EC = ( ) A. 2:3B. 2:5C. 3:5D. 3?:?2二、证明题15.如图,已知,,B C E 三点在同一条直线上,ABC △与DCE △都是等边三角形.其中线段BD 交AC 于点G ,线段AE 交CD 于点F ,连接GF .求证:(1)ACE BCD ≅△△;(2)AG AF GC FE=. 16.如图,在等边三角形ABC 中,点P 是BC 边上任意一点,AP 的垂直平分线分别交,AB AC 于点,M N .求证:BP CP BM CN ⋅=⋅.17.如图,D BC 已知是边上的中点,且AD AC =,DE BC ⊥,DE BA E 与相交于点,EC AD F 与相交于点.(1)求证:ABC FCD △△;(2)若5FCD S =△,10BC =,求DE 的长18.如图,已知AD 平分BAC ∠, AD 的垂直平分线EP 交BC 的延长线于点P .求证:2.PD PB PC =⋅19.如图,//AB FC ,D 是AB 上一点,DF 交AC 于点E ,DE FE =,分别延长FD 和CB 交于点G(1)求证:ADE CFE ≅△△;(2)若2GB =,4BC =,1BD =,求AB 的长.20.如图,在ABCD 中,,AM BC AN CD ⊥⊥,垂足分别为,M N .求证:(1)AMB AND △△;(2)AM MN AB AC=. 三、解答题21.如图,在4x3的正方形方格中,ABC △和DEC △的顶点都在边长为1的小正方形的顶点上.(1) 填空:ABC ∠= ,BC = ;(2) 判断ABC △和DEC △是否相似,并证明你的结论.22.如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米,点P 从点O 开始沿OA 边向点A 以1厘米/秒的速度移动;点Q 从点B 开始沿BO 边向点O 以1厘米/秒的速度移动.如果P,Q 同时出发,用t(秒)表示移动的时间(0≤t≤6),那么1.设△POQ 的面积为y,求y 关于t 的函数关系式;2.当t 为何值时,△POQ 与△AOB 相似.23.如图,已知矩形ABCD 的一条边8AD =,将矩形ABCD 折叠,使得顶点B 落在CD 边上的P 点处.已知折痕与边BC 交于点O ,连接,,.AP OP OA(1)求证:OCP PDA △△;(2)若OCP △与PDA △的面积比为1:4,求边AB 的长.24.如图,在平面直角坐标系xOy 中,直线3y x =-+与x 轴交于点C ,与直线AD 交于点45(,)33A ,点D 的坐标为(0)1,.(1)求直线AD 的解析式;(2)直线AD 与x 轴交于点B ,若点E 是直线AD 上一动点(不与点B 重合),当BOD △与BCE △相似时,求点E 的坐标. 25.如图,在矩形ABCD 中,12AB = cm ,6BC = cm ,点P 沿AB 边从点A 开始向点B 以2cm/s 的速度移动,点Q 沿DA 边从点D 开始向点A 以1cm/s 的速度移动.如果P ,Q 同时出发,用()t s 表示移动的时间(06t ≤≤),那么:(1)当t 为何值时,QAP △为等腰直角三角形?(2)对四边形QAPC 的面积,提出一个与计算结果有关的结论(3)当t 为何值时,以点Q ,A ,P 为顶点的三角形与ABC △相似?四、填空题26.如图,在直角梯形ABCD 中, 90ABC ∠=,//AD BC ,4AD =,5AB =,6BC =,点P 是AB 上一个动点,当PC PD +的和最小时, PB 的长为__________.27.如图,若AB∥CD,则△__________∽△__________,__________=__________=AO CO.28.如图,在等边三角形ABC 中,点D 、E 、F 分别在边AB 、BC 、CA 上,且90ADF BED CFE ∠=∠=∠=︒,则DEF ∆与ABC ∆的面积之比为__________ 29.已知578a b c ==,且329a b c -+=,则243a b c +-的值为 . 30.如图,已知在Rt ABC △中,5,3AB BC ==,在线段AB 上取一点D ,作DE AB ⊥交AC 于E ,将ADE △沿DE 析叠,设点A 落在线段BD 上的对应点为11,A DA 的中点为,F 若1FEA FBE △△,则AD= .31.已知:如图,在△ABC 中,点A 1,B 1,C 1分别是BC 、AC 、AB 的中点,A 2,B 2,C 2分别是B 1C 1,A 1C 1,A 1B 1的中点,依此类推….若△ABC 的周长为1,则△A n B n C n 的周长为__________.32.如图,正三角形ABC 的边长为2,以BC 边上的高1AB 为边作正三角形11AB C ,ABC △与1ABC △公共部分的面积记为1S ,再以正三角形11AB C 的边1C 上的高2AB 为边作正三角形22AB C ,11AB C △与22AB C △公共部分的面积记为2S ,……,以此类推,则n S = .(用含n 的式子表示,n 为正整数)33.如图,在正方形ABCD 中,点E 是BC 边上一点,且 : 2:1,BE EC AE =与BD 交于点F ,则AFD △与四边形DFEC 的面积之比是 .34.如图,在△ABC 中,∠C=90°,BC=16cm,AC=12cm,点P 从点B 出发,沿BC 以2 cm /s 的速度向点C 移动,点Q 从点C 出发,以1cm/s 的速度向点A 移动,若点P 、Q 分别从点B 、C 同时出发,设运动时间为ts,当t=__________时,△CPQ 与△CBA 相似.35.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且1,4CF CD =下列结论: ①30BAE ∠=°; ②;ABE ECF △△③AE EF ⊥; ④ADF ECF △△.其中正确结论是 .(填序号)36.如图27-4-9,在ABC △中,90,8m 10m,C BC AB ∠===,°点 P 从B 点出发,沿BC 方向以2m/s 的速度移动,点Q 从C 出发,沿CA 方向以1m/s 的速度移动.若P Q 、同时分别从B C 、出发,经过____________s,CPQ CBA △△~.37.如图24-4-10,ABC △的两条中线AD 和BE 相交于点G ,过点E 作//EF BC 交AD 于点F ,则FG AG=________.参考答案1.答案:C解析:2.答案:D解析:3.答案:C解析:A 选项,因为3:62:4=,所以,,,a b c d 四条线段成比例B 选项,因为1232,2226==,所以,,,a b c d 四条线段成比例C 选项,因为4:56:10≠,所以,,,a b c d 四条线段不成比例D 选项,因为2252325,55515==,所以,,,a b c d 四条线段成比例故选C 4.答案:D解析:∵DAE CAB ∠=∠,∴当AED B ∠=∠或ADE C ∠=∠时,由两角分别相等的两个三角形相似,可以得出ABC AED ~△△;当AD AC AE AB=时,由两边成比例且夹角相等的两个三角形相似,可得ABC AED ~△△. 只有选项D 中条件不能判断ABC AED ~△△,故选D.5.答案:D解析:如图,在Rt BDC △中,4,30,BC CBD =∠=°2,2 3.CD BD ∴=∴=连接,90,DE BDC ∠=°,点E 是BC 中点,1 2.2DE BE CE C ∴====30,30,CBD BDE DBC ∠=∴∠=∠=°°,30,BD CBC ABD DBC ∠∴∠=∠=°,//,,ABD BDE DE AB DEF BAF ∴∠=∠∴∴△△~.DF DE BF AB ∴=在Rt ABD △中,230,23,3,,3DF ABD BD AD BF ∠==∴=∴=°22243,23,5555DF DF BD BD ∴=∴==⨯=故选D.6.答案:D解析:在中, //AD BC ,∴DEF BCF ∆~∆,∴DE EF BC CF=. ∴点E 是边AD 的中点, ∴12AE DE AD ==, ∴12EF CF =. 7.答案:B解析:ABC ∆中, 90,6,3,:2ABCAB BC AB BC ∠====. A 、当点E 的坐标为()6,0时, 90,2,1CDE CD DE ∠===,则::,AB BC CD DE CDE ABC =∆~∆,故本选项不符合题意; B 、当点E 的坐标为()6,3时, 90,2,2CDE CD DE ∠===,则::,AB BC CD DE CDE ≠∆与ABC ∆不相似,故本选项符合题意; C 、当点E 的坐标为()6,5时, 90,2,4CDE CD DE ∠===,则::,AB BC DE CD EDC ABC =∆~∆,故本选项不符合题意; D 、当点E 的坐标为()4,2时, 90,2,1ECD CD CE ∠===,则::,?AB BC CD CE DCE ABC =∆~∆,故本选项不符合题意; 故选:B.8.答案:C解析:从图中可知,要使△ABC 与△PBD相似,根据勾股定理,得BC =BD =12BC AB BD BP ===,因为AB=2,那么BP=4,故选择P 3处 . 考点:相似三角形点评:该题主要考查学生对相似三角形概念的理解,以及对其性质的应用。

新人教版第27章 相似 典型练习(含详细解析)

新人教版第27章 相似 典型练习(含详细解析)

27 相似典型练习一、选择题(本大题共5小题,共16.0分)1.学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4m,AB=1.6m,CO=1m,则栏杆C端应下降的垂直距离CD为()A. B. C. D.2.如图.利用标杆BE测量建筑物的高度.已知标杆BE高1.2m,测得AB=1.6m.BC=12.4m.则建筑物CD的高是()A.B.C.D. 14m3.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是()A. 3cmB.C.D.4.如图,在矩形ABCD中,∠ADC的平分线与AB交于E,点F在DE的延长线上,∠BFE=90°,连接AF、CF,CF与AB交于G.有以下结论:①AE=BC②AF=CF③BF2=FG•FC④EG•AE=BG•AB其中正确的个数是()A. 1B. 2C. 3D. 45.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F若AC=3,AB=5,则CE的长为( )A. B. C. D.二、填空题(本大题共10小题,共32.0分)6.如图,直线l1∥l2∥l3,直线AC交l1,l2,l3于点A,B,C;直线DF交l1,l2,l3于点D,E,F,已知=,则=______.7.如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,若AB=4,AD=3,则CF的长为______.8.如图,△ABC中,点D、E分別在AB、AC上,DE∥BC,AD:DB=1:2,则△ADE与△ABC的面积的比为______.9.如图,矩形ABCD中,AB=2,BC=3,点E为AD上一点,且∠ABE=30°,将△ABE沿BE翻折,得到△A′BE,连接CA′并延长,与AD相交于点F,则DF的长为______.10.如图,AB为⊙O的直径,AB=4,C为半圆AB的中点,P为上一动点,延长BP至点Q,使BP•BQ=AB2.若点P由A运动到C,则点Q运动的路径长为______.11.如图,在纸板中,AC=4,BC=2,AB=5,P是AC上一点,过点P沿直线剪下一个与相似的小三角形纸板,如果有种不同的剪法,那么长的取值范围是___________________.12.如图,在直角△ABC中,∠C=90°,AC=6,BC=8,P、Q分别为边BC、AB上的两个动点,若要使△APQ是等腰三角形且△BPQ是直角三角形,则AQ=______.13.如图,E、F,G、H分别为矩形ABCD的边AB、BC、CD、DA的中点,连接AC、HE、EC,GA,GF.已知AG⊥GF,AC=,则AB的长为______.14.如图,若△ABC内一点P满足∠PAC=∠PCB=∠PBA,则称点P为△ABC的布罗卡尔点,三角形的布罗卡尔点是法国数学家和数学教育家克雷尔首次发现,后来被数学爱好者法国军官布罗卡尔重新发现,并用他的名字命名,布罗卡尔点的再次发现,引发了研究“三角形几何”的热潮.已知△ABC中,CA=CB,∠ACB=120°,P为△ABC 的布罗卡尔点,若PA=,则PB+PC=______.15.如图,在矩形ABCD中,AB=2,BC=4,点E、F分别在BC、CD上,若AE=,∠EAF=45°,则AF的长为______.三、解答题(本大题共8小题,共83.0分)16.如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.17.如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.18.如图,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC的中点,ED的延长线与CB的延长线相交于点F.(1)求证:DF是BF和CF的比例中项;(2)在AB上取一点G,如果AE•AC=AG•AD,求证:EG•CF=ED•DF.19.如图,在△ABC中,点D、E分别在边AB、AC上,DE、BC的延长线相交于点F,且EF•DF=BF•CF.(1)求证:AD•AB=AE•AC;的值.(2)当AB=12,AC=9,AE=8时,求BD的长与△△20.如图,在正方形ABCD中,E是AB上一点,连接DE.过点A作AF⊥DE,垂足为F,⊙O经过点C、D、F,与AD相交于点G.(1)求证:△AFG∽△DFC;(2)若正方形ABCD的边长为4,AE=1,求⊙O的半径.21.如图,已知AB为⊙O直径,AC是⊙O的切线,连接BC交⊙O于点F,取的中点D,连接AD交BC于点E,过点E 作EH⊥AB于H.(1)求证:△HBE∽△ABC;(2)若CF=4,BF=5,求AC和EH的长.22.若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.(1)已知△ABC是比例三角形,AB=2,BC=3,请直接写出所有满足条件的AC的长;(2)如图1,在四边形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAC=∠ADC.求证:△ABC是比例三角形.(3)如图2,在(2)的条件下,当∠ADC=90°时,求的值.23.已知△ABC中,AB=AC,∠BAC=90°,D、E分别是AB、AC的中点,将△ADE绕点A按顺时针方向旋转一个角度α(0°<α<90°)得到△AD'E′,连接BD′、CE′,如图1.(1)求证:BD′=CE';(2)如图2,当α=60°时,设AB与D′E′交于点F,求的值.答案和解析1.【答案】C【解析】解:∵AB⊥BD,CD⊥BD,∴∠ABO=∠CDO=90°,又∵∠AOB=∠COD,∴△ABO∽△CDO,则=,∵AO=4m,AB=1.6m,CO=1m,∴=,解得:CD=0.4,故选:C.由∠ABO=∠CDO=90°、∠AOB=∠COD知△ABO∽△CDO,据此得=,将已知数据代入即可得.本题主要考查相似三角形的应用,解题的关键是熟练掌握相似三角形的判定与性质.2.【答案】B【解析】解:∵EB∥CD,∴△ABE∽△ACD,∴=,即=,∴CD=10.5(米).故选:B.先证明△ABE∽△ACD,则利用相似三角形的性质得=,然后利用比例性质求出CD即可.本题考查了相似三角形的应用:借助标杆或直尺测量物体的高度.利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度.3.【答案】D【解析】解:连接OB,∵AC是⊙O的直径,弦BD⊥AO于E,BD=8cm,AE=2cm,在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2解得:OE=3,∴OB=3+2=5,∴EC=5+3=8,在Rt△EBC中,BC=,∵OF⊥BC,∴∠OFC=∠CEB=90°,∵∠C=∠C,∴△OFC∽△BEC,∴,即,解得:OF=,故选:D.根据垂径定理得出OE的长,进而利用勾股定理得出BC的长,再利用相似三角形的判定和性质解答即可.此题考查垂径定理,关键是根据垂径定理得出OE的长.4.【答案】C【解析】解:①DE平分∠ADC,∠ADC为直角,∴∠ADE=×90°=45°,∴△ADE为等腰直角三角形,∴AD=AE,又∵四边形ABCD矩形,∴AD=BC,∴AE=BC②∵∠BFE=90°,∠BFE=∠AED=45°,∴△BFE为等腰直角三角形,∴则有EF=BF又∵∠AEF=∠DFB+∠ABF=135°,∠CBF=∠ABC+∠ABF=135°,∴∠AEF=∠CBF在△AEF和△CBF中,AE=BC,∠AEF=∠CBF,EF=BF,∴△AEF≌△CBF(SAS)∴AF=CF③假设BF2=FG•FC,则△FBG∽△FCB,∴∠FBG=∠FCB=45°,∵∠ACF=45°,∴∠ACB=90°,显然不可能,故③错误,④∵∠BGF=180°-∠CGB,∠DAF=90°+∠EAF=90°+(90°-∠AGF)=180°-∠AGF,∠AGF=∠BGC,∴∠DAF=∠BGF,∵∠ADF=∠FBG=45°,∴△ADF∽△GBF,∴==,∵EG∥CD,∴==,∴=,∵AD=AE,∴EG•AE=BG•AB,故④正确,故选:C.①只要证明△ADE为等腰直角三角形即可②只要证明△AEF≌△CBF(SAS)即可;③假设BF2=FG•FC,则△FBG∽△FCB,推出∠FBG=∠FCB=45°,由∠ACF=45°,推出∠ACB=90°,显然不可能,故③错误,④由△ADF∽△GBF,可得==,由EG∥CD,推出==,推出=,由AD=AE,EG•AE=BG•AB,故④正确,本题考查相似三角形的判定和性质、矩形的性质、等腰直角三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.【答案】A【解析】【分析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠CEF=∠CFE.【解答】解:过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴=,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴=,∵FC=FG,∴=,解得:FC=,即CE的长为.故选:A.6.【答案】2【解析】解:∵=,∴=2,∵l1∥l2∥l3,∴==2,故答案为:2.根据题意求出,根据平行线分线段成比例定理解答.本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.7.【答案】【解析】解:∵四边形ABCD为矩形,∴AB=CD,AD=BC,AB∥CD,∴∠FAE=∠FCD,又∵∠AFE=∠CFD,∴△AFE∽△CFD,∴==2.∵AC==5,∴CF=•AC=×5=.故答案为:.根据矩形的性质可得出AB∥CD,进而可得出∠FAE=∠FCD,结合∠AFE=∠CFD(对顶角相等)可得出△AFE∽△CFD,利用相似三角形的性质可得出==2,利用勾股定理可求出AC的长度,再结合CF=•AC,即可求出CF的长.本题考查了相似三角形的判定与性质、矩形的性质以及勾股定理,利用相似三角形的性质找出CF=2AF是解题的关键.8.【答案】1:9【解析】【分析】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.根据DE∥BC得到△ADE∽△ABC,再结合相似比是AD:AB=1:3,因而面积的比是1:9,问题得解.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵AD:DB=1:2,∴AD:AB=1:3,∴S△ADE:S△ABC=1:9.故答案为1:9.9.【答案】6-2【解析】解:如图作A′H⊥BC于H.∵∠ABC=90°,∠ABE=∠EBA′=30°,∴∠A′BH=30°,∴A′H=BA′=1,BH=A′H=,∴CH=3-,∵△CDF∽△A′HC,∴=,∴=,∴DF=6-2,故答案为6-2.如图作A′H⊥BC于H.由△CDF∽△A′HC,可得=,延长构建方程即可解决问题;本题考查翻折变换、矩形的性质、勾股定理、直角三角形30度角性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.10.【答案】4【解析】解:如图所示:连接AQ.∵BP•BQ=AB2,∴=.又∵∠ABP=∠QBA,∴△ABP∽△QBA,∴∠APB=∠QAB=90°,∴QA始终与AB垂直.当点P在A点时,Q与A重合,当点P在C点时,AQ=2OC=4,此时,Q运动到最远处,∴点Q运动路径长为4.故答案为:4.连接AQ,首先证明△ABP∽△QBA,则∠APB=∠QAB=90°,然后求得点P与点C重合时,AQ的长度即可.本题主要考查的是相似三角形的判定和性质,证得△ABP∽△QBA是解题的关键.11.【答案】3≤AP<4【解析】解:如图所示,过P作PD∥AB交BC于D或PE∥BC交AB于E,则△PCD∽△ACB或△APE∽△ACB,此时0<AP<4;如图所示,过P作∠APF=∠B交AB于F,则△APF∽△ABC,此时0<AP≤4;如图所示,过P作∠CPG=∠CBA交BC于G,则△CPG∽△CBA,此时,△CPG∽△CBA,当点G与点B重合时,CB2=CP×CA,即22=CP×4,∴CP=1,AP=3,∴此时,3≤AP<4;综上所述,AP长的取值范围是3≤AP<4.故答案为:3≤AP<4.分四种情况讨论,依据相似三角形的对应边成比例,即可得到AP的长的取值范围.本题主要考查了相似三角形的性质,相似三角形的对应角相等,对应边的比相等.12.【答案】或【解析】解:①如图1中,当AQ=PQ,∠QPB=90°时,设AQ=PQ=x,∵PQ∥AC,∴△BPQ∽△BCA,∴=,∴=,∴x=,∴AQ=.②如图2,当AQ=PQ,∠PQB=90°时,设AQ=PQ=y.∵△BQP∽△BCA,∴=,∴=,∴y=.综上所述,满足条件的AQ的值为或.分两种情形分别求解:①如图1,当AQ=PQ,∠QPB=90°时,②如图2,当AQ=PQ,∠PQB=90°时;本题考查勾股定理、等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.13.【答案】2【解析】【分析】本题考查中点四边形、矩形的性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.如图,连接BD.由△ADG∽△GCF,设CF=BF=a,CG=DG=b,可得=,推出=,可得,在Rt△GCF中,利用勾股定理求出b,即可解决问题. 【解答】解:如图,连接BD.∵四边形ABCD是矩形,∴∠ADC=∠DCB=90°,,∵CG=DG,CF=FB,∴,∵AG⊥FG,∴∠AGF=90°,∴∠DAG+∠AGD=90°,∠AGD+∠CGF=90°,∴∠DAG=∠CGF,∴△ADG∽△GCF,设CF=BF=a,CG=DG=b,∴=,∴=,∴b2=2a2,∵a>0.b>0,∴,在Rt△GCF中,,∴,∴AB=2b=2.故答案为2.14.【答案】1+【解析】解:作CH⊥AB于H.∵CA=CB,CH⊥AB,∠ACB=120°,∴AH=BH,∠ACH=∠BCH=60°,∠CAB=∠CBA=30°,∴AB=2BH=2•BC•cos30°=BC,∵∠PAC=∠PCB=∠PBA,∴∠PAB=∠PBC,∴△PAB∽△PBC,∴===,∵PA=,∴PB=1,PC=,∴PB+PC=1+.故答案为1+.作CH⊥AB于H.首先证明BC=BC,再证明△PAB∽△PBC,可得===,即可求出PB、PC;本题考查等腰三角形的性质、相似三角形的判定和性质、锐角三角函数等知识,解题的关键是准确寻找相似三角形解决问题.15.【答案】【解析】解:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,∵四边形ABCD是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴NF=x,AN=4-x,∵AB=2,∴AM=BM=1,∵AE=,AB=2,∴BE=1,∴ME==,∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF,∴△AME∽△FNA,∴,∴,解得:x=,∴AF==.故答案为:.取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,则NF= x,再利用矩形的性质和已知条件证明△AME∽△FNA,利用相似三角形的性质:对应边的比值相等可求出x的值,在直角三角形ADF中利用勾股定理即可求出AF的长.本题考查了矩形的性质、相似三角形的判断和性质以及勾股定理的运用,正确添加辅助线构造相似三角形是解题的关键,16.【答案】证明:(1)∵△ABC是等腰三角形,且∠BAC=120°,∴∠ABD=∠ACB=30°,∴∠ABD=∠ADE=30°,∵∠ADC=∠ADE+∠EDC=∠ABD+∠DAB,∴∠EDC=∠DAB,∴△ABD∽△DCE;(2)如图1,∵AB=AC=2,∠BAC=120°,过A作AF⊥BC于F,∴∠AFB=90°,∵AB=2,∠ABF=30°,∴AF=AB=1,∴BF=,∴BC=2BF=2,则DC=2-x,EC=2-y,∵△ABD∽△DCE,∴,∴,化简得:y=x+2(0<x<2);(3)当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2-x,x=2-2,代入y=x+2,解得:y=4-2,即AE=4-2,当AE=ED时,如图3,∠EAD=∠EDA=30°,∠AED=120°,∴∠DEC=60°,∠EDC=90°,则ED=EC,即y=(2-y),解得:y=,即AE=,当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在,∴当△ADE是等腰三角形时,AE=4-2或.【解析】(1)根据两角相等证明:△ABD∽△DCE;(2)如图1,作高AF,根据直角三角形30°的性质求AF的长,根据勾股定理求BF的长,则可得BC的长,根据(1)中的相似列比例式可得函数关系式,并确定取值;(3)分三种情况进行讨论:①当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2-x;②当AE=ED时,如图3,则ED=EC,即y=(2-y);③当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在.本题是相似形的综合题,考查了三角形相似的性质和判定、等腰三角形的性质、直角三角形30°角的性质,本题的几个问题全部围绕△ABD∽△DCE,解决问题;难度适中.17.【答案】解:(1)如图,连接BD,∵∠BAD=90°,∴点O必在BD上,即:BD是直径,∴∠BCD=90°,∴∠DEC+∠CDE=90°,∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°,∵∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴∠BDE=90°,即:BD⊥DE,∵点D在⊙O上,∴DE是⊙O的切线;(2)∵DE∥AC,∵∠BDE=90°,∴∠BFC=90°,∴CB=AB=8,AF=CF=AC,∵∠CDE+∠BDC=90°,∠BDC+∠CBD=90°,∴∠CDE=∠CBD,∵∠DCE=∠BCD=90°,∴△BCD∽△DCE,∴,∴,∴CD=4,在Rt△BCD中,BD==4同理:△CFD∽△BCD,∴,∴∴CF=,∴AC=2AF=.【解析】(1)先判断出BD是圆O的直径,再判断出BD⊥DE,即可得出结论;(2)先判断出AC⊥BD,进而求出BC=AB=8,进而判断出△BCD∽△DCE,求出CD,再用勾股定理求出BD,最后判断出△CFD∽△BCD,即可得出结论.此题主要考查了圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定和性质,勾股定理,求出BC=8是解本题的关键.18.【答案】证明:(1)∵∠ACB=90°,CD⊥AB,∴∠BCD=∠A,∠ADC=90°.∵E是AC的中点,∴DE=AE=CE,∴∠ADE=∠A,∴∠BCD=∠ADE.又∠ADE=∠FDB,∴∠FCD=∠FDB.∵∠CFD=∠DFB,∴△CFD∽△DFB,∴DF2=BF•CF.(2)∵AE•AC=AG•AD,∴=.∵∠A=∠A,∴△AEG∽△ADC,∴EG∥BC,∴△EGD∽△FBD,∴=.由(1)知:△CFD∽△DFB,∴=,∴=,∴EG•CF=ED•DF.【解析】(1)由∠ACB=90°、CD⊥AB利用同角的余角相等可得出∠BCD=∠A,由E是AC的中点利用直角三角形斜边上的中线等于斜边的一半可得出DE=AE,进而可得出∠ADE=∠A,结合对顶角相等可得出∠FCD=∠FDB,再结合公共角∠CFD=∠DFB,即可证出△CFD∽△DFB,根据相似三角形的性质可证出DF2=BF•CF;(2)由AE•AC=AG•AD结合∠A=∠A可证出△AEG∽△ADC,根据相似三角形的性质可求出∠AEG=∠ADC=90°,结合∠ACB=90°可得出EG∥BC,进而可得出=,根据(1)△CFD∽△DFB可得出=,等量替换后可得出=,进而即可证出EG•CF=ED•DF.本题考查了相似三角形的判定与性质、互余、平行线的判定与性质以及直角三角形的性质,解题的关键是:(1)利用相似三角形的性质找出△CFD∽△DFB;(2)根据相似三角形的性质及平行线的性质找出=、=.19.【答案】证明:(1)∵EF•DF=BF•CF,∴,∵∠EFC=∠BFD,∴△EFC∽△BFD,∴∠CEF=∠B,∴∠B=∠AED,∵∠CAB=∠DAE,∴△CAB∽△DAE,∴,∴AD•AB=AE•AC;(2)由(1)知AD•AB=AE•AC,∴AD=6,BD=6,EC=1,∵△,△∴△,四边形∵△,△∴△,四边形∴△=28.△【解析】(1)根据相似三角形的判定得出△EFC∽△BFD,得出∠CEF=∠B,进而证明△CAB∽△DAE,再利用相似三角形的性质证明即可;(2)根据相似三角形的性质得出有关图形的面积之比,进而解答即可.本题考查相似三角形的判定和性质知识,解题的关键是灵活运用相似三角形的判定解答.20.【答案】解:(1)证明:在正方形ABCD 中,∠ADC =90°, ∴∠CDF +∠ADF =90°,∵AF ⊥DE ,∴∠AFD =90°,∴∠DAF +∠ADF =90°,∴∠DAF =∠CDF ,∵四边形GFCD 是⊙O 的内接四边形,∴∠FCD +∠DGF =180°,∵∠FGA +∠DGF =180°,∴∠FGA =∠FCD ,∴△AFG ∽△DFC .(2)如图,连接CG .∵∠EAD =∠AFD =90°,∠EDA =∠ADF ,∴△EDA ∽△ADF ,∴ = ,即 = ,∵△AFG ∽△DFC ,∴ = ,∴= ,在正方形ABCD 中,DA =DC ,∴AG =EA =1,DG =DA -AG =4-1=3,∴CG = =5,∵∠CDG =90°,∴CG 是⊙O 的直径,∴⊙O 的半径为 .【解析】 (1)欲证明△AFG ∽△DFC ,只要证明∠FAG=∠FDC ,∠AGF=∠FCD ;(2)首先证明CG 是直径,求出CG 即可解决问题;本题考查相似三角形的判定和性质、正方形的性质、圆周角定理等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.21.【答案】解:(1)∵AC 是⊙O 的切线,∴CA ⊥AB ,∵EH ⊥AB ,∴∠EHB =∠CAB ,∵∠EBH =∠CBA ,∴△HBE ∽△ABC .(2)连接AF .∵AB是直径,∴∠AFB=90°,∵∠C=∠C,∠CAB=∠AFC,∴△CAF∽△CBA,∴CA2=CF•CB=36,∴CA=6,AB==3,AF==2,∵=,∴∠EAF=∠EAH,∵EF⊥AF,EH⊥AB,∴EF=EH,∵AE=AE,∴Rt△AEF≌Rt△AEH,∴AF=AH=2,设EF=EH=x,在Rt△EHB中,(5-x)2=x2+()2,∴x=2,∴EH=2.【解析】(1)根据切线的性质即可证明:∠CAB=∠EHB,由此即可解决问题;(2)连接AF.由△CAF∽△CBA,推出CA2=CF•CB=36,推出CA=6,AB==3,AF==2,由Rt△AEF≌Rt△AEH,推出AF=AH=2,设EF=EH=x,在Rt△EHB中,可得(5-x)2=x2+()2,解方程即可解决问题;本题考查相似三角形的判定和性质、圆周角定理、切线的性质、角平分线的性质等知识,解题的关键是学会添加常用辅助线,正确寻找相似三角形解决问题.22.【答案】解:(1)∵△ABC是比例三角形,且AB=2、BC=3,①当AB2=BC•AC时,得:4=3AC,解得:AC=;②当BC2=AB•AC时,得:9=2AC,解得:AC=;③当AC2=AB•BC时,得:AC=6,解得:AC=(负值舍去);所以当AC=或或时,△ABC是比例三角形;(2)∵AD∥BC,∴∠ACB=∠CAD,又∵∠BAC=∠ADC,∴△ABC∽△DCA,∴=,即CA2=BC•AD,∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AB=AD,∴CA2=BC•AB,∴△ABC是比例三角形;(3)如图,过点A作AH⊥BD于点H,∵AB=AD,∴BH=BD,∵AD∥BC,∠ADC=90°,∴∠BCD=90°,∴∠BHA=∠BCD=90°,又∵∠ABH=∠DBC,∴△ABH∽△DBC,∴=,即AB•BC=BH•DB,∴AB•BC=BD2,又∵AB•BC=AC2,∴BD2=AC2,∴=.【解析】(1)根据比例三角形的定义分AB2=BC•AC、BC2=AB•AC、AC2=AB•BC三种情况分别代入计算可得;(2)先证△ABC∽△DCA得CA2=BC•AD,再由∠ADB=∠CBD=∠ABD知AB=AD即可得;(3)作AH⊥BD,由AB=AD知BH=BD,再证△ABH∽△DBC得AB•BC=BH•DB,即AB•BC=BD2,结合AB•BC=AC2知BD2=AC2,据此可得答案.本题主要考查相似三角形的综合问题,解题的关键是理解比例三角形的定义,并熟练掌握相似三角形的判定与性质.23.【答案】解:(1)证明:∵AB=AC,D、E分别是AB、AC的中点,∴AD=BD=AE=EC.由旋转的性质可知:∠DAD′=∠EAE′=α,AD′=AD,AE′=AE.∴AD′=AE′,∴△BD′A≌△CE′A,∴BD′=CE′.(2)连接DD′.∵∠DAD′=60°,AD=AD′,∴△ADD′是等边三角形.∴∠ADD′=∠AD′D=60°,DD′=DA=DB.∴∠DBD′=∠DD′B=30°,∴∠BD′A=90°.∵∠D′AE′=90°,∴∠BAE′=30°,∴∠BAE′=∠ABD′,又∵∠BFD′=∠AFE′,∴△BFD′∽△AFE′,∴.∵在Rt△ABD′中,tan∠BAD′==,∴=.【解析】(1)首先依据旋转的性质和中点的定义证明AD′=AE′,然后再利用SAS证明△BD′A≌△CE′A,最后,依据全等三角形的性质进行证明即可;(2)连接DD′,先证明△ADD′为等边三角形,然后再证明△△ABD′为直角三角形,接下来,再证明△BFD′∽△AFE′,最后,依据相似三角形的性质求解即可.本题主要考查的是全等三角形的判定和性质、相似三角形的性质和判定、旋转的性质,发现△BFD′∽△AFE′是解题的关键.。

人教版八年级数学上册 第27章 相似章末复习(含答案)

人教版八年级数学上册 第27章 相似章末复习(含答案)

章末复习(二) 相似01 基础题知识点1 图形的相似1.(邯郸育华中学月考)如图,两个等边三角形,两个矩形,两个正方形,两个菱形各成一组,每组中的一个图形在另一个图形的内部,对应边平行,且对应边之间的距离都相等,那么两个图形不相似的一组是(B )2.如图,四边形ABCD ∽四边形GFEH ,且∠A =∠G =70°,∠B =60°,∠E =120°,DC =24,HE =18,HG =21,则∠F =60°,∠D =110°,AD =28.知识点2 平行线分线段成比例3.如图,已知AB ∥CD ∥EF ,那么下列结论正确的是(A )A .CE CB =DF DA B .AD DF =CE BC C .CD EF =AD AF D .CE BE =AF AD4.(南皮模拟)如图,已知DE ∥BC ,EF ∥AB ,若AD =2BD ,则CFBF的值为(A )A .12B .13C .14D .23知识点3 相似三角形的性质与判定5.(自贡中考)如图,在△ABC 中,MN ∥BC 分别交AB ,AC 于点M ,N .若AM =1,MB =2,BC =3,则MN 的长为1.6.(邯郸育华中学月考)如图,已知△ABC 中,CE ⊥AB 于E ,BF ⊥AC 于F .(1)求证:△AFE ∽△ABC ; (2)若∠A =60°时,求△AFE 与△ABC 面积之比.解:(1)证明:∵∠AFB =∠AEC =90°,∠A =∠A , ∴△AFB ∽△AEC . ∴AF AE =AB AC .∴AF AB =AEAC. 又∵∠A =∠A ,∴△AFE ∽△ABC . (2)∵∠A =60°,∠AEC =90°,∴∠ACE =30°. ∴AE =12AC .∵△AFE ∽△ABC .∴S △AFE S △ABC =(AE AC )2=(12)2=14.知识点4 相似三角形的应用7.九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,如图所示,已知标杆高度CD =3 m ,标杆与旗杆的水平距离BD =15 m ,人的眼睛与地面的高度EF =1.6 m ,人与标杆CD 的水平距离DF =2 m ,则旗杆AB 的高度为13.5m .知识点5 位似8.(滨州中考)在平面直角坐标系中,点C ,D 的坐标分别为C (2,3),D (1,0).现以原点为位似中心,将线段CD 放大得到线段AB ,若点D 的对应点B 在x 轴上且OB =2,则点C 的对应点A 的坐标为(4,6)或(-4,-6).02 中档题9.(长沙中考)如图,将正方形ABCD 折叠,使顶点A 与CD 边上的一点M 重合(M 不与端点C ,D 重合),折痕交AD 于点E ,交BC 于点F ,边AB 折叠后与边BC 交于点G ,设正方形ABCD 的周长为m ,△CMG 的周长为n ,则nm的值为(B )A .22 B .12 C .5-12D .随H 点位置的变化而变化10.(枣庄中考)如图,在矩形ABCD 中,∠B 的平分线BE 与AD 交于点E ,∠BED 的平分线EF 与DC 交于点F ,若AB =9,DF =2FC ,则BC =62+3.(结果保留根号)11.(河北中考)如图,在6×8网格图中,每个小正方形边长均为1,点O 和△ABC 的顶点均为小正方形的顶点.(1)以O 为位似中心,在网格图中作△A ′B ′C ′,使△A ′B ′C ′和△ABC 位似,且相似比为1∶2; (2)连接(1)中的AA ′,求四边形AA ′C ′C 的周长.(结果保留根号)解:(1)如图所示. (2)AA ′=CC ′=2. 在Rt △OA ′C ′中,OA ′=OC ′=2,得A ′C ′=2 2. 同理可得AC =42,∴四边形AA ′C ′C 的周长为4+6 2.12.如图,矩形ABCD 为台球桌面,AD =260 cm ,AB =130 cm .球目前在E 点位置,AE =60 cm .如果小丁瞄准BC 边上的点F 将球打过去,经过反弹后,球刚好弹到D 点的位置.(1)求证:△BEF ∽△CDF ; (2)求CF 的长.解:(1)证明:由题意,得∠EFG =∠DFG . ∵∠EFG +∠BFE =90°,∠DFG +∠CFD =90°, ∴∠BFE =∠CFD .∴△BEF ∽△CDF .(2)∵△BEF ∽△CDF ,∴BE CD =BF CF ,即70130=260-CF CF.∴CF =169 cm .13.(杭州中考)如图,在锐角△ABC 中,点D ,E 分别在边AC ,AB 上,AG ⊥BC 于点G ,AF ⊥DE 于点F ,∠EAF =∠GAC .(1)求证:△ADE ∽△ABC ; (2)若AD =3,AB =5,求AFAG的值.解:(1)证明:∵AF ⊥DE ,AG ⊥BC , ∴∠AFE =90°,∠AGC =90°. ∴∠AEF =90°-∠EAF ,∠C =90°-∠GAC , 又∵∠EAF =∠GAC ,∴∠AEF =∠C . 又∵∠DAE =∠BAC ,∴△ADE ∽△ABC . (2)∵△ADE ∽△ABC ,∴∠ADE =∠B . 又∵∠AFD =∠AGB =90°, ∴△AFD ∽△AGB .∴AF AG =AD AB. ∵AD =3,AB =5, ∴AF AG =35.03 综合题14.(眉山中考)如图,点E 是正方形ABCD 的边BC 延长线上一点,连接DE ,过顶点B 作BF ⊥DE ,垂足为F ,BF 分别交AC 于H ,交CD 于G .(1)求证:BG =DE ; (2)若点G 为CD 的中点,求HGGF的值.解:(1)证明:∵四边形ABCD 为正方形,∴BC =CD ,∠BCG =∠DCE =90°. ∵BF ⊥DE , ∴∠BFD =90°.∴∠CBF =∠GDF .∴△BCG ≌△DCE .∴BG =DE . (2)设正方形ABCD 的边长为a , ∵点G 是CD 的中点,∴CB =a ,CG =GD =12a .∴BG =52a .∵∠CBG =∠GDF ,∠BGC =∠DGF ,∴△BCG ∽△DFG .∴GF GC =DG BG ,即GF 12a =12a52a .∴GF =510a . 又∵AB ∥CD ,∴CG BA =HG HB =12.∴HG GB =13.∴GH =13GB =56a .∴HG GF =56a510a=53.。

相似三角形的性质与判定练习题含答案

相似三角形的性质与判定练习题含答案

相似三角形的性质与判定副标题题号一二总分得分一、选择题〔本大题共7小题,共分〕1.如图,在中,点P在边AB上,那么在以下四个条件中::;;;,能满足与相似的条件是A. B. C. D.【答案】D【解析】【分析】此题考察了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似根据有两组角对应相等的两个三角形相似可对进展判断;根据两组对应边的比相等且夹角对应相等的两个三角形相似可对进展判断.【解答】解:当,,所以∽;当,,所以∽;当,即AC::AC,所以∽;当,即PC::AB,而,所以不能判断与相似.应选D.2.如图,在矩形ABCD中,,,将其折叠使AB落在对角线AC上,得到折痕AE,那么BE的长度为A. B. C. D.【答案】C【解析】【分析】根据对称性可知:,,又,所以∽,根据相似的性质可得出:,,在中,由勾股定理可求得AC的值,,,将这些值代入该式求出BE的值.【解答】解:设BE的长为x,那么、在中,,∽两对对应角相等的两三角形相似,,,应选:C.3.如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1m的竹竿的影长是,但当她马上测量树高时,发现树的影子不全落在地面上,有一局部影子落在教学楼的墙壁上如图,他先测得留在墙壁上的影高为,又测得地面的影长为,请你帮她算一下,树高是A. B. C. D.【答案】C【解析】解:如图,设BD是BC在地面的影子,树高为x,根据竹竿的高与其影子的比值与树高与其影子的比值一样得而,,树在地面的实际影子长是,再竹竿的高与其影子的比值与树高与其影子的比值一样得,,树高是.应选C.此题首先要知道在同一时刻任何物体的高与其影子的比值是一样的,所以竹竿的高与其影子的比值与树高与其影子的比值一样,利用这个结论可以求出树高.解题的关键要知道竹竿的高与其影子的比值与树高与其影子的比值一样.4.如图,是在以点O为位似中心经过位似变换得到的,假设的面积与的面积比是16:9,那么OA:为( )A. 4:3B. 3:4C. 9:16D. 16:9【答案】A【解析】【分析】此题考察了位似变换、位似图形与相似三角形的性质的知识点,如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心先求出位似比,根据位似比等于相似比,再由相似三角形的面积比等于相似比的平方即可【解答】解:由位似变换的性质可知,,,∽,的面积与的面积比是16:9,与的相似比为4:3,.应选A.5.如图,在平面直角坐标系xOy中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形与矩形OABC关于点O位似,且矩形的面积等于矩形OABC面积的,那么点的坐标是A. B.C. 或D. 或【答案】D【解析】【分析】此题考察了位似图形的性质有关知识,由矩形与矩形OABC关于点O位似,且矩形的面积等于矩形OABC面积的,利用相似三角形的面积比等于相似比的平方,即可求得矩形与矩形OABC的位似比为1:2,又由点B的坐标为,即可求得答案.【解答】解:矩形与矩形OABC关于点O位似,矩形∽矩形OABC,矩形的面积等于矩形OABC面积的,位似比为:1:2,点B的坐标为,点的坐标是:或应选D.6.如图,四边形ABCD与是以点O为位似中心的位似图形,假设OA::3,那么四边形ABCD与四边形的面积比为A. 4:9B. 2:5C. 2:3D. :【答案】A【解析】解:四边形ABCD与是以点O为位似中心的位似图形,OA::3,:::3,四边形ABCD与四边形的面积比为:,应选:A.根据题意求出两个相似多边形的相似比,根据相似多边形的性质解答.此题考察的是位似变换的性质,掌握位似图形与相似图形的关系、相似多边形的性质是解题的关键.7.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,假设正方形BEFG的边长为6,那么C点坐标为A. B. C. D.【答案】A【解析】解:正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,,,,,∽,,,解得:,,点坐标为:,应选:A.直接利用位似图形的性质结合相似比得出AD的长,进而得出∽,进而得出AO的长,即可得出答案.此题主要考察了位似变换以及相似三角形的判定与性质,正确得出AO的长是解题关键.二、填空题〔本大题共3小题,共分〕8.如图,,,,,,点p在BD上移动,当______ 时,与相似.【答案】或12cm或2cm【解析】解:由,,,设,那么,假设∽,那么,即,变形得:,即,因式分解得:,解得:,,所以或12cm时,∽;假设∽,那么,即,解得:,,综上,或12cm或时,∽.故答案为:或12cm或2cm.设出,由表示出PD的长,假设∽,根据相似三角形的对应边成比例可得比例式,把各边的长代入即可列出关于x的方程,求出方程的解即可得到x的值,即为PB的长.此题考察了相似三角形的判定与性质,相似三角形的性质有相似三角形的对应边成比例,对应角相等;相似三角形的判定方法有:1、两对对应角相等的两三角形相似;2、两对对应边成比例且夹角相等的两三角形相似;3、三边对应成比例的两三角形相似,此题属于条件开放型探究题,其解法:类似于分析法,假设结论成立,逐步探索其成立的条件.9.如图,在中,,,,点P从点B出发,以秒的速度向点C移动,同时点Q从点C出发,以秒的速度向点A移动,设运动时间为t秒,当______秒时,与相似.【答案】或【解析】【分析】此题考察了相似三角形的判定,主要利用了相似三角形对应边成比例,难点在于分情况讨论分CP与CB是对应边,CP与CA是对应边两种情况,利用相似三角形对应边成比例列式计算即可得解.【解答】解:CP与CB是对应边时,∽,所以,,即,解得;CP与CA是对应边时,∽,所以,,即,解得.综上所述,当或时,与相似.故答案为或.10.如图,在平行四边形ABCD中,E为边BC上一点,AC与DE相交于点F,假设,,那么等于_____.【答案】11【解析】【分析】此题主要考察了相似三角形的判定与性质,解题首先利用平行四边形的构造相似三角形的相似条件,然后利用其性质即可求解由于四边形ABCD 是平行四边形,所以得到、,而,由此即可得到∽,它们的相似比为3:2,最后利用相似三角形的性质即可求解.【解答】解:四边形ABCD是平行四边形,、,而,∽,且它们的相似比为3:2,:,而,,,,.故答案为11.第11 页。

相似三角形性质与判定专项练习30题(有答案)

相似三角形性质与判定专项练习30题(有答案)

相似三角形性质和判定专项练习30题(有答案)1.已知:如图,在△ABC中,点D在边BC上,且∠BAC=∠DAG,∠CDG=∠BAD.(1)求证:=;(2)当GC⊥BC时,求证:∠BAC=90°.2.如图,已知在△ABC中,∠ACB=90°,点D在边BC上,CE⊥AB,CF⊥AD,E、F分别是垂足.(1)求证:AC2=AF•AD;(2)联结EF,求证:AE•DB=AD•EF.3.如图,△ABC中,PC平分∠ACB,PB=PC.(1)求证:△APC∽△ACB;(2)若AP=2,PC=6,求AC的长.4.如图,在平行四边形ABCD中,过B作BE⊥CD,垂足为点E,连接AE,F为AE上一点,且∠BFE=∠C.(1)求证:△ABF∽△EAD;(2)若AB=4,∠BAE=30°,求AE的长.5.已知:如图,△ABC中,∠ABC=2∠C,BD平分∠ABC.求证:AB•BC=AC•CD.6.已知△ABC,∠ACB=90°,AC=BC,点E、F在AB上,∠ECF=45°,设△ABC的面积为S,说明AF•BE=2S 的理由.7.等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.(1)若AE=CF;①求证:AF=BE,并求∠APB的度数;②若AE=2,试求AP•AF的值;(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.8.如图所示,AD,BE是钝角△ABC的边BC,AC上的高,求证:=.9.已知:如图,在△ABC中,AB=AC,DE∥BC,点F在边AC上,DF与BE相交于点G,且∠EDF=∠ABE.求证:(1)△DEF∽△BDE;(2)DG•DF=DB•EF.10.如图,△ABC、△DEF都是等边三角形,点D为AB的中点,E在BC上运动,DF和EF分别交AC于G、H 两点,BC=2,问E在何处时CH的长度最大?11.如图,AB和CD交于点O,当∠A=∠C时,求证:OA•OB=OC•OD.12.如图,已知等边三角形△AEC,以AC为对角线做正方形ABCD(点B在△AEC内,点D在△AEC外).连接EB,过E作EF⊥AB,交AB的延长线为F.(1)猜测直线BE和直线AC的位置关系,并证明你的猜想.(2)证明:△BEF∽△ABC,并求出相似比.13.已知:如图,△ABC中,点D、E是边AB上的点,CD平分∠ECB,且BC2=BD•BA.(1)求证:△CED∽△ACD;(2)求证:.14.如图,△ABC中,点D、E分别在BC和AC边上,点G是BE边上一点,且∠BAD=∠BGD=∠C,联结AG.(1)求证:BD•BC=BG•BE;(2)求证:∠BGA=∠BAC.15.已知:如图,在△ABC中,点D是BC中点,点E是AC中点,且AD⊥BC,BE⊥AC,BE,AD相交于点G,过点B作BF∥AC交AD的延长线于点F,DF=6.(1)求AE的长;(2)求的值.16.如图,△ABC中,∠ACB=90°,D是AB上一点,M是CD中点,且∠AMD=∠BMD,AP∥CD交BC延长线于P点,延长BM交PA于N点,且PN=AN.(1)求证:MN=MA;(2)求证:∠CDA=2∠ACD.17.已知:如图,在△ABC中,已知点D在BC上,联结AD,使得∠CAD=∠B,DC=3且S△ACD:S△ADB﹦1﹕2.(1)求AC的值;(2)若将△ADC沿着直线AD翻折,使点C落点E处,AE交边BC于点F,且AB∥DE,求的值.18.在△ABC中,D是BC的中点,且AD=AC,DE⊥BC,与AB相交于点E,EC与AD相交于点F.(1)求证:△ABC∽△FCD;(2)若DE=3,BC=8,求△FCD的面积.19.如图,△ABC为等边三角形,D为BC边上一点,以AD为边作∠ADE=60°,DE与△ABC的外角平分线CE 交于点E.(1)求证:∠BAD=∠FDE;(2)设DE与AC相交于点G,连接AE,若AB=6,AE=5时,求线段AG的长.20.如图所示,△ABC中,∠B=90°,点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC 边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发,经几秒,使△PBQ的面积等于8cm2?(2)如果P,Q分别从A,B同时出发,并且P到B后又继续在BC边上前进,Q到C后又继续在CA边上前进,经过几秒,使△PCQ的面积等于12.6cm2?21.已知:如图,△ABC是等边三角形,D是AB边上的点,将DB绕点D顺时针旋转60°得到线段DE,延长ED 交AC于点F,连接DC、AE.(1)求证:△ADE≌△DFC;(2)过点E作EH∥DC交DB于点G,交BC于点H,连接AH.求∠AHE的度数;(3)若BG=,CH=2,求BC的长.22.如图,在△ABC中,CD平分∠ACB,BE∥BC交AC于点E.(1)求证:AE•BC=AC•CE;(2)若S△ADE:S△CDE=4:3.5,BC=15,求CE的长.23.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.24.在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.25.如图,M、N、P分别为△ABC三边AB、BC、CA的中点,BP与MN、AN分别交于E、F.(1)求证:BF=2FP;(2)设△ABC的面积为S,求△NEF的面积.26.在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,E、F分别是AC,BC边上一点,且CE=AC,BF=BC,(1)求证:;(2)求∠EDF的度数.27.如图,△ABC是等边三角形,且AB∥CE.(1)求证:△ABD∽△CED;(2)若AB=6,AD=2CD,①求E到BC的距离EH的长.②求BE的长.28.如图,Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,连接CC′交斜边于点E,CC′的延长线交BB′于点F.(1)若AC=3,AB=4,求;(2)证明:△ACE∽△FBE;(3)设∠ABC=α,∠CAC′=β,试探索α、β满足什么关系时,△ACE与△FBE是全等三角形,并说明理由.29.如图,△ABC是等边三角形,∠DAE=120°,求证:(1)△ABD∽△ECA;(2)BC2=DB•CE.30.如图,在Rt△ABC中,∠C=90°,且AC=CD=,又E,D为CB的三等分点.(1)证明:△ADE∽△BDA;(2)证明:∠ADC=∠AEC+∠B;(3)若点P为线段AB上一动点,连接PE,则使得线段PE的长度为整数的点P的个数有几个?请说明理由.相似三角形性质和判定专项练习30题参考答案:1.解:(1)∵∠ADC=∠B+∠BAD,且∠CDG=∠BAD,∴∠ADG=∠B;∵∠BAC=∠DAG,∴△ABC∽△ADG,∴=.(2)∵∠BAC=∠DAG,∴∠BAD=∠CAG;又∵∠CDG=∠BAD,∴∠CDG=∠CAG,∴A、D、C、G四点共圆,∴∠DAG+∠DCG=180°;∵GC⊥BC,∴∠DCG=90°,∴∠DAG=90°,∠BAC=∠DAG=90°.2.解:(1)如图,∵∠ACB=90°,CF⊥AD,∴∠ACD=∠AFC,而∠CAD=∠FAC,∴△ACD∽△AFC,∴,∴AC2=AF•AD.(2)如图,∵CE⊥AB,CF⊥AD,∴∠AEC=∠AFC=90°,∴A、E、F、C四点共圆,∴∠AFE=∠ACE;而∠ACE+∠CAE=∠CAE+∠B,∴∠ACE=∠B,∠AFE=∠B;∵∠FAE=∠BAD,∴△AEF∽△ADB,∴AE:AD=BD:EF,∴AE•DB=AD•EF.3.解:(1)∵PB=PC,∴∠B=∠PCB;∵PC平分∠ACB,∴∠ACP=∠PCB,∠B=∠ACP,∵∠A=∠A,∴△APC∽△ACB.(2)∵△APC∽△ACB,∴,∵AP=2,PC=6,AB=8,∴AC=4.∵AP+AC=PC=6,这与三角形的任意两边之和大于第三边相矛盾,∴该题无解.4.(1)证明:∵AD∥BC,∴∠C+∠ADE=180°,∵∠BFE=∠C,∴∠AFB=∠EDA,∵AB∥DC,∴∠BAE=∠AED,∴△ABF∽△EAD;(2)解:∵AB∥CD,BE⊥CD,∴∠ABE=90°,∵AB=4,∠BAE=30°,∴AE=2BE,由勾股定理可求得AE=5.证明:∵∠ABC=2∠C,BD平分∠ABC,∴∠ABD=∠DBC=∠C,∴BD=CD,在△ABD和△ACB中,,∴△ABD∽△ACB,∴=,即AB•BC=AC•BD,∴AB•BC=AC•CD.6.证明:∵AC=BC,∴∠A=∠B,∵∠ACB=90°,∴∠A=∠B=45°,∵∠ECF=45°,∴∠ECF=∠B=45°,∴∠ECF+∠1=∠B+∠1,∵∠BCE=∠ECF+∠1,∠2=∠B+∠1;∴∠BCE=∠2,∵∠A=∠B,∴△ACF∽△BEC.∴,∴AC•BC=BE•AF,∴S△ABC=AC•BC=BE•AF,∴AF•BE=2S.7.(1)①证明:∵△ABC为等边三角形,∴AB=AC,∠C=∠CAB=60°,又∵AE=CF,在△ABE和△CAF中,,∴△ABE≌△CAF(SAS),∴AF=BE,∠ABE=∠CAF.又∵∠APE=∠BPF=∠ABP+∠BAP,∴∠APE=∠BAP+∠CAF=60°.∴∠APB=180°﹣∠APE=120°.②∵∠C=∠APE=60°,∠PAE=∠CAF,∴△APE∽△ACF,∴,即,所以AP•AF=12(2)若AF=BE,有AE=BF或AE=CF两种情况.①当AE=CF时,点P的路径是一段弧,由题目不难看出当E为AC的中点的时候,点P经过弧AB的中点,此时△ABP为等腰三角形,且∠ABP=∠BAP=30°,∴∠AOB=120°,又∵AB=6,∴OA=,点P的路径是.②当AE=BF时,点P的路径就是过点C向AB作的垂线段的长度;因为等边三角形ABC的边长为6,所以点P 的路径为:.所以,点P经过的路径长为或3.8.证明:∵AD,BE是钝角△ABC的边BC,AC上的高,∴∠D=∠E=90°,∵∠ACD=∠BCE,∴△ACD∽△BCE,∴=.9.证明:(1)∵AB=AC,∴∠ABC=∠ACB,∵DE∥BC,∴∠ABC+∠BDE=180°,∠ACB+∠CED=180°.∴∠BDE=∠CED,∵∠EDF=∠ABE,∴△DEF∽△BDE;(2)由△DEF∽△BDE,得.∴DE2=DB•EF,由△DEF∽△BDE,得∠BED=∠DFE.∵∠GDE=∠EDF,∴△GDE∽△EDF.∴,∴DE2=DG•DF,∴DG•DF=DB•EF.10.解:设EC=x,CH=y,则BE=2﹣x,∵△ABC、△DEF都是等边三角形,∴∠B=∠DEF=60°,∵∠B+∠BDE=∠DEF+∠HEC,∴∠BDE=∠HEC,∴△BED∽△CHE,∴,∵AB=BC=2,点D为AB的中点,∴BD=1,∴,即:y=﹣x2+2x=﹣(x﹣1)2+1.∴当x=1时,y最大.此时,E在BC中点11.解:∵∠A=∠C,∠AOD=∠BOC,∴△OAD∽△OCB,∴=,∴OA•OB=OC•OD.12.解:(1)猜测BE和直线AC垂直.证明:∵△AEC是等边三角形,∴AE=CE,∵四边形ABCD是正方形,∴AB=CB,∵BE=BE,∴△AEB≌△CEB(SSS).∴∠AEB=∠CEB,∵AE=CE,∴BE⊥AC;(2)∵△AEC是等边三角形,∴∠EAC=∠AEC=60°,∵BE⊥AC,∴∠BEA=∠AEC=30°,∵四边形ABCD是正方形,∴∠BAC=45°,∴∠BAE=15°,∴∠EBF=45°,∵EF⊥BF,∴∠F=90°,∴∠EBF=∠BAC,∠F=∠ABC,∴△BEF∽△ACB,延长EB交AC于G,设AC为2a,则BG=a,EB=a﹣a,∴相似比是:===13.证明:(1)∵BC2=BD•BA,∴BD:BC=BC:BA,∵∠B是公共角,∴△BCD∽△BAC,∴∠BCD=∠A,∵CD平分∠ECB,∴∠ECD=∠BCD,∴∠ECD=∠A,∵∠EDC=∠CDA,∴△CED∽△ACD;(2)∵△BCD∽△BAC,△CED∽△ACD,∴=,=,∴.14.证明:(1)∵∠DBG=∠EBC,∠BGD=∠C,∴△BDG∽△BEC,∴=,则BD•BC=BG•BE;(2)∵∠DBA=∠ABC,∠BAD=∠C,∴△DBA∽△ABC,∴=,即AB2=BD•BC,∵BD•BC=BG•BE,∴AB2=BG•BE,即=,∵∠GBA=∠ABE,∴△GBA∽△ABE,∴∠BGA=∠BAC.15.解:(1)∵在△ABC中,点D是BC中点,点E是AC中点,且AD⊥BC,BE⊥AC,∴AC=AB=BC,∴△ABC是等边三角形,∴∠C=60°,∵BF∥AC,∴∠CBF=∠C=60°,∵AD⊥BC,∴∠FDB=90°,∴∠F=30°,∵DF=6,∴BD=2,∵AE=EC=BD=DC,∴AE=2;(2)∵∠BDF=90°,∠F=30°,BD=2,∴BF=2DB=4,∵AC∥BF,∴△AEG∽△FBG,∴=()2=.16.证明:(1)∵AP∥CD,∴∠AMD=∠MAN,∠BMD=∠MNA,∵∠AMD=∠BMD,∴∠MAN=∠MNA,∴MN=MA.(2)如图,连接NC,∵AP∥CD,且PN=AN.∴==,∴MC=MD,∴CN为直角△ACP斜边AP的中线,∴CN=NA,∠NCA=∠NAC,∵AP∥CD,∴∠NAC=∠ACD,∴∠NCM=2∠ACD,∵∠CMN=∠DMB,∠DMA=∠BMD,∴∠CMD=∠DMA,在△CMN和△DMA中,,∴△CMN≌△DMA(SAS),∠ADM=∠NCM=2∠ACD.即:∠CDA=2∠ACD.17.解:(1)∵S△ACD:S△ADB﹦1:2,∴BD=2CD,∵DC=3,∴BD=2×3=6,∴BC=BD+DC=6+3=9,∵∠CAD=∠B,∠C=∠C,∴△ABC∽△DAC,∴=,即=,解得AC=3;(2)由翻折的性质得,∠E=∠C,DE=CD=3,∵AB∥DE,∴∠B=∠EDF,∵∠CAD=∠B,∴∠EDF=∠CAD,∴△EFD∽△ADC,∴=()2=()2=18.(1)证明:∵D是BC的中点,DE⊥BC,∴BE=CE,∴∠B=∠DCF,∵AD=AC,∴∠FDC=∠ACB,∴△ABC∽△FCD;(2)解:过A作AG⊥CD,垂足为G.∵AD=AC,∴DG=CG,∴BD:BG=2:3,∵ED⊥BC,∴ED∥AG,∴△BDE∽△BGA,∴ED:AG=BD:BG=2:3,∵DE=3,∴AG=,∵△ABC∽△FCD,BC=2CD,∴=()2=.∵S△ABC=×BC×AG=×8×=18,∴S△FCD=S△ABC=.19.(1)证明:∵△ABC为等边三角形,∴∠B=60°,由三角形的外角性质得,∠ADE+∠FDE=∠BAD+∠B,∵∠ADE=60°,∴∠BAD=∠FDE;(2)解:如图,过点D作DH∥AC交AB于H,∵△ABC为等边三角形,∴△BDH是等边三角形,∴∠BHD=60°,BD=BH,∴∠AHD=180°﹣60°=120°,∵CE是△ABC的外角平分线,∴∠ACE=(180°﹣60°)=60°,∴∠DCE=60°+60°=120°,∴∠AHD=∠DCE=120°,又∵AH=AB﹣BH,CD=BC﹣BD,∴AH=CD,在△AHD和△DCE中,,∴△AHD≌△DCE(ASA),∴AD=DE,∵∠ADE=60°,∴△ADE是等边三角形,∴∠DAE=∠DEA=60°,AE=AD=5,∵∠BAD=∠BAC﹣∠CAD=60°﹣∠CAD,∠EAG=∠DAE﹣∠CAD=60°﹣∠CAD,∴∠BAD=∠EAG,∴△ABD∽△AEG,∴=,即=,解得AG=.20.解:(1)设x秒时,点P在AB上,点Q在BC上,且使△PBQ面积为8cm2,由题意得(6﹣x)•2x=8,解之,得x1=2,x2=4,经过2秒时,点P到距离B点4cm处,点Q到距离B点4cm处;或经4秒,点P到距离B点2cm处,点Q到距离B点8cm处,△PBQ的面积为8cm2,综上所述,经过2秒或4秒,△PBQ的面积为8cm2;(2)当P在AB上时,经x秒,△PCQ的面积为:×PB×CQ=×(6﹣x)(8﹣2x)=12.6,解得:x1=(不合题意舍去),x2=,经x秒,点P移动到BC上,且有CP=(14﹣x)cm,点Q移动到CA上,且使CQ=(2x﹣8)cm,过Q作QD⊥CB,垂足为D,由△CQD∽△CAB得,即QD=,由题意得(14﹣x)•=12.6,解之得x1=7,x2=11.经7秒,点P在BC上距离C点7cm处,点Q在CA上距离C点6cm处,使△PCQ的面积等于12.6cm2.经11秒,点P在BC上距离C点3cm处,点Q在CA上距离C点14cm处,14>10,点Q已超出CA的范围,此解不存在.综上所述,经过7秒和秒时△PCQ的面积等于12.6cm221.(1)证明:如图,∵线段DB顺时针旋转60°得线段DE,∴∠EDB=60°,DE=DB.∵△ABC是等边三角形,∴∠B=∠ACB=60°.∴∠EDB=∠B.∴EF∥BC.∴DB=FC,∠ADF=∠AFD=60°.∴DE=DB=FC,∠ADE=∠DFC=120°,△ADF是等边三角形.∴AD=DF.∴△ADE≌△DFC.(2)解:由△ADE≌△DFC,得AE=DC,∠1=∠2.∵ED∥BC,EH∥DC,∴四边形EHCD是平行四边形.∴EH=DC,∠3=∠4.∴AE=EH.∴∠AEH=∠1+∠3=∠2+∠4=∠ACB=60°.∴△AEH是等边三角形.∴∠AHE=60°.(3)解:设BH=x,则AC=BC=BH+HC=x+2,由(2)四边形EHCD是平行四边形,∴ED=HC.∴DE=DB=HC=FC=2.∵EH∥DC,∴△BGH∽△BDC.∴.即.解得x=1.∴BC=3.22.(1)证明:∵DE∥BC,∴∠ADE=∠B,∠AEC=∠ACB,∴△ADE∽△ABC,∴=,∵DE∥BC,∴∠EDC=∠BCD,∵CD平分∠ACB,∴∠BCD=∠DCE,∴∠DCE=∠EDC,∴DE=CE,∴=,即AE•BC=AC•CE;(2)∵S△ADE:S△CDE=4:3.5,∴AE:CE=4:3.5,∴=,∵由(1)知=,∴=,解得DE=6,∵DE=CE,∴CE=8.23.(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AC2=AB•AD;(2)证明:∵E为AB的中点,∴CE=AB=AE,∴∠EAC=∠ECA,∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD;(3)解:∵CE∥AD,∴△AFD∽△CFE,∴AD:CE=AF:CF,∵CE=AB,∴CE=×6=3,∵AD=4,∴,∴.24.(1)证明:如图1,在△ABC中,∵∠CAB=90°,AD⊥BC于点D,∴∠CAD=∠B=90°﹣∠ACB.∵AC:AB=1:2,∴AB=2AC,∵点E为AB的中点,∴AB=2BE,∴AC=BE.在△ACD与△BEF中,,∴△ACD≌△BEF,∴CD=EF,即EF=CD;(2)解:如图2,作EH⊥AD于H,EQ⊥BC于Q,∵EH⊥AD,EQ⊥BC,AD⊥BC,∴四边形EQDH是矩形,∴∠QEH=90°,∴∠FEQ=∠GEH=90°﹣∠QEG,又∵∠EQF=∠EHG=90°,∴△EFQ∽△EGH,∵AC:AB=1:,∠CAB=90°,∴∠B=30°.在△BEQ中,∵∠BQE=90°,∴sinB==,∴EQ=BE.在△AEH中,∵∠AHE=90°,∠AEH=∠B=30°,∴cos∠AEH==,∴EH=AE.∵点E为AB的中点,∴BE=AE,∴EF:EG=EQ:EH=BE:AE=1:=:3.25.(1)证明:如图1,连接PN,∵N、P分别为△ABC边BC、CA的中点,∴PN∥AB,且.∴△ABF∽△NPF,∴.∴BF=2FP.(2)解:如图2,取AF的中点G,连接MG,∴MG∥EF,AG=GF=FN.∴△NEF∽△NMG,∴S△NEF=S△MNG=×S△AMN=××S△ABC=S.26.(1)证明:∵CD⊥AB,∴∠CDB=∠ADC=90°,∴∠ACD+∠BCD=90°,∵∠ACB=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,∴△ADC∽△CDB,∴=;(2)解:∵CE=AC,BF=BC,∴===,又∵∠A=∠BCD,∴∠ACD=∠B,∴△CED∽△BFD,∴∠CDE=∠BDF,∴∠EDF=∠EDC+∠CDF=∠BDF+∠CDF=∠CDB=90°.27.解;(1)∵AB∥CE,∴∠A=∠DCE,又∵∠ADB=∠EDC,∴△ABD∽△CED;(2)①过点E作EH⊥BF于点H,∵△ABC是等边三角形,△ABD∽△CED,AB=6,AD=2CD,∴==,∠A=∠ACB=60°,∴CE=3,∵AB∥CE,∴∠A=∠DCE=60°,∴∠ECH=180°﹣∠ACB﹣∠DCE=180°﹣60°﹣60°=60°,∴EH=CE•sin60°=3×=;②在Rt△ECH中,∵∠ECH=60°,CE=3,∴CH=CE•cos60°=3×=,∴BH=BC+CH=6+=,∴BE===3.28.(1)解:∵AC=AC′,AB=AB′,∴由旋转可知:∠CAB=∠C′AB′,∴∠CAB+∠EAC′=∠C′AB′+∠EAC′,即∠CAC′=∠BAB′,又∵∠ACB=∠AC′B′=90°,∴△ACC′∽△ABB′,∵AC=3,AB=4,∴==;(2)证明:∵Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,∴AC=AC′,AB=AB′,∠CAB=∠C′AB′,(1分)∴∠CAC′=∠BAB′,∴∠ABB′=∠AB′B=∠ACC′=∠AC′C,∴∠ACC′=∠ABB′,(3分)又∵∠AEC=∠FEB,∴△ACE∽△FBE.(4分)(3)解:当β=2α时,△ACE≌△FBE.理由:在△ACC′中,∵AC=AC′,∴∠ACC′=∠AC′C====90°﹣α,(6分)在Rt△ABC中,∠ACC′+∠BCE=90°,即90°﹣α+∠BCE=90°,∴∠BCE=90°﹣90°+α=α,∵∠ABC=α,∴∠ABC=∠BCE,(8分)∴CE=BE,由(2)知:△ACE∽△FBE,∴△ACE≌△FBE.(9分)29.证明:(1)∵△ABC是等边三角形,∠DAE=120°,∴∠DAB+∠CAE=60°,∵∠ABC是△ABD的外角,∴∠DAB+∠D=∠ABC=60°,∴∠CAE=∠D,∵∠ABC=∠ACB=60°,∴∠ABD=∠ACE=120°,∴△ABD∽△ECA;(2)∵△ABD∽△ECA,∴=,即AB•AC=BD•CE,∵AB=AC=BC,∴BC2=BD•CE30.(1)证明:∵AC=CD=DE=EB=,又∠C=90°,∴AD=2,∴=,==,∴=,又∵∠ADE=∠BDA,∴△ADE∽△BDA;(2)证明:∵△ADE∽△BDA,∴∠DAE=∠B,又∵∠ADC=∠AEC+∠DAE,∴∠ADC=∠AEC+∠B;(3)解:∵点P为线段AB上一动点,根据勾股定理得:AE==,BE=,∴PE的最大值为.作EF⊥AB,则EF=,则PE的最小值为∴≤EP≤,∵EP为整数,即EP=1,2,3,结合图形可知PE=1时有两个点,所以PE长为整数的点P个数为4个.。

相似三角形的判定及性质学案及答案

相似三角形的判定及性质学案及答案

相似三角形的判定及性质学习目标:1.掌握两个三角形相似的判定条件(三个角对应相等,三条边的比对应相等,则两个三角形相似)——相似三角形的定义,和三角形相似的预备定理(平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似).2.会运用“两个三角形相似的判定条件”和“三角形相似的预备定理”解决简单的问题.3.掌握两个直角三角形相似的判定条件,并能解决简单的问题.4.掌握相似三角形的性质定理,并能解决简单的问题.知识梳理:(1)相似三角形的判定定义:对应角________,对应边_________的两个三角形叫做相似三角形.相似三角形对应边的比值叫做_________.预备定理:_____于三角形一边的直线和_________(或两边的_________)相交,所构成的三角形与原三角形相似.引理:如果一条直线截三角形的两边(或两边的延长线)所的的线段______________那么这条直线平行于__________.判定定理1:如果一个三角形的__________与另一个三角形的两个角__________,那么这两个三角形相似.(简叙为:______________________________).判定定理2:如果一个三角形的__________与另一个三角形的两边__________,并且__________,那么这两个三角形相似.(简叙为:___________________________________).判定定理3:如果一个三角形的__________与另一个三角形的三条边__________,那么这两个三角形相似.(简叙为:______________________________).直角三角形相似的判定定理1:①如果两个直角三角形_____________________,那么它们相似.②如果两个直角三角形_____________________,那么它们相似.定理2:①如果一个直角三角形的________________与另一个直角三角形的斜边和一条直角边__________,那么这两个直角三角形相似.(2)相似三角形的性质①相似三角形的对应线的比,对应线的比和对应线的比都等于相似比;②相似三角形的的比等于相似比;③相似三角形的的比等于相似比的.④相似三角形外接圆的直径比、周长比等于,外接圆的面积比等于.三角形相似的关系证明:AD2=DC·AC例2.如图所示,已知在△ABC中,AB=AC,AD是BC边上的中线,CF∥BA,BF交AD 于点P,交AC于点E.求证:BP2=PE·PF.例3.如图所示,在△ABC中,∠ACB=90°,CD⊥AB于点D,AE是∠CAB的角平分线,CD与AE相交于点F,EG⊥AB于点G. 求证:EG2=FD·EB例4.如图所示,在△ABC中,DE∥BC,S△ADE∶S△ABC =4∶9.(1)求AE∶EC.(2)求S△ADE∶S△CDE.A.有两边成比例及一个角相等的两个三角形相似B.有两边成比例的两个等腰三角形相似C.有三边分别对应平行的两个三角形相似D.有两边及一边上的高对应成比例的两个三角形相似2.如图所示,△ABC∽△AED∽△AFG,DE是△ABC的中位线,△ABC与△AFG的相似比是3∶2,则△ADE与△AFG的相似比是()A.3∶4B.4∶3C.8∶9D.9∶83.如图所示,在△ABC中,点M在BC上,点N在AM上,CM=CN,且AM BM= AN CN下列结论正确的是()A.△ABM∽△ACBB.△ANC∽△AMBC.△ANC∽△ACMD.△CMN∽△BCA4.如图所示,BD、CE是△ABC的高,BD、CE交于点F,写出图中所有与△ACE相似的三角形:__________.5.如图所示,AB=8,AD=3,AC=6,当AE=____时,△ADE∽△ACB.6.在△ABC中,点D、E分别是边AB、AC上的点,且DE∥BC,若AE∶EC=1∶2,且AD=4 cm,则DB等于()A.2 cm B.6 cmC.4 cm D.8 cm7.在△ABC中,AB=9,AC=12,BC=18,D为AC上一点,DC=AC,在AB上取一点E,得到△ADE,若△ADE与△ABC相似,则DE的长为()A.6 B.8C.6或8 D.148.如图所示,已知在△ABC中,∠C=90°,正方形DEFG内接于△ABC,DE∥AC,EF∥BC,AC=1,BC=2,则AF∶FC等于()A.1∶3B.1∶4C.1∶2D.2∶39.两相似三角形的相似比为1∶3,则其周长之比为______,内切圆面积之比为______.10.如图所示,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,则AE =______.11.如图所示,已知边长为12的正三角形ABC,DE∥BC,S△BCD∶S△BAC=4∶9,求CE的长.相似三角形的判定和性质答案 例1. 证明:∵∠A =36°,AB =AC ,∴∠ABC =∠C =72°.又∵BD 平分∠ABC ,∴∠ABD =∠CBD =36°.∴AD =BD =BC ,且△ABC ∽△BCD .∴BC ∶AB =CD ∶BC .∴BC 2=AB ·CD , ∴AD=BC,AB=AC.∴AD 2=AC ·CD例2. 证明:如图,连接PC ,在△ABC 中,∵AB =AC ,D 为BC 中点,∴AD 垂直平分BC .∴PB =PC ,∠1=∠2.∵AB =AC ,∴∠ABC =∠ACB .∴∠ABC -∠1=∠ACB -∠2.∴∠3=∠4.∵CF ∥AB ,∴∠3=∠F .∴∠4=∠F .又∵∠EPC =∠CPF .∴△PCE ∽△PFC .∴ = .∴PC 2=PE ·PF .∵PC =PB .∴PB 2=PE ·PF例3.证明:∵∠ACE =90°,CD ⊥AB ,∴∠CAE +∠AEC =90°,∠F AD +∠AFD =90°. ∵∠AFD =∠CFE ,∴∠F AD +∠CFE =90°.又∵∠CAE =∠F AD ,∴∠AEC =∠CFE ,∴CF =CE .∵AE 是∠CAB 的平分线,EG ⊥AB ,EC ⊥AC ,∴EC =EG ,∴CF =EG .∵∠B +∠CAB =90°,∠ACF +∠CAB =90°,∴∠ACF =∠B .PC PE PFPC ∵∠CAF =∠BAE ,∴△AFC ∽△AEB ,AF AE =CF EB . ∵CD ⊥AB ,EG ⊥AB ,∴Rt △ADF ∽Rt △AGE . ∴AF AE =FD EG ,∴CF EB =FD EG.例4.当堂检测:1.C2.A3.B4. △FCD 、△FBE 、△ABD5.46.D7.C8.C9.1:3 1:9 10. 211. 如图所示,过点D 作DF ⊥BC 于点F ,过点A 作AG ⊥BC 于点G ,S △BCD = BC ·DF ,S △BAC = BC ·AG ,∵S △BCD ∶S △BAC =4∶9,∴DF ∶AG =4∶9.∵△BDF ∽△BAG ,∴BD ∶BA =DF ∶AG =4∶9.∵AB =12,∴CE =BD =解析:(1)∵DE ∥BC , ∴△ADE ∽△ABC . ADE ABC S S =2AE AC ⎛⎫ ⎪⎝⎭=49, ∴AE AC =23,∴AE EC =21=2. (2)如图所示,作DF ⊥AC ,垂足为F .则S △ADE =12DF ⋅AE ,S △CDE =12DF ⋅EC . ∴ADE CDE S S =1212DF AE DF EC ⋅⋅=AE EC=21=2.。

人教版八年级数学上册 第27章 相似单元同步检测试题(附答案)

人教版八年级数学上册 第27章 相似单元同步检测试题(附答案)

人教版九年级数学第27章《相似》单元同步检测试题完成时间:120分钟满分:150分姓名成绩一、选择题(本大题10小题,每小题4分,共40分。

每小题给出的四个选项中,只有一个选项是符合题意的,请将该选项的标号填入表格内)题号12345678910答案1.观察下列每组图形,相似图形是()A. B. C. D.2.用一个10倍的放大镜看一个15°的角,看到的角的度数为()A.150° B.105° C.15° D.无法确定大小3.已知四条线段的长度分别为2,x-1,x+1,4,且它们是成比例线段,则x的值为()A.2 B.3 C.-3D.3或-34.如图,在大小为4×4的正方形网格中,是相似三角形的是( )A.①和②B.②和③C.①和③D.②和④5.如图,在△ABC中,DE∥BC,∠ADE=∠EFC,AD∶BD=5∶3,CF=6,则DE的长为()A.6 B.8 C.10 D.12第5题图第6题图第7题图6.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠C B.∠APB=∠ABC C. = D. =APABABACABBPACCB7.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF∶FC等于()A.3∶2 B.3∶1 C.1∶1 D.1∶28.如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜边AB上的一点O为圆心所作的半圆分别与AC、BC相切于点D、E,则AD为()A.2.5 B.1.6 C.1.5 D.1第8题图第9题图9.如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①AFFD=12;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是( )A.①②③④B.①④C.②③④D.①②③10.如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()A B C D二、填空题(每题5分,共20分)得分评卷人得分评卷人11.如图,在△ABC 中,MN ∥BC 分别交AB ,AC 于点M ,N .若AM =1,MB =2,BC =3,则MN的长为.第11题图第12题图12.如图,已知零件的外径为25 mm ,现用一个交叉卡钳(两条尺长AC 和BD 相等,OC =OD )量零件的内孔直径AB .若OC ∶OA =1∶2,量得CD =10 mm ,则零件的厚度x =mm .13.如图,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上.若幻灯片到光源的距离为20 cm ,到屏幕的距离为40 cm ,且幻灯片中图形的高度为6 cm ,则屏幕上图形的高度为 cm.第13题图第14题图14.经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD 是△ABC 的“和谐分割线”,△ACD 为等腰三角形,△CBD 和△ABC 相似,∠A =46°,则∠ACB 的度数为.90分)15.(10分)如图,A 、B 、C 、P 四点均在边长为1的小正方形网格格点上.(1)判断△PBA 与△ABC 是否相似,并说明理由;(2)求∠BAC 的度数.16.(10分)如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF 来测量操场旗杆AB 的高度,他们通过调整测量位置,使斜边DF 与地面保持平行,并使边DE 与旗杆顶点A 在同一直线上,已知DE =0.5米,EF =0.25米,目测点D 到地面的距离DG =1.5米,到旗杆的水平距离DC =20米,求旗杆的高度.17.(10分)如图,等边△ABC 的边长为3,P 为BC上一点,且BP=1,D 为AC 上一点,若∠APD =60°,求CD 的长.18.(12分)如图,△ABC中,∠ACB=90°,AB的垂直平分线交AB于D,交AC于点E,交BC 延长线于F.求证:CD2=DE·DF.19.(12分)如图,已知CE是Rt△ABC的斜边AB上的高,BG⊥AP.求证:CE2=ED·EP.20.(12分)如图,AB⊥BD,CD⊥BD,AB=6cm,CD=4cm,BD=14cm,点P在BD上由点B向点D方向移动,当点P移到离点B多远时,△APB和△CPD相似?21.(12分)如图,矩形ABCD中,AB=20,BC=10,点P为AB边上一动点,DP交AC于点Q.(1)求证:△APQ ∽△CDQ ;(2)P 点从A 点出发沿AB 边以每秒1个单位长度的速度向B 点移动,移动时间为t 秒.当t 为何值时,DP ⊥AC ?22.(12分)如图,在△ABC 中,∠ACB =90°,CD 是斜边AB 上的高,G 是DC 延长线上一点,过B 作BE ⊥AG ,垂足为E ,交CD 于点F .求证:CD 2=DF ·DG .人教版九年级数学 第27章 《相似》 单元同步检测试题参 考 答 案完成时间:120分钟 满分:150分姓名成绩一、选择题(本大题10小题,每小题4分,共40分。

相似三角形的性质(有答案)

相似三角形的性质(有答案)

27.2.2 相似三角形的性质学习目标:1. 理解并掌握相似三角形中对应线段的比等于相似比,并运用其解决问题. (重点、难点)2.理解相似三角形面积的比等于相似比的平方,并运用其解决问题. (重点)【自主学习】一、知识链接1. 相似三角形的判定方法有哪几种?2. 三角形除了三个角,三条边外,还有哪些要素?【合作探究】一、要点探究探究点1:相似三角形对应线段的比思考如图,△ABC ∽△A′B′C′,相似比为k,它们对应高、对应中线、对应角平分线的比各是多少?证明如图,△ABC ∽△A′B′C′,相似比为k,求它们对应高的比.试一试仿照求高的比的过程,当△ABC ∽△A′B′C′,相似比为k 时,求它们对应中线的比、对应角平分线的比.【要点归纳】相似三角形对应高的比等于相似比.类似地,可以证明相似三角形对应中线、角平分线的比也等于相似比.一般地,我们有:相似三角形对应线段的比等于相似比.【典例精析】例1已知△ABC∽△DEF,BG、EH 分别是△ABC和△DEF 的角平分线,BC = 6 cm,EF = 4 cm,BG= 4.8 cm. 求EH 的长.【针对训练】1. 如果两个相似三角形的对应高的比为 2 : 3,那么对应角平分线的比是,对应边上的中线的比是.2. 已知△ABC ∽△A'B'C' ,相似比为3 : 4,若BC 边上的高AD=12 cm,则B'C' 边上的高A'D' =.思考如果△ABC ∽△A'B'C',相似比为k,它们的周长比也等于相似比吗?为什么?【要点归纳】相似三角形周长的比等于相似比.探究点2:相似三角形面积的比思考 如图,△ABC ∽△A ′B ′C ′,相似比为 k ,它们的面积比是多少?证明 画出它们的高,由前面的结论,我们有k C B BC ='',k D A AD='',22121k k k D A AD C B BC D A C B AD BC S S C B A ABC=⋅=''⋅''=''⋅''⋅='''△△【要点归纳】由此得出:相似三角形面积的比等于相似比的平方.【针对训练】1. 已知两个三角形相似,请完成下列表格:2. 把一个三角形变成和它相似的三角形,(1) 如果边长扩大为原来的 5 倍,那么面积扩大为原来的_____倍;相似比 2k ……周长比13……面积比10000……(2) 如果面积扩大为原来的 100 倍,那么边长扩大为原来的_____倍.3. 两个相似三角形的一对对应边分别是 35 cm 、14 cm ,(1) 它们的周长差 为60 cm ,这两个三角形的周长分别是___ ___; (2) 它们的面积之和是 58 cm 2,这两个三角形的面积分别是 .例2 如图,在 △ABC 和 △DEF 中,AB = 2 DE ,AC = 2 DF ,∠A = ∠D. 若 △ABC 的边 BC 上的高为 6,面积为512,求 △DEF 的边 EF 上的高和面积.【针对训练】如果两个相似三角形的面积之比为 2 : 7,较大三角形一边上的高为 7,则较小三角形对应边上的高为______.例3 如图,D ,E 分别是 AC ,AB 上的点,已知△ABC 的面积为100 cm 2,且53==AB AD AC AE ,求四边形 BCDE 的面积.【针对训练】如图,△ABC 中,点 D、E、F 分别在 AB、AC、BC 上,且 DE∥BC,EF∥AB. 当D 点为 AB 中点时,求 S四边形BFED : S△ABC的值.二、课堂小结当堂检测1. 判断:(1) 一个三角形的各边长扩大为原来的5 倍,这个三角形的周长也扩大为原来的5 倍( )(2) 一个四边形的各边长扩大为原来的9 倍,这个四边形的面积也扩大为原来的9 倍( )2. 在△ABC 和△DEF 中,AB=2 DE,AC=2 DF,∠A=∠D,AP,DQ 是中线,若AP =2,则DQ的值为( )1A.2 B.4 C.1 D.23. 连接三角形两边中点的线段把三角形截成的一个小三角形与原三角形的周长比等于______,面积比等于___________.4. 两个相似三角形对应的中线长分别是6 cm 和18 cm,若较大三角形的周长是42 cm,面积是12 cm2,则较小三角形的周长是__________cm,面积为__________cm2.5. △ABC 中,DE∥BC,EF∥AB,已知△ADE 和△EFC 的面积分别为4 和9,求△ABC 的面积.6. 如图,△ABC 中,DE∥BC,DE 分别交AB、AC 于点D、E,S△ADE=2 S△DCE,求S△ADE∶S△ABC.【分析】从题干分析可以得到△ADE∽△ABC,要证明它们面积的比,直接的就是先求出相似比,观察得到△ADE与△DCE是同高,得到AE与CE的比,进而求解.参考答案自主学习一、知识链接解:(1)定义:对应边成比例,对应角相等的两个三角形相似(2)平行于三角形一边,与另外两边相交所构成的三角形与原三角形相似 (3)三边成比例的两个三角形相似(4)两边成比例且夹角相等的两个三角形相似 (5)两角分别相等的两个三角形相似(6)一组直角边和斜边成比例的两个直角三角形相似 解:还有高,中线,平分线等等合作探究一、要点探究探究点1:相似三角形对应线段的比证明 解:如图,分别作出 △ABC 和 △A' B' C' 的高 AD 和 A' D' . 则∠ADB =∠A' D' B'=90°.∵△ABC ∽△A ′B ′C ′,∴∠B =∠B' . ∴△ABD ∽△A' B' D' .∴k B A ABD A AD =''=''. 【典例精析】解:∵ △ABC ∽△DEF ,∴EFBCEH BG =(相似三角形对应角平分线的比等于相似比), ∴468.4=EH ,解得 EH = 3.2.∴ EH 的长为 3.2 cm. 【针对训练】1. 2 : 3 2 : 3 2. 16cm思考 解:等于,如果 △ABC ∽△A'B'C',相似比为 k ,那么k AC CAC B BC B A AB =''=''='',因此AB =k A'B',BC =kB'C',CA =kC'A',从而k A C C B B A A C k C B k B A k A C C B B A CA BC AB =''+''+''''+''+''=''+''+''++. 探究点2:相似三角形面积的比 【针对训练】1.2. (1) 5 (2) 103. (1) 100cm ,40cm (2) 50cm 2,8cm 2解:在 △ABC 和 △DEF 中,∵ AB=2DE ,AC=2DF ,∴21==AC DF AB DE . 又 ∵∠D=∠A ,∴ △DEF ∽ △ABC ,相似比为21. ∵△ABC 的边 BC 上的高为 6,面积为512,∴△DEF 的边 EF 上的高为21×6 = 3, 面积为53512212=⨯⎪⎭⎫⎝⎛.【针对训练】14解:∵ ∠BAC = ∠DAE ,且53==AB AD AC AE ,∴ △ADE ∽△ABC. ∵ 它们的相似比为 3 : 5,∴ 面积比为 9 : 25.又∵ △ABC 的面积为 100 cm 2,∴ △ADE 的面积为 36 cm 2. ∴ 四边形 BCDE 的面积为100-36 = 64 (cm 2).【针对训练】解:∵ DE ∥BC ,D 为 AB 中点,∴ △ADE ∽ △ABC ,∴21==AB AD AC AE ,即相似比为 1 : 2,面积比为 1 : 4. 又∵ EF ∥AB ,∴ △EFC ∽ △ABC ,相似比为21=AC CE , ∴面积比为 1 : 4.设 S △ABC = 4,则 S △ADE = 1,S △EFC = 1, S 四边形BFED = S △ABC -S △ADE -S △EFC = 4-1-1 = 2, ∴ S 四边形BFED : S △ABC = 2 : 4 =21. 当堂检测1. (1) √ (2) ×2. C3. 1:1 1:44. 14 345. 解:∵ DE ∥BC ,EF ∥AB ,∴ △ADE ∽△ABC ,∠ADE =∠EFC ,∠A =∠CEF , ∴△ADE ∽△EFC.又∵S △ADE : S △EFC = 4 : 9,∴ AE : EC=2:3,则 AE : AC =2 : 5, ∴ S △ADE : S △ABC = 4 : 25,∴ S △ABC = 25.6. 解:过点 D 作 AC 的垂线,垂足为 F ,则22121==⋅⋅=EC AE DF EC DF AE S S DCEADE △△, ∴32=AC AE . 又∵ DE ∥BC ,∴ △ADE ∽△ABC. ∴943222=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=AC AE S S ABC ADE △△,即 S △ADE : S △ABC =4 : 9.。

人教版八年级数学上册 第27章 相似全章测试题(含答案)

人教版八年级数学上册 第27章 相似全章测试题(含答案)

AB CDFE第27章相似全章测试班级_____________姓名_____________学号_____________分数_____________一、选择题1.如图,□ABCD中,EF∥AB,DE∶EA = 2∶3,EF = 4,则CD的长为()A.163B.8 C.10 D.16(第1题) (第2题) (第3题)2.如图,∠ACB=∠ADC=90°,BC=a,AC=b,AB=c,要使△ABC∽△CAD,只要CD等于( )A.cb2B.ab2C.cab D.ca23.在菱形ABCD中,E是BC边上的点,连接AE交BD于点F, 若EC=2BE,则FDBF的值是()A.21B.31C.41D.514.已知:如图,DE∥BC,AD:DB=1:2,则下列结论不正确的是()A、12DEBC=B、19ADEABC∆=∆的面积的面积C、13ADEABC∆=∆的周长的周长D、18ADE∆=的面积四边形BCED的面积5.如图,铁路道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m时,•长臂端点升高(杆的宽度忽略不计)().A.4m B.6m C.8m D.12m6.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A .(3,2)B .(3,1)C .(2,2)D .(4,2)7. 平面直角坐标系中,有一条“鱼”,它有六个顶点,则( ) A.将各点横坐标乘以2,纵坐标不变,得到的鱼与原来的鱼位似 B.将各点纵坐标乘以2,横坐标不变,得到的鱼与原来的鱼位似 C.将各点横、纵坐标都乘以2,得到的鱼与原来的鱼位似D.将各点横坐标乘以2,纵坐标乘以21,得到的鱼与原来的鱼位似8. 对于平面图形上的任意两点P ,Q ,如果经过某种变换得到新图形上的对应点P ′,Q ′,保持PQ =P ′Q ′,我们把这种变换称为“等距变换”,下列变换中不一定是等距变换的是( )A .平移B .旋转C .轴对称D .位似9. 已知:如图,点A ,B ,C ,D 的坐标分别是(1,7),(1,1),(4,1),(6,1).若以C ,D ,E (E 在格点上)为顶点的三角形与△ABC 相似,则点E 的坐标不可能是( ) A .(6,0)B .(4,2)C .(6,5)D .(6,3)10. 小明在暗室做小孔成像实验.如图1,固定光源(线段MN )发出的光经过小孔(动点K )成像(线段M'N')于足够长的固定挡板(直线l )上,其中MN// l .已知点K 匀速运动,其运动路径由AB ,BC ,CD ,DA ,AC ,BD 组成.记它的运动时间为x ,M'N'的长度为y ,若y 关于x 的函数图象大致如图2所示,则点K 的运动路径可能为( ) A .A→B→C→D→A B .B→C→D→A→B C .B→C→A→D→B D .D→A→B→C→D图1 图2二、填空题11. 如果两个相似三角形的面积比是1:2,那么它们的相似比是__. 12. 如图,小伟在打网球时,击球点距离球网的水平距离是8米,已知网高是0.8米,要使球恰好能打过网,且落在离网4米的位置,则球拍击球的高度h 为_________米.13. 如图,△ABC 中,AD 是中线,BC =8,∠B =∠DAC ,则线段AC 的长为. 14. 如图,点D 为△ABC 外一点,AD 与BC 边的交点为E ,AE=3,DE=5,BE =4,要使△BDE 与△ACE 相似,那么线段CE 的长等于____________. 15. 如图,ABC △与AEF △中,AB AE BC EF B E AB ==∠=∠,,,交EF 于D .给出下列结论:①AFC C ∠=∠;②DF CF =; ③ADE FDB △∽△;④BFD CAF ∠=∠.其中正确的结论是____________(填写所有正确结论的序号). 三、解答题16. 如图,△ABC 在方格纸中,(1)请在方格纸上建立平面直角坐标系,使 A (2,3),C (6,2),并求出B 点坐标;(2)以原点O 为位似中心,相似比为2,在第一象限内将△ABC 放大,画出放大后的图形△A′B′C′; (3)计算△A′B′C′的面积S .17. 如图,点H 在Y ABCD 的边DC 延长线上,连结AH 分别交BC 、BD 于点E 、F ,求证:BE ABAD DH=.A BCABCDEFH18. 如图,花丛中有一路灯杆AB . 在灯光下,小明在D 点处的影长DE =3米,沿BD 方向行走到达G 点,DG =5米,这时小明的影长GH =5米. 如果小明的身高为1.7米,求路灯杆AB 的高度(精确到0.1米).19. 如图,AB 是⊙O 的直径,C 是弧AB 的中点,⊙O 的切线BD 交AC 的延长线于点D ,E 是OB 的中点,CE 的延长线交切线DB 于点F ,AF 交⊙O 于点H ,连结BH . (1)求证:AC =CD ; (2)若OB =2,求BH 的长.20. 阅读下面材料:小昊遇到这样一个问题:如图1,在△ABC 中,∠ACB =90°,BE 是AC 边上的中线,点D 在BC 边上,CD :BD =1:2,AD 与BE 相交于点P ,求APPD的值. 小昊发现,过点A 作AF ∥BC ,交BE 的延长线于点F ,通过构造△AEF ,经过推理和计算能够使问题得到解决(如图2).请回答:APPD的值为 .参考小昊思考问题的方法,解决问题:如图 3,在△ABC 中,∠ACB =90°,点D 在BC 的延长线上,AD 与AC 边上的中线BE 的延长线交于点P ,DC :BC :AC =1:2:3 . (1)求APPD的值; (2)若CD=2,则BP =________.图1图2图3参考答案1-10. CABAC ACDDB 11.1:2 12. 2.4 13.42 14.151245或 15.①③④ 16.(1)(2,1)(2)略(3)16 17.分析:BE BF ABAD DF DH== 18.5.95m ≈6.0m 19.(1)略(24520.解:PD AP 的值为23. …………………………………………………………1分 解决问题:(1)过点A 作AF ∥DB ,交BE 的延长线于点F ,……………………………………2分设DC =k ,∵DC ︰BC =1︰2,∴BC =2k . ∴DB =DC +BC =3k . ∵E 是AC 中点,∴AE =CE . ∵AF ∥DB ,∴∠F =∠1.又∵∠2=∠3,∴△AEF ≌△CEB . ………………………………3分 ∴AF =BC =2k .∵AF ∥DB ,∴△AFP ∽△DBP .∴DBAFPD AP =. ∴32=PD AP . …………………………………………………………………4分 (2) 6. ……………………………………………………………………………5分。

【人教版】八年级数学上册 第27章《相似》检测卷(含答案)

【人教版】八年级数学上册 第27章《相似》检测卷(含答案)

第二十七章检测卷时间:120分钟 满分:150分题号 一 二 三 四 五 六 七 八 总分 得分一.选择题(本大题共10小题,每小题4分,满分40分) 1.观察下列每组图形,相似图形是( )2.已知a b =23,那么aa +b的值为( )A.13B.25C.35D.343.已知△ABC ∽△DEF ,且AB ∶DE =1∶2,则△ABC 的面积与△DEF 的面积之比为( )A .1∶2B .1∶4C .2∶1D .4∶1第4题图 第5题图 第6题图 第7题图4.如图,在△ABC 中,DE ∥BC ,AD AB =13,BC =12,则DE 的长是( )A .3B .4C .5D .6 5.如图,在6×6的正方形网格中,连接两格点A ,B ,线段AB 与网格线的交点为M ,N ,则AM ∶MN ∶NB 为( )A .3∶5∶4B .1∶3∶2C .1∶4∶2D .3∶6∶5 6.如图,线段AB 两个端点的坐标分别为A (4,4),B (6,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,则端点C 和D 的坐标分别为( )A .(2,2),(3,2)B .(2,4),(3,1)C .(2,2),(3,1)D .(3,1),(2,2) 7.如图,四边形ABCD 是平行四边形,点E 在BA 的延长线上,点F 在BC 的延长线上,连接EF ,分别交AD ,CD 于点G ,H ,则下列结论错误的是( )A.EA BE =EG EFB.EG GH =AG GDC.AB AE =BC CFD.FH EH =CF AD8.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为( )A .1.25尺B .57.5尺C .6.25尺D .56.5尺第 8题图 第9题图 第10题图 9.如图,在正方形ABCD 中,M 为BC 上一点,ME ⊥AM ,ME 交AD 的延长线于点E .若AB =12,BM =5,则DE 的长为( )A .18 B.1095 C.965 D.25310.如图,在锐角△ABC中,BC=6,S△ABC=12,两动点M,N分别在边AB,AC上滑动,且MN∥BC,MP⊥BC,NQ⊥BC,得矩形MPQN.设MN的长为x,矩形MPQN的面积为y,则y关于x的函数图象大致形状是( )二.填空题(本大题共4小题,每小题5分,满分20分)11.比例尺为1∶4000000的地图上,两城市间的图上距离为3cm,则这两城市间的实际距离为________km.12.如图,已知点B,E,C,F在同一条直线上,∠A=∠D,要使△ABC∽△DEF,还需添加一个条件,你添加的条件是____________(只需写一个条件,不添加辅助线和字母).第12题图第14题图13.将一个矩形沿着一条对称轴翻折,如果所得到的矩形与这个矩形相似,那么我们就将这样的矩形定义为“白银矩形”.事实上,“白银矩形”在日常生活中随处可见,如:我们常见的A4纸就是一个“白银矩形”.请根据上述信息求A4纸的较长边与较短边的比值,这个比值是________.14.将三角形纸片(△ABC)按如图折叠,使点C落在AB边上的点D处,折痕为EF.已知AB=AC=3,BC=4,若以点B,D,F为顶点的三角形与△ABC相似,那么CF的长是__________.三.(本大题共2小题,每小题8分,满分16分)15.如图,四边形ABCD∽四边形A′B′C′D′,求x,y的值和α的大小.16.如图,在△ABC中,D是AB上一点,且∠ACD=∠B,已知AD=8cm,BD=4cm,求AC的长.四.(本大题共2小题,每小题8分,满分16分)17.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-2,1),B(-1,4),C(-3,2).(1)画出△ABC关于点B成中心对称的图形△A1BC1;(2)以原点O 为位似中心,相似比为1∶2,在y 轴的左侧,画出△ABC 放大后的图形△A 2B 2C 2,并直接写出点C 2的坐标.18.如图,AB 是半圆O 的直径,点C 在圆弧上,D 是AC ︵的中点,OD 与AC 相交于点E .求证:△ABC ∽△COE .五.(本大题共2小题,每小题10分,满分20分)19.如图,在△ABC 中,AB =AC =8,BC =6,点D 为BC 上一点,BD=2.过点D作射线DE交AC于点E,使∠ADE=∠B.求线段CE的长度.20.如图,在▱ABCD中,E是CD的延长线上一点,连接BE交AD 于点F,且AF=2FD.(1)求证:△ABF∽△CEB;(2)若△CEB的面积为9,求▱ABCD的面积.六.(本题满分12分)21.如图,△ABC 和△CEF 均为等腰直角三角形,E 在△ABC 内,∠CAE +∠CBE =90°,连接BF .(1)求证:△CAE ∽△CBF ; (2)若BE =1,AE =2,求CE 的长.七.(本题满分12分)22.已知正方形ABCD ,点E 在边CD 上,点F 在线段BE 的延长线上,连接FC ,且∠FCE =∠CBE .(1)如图①,当点E 为CD 边的中点时,求证:CF =2EF ;(2)如图②,当点F 位于线段AD 的延长线上时,求证:EF BE =DEDF.八.(本题满分14分)23.如图①,P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA =120°,则点P叫作△ABC的费马点.(1)如果点P为锐角△ABC的费马点,且∠ABC=60°.①求证:△ABP∽△BCP;②若PA=3,PC=4,求PB的长;(2)如图②,已知锐角△ABC,分别以AB,AC为边向外作正△ABE 和正△ACD,CE和BD相交于点P,连接AP.①求∠CPD的度数;②求证:点P为△ABC的费马点.参考答案与解析1.D 2.B 3.B 4.B 5.B 6.C 7.C 8.B 9.B10.B 解析:如图,过点A 作AD ⊥BC 于点D ,交MN 于点E .∵在锐角△ABC 中,BC =6,S △ABC =12,∴AD ·BC 2=AD ×62=12,解得AD=4.由MN ∥BC ,MP ⊥BC ,NQ ⊥BC ,AD ⊥BC ,易得四边形MPDE 为矩形,∴MP =ED .∵MN ∥BC ,∴△AMN ∽△ABC ,∴AE AD =MN BC ,即AE 4=x6,解得AE =2x 3,∴ED =AD -AE =4-2x 3,∴MP =4-2x3,∴矩形MPQN 的面积y =MN ·MP =x ⎝⎛⎭⎪⎫4-2x 3=-23x 2+4x =-23(x -3)2+6,∴y 关于x 的函数是二次函数,其函数图象的顶点坐标是(3,6).故选B.11.12012.∠B =∠DEC (答案不唯一) 13. 214.127或2 解析:由折叠可得DF =CF .设DF =CF =x ,则BF =BC-CF =4-x .以点B ,D ,F 为顶点的三角形与△ABC 相似,分两种情况:①若∠BFD =∠C ,则DF AC =BF BC ,即x 3=4-x 4,解得x =127;②若∠BFD=∠A ,则FD AC =BF BA ,即x 3=4-x 3,解得x =2.综上所述,CF 的长为127或2.15.解:∵四边形ABCD ∽四边形A ′B ′C ′D ′,∴x 8=y 11=96,∠C =α,∠D =∠D ′=140°,(4分)∴x =12,y =332,α=∠C =360°-∠A -∠B -∠D =360°-62°-75°-140°=83°.(8分)16.解:∵∠ACD =∠B ,∠A =∠A ,∴△ACD ∽△ABC ,∴AC AB =ADAC.(4分)∵AD =8cm ,BD =4cm ,∴AB =12cm ,(6分)∴AC =8×12=46(cm).(8分)17.解:(1)△A 1BC 1如图所示.(4分)(2)△A 2B 2C 2如图所示,点C 2的坐标为(-6,4).(8分) 18.证明:∵AB 为半圆O 的直径,∴∠BCA =90°.∵D 是AC ︵的中点,∴OE ⊥AC ,∴∠OEC =90°=∠BCA .(4分)∵OA =OC ,∴∠BAC =∠OCE ,∴△ABC ∽△COE .(8分)19.解:∵AB =AC ,∴∠B =∠C .∵∠ADC =∠B +∠BAD ,∠ADC =∠ADE +∠CDE ,而∠ADE =∠B ,∴∠BAD =∠CDE ,∴△ABD ∽△DCE ,(5分)∴AB DC =BD CE .∵AB =8,BC =6,BD =2,∴DC =BC -BD =4,∴84=2CE,∴CE =1.(10分)20.(1)证明:∵四边形ABCD 是平行四边形,∴∠A =∠C ,AB ∥CD ,∴∠ABF =∠E ,∴△ABF ∽△CEB .(4分)(2)解:∵AF =2FD ,∴AD =3FD .∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AD =BC ,∴△ABF ∽△DEF ,△CEB ∽△DEF ,∴S △ABF ∶S △DEF =AF 2∶FD 2=4,S △CEB ∶S △DEF =BC 2∶FD 2=AD 2∶FD 2=9.又∵△CEB 的面积为9,∴△DEF 的面积为1,△ABF 的面积为4,∴▱ABCD 的面积为9-1+4=12.(10分)21.(1)证明:∵△ABC 和△CEF 均为等腰直角三角形,∴AC BC =CE CF =2,∠ACB =∠ECF =45°.(3分)∵∠ACB =∠ACE +∠BCE ,∠ECF =∠BCF +∠BCE ,∴∠ACE =∠BCF ,∴△CAE ∽△CBF .(6分)(2)解:由(1)可知△CAE ∽△CBF ,∴∠CAE =∠CBF ,AE BF =AC BC = 2.又∵AE =2,∴2BF =2,∴BF = 2.(9分)∵∠CAE +∠CBE =90°,∴∠CBF +∠CBE =90°,∴∠EBF =90°,∴EF 2=BE 2+BF 2=12+(2)2=3,∴EF =3,∴CE =2EF = 6.(12分)22.证明:(1)∵四边形ABCD 是正方形,∴CD =BC .∵点E 为CD边的中点,∴CE =12CD =12BC .(2分)∵∠FCE =∠CBE ,∠F =∠F ,∴△FCE ∽△FBC ,∴EF CF =CE BC .又∵CE =12BC ,∴EF CF =12,∴CF =2EF .(6分)(2)∵四边形ABCD 是正方形,∴DE ∥AB ,AD ∥BC ,AD =CD ,∴EF BE=DF AD ,∴EF BE =DF CD.(8分)∵AF ∥BC ,∴∠DFE =∠CBE .∵∠FCE =∠CBE ,∴∠DFE =∠FCE .又∵∠FDE =∠CDF ,∴△FDE ∽△CDF ,∴DE DF =DF CD ,∴EF BE =DE DF.(12分) 23.(1)①证明:∵∠PAB +∠PBA =180°-∠APB =60°,∠PBC +∠PBA =∠ABC =60°,∴∠PAB =∠PBC .又∵∠APB =∠BPC =120°,∴△ABP ∽△BCP .(4分)②解:由①可知△ABP ∽△BCP ,∴PA PB =PB PC,∴PB 2=PA ·PC =12,∴PB =2 3.(6分)(2)①解:如图,∵△ABE 和△ACD 是正三角形,∴AE =AB ,AC =AD ,∠EAB =∠5=60°.∵∠EAC =∠EAB +∠BAC ,∠BAD =∠BAC +∠5,∴∠EAC =∠BAD ,∴△ACE ≌△ADB ,∴∠1=∠2.∵∠3=∠4,∴∠CPD =∠5=60°.(10分)②证明:由①可知∠1=∠2,∠3=∠4,∴△ADF ∽△PCF ,∴AF ∶PF =DF ∶CF ,∴AF ∶DF =PF ∶CF .∵∠AFP =∠CFD ,∴△AFP ∽△DFC ,∴∠APF =∠ACD =60°.由①可知∠CPD =60°,∴∠APC =∠CPD +∠APF =120°,∠BPC =180°-∠CPD =120°,∴∠APB =360°-∠BPC -∠APC =120°,∴点P 为△ABC 的费马点.(14分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C .∠
D = ∠AEC
D △. AD
E ∽△CBE
c a c
c
C .AC 2=A
D · B C
D . =
小专题(四) 相似三角形的判定与性质
1.(河北中考)如图,CD 是⊙O 的直径,AB 是弦(不是直径),AB ⊥CD 于点 E ,则下列结论 正确的是(D )
︵ ︵ A .AE >BE
B .AD =BC
1
2
2.如图,∠ACB =∠ADC =90°,BC =a ,AC =b ,AB =c ,△要使 ABC ∽△CAD ,只要 CD
等于(A )
b 2
b 2
ab
a 2 A . B . C . D .
3.如图,在四边形 ABCD 中,AD ∥BC ,如果添加下列条件,不能使得△ ABC ∽△DCA 成 立的是(D )
A .∠BAC =∠ADC
B .∠B =∠ACD
DC AB
AC BC
4.(邯郸育华中学月考)如图,在 7×12 的正方形网格中有一只可爱的小狐狸,算算看画面中 由实线组成的相似三角形有(C )
A .4 对
B .3 对
C .2 对
D .1 对
提示:△ ABC ∽△FGE △, HIJ ∽△HKL .
5.如图,P 为线段 AB 上一点,AD 与 BC 交于 E ,∠CPD =∠A =∠B ,BC 交 PD 于 F ,AD 交 PC 于 G ,则图中相似三角形有 3 对.
提示:△ BCP ∽△PCF △, DAP ∽△DPG △
, APG ∽△BFP .
的延长线于 N ,则 1
+ =1.
CD CE ,
AB -3 2
6.(河池中考)如图,菱形 ABCD 的边长为 1,直线 l 过点 C ,交 AB 的延长线于点 M ,交 AD
1 AM AN
7.(保定高阳章末测试)如图,在等边△ ABC 中,D 为 BC 边上一点,E 为 AC 边上一点,且 ∠ADE =60°.
(1)求证:△ ABD ∽△DCE ; (2)若 BD =3,CE =2,△求 ABC 的边长.
解:(1)证明:∵△ABC 是等边三角形, ∴∠B =∠C =60°.
∴∠BAD +∠ADB =120°. ∵∠ADE =60°,
∴∠ADB +∠EDC =120°. ∴∠DAB =∠EDC .
又∵∠B =∠C =60°, ∴△ABD ∽△DCE .
(2)∵△ABC 是等边三角形, ∴AB =BC .
∴CD =BC -BD =AB -3. ∵△ABD ∽△DCE ,
∴ AB BD

即 AB 3 = .解得 AB =9.
8.(邯郸育华中学月考)如图所示,已知 ABCD 中,AE ∶EB =1∶2. (1)△求 AEF △与 CDF 的周长之比; (2)如果 △S AEF =6 cm 2,求 S △ CDF .
∴ FD BD =.
∵AB =AD ,BD = BC ,
FD 2
1 ∴ = = .
解:(1)∵AE ∶EB =1∶2, ∴AE ∶AB =1∶3.
∵四边形 ABCD 为平行四边形,∴AB =CD ,AB ∥CD . ∴AE ∶CD =AE ∶AB =1∶3. ∵AB ∥CD ,
∴△AEF ∽△CDF .
∴△AEF 的周长∶△CDF 的周长=1∶3. (2)∵△AEF ∽△CDF , ∴△S AEF ∶△S CDF =1∶9. 又∵△S AEF =6, ∴△S CDF =6×9=54(cm 2).
9.如图,△在 ABC 中,AB =AD ,DC =BD ,DE ⊥BC ,DE 交 AC 于点 E ,BE 交 AD 于点 F .求证:
(1)△ BDF ∽△CBA ; (2)AF =DF .
证明:(1)∵BD =DC , DE ⊥BC ,
∴EB =EC .
∴∠EBD =∠C . ∵AB =AD ,
∴∠ADB =∠ABC . ∴△BDF ∽△CBA . (2)由(1)知△, BDF ∽△CBA ,
AB CB 1
2
1 BC
AD CB 2
∴AF =DF .
10.(衢州中考)如图,AB 为半圆 O 的直径,C 为 BA 延长线上一点,CD 切半圆 O 于点 D , 连接 OD ,作 BE ⊥CD 于点 E ,交半圆 O 于点 F ,已知 CE =12,BE =9.
(1)求证:△ COD ∽△CBE ;
(2)求半圆 O 的半径 r 的长.
∴OD CO r 15-r ∴r = .
=CB ( C ▱ y BP =( )2= .
∴y =1- - .
∴y =- +x . (2)y =- +x =- (x -1)2+ .
解:(1)证明:∵CD 切半圆于点 D ,OD 为⊙O 的半径, ∴CD ⊥OD .∴∠CDO =90°. ∵BE ⊥CD ,
∴∠E =90°.
∵∠CDO =∠E =90°,∠C =∠C , ∴△CDO ∽△CEB . (2)∵在 △Rt BEC 中,CE =12,BE =9, ∴CB =15.
∵△CDO ∽△CEB .
EB ,即9= 15 .
45 8
11.淄博中考)如图,在△ ABC 中,点 P 是 BC 边上任意一点(点 P 与点 B , 不重合), AFPE 的顶点 F ,E 分别在 AB ,AC 上.已知 BC =2,S △ ABC =1.设 BP =x ,▱ AFPE 的面积为 y .
(1)求 y 与 x 的函数关系式;
(2)上述函数有最大值或最小值吗?若有,则当 x 取何值时, 有这样的值,并求出该值; 若没有,请说明理由.
解:(1)∵四边形 AFPE 是平行四边形, ∴PF ∥CA .
∴△BFP ∽△BAC .
∴ S △ BFP =( )2 x )2. S △ BAC BC 2 x 2 ∵△S ABC =1,∴S △ BFP = 4 .
同理 △S PEC =( 2-x x 2-4x +4 2 4
x 2 x 2-4x +4
4 4 x 2
2
x 2 1 1
2 2 2
当x=1时,y有最大值,最大值为.

BF
=.
662-2t6-t
∴AN
=.
1
2
12.(菏泽中考)正方形ABCD的边长为6cm,点E、M分别是线段BD、AD上的动点,连接AE并延长,交边BC于F,过M作MN⊥AF,垂足为H,交边AB于点N.
(1)如图1,若点M与点D重合,求证:AF=MN;
(2)如图2,若点M从点D出发,以1cm/s的速度沿DA向点A运动,同时点E从点B 出发,以2cm/s的速度沿BD向点D运动,运动时间为t s.
①设BF=y cm,求y关于t的函数表达式;
②当BN=2AN时,连接FN,求FN的长.
解:(1)∵四边形ABCD是正方形,
∴AD=AB,∠DAN=∠FBA=90°.
∵MN⊥AF,∴∠NAH+∠ANH=90°.
∵∠NDA+∠ANH=90°,
∴∠NAH=∠NDA.
∴△ABF≌△DAN.
∴AF=DN.
∴AF=MN.
(2)①∵四边形ABCD是正方形,
∴AD∥BF.
∴∠ADE=∠FBE.
∵∠AED=∠BEF△,∴EBF∽△EDA.
BE
AD ED
∵四边形ABCD是正方形,
∴AD=DC=CB=6.
∴BD=6 2.
由题意得,BE=2t,则DE=62-2t.
y2t6t
∴=,即y=.
②∵四边形ABCD是正方形,
∴∠MAN=∠FBA=90°.
∵MN⊥AF,∴∠NAH+∠ANH=90°.
∵∠NMA+∠ANH=90°,
∴∠NAH=∠NMA.
∴△ABF∽△MAN.
BF
AM AB
∵BN=2AN,AB=6,∴AN=2.
6t
26-t
∴=.解得t=2.
6-t6。

相关文档
最新文档