第三章(1)_金属催化剂及催化作用
各类催化剂及催化作用
各类催化剂及催化作用催化剂是指在化学反应中起到催化作用的物质,它能够提高化学反应的速率,但自身并不参与反应,也不会被反应消耗掉。
催化剂在工业生产中起着重要的作用,它们可以提高反应速率,降低能量消耗,减少副产物的生成,并且可重复使用。
催化剂可以分为很多类别,下面将介绍几种常见的催化剂及其催化作用:1.金属催化剂:金属催化剂是使用最广泛的催化剂之一、金属催化剂的催化作用主要体现在电化学反应和气相反应中,如Pt、Pd、Ru等常用于氧化还原反应和催化加氢反应。
金属催化剂在催化反应中起到吸附和活化反应物,提供活性位点以促使反应进行的作用。
2.酸催化剂:酸催化剂是指那些具有酸性的催化剂,如硫酸、磷酸、氯化铝等。
酸催化剂的催化作用主要表现在酸碱中和反应、质子传递等方面。
酸催化剂在酯化、醇缩聚反应、酮醛缩合反应等有机合成中具有重要的应用。
3.碱催化剂:碱催化剂是一类具有碱性的催化剂,如氢氧化钠、碳酸钠等。
碱催化剂的催化作用主要体现在酸碱中和反应、质子传递等方面。
碱催化剂常用于酯化反应、醇缩合反应、醚化反应等有机合成中。
4.酶催化剂:酶是一类具有催化作用的生物催化剂,能够在生物体内催化各种生化反应。
酶催化剂具有催化效率高、催化选择性好、温和条件下催化等特点。
酶催化剂在食品工业、制药工业等领域都有广泛的应用。
5.网络催化剂:网络催化剂是一种多孔材料,其特殊的结构和性质使其具有较大的比表面积和丰富的催化活性位点。
网络催化剂广泛用于催化裂化、催化加氢、催化氧化等工艺。
6.孔隙催化剂:孔隙催化剂是指具有一定孔隙结构的固体催化剂,如分子筛、活性炭等。
孔隙催化剂的孔隙结构能够提供大面积的活性表面,促进反应物分子的扩散和吸附,从而加速了反应速率。
总的来说,催化剂在化学反应中起到了至关重要的作用,它们能够降低反应的活化能,提高反应速率,降低能量消耗,减少副产物的生成。
通过选择合适的催化剂,可以实现高效、低能耗的化学反应,从而促进工业生产的发展。
工业催化3.3 金属及合金催化剂及其催化作用
团簇在化学特征上表现出随团簇的原子或分子个 数n的增大而产生的奇偶振荡性(even-odd oscillation)和幻数(magic number)特征。金属原子 簇在不同n值时反应速率常数的差别可达103 。化学反 应性、平衡常数等也出现了奇偶振荡性特征。
2.金属和载体的相互作用
金属和载体的相互作用有三种类型:
① 金属颗粒和载体的接触位置在界面部位处,分 散的金属可保持阳离子性质。
② 分散的金属原子溶于氧化物载体晶格中或与载 体生成混合氧化物,其中CeO2 、MoO2、WO3或其混 合物对金属分散相的改进效果最佳。
③ 金属颗粒表面被来自载体氧化物涂饰。
一. 金属表面的化学键
研究金属表面化学键的理论有:
能带理论 价键理论 配位场理论
1.能带理论
s 轨道、d 轨道组合成 s 带、d 带。 s 轨道相互作用强, s 带较宽,一般有(6~7)~20 ev ; d 带较窄,约为(3~4)ev. 即s 带能级密度比 d 带能级密度小,具体表现如下:
V(E)
对C-H,H-H,H-O键的断裂反应,只需要较小的能量,因此 可在少数一两个原子组成的活性中心上或在弱吸附中心上进行反应。 它们对催化剂表面的微细结构如晶粒大小,原子在表面上所处的部 位,以及活性中心原子组合等皆不敏感。
对C-C,N-N,C-O键的断裂或生成的反应,需提供较大量的能 量,反应是在强吸附中心上进行的。这些中心或是多个原子组成的 集团,或是表面上的扭曲,折皱处的原子,因而反应对催化剂表面 上的微细结构十分敏感。
3.3金属催化剂及其催化作用
金属催化剂是重要的工业催化剂。
金属的催化作用
金属催化作用---化学吸附
金属催化剂及其催化作用
金属催化剂及其催化作用引言催化是一种重要的化学过程,它可以通过降低能量势垒的方式加速化学反应的速率。
金属催化剂作为一类常用的催化剂,广泛应用于有机合成、能源转化等领域。
本文将介绍金属催化剂的定义、分类以及其在化学反应中的催化作用。
金属催化剂的定义与分类金属催化剂是指能够在化学反应中加速反应速率,且在反应结束时保持不变的金属物质。
金属催化剂能够通过提供活性位点、调控反应的能垒、吸附反应物等方式实现催化作用。
根据催化剂的组成,金属催化剂可以分为两类:一类是纯金属催化剂,即单一金属元素或金属合金;另一类是负载型金属催化剂,即将金属颗粒负载于支撑物上。
负载型金属催化剂具有较大的比表面积和较高的催化活性,常用的负载物包括二氧化硅、氧化铝等。
金属催化剂还可以根据金属的化学性质进行分类。
常见的金属催化剂包括贵金属催化剂(如铂、钯、铑等)、过渡金属催化剂(如铁、铜、镍等)以及稀土金属催化剂(如钕、镧等)。
不同类型的金属催化剂具有不同的催化特性,适用于不同类型的化学反应。
金属催化剂的催化作用金属催化剂在化学反应中主要通过以下几个方面发挥作用:1.提供活性位点:金属催化剂上的金属离子或金属表面可以提供活性位点,吸附并激活反应物。
活性位点能够有效降低化学反应的活化能,加速反应速率。
2.调控反应的能垒:金属催化剂可以通过调整反应物与催化剂间的作用力,改变反应的活化能。
例如,在氢气化反应中,贵金属催化剂能够吸附氢气并削弱键合,从而降低氢与反应物之间的能垒,促进反应进行。
3.提供电子转移:金属催化剂可以通过提供或接收电子的方式参与反应。
贵金属催化剂常常参与电子转移反应,如氧化还原反应,通过调控电子转移过程来加速反应速率。
4.分子催化:金属催化剂中的金属离子或金属表面可以与反应物发生直接的化学反应,形成中间体,进而促进反应进行。
这种分子催化机制在有机合成中具有重要的应用价值。
金属催化剂的应用金属催化剂在化学合成、能源转化等领域具有广泛的应用。
各种催化剂及其催化作用
各种催化剂及其催化作用催化剂是指在化学反应中参与反应过程,但在反应结束后仍能够恢复原状,不发生永久变化的物质。
催化剂能够降低反应的活化能,从而加速反应速率,提高反应的效率。
以下是一些常见的催化剂及其催化作用。
1.酶类催化剂:酶是生物体内的一类催化剂,它们能够加速和控制细胞内的化学反应。
例如,淀粉酶可以催化淀粉分解为葡萄糖;脱氢酶可以催化乳酸转化为丙酮酸。
2.金属催化剂:金属催化剂是最常见的一类催化剂,可以分为均相催化剂和异相催化剂。
均相催化剂溶解在反应物中,例如铂金催化剂可以催化氢气与氧气的反应生成水。
异相催化剂存在于反应物的表面,例如铁催化剂可以催化氧气和一氧化碳反应生成二氧化碳。
3.酸碱催化剂:酸和碱都可以作为催化剂,它们能够提供可用于化学反应的质子或氢离子。
例如,硫酸催化剂可以催化脂肪酸的酯化反应,碱催化剂可以催化酯类的水解反应。
4.过渡金属催化剂:过渡金属催化剂是一类特殊的金属催化剂,由过渡金属元素组成。
它们可以在反应中形成中间物种,从而加速反应的进行。
例如,氨合成反应中使用的铁催化剂能够促使氢气和氮气反应生成氨。
5.醇酶催化剂:醇酶是一类催化剂,可以催化香蕉、苹果等水果中的醇类物质从醛、酮分化成醇。
6.光催化剂:光催化剂是通过吸收光能并产生电荷转移,从而促进化学反应的催化剂。
例如,二氧化钛是一种常见的光催化剂,可以催化水的光解反应,产生氢气和氧气。
7.植物色素催化剂:植物色素是一类具有催化性质的有机化合物,可以催化光合作用中的反应。
例如,叶绿素是光合作用中的重要催化剂,能够催化光能的吸收和转化。
以上仅是一些常见的催化剂及其催化作用,实际上还有许多其他催化剂和催化作用。
催化剂在化学工业和生命科学领域中起着至关重要的作用,能够提高反应速率、增加产物产量和节约能源等。
随着科学技术的发展,对催化剂的研究和应用还将进一步深化,为人类的生活和工业生产带来更多的便利和进步。
各类催化剂的组成结构及其催化作用规律与催化机理
各类催化剂的组成结构及其催化作用规律与催化机理催化剂是一种能够加速化学反应速率而不发生化学变化的物质。
不同类型的催化剂在组成、结构和催化作用规律及催化机理上存在差异。
1.金属催化剂:金属催化剂主要由一种或多种金属元素组成。
它们的结构可以是单质金属,合金或金属氧化物。
金属催化剂的催化作用规律是活性中心和反应物之间的相互作用。
催化机理有两种类型:双电子传递和继承。
2.酸碱催化剂:酸碱催化剂是通过提供或接受质子(酸)或氢氧根离子(碱)来促进反应的催化剂。
它们的组成可以是无机酸或碱(如氢氟酸和氢氧化钠),也可以是有机酸或碱(如有机酸和胺)。
酸碱催化剂的催化作用规律是在酸碱性环境中,反应物与催化剂之间的反应活性。
3.酶催化剂:酶是一种生物催化剂,是由蛋白质组成的大分子催化剂。
它们的组成是由酶蛋白质和辅助物质(如金属离子和辅酶)组成。
酶催化剂的催化作用规律是酶与底物形成酶底物复合物,并通过改变底物的反应活性、方向和速率来催化反应。
4.氧化剂:氧化剂是一种能够在反应中接受电子的催化剂。
它们的组成可以是金属氧化物(如铬酸和二氧化锰)或有机化合物(如过氧化物和过氧硫酸氢钠)。
氧化剂的催化作用规律是通过在反应中接受电子,使反应底物发生氧化反应。
5.还原剂:还原剂是一种能够在反应中捐赠电子的催化剂。
它们的组成可以是金属(如钠和锌)或有机化合物(如氢化钠和氢气)。
还原剂的催化作用规律是通过在反应中捐赠电子,使反应底物发生还原反应。
催化剂的催化机理是根据不同的催化剂类型而不同的。
例如,金属催化剂通过吸附反应底物并与其发生反应来催化反应。
酸碱催化剂通过给予或接受质子或氢氧根离子来改变反应底物的反应性质。
酶催化剂通过形成酶底物复合物并在酶的活性位点上发生催化反应。
氧化剂通过向底物接受电子来氧化底物,而还原剂则捐赠电子给底物来还原底物。
总之,不同类型的催化剂在组成、结构、催化作用规律和催化机理上存在差异。
了解和掌握不同催化剂的特点和催化机理对于合理设计和选择催化剂,并优化催化反应至关重要。
工业催化3.3-金属及合金催化剂及其催化作用ppt课件
一般 d%可用于解释多晶催化剂的活性大小,但 不能说明晶面上的活性差别。
烧伤病人的治疗通常是取烧伤病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
金属晶格间距与乙烯加氢活性的关系
烧伤病人的治疗通常是取烧伤病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
4.表面原子水平的不均匀性和催化活性
金属催化剂的表面是不均匀的,存在着各种不同 类型的表面位。可用原子表面的TSK模型:即台阶 (Terrace)、梯阶(Step)、和拐折(Kink)模型。 在表面上存在的拐折、梯阶、空位、附加原子等表面 位,对催化反应而言,都是活性较高的部位。
Fcc 面心立方
Bcc 体心立方
Hcp密排六方
烧伤病人的治疗通常是取烧伤病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
烧伤病人的治疗通常是取烧伤病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
烧伤病人的治疗通常是取烧伤病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
头二类为主要的金属催化剂。几乎所有的金属催化剂都是过 渡金属。而过渡金属催化剂的活性组分是第Ⅷ族和第ⅠB族金属。
第三章-I 金属催化剂及其催化作用
两个 轨道 ns,npx 可以 成键
未杂化
原子间距离不同时,两相邻原子的波函数的形状波函数示意图 a) 发生杂化时,成键能带下降,反键能带上升,两个能带间的间隙 为I。金刚石中C原子的2s和2p轨道就属于这种情况,这时原子之间形成 定域键。
2、能带结构
N个 3S 3P 和 3S
结构
满带
空带 导带 价带
价电子分布 第一长周期K~V 成键电子以1为阶地增加,形 成共价键 Cr 6个外层电子 5.78 个电子进入dsp 杂化 0.22 个电子进入原子d轨道 ③ 金属d 轨道:杂化轨道提供的轨道数(6.56)与 实际电子数 (5.78) 之间的差值 (0.78).
第一过渡周期金属的电子结构
金 属
铬 锰 铁 钴 镍
3s 能带 3s能级
能带宽窄的 影响因素?
d0 d0 — Na晶体中原子间距离
原子间的平均距离
能带宽窄与原子轨道重叠多少有关,相邻原子轨道重迭 少的内层原子轨道形成的能带较窄;轨道重叠多的外层原子 轨道形成的能带较宽。
一维晶体中原子互相接近时能级位置的变化和能带的形成
波函数Ψ1,Ψ2可以杂化
杂化
波函数Ψ1,Ψ2不可以杂化
第二节 金属催化剂的化学吸附
一、气体在不同金属上化学吸附热变化
三、价键理论 — 金属键的d%
1、电子配对理论
在阐述共价键的本质时,根据 Pauling 原理,一对自旋反 平行的电子相互接近时,彼此呈互相吸引的作用,使体系能量 降低,形成化学键。 分子中每一个共价键,代表一对成键原子轨道和两个自旋 反平行电子。
2、金属价键理论
金属中相邻原子之间本质上是共价键,由于金属中的原子 是紧密堆积的,除立方体心晶格外,每个金属原子有12个紧邻 的原子,这意味着在所有相邻的金属原子之间不可能有固定的 普通共价键,因为没有足够的原子轨道,也没有足够的电子。
金属催化剂及其催化作用
发展高效、绿色的金属催化剂制备技术
总结词
发展高效、绿色的金属催化剂制备技术 ,是实现可持续发展的重要途径。
VS
详细描述
传统的金属催化剂制备方法往往需要高温 、高压等苛刻条件,且产率较低。因此, 发展高效、绿色的金属催化剂制备技术成 为当前研究的重点。通过探索新的合成方 法和优化现有工艺,可以降低能耗和减少 废弃物排放,同时提高金属催化剂的产率 和性能,为绿色化学的发展做出贡献。
金属催化剂如铂、钯和铑等在燃料电池中发挥关键作用,能 够加速燃料和氧化剂之间的反应,提高燃料电池的效率和性 能。
太阳能光解水制氢
金属催化剂如钛、锆和镍等可用于太阳能光解水制氢过程中 ,能够加速水分子分解成氢气和氧气,为可再生能源的生产 提供支持。
05
金属催化剂的发展趋势与挑 战
新材料与新技术的研发
选择性评价
测定反应产物中目标产物的比例,评价金属 催化剂的选择性。
稳定性评价
考察金属催化剂在多次使用或长时间使用过 程中的性能变化。
经济性评价
综合考虑金属催化剂的制备成本、使用成本 等因素,评估其经济价值。
04
金属催化剂在工业生产中的 应用
石油化工领域
石油裂化
烯烃聚合
金属催化剂如镍、铂和钯等广泛应用 于石油裂化过程中,能够将重质油裂 解成轻质油,提高石油的利用效率。
金属催化剂如钛、锆和镍等在烯烃聚 合过程中起关键作用,能够控制聚合 物的分子结构和性能,广泛应用于塑 料、纤维和橡胶等生产。
合成氨
金属催化剂如铁、钴和镍等在合成氨 工业中发挥重要作用,能够加速氮和 氢反应生成氨的过程,提高合成氨的 产量。
环保领域
汽车尾气处理
金属催化剂如铂和钯等用于处理 汽车尾气中的有害物质,能够加 速有害物质的氧化还原反应,降
第三章 各类催化剂及其催化作用_酸碱催化剂
中毒法:
脉冲注入能使酸碱中心中毒的物质,并选择以酸碱中心为活性位的 反应为对象,可根据反应活性下降的情况来求出使催化剂活性降为 零时所耗毒物的总量,并折算到酸碱中心总数。
H0 = pKa + lg [:B]a [A:B]
[A:B] : 吸附碱B与电子对受体A形成的络合物AB的浓度
H0越小酸强度越强; H0越大酸强度越弱。
固体酸强度的测定:
指示剂法:
指示剂的颜色取决于 [BH+] 或 [B] 的比例,当其正好等于1 [AB] 时,处于变色临界点。
1. 在某催化剂中加入某指示剂(pKa),若保持碱型色,说明 [B] > [BH+],催化剂对该指示剂的转化能力较小,H0 > pKa;若指示剂显酸型色,说明催化剂的转化能力较强, H0 < pKa。 2. 把指示剂按pKa大小排成一个序列,总可以找到一个指示 剂(pKa = α),它的碱型色不能被催化剂改变,而下一个指 示剂(pKa = β)被催化剂变成了酸型色,那么催化剂H0的取 值范围应该是α< H0 < β 。 100%的H2SO4的H0认为是‒11.9,故认为H0为‒12或更小的酸相当于 100%以上的H2SO4 ,这样的酸称为超强酸。
例如:以HM分子筛为催化剂时的甲苯歧化反应,可选择吡啶作为毒物,利用甲 苯和吡啶的交替注入,观察活性下降情况外延至活性为零时所需吡啶量,即可 求出HM的表面酸量。
典型反应估计法:
选择一些既能被酸催化发生某一反应,又能被碱催化发生另一反应。 从同一物料反应后的选择性来估测催化剂的表面酸碱性。
金属催化剂及其催化剂作用机理
金属催化剂及其催化剂作用机理作者: 可可西里发布日期: 2008-09-081.金属催化剂概述金属催化剂是一类重要的工业催化剂。
主要包括块状催化剂,如电解银催化剂、融铁催化剂、铂网催化剂等;分散或者负载型的金属催化剂,如Pt-Re/-Al2O3重整催化剂,Ni/Al2O3加氢催化剂等;6.3 金属催化剂及其催化剂作用机理金属互化物催化剂,如LaNi5可催化合成气转化为烃,是70年代开发的一类新型催化剂,也是磁性材料、储氢材料;金属簇状物催化剂,如烯烃氢醛化制羰基化合物的多核Fe3(CO)12催化剂,至少要有两个以上的金属原子,以满足催化剂活化引发所必需。
这5类金属催化剂中,前两类是主要的,后三类在20世纪70年代以来有新的发展。
几乎所有的金属催化剂都是过渡金属,这与金属的结构、表面化学键有关。
金属适合于作哪种类型的催化剂,要看其对反应物的相容性。
发生催化反应时,催化剂与反应物要相互作用。
除表面外,不深入到体内,此即相容性。
如过渡金属是很好的加氢、脱氢催化剂,因为H2很容易在其表面吸附,反应不进行到表层以下。
但只有“贵金属”(Pd、Pt,也有Ag)可作氧化反应催化剂,因为它们在相应温度下能抗拒氧化。
故对金属催化剂的深入认识,要了解其吸附性能和化学键特性。
2.金属和金属表面的化学键研究金属化学键的理论方法有三:能带理论、价键理论和配位场理论,各自从不同的角度来说明金属化学键的特征,每一种理论都提供了一些有用的概念。
三种理论,都可用特定的参量与金属的化学吸附和催化性能相关联,它们是相辅相成的。
(1)金属电子结构的能带模型和“d带空穴”概念金属晶格中每一个电子占用一个“金属轨道”。
每个轨道在金属晶体场内有自己的能级。
由于有N个轨道,且N很大,因此这些能级是连续的。
由于轨道相互作用,能级一分为二,故N个金属轨道会形成2N个能级。
电子占用能级时遵从能量最低原则和Pauli原则(即电子配对占用)。
故在绝对零度下,电子成对从最低能级开始一直向上填充,只有一半的能级有电子,称为满带,能级高的一半能级没有电子,叫空带。
贵金属催化剂的研究及应用
贵金属催化剂的研究及应用第一章前言贵金属催化剂是指以贵金属为基本成分的催化剂。
贵金属催化剂的研究及应用,是催化化学领域的一个重要研究方向。
贵金属催化剂具有催化活性高、催化效率高、稳定性好、寿命长等优点,在生产和研究领域中具有广泛的应用前景。
第二章贵金属催化剂的研究贵金属催化剂的研究主要包括以下几个方面:1.贵金属催化剂的合成贵金属催化剂的制备方法主要包括物理方法和化学方法。
物理方法包括凝胶法、沉淀法、溶胶-凝胶法、蒸发量法等;化学方法包括共沉淀法、还原法、溶胶-凝胶法等。
2.贵金属催化剂的性质表征贵金属催化剂的性质表征主要包括分子结构、化学组成、晶体结构、表面形貌和表面性质等方面。
表征方法主要包括透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)、氧化还原循环法(CV)等。
3.贵金属催化剂的催化性能测试贵金属催化剂的催化性能测试是指对催化剂进行的反应活性、选择性、稳定性等方面测试,以及对催化剂特性的结构-性能关系进行研究。
催化剂的测试方法主要包括流动反应器、固定床反应器、动态稳态法、微反系统等。
第三章贵金属催化剂的应用在生产和研究过程中,贵金属催化剂的应用领域非常广泛,如下所示:1.有机合成贵金属催化剂在有机合成领域中得到了广泛应用。
贵金属催化剂可以用于碳碳键和碳氮键的形成,如烯烃加成、环化反应、羰基化合物的加成和还原等。
2.医药领域贵金属催化剂在医药领域中得到了广泛应用。
贵金属催化剂可以用于制备化合物复杂、结构新颖的药物分子,如以金和铑催化合成含有C-C’键、C-N键和C-O键的天然产物和人工合成的化合物。
3.环保领域贵金属催化剂在环保领域中得到了广泛应用。
贵金属催化剂可以用于VOC的催化氧化、尾气处理、废水处理等。
在VOC的催化氧化中,铂基催化剂具有良好的催化活性和稳定性。
第四章总结贵金属催化剂在生产和研究过程中具有广泛的应用前景。
贵金属催化剂的研究主要包括贵金属催化剂的合成、性质表征和催化性能测试等方面;贵金属催化剂的应用包括有机合成、医药领域和环保领域等。
第三章 催化剂与催化作用_金属氧化物催化剂
4. 金属氧化物硫化物及其催化作用
概述
金属氧化物催化剂组成:常为复合氧化物(Complex oxides),
即多组分氧化物。 VO5-MoO3,Bi2O3-MoO3,TiO2-V2O5-P2O5,V2O5MoO3-Al2O3,MoO3-Bi2O3-Fe2O3-CoO-K2O-P2O5-SiO2 (即7组分的代号为C14的第三代生产丙烯腈催化剂)。
复合氧化物催化剂的结构
(2)钙钛矿结构 这是一类化合物,其晶格结构类似于矿物CaTiO3,是可用 通式ABO3表示的氧化物。A是一个大的阳离子,B是一个 小的阳离子。在高温下钙钛矿型结构的单位晶胞为正立方 体,A位于晶胞的中心,B位于正立方体顶点。此中A的配 位数为12,B的配位数为6.
结构要求:
复合氧化物催化剂的结构
任何稳定的化合物,必须满足化学价态的平衡。当晶格中
发生高价离子取代低价离子时,就要结合高价离子和因取 代而需要的晶格阳离子空位以满足这种要求。例如Fe3O4的 Fe离子,若按γ-Fe2O3中的电价平衡,晶体中有8/3的Fe3+, 1/3的阳离子空穴。阳离子一般小于阴离子。可以书写成
组分中至少有一种是过渡金属氧化物。组分与组分之间可
能相互作用,作用的情况常因条件而异。复合氧化物系常 是多相共存,如Bi2O3-MoO3,就有α、β和γ相。有活性相 概念。它们的结构十分复杂,有固溶体,有杂多酸,有混 晶等。
概述
金属催化剂作用和功能
有的组分是主催化剂,有的为助催化剂或者载体。主催
金属硫化物催化剂及其催化剂作用
硫化物催化剂的活性相,一般是其氧化物母体先经高温
熔烧,形成所需要的结构后,再在还原气氛下硫化。硫
金属催化剂
金属催化剂引言金属催化剂是一种用于催化化学反应的催化剂,其中金属作为活性中心。
金属催化剂广泛应用于工业生产、能源转换、环境保护等领域。
本文将介绍金属催化剂的基本原理、应用领域和常见的金属催化剂。
基本原理金属催化剂通过吸附活性物种,降低反应活化能,加速化学反应的速率。
金属常以金属离子或金属氧化物的形式存在于催化剂中,并与反应物发生相互作用。
金属催化剂可以提供活化中心,吸附反应物,调节反应物的构象和电子分布,从而促进反应的进行。
金属催化剂中常见的金属有:铂、钯、铂-铑、钼、铑、铁、铑-铱等。
这些金属在催化反应中具有不同的作用机制,例如铂和钯常用于氢化反应、催化加氢反应和氧化反应,而钼常用于硫化反应和氧化脱氢反应。
金属催化剂中常见的载体有:氧化物、碳材料、二氧化硅等。
载体可以提供比金属更高的比表面积,增加催化剂的活性。
此外,载体还可以提供稳定性和抵抗毒性物质的能力,延长催化剂的使用寿命。
应用领域化学合成金属催化剂在化学合成中被广泛应用。
例如,铂催化剂可用于酮的氢化反应,钯催化剂可用于烯烃的氢化反应。
金属催化剂还可以用于有机合成中的选择性氧化反应、偶联反应等。
能源转换金属催化剂在能源转换领域具有重要的应用价值。
例如,铂催化剂广泛应用于燃料电池中,用于氧气还原反应。
此外,钼催化剂可用于催化剂甲醇重整反应,铂-铑催化剂可用于催化剂汽油重整反应。
环境保护金属催化剂在环境保护中起到重要的作用。
例如,铁催化剂可用于催化剂氯化有机物的降解,铑催化剂可用于催化剂挥发性有机化合物的氧化反应。
金属催化剂还可用于汽车尾气的催化剂转化。
常见的金属催化剂铂铂催化剂是最常用的金属催化剂之一。
它具有良好的抗毒性能力和稳定性,广泛应用于石油化工、有机合成等领域。
铂催化剂常用于氢化反应、氧化反应和还原反应等。
钯钯催化剂具有良好的选择性和活性,广泛应用于化学合成和有机合成中。
它常用于氢化反应、偶联反应和选择性氧化反应等。
铂-铑铂-铑催化剂是一种复合催化剂,具有高的催化活性和选择性。
第三章-各类催化剂及其催化作用(一)----酸碱催化剂及其催化作用
都是L酸位,没有B酸位。
说明:用13C-NMR和15N- NMR研究的吡啶吸附谱以 区分酸类型
化学与化工学院
用酸强度 二、固体表面的酸、碱性质及其测定 Hammett函数 函数(H0)表 (2)固体酸的强度和酸量 示 酸强度的概念:是指出质子的能力(B酸强度)或者接受电 子对的能力 (L酸强度) 。 Hammett函数 :若固体酸表面能吸附一未解离的碱,并 将它转变成为相应的共轭酸,且转变是借助于质子自固体 表面传递于吸附碱,酸强度函数表示为: H0=pKa+lg{[B]a/[BH+]a}
化学与化工学院
第一讲
酸碱催化剂及其催化作用
二、固体表面的酸、碱性质及其测定
由图可知: H—ZSM-5 的两种不同 峰位,一在 723K处,强 酸位,另一 在453K处, 弱酸位。
化学与化工学院
第一讲
酸碱催化剂及其催化作用
二、固体表面的酸、碱性质及其测定
酸 量:固体酸表面上的酸量,通 常表示为单位重量或者单位表面积 上酸位的毫摩尔数,即mmol/wt 或 mmol/m2,测量酸强度的同时就测 出了酸量,因为对于不同酸强度的
化学与化工学院
第一讲
酸碱催化剂及其催化作用
一、固体酸、碱的定义和分类 固体酸:一般可认为是能够化学吸附碱的固体,也
可以理解为能够使碱指示剂在其上改变颜色的固体。
如果遵守Bronsted和Lewis的定义:能够给出质子或
者接受电子对的固体称为固体酸。
固体碱:能够接受质子或者给出电子的固体称为固
体碱。
化学与化工学院
第一讲
酸碱催化剂及其催化作用
酸碱通式
B酸 + B碱
B酸 + B碱
金属氧化物表面的金属离子是L酸,氧负离子是L碱。 金属离子的电负性越大,则金属离子的酸性越强。 金属氧化物的碱性也可以同电负性相关联,但由于金 属氧化物表面往往含有羟基,这时的酸碱性由MOH中M-O的键本质决定.若M-O键强,则解离出H+, 显酸性,反之,若M-O键弱,则解离出OH-,显碱性。
《工业催化》教学大纲
《工业催化》教学大纲一、课程基本信息课程中文名称:工业催化课程英文名称:Industrial Catalysis课程编号:06141191课程类型:专业(方向)课总学时:36学分:2.0适用专业:化学工程与工艺(无机化工)专业先修课程:基础化学、有机化学、物理化学、化工原理开课院系:化工与制药学院二、课程的性质与任务本课程论述催化作用的基本原理,工业催化剂的基本要求,热力学平衡原理对催化作用的制约,介绍各类催化剂及其催化作用,并介绍催化剂的组成、制备原理和方法,催化实验用的反应器和检测仪器、手段等。
让学生掌握催化作用的基本规律,了解催化过程的化学本质和熟悉工业催化技术的基本要求和特性,为培养化工工艺类专业工程师提供坚实的理论基础服务。
三、课程教学基本要求通过本课程的学习,让学生掌握催化作用的基本规律和基本原理,工业催化剂的基本要求,理解热力学平衡原理对催化作用的制约。
掌握各类催化剂及其催化作用,包括固体酸碱催体、分子筛催化、金属催化、络合催化、金属氧化物和金属硫化物催化等,并了解催化剂的组成、制备原理和方法,催化实验用的反应器和检测仪器、手段等。
熟悉工业催化技术的基本要求和特性,为培养化工工艺类专业工程师提供坚实的理论基础服务。
四、理论教学内容和基本要求第一章催化作用与催化剂第一节催化作用的定义与特征;第二节催化剂的组成与功能;第三节对工业催化剂的要求;第四节均相催化与均相催化简介第二章吸附作用与多相催化:第一节多相催化的反应步骤;第二节吸附等温线;第三节金属表面上的化学吸附;第四节氧化物表面上的化学吸附第三章各类催化剂及其催化作用:第一节酸碱催化剂及其催化作用;第二节分子筛催化剂及其催化作用;第三节金属催化剂及其催化作用;第四节金属氧化物和硫化物催化剂及其催化作用;第五节络合催化剂及其催化作用第四章工业催化剂的制备与使用:第一节工业催化剂的制备;第二节工业催化剂的使用第五章工业催化剂的活性评价与宏观物性的表征:第一节催化剂活性测试的基本概念;第二节催化剂活性的测定;第三节催化剂的宏观物性及其测定五、有关教学环节的要求教学以课堂教学、老师讲授为主,开展启发式教学,鼓励学生提出问题,展开讨论,最后进行归纳总结。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
晶格缺陷
由热力学第三定律可知,在非绝对零度 的条件下,所有的物理系统均存在不同 程度的不规则分布
晶格缺陷:点缺陷、线缺陷、面缺陷、 体缺陷
晶格缺陷
点缺陷:包括空位、杂质原子、间隙原子、错 位原子和变价原子等。
本征点缺陷:非外来杂质导致的点缺陷 肖德基(schottky)缺陷:一个金属原子缺位 费莱柯(Frenkel)缺陷:一个原子缺位与一个
适宜的几何尺寸,但无空d轨道,故无活
性。
金属晶体结构与催化性能的关系
几何对应原则只是多位理论分析和判断某一反 应能否进行的必要条件
低能电子衍射(LEED)及透射电子显微镜 (TEM)研究表明:在反应过程中,金属吸附 气体后,表面会发生重排,表面进行催化反应 也有类似的现象;有时还会有原子迁移和原子 间距增大的情况
物等。
金属晶体结构与催化性能的关系
晶格缺陷的作用 不饱和性 位错处和表面点缺陷区,催化剂原子的
几何排列与表面其他部分不同,而表面 原子间距结合立体化学特性,对决定催 化活性是重要的因素;边位错和螺旋位 错有利于催化化反应的进行。
金属晶体结构与催化性能的关系
晶格缺陷的作用
所谓TSK模型,指原子表面上存在着台阶(Terrace)、 梯级(Step)和拐折(Kink)模型。它们以及空位、附加原 子等表面位都十分活泼,都是催化活性较高的部位。
晶格缺陷
面缺陷:堆积层错、晶粒界面等 堆垛层错:由晶位的错配和误位所致
晶格缺陷
面缺陷: 颗粒边界:实际晶体常由小晶粒拼嵌而成,小晶粒
中部的格子是完整的,而界区则是非规则的。该处 晶体的晶格处于畸变状态,能量高于晶粒内部。颗 粒边缘常构成面缺陷。
晶界
晶粒(单晶体)
多晶
晶格缺陷
体缺陷 晶体中出现空洞、气泡、包裹物、沉积
氧化:Pd、Pt及Ag具有抗氧化性 脱氢环化、异构化
影响金属催化剂性能的因素
几何因素 电子因素
过渡金属的晶体及表面结构简介
金属的体相结构
面心立方晶格(F.C.C.) 体心立方晶格(B.C.C.) 六方密堆晶格(H.C.P.)
金属的表面结构
金属表面上的原子排列与体相相近,原 子间距也大致相等。
由于紧密堆积在热力学上最为有利,暴 露于表面上的金属原子,往往形成晶面 指数低的面,即表面晶胞结构为(1×1) 的低指数面热力学才是稳定结构。
金属的表面结构
举例: 体心立方的-铁晶体的几个晶面
金属铁为体心立方晶格,有[100]面、[110]面和 [111]面等晶面。
不同晶面上金属原子的几何排布及原子间距不等。
金属和金属表面的化学键
E
金属和金属表面的化学键
能带理论 满带:已充满电子的能带。内层轨道能级分裂后形成
方法,假设固体中电子不再束缚于个别的原子 而是在整个固体中的运动。
金属和金属表面的化学键
能带理论 化学家们在分子轨道理论的基础上,提出了能
带理论 原子间距减小时,孤立原子的每个能级将演化
成由密集能级组成的准连续能带 相邻原子之间内层轨道重叠少,形成的能带较
窄;价层轨道重叠多,形成较宽的能带 各个能带按能量的高低排列起来成为能带结构
各类催化剂及其催化作用
各类催化剂及其催化作用
金属催化剂 固体酸碱催化剂 金属氧化物催化剂 过渡金属硫化物、氮化物、碳化物及磷化物催化剂 过渡金 Nhomakorabea络合物催化剂
金属催化剂及其催化作用
金属催化剂类型
非负载型 负载型 合金催化剂 金属互化物催化剂 金属簇状物催化剂
主要催化作用
加氢,脱氢,氢解:源于H2容易在金属 表面吸附
金属晶体结构与催化性能的关系
巴兰金的多位理论 提出了催化作用的几何适应性和能量适
应性的概念,即在多相催化反应中,反 应分子中将断裂的键位同催化剂活性中 心有一定的几何对应关系和能量对应原 则。
金属晶体结构与催化性能的关系
金属的晶体结构:晶型,晶胞参数,晶 面指数
分子在金属上吸附 单位吸附:几何因素影响小 双位吸附:几何因素有影响 多位吸附:几何因素、晶面要适宜
间隙原子组成
晶格缺陷
点缺陷:
晶格缺陷
点缺陷:
引起晶格的畸变、附加能级的出现,即 几何及电子性质发生变化
晶格缺陷
线缺陷(又称位错 ) 当原子面在相互滑动过程中,已滑动与
未滑动区域之间的分界线 边(刃)位错和螺旋位错 一种物质常由许多种微晶、且以不同的
取向组合而成,组合的界面就是位错
第一节 金属与合金的晶体结构
金属晶体结构与催化性能的关系
二位体活性中心:如醇脱氢,醇脱水等
金属晶体结构与催化性能的关系
四位体活性中心:如乙酸乙酯分解等
金属晶体结构与催化性能的关系
六位体活性中心:如苯加氢、环己烷脱 氢等,具有正六角形的对称的只有面心 立方晶系的(111)晶面和六方密堆积晶 系的(001)晶面,同时还要具有相应的 几何尺寸和能量适应性;Cu、Zn虽然具有
考虑到动态,而不是简单的静态晶格的对应
过渡金属的电子结构简介
金属和金属表面的化学键
能带理论 价键理论 配位场理论
金属和金属表面的化学键
能带理论 固体中电子运动规律的一种近似理论 近自由电子模型:自由电子+微扰→能带
金属和金属表面的化学键
能带理论 金属价电子高度离域化——特大共轭体系 能带理论是一种描述固体外层电子状态的近似
晶格缺陷
线缺陷(又称位错 )
刃位错的形成
刃位错滑移_立体图
晶格缺陷
螺旋位错:晶体在外加切应力作用下,沿ABCD面滑移,
图中EF线为已滑移区与未滑移区的分界处。由于位错 线周围的一组原子面形成了一个连续的螺旋形坡面, 故称为螺位错。
晶格缺陷
螺型位错原子模型
右图的顶视透视图
晶格缺陷
螺 旋 位 错 示 意 图
金属晶体结构与催化性能的关系
晶格缺陷的作用 晶格不规整处的电子因素促使有更高
的催化活性,因为与位错和缺陷相联 系的表面点,能够发生固体电子性能 的修饰
金属晶体结构与催化性能的关系
晶体缺陷的作用 在多相催化反应的速率方程中,随着指前因子
A的增加,总是伴随活化能E的增加,这就是补 偿效应。对于补偿效应的合理解释,其原因来 源于位错和缺陷的综合结果,点缺陷的增加, 更主要是位错作用承担了表面催化活性中心