等腰三角形(第3课时)

合集下载

1.5等腰三角形的轴对称性(第3课时)

1.5等腰三角形的轴对称性(第3课时)
B
D M N A C E
种不同的分割方法, 用1~3种不同的分割方法,将1个等边 三角型分割成4个等腰三角形。 三角型分割成4个等腰三角形。
拓展提高
说能出你这节课的收获和体验让大家 与你分享吗? 与你分享吗?
等边三角形的性质: 等边三角形的性质: 名 称 等 边 三 角 B 形 图 形 性 三条边都相等
C
如图,在 例1如图 在△ABC中,AB=AC,∠BAC=1200 如图 中 ∠ AD⊥AB, AE⊥AC. ⊥ ⊥ ⑵△ADE是等边三角形吗 为什么 是等边三角形吗?为什么 ⑵△ 是等边三角形吗 为什么? A
B
E
D
C
如图,在 例1如图 在△ABC中,AB=AC,∠BAC=1200 如图 中 ∠ AD⊥AB, AE⊥AC. ⊥ ⊥ ⑶在Rt△ABD中, ∠B=___°,AD=___BD; △ 中 ° 有类似结论吗? 在Rt△ACE中,有类似结论吗 △ 中 有类似判定方法: 等边三角形的判定方法:
• 1.三边相等的三角形是等边三角形 三边相等的三角形是等边三角形. 三边相等的三角形是等边三角形 • 2.三个内角都等于 三个内角都等于60 °的三角形是 三个内角都等于 等边三角形. 等边三角形 • 3.有一个内角等于 有一个内角等于60 °的等腰三角 有一个内角等于 形是等边三角形. 形是等边三角形
观察 图中有几条 对称轴? 对称轴?请你 画出来. 画出来.
如图,在 例1如图 在△ABC中,AB=AC,∠BAC=1200 如图 中 ∠ AD⊥AB, AE⊥AC. ⊥ ⊥ 等于30 等于60 ⑴图中,等于 0的角有 图中 等于 的角有__________,等于 0 等于 ; 的角有 A
B
E
D
A

【四清导航】2015春八年级数学下册 1.1 等腰三角形(第3课时)课件 (新版)北师大版

【四清导航】2015春八年级数学下册 1.1 等腰三角形(第3课时)课件 (新版)北师大版

解:∵AD平分∠BAC,∴∠1=∠2, ∵DE∥AC,∴∠2=∠ADE.∴∠1=∠ADE. ∴AE=DE,∵AD⊥DB,∴∠ADB=90°, ∴∠1+∠ABD=90°, ∠ADE+∠BDE=∠ADB=90°, ∴∠ABD=∠BDE.∴DE=BE=AE=2.5
【综合运用】
18.(12分)如图,我301海监船于上午11时30分在A处观测钓鱼 岛B在北偏东60°,该船以每小时10海里的速度向东航行到C处, 再观测钓鱼岛在北偏东30°,航行到D处,观测到钓鱼岛B在 北偏西30°,当海监船从A处到达C处时恰与钓鱼岛B相距20海 里,请你确定301海监船从A处分别到达C处和D处所用的时间.
解:已知:△ABC的三个内角其中∠A最大. 求证:∠A≥60°. 证明:假设最大的∠A<60°,则∠B<60°, ∠C<60°,∴∠A+∠B+∠C<180°,这与三 角形的内角和相矛盾,故假设不成立,所以,三 角形中的最大内角不可能小于60°
等边三角形的判定 5.(4分)(2014· 广州)将四根长度相等的细木条首尾相接,用 钉子钉成四边形ABCD,转动这个四边形,使它形状改变, 当∠B=90°时,如图1,测得AC=2,当∠B=60°时, 如图2,AC=( A ) 2 2 A. 2 B.2 C. 6 D.
等角对等边
1.(4分)如图,PQ为Rt△MPN斜边上的高,∠M=45°,则图中 等腰三角形的个数有(C ) A.1个 B.2个 C.3个 D.4个 2.(4分)如图所示,BD是△ABC的角平分线,∠A=36°, 三 个等腰三角形,它们分别 ∠C=72°,则图中共有____ 是 △ABD,△BCD,△ABC. 3.(6分)如图,在△ABC中,AB=AC,AD⊥BC,DE∥AC. 求证:△BED与△AED都是等腰三角形.

《等腰三角形》三角形的证明PPT(第3课时)

《等腰三角形》三角形的证明PPT(第3课时)

已知:如图,在△ABC中,已知AB=AC,∠ABC=15°,CD是腰AB上的高求证:CD= Nhomakorabea1
2 AC
.
证明: 如图,在等腰△ABC中,∠ABC=∠ACB=15°,∠CAD为△ABC的外角
∴∠CAD=∠ABC+∠ACB=30°
又:CD⊥AD
∴△ACD为直角三角形
∵直角三角形中30°角所对边是斜边的一半
活动探究
问题1:前面证明了等腰三角形的两底角相等,反过来,有两个角 相等的三角形是等腰三角形吗?如是,你能说明理由吗?与同伴交流.
活动探究
问题2:如图在△ABC中,∠B=∠C,要证明AB=AC,你是怎样构造的两个三角形 全等的,你是怎样证明的?与同伴交流.
证法一:作AD⊥BC于点D.(如图所示) 在△ABD和△ACD中, ∵∠B=∠C, ∠BDA=∠CDA, AD=AD, ∴ △ABD≌△ACD (AAS). ∴ AB=AC (全等三角形的对应边相等).
已知:△ABC. 求证:∠A、∠B、∠C中不能有两个角是直角. 证明:假设∠A、∠B、∠C中有两个角是直角,不妨设∠A和∠B是直角, 即∠A=90°, ∠B=90°, 于是∠A+∠B+∠C=90°+90°+∠C>180°, 这与三角形内角和 定理相矛盾, 因此“∠A和∠B都是直角”的假设不成立. 所以,一个这与三角形内角和 定理相矛盾三角形中不能有两个角是直角.
1.1 等腰三角形
第3课时
八年级下册
学习目标 1 探究等腰三角形的判定定理,并会运用其进行简单的证明. 2 理解反证法的基本证明思路,并能简单应用.
预习检测
1. 等腰三角形的两底角 相等 .简写成 “ 等边对等角 ”; 2. 等腰三角形的顶角的平分线、底边上的中线、底边上的高互 相 重合 .( 简写成“ 三线合 ” ) 3. 等腰三角形的两个底角相等. 如果把这个定理反过来说,这个定理的条件和结论进行交换,这句话怎么 说; 有两个角相等的三角形是等腰三角形 ,简述为:“ 等角对等边 ”

北师大版八年级下册数学1.1等腰三角形第3课时 教案设计

北师大版八年级下册数学1.1等腰三角形第3课时 教案设计

课时课题:第一章第一节等腰三角形第3课时教学目标:1.能够用综合法证明等腰三角形的判定定理,进一步熟悉证明的基本步骤和书写格式,体会证明的必要性.2.初步了解反证法的含义,并能利用反证法证明简单的命题.3.体验数学活动中的探索与创造,感受数学的严谨性.教学重点与难点:重点:等腰三角形的判定定理的证明.难点:反证法的含义,利用反证法证明简单的命题.教法与学法指导:本节应用“启迪诱导—自主探究”教学模式.教师在教学过程中起到引导释疑的作用:引导学生观察、思考、分析、讨论、形成结论,并让学生在应用中体会所得知识,学会应用所学知识解决问题的方法.本节课关注了问题的变式与拓广,引领学生经历了提出问题、解决问题的过程,因而较好地提高了学生的研究能力、自主学习能力.课前准备:多媒体课件教学过程:第一环节回顾旧知复习导入师:请同学们回顾一下,前面我们学习了等腰三角形的哪些性质。

生1:等腰三角形两底角相等,就是“等边对等角”。

生2:“三线合一”。

生3:等腰三角形两腰上的高相等,两腰上的中线相等,两底角的平分线相等。

师:非常好!同学们概括的很全面。

那么对于等腰三角形的性质定理:等腰三角形两底角相等,这个命题的题设和结论是什么? 生:题设:等腰三角形。

结论:两底角相等。

师:我们把性质定理的条件和结论反过来还成立么?如果一个三角形有两个角相等,那么这两个角所对的边也相等? 生:完全成立,可以证明出来。

设计意图:设计成问题串是为引出等腰三角形的判定定理埋下伏笔。

学生独立思考是对上节课内容有效地检测手段。

第二环节 合作探究 展示交流师:以前我们通过改变问题条件,得出了很多类似的结论,这是研究问题的一种常用方法,除此之外,我们还可以“反过来”思考问题,这也是获得数学结论的一条途径.比如“等边对等角”,反过来成立吗?也就是:有两个角相等的三角形是等腰三角形吗?下面我们来一起证明一下这个结论。

请同学们画出图形,写出已知、求证。

等腰三角形(第3课时)课件

等腰三角形(第3课时)课件

B )60°
60(° C
⑴等边三角形的三边都相等;
⑵等边三角形的三个内角都相等,并且每一个角都等于 60°.
等边三角形性质探索:
等边三角形是轴对称图形吗?若是,有几条对称轴?
结论:等边三角形是轴对称图ቤተ መጻሕፍቲ ባይዱ,有三条对称轴
想一想: 一个三角形满足什么条件就是等边三角形?
一般三角形
等边三角形
1.三条边都相等的三角形是等边三角形. 2. 三个角都相等的三角形是等边三角形.
1.(宿迁·中考)数学活动课上,老师在黑板上画直线l 平行于射线AN(如图),让同学们在直线和射线上各找一 点B和C,使得以A,B,C为顶点的三角形是等腰直角三角 形.这样的三角形最多能画______个.
l
A
N
【解析】分别以A,B,C为直角顶点,则共有3个等腰直角 三角形. 答案:3
2.如图,在等边△ABC中,点D是BC边的中点,以AD为边作 等边△ADE,则∠CAE= .
2.6 等腰三角形
第3课时
你发现了什么? 这就是今天我们要学的等边三角形.
1.理解并掌握等边三角形的定义,探索等边三角形的性 质和判定方法. 2.能够用等边三角形的知识解决相应的数学问题.
A
想想看,等边三角形 有什么性质?
B
C
⑴三边之间 AB_=AC_=BC;
⑵三角之间∠A_=∠B_=∠C.
等边三角形的性质 A
等腰三角形
等边三角形
等腰三角形满足什么条件时是等边三角形呢? 有一个角是60°的等腰三角形是等边三角形.
问题 已知,在△ABC 中,∠A =60°,(
).
请你在括号内补充一个条件,使△ABC 能成为等边三角
形.

第3课时 等腰三角形的判定PPT课件(北师大版)

第3课时 等腰三角形的判定PPT课件(北师大版)

14.如图,∠BAC=∠ABD,AC=BD,点O是AD,BC的交点,点E是 AB的中点.试判断OE和AB的位置关系,并给出证明.
解:OE和AB相互垂直.理由:在△ABC和△BAD中,AB=BA, ∠BAC=∠ABD,AC=BD,∴△ABC≌△BAD(SAS),∴∠ABC=∠BAD
,∴OA=OB,∵点E是AB的中点,∴OE⊥AB
5.如图,在△ABC中,BC=5 cm,BP,CP分别是∠ABC和∠ACB的平 分线,且PD∥AB,PE∥AC,则△PDE的周长是____ cm5 .
6.用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时
,应先假设( )
D
A.有一个锐角小于45°
B.每一个锐角都小于45°
C.有一个锐角大于45°
A.5 个 B.4 个 C.3 个 D.2 个
3.如图,在△ABC中,AD⊥BC于点D,若添加下列条件中的一个: ①BD=CD;②AD平分∠BAC;③AD=BD.其中能使△ABC成为等腰三角
形的有__①__②.(填序号)
4.如图,∠BAC=100°,∠B=40°,∠D=20°,AB=3, 则CD=___3_.
11.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40 海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处, 则N处与灯塔P的距离为( ) D
A.40海里 B.60海里 C.70海里 D.80海里 12.在△ABC中,∠ABC=45°,AD⊥BC于点D,BE⊥AC于点E,BE交 AD于点F,则下列结论错误的是( ) C A.AD=BD B.BF=AC C.AD=BF D.∠DCF=45°
D.每一个锐角都大于45°
7.请举反例说明命题“对于任意实数x,x2+5x+5的值总是正数”是假命 题.你举的反例是___-_.2 (写出一个x的值即可)

3 简单的轴对称图形 第3课时 等腰三角形的性质(教材P50~51练习)

3 简单的轴对称图形 第3课时 等腰三角形的性质(教材P50~51练习)
24或27
.

3或

22. [应用意识](衢州中考变式)“三等分角”大约是在公元前五世纪由古希腊人提
出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有
槽的棒 OA , OB 组成,两根棒在 O 点相连并可绕 O 转动, C 点固定, OC = CD =
DE ,点 D , E 可在槽中滑动.若∠ BDE =75°,求∠ CDE 的度数.
F . 若△ AFC 是等边三角形,则∠ B =
30 °.

第12题

13. 如图所示,以正方形 ABCD 的边 AB 为边作等边△ ABE ,连接 DE ,则∠ AED
的度数为
15°
.

第13题

14. 如图,已知△ ABC 和△ BDE 都是等边三角形.试说明: AE = CD .
◉答案 解:∵△ ABC 和△ BDE 都是等边三角形,∴ AB = BC , BE = BD ,∠ ABC =
+ CD = AC + CD ,所以 CE = AC + CD .
∠ DBE =60°.在△ ABE 和△ CBD 中, AB = BC ,∠ ABE =∠ CBD , BE = BD ,∴△
ABE ≌△ CBD (SAS),∴ AE = CD .
15. [一题多解:代换法·平移法](招远期中)如图,在△ ABC 中, AB = AC ,∠ A
=30°,点 P 是△ ABC 内一点,连接 PB , PC . 若∠1=∠2,则∠ BPC 的度数是
∠ BDE =105°,∴∠ CDE =105°-25°=80°.
【母题探究——双等边三角形】
23. 母题:如图,△ ABC 是等边三角形, AD 是角平分线,△ ADE 是等边三角形,

第3课时 等腰三角形的判定

第3课时  等腰三角形的判定

(1)证明:∵AB=AC,∴∠ABC=∠ACB.
∵BD,CE是△ABC的两条高线,
∴∠BDC=∠CEB=90°.
∴∠DBC=∠ECB.∴OB=OC.
(2)解:∵∠ABC=50°,AB=AC,
∴∠A=180°-2×50°=80°.
∴∠EOD=360°-90°-90°-80°=100°.
∴∠BOC=∠EOD=100°.
返回
题型
2
全等三角形的判定和性质在折叠 中判定等腰三角形中的应用
14.(中考·广东)如图,长方形ABCD中,AB>AD,把长 方形沿对角线AC所在直线折叠,使点B落在点E处, AE交CD于点F,连接DE.
(1)求证:△ADE≌△CED; (2)求证:△DEF是等腰三角形.
(1)证明:∵四边形 ABCD 是长方形, ∴AD=BC, AB=DC.
15.如图,在△ABC中,AB=AC,D为BC边的中点, F为CA的延长线上的一点,过点F 作FG⊥BC于点 G,并交AB于点E.求证:
(1)AD∥FG; (2)△AFE为等腰三角形.
证明: (1)∵AB=AC,D是BC的中点,
∴AD⊥BC.
又∵FG⊥BC, ∴AD∥FG.
(2)∵AB=AC,D是BC的中点,
∴DE=DF.
返回
B.有一个外角是120°的等腰三角形是等边三角形
C.两条直线都与第三条直线平行,则这两条直线
互相平行
D.全等三角形的面积相等
返回
题型 1 等腰三角形的判定在求角中的应用
13.(中考·常州)如图,已知△ABC中,AB=AC,BD, CE是高,BD与CE相交于点O.
(1)求证:OB=OC; (2)若∠ABC=50°,求∠BOC的度数.

人教版八年级上册等腰三角形(第三课时)课件

人教版八年级上册等腰三角形(第三课时)课件

B DC
∴BD=CD, ∠BAD=∠CAD(三线合一)
知识回顾
等腰三角形判定方法:如果一个三角形有两
个角相等,那么这个三角形是等腰三角形(简写
成“等角对等边”).
A
应用格式:
在△ABC中, ∵ ∠B=∠C,(已知)
∴ AC=AB. (等角对等边) B
C
即△ABC为等腰三角形.
例题讲解
已知:如图,DB=DC,∠ABD=∠ACD,
A
GF C
D
例题讲解
解:(2)∵AD是等腰△ABC的底边上的高,
∴AD也是∠BAC的平分线.
A
∵△AEF是等腰三角形,
∴AG是底边EF上的高和中线. E ∴AD⊥EF,GE=GF.
GF
∴AD是线段EF的垂直平分线. B
C
∴DE=DF,所以△DEF是等腰三角形.D
练习
如图所示,把一张长方形的纸沿对角 线折叠,则重合部分是等腰三角形吗? 为什么?
注意性质和判定的转换.
角形. 证明:∵ AB=AC,∴ ∠B =∠C.
如图,AB=AC,E为CA延长线上一点,作ED⊥BC于D,交AB于点F,求证:△AEF为等腰三角形.
AF=CD=AB,∠F=∠D=90°.
∴ ∠DBC+∠ABD=∠DCB+ ∠ACD,即∠ABC=∠ACB.
等腰三角形(第三课时)
等腰三角形(第三课时)
求证:AB=AC. ∴ ∠DBC+∠ABD=∠DCB+ ∠ACD,即∠ABC=∠ACB.
A
∴AD是线段EF的垂直平分线.
性质2:等腰三角形顶角的平分线、
分析: 分析:先用等腰三角形性质—等边对等角,后用等腰三角形的判定—等角对等边.

等腰三角形 第三课时-八年级数学下册课件(北师大版)

等腰三角形 第三课时-八年级数学下册课件(北师大版)

2 在下列三角形中,若AB=AC,则不能被一条直线分
成两个小等腰三角形的是( B )
3 在平面直角坐标系中,已知A (2,2),B (4,0).若在坐 标轴上取点C,使△ABC 为等腰三角形,则满足条件的点C
的个数是( B )
A.5
B.6
C.7
D.8
4 如图,已知在△ABC 中,AB=AC,BD,CE 是高,BD 与CE 相交于点O. (1)求证:OB=OC; (2)若∠ABC=50°,求∠BOC 的度数.
2.等腰三角形的判定与性质的异同
相同点:都是在一个三角形中;
区别:判定是由角到边,性质是由边到角.
即: 等边
性质 判定
等角

例1 已知:如图,AB=DC,BD=CA,BD 与CA 相交于点E. 求证:△AED 是等腰三角形.
A
D
E
B
C
证明:∵AB=DC,BD=CA,AD=DA, ∴△ABD ≌ △DCA ( SSS ). ∴ ∠ADB=DAC (全等三角形的对应角相等). ∴AE=DE (等角对等边). ∴△AED 是等腰三角形.
故△BDE 为等腰三角形.
B
C
2 在△ABC 中,∠A 和∠B 的度数如下,能判定△ABC 是等腰三角
形的是( B )
A.∠A=50°,∠B=70° B.∠A=70°,∠B=40° C.∠A=30°,∠B=90° D.∠A=80°,∠B=60°
3 如图,∠B=∠C=36°,∠ADE=∠AED=72°,则图中的等 腰三角形有( D ) A.3个 B.4个 C.5个 D.6个
∴∠DAB 是一个直角或钝角的假设不成立. ∴∠DAB 是一个锐角.
1 如图,一艘轮船在A 处测得灯塔P 位于其北偏东60°方向上, 轮船沿正东方向航行30 n mile到达B 处后,此时测得灯塔P 位于其北偏东30°方向上,此时轮船与灯塔P 的距离是( B )

人教版数学八年级上册教学设计《13-3等腰三角形》(第3课时)

人教版数学八年级上册教学设计《13-3等腰三角形》(第3课时)

人教版数学八年级上册教学设计《13-3等腰三角形》(第3课时)一. 教材分析等腰三角形是八年级上册的教学内容,是学生学习了三角形的基本概念、性质和分类后的进一步学习。

等腰三角形是特殊的三角形,它有两边相等,两个角也相等。

本节课的内容包括等腰三角形的性质和判定,以及等腰三角形的应用。

通过本节课的学习,学生能够进一步理解三角形的性质,提高解决问题的能力。

二. 学情分析八年级的学生已经具备了一定的几何知识,对三角形的基本概念、性质和分类有一定的了解。

但学生在学习等腰三角形时,可能会对等腰三角形的性质和判定产生混淆。

因此,在教学过程中,教师需要引导学生通过观察、操作、思考、交流等活动,深入理解等腰三角形的性质和判定,提高学生解决问题的能力。

三. 教学目标1.知识与技能:使学生掌握等腰三角形的性质和判定,能运用等腰三角形的性质解决一些简单问题。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的观察能力、操作能力和思维能力。

3.情感态度与价值观:激发学生的学习兴趣,培养学生的合作意识,使学生感受到数学与生活的紧密联系。

四. 教学重难点1.重点:等腰三角形的性质和判定。

2.难点:等腰三角形的性质在实际问题中的应用。

五. 教学方法采用自主探究、合作交流的教学方法。

教师引导学生通过观察、操作、思考、交流等活动,自主探索等腰三角形的性质和判定,提高学生解决问题的能力。

六. 教学准备教师准备课件、学案、练习题等教学资源。

学生准备课本、笔记本等学习用品。

七. 教学过程1.导入(5分钟)教师通过复习三角形的基本概念、性质和分类,引出等腰三角形的概念。

提问:等腰三角形有什么特殊的性质?学生回答,教师点评。

2.呈现(10分钟)教师通过课件展示等腰三角形的性质和判定,引导学生观察、思考。

学生自主学习课本相关内容,理解等腰三角形的性质和判定。

3.操练(10分钟)教师发放练习题,学生独立完成。

练习题包括判断题和应用题,旨在巩固学生对等腰三角形性质和判定的理解。

内蒙古化德县第三中学:2.3.1 等腰三角形(第3课时) 课件 (八年级人教版上册)

内蒙古化德县第三中学:2.3.1 等腰三角形(第3课时) 课件 (八年级人教版上册)

△ABC即为所求.
zxxk
二、讲解例题,巩固新知
例2 以线段a为底,∠α
为底角,作一个等腰三角形. 作法: (1)作线段BC=a; (2)在线段BC的同侧作 ∠CBX=∠ α , ∠BCY=∠ α ,两 边相交于点 A. △ABC即为所求. a
α
三、运用新知,解决问题
例3 已知等腰三角形底边长为a,底边上 的高的长为h,求作这个等腰三角形
第2章
轴对称
2.3 等腰三角形
2.3.1 等腰三角形 第3课时
一、创设情境,引入新课
小明有一些规格为4 cm,5 cm的小木棒,能搭 出几种不同的等腰三角形?
哪些条件可以确定等腰三角形? 如何用尺规作出等腰三角形?
二、讲解例题,巩固新知
例1 已知线段a、b(如
图),用尺规作图作等腰三角 形ABC,使AB=AC=b,BC=a. 作法: (1)画线段BC=a; (2)分别以B、C为圆心,b长为半径画弧,两弧交 于点A; (3)连接线段AB,AC. a b
六、布置作业
1.必做题: (1)若△ABC是等腰三角形,那么以下情况有可能的是( ) A.AB=AC=2,BC=5 B.AB=BC=3,BC=6 C.AB=3,BC=4,周长为11 D.AB=2,BC=4,周长为8 (2)已知等腰三角形的顶角是50°,腰长2 cm,尺规作图作出 此等腰三角形.(不要求写出作法) 2.选做题: △ABC为等边三角形, P是△ABC所在平面上一点,则 使△ABP、△BCP和△ACP都为等腰三角形的P点的个 数是( ) A.3 B.4 C.7 D.10
a
h
三、运用新知,解决问题
确定等腰三角形的方法:
(1)已知一底一腰可确定等腰三角形; (2)已知一底角一底边可确定等腰三角形; (3)已知一底边及底边上的高线可确定等 腰三角形. Z,xxk 除此之外,还有哪些量可确定等腰三角形?

北师大版数学 八年级下册 第一章第3课时 等腰三角形的判定与反证法 优秀课件

北师大版数学 八年级下册 第一章第3课时 等腰三角形的判定与反证法 优秀课件

由题得AB=15×2=30(海里)
N B 72° 36° C
∵ ∠A= ∠C
∴ BC=AB=30 (海里)
36°
A
2、如图, △ABC中, ∠A=36°,AB=AC, BD平分 ∠ABC, DE∥BC, EF平分∠AED,问在这个图形中,有 那几个等腰三角形?请分别写出来.
A
△ABC、 △BCD 、△EBD、 △EDF 、△FAE 、△ADE、 △ABD
的形式.而已知中的角平分线和平 行线告诉我们图形中有等腰三角形
M
D
出现,因此,找到问题的突破口. B
N C
4、已知五个正数的和等于1,用反证法证明:这五个数 中至少有一个大于或等于1/5.
证明: 设这五个正数为a1、a2、a3、a4、a5 假设这五个数中没有一个大于或等于1/5,即都小于1/5, 那么这五个数的和a1+a2+a3+a4+a5就小于1. 这与已知这五个数的和a1+a2+a3+a4+a5=1相矛盾. 因此, 假设不成立,即这五个数中至少有一个大于或等于 1/5成立.
36°
F
E 36°72°D
73263°°6°
B
72°
C
想一想
小明说, 在一个三角形中,如果两个角不相等, 那么这两个角所对的边也不相等.
即在△ABC中, 如果∠B≠∠C, 那么AB≠AC.
A
B
C
你认为这个结论成立吗? 如果成立, 你能证明它吗?
小明是这样想的:
如图, 在△ABC中, 已知∠B≠∠C, 此时, AB与AC要
B
C
在△ABD和 △ACD中
D
∵∠B=∠C. ∠ADB=∠ADC.AD=AD

广平县第八中学八年级数学下册第一章三角形的证明1等腰三角形第3课时等腰三角形的判定教案新版北师大版9

广平县第八中学八年级数学下册第一章三角形的证明1等腰三角形第3课时等腰三角形的判定教案新版北师大版9

第3课时等腰三角形的判定1.探索等腰三角形的判定定理.2.理解等腰三角形的判定定理,并会运用其进行简单的证明.3.了解反证法的基本证明思路,并能简单应用.4.培养学生的逆向思维能力.重点掌握等腰三角形的判定定理,并会运用其进行简单的证明.难点理解和掌握反证法的证明方法.一、复习导入问题1:等腰三角形性质定理的内容是什么?这个命题的题设和结论分别是什么?问题2:我们是如何证明上述定理的?问题3:我们把性质定理的条件和结论反过来还成立吗?如果一个三角形有两个角相等,那么这两个角所对的边也相等吗?二、探究新知1.等腰三角形的判定定理师:你能证明“有两个角相等的三角形是等腰三角形”吗?并与同伴交流.处理方式:学生在练习本上画图,写出已知、求证;小组之间探究讨论多种证明方法.已知:如图,在△ABC中,∠B=∠C.求证:AB=AC.证法一:过点A作BC的垂线,垂足为D.∵AD⊥BC ,∴∠BDA=∠CDA= 90°.在△ABD和△ACD中,∵∠B=∠C, ∠BDA=∠CDA, AD=AD ,∴△ABD≌△ACD (AAS).∴ AB=AC (全等三角形的对应边相等).证法二:作∠BAC的角平分线,交BC于点D.∵AD平分∠BAC,∴∠BAD=∠CAD.在△ABD和△ACD中,∵∠B=∠C, ∠BAD=∠CAD, AD=AD,∴△ABD≌△ACD (AAS) .∴AB=AC(全等三角形的对应边相等).(教师引导学生类比“等边对等角”的证明方法正确地添加辅助线,规范地写出推理过程,鼓励学生一题多解.)师指出:作△ABC的边BC的中线,虽然把△ABC分成了两个三角形,这两个三角形对应两边及其一边的对角分别相等,这是“SSA”,是不能证明两个三角形全等的.因此,这种添加辅助线的方法是不可行的.引导学生归纳等腰三角形的判定定理:定理:有两个角相等的三角形是等腰三角形.简述为:等角对等边.2.反证法课件出示:在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等.你认为这个结论成立吗?如果成立,你能证明它吗?处理方法:学生积极动脑思考,小组交流讨论.师引导:用综合法证明本结论是行不通的,因此,我们要探究一种新方法来完成它的证明,下面来看小明同学的想法:(课件出示)如图,在△ABC中,已知∠B≠∠C,此时AB与AC要么相等,要么不相等.假设AB=AC,那么根据“等边对等角”定理可得∠C=∠B,但已知条件是∠B≠∠C.这与已知条件∠B≠∠C相矛盾,因此AB≠AC.师:你能理解他的推理过程吗?师出示“反证法”的定义:先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立.这种证明方法称为反证法.三、举例分析例1 已知:如图,AB=DC,BD=CA,BD与CA相交于点E.求证:△AED是等腰三角形.证明:∵AB=DC,BD=CA,AD=DA ,∴△ABD≌△DCA.∴∠ADB=∠DAC(全等三角形的对应角相等).∴AE=DE(等角对等边).∴△AED是等腰三角形.例2 (课件出示教材第9页例3)处理方法:学生独立完成,教师点评.四、练习巩固1.如果三角形的一个外角是130°,且它恰好等于一个不相邻的内角的2倍,那么这个三角形是( )A.钝角三角形B.直角三角形C.等腰三角形D.等边三角形2.如图,在△ABC中,∠B=∠C=40°,D,E是BC上两点,且∠ADE=∠AED=80°,则图中共有等腰三角形( )A.6个B.5个C.4个D.3个,第2题图) ,第3题图) 3.如图,已知△ABC中,CD平分∠ACB交AB于点D,又DE∥BC,交AC于点E,若DE =4 cm,AE=5 cm,则AC等于( )A.5 cm B.4 cm C.9 cm D.1 cm五、课堂小结通过本节课的学习,你有什么收获?六、课外作业1.教材第9页“随堂练习”第1、2题.2.教材第9~10页习题1.3第1~4题.本节课的主要内容是探索等腰三角形的判定定理,在复习性质定理的基础上,引导学生反过来思考猜想新的命题,并进行证明.这样可以发展学生的逆向思维能力,同时引入反证法的基本证明思路,学习与运用反证法也成为本课时的教学任务之一.第4章一次函数一、选择题(共26小题)1.2017年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是()A.B.C.D.2.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是()A.B.C.D.3.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s关于时间t的函数图象,那么符合小明行驶情况的图象大致是()A.B.C.D.4.均匀地向如图的容器中注满水,能反映在注水过程中水面高度h随时间t变化的函数图象是()A.B.C.D.5.如图,某个函数的图象由线段AB和BC组成,其中点A(0,),B(1,),C(2,),则此函数的最小值是()A.0 B.C.1 D.6.某星期天下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(公里)和所用的时间x(分)之间的函数关系.下列说法错误的是()A.小强从家到公共汽车站步行了2公里B.小强在公共汽车站等小明用了10分钟C.公共汽车的平均速度是30公里/小时D.小强乘公共汽车用了20分钟7.货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地,已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y(千米)与各自行驶时间t(小时)之间的函数图象是()A.B.C.D.8.如图,在矩形中截取两个相同的正方形作为立方体的上下底面,剩余的矩形作为立方体的侧面,刚好能组成立方体.设矩形的长和宽分别为y和x,则y与x的函数图象大致是()A.B.C.D.9.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A.B.C.D.10.如图,挂在弹簧称上的长方体铁块浸没在水中,提着弹簧称匀速上移,直至铁块浮出水面停留在空中(不计空气阻力),弹簧称的读数F(N)与时间t(s)的函数图象大致是()A.B.C.D.11.函数y=的图象为()A.B.C.D.12.匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是下图中的()A.B.C.D.13.如果两个变量x、y之间的函数关系如图所示,则函数值y的取值范围是()A.﹣3≤y≤3B.0≤y≤2C.1≤y≤3D.0≤y≤314.甲、乙两人在操场上赛跑,他们赛跑的路程S(米)与时间t(分钟)之间的函数关系如图所示,则下列说法错误的是()A.甲、乙两人进行1000米赛跑B.甲先慢后快,乙先快后慢C.比赛到2分钟时,甲、乙两人跑过的路程相等D.甲先到达终点15.如图所示的容器内装满水,打开排水管,容器内的水匀速流出,则容器内液面的高度h随时间x变化的函数图象最接近实际情况的是()A. B.C. D.16.如图,匀速地向此容器内注水,直到把容器注满,在注水过程中,下列图象能大致反映水面高度h随注水时间t变化规律的是()A.B.C.D.17.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系用图象刻画出来,大致图象是()A. B.C.D.18.汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t(时)的函数关系的大致图象是()A.B.C.D.19.小明从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家,如图描述了小明在散步过程汇总离家的距离s(米)与散步所用时间t(分)之间的函数关系,根据图象,下列信息错误的是()A.小明看报用时8分钟B.公共阅报栏距小明家200米C.小明离家最远的距离为400米D.小明从出发到回家共用时16分钟20.园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图,则休息后园林队每小时绿化面积为()A.40平方米B.50平方米C.80平方米D.100平方米21.图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家2.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是3千米/小时22.“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打6折,设购买种子数量为x千克,付款金额为y元,则y与x的函数关系的图象大致是()A.B.C.D.23.若函数,则当函数值y=8时,自变量x的值是()A.±B.4 C.±或4 D.4或﹣24.已知函数y=,当x=2时,函数值y为()A.5 B.6 C.7 D.825.一家电信公司提供两种手机的月通话收费方式供用户选择,其中一种有月租费,另一种无月租费.这两种收费方式的通话费用y(元)与通话时间x(分钟)之间的函数关系如图所示.小红根据图象得出下列结论:①l1描述的是无月租费的收费方式;②l2描述的是有月租费的收费方式;③当每月的通话时间为500分钟时,选择有月租费的收费方式省钱.其中,正确结论的个数是()A.0 B.1 C.2 D.326.如图,是一台自动测温记录仪的图象,它反映了我市冬季某天气温T随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是()A.凌晨4时气温最低为﹣3℃B.14时气温最高为8℃C.从0时至14时,气温随时间增长而上升D.从14时至24时,气温随时间增长而下降二、填空题(共4小题)27.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数关系是y=x+32,如果某一温度的摄氏度数是25℃,那么它的华氏度数是℉.28.放学后,小明骑车回家,他经过的路程s(千米)与所用时间t(分钟)的函数关系如图所示,则小明的骑车速度是千米/分钟.29.已知函数,那么= .30.如图,根据所示程序计算,若输入x=,则输出结果为.第4章一次函数参考答案与试题解析一、选择题(共26小题)1.2017年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是()A.B.C.D.【考点】函数的图象.【专题】动点型.【分析】根据在电脑上打字录入这篇文稿,录入字数增加,因事暂停,字数不变,继续录入并加快了录入速度,字数增加,变化快,可得答案.【解答】解:A.暂停后继续录入并加快了录入速度,字数增加,故A不符合题意;B.字数先增加再不变最后增加,故B不符合题意错误;C.开始字数增加的慢,暂停后再录入字数增加的快,故C符合题意;D.中间应有一段字数不变,不符合题意,故D错误;故选:C.【点评】本题考查了函数图象,字数先增加再不变最后增加的快是解题关键.2.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是()A.B.C.D.【考点】函数的图象.【分析】根据匀速行驶,可得路程随时间匀速增加,根据原地休息,路程不变,根据加速返回,可得路程随时间逐渐减少,可得答案.【解答】解:由题意,得以400米/分的速度匀速骑车5分,路程随时间匀速增加;在原地休息了6分,路程不变;以500米/分的速度骑回出发地,路程逐渐减少,故选:C.【点评】本意考查了函数图象,根据题意判断路程与时间的关系是解题关键,注意休息时路程不变.3.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s关于时间t的函数图象,那么符合小明行驶情况的图象大致是()A.B.C.D.【考点】函数的图象.【分析】由于开始以正常速度匀速行驶,接着停下修车,后来加快速度匀驶,所以开始行驶路S是均匀减小的,接着不变,后来速度加快,所以S变化也加快变小,由此即可作出选择.【解答】解:因为开始以正常速度匀速行驶﹣﹣﹣停下修车﹣﹣﹣加快速度匀驶,可得S先缓慢减小,再不变,在加速减小.故选:D.【点评】此题主要考查了学生从图象中读取信息的能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.4.均匀地向如图的容器中注满水,能反映在注水过程中水面高度h随时间t变化的函数图象是()A.B.C.D.【考点】函数的图象.【分析】由于三个容器的高度相同,粗细不同,那么水面高度h随时间t变化而分三个阶段.【解答】解:最下面的容器较粗,第二个容器最粗,那么第二个阶段的函数图象水面高度h随时间t的增大而增长缓慢,用时较长,最上面容器最小,那么用时最短.故选A.【点评】此题主要考查了函数图象,解决本题的关键是根据容器的高度相同,每部分的粗细不同得到用时的不同.5.如图,某个函数的图象由线段AB和BC组成,其中点A(0,),B(1,),C(2,),则此函数的最小值是()A.0 B.C.1 D.【考点】函数的图象.【分析】根据函数图象的纵坐标,可得答案.【解答】解:由函数图象的纵坐标,得>>,故选:B.【点评】本题考查了函数图象,利用了有理数大大小比较.6.某星期天下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(公里)和所用的时间x(分)之间的函数关系.下列说法错误的是()A.小强从家到公共汽车站步行了2公里B.小强在公共汽车站等小明用了10分钟C.公共汽车的平均速度是30公里/小时D.小强乘公共汽车用了20分钟【考点】函数的图象.【分析】根据图象可以确定小强离公共汽车站2公里,步行用了多长时间,等公交车时间是多少,两人乘公交车运行的时间和对应的路程,然后确定各自的速度.【解答】解:A、依题意得小强从家到公共汽车步行了2公里,故选项正确;B、依题意得小强在公共汽车站等小明用了10分钟,故选项正确;C、公交车的速度为15÷=30公里/小时,故选项正确.D、小强和小明一起乘公共汽车,时间为30分钟,故选项错误;故选D.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.7.货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地,已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y(千米)与各自行驶时间t(小时)之间的函数图象是()A.B.C.D.【考点】函数的图象.【专题】压轴题.【分析】根据出发前都距离乙地180千米,出发两小时小汽车到达乙地距离变为零,再经过两小时小汽车又返回甲地距离又为180千米;经过三小时,货车到达乙地距离变为零,故而得出答案.【解答】解:由题意得出发前都距离乙地180千米,出发两小时小汽车到达乙地距离变为零,再经过两小时小汽车又返回甲地距离又为180千米,经过三小时,货车到达乙地距离变为零,故C符合题意,故选:C.【点评】本题考查了函数图象,理解题意并正确判断辆车与乙地的距离是解题关键.8.如图,在矩形中截取两个相同的正方形作为立方体的上下底面,剩余的矩形作为立方体的侧面,刚好能组成立方体.设矩形的长和宽分别为y和x,则y与x的函数图象大致是()A.B.C.D.【考点】函数的图象.【专题】压轴题.【分析】立方体的上下底面为正方形,立方体的高为x,则得出y﹣x=2x,再得出图象即可.【解答】解:正方形的边长为x,y﹣x=2x,∴y与x的函数关系式为y=x,故选:B.【点评】本题考查了一次函数的图象和综合运用,解题的关键是从y﹣x等于该立方体的上底面周长,从而得到关系式.9.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A.B.C.D.【考点】函数的图象.【分析】生活中比较运动快慢通常有两种方法,即比较相同时间内通过的路程多少或通过相同路程所用时间的多少,但统一的方法是直接比较速度的大小.【解答】解:根据题中信息可知,相同的路程,跑步比漫步的速度快;在一定时间内没有移动距离,则速度为零.故小华的爷爷跑步到公园的速度最快,即单位时间内通过的路程最大,打太极的过程中没有移动距离,因此通过的路程为零,还要注意出去和回来时的方向不同,故B符合要求.故选B.【点评】此题考查函数图象问题,关键是根据速度的物理意义和比较物体运动快慢的基本方法.10.如图,挂在弹簧称上的长方体铁块浸没在水中,提着弹簧称匀速上移,直至铁块浮出水面停留在空中(不计空气阻力),弹簧称的读数F(N)与时间t(s)的函数图象大致是()A.B.C.D.【考点】函数的图象.【专题】压轴题.【分析】开始一段的弹簧称的读数保持不变,当铁块进入空气中的过程中,弹簧称的读数逐渐增大,直到全部进入空气,重量保持不变.【解答】解:根据铁块的一点过程可知,弹簧称的读数由保持不变﹣逐渐增大﹣保持不变.故选:A.【点评】本题考查了函数的概念及其图象.关键是根据弹簧称的读数变化情况得出函数的图象.11.函数y=的图象为()A.B.C.D.【考点】函数的图象.【专题】压轴题.【分析】从x<0和x>0两种情况进行分析,先化简函数关系式再确定函数图象即可.【解答】解:当x<0时,函数解析式为:y=﹣x﹣2,函数图象为:B、D,当x>0时,函数解析式为:y=x+2,函数图象为:A、C、D,故选:D.【点评】本题考查的是函数图象,利用分情况讨论思想把函数关系式进行正确变形是解题的关键,要能够根据函数的系数确定函数的大致图象.12.匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是下图中的()A.B.C.D.【考点】函数的图象.【分析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.【解答】解:注水量一定,函数图象的走势是稍陡,平,陡;那么速度就相应的变化,跟所给容器的粗细有关.则相应的排列顺序就为C.故选C.【点评】此题考查函数图象的应用,需注意容器粗细和水面高度变化的关联.13.如果两个变量x、y之间的函数关系如图所示,则函数值y的取值范围是()A.﹣3≤y≤3B.0≤y≤2C.1≤y≤3D.0≤y≤3【考点】函数的图象.【分析】根据图象,找到y的最高点是(﹣2,3)及最低点是(1,0),确定函数值y的取值范围.【解答】解:∵图象的最高点是(﹣2,3),∴y的最大值是3,∵图象最低点是(1,0),∴y的最小值是0,∴函数值y的取值范围是0≤y≤3.故选:D.【点评】本题考查了函数的图象,解答本题的关键是会观察图象,找到y的最高点及最低点.14.甲、乙两人在操场上赛跑,他们赛跑的路程S(米)与时间t(分钟)之间的函数关系如图所示,则下列说法错误的是()A.甲、乙两人进行1000米赛跑B.甲先慢后快,乙先快后慢C.比赛到2分钟时,甲、乙两人跑过的路程相等D.甲先到达终点【考点】函数的图象.【分析】根据给出的函数图象对每个选项进行分析即可.【解答】解:从图象可以看出,甲、乙两人进行1000米赛跑,A说法正确;甲先慢后快,乙先快后慢,B说法正确;比赛到2分钟时,甲跑了500米,乙跑了600米,甲、乙两人跑过的路程不相等,C说法不正确;甲先到达终点,D说法正确,故选:C.【点评】本题考查的是函数的图象,从函数图象获取正确的信息是解题的关键.15.如图所示的容器内装满水,打开排水管,容器内的水匀速流出,则容器内液面的高度h随时间x变化的函数图象最接近实际情况的是()A. B.C. D.【考点】函数的图象.【分析】根据容器内的水匀速流出,可得相同时间内流出的水相同,根据圆柱的直径越长,等体积的圆柱的高就越低,可得答案.【解答】解:圆柱的直径较长,圆柱的高较低,水流下降较慢;圆柱的直径变长,圆柱的高变低,水流下降变慢;圆柱的直径变短,圆柱的高变高,水流下降变快.故选:A.【点评】本题考查了函数图象,利用了圆柱的直径越长,等体积的圆柱的高就越低.16.如图,匀速地向此容器内注水,直到把容器注满,在注水过程中,下列图象能大致反映水面高度h随注水时间t变化规律的是()A.B.C.D.【考点】函数的图象.【分析】由于三个容器的高度相同,粗细不同,那么水面高度h随时间t变化而分三个阶段.【解答】解:最下面的容器容器最小,用时最短,第二个容器最粗,那么第二个阶段的函数图象水面高度h随时间t的增大而增长缓慢,用时较长,最上面容器较粗,那么用时较短.故选B.【点评】此题主要考查了函数图象,解决本题的关键是根据容器的高度相同,每部分的粗细不同得到用时的不同.17.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系用图象刻画出来,大致图象是()A. B.C.D.【考点】函数的图象;中心投影.【专题】压轴题;数形结合.【分析】根据中心投影的性质得出小红在灯下走的过程中影长随路程之间的变化,进而得出符合要求的图象.【解答】解:∵小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l 与行走的路程S之间的变化关系应为:当小红走到灯下以前:l随S的增大而减小;当小红走到灯下以后再往前走时:l随S的增大而增大,∴用图象刻画出来应为C.故选:C.【点评】此题主要考查了函数图象以及中心投影的性质,得出l随S的变化规律是解决问题的关键.18.汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t(时)的函数关系的大致图象是()A.B.C.D.【考点】函数的图象.【分析】汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,所以前1小时路程随时间增大而增大,后来以100千米/时的速度匀速行驶,路程的增加幅度会变大一点.据此即可选择.【解答】解:由题意知,前1小时路程随时间增大而增大,1小时后路程的增加幅度会变大一点.故选:C.【点评】本题主要考查了函数的图象.本题的关键是分析汽车行驶的过程.19.小明从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家,如图描述了小明在散步过程汇总离家的距离s(米)与散步所用时间t(分)之间的函数关系,根据图象,下列信息错误的是()。

第3课时 等腰三角形的性质与判定

第3课时 等腰三角形的性质与判定

.
17.如图所示,在△ABC中,AB=AC,点D,E,F分别在AB,BC,AC边上,且
BE=CF,BD=CE.
(1)试说明:△DEF是等腰三角形;
解:(1)因为AB=AC,
所以∠ABC=∠ACB.
在△DBE和△ECF中,
BE=CF,∠ABC=∠ACB,BD=CE,
所以△DBE≌△ECF,所以DE=EF,
.
含30°角的直角三角形的性质
10.(2024临淄期末)如图所示,在等腰直角三角形ABC中,∠A为直角.若
AD=6 cm,且∠DBC=15°,则BD的长为12
cm.
11.(2022博山期末)如图所示,在Rt△ABC中,∠C=90°,∠A=30°,线段
AB的垂直平分线分别交AC,AB于点D,E,连接BD.若CD=1,则AD的长
CM=DM,
即△CDM是等腰三角形.
等边三角形的性质、判定
6.下列三角形不一定是等边三角形的是(
A.有一个内角是60°的锐角三角形
B.有一个内角是60°的等腰三角形
C.顶角和底角相等的等腰三角形
D.腰长和底边长相等的等腰三角形
A)
7.如图所示,AB∥CD,△ACE为等边三角形,∠BAE=20°,则∠DCE等于
所以△DEF是等腰三角形.
(2)当∠A=40°时,求∠DEF的度数.
解:(2)如图所示.
因为△DBE≌△ECF,
所以∠1=∠3.
因为∠A+∠B+∠C=180°,

所以∠B= (180°-40°)=70°,

所以∠1+∠2=110°,
所以∠3+∠2=110°,所以∠DEF=70°.
素养培优练
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级
上册
13.3 等腰三角形 (第3课时)
课件说明
• 本节课是在学生学习了轴对称和等腰三角形的性质 和判定的基础上,探索等边三角形的性质和判定方 法.
课件说明
• 学习目标: 1.探索等边三角形的性质和判定. 2.能运用等边三角形的性质和判定进行计算和证 明. • 学习重点: 探索等边三角形的性质与判定.
B
C
联系:等边三角形是特殊的等腰三角形; 区别:等边三角形有三条相等的边,而等腰三角形 只有两条.
细心观察,探索性质
问题 等腰三角形有哪些特殊的性质呢?
从边的角度:两腰相等; 从角的角度:等边对等角; 从对称性的角度:轴对称图形、三线合一.
思考 将等腰三角形的性质用于等边三角形,你能 得到什么结论?
E
C
动脑思考,变式训练
变式1 若点D、E 在边AB、AC 的延长线上,且 DE∥BC,结论还成立吗? 证明:∵ △ABC 是等边三角形, ∴ ∠A =∠ABC =∠ACB =60°. ∵ DE∥BC, ∴ ∠ABC =∠ADE, ∠ACB =∠AED. B ∴ ∠A =∠ADE =∠AED. ∴ △ADE 是等边三角形. D A
C
细心观察,探索性质
等边三角形的性质: 等边三角形的三个内角都相等,并且每一个角都等 于60°. A 符号语言: ∵ △ABC 是等边三角形, ∴ ∠A =∠B =∠C =60°. B
C
细心观察,探索性质
思考 利用所学知识判断,等边三角形是轴对称图 形吗?若是轴对称图形,请画出它的对称轴. A
B
细心观察,探索性质
结合等腰三角形的性质,你能填出等边三角形对应 的结论吗?
图形 边 角 轴对称图形
等腰 三角形
等边 三角形
两边相等 (定义)
三边相等 (定义)
两底角相等 (等边对等角)

是(三线合一) 一条对称轴

细心观察,探索性质
结合等腰三角形的性质,你能填出等边三角形对应 的结论吗?
图形 边 角 轴对称图形
C
细心观察,探索性质
问题 等边三角形除了用定义(即用边)来判定以 外,能否利用角来判定呢? 思考1 一个三角形的三个内角满足什么条件是等 边三角形?
思考2
形?
一个等腰三角形满足什么条件是等边三角
三个角都相等的三角形或者一个角为60°的等腰三 角形.
细心观察,探索性质
请你将得到的这两个命题进行证明.
ห้องสมุดไป่ตู้
A
B
细心观察,探索性质
等边三角形的判定定理1: 三个角都相等的三角形是等边三角形. 符号语言: 在△ABC 中, ∵ ∠A=∠B =∠C , ∴ △ABC 是等边三角形. A C
B
细心观察,探索性质
等边三角形的判定定理2: 有一个角为60°的等腰三角形是等边三角形. 符号语言: 在△ABC 中, ∵ BC =AC,∠A =60°, ∴ △ABC 是等边三角形. A C
C
E
动脑思考,变式训练
变式2 若点D、E 在边AB、AC 的反向延长线上, 且DE∥BC,结论依然成立吗? 证明: ∵ △ABC 是等边三角形, E ∴ ∠BAC =∠B =∠C =60°. ∵ DE∥BC, ∴ ∠B =∠D,∠C =∠E. ∴ ∠EAD =∠D =∠E. ∴ △ADE 是等边三角形. B D
创设情境,导入新知
下列图片中有你熟悉的数学图形吗?你能说出此 图形的名称吗?
创设情境,导入新知
问题 满足什么条件的三角形是等边三角形?
三条边都相等的三角形是等边三角形.
A
B
C
等边三角形
创设情境,导入新知
请分别画出一个等腰三角形和等边三角形,结合 你画的图形说出它们有什么区别和联系? A A
B
C
B
细心观察,概括归纳
判定等边三角形的方法: 从边的角度:等边三角形的定义; 从角的角度:等边三角形的两条判定定理.
等边三角形的判定定理1: 三个角都相等的三角形是等边三角形. 等边三角形的判定定理2: 有一个角为60°的等腰三角形.
动脑思考,例题解析
例1 如图,△ABC 是等边三角形,DE∥BC, 分 别交AB,AC 于点D,E.求证:△ADE 是等边三角形. 证明: ∵ △ABC 是等边三角形, ∴ ∠A =∠B =∠C =60°. ∵ DE∥BC, ∴ ∠B =∠ADE,∠C =∠AED. ∴ ∠A=∠ADE =∠AED. D ∴ △ADE 是等边三角形. B 追问 本题还有其他证法吗? A
A
C
动脑思考,变式训练
练习 完成教科书中的练习.
课堂小结
(1)本节课学习了等边三角形的性质和判定; (2)等边三角形与等腰三角形相比有哪些特殊的性质? 共有几种判定等边三角形的方法? (3)结合本节课的学习,谈谈研究三角形的方法.
布置作业
教科书习题13.3第12、14题.
相等 每个角都等于60°
是(三线合一) 一条对称轴
是(三线合一) 三条对称轴
细心观察,探索性质
对“等边三角形的三个内角都相等,并且每一个角 都等于60°”这一结论进行证明.
细心观察,探索性质
已知:△ABC 是等边三角形 求证:∠A =∠B =∠C =60°.
证明:∵ △ABC 是等边三角形, ∴ BC =AC,BC =AB. ∴ ∠A =∠B,∠A =∠C . ∴ ∠A =∠B =∠C . ∵ ∠A +∠B +∠C =180°, B ∴ ∠A =60°. ∴ ∠A =∠B =∠C =60°. A
等腰 三角形
等边 三角形
两边相等 (定义)
三边相等 (定义)
两底角相等 (等边对等角)
相等 每个角都等于60°
是(三线合一) 一条对称轴

细心观察,探索性质
结合等腰三角形的性质,你能填出等边三角形对应 的结论吗?
图形 边 角 轴对称图形
等腰 三角形
等边 三角形
两边相等 (定义)
三边相等 (定义)
两底角相等 (等边对等角)
一般三角形
等边三角形
等腰三角形
细心观察,探索性质
已知:在△ABC 中,∠A=∠B=∠C.求证:△ABC 是等边三角形. 证明:∵ ∠A =∠B,∠B =∠C , ∴ BC =AC, AC =AB. ∴ AB =BC =AC. ∴ △ABC 是等边三角形. A C
B
细心观察,探索性质
已知:在△ABC 中,AC =BC且∠A =60°.求证: △ABC是等边三角形. 证明:略. C
相关文档
最新文档