第6章习题详解

合集下载

高一物理课后习题精准解析(新教材人教版必修第二册)第6章__圆周运动复习与提高B组

高一物理课后习题精准解析(新教材人教版必修第二册)第6章__圆周运动复习与提高B组

第 6章圆周运动复习与提高 B组(解析版)—2019版新教科书物理必修第二册“复习与提高”习题详解1.如图 6-7所示,半径 R=0.40 m的光滑半圆环轨道处于竖直平面内,半圈环与水平地面相切于圆环的端点 A,一小球从 A点冲上竖直半圆环,沿轨道运动到 B点飞出,最后落在水平地面上的 C点〔图上未画),g取 10 m/s .(1)能实现上述运动时,小球在 B点的最小速度是多少?2(2)能实现上述运动时,A、C间的最小距离是多少?【解析】(1)小球在B点受力等于向心力,当N=0时最小速度为(2)小球从B做平抛运动,解得0.8m,即为A、C间的最小距离。

2.如图 6-8所示,做匀速圆周运动的质点在时间 t内由 A点运动到 B点,AB弧所对的圆心角为。

(1)若 A8弧长为,求质点向心加速度的大小。

(2)若由 A点运动到 B点速度改变量的大小为,求质点做匀速圆周运动的向心加速度的大小。

【解析】(1)因为,所以,又,所以,代入得(2)3.如图 6-9所示,带有一白点的黑色圆盘,绕过其中心且垂直于盘面的轴沿颠时针方向匀速转动,转速 n=20 rls。

在暗室中用每秒闪光 21次的频闪光源照射圆盘,求观察到白点转动的方向和转动的周期。

【解析】每闪光1次所用时间,在此时间内,白点顺时针转过的角为,也就是逆时针转动了,用角度表示约为,所以观察到的白点转动方向为逆时针方向。

如图所示角速度,所以周期= 。

4.如图 6-10所示,一长为的轻杆的一端固定在水平转轴上,另一端固定一质量为 m的小球,轻杆随转轴在竖直平面内做角速度为的匀速圆周运动,重力加速度为 g。

(1)小球运动到最高点时,长杆对球的作用力。

( 2)小球运动到水平位置 A时,求杆对球的作用力。

【解析】(1)在最高点,设杆对球的作用力为F,方向向下为正,有,则①若②若③若,则,则,则,F=0,杆对球的作用力为0;,F>0,杆对球的作用力为, 方向向下,是拉力;,F<0,杆对球的作用力大小为,方向向上,是支持力。

第6章 二重积分习题详解

第6章 二重积分习题详解

习 题 6-51. 略2.利用二重积分的性质估计下列积分的值:(1) 22sin sin d DI x y σ=⎰⎰其中{(,)0,0}D x y x y ππ=≤≤≤≤;(2) 22(49)d DI x y σ=++⎰⎰其中22{(,)4}D x y x y =+≤.解 (1) 在积分区域D 上,0sin 1x ≤≤,0sin 1y ≤≤,从而220sin sin 1x y ≤≤,又D 的面积等于2π,因此2220sin sin d π.Dx y σ≤≤⎰⎰(2) 在积分区域D 上,2204x y ≤+≤,从而22229494()925,x y x y ≤++≤++≤,又D 的面积等于4π,因此2236π(49)d 100π.Dx y σ≤++≤⎰⎰3. 计算下列二重积分: (1) 22()d D xy σ+⎰⎰,其中{(,)|||1,||1}D x y x y =≤≤;(2) (32)d Dx y σ+⎰⎰,其中D 是由两坐标轴及直线2x y +=所围成的闭区域; (3)323(3)d D xx y y σ++⎰⎰,其中{(,)|01,01}D x y x y =≤≤≤≤;(4) cos()d Dx x y σ+⎰⎰其中D 是顶点分别为(0,0),(π,0)和(π,π)的三角形闭区域.(5) Dσ⎰⎰,其中D是由两条抛物线y 2y x =所围成的闭区域; (6) 2d Dxy σ⎰⎰,其中D 是由圆周224xy +=及y 轴所围成的右半闭区域;(7) ed x yD σ+⎰⎰,其中{(,)|||||1}D x y x y =+≤;(8)22()d Dxy x σ+-⎰⎰,其中D 是由直线2y =,y x =及2y x =所围成的闭区域.解 (1) 1311112222221111128()d d ()d d (2)d .333Dy x y x x y y x y x x x σ-----⎡⎤+=+=+=+=⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰(2) D 可用不等式表示为03,02y x x ≤≤-≤≤,于是22222000220(32)d d (32)d [3]d 20(422)d .3xxDx y x x y y xy y xx x x σ--+=+=+=+-=⎰⎰⎰⎰⎰⎰(3)11323323(3)d d (3)d Dx x y y y x x y y x σ++=++⎰⎰⎰⎰14113330001d ()d 1.44x x y y x y y y y ⎡⎤=++=++=⎢⎥⎣⎦⎰⎰(4) D 可用不等式表示为0,0πy x x ≤≤≤≤,于是ππ00πcos()d d cos()d [sin()]d 3(sin 2sin )d π.2xxDx x y x x x y y x x y x x x x x σ+=+=+=-=-⎰⎰⎰⎰⎰⎰(5) D可用不等式表示为201x y x ≤≤≤≤,于是237111424000226d d (-)d .3355Dx x x y x y x x x x σ⎡====⎢⎥⎣⎦⎰⎰⎰⎰⎰(6) D可用不等式表示为022x y ≤≤-≤≤,于是22222222164d d d (4)d .215Dxy y y x y y y σ--==-=⎰⎰⎰⎰ (7) 12D D D = ,其中1{(,)|11,10}D x y x y x x =--≤≤+-≤≤,1{(,)|11,01}D x y x y x x =-≤≤-+≤≤,于是120111110112112111ed e d e d e d e d e d e d (e e )d (e e )d e e .x yx y x y D D D x x x y x y x x x x x y x y x x σσσ+++++----+----=+=+=-+-=-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰(8) D 可用不等式表示为,022yx y y ≤≤≤≤,于是 2222223222232002()d d ()d 19313d d .322486yy Dyy x y x y x y x x x x y x y y y y σ+-=+-⎡⎤⎛⎫=+-=-=⎢⎥ ⎪⎝⎭⎣⎦⎰⎰⎰⎰⎰⎰4. 改变下列二次积分的积分次序:(1) 1d (,)d yy f x y x ⎰⎰ ; (2)2220d (,)d y y y f x y x ⎰⎰;(3) 1d (,)d y f x y x ⎰ ;(4)212d (,)d xx f x y y -⎰ ;(5)eln 1d (,)d xx f x y y ⎰⎰; (6)πsin 0sin2d (,)d xxx f x y y -⎰⎰.解 (1) 所给二次积分等于二重积分(,)d Df x y σ⎰⎰,其中{(,)|0,01}D x y x y y =≤≤≤≤,D 可改写为{(,)|1,01}x y x y x ≤≤≤≤,于是原式11d (,)d .xx f x y y =⎰⎰(2) 所给二次积分等于二重积分(,)d Df x y σ⎰⎰,其中2{(,)|2,02}D x y y x y y =≤≤≤≤,D可改写为{(,)|04}2xx y y x ≤≤≤≤,原式402d (,)d .x x f x y y =⎰⎰(3) 所给二次积分等于二重积分(,)d Df x y σ⎰⎰,其中{(,)|01}D x y x y =≤≤,D可改写为{(,)|011}x y y x ≤≤-≤≤,于是原式110d (,)d .x f x y y -=⎰(4) 所给二次积分等于二重积分(,)d Df x y σ⎰⎰,其中{(,)|212}D x y x y x =-≤≤≤,D可改写为{(,)|2101}x y y x y -≤≤≤≤,于是原式1102d (,)d .yy f x y x -=⎰⎰(5) 所给二次积分等于二重积分(,)d D f x y σ⎰⎰,其中{(,)|0ln ,1e}D x y y x x =≤≤≤≤,D 可改写为{(,)|e e,01}y x y x y ≤≤≤≤,于是原式1eed (,)d .y y f x y x =⎰⎰(6) 所给二次积分等于二重积分(,)d Df x y σ⎰⎰,将D 表示为12D D ,其中1{(,)|arcsin πarcsin ,01}D x y y x y y =≤≤-≤≤,2{(,)|2arcsin π,10}D x y y x y =-≤≤-≤≤,于是原式1πarcsin 0πarcsin 12arcsin d (,)d d (,)d .yyyy f x y x y f x y x ---=+⎰⎰⎰⎰5. 利用极坐标计算下列各题: (1) 22e d xy Dσ+⎰⎰,其中D 是由圆周224x y +=所围成的闭区域;(2) arctand Dyxσ⎰⎰,其中D 是由圆周224x y +=,221x y +=及直线0y =,y x =所围成的在第一象限内的闭区域.解 (1) 在极坐标中,{(,)|02,02π}D ρθρθ=≤≤≤≤,故原式22π240d e d π(e 1).ρθρρ=⋅=-⎰⎰(2) 在极坐标中,π{(,)|12,0}4D ρθρθ=≤≤≤≤,故原式π224013d d π.64θρρ==⎰⎰ 6. 选用适当的坐标计算下列各题:(1) 22d D x yσ⎰⎰,其中D 是由直线2x =,y x =及曲线1xy =所围成的闭区域;(2)Dσ,其中D 是由圆周221x y +=及坐标轴围成的在第一象限内的闭区域; (3) 22()d Dx y σ+⎰⎰,其中D 由直线y x =,y x a =+,y a =,3(0)y a a =>围成的闭区域;(4) Dσ,其中D 是圆环形闭区域2222{(,)|}x y a x y b ≤+≤.解 (1) 选用直角坐标,1{(,)|,12}D x y y x x x=≤≤≤≤,故 22212219d .4x x D x x dx dy yy σ==⎰⎰⎰⎰ (2) 选用极坐标,π{(,)|01,0}2D ρθρθ=≤≤≤≤,故π200d d d d ππd (π2).28DDσρρθθρρρρ===⋅=-⎰⎰⎰(3) 选用直角坐标,33322222240()d d ()d (2)d 14.3a y ay aDa xy y x y x ay a y y a σ-+=+=-+=⎰⎰⎰⎰⎰(4) 选用极坐标,π{(,)|01,0}2D ρθρθ=≤≤≤≤,故2π23302d d d d π().3baDDb a σρρρθθρρ=⋅==-⎰⎰⎰⎰复 习 题 A一、填空题1. 设D 是正方形区域{(,)|01,01}x y x y ≤≤≤≤,则d d D xy x y =⎰⎰___________.1;42. 已知D 是长方形区域{(,)|,01}x y a x b y ≤≤≤≤,又已知()d d 1Dy f x x y =⎰⎰,则()d baf x x =⎰______________. 2;3. 若D 是由1x y +=和两坐标轴围城的三角形区域,则二重积分()d d Df x x y ⎰⎰可以表示为定积分1()d d ()d Df x x y x x ϕ=⎰⎰⎰,那么()x ϕ=_____________. (1)();x f x -4. 若2111()()d (,)d d (,)d x x y x y x f x y y y f x y x =⎰⎰⎰⎰,那么区间12[(),()]x y x y =____________.[,1];y5. 若d (,)d d (cos ,sin )d aax f x y y rf r r r βαθθθ-=⎰⎰⎰,则区间(,)αβ=____________. π,π.2⎛⎫⎪⎝⎭二、选择题1. 设D 是由(0),0y kx k y =>=和1x =所围成的三角形区域,且21d d 15Dxy x y =⎰⎰,则k =( ). A ;A. 1;B.C. D. 2. 设1D 是正方形区域, 2D 是1D 的内切圆区域, 3D 是1D 的外接圆区域, 1D 的中心点在(1,1)-点,记222222123222123e d d ,e d d ,e d d ,y xy y xy y xy D D D I x y I x y I x y ------===⎰⎰⎰⎰⎰⎰则123,,I I I 的大小顺序为( ) B ;A. 123;I I I ≤≤B. 213;I I I ≤≤C. 312;I I I ≤≤D.321.I I I ≤≤3. 将极坐标系下的二次积分:π2sin 00d (cos ,sin )d I rf r r r θθθθ=⎰⎰化为直角坐标系下的二次积分,则I =( ) D ;A.1111d (,)d I y f x y x -=⎰⎰; B. 2d (,)d I x f x y y =⎰;C. 11d (,)d I y f x y x -=⎰;D. 1111d (,)d I x f x y y -=⎰⎰.4. 设D 是第二象限内的一个有界闭区域,而且01y <<.记122123d ,d ,d ,DDDI yx I y x I y x σσσ===⎰⎰⎰⎰⎰⎰则123,,I I I 的大小顺序为( ) C ;A. 123;I I I ≤≤B. 213;I I I ≤≤C. 312;I I I ≤≤D. 321.I I I ≤≤5. 计算旋转抛物面2212x y z +=+在12z ≤≤那部分曲面的面积的公式是( ) C .A. 221x y σ+≤⎰⎰;B. 224x y σ+≤⎰⎰;C.224x y σ+≤⎰⎰;D.221x y σ+≤⎰⎰.三、计算题1. 计算重积分e d d x Dx y ⎰⎰,其中D 是由0,e x x y ==和2y =所围成的区域.解 2ln 211e d d d e d 2)1d (1.yx x Dx y y x y y ==-=⎰⎰⎰⎰⎰2. 计算重积分22d d D x x y y⎰⎰,其中D 是由2,x y x =-=和1xy =所围成的区域.解 1211223222d d d d ()94d .x x D x x y x x y y x x x y------==-+=⎰⎰⎰⎰⎰3. 计算重积分()d d Dx y x y +⎰⎰,其中D 是由222x y +≤和222x y x +≥所围成的区域.解π3π22ππ2cos 0427π43π2cos 2()d d d (cos sin )d d cos sin )d d (cos s π.in )2d Dx y x y r r r r r r r rr r r r θθθθθθθθθθθ+=+⋅++⋅++⋅=-⎰⎰⎰⎰⎰4. 将二重积分(,)d Df x y σ⎰⎰化为两种顺序的二次积分,积分区域D 给定如下:(1) D 是以(0,0),(1,0),(0,2)为顶点的三角形区域;(2) D 是区域2222{(,)|1,0}(0,0)x y x y y a b a b+≤≥>>;(3) D 是区域22{(,)|,1}x y y x y x ≥≤-; (4) D 是由y x =和3y x =所围成的区域;(5) D 是由0,1,y y y x ===和2y x =-所围成的区域. 解 (1)12(1)21200(,)d d (,)d d (,)d .y x Df x y x f x y y y f x y x σ--==⎰⎰⎰⎰⎰⎰(2)(,)d d (,)d d (,)d .abaDf x y x f x y y y f x y x σ-==⎰⎰⎰⎰(3) 221112102(,)d (,)d d (,)d d (,)d .x xDf x y x f x y y y f x y x y f x y x σ-==+⎰⎰⎰⎰⎰(4) 311(,)d d (,)d d (,)d .xxyDf x y x f x y y y f x y x σ==⎰⎰⎰⎰⎰⎰(5)12131120122(,)d d (,)d d (,)d d (,)d d (,)d .x y x yDf x y x f x y y x f x y y x f x y y y f x y x σ+-=++=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰5. 将二重积分(,)d Df x y σ⎰⎰化成在直角坐标下两种顺序的二次积分,并进一步化成在极坐标下的二次积分,其中积分区域D 给定如下:(1) D 是区域22{(,)|2}x y x y y +≤; (2) D 是区域22{(,)|1,1}x y x y x y +≤+≥; (3) D 是区域22{(,)|14}x y x y ≤+≤; (4) D 是由,0y x y ==和1x =所围成的区域. 解(1)112π2sin 110d (,)d d (,)d d (cos ,sin )d .x f x y y y f x y x rf r r r θθθθ-==⎰⎰⎰⎰⎰(2) π1112101010sin cos d (,)d d (,)d d (cos ,sin )d .xyx f x y y y f x y x rf r r r θθθθθ--+==⎰⎰⎰⎰(3)1112211111122111d (,)d d (,)d d (,)d d (,)d d (,)d d (,)d d (,)d d (,)d x f x y y x f x y y x f x y y x f x y y x f x y y x f x y y x f x y y x f x y y--------+++=+++=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰2π21d (cos ,sin )d .rf r r r θθθ⎰⎰ (4)π11114cos 000d (,)d d (,)d d (cos ,sin )d .xyx f x y y y f x y x rf r r r θθθθ==⎰⎰⎰⎰⎰⎰6. 设D 是长方形区域{(,)|,}x y a x b c y d ≤≤≤≤,试证明:()d ()d ()()d bdacDf x xg x x f x g y σ=⎰⎰⎰⎰ (设(),()f x g x 连续).证明()()d d ()()d ()d ()d ()d ()d .bdbdbdacacacDf xg y x f x g y y f x x g y y f x x g x x σ===⎰⎰⎰⎰⎰⎰⎰⎰7. 将二重积分22()d Df xy σ+⎰⎰化为二次积分,其中D 是半圆区域{(,)|0x y y ≤.解 2222π()d π()d ()d .2R R Df x y rf r r f t t σ+==⎰⎰⎰⎰8. 交换下列积分的顺序:(1) 1d (,)d yy f x y x ⎰; (2) eln 10d (,)d xx f x y y ⎰⎰; (3) 220d (,)d xx x f x y y ⎰⎰;(4) 12201d (,)d d (,)d xxx f x y y x f x y y -+⎰⎰⎰⎰;(5)212201d (,)d d (,)d x xx f x y y x f x y y -+⎰⎰⎰⎰.解 (1) 21d (,)d ;x xx f x y y ⎰⎰(2) 1eed (,)d ;y y f x y x ⎰⎰(3) 2420222d (,)d d (,)d ;y y y y f x y x y f x y x +⎰⎰⎰⎰(4) 120d (,)d ;y yy f x y x -⎰⎰(5)12d (,)d .y y f x y x -⎰9. 交换下列积分的顺序,并化为极坐标下的二次积分:(1)1d (,)d y f x y x ⎰;(2) 00d (,)d (0)ax f x y y a >⎰;(3) 1d (,)d x x f x y y ⎰;(4)120d (,)d y yy f x y x -⎰⎰.解 (1) 1π11d (,)d d (cos ,sin )d ;x f x y y rf r r r θθθ-=⎰⎰⎰(2)ππ2cos 4cos 2π0004d (,)d d (cos ,sin )d d (cos ,sin )d ;a aaa a y f x y x rf r r r rf r r r θθθθθθθθ=+⎰⎰⎰⎰⎰⎰(3)π12cos 2π0104d (,)d d (cos ,sin )d ;yy f x y x rf r r r θθθθ=⎰⎰⎰⎰(4)π21224cos sin 01d (,)d d (,)d d (cos ,sin )d .xxx f x y y x f x y y rf r r r θθθ-++=⎰⎰⎰⎰⎰⎰10. 用二重积分计算以下图形D 的面积: (1) D 由2e ,e ,1x x y y x ===所围成; 解 21e 20e 1d d d (e 1).2xx DS x y σ===-⎰⎰⎰⎰(2) D 由2,2y x x y =+=所围成; 解 21229d d d .2y yDS y x σ--===⎰⎰⎰⎰(3) D 由极坐标下不等式(1cos )r a θ≤+及r a ≤所确定. 解 1π(1cos )222π02115π2d π2d d π2.224a D S a a r r a θσθ+⎛⎫=+=+=- ⎪⎝⎭⎰⎰⎰⎰11. 用二重积分计算下列曲面所围立体的体积: (1) 221z x y =--及0z =;解 2π122200π(1)d d (1)d .2DV x y r r r σθ=--=-=⎰⎰⎰⎰(2) 22z x y ≥+及2222x y z z ++≤;解2π122207π1)d d 1)d .6DV x y r r r σθ=--=-=⎰⎰⎰⎰ (3) 22z x y =+,三坐标平面及平面1x y +=. 解 112222001()d d ()d .6xDV x y x x y y σ-=+=+=⎰⎰⎰⎰。

第06章 向量代数与空间解析几何习题详解

第06章 向量代数与空间解析几何习题详解

第六章 向量代数与空间解析几何习 题 6—31、已知)3,2,1(A ,)4,1,2(-B ,求线段AB 的垂直平分面的方程.解:设),,(z y x M 是所求平面上任一点,据题意有|,|||MB MA = ()()()222321-+-+-z y x ()()(),412222-+++-=z y x化简得所求方程26270x y z -+-=.这就是所求平面上的点的坐标所满足的方程, 而不在此平面上的点的坐标都不满足这个方程,所以这个方程就是所求平面的方程.2、 一动点移动时,与)0,0,4(A 及xOy 平面等距离,求该动点的轨迹方程.解:设在给定的坐标系下,动点),,(z y x M ,所求的轨迹为C ,则(,,)M x y z C MA z ∈⇔= 亦即z z y x =++-222)4( 0)4(22=+-∴y x 从而所求的轨迹方程为0)4(22=+-y x .3、 求下列各球面的方程:(1)圆心)3,1,2(-,半径为6=R ; (2)圆心在原点,且经过点)3,2,6(-;(3)一条直径的两端点是)3,1,4()5,32(--与;(4)通过原点与)4,0,0(),0,3,1(),0,0,4(- 解:(1)所求的球面方程为:36)3()1()2(222=-+++-z y x(2)由已知,半径73)2(6222=+-+=R ,所以球面方程为49222=++z y x(3)由已知,球面的球心坐标1235,1213,3242=-=-=+-==+=c b a , 球的半径21)35()31()24(21222=++++-=R ,所以球面方程为: 21)1()1()3(222=-+++-z y x(4)设所求的球面方程为:0222222=++++++l kz hy gx z y x 因该球面经过点)4,0,0(),0,3,1(),0,0,4(),0,0,0(-,所以⎪⎪⎩⎪⎪⎨⎧=-=++=+=08160621008160k h g g l 解之得⎪⎪⎩⎪⎪⎨⎧=-=-==2210k g h l ∴所求的球面方程为0424222=+--++z y x z y x .4、将yOz 坐标面上的抛物线22y z =绕z 旋转一周,求所生成的旋转曲面的方程. 解:222x y z +=(旋转抛物面) .5、将zOx 坐标面上的双曲线12222=-cz a x 分别绕x 轴和z 轴旋转一周,求所生成的旋转曲面的方程.解: 绕x 轴旋转得122222=+-c z y a x 绕z 轴旋转得122222=-+cz a y x . 6、指出下列曲面的名称,并作图:(1)22149x z +=;(2)22y z =;(3)221x z += ;(4)22220x y z x ++-=; (5)222y x z +=;(6)22441x y z -+=;(7)221916x y z ++=; (8)222149x y z -+=-;(9)1334222=++z y x ;(10)2223122z y x +=+. 解: (1)椭圆柱面;(2) 抛物柱面;(3) 圆柱面;(4)球面;(5)圆锥面;(6)双曲抛物面;(7)椭圆抛物面;(8)双叶双曲面;(9)为旋转椭球面;(10)单叶双曲面.7、指出下列方程在平面解析几何和空间解析几何中分别表示什么图形?(1)1+=x y ;(2)422=+y x ;(3)122=-y x ;(4)22x y =. 解:(1)1+=x y 在平面解析几何中表示直线,在空间解析几何中表示平面;(2)422=+yx 在平面解析几何中表示圆周,在空间解析几何中表示圆柱面; (3)122=-yx 在平面解析几何中表示双曲线,在空间解析几何中表示双曲柱面; (4)y x 22=在平面解析几何中表示抛物线,在空间解析几何中表示抛物柱面.8、 说明下列旋转曲面是怎样形成的?(1)1994222=++z y x ;(2)14222=+-z y x (3)1222=--z y x ;(4)222)(y x a z +=- 解:(1)xOy 平面上椭圆19422=+y x 绕x 轴旋转而成;或者 xOz 平面上椭圆22149+=x z 绕x 轴旋转而成(2)xOy 平面上的双曲线1422=-y x 绕y 轴旋转而成;或者 yOz 平面上的双曲线2214-=y z 绕y 轴旋转而成 (3)xOy 平面上的双曲线122=-y x 绕x 轴旋转而成;或者 xOz 平面上的双曲线221x z -=绕x 轴旋转而成(4)yOz 平面上的直线a y z +=绕z 轴旋转而成或者 xOz 平面上的直线z x a =+绕z 轴旋转而成.9、 画出下列各曲面所围立体的图形:(1)012243=-++z y x 与三个坐标平面所围成;(2)42,42=+-=y x x z 及三坐标平面所围成;(3)22=0,(0)=1z z =a a >,y =x,x +y 及0x =在第一卦限所围成;(4)2222,8z x y z x y =+=--所围. 解:(1)平面012243=-++z y x 与三个坐标平面围成一个在第一卦限的四面体;(2)抛物柱面24z x =-与平面24x y +=及三坐标平面所围成;(3)坐标面=0z 、0x =及平面(0)z =a a >、y=x 和圆柱面22=1x +y 在第一卦限所围成;(4)开口向上的旋转抛物面22z x y =+与开口向下的抛物面228z x y =--所围.作图略.习 题 6—41、画出下列曲线在第一卦限内的图形(1)⎩⎨⎧==21y x ;(2)⎪⎩⎪⎨⎧=---=0422y x y x z ;(3)⎪⎩⎪⎨⎧=+=+222222a z x a y x 解:(1)是平面1x =与2y =相交所得的一条直线;(2)上半球面z =与平面0x y -=的交线为14圆弧; (3)圆柱面222x y a +=与222x z a +=的交线.图形略.2、分别求母线平行于x 轴及y 轴而且通过曲线⎪⎩⎪⎨⎧=-+=++0162222222y z x z y x 的柱面方程. 解:消去x 坐标得16322=-z y ,为母线平行于x 轴的柱面;消去y 坐标得:162322=+z x ,为母线平行于y 轴的柱面.3、求在yOz 平面内以坐标原点为圆心的单位圆的方程(任写出三种不同形式的方程).解:⎩⎨⎧==+0122x z y ;⎩⎨⎧==++01222x z y x ; ⎪⎩⎪⎨⎧=+=++1122222z y z y x . 4、试求平面20x -=与椭球面222116124x y z ++=相交所得椭圆的半轴与顶点.解:将椭圆方程22211612420x y z x ⎧++=⎪⎨⎪-=⎩化简为:221932y z x ⎧+=⎪⎨⎪=⎩,可知其为平面2=x 上的椭圆,半轴分别为3,3,顶点分别为)3,0,2(),3,0,2(),0,3,2(),0,3,2(--.5 、将下面曲线的一般方程化为参数方程(1)2229x y z y x ⎧++=⎨=⎩; (2)⎩⎨⎧==+++-04)1()1(22z z y x 解:(1)原曲线方程即:⎪⎩⎪⎨⎧=+=199222z x x y ,化为⎪⎪⎪⎩⎪⎪⎪⎨⎧=≤≤==t z t t y t x sin 3)20(cos 23cos 23π;(2))20(0sin 3cos 31πθθθ≤≤⎪⎪⎩⎪⎪⎨⎧==+=z y x .6、求螺旋线⎪⎩⎪⎨⎧===θθθb z a y a x sin cos 在三个坐标面上的投影曲线的直角坐标方程.解:⎩⎨⎧==+0222z a y x ;⎪⎩⎪⎨⎧==0sin x b z a y ;⎪⎩⎪⎨⎧==0cos y b z a x .7、指出下列方程所表示的曲线(1)222253⎧++=⎨=⎩x y z x (2)⎩⎨⎧==++13094222z z y x ; (3)⎩⎨⎧-==+-3254222x z y x ; (4)⎩⎨⎧==+-+408422y x z y ; (5)⎪⎩⎪⎨⎧=-=-0214922x z y . 解:(1)圆; (2)椭圆; (3)双曲线; (4)抛物线; (5)双曲线.8、 求曲线⎩⎨⎧==-+30222z x z y 在xOy 面上的投影曲线方程,并指出原曲线是何种曲线. 解:原曲线即:⎩⎨⎧=-=3922z x y ,是位于平面3=z 上的抛物线,在xOy 面上的投影曲线为⎩⎨⎧=-=0922z x y9、 求曲线 ⎪⎩⎪⎨⎧==++211222z z y x 在坐标面上的投影. 解:(1)消去变量z 后得,4322=+y x 在xOy 面上的投影为,04322⎪⎩⎪⎨⎧==+z y x 它是中心在原点,半径为23的圆周. (2)因为曲线在平面21=z 上,所以在xOz 面上的投影为线段.;23||,021≤⎪⎩⎪⎨⎧==x y z (3)同理在yOz 面上的投影也为线段..23||,21≤⎪⎩⎪⎨⎧==y x z10、 求抛物面x z y =+22与平面 02=-+z y x 的交线在三个坐标面上的投影曲线方程.解: 交线方程为⎩⎨⎧=-+=+0222z y x x z y ,(1)消去z 得投影,004522⎩⎨⎧==-++z x xy y x (2)消去y 得投影2252400x z xz x y ⎧+--=⎨=⎩,(3)消去x 得投影22200y z y z x ⎧++-=⎨=⎩. 习 题 6—51、写出过点()3,2,10M 且以{}1,2,2=n 为法向量的平面方程.解:平面的点法式方程为()()()032212=-+-+-z y x .2、求过三点()()()01,0,0,1,0,0,0,1C B A 的平面方程.解:设所求平面方程为0=+++d cz by ax ,将C B A ,,的坐标代入方程,可得d c b a -===,故所求平面方程为1=++z y x .3、求过点()1,0,0且与平面1243=++z y x 平行的平面方程.解:依题意可取所求平面的法向量为}2,4,3{=n ,从而其方程为()()()0120403=-+-+-z y x 即 2243=++z y x .4、求通过x 轴和点(4, -3, -1)的平面的方程.解:平面通过x 轴, 一方面表明它的法线向量垂直于x 轴, 即A =0; 另一方面表明 它必通过原点, 即D =0. 因此可设这平面的方程为By +Cz =0.又因为这平面通过点(4, -3, -1), 所以有-3B -C =0, 或C =-3B . 将其代入所设方程并除以 B (B ≠0), 便得所求的平面方程为y -3z =0.5、求过点)1,1,1(,且垂直于平面7=+-z y x 和051223=+-+z y x 的平面方程. 解:},1,1,1{1-=n }12,2,3{2-=n 取法向量},5,15,10{21=⨯=n n n 所求平面方程为化简得: .0632=-++z y x6、设平面过原点及点)1,1,1(,且与平面8x y z -+=垂直,求此平面方程.解: 设所求平面为,0=+++D Cz By Ax 由平面过点)1,1,1(知平0,A B C D +++=由平面过原点知0D =,{1,1,1},n ⊥- 0A B C ∴-+=,0A C B ⇒=-=,所求平面方程为0.x z -=7、写出下列平面方程:(1)xOy 平面;(2)过z 轴的平面;(3)平行于zOx 的平面;(4)在x ,y ,z 轴上的截距相等的平面.解:(1)0=z ,(2)0=+by ax (b a ,为不等于零的常数),、(3)c y = (c 为常数), (4) a z y x =++ (0)a ≠.习 题 6—61、求下列各直线的方程:(1)通过点)1,0,3(-A 和点)1,5,2(-B 的直线;(2) 过点()1,1,1且与直线433221-=-=-z y x 平行的直线. (3)通过点)3,51(-M 且与z y x ,,三轴分别成︒︒︒120,45,60的直线;(4)一直线过点(2,3,4)-A ,且和y 轴垂直相交,求其方程.(5)通过点)2,0,1(-M 且与两直线11111-+==-z y x 和01111+=--=z y x 垂直的直线; (6)通过点)5,3,2(--M 且与平面02536=+--z y x 垂直的直线.解:(1)所求的直线方程为:015323-=-=++z y x 即:01553-=-=+z y x ,亦即01113-=-=+z y x . (2)依题意,可取L 的方向向量为{}4,3,2=s ,则直线L 的方程为413121-=-=-z y x . (3)所求直线的方向向量为:{}⎭⎬⎫⎩⎨⎧-=︒︒︒21,22,21120cos ,45cos ,60cos ,故直线方程为: 132511--=+=-z y x . (4)因为直线和y 轴垂直相交,所以交点为),0,3,0(-B 取{2,0,4},BA s −−→==所求直线方程 .440322-=+=-z y x (5)所求直线的方向向量为:{}{}{}2,1,10,1,11,1,1---=-⨯-,所以,直线方程为:22111+==-z y x . (6)所求直线的方向向量为:{}5,3,6--,所以直线方程为:235635x y z -++==--.2、求直线1,234x y z x y z ++=-⎧⎨-+=-⎩的点向式方程与参数方程. 解 在直线上任取一点),,(000z y x ,取10=x ,063020000⎩⎨⎧=--=++⇒z y z y 解2,000-==z y .所求点的坐标为)2,0,1(-,取直线的方向向量{}{}3,1,21,1,1-⨯=s k j i kj i 34312111--=-=,所以直线的点向式方程为: ,321041-+=--=-z y x 令102,413x y z t --+===--则所求参数方程: .3241⎪⎩⎪⎨⎧--=-=+=t z t y t x3、判别下列各对直线的相互位置,如果是相交的或平行的直线求出它们所在的平面,如果相交时请求出夹角的余弦.(1)⎩⎨⎧=-+=+-0623022y x z y x 与⎩⎨⎧=-+=--+01420112z x z y x ;(2)⎪⎩⎪⎨⎧--=+==212t z t y t x 与142475x y z --+==-. 解:(1)将所给的直线方程化为标准式为:4343223z y x =-=-- 43227-=--=-z y x 234234-==-- ∴二直线平行.又点)0,43,23(与点(7,2,0)在二直线上,∴向量⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧--0,45,2110,432,237平行于二直线所确定的平面,该平面的法向量为:{}{}19,22,50,45,2114,3,2--=⎭⎬⎫⎩⎨⎧⨯-,从而平面方程为:0)0(19)2(22)7(5=-+---z y x ,即 0919225=++-z y x .(2)因为121475-≠≠-,所以两直线不平行,又因为0574121031=--=∆,所以两直线相交,二直线所决定的平面的法向量为{}{}{}1,1,35,7,412,1--=-⨯-,∴二直线所决定的平面的方程为:330x y z -++=.设两直线的夹角为ϕ,则cos ϕ== 4、判别下列直线与平面的相关位置:(1)37423z y x =-+=--与3224=--z y x ;(2)723z y x =-=与8723=+-z y x ; (3)⎩⎨⎧=---=-+-01205235z y x z y x 与07734=-+-z y x ; (4)⎪⎩⎪⎨⎧-=+-==4992t z t y t x 与010743=-+-z y x .解(1) 0)2(3)2()7(4)2(=-⨯+-⨯-+⨯-,而017302)4(234≠=-⨯--⨯-⨯,所以,直线与平面平行.(2) 0717)2(233≠⨯+-⨯-⨯,所以,直线与平面相交,且因为772233=--=,∴直线与平面垂直.(3)直线的方向向量为:{}{}{}1,9,51,1,22,3,5=--⨯-, 0179354=⨯+⨯-⨯,所以直线与平面平行或者直线在平面上;取直线上的点)0,5,2(--M ,显然点在)0,5,2(--M 也在平面上(因为4(2)3(5)70⨯--⨯--=),所以,直线在平面上.(4)直线的方向向量为{}9,2,1-, 097)2(413≠⨯+-⨯-⨯∴直线与平面相交但不垂直. 复习题A一 、判断正误:1、 若c b b a ⋅=⋅且≠0b ,则c a =; ( ⨯ ) 解析 c b b a ⋅-⋅=)(c a b -⋅=0时,不能判定=b 0或c a =.例如i a =,j b =,k c =,有⋅=⋅=0a b b c ,但c a ≠.2、 若c b b a ⨯=⨯且≠0b ,则c a =; ( ⨯ ) 解析 此结论不一定成立.例如i a =,j b =,)(j i c +-=,则k j i b a =⨯=⨯,k j i j c b =+-⨯=⨯)]([,c b b a ⨯=⨯,但c a ≠.3 、若0=⋅c a ,则=0a 或=0c ; ( ⨯ ) 解析 两个相互垂直的非零向量点积也为零.4、 a b b a ⨯-=⨯. ( √ ) 解析 这是叉积运算规律中的反交换律.二、选择题:1 、 当a 与b 满足( D )时,有b a b a +=+;(A)⊥a b ; (B)λ=a b (λ为常数); (C)a ∥b ; (D)⋅=a b a b . 解析 只有当a 与b 方向相同时,才有a +b =a +b .(A)中a ,b 夹角不为0,(B),(C)中a ,b 方向可以相同,也可以相反.2、下列平面方程中,方程( C )过y 轴;(A) 1=++z y x ; (B) 0=++z y x ; (C) 0=+z x ; (D) 1=+z x . 解析 平面方程0=+++D Cz By Ax 若过y 轴,则0==D B ,故选C .3 、在空间直角坐标系中,方程2221y x z --=所表示的曲面是( B );(A) 椭球面; (B) 椭圆抛物面; (C) 椭圆柱面; (D) 单叶双曲面. 解析 对于曲面2221y x z --=,垂直于z 轴的平面截曲面是椭圆,垂直于x 轴或y 轴的平面截曲面是开口向下的抛物线,根据曲面的截痕法,可以判断曲面是椭圆抛物面.4、空间曲线⎩⎨⎧=-+=5,222z y x z 在xOy 面上的投影方程为( C );(A)722=+y x ; (B)⎩⎨⎧==+5722z y x ; (C) ⎩⎨⎧==+0722z y x ;(D)⎩⎨⎧=-+=0222z y x z解析 曲线⎩⎨⎧==+5722z y x 与xOy 平面平行,在xOy 面上的投影方程为⎩⎨⎧==+0722z y x .5 、直线11121-+==-z y x 与平面1=+-z y x 的位置关系是( B ). (A) 垂直; (B) 平行; (C) 夹角为π4; (D) 夹角为π4-. 解析 直线的方向向量s ={2,1,-1},平面的法向量n ={1,-1,1},n s ⋅=2-1-1=0,所以,s ⊥n ,直线与平面平行.三、填空题:1、若2=b a ,π()2=a,b ,则=⨯b a 2 ,=⋅b a 0 ; 解 =⨯b a b a sin()a,b π22=2,=⋅b a b a cos()a,b π22=0.2、与平面062=-+-z y x 垂直的单位向量为 }2,1,1{66-±; 解 平面的法向量 n ={1,-1,2}与平面垂直,其单位向量为0n =411++=6,所以,与平面垂直的单位向量为}2,1,1{66-±. 3、过点)2,1,3(--和)5,0,3(且平行于x 轴的平面方程为 057=-+z y ;解 已知平面平行于x 轴,则平面方程可设为 0=++D Cz By ,将点 (-3,1,-2)和(3,0,5)代入方程,有{20,50,B C D C D -+=+= ⇒ 7,51,5B D C D ⎧=-⎪⎨⎪=-⎩得 05157=+--D Dz Dy ,即 057=-+z y .4、过原点且垂直于平面022=+-z y 的直线为z yx -==20; 解 直线与平面垂直,则与平面的法向量 n ={0,2,-1}平行,取直线方向向量s =n ={0,2,-1},由于直线过原点,所以直线方程为z yx -==20 .5、曲线⎩⎨⎧=+=1,222z y x z 在xOy 平面上的投影曲线方程为 ⎩⎨⎧==+.0,1222z y x解: 投影柱面为 1222=+y x ,故 ⎩⎨⎧==+0,1222z y x 为空间曲线在xOy 平面上的投影曲线方程.四、解答题:1、 已知}1,2,1{-=a ,}2,1,1{=b ,计算(a) b a ⨯; (b) ()()-⋅+2a b a b ; (c)2b a -;解: (a) b a ⨯=211121-kj i 1,3}5,{--=. (b) {2,4,2}{1,1,2}{1,5,0}2a b -=--=-,1,3}{2,{1,1,2}2,1}{1,-=+-=+b a , 所以()()-⋅+2a b a b 7}3,1,2{}0,5,1{=-⋅-=.(c) 1}3,{0,{1,1,2}2,1}{1,--=--=-b a ,所以2b a -10)19(2=+=.2、已知向量21P P 的始点为)5,2,2(1-P ,终点为)7,4,1(2-P ,试求:(1)向量21P P 的坐标表示; (2)向量21P P 的模;(3)向量21P P 的方向余弦; (4)与向量21P P 方向一致的单位向量.解: (1)}2,6,3{}57),2(4,21{21-=-----=P P ;74926)3(222==++-=;(3)21P P 在z y x ,,三个坐标轴上的方向余弦分别为362cos ,cos ,cos 777αβγ=-==;(4)k j i k j i 7276737263)(21++-=++-==P P P P. 3、设向量{}1,1,1=-a ,{}1,1,1=-b ,求与a 和b 都垂直的单位向量.解: 令{}1110,2,2111=⨯=-=-ij kc a b,01⎧==⎨⎩c cc ,故与a、b 都垂直的单位向量为0⎧±=±⎨⎩c .4、向量d 垂直于向量]1,3,2[-=a 和]3,2,1[-=b ,且与]1,1,2[-=c的数量积为6-,求向量d解: d 垂直于a 与b,故d 平行于b a ⨯,存在数λ使()b a d⨯=λ⨯-=]1,3,2[λ]3,2,1[-]7,7,7[λλλ--=因6-=⋅c d,故6)7(1)7()1(72-=-⨯+-⨯-+⨯λλλ, 73-=λ]3,3,3[-=∴d .5、求满足下列条件的平面方程:(1)过三点)2,1,0(1P ,)1,2,1(2P 和)4,0,3(3P ;(2)过x 轴且与平面025=++z y x 的夹角为π3. 解 (1)解1: 用三点式.所求平面的方程为0241003211201210=---------z y x ,即01345=+--z y x .解2:}1,1,1{-=}2,1,3{-=,由题设知,所求平面的法向量为k j i kj in 452131113121--=--=⨯=P P P P , 又因为平面过点)2,1,0(1P ,所以所求平面方程为0)2(4)1(5)0(=-----z y x ,即01345=+--z y x .解3: 用下面的方法求出所求平面的法向量},,{C B A =n ,再根据点法式公式写出平面方程也可.因为3121,P P P P ⊥⊥n n ,所以{0,320,A B C A B C +-=-+=解得A C A B 4,5-=-=,于是所求平面方程为0)2(4)1(5)0(=-----z A y A x A ,即 01345=+--z y x .(2)因所求平面过x 轴,故该平面的法向量},,{C B A =n 垂直于x 轴,n 在x 轴上的投影0=A ,又平面过原点,所以可设它的方程为0=+Cz By ,由题设可知0≠B (因为0=B 时,所求平面方程为0=Cz 又0≠C ,即0=z .这样它与已知平面025=++z y x 所夹锐角的余弦为π1cos 32=≠=,所以0≠B ),令C B C'=,则有0='+z C y ,由题设得22222212)5(10121503cos ++'++⨯'+⨯+⨯=πC C , 解得3='C 或13C '=-,于是所求平面方程为03=+z y 或03=-z y .6、 一平面过直线⎩⎨⎧=+-=++04,05z x z y x 且与平面01284=+--z y x 垂直,求该平面方程;解法1: 直线⎩⎨⎧=+-=++04,05z x z y x 在平面上,令x =0,得 54-=y ,z =4,则(0,-54,4)为平面上的点.设所求平面的法向量为n =},,{C B A ,相交得到直线的两平面方程的法向量分别为 1n ={1,5,1},2n ={1,0,-1},则直线的方向向量s =1n ⨯2n =101151-kj i ={-5,2,-5},由于所求平面经过直线,故平面的法向量与直线的方向向量垂直,即⋅n s ={-5,2,-5}•},,{C B A =C B A 525-+-=0,因为所求平面与平面01284=+--z y x 垂直,则}8,4,1{},,{--⋅C B A =C B A 84--=0,解方程组{5250,480,A B C A B C -+=--= ⇒ 2,5,2A CBC =-⎧⎪⎨=-⎪⎩ 所求平面方程为 0)4()54(25)0(2=-++---z C y C x C ,即012254=+-+z y x .解法2: 用平面束(略)7、求既与两平面1:43x z π-=和2:251x y z π--=的交线平行,又过点(3,2,5)-的直线方程.解法1:{}11,0,4=-n ,{}22,1,5=--n ,{}124,3,1s =⨯=---n n ,从而根据点向式方程,所求直线方程为325431x y z +--==---,即325431x y z +--==. 解法2:设{},,s m n p =,因为1⊥s n ,所以40m p -=;又2⊥s n ,则250m n p --=,可解4,3m p n p ==,从而0p ≠.根据点向式方程,所求直线方程为32543x y z p p p +--==,即325431x y z +--==. 解法3:设平面3π过点(3,2,5)-,且平行于平面1π,则{}311,0,4==-n n 为3π的法向量,从而3π的方程为1(3)0(2)4(5)0x y z ⋅++⋅--⋅-=,即4230x z -+=.同理,过已知点且平行于平面2π的平面4π的方程为25330x y z --+=.故所求直线的方程为423025330x z x y z -+=⎧⎨--+=⎩.8、 一直线通过点)1,2,1(A ,且垂直于直线11231:+==-z y x L ,又和直线z y x ==相交,求该直线方程;解: 设所求直线的方向向量为{,,}m n p =s ,因垂直于L ,所以320m n p ++=;又因为直线过点)1,2,1(A ,则所求直线方程为pz n y m x 121-=-=-,联立121,①,②320,③x y z m n p x y z m n p ---⎧==⎪⎨==⎪++=⎩由①,令λ=-=-=-p z n y m x 121,则有⎪⎩⎪⎨⎧+=+=+=,1,2,1p z n y m x λλλ代入方程②有{12,11,m n m p λλλλ+=++=+ 可得p m =,代入③解得p n 2-=, 因此,所求直线方程为112211-=--=-z y x .9、 指出下列方程表示的图形名称:(a) 14222=++z y x ;(b) z y x 222=+;(c) 22y x z +=;(d) 022=-y x ;(e) 122=-y x ; (f) ⎩⎨⎧=+=222z y x z .解: (a) 绕y 轴旋转的旋转椭球面.(b) 绕z 轴旋转的旋转抛物面. (c) 绕z 轴旋转的锥面.(d) 母线平行于z 轴的两垂直平面:y x =,y x -=. (e) 母线平行于z 轴的双曲柱面. (f) 旋转抛物面被平行于XOY 面的平面所截得到的圆,半径为2,圆心在(0,0,2)处.10、求曲面22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影并作其图形. 解: 将所给曲面方程联立消去z ,就得到两曲面交线C 的投影柱面的方程122=+y x ,所以柱面与xOy 平面的交线⎩⎨⎧==+'01:22z y x C 所围成的区域221+≤x y 即为曲面22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影(图略).。

土力学课后答案详解 第6章

土力学课后答案详解 第6章
q = 10kPa
2m 2m 2m
ϕ 1= 30 ° , γ 1= 18 κ Ν /m 3 ϕ 2= 26° , γ 1= 17κ Ν /m 3
ϕ 3= 26° , γ 3= 9κ Ν /m 3
6.21 题 6-1 图
解:
K a1
=
tan 2 (45o

ϕ1 2
)
=
tan 2 (45o

30o 2
)
压力。 6-3 朗肯土压力理论的基本假设是什么?
答:弹性半空间体内的应力状态,根据土的极限平衡条件而得出的土压力计算方法。在 弹性匀质的半空间体中,任一竖直面应都是对称面,其上的剪应力为零。 6-4 库仑土压力理论的基本假设是什么?
答:①墙后填土是理想的散粒体(粘聚力 c =0);②滑动破裂面为通过墙踵的平面。
第六章 思考题与习题
思考题
6-1 什么是主动土压力、被动土压力和静止土压力?三者的关系是什么? 答:(1)主动土压力:当挡土墙在外力作用下,向土体方向偏移至墙后土体达到极限平
衡状态时,作用在墙背上的土压力称为主动土压力,一般用 Ea 表示。
(2)被动土压力:当挡土墙在外力作用下,向土体方向偏移墙背土体达到极限平衡状
的状态。
当挡土墙离开土体向左移动时,墙后土体有伸张趋势。此时竖向应力σ z 不变,法向应 力σ x 减小,σ z 和σ x 仍为大、小主应力。当挡土墙位移使墙后土体达极限平衡状态时,σ x
达到最小值σ a ,其摩尔应力圆与抗剪强度包线相切。土体形成一系列滑裂面,面上各点都
处于极限平衡状态,称主动朗肯状态,此时墙背法向应力σ x 为最小主应力,即朗肯主动土
墙底:σ p1 = (q + γh)K p = (25 + 16 × 5) × 3.85 = 404.25kPa

微观经济学原理课后习题及答案-第六章完全竞争市场

微观经济学原理课后习题及答案-第六章完全竞争市场

微观经济学原理课后习题及答案 -第六章 完全竞争市场第一部分 教材配套习题本习题详解1.假定某完全竞争市场的需求函数和供给函数分别为D=22-4P 和S=4+2P 。

求: (1)该市场的均衡价格和均衡数量。

(2)单个完全竞争厂商的需求曲线。

(3)利用本题,区分完全竞争市场条件下市场的需求曲线、单 个消费者的需求曲线以及单 个厂商的需求曲线。

2. 请分析追求利润最大化的厂商会面临哪几种短期均衡的情况。

3. 完全竞争厂商的短期供给曲线与短期生产的要素合理投入区间之 间有什么联系 ?答:参考图 6-2,完全竞争厂商短期生产函数和短期成本函数之解为:在厂商短期生产合理区间中呈下降趋势的 MP 曲线, 对应着厂 商短期成本的 MC 曲线的上升段; 厂商短期生产合理区间的起点, 即 MP L 曲线交于 AP L 曲线的最高点,对应着短期 MC 曲线相交于 AVC 曲线的最低点。

完全竞争厂商的短期供给曲线是等于和大于 AVC 的 SMC 曲 线。

SMC无限大时,即 MP 接近零,厂商也不会生产。

所以完全竞 争厂商的短期供给曲线与短期生产中生产合理区间相对应。

起点对应 于由 AP 曲线和 MP 曲线相交于 AP 的最高点作为起点,且 MP L 曲线间的相互关系是 MC =W1 g MP LAVC= g A 1P 。

这两个公式可以分別理呈下降状的短明生产合理区间,终点对应于MP=0。

换言之,如果完全竞争厂商处于短期生产的合理区间,那么,这同时也意味着该厂商的生产定位于短期供给曲线上,当然,也可以反过来说,如果完全竞争厂商的生产位于短期供给曲线上那么,这同时也表示该厂商的生产一定处于短期生产的合理区间。

图6-2 成本与产量曲线关系图4. 已知某完全竞争行业中单个厂商的短期总成本函数为STC=0.321Q-2Q+15Q+10。

(1)求当市场上产品的价格为P=55时,厂商的短期均衡产量和利润;(2)当市场价格下降为多少时,厂商必须停产;(3)厂商的短期供给函数。

电子电路技术考研习题及其详解第6章功率放大电路

电子电路技术考研习题及其详解第6章功率放大电路

电子电路技术考研习题及其详解第6章功率放大电路(总28页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一、选择题(05 分)1.选择正确答案填空:1.在甲类功率放大电路中,功放管的导通角为();A .B .C.02.在甲乙类功率放大电路中,功放管的导通角为();A . B.>C.<3.在乙类功率放大电路中,功放管的导通角为();A . B.=C.<(05 分)2.选择正确答案填空:1.功率放大电路的主要特点是();A.具有较高的电压放大倍数 B.具有较高的电流放大倍数C.具有较大的输出功率2.功率放大电路的最大输出功率是负载上获得的();A.最大交流功率 B.最大直流功率 C.最大平均功率3.功率放大电路的效率是();A.输出功率与输入功率之比 B.输出功率与功放管耗散功率之比C.输出功率与电源提供的功率之比(05 分)3.选择正确答案填空:2651.分析功率放大电路时,应着重研究电路的();A.电压放大倍数和电流放大倍数 B.输出功率与输入功率之比C.最大输出功率和效率2.功率放大电路的最大输出功率是();A.负载获得的最大交流功率 B.电源提供的最大功率C.功放管的最大耗散功率2663.当功率放大电路的输出功率增大时,效率将()。

A.增大 B.减小 C.可能增大,也可能减小(05 分)4.选择正确答案填空:1.功率放大电路与电压放大电路的共同之处是();A.都放大电压 B.都放大电流 C.都放大功率2.分析功率放大电路时,应利用功放管的();A.特性曲线 B.h参数模型 C .高频混合模型3.在选择功率放大电路的功放管时,应特别注意其参数();A .、B .、、C .、(05 分)5.选择正确答案填空:1.功率放大电路与电流放大电路的共同之处是();A.都放大电压 B.都放大电流 C.都放大功率2.对于甲类功率放大电路,当输出功率增大时,功放管的管耗将();A.增大 B.不变 C.减小3.对于乙类功率放大电路,当输出功率增大时,功放管的管耗将();A.增大 B.可能增大,可能减小 C.减小(05 分)6.选择正确答案填空:1.功率放大电路的主要作用是使负载获得();A.尽可能大的电压 B.尽可能大的电流 C.尽可能大的交流功率2.对于甲类功率放大电路,当输出电压增大时,电源提供的功率将();A.增大 B.不变 C.减小2663.对于乙类功率放大电路,当输出电压增大时,功放管的管耗将();A.增大 B.减小 C.可能增大,也可能减小(05 分)7.有三种功率放大电路:A.甲类功率放大电路267B.甲乙类功率放大电路 C.乙类功率放大电路选择正确答案填空:1.静态时,功率损耗最大的电路是();2.能够消除交越失真的电路是();3.功放管的导通角最小的电路是()。

指导书第六章角度调制系统习题详解

指导书第六章角度调制系统习题详解

第六章 角度调制系统6-1设角度调制信号()()0cos 200cos m S t A t t ωω=+ ①若()S t 为FM 波,且4F K =,试求调制信号()f t ; ②若()S t 为PM 波,且4P K =,试求调制信号()f t ; ③ 试求最大频偏max |FM ω∆及最大相位移max ()|PM t ϕ。

解:①FM 已调信号瞬时相位为0()200cos m t t t θωω=+,对其取导数得到瞬时角频率为00()()(200)sin ()m m F d t t t K f t dtθωωωωω==+-=+ 因此调制信号为()50sin m m f t t ωω=-② PM 已调信号瞬时相位为00()200cos ()m P t t t t K f t θωωω=+=+因此调制信号为()50cos m f t t ω=③ 由FM 信号瞬时频率0()(200)sin m m t t ωωωω=+-,可得最大频偏为m FM ωω200|max =∆由PM 信号瞬时相位t t m ωϕcos 200)(=,可得最大相偏为200|)(max =PM t ϕ6-2用频率为10kHz ,振幅为1V 的正弦基带信号,对频率为100MHz 的载波进行频率调制,若已调信号的最大频偏为1MHz ,试确定此调频信号的近似带宽。

如果基带信号的振幅加倍,此时调频信号的带宽为多少?若基带信号的频率加倍,调频信号的带宽又为多少? 解:①由题目可知6110f Hz ∆=⨯ ,4110m f Hz =⨯ 。

根据卡森带宽公式可以得到调频信号的带宽近似为Hz f f B m FM 61002.2)(2⨯=+∆≈② 以单音调制为例:m F A K =∆ω。

当A m 加倍时,ω∆加倍,故此时调频信号最大频偏为Hz f 6102'⨯=∆其带宽近似为Hz f f B m FM 61002.4)'(2⨯=+∆≈③m f 加倍,Hz f f m m 310202'⨯==,则调频信号带宽近似为Hz f f B m FM 61004.2)'(2⨯=+∆≈6-3将正弦信号m(t)=cos2πf m t 进行角度调制,若载频f c =100 Hz ,f m =f c /4。

原子物理学课后习题详解第6章(褚圣麟)

原子物理学课后习题详解第6章(褚圣麟)

第六章 磁场中的原子6.1 已知钒原子的基态是2/34F 。

(1)问钒原子束在不均匀横向磁场中将分裂为几束?(2)求基态钒原子的有效磁矩。

解:(1)原子在不均匀的磁场中将受到力的作用,力的大小与原子磁矩(因而于角动量)在磁场方向的分量成正比。

钒原子基态2/34F 之角动量量子数2/3=J ,角动量在磁场方向的分量的个数为4123212=+⨯=+J ,因此,基态钒原子束在不均匀横向磁场中将分裂为4束。

(2)J J P meg2=μ h h J J P J 215)1(=+= 按LS 耦合:52156)1(2)1()1()1(1==++++-++=J J S S L L J J gB B J h m e μμμ7746.0515215252≈=⋅⋅⋅=∴ 6.2 已知He 原子0111S P →跃迁的光谱线在磁场中分裂为三条光谱线,其间距厘米/467.0~=∆v,试计算所用磁场的感应强度。

解:裂开后的谱线同原谱线的波数之差为:mcBe g m g m v πλλ4)(1'1~1122-=-=∆ 氦原子的两个价电子之间是LS 型耦合。

对应11P 原子态,1,0,12-=M ;1,1,0===J L S ,对应01S 原子态,01=M ,211.0,0,0g g J L S =====。

mc Be vπ4/)1,0,1(~-=∆ 又因谱线间距相等:厘米/467.04/~==∆mc Be vπ。

特斯拉。

00.1467.04=⨯=∴emcB π 6.3 Li 漫线系的一条谱线)23(2/122/32P D →在弱磁场中将分裂成多少条谱线?试作出相应的能级跃迁图。

解:在弱磁场中,不考虑核磁矩。

2/323D 能级:,23,21,2===j S l54)1(2)1()1()1(123,21,21,232=++++-++=--=j j s s l l j j g M2/122P 能级:,21,21,2===j S l 32,21,211=-=g ML v)3026,3022,302,302,3022,3026(~---=∆ 所以:在弱磁场中由2/122/3223P D →跃迁产生的光谱线分裂成六条,谱线之间间隔不等。

现代通信原理(罗新民)指导书 第六章 角度调制系统 习题详解

现代通信原理(罗新民)指导书 第六章 角度调制系统 习题详解
6设某角度调制信号为 ,试确定:
①已调信号的平均功率;
②最大频率偏移;
③最大相位偏移;
④已调信号的近似带宽;
⑤判断该已调信号是FM波还是PM波。
解: 已调信号的平均功率为
②信号瞬时频率为
因此信号最大频偏为
瞬时相位偏移为
因此信号最大相位偏移为
根据卡森带宽,
根据已调信号表达式判断是FM波还是PM波,主要依据是瞬时相偏与调制信号成正比还是瞬时频偏与调制信号成正比。根据题目所给,在未知调制信号是正弦波还是余弦波的情况下,该已调信号既可能是正弦波作FM调制,也可能是余弦波作PM调制。因此,不能判断是FM波还是PM波。
6-2用频率为10kHz,振幅为1V的正弦基带信号,对频率为100MHz的载波进行频率调制,若已调信号的最大频偏为1MHz,试确定此调频信号的近似带宽。如果基带信号的振幅加倍,此时调频信号的带宽为多少?若基带信号的频率加倍,调频信号的带宽又为多少?
解: 由题目可知 , 。根据卡森带宽公式可以得到调频信号的带宽近似为
解: 采用类似教材上推导单音频调制的方法,可将已调信号展开为
所以调频波的频谱由若干根离散谱线组成,每根谱线幅度为 ,位于 , ; 未调载波谱线幅度为 。
由贝塞尔函数查表,得

可算出大于未调载波幅度1%的边频分量的幅度:
,( );

, ;

以上即为调频波中的各谱线对应的幅度(再×A ),频谱图如下所示:
第六章角度调制系统
6-1设角度调制信号
①若 为FM波,且 ,试求调制信号 ;
②若 为PM波,且 ,试求调制信号 ;
③试求最大频偏 及最大相位移 。
解: FM已调信号瞬时相位为 ,对其取导数得到瞬时角频率为

高等数学习题详解-第6章-定积分

高等数学习题详解-第6章-定积分

习题6-11. 利用定积分的几何意义求定积分:(1)12xdx ⎰; (2)220aa x dx -⎰(0)a >.解 (1) 根据定然积分的几何意义知, 102xdx ⎰表示由直线2,1y x x ==及x 轴所围的三角形的面积,而此三角形面积为1,所以121xdx =⎰.(2) 根据定积分的几何意义知,220aa x dx -⎰表示由曲线22,0,y a x x x a =-==及x 轴所围成的14圆的面积,而此14圆面积为214πa ,所以222014a a x dx a -=⎰π.2. 根据定积分的性质,比较积分值的大小:(1)12x dx ⎰与13x dx ⎰; (2)1xe dx ⎰与1(1)x dx +⎰.解 (1) ∵当[0,1]x ∈时,232(1)0x x x x -=-≥,即23x x ≥,又2x3x ,所以11230x dx x dx >⎰⎰.(2) 令()1,()1x xf x e x f x e '=--=-,因01x ≤≤,所以()0f x '>,从而()(0)0f x f ≥=,说明1xe x ≥+,所以110(1)x e dx x dx >+⎰⎰.3. 估计下列各积分值的范围:(1)421(1)x dx +⎰; (2) 33arctan xdx ⎰;(3)2ax ae dx --⎰(0a >); (4)22xxe dx -⎰.解 (1) 在区间[]1,4上,函数2()1f x x =+是增函数,故在[1,4]上的最大值(4)17M f ==,最小值(1)2m f ==,所以4212(41)(1)17(41)d x x -≤+≤-⎰,即 4216(1)51x dx ≤+≤⎰.(2) 令()arctan f x x x =,则2()arctan 1xf x x x '=++,当[3]3x ∈时,()0f x '>,从而()f x 在[3]3上是增函数,从而f (x )在3]3上的最大值(3)3πM f ==,最小值(363πm f ==所以 3323arctan 3)9363333xdx =≤≤=⎰ππππ即2arctan 93x xdx ≤≤ππ.(3) 令2()x f x e -=,则2()2x f x xe -'=-,令()0f x '=得驻点0x =,又(0)1f =,2()()a f a f a e -=-=,a >0时, 21a e -<,故()f x 在[],a a -上的最大值1M =,最小值2e a m -=,所以2222aa x aa dx a ---≤≤⎰e e .(4) 令2()x xf x e-=,则2()(21)x x f x x e -'=-,令()0f x '=得驻点12x =,又(0)1,f = 1241(),(2)2f e f e -==,从而()f x 在[]0,2上的最大值2M e =,最小值14m e -=,所以 212242xxee dx e --≤≤⎰.习题6-21. 求下列导数:(1)0d dx ⎰; (2) 5ln 2x t d t e dt dx-⎰; (3) cos 20cos()x d t dt dx π⎰; (4) sin x d t dt dx tπ⎰ (0x >). 解 (1)d dx =⎰. (2) 55ln 2x t xd te dt x e dx--=⎰. (3) cos 2220cos()cos(cos )(cos )sin cos(cos )x d t dt x x x x dxπππ'=⋅=-⎰. (4) sin sin sin x x d t d t x dt dt dx t dx t xππ=-=-⎰⎰. 2. 求下列极限:(1) 02arctan limxx tdt x →⎰; (2)()22220e lime x t xx t dt t dt→⎰⎰.解 (1) ()022000021arctan arctan arctan 11(1)limlim lim lim 222x xx x x x tdt tdt x x x x x →→→→'⎡⎤--⎣⎦+====-'⎰⎰.(2) ()()22222222222000020000220022lim lim lim lim xxx x t t t x tx x x x x x x t x t e dt e dt e dt e dt xe xe te dtte dt →→→→'⎡⎤⋅⎢⎥⎣⎦==='⎡⎤⎣⎦⎰⎰⎰⎰⎰⎰e []2222202000222lim lim lim 2122x t x x x x x x x e dt e x e xe x xe →→→'⎡⎤⎣⎦====+'+⋅⎰. 3. 求由方程e cos 0yxt dt tdt +=⎰⎰所确定的隐函数()y y x =的导数.解 方程两边对x 求导数得:cos 0e y y x '⋅+=, cos e yxy '∴=-, 又由已知方程有000sin e y xtt +=,即1sin sin 00e y x -+-=, 即1sin e yx =-,于是有cos cos sin 1e yx xy x '=-=-. 4. 计算下列定积分:(1)1⎰; (2)221d x x x --⎰;(3) 设,0,2()sin ,2x x f x x x πππ⎧≤≤⎪⎪=⎨⎪≤≤;⎪⎩ ,求0()f x dx π⎰(4)⎰.解 (1)4321121433x ==⎰.(2)21222221101()()()dx x x dx x x dx x x dx x x --=-+-+--⎰⎰⎰⎰ 012322332101111111116322332x x x x x x -⎛⎫⎛⎫⎛⎫=++=--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(3) ()22220022()sin 1cos 82xf x dx xdx xdx x ππππππππ=+=+=+-⎰⎰⎰(4)32322(2)(2)x dx x dx x dx =-=-+-⎰⎰⎰⎰232202115(2)(2)222x x x x =-+-=.5.设函数()f x 在区间[],a b 上连续,在(),a b 内可导,()0f x '≤,1()()xaF x f t dt x a =-⎰;证明:在(),a b 内有()0F x '≤. 证明 22111()()()()()()()()xx aa F x f t dt f x x a f x f t dt x a x a x a ⎡⎤'=-+=--⎢⎥⎣⎦---⎰⎰[][][]21()()()(),(,,)()x a f x x a f a x a b x a ξξ=---∈∈- (),((,)(,))x f x a b x aξηηξ-'=∈∈-. 由已知条件可知结论成立.习题 6-31. 计算下列积分:(1) 3sin()x dx πππ+3⎰; (2) 32(115)dxx 1-+⎰;(3)1-⎰; (4) 320sin cos d ϕϕϕπ⎰;(5)22cos udu ππ6⎰;(6)2e 1⎰(7)1(8);(9)ln3ln 2e e x x dx --⎰; (10) 3222dxx x +-⎰. 解 (1)333sin()sin()()[cos()]x dx x d x x ππππππππππ+=++=-+3333⎰⎰42coscos 033ππ=-+=. (2) 123322211(511)151(511)(115)5(511)10512dx d x x x x 11---+==-=+++⎰⎰. (3)1111(54)14x --=--==⎰⎰.(4)233422011sin cos cos cos cos 44d d πππϕϕϕϕϕϕ=-==-⎰⎰.(5) 222221cos 211cos cos 2(2)224u udu du du ud u ππππππππ6666+==+⎰⎰⎰⎰2611sin 226264u πππππ⎛⎫=+=- ⎪⎝⎭(6)222111)e e ===⎰⎰. (7) 令tan x t =,则2sec dx tdt =,当1x =时,4t π=;当x =3t π=;于是332144cos 1sin sin t dt t tππππ==-=⎰. (8)令x t =,则dx tdt =,当0x =时,0t =;当x =,2t π=;于是2222012cos (1cos 2)(sin 2)22tdt t dt t t ππππ==+==+⎰⎰.(9) 令xe t =,则1ln ,d x t x dt t==,当ln 2x =时,2t =;;当ln3x =时,3t =;于是3ln3332ln 22221113111(ln ln )12222111x x dx dt t dt e e t t t t --⎛⎫====- ⎪---++⎝⎭⎰⎰⎰. (10)333222211111()ln 231232dx x dx x x x x x -=-=+--++⎰⎰1211(ln ln )ln 2ln 53543=-=- 2. 计算下列定积分: (1)1e x x dx -⎰; (2)e1ln x xdx ⎰;(3)41dx ⎰; (4) 324sin xdx xππ⎰; (5) 220e cos xxdx π⎰; (6) 221log x xdx ⎰;(7)π2(sin )x x dx ⎰; (8) e1sin(ln )x dx ⎰.解 (1)1111000x x x xxe dx xde xe e dx ----=-=-+⎰⎰⎰1110121x e ee e e e----=--=--+=-. (2)2222211111111111ln ln ln (1)222244ee e ee x xdx xdx x x xdx e x e ==-=-=+⎰⎰⎰.(3) 444111112ln 28ln 2dx x dx x ==-=-⎰⎰⎰ 8ln 24=-.(4) 333324444cot cot cot sin x dx xd x x x xdx x ππππππππ=-=-+⎰⎰⎰34π131ln ln sin 492249xπππ⎛=-+=+- ⎝⎭.(5)22222222cos sin sin 2sin x x xx e xdx e d x e xe xdx ππππ==-⎰⎰⎰22222202cos 2cos 4cos x xx e e d x e e xe xdx πππππ=+=+-⎰⎰220e 24cos x e xdx ππ=--⎰于是221cos (2)5xe xdx e ππ=-⎰. (6) ()2222222111122221111log ln ln 2ln 22ln 211ln 2ln 22x xdx xdx x x xdx x x x ==-⎛⎫=- ⎪ ⎪⎝⎭⎰⎰⎰ 133(4ln 2)22ln 224ln 2=-=-. (7) 223200001111(sin )(1cos 2)(sin2)2232x x dx x x dx x x d x ππππ=-=-⎰⎰⎰33200011(sin 22sin2)cos26464x x x xdx xd x πππππ=--=-⎰⎰ 3001(cos 2cos2)64x x xdx πππ=--⎰ 3301sin 264864x πππππ=-+=-. (8)111sin(ln )sin(ln )cos(ln )eeex dx x x x dx =-⎰⎰11sin1cos(ln )sin(ln )eee x x x dx =--⎰1sin1cos11sin(ln )ee e x dx =-+-⎰所以11sin(ln )(sin1cos11)2ex dx e e =-+⎰. 3. 利用被积函数的奇偶性计算下列积分:(1)11ln(x dx -+⎰ ; (2)1212sin 1xdx x -++⎰(3)222(x dx -⎰; (4)4224cos d θθππ-⎰.解 (1)ln(1x +是奇函数,11ln(0x dx -∴+=⎰.(2)2sin 1xx +是奇函数,121sin 01x dx x-∴=+⎰, 因此 111221112sin 22arctan 11x dx dx x x x π---+===++⎰⎰.(3)2222222((42416x dx dx dx ---=+==⎰⎰⎰.(4) ()244222022201cos 24cos 8cos 82212cos 2cos231384222d d d d θθθθθθθθθππππππ-π+⎛⎫== ⎪⎝⎭=++=⋅⋅⋅=⎰⎰⎰⎰.4. 证明下列等式: (1) 证明:11(1)(1)m n n m x x dx x x dx -=-⎰⎰;(2) 证明:1122111xx dx dx x x =++⎰⎰ (0x >); (3) 设()f x 是定义在区间(,)-∞+∞上的周期为T 的连续函数,则对任意(,)a ∈-∞+∞,有0()()a TTaf x dx f x dx +=⎰⎰.证 (1)令1x t -=,则dx dt =-,当0x =时,1t =;当1x =时,0t =;于是1111(1)(1)()(1)(1)m nm nnmn m x x dx t t dt t t dt x x dx -=--=-=-⎰⎰⎰⎰,即11(1)(1)m n n m x x dx x x dx -=-⎰⎰.(2) 令1x t =则21dx dt t-=, 于是11111112222211211111111111t xx t t dx dt t dt dx x tt x t t⎛⎫=⋅=-⋅==- ⎪++++⎝⎭+⎰⎰⎰⎰⎰d ,即 1122111xx dx dx x x =++⎰⎰. (3) 因为()()()a TT a Taaf x dx f x dx f x dx ++=+⎰⎰⎰,而()()()a Taaaf x dx x t T f t T dt f t dt +=++=⎰⎰⎰令()()()aT Taf x dx f x dx f x dx ==-⎰⎰⎰故()()a TT af x dx f x dx +=⎰⎰.4. 若()f t 是连续函数且为奇函数,证明0()xf t dt ⎰是偶函数;若()f t 是连续函数且为偶函数,证明()xf t dt ⎰是奇函数.证 令0()()xF x f t dt =⎰.若()f t 为奇函数,则()()f t f t -=-,令t u =-,可得()()()()()xx xF x f t dt f u du f u du F x --==--==⎰⎰⎰,所以0()()xF x f t dt =⎰是偶函数.若()f t 为偶函数,则()()f t f t -=,令t u =-,可得()()()()()xx xF x f t dt f u du f u du F x --==--=-=-⎰⎰⎰,所以0()()xF x f t dt =⎰是奇函数.5. 利用分部积分公式证明:()()()()d xxuf u x u du f x x du -=⎰⎰⎰.证 令0()()uF u f x dx =⎰则()()F u f u '=,则(())()()()xu x xxf x dx du F u du uF u uF u du '==-⎰⎰⎰⎰()()()()xxxxF x uf u du x f x dx uf u du =-=-⎰⎰⎰ 0()()()()xx x xx f u du uf u du xf u du uf u du =-=-⎰⎰⎰⎰()()xx u f u du =-⎰.习题6-41. 求由下列曲线所围成的平面图形的面积:(1) 2y x =与22y x =-; (2) xy e =与0x =及y e =; (3) 24y x =-与0y =; (4) 2y x =与y x =及2y x =;(5) 1y x =与y x =及2x =; (6) 2y x =与2y x =-;(7) ,x xy e y e -==与1x =;(8) sin (0)2y x x π=≤≤与0,1x y ==. 解 (1)两曲线的交点为(1,1),(1,1)-,取x 为积分变量,[]1,1x ∈-,面积元素22(2)dA x x dx =--,于是所求的面积为112311182(1)2()33A x dx x x --=-=-=⎰.(2) 曲线x y e =与y e =的交点坐标(1,)e , xy e =与0x =的交点为(0,1),取y 为积分变量,[]1,y e ∈,面积元素ln dA ydy =;于是所求面积为111ln (ln )1eeeA ydy ydy y y y ===-=⎰⎰.(3)曲线24y x =-与0y =的交点为(2,0),(2,0)-,取x 为积分变量,[]2,2x ∈-,面积元素2(4)dA x dx =-,于是所求的面积为222322132(4)(4)33A x dx x x --=-=-=⎰.(4) 曲线2y x =与y x =的交点为(0,0),(1,1);2y x =与2y x =的交点为(0,0),(2,4); 它们所围图形面积为:121222011(2)(2)(2)A x x dx x x dx xdx x x dx =-+-=+-⎰⎰⎰⎰223121117()236x x x =+-=.(5) 曲线1y x =与y x =的交点为(1,1),1y x =与2x =的交点为1(2,)2;取x 积分变量,[]1,2x ∈,面积元素1()dA x dx x=-,于是所求的面积为22211113()(ln )ln 222A x dx x x x =-=-=-⎰.(6) 曲线2y x =与2y x =-的交点为()()114,2-,和,取y 作积分变量,[]1,2y ∈-,面积元素2(2)dA y y dy =+-,于是所求的面积为2222311117(2)(2)232A y y dy y y y --=+-=+-=⎰.(7) 曲线x y e =与xy e-=的交点(0,1),取x 作积分变量,[]0,1x ∈,面积元素()x x dA e e dx -=-,于是所求图形的面积为10)()2x x x x A e e dx e e e e--=-=+=+-⎰101(. (8)取x 作积分变量,0,2x π⎡⎤∈⎢⎥⎣⎦,面积元素(1sin )dA x dx =-,于是所求的面积为2200(1sin )(cos )12A x dx x x πππ=-=+=-⎰.2. 求由下列曲线围成的平面图形绕指定坐标轴旋转而成的旋转体的体积:(1) 1,4,0y x x y ====,绕x 轴;(2) 3,2,y x x x ==轴,分别绕x 轴与y 轴; (3) 22,y x x y ==,绕y 轴; (4) 22(5)1x y -+=,绕y 轴.解 (1)取x 作积分变量,[]1,4x ∈,体积元素2dV dx xdx ππ==,于是所求旋转体的体积为442111522V xdx x πππ===⎰. (2)绕x 轴旋转时,取x 作积分变量,[]0,2x ∈,体积元素32()x dV x dx π=,于是2267012877x V x dx x πππ===⎰; 同理可求平面图形绕y 旋转所成的旋转体的体积858223003642(4)55y V dy y y πππ⎡⎤=-=-=⎣⎦⎰.(3)曲线2y x =与2x y =的交点为(0,0),(1,1),取y 作积分变量[]0,1y ∈,体积元素222()dV y dy π⎡⎤=-⎣⎦,于是所求的旋转体的体积为1142500113()()2510V y y dx y y πππ=-=-=⎰. (4) 取y 作积分变量[]1,1y ∈-,体积元素22(5(520dV dy π⎡⎤=-=⎣⎦,于是所求的旋转体的体积为1212020102V πππ-==⋅=⎰.3.设某企业边际成本是产量Q (单位)的函数0.2()2QC Q e '=(万元/单位),其固定成本为090C =(万元),求总成本函数. 解 总成本函数为0.200()()290Q QQ C Q C Q dQ C e dQ '=+=+⎰⎰0.20.2010901080QQ Q e e =+=+.4.设某产品的边际收益是产量Q (单位)的函数()152R Q Q '=-(元/单位),试求总收益函数与需求函数. 解 总收益函数为20()(152)15QR Q Q dQ Q Q =-=-⎰需求函数为()15R Q P Q Q==-. 5.已知某产品产量的变化率是时间t (单位:月)的函数()25,0f t t t =+≥,问:第一个5月和第二个5月的总产量各是多少?解 设产品总产量为()Q t ,则()()Q t f t '=,第一个5月的总产量552510()(25)(5)50Q f t dt t dt t t ==+=+=⎰⎰.第二个5月的总产量为10102102555()(25)(5)100Q f t dt t dt t t ==+=+=⎰⎰.6.某厂生产某产品Q (百台)的总成本()C Q (万元)的变化率为()2C Q '=(设固定成本为零),总收益()R Q (万元)的变化率为产量Q (百台)的函数()72R Q Q '=-.问: (1) 生产量为多少时,总利润最大?最大利润为多少?(2) 在利润最大的基础上又多生产了50台,总利润减少了多少? 解 (1)总利润()()()L Q R Q C Q =-当()0L Q '=即()()0R Q C Q ''-=即7220Q --=,2.5Q =(百台)时,总利润最大,此时的总成本和总收益分别为2.52.52.50()225C C Q dQ dQ Q'====⎰⎰2.52.52.520()(72)(7)11.25R R Q dQ Q dQ Q Q '==-=-=⎰⎰总利润11.255 6.25L R C =-=-=(万元).即当产量为2.5(百台)时,总利润最大,最大利润是6.25万元.(2)在利润最大的基础上又生产了50台,此时产量为3百台,总成本3300()26C C Q dQ dQ '===⎰⎰,总收入3323000()(72)(7)12R R Q dQ Q dQ Q Q '==-=-=⎰⎰, 总利润为1266L R C =-=-=(万元).减少了6.2560.25-=万元.即在利润最大的基础上又生产了50台时,总利润减少了0.25万元.习题 6-51. 判断下列反常积分的敛散性,若收敛,则求其值: (1)41dxx +∞⎰; (2)1+∞⎰; (3) 0xe dx +∞-⎰(a >0); (4)sin xdx +∞⎰;(5)1-⎰; (6)222dxx x +∞-∞++⎰;(7)21⎰; (8)10ln x xdx ⎰;(9)e1⎰; (10)23(1)dxx -⎰.解 (1)14311133dx x x +∞+∞=-=⎰.此反常积分收敛.(2)1+∞==+∞⎰.此反常积分发散. (3) 101x xe dx e +∞--+∞=-=⎰.此反常积分收敛.(4) 0sin cos lim cos 1x xdx x x +∞+∞→+∞=-=-+⎰不存在,此反常积分发散.(5)111arcsin x π--==⎰.此反常积分收敛.(6)22(1)arctan(1)22(1)1dxd x x x x x π+∞+∞+∞-∞-∞-∞+==+=++++⎰⎰.此反常积分收敛.(7)23222110012lim lim (1)3x εεεε+++→→+⎡==-+⎢⎣⎰⎰320222lim 22333εε+→⎛==-- ⎝.此反常积分收敛. (8)11122221000111111ln limln lim ln lim ln 222424x xdx xdx x x xdx εεεεεεεεε→→→⎛⎫⎛⎫==-=-- ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰, 所以11220001111ln lim ln lim(ln )4244x xdx x xdx εεεεεε++→→==--=-⎰⎰.此反常积分收敛.(9)111πarcsin(ln )2eeex ===⎰⎰.此反常积分收敛. (10)21233301(1)(1)(1)dx dx dx x x x =+---⎰⎰⎰,因为反常积分1132001(1)(1)dx x x ==∞--⎰发散,所以反常积分230(1)dxx -⎰发散. 2. 当k 为何值时,反常积分+2(ln )kdxx x ∞⎰收敛?当k 为何值时,这反常积分发散? 解 当1k =时,++222ln ln(ln )ln ln dxd x x x x x∞∞+∞===+∞⎰⎰,发散.当1k ≠时,1++122211(ln )(1)(ln 2)(ln )ln (ln )11kk kk k dx x k x d x x x kk -∞∞--+∞⎧>⎪-===⎨-⎪+∞<⎩⎰⎰所以,当1k >时,此广义积分收敛;当1k ≤时,此广义积分发散. 3. 利用递推公式计算反常积分+0e n x n I x dx ∞-=⎰.解 ++110n x n xn x n n I x de x e n x e dx nI ∞∞----+∞-=-=-+=⎰⎰,因为 +101x x xI xde xe e ∞---+∞+∞=-=--=⎰,所以 121(1)(1)2!n n n I nI n n I n n I n --==-=-=.复习题6(A )1、 求下列积分:(1)121tan sin 1xdx x -+⎰; (2)⎰; (3)2x⎰; (4)ln 0⎰;(5)21220(1)x dx x +⎰; (6)1⎰;(7)120xx e dx -⎰; (8)21(ln )ex dx ⎰;(9) 401cos 2xdx xπ+⎰; (10) 20cos x e xdx π-⎰;(11) 20sin 1cos x xdx x π++⎰; (12) 40ln(1tan )x dx π+⎰. 解 (1) 因为被积函数2tan sin 1x x +是奇函数,所以121tan 0sin 1xdx x -=+⎰.(2)=⎰⎰,令1sin x t -=,则cos dx tdt =;当0x =时,2t π=-;当1x =时,0t =;所以22221cos 2sin 2cos 2244t t t tdt dt ππππ---+⎡⎤===+=⎢⎥⎣⎦⎰⎰⎰. (3) 令2sin x t =,则2cos dx tdt =,当0x =时,0t =;当2x =时,2t π=;所以222222204sin 4cos 4sin 22(1cos 4)xt tdt tdt t dt πππ=⋅==-⎰⎰⎰⎰2012(sin 4)4t t ππ=-=. (4)t =,则221tdx dt t =+,当0x =时,0t =;当ln 2x =时,1t =;所以2ln 11200022(arctan )2(1)14t dt t t t π==-=-+⎰⎰. (5) 令tan x t =,则2sec dx tdt =,当0x =时,0t =;当1x =时,4t π=;所以22412442240000tan 1cos 2sin 21sec ()(1)sec 22484x t t t t dx tdt dt x t ππππ-===-=-+⎰⎰⎰.(6) 令sec x t =,则sec tan dx t tdt =,当1x =时,0t =;当2x =时,3t π=;所以23330100tan sec tan tan (tan )sec 3t t tdt tdt t t t ππππ===-=⎰⎰⎰.(7)111112221022x x x x x x e dx x de x e xe dx e xde ------=-=-+=--⎰⎰⎰⎰1111110223225x x x e xe e dx e e e ------=--+=--=-⎰.(8)22111111(ln )ln 2ln 2ln 22ee e e e x dx x x x x dx e x x dx e x=-⋅=-+=-⎰⎰⎰.(9) 44440000tan tan tan 1cos 2xdx xd x x x xdx x ππππ==-+⎰⎰⎰ 401ln cos ln 2442x πππ=+=-. (10)22220cos cos cos sin xxxx e xdx xdee x e xdx ππππ----=-=--⎰⎰⎰2220001sin 1sin cos xxx xdee x e xdx πππ---=+=+-⎰⎰221cos x ee xdx ππ--=+-⎰,所以 2201cos (1)2xe xdx e ππ--=+⎰.(11)22222000002sin sin cos tan 1cos 1cos 21cos 2cos2x x x x x d x dx dx dx xd x x x x πππππ+=+=-+++⎰⎰⎰⎰⎰2220002200tan tan ln(1cos )222ln cos ln(1cos )22x x x dx x x x ππππππ=--+=--+⎰20ln 22ln cos222x πππ=++=. (12) 4444000cos sin ln(1tan )ln ln(cos sin )ln cos cos x x x dx dx x x dx xdx xππππ++==+-⎰⎰⎰⎰令4x u π-=,可得0440041ln(cos sin )ln cos()(ln 2ln cos )42x x dx x dx u du ππππ⎤+=-=-+⎥⎦⎰⎰⎰40ln 2ln cos 8xdx ππ=+⎰所以40ln 2ln(1tan )8x dx ππ+=⎰.2、设()f x 在[],a b 上连续,且()1baf x dx =⎰,求()b af a b x dx +-⎰.解 令a b x t +-=,则dx dt =-,当x a =时,t b =;当x b =时,t a =;所以()()()1bababaf a b x dx f t dt f t dt +-=-==⎰⎰⎰.3、设()f x 为连续函数,试证明:()()(())xx tf t x t dt f u du dt -=⎰⎰⎰.证 用分部积分法,(())()(())xxt tx tf u du dt t f u du td f u du =-⎰⎰⎰⎰⎰()()()()xx x xx f u du tf t dt xf t dt tf t dt =-=-⎰⎰⎰⎰()()xf t x t dx =-⎰.4、设()u ϕ为连续函数,试证明:220()2()aa ax dx x dx ϕϕ-=⎰⎰.证2220()()()aaaax dx x dx x dx ϕϕϕ--=+⎰⎰⎰,令x t =-,则0022220()(())()()a aaax dx t dt t dt x dx ϕϕϕϕ-=--==⎰⎰⎰⎰所以022220()()()2()aa aaax dx x dx x dx x dx ϕϕϕϕ--=+=⎰⎰⎰⎰.5、计算下列反常积分:(1)2048dxx x +∞++⎰; (2)21arctan x dx x+∞⎰; (3)1⎰; (4)1e ⎰解 (1)222000(2)12arctan 48(2)2228dx d x x x x x π+∞+∞+∞++===++++⎰⎰. (2)221111arctan 1arctan 1arctan (1)x x dx xd dx x x x x x +∞+∞+∞+∞=-=-++⎰⎰⎰ 22111lnln 242142xx ππ+∞=+=++.(3)11100022dx π⎡===⎣⎰⎰.(4)112ee ===⎰⎰. 6、求抛物线22y px =及其在点(,)2pp 处的法线所围成的平面图形的面积. 解 抛物线22y px =在点(,)2p p 处的法线方程为32x y p +=,两曲线的交点为9(,3),(,)22pp p p -;取y 作积分变量3p y p -≤≤,所求的平面图形面积为 2232333131116()()222263pp p pA p y y dy py y y p p p --=--=--=⎰. 7、求由曲线32y x =与直线4,x x =轴所围图形绕y 轴旋转而成的旋转体的体积.解 曲线32y x =与直线4x =的交点为(4,8),取y 作积分变量,08y ≤≤,体积元素223244()(16)dy y dy y dy ππ⎡⎤=-=-⎣⎦于是,所求的旋转体的体积为884373003512(16)(16)77V y dy y y πππ=-=-=⎰.8、设某产品的边际成本为()2C Q Q '=-(万元/台),其中Q 代表产量,固定成本022C ==(万元),边际收益()204R Q Q '=-(万元/台).试求: (1) 总成本函数和总收益函数; (2) 获得最大利润时的产量;(3) 从最大利润时的产量又生产了4台,总利润的变化. 解 (1)总成本函数2001()(2)2222QC Q Q dQ C Q Q =-+=-+⎰,总收益函数20()(204)202QR Q Q dQ Q Q =-=-⎰.(2)利润函数23()()()18222L Q R Q C Q Q Q =-=--,令()0L Q '=,得6Q =(台),而(6)30L ''=-<,所以当产量6Q =(台)时,利润最大.(3)(10)(6)83224L L -=-=-,所以从最大利润时的产量又生产了4台,总利润减少了24(万元).(B) 1、填空题:(1)202cos x d x t dt dx=⎰ . (2) 设()f x 连续,220()()x F x xf t dt =⎰,则()F x '= .(3) 2sin()x d x t dt dx -=⎰ .(4) 设()f x 连续,则220()xd tf x t dt dx -=⎰ . (5) 设20cos ()1sin xt f x dt t=+⎰,则220()1()f x dx f x π'=+⎰ . (6) 设()f x 连续,且1()2()f x x f x dx =+⎰,,则()f x = .(7) 设()f x 连续,且()1cos xtf x t dt x -=-⎰,则20()f x dx π=⎰ .(8)2ln e dxx x +∞=⎰ .解 (1) 2220002224cos (cos )cos (cos )2x x x d d x t dt x t dt t dt x x x dx dx==+-⋅⎰⎰⎰2224cos 2cos xt dt x x =-⎰.(2) 2222200()(())()()2x x d F x x f t dt f t dt x f x x dx '==+⋅⋅⎰⎰22220()2()x f t dt x f x =+⎰.(3) 令x t u -=,则02220sin()sin ()sin xxxx t dt u du u du -=-=⎰⎰⎰所以22200sin()sin sin x x d d x t dt u du x dx dx-==⎰⎰. (4)令22x t u -= 则222222001()()()2x x tf x t dt f x t d x t -=---⎰⎰220011()()22x x f u du f u du =-=⎰⎰.所以2222001()()()2x x d d tf x t dt f u du xf x dx dx-=⋅=⎰⎰. (5)22200()arctan ()arctan ()arctan (0)1()2f x dx f x f f f x πππ'==-+⎰, 而02222000cos cos (0)0,()arctan(sin )1sin 21sin 4t t f dt f dt t t t ππππ=====++⎰⎰,所以220()arctan 1()4f x dx f x ππ'=+⎰(6) 等式1()2()f x x f x dx =+⎰两边在区间[]0,1积分得111100001()2()2()2f x dx xdx f x dx f x dx =+=+⎰⎰⎰⎰101()2f x dx =-⎰, 所以 ()1f x x =-.(7)令x t u -=,则du dt =-,于是00()()()xxtf x t dt x u f u du -=-⎰⎰原等式化为 0()()1cos xxx f u du uf u du x -=-⎰⎰两边对x 求导()sin xf u du x =⎰在上式中,令2x π=,得()1xf x dx =⎰.(8)22ln 11ln ln ln ee edx d x x x x x +∞+∞+∞==-=⎰⎰ 2、计算下列积分:(1) 120ln(1)(2)x dx x +-⎰; (2) 3142(1)x x dx -⎰;(3) 31(2)f x dx -⎰,其中21()x x f x e -⎧+=⎨⎩ 00x x ≤>;(4) 0()f x dx π⎰,其中0sin ()x t f x dt tπ=-⎰. 解 (1) 111120000ln(1)1ln(1)ln(1)(2)22(1)(2)x x dxdx x d x x x x x ++=+=----+-⎰⎰⎰ 1100111111ln 2()ln 2ln ln 2312323x dx x x x +=--=-=+--⎰. (2) 令2sin x t =,则331144242222200001111cos 2(1)(1)cos ()2222t x x dx x dx tdt dt ππ+-=-==⎰⎰⎰⎰220011cos 41313(12cos 2)(sin 2sin 4)8282832t t dt t t t πππ+=++=++=⎰. (3) 令2x t -=,则dx dt =,当1x =时,1t =-;当3x =时,1t =;于是3101111(2)()()()f x dx f t dt f x dx f x dx ---==+⎰⎰⎰⎰12171(1)3x x dx e dx e--=++=-⎰⎰. (4) 由题设有sin ()xf x xπ'=-,用分部积分法得 00000sin sin ()()()t x f x dx xf x xf x dx dt x dx t xππππππππ'=-=---⎰⎰⎰⎰ 000sin sin sin ()x x xdx x dx x dx x x xππππππππ=-=----⎰⎰⎰sin 2xdx π==⎰.3、设13201()()1f x x f x dx x =++⎰,求10()f x dx ⎰. 解 等式两边在区间[]0,1上积分得11113200001()()1f x dx dx f x dx x dx x =+⋅+⎰⎰⎰⎰11100011arctan ()()444x f x dx f x dx π=+=+⎰⎰解得1()3f x dx π=⎰.4、求函数2()(1)x t f x t e dt -=-⎰的极值.解 令222()(1)22(1)(1)0x x f x x e x x x x e --'=-⋅=--+=,得函数()f x 的驻点:1,0,1-;当1x <-时,()0f x '>;当10x -<<时,()0f x '<; 当01x <<时,()0f x '>;当1x >时,()0f x '<;所以函数()f x 在0x =处取得极小值(0)0f =,在1x =±处取得极大值:101(1)(1)t f t e dt e-±=-=⎰.5、设21sin ()x tf x dt t=⎰,求10()xf x dx ⎰.解 用分部积分法得221211122220011001sin 1sin 1sin ()2222x x t t x xf x dx dt dx x dt x xdx t t x ⎡⎤⎡⎤==-⋅⋅⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰⎰112220011cos11sin cos 222x dx x -=-==⎰.6、求曲线(1)(2)y x x =--和x 轴围成的平面图形绕y 轴旋转所成的旋转体体积. 解 抛物线(1)(2)y x x =--的顶点坐标为31(,)24-,左、右半支方程分别为:11()(32x y =和21()(32x y =;取y 作积分变量,104y -≤≤;体积元素为2221(())(())3dV x y x y dy π⎡⎤=-=⎣⎦,因此所求的旋转体的体积为0302114433(14)(14)422V y y πππ--==+=+=⎰⎰.7、设2()()()xax x t f t dt Φ=-⎰,证明:()2()()xax x t f t dt 'Φ=-⎰.证 2222()(2)()()2()()xxx xaaaax x xt t f t dt xf t dt x tf t dt t f t dt Φ=-+=-+⎰⎰⎰⎰,所以()22()()2()()xxx aaax xf t dt x tf t dt t f t dt ''Φ=-+⎰⎰⎰222()()2()2()()xxa ax f t dt x f x tf t dt x xf x x f x =+--⋅+⎰⎰2()2()2()()xx xaaaxf t dt tf t dt x t f t dt =-=-⎰⎰⎰.8、设连续函数()f x 满足(2)2()f x f x =,证明:2110()7()xf x dx xf x dx =⎰⎰. 证 202110()()()xf x dx xf x dx xf x dx =+⎰⎰⎰, 令2x t =,则21110000()2(2)(2)42()8()xf x dx tf t d t t f t dt xf x dx ==⋅=⎰⎰⎰⎰, 所以 202110()()()xf x dx xf x dx xf x dx =+⎰⎰⎰ 111000()8()7()xf x dx xf x dx xf x dx =-+=⎰⎰⎰.。

第六章元素法习题详解 - 高数

第六章元素法习题详解 - 高数

第六章习题答案复习题A1. 求由下列曲线围成的平面图形的面积: (1)2235y x x =+-及21y x =-;(2)1y x=及直线,2y x x ==;(3)e ,e x x y y -==与直线1x =;(4)ln ,y x y =轴与直线ln ,ln (0)y a y b b a ==>>. 解:(1)两曲线交点为(2,3)--和(1,0),所求面积为1222123122[(1)(235)]d 3[633]d (6)13.52S x x x xx x x x x x ---=--+-=--=--=⎰⎰(2)如图,解方程组⎪⎩⎪⎨⎧==xy x y 1,得交点)1,1(,所求面积为2ln 23]ln 2[d )1(21221-=-=-=⎰x x x x x A .(3) 11ln d (ln 1)1eeS x x x x ==-=⎰(4) 选为y 积分变量,如图,所求面积为a b e y e A b a y ba y -===⎰ln ln ln ln ][d2. 求二曲线sin r θ=与r θ=所围公共部分的面积. 解:当θ等于0和3π时,两曲线相交, 所围公共部分的面积为ππ2232π0311sin θd θ3cos θd θ225π24A =+=⎰⎰.3. 求由下列曲线围成的图形绕指定轴旋转而形成的旋转体的体积: (1)22,,0(0,0)y px x a y p a ===>>;绕x 轴(2)1ln ,0,1;y x y x e x==≤≤绕x 轴(3)22,;y x x y ==绕y 轴(4)0,2,3===y x x y ;绕x 轴和绕y 轴 解:(1)22002aa x V pxdx px pa πππ===⎰(2)2221111ln ln ee x V xdx xd x xππ==-⎰⎰ 2121121111(ln 2ln )121(ln 2)32()(25)e ee ee x xdx xx x dx e xx e e x eππππ=--=-+-=-+=-⎰⎰(3)两曲线的交点为(0,0)和(1,1),所求旋转体体积为114251000113()2510y V ydy y dy y y ππππ=-=-=⎰⎰ (4)如图,绕x 轴旋转所得的旋转体的体积为π7128]π71[d πd π207206202====⎰⎰x x x x y V x绕y 轴旋转所得的旋转体的体积为.y y y x V y d ππ32d π8π22328022⎰⎰-=-⋅⋅=π564]π53[π328035=-=x 4、有一立体,以长半轴10=a 、短半轴5=b 的椭圆为底,而垂直于长轴的截面都是等边三角形,求该立体的体积. 解:解:取坐标系如图,底面椭圆方程为15102222=+y x 垂直于x 轴的截面为等边三角形, 对应于x 的截面的面积为)10(43)(22x x A -=于是所求立体体积为31010321010221033]310[43d )10(43⋅=-=-=--⎰x x x x V 5、计算曲线x y ln =相对应于3=x 到8=x 的一段曲线弧长. 解:由弧长的公式得:23ln 211d 1d 11d 1832832832+=+=+='+=⎰⎰⎰x x x x xx y s . 6、计算1=ρθ相应于自43=θ到34=θ的一段弧长. 解:由弧长的极坐标公式得:θθθθθθθθρθρd 11d )1()1(d )()(3443223443222344322⎰⎰⎰+=-+='+=s 23ln 125+=. o xabyx7、设把一金属杆的长度由a 拉长到x a +时,所需的力等于akx,其中k 为常数,试求将该金属杆由长度a 拉长到b 所作的功.解:由于金属杆拉长所需的力f 与拉长的长度成正比x ,且akxf =,其中k 为常数。

大学物理课后习题详解(第六章)中国石油大学

大学物理课后习题详解(第六章)中国石油大学

习 题 六6-1 一轻弹簧在60N 的拉力下伸长30cm .现把质量为4kg 物体悬挂在该弹簧的下端,并使之静止,再把物体向下拉10cm ,然后释放并开始计时.求:(1)物体的振动方程;(2)物体在平衡位置上方5cm 时弹簧对物体的拉力;(3)物体从第一次越过平衡位置时刻起,到它运动到上方5cm 处所需要的最短时间.[解] (1)取平衡位置为坐标原点,竖直向下为正方向,建立坐标系N/m 2001030602=⨯=-k设振动方程为 ()ϕω+=t A x cosrad/s 07.74200===m k ω m 1.0=A 0=t 时 m 1.0=x ϕc o s1.01.0= 0=ϕ 故振动方程为 ()m 07.7cos 1.0t x = (2)设此时弹簧对物体作用力为F ,则()()x x k x k F +=∆=0其中 m 196.02008.940=⨯==k mg x 因而有 ()N 2.2905.0196.0200=-⨯=F (3)设第一次越过平衡位置时刻为1t ,且速度小于零,则()107.7cos 1.00t = 07.75.01π=t第一次运动到上方5cm 处时刻为2t ,且速度小于零,则()207.7cos 1.005.0t =- )07.7322⨯=πt故所需最短时间为:s 074.012=-=∆t t t6-2 一质点在x 轴上作谐振动,选取该质点向右运动通过点 A 时作为计时起点(t =0),经过2s 后质点第一次经过点B ,再经 2s 后,质点第二次经过点B ,若已知该质点在A 、B 两点具有相同的速率,且10cm =AB ,求:(1)质点的振动方程;(2)质点在A 点处的速率.[解] 由旋转矢量图和||||b a v v =可知421=T s 由于42s 81,s 81ππνων====-T(1)以AB 的中点为坐标原点,x 轴指向右方.0=t 时, ϕcos 5A x =-=2s =t 时, ()ϕϕωs i n 2c o s 5A A x -=+== 由以上二式得 1tan =ϕ因为在A 点质点的速度大于零,所以43πϕ-= cm 25cos /==ϕx A所以,运动方程为:()m 4/34/cos 10252ππ-⨯=-t x(2)速度为: ⎪⎭⎫ ⎝⎛-⨯-==-434sin 41025d d 2πππt t x v 当2s =t 时 m/s 1093.3432sin 4102522--⨯=⎪⎭⎫ ⎝⎛-⨯-=πππv6-3 一质量为M 的物体在光滑水平面上作谐振动,振幅为 12cm ,在距平衡位置6cm 处,速度为24s cm ,求:(1)周期T ;(2)速度为12s cm 时的位移.[解](1)设振动方程为()cm cos ϕω+=t A x 以cm 12=A 、cm 6=x 、1s cm 24-⋅=v 代入,得:()ϕω+=t c o s 126 (1)()ϕωω+-=t sin 1224 (2)由(1)、(2)得1122412622=⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛ω 解得 334=ω s 72.2232===πωπT (2) 以1s cm 12-⋅=v 代入,得:()()ϕωϕωω+-=+-=t t sin 316sin 1212解得: ()43sin -=+ϕωt 所以 ()413cos ±=+ϕωt故 ()cm 8.1041312cos 12±=⎪⎪⎭⎫ ⎝⎛±⨯=+=ϕωt x6-4 一谐振动的振动曲线如图所示,求振动方程.[解] 设振动方程为: ()ϕω+=t A x cos 根据振动曲线可画出旋转矢量图由图可得: 32πϕ=125223πππϕω=⎪⎭⎫ ⎝⎛+=∆∆=t故振动方程为 cm 32125cos 10⎪⎭⎫⎝⎛+=ππt x6-5 一质点沿x 轴作简谐振动,其角频率s rad 10=ω,试分别写出以下两种初始状态的振动方程:(1)其初始位移0x =7.5 cm ,初始速度s cm 0.750=v ;(2)其初始位移0x =7.5 cm ,初速度s cm 0.750-=v .[解] 设振动方程为 ()ϕ+=t A x 10cos (1) 由题意得: ϕcos 5.7A = ϕsin 1075A -= 解得: 4πφ-= cm 6.10=A 故振动方程为:()cm 410cos 6.10π-=t x(2) 同法可得: ()cm 410cos 6.10π+=t x6-6 一轻弹簧在60 N 的拉力作用下可伸长30cm .现将一物体悬挂在弹簧的下端并在它上面放一小物体,它们的总质量为4k 。

材料力学习题第六章应力状态分析答案详解

材料力学习题第六章应力状态分析答案详解

第6章 应力状态分析一、选择题1、对于图示各点应力状态,属于单向应力状态的是(A )。

20(MPa )20d20(A )a 点;(B )b 点;(C )c 点;(D )d 点 。

2、在平面应力状态下,对于任意两斜截面上的正应力αβσσ=成立的充分必要条件,有下列四种答案,正确答案是( B )。

(A ),0x y xy σστ=≠;(B ),0x y xy σστ==;(C ),0x y xy σστ≠=;(D )x y xy σστ==。

3、已知单元体AB 、BC 面上只作用有切应力τ,现关于AC 面上应力有下列四种答案,正确答案是( C )。

(A )AC AC /2,0ττσ==; (B )AC AC /2,/2ττσ==; (C )AC AC /2,/2ττσ==;(D )AC AC /2,/2ττσ=-=。

4、矩形截面简支梁受力如图(a )所示,横截面上各点的应力状态如图(b )所示。

关于它们的正确性,现有四种答案,正确答案是( D )。

(b)(a)(A)点1、2的应力状态是正确的;(B)点2、3的应力状态是正确的;(C)点3、4的应力状态是正确的;(D)点1、5的应力状态是正确的。

5、对于图示三种应力状态(a)、(b)、(c)之间的关系,有下列四种答案,正确答案是( D )。

τ(a)(b) (c)(A)三种应力状态均相同;(B)三种应力状态均不同;(C)(b)和(c)相同;(D)(a)和(c)相同;6、关于图示主应力单元体的最大切应力作用面有下列四种答案,正确答案是( B )。

(A) (B) (D)(C)解答:maxτ发生在1σ成45的斜截面上7、广义胡克定律适用范围,有下列四种答案,正确答案是( C )。

(A)脆性材料;(B)塑性材料;(C)材料为各向同性,且处于线弹性范围内;(D)任何材料;8、三个弹性常数之间的关系:/[2(1)]G E v =+ 适用于( C )。

(A )任何材料在任何变形阶级; (B )各向同性材料在任何变形阶级; (C )各向同性材料应力在比例极限范围内;(D )任何材料在弹性变形范围内。

高等数学习题详解-第6章定积分

高等数学习题详解-第6章定积分

习题6-11. 利用定积分的几何意义求定积分:利用定积分的几何意义求定积分:(1) 12xdx ò; (2) 220aa x dx -ò(0)a >.解 (1) 根据定然积分的几何意义知, 102xdx ò表示由直线2,1y x x ==及x 轴所围的三角形的面积,而此三角形面积为1,所以1021xdx =ò.(2) 根据定积分的几何意义知,22aa x dx -ò表示由曲线22,0,y a x x x a =-==及x 轴所围成的14圆的面积,而此14圆面积为214πa ,所以222014aa x dx a -=òπ. 2. 根据定积分的性质,比较积分值的大小:根据定积分的性质,比较积分值的大小:(1) 12x dx ò与13x dx ò; (2) 10xe dx ò与1(1)x dx +ò.解 (1) ∵当[0,1]x Î时,232(1)0x x x x -=-³,即23x x ³, 又2x3x ,所以11230x dx x dx >òò.(2) 令()1,()1x xf x e x f x e ¢=--=-,因01x ££,所以()0f x ¢>, 从而()(0)0f x f ³=,说明1xe x ³+,所以11(1)xe dx x dx >+òò.3. 估计下列各积分值的范围:估计下列各积分值的范围:(1) 421(1)x dx +ò; (2) 313arctan x xdx ò;(3) 2axae dx --ò(0a >); (4) 22xxedx -ò.解 (1) 在区间[]1,4上,函数2()1f x x =+是增函数,故在[1,4]上的最大值(4)17M f ==,最小值(1)2m f ==,所以4212(41)(1)17(41)d x x -£+£-ò, 即 4216(1)51x dx £+£ò.(2) 令()arctan f x x x =,则2()arctan 1x f x x x ¢=++,当1[,3]3x Î时,()0f x ¢>,从而()f x 在1[,3]3上是增函数,从而f (x )在1[,3]3上的最大值(3)3πM f ==,最小值1()363πm f ==,所以所以 313112(3)arctan (3)9363333x xdx =-££-=òππππ即3132arctan 93x xdx ££òππ. (3) 令2()x f x e-=,则2()2xf x xe -¢=-,令()0f x ¢=得驻点0x =,又(0)1f =, 2()()a f a f a e-=-=,a >0时, 21ae -<,故()f x 在[],a a -上的最大值1M =,最小值,最小值2ea m -=,所以所以2222aa x aa dx a---££òee . (4) 令2()x x f x e -=,则2()(21)x xf x x e -¢=-,令()0f x ¢=得驻点12x =,又(0)1,f = 1241(),(2)2f e f e -==,从而()f x 在[]0,2上的最大值2M e =,最小值14m e -=,所以所以 2122402x xeedx e --££ò.习题6-21. 求下列导数:求下列导数:(1) 201x d t dt dx +ò; (2) 5ln 2x td te dt dx -ò; (3) cos 20cos()xd t dt dx p ò; (4) sin x d t dt dx tp ò (0x >). 解 (1) 22011xd t dt x dx +=+ò. (2)55ln 2x tx d t e dt x e dx --=ò. (3) cos 2220cos()cos(cos )(cos )sin cos(cos )x d t dt x x x x dxp p p ¢=×=-ò(4)sin sin sin x xdt d t x dt dt dx t dx t xp p =-=-òò. 2. 求下列极限:求下列极限:(1) 02arctan limxx tdt x ®ò; (2) ()2220020e lime x t xx t dt t dt®òò.解 (1) ()0022000021arctan arctan arctan 11(1)lim lim lim lim 222x x x x x x tdt tdt x x x x x ®®®®¢éù--ëû+====-¢òò.(2) ()()22222222222000020000220022lim lim lim lim x x x x t t t x t x x x x x x x t x t e dt e dt e dt e dt xe xe te dt te dt ®®®®¢éù×êúëû===¢éùëûòòòòòòe []2222202000222lim lim lim 2122x t x x x x x x x e dt e x e xe xxe ®®®¢éùëû====+¢+×ò. 3. 求由方程e cos 0yx tdt tdt +=òò所确定的隐函数()y y x =的导数.的导数.解 方程两边对x 求导数得: cos 0e yy x ¢×+=, cosey x y ¢\=-,又由已知方程有000sin e yxtt +=,即1sin sin 00e yx -+-=, 即1sin e yx =-,于是有cos cos sin 1eyxx y x ¢=-=-.4. 计算下列定积分:计算下列定积分: (1) 41xdx ò; (2) 221d x x x --ò;(3) 设,0,2()sin ,2x x f x x x p p p 죣ïï=í;ïî,求0()f x dx p ò (4)320(2)x dx -ò.解 (1)44321121433xdx x ==ò.(2)2122222111()()()dx x x dx x x dx x x dx x x --=-+-+--òòòò012322332101111111116322332x x x x x x -æöæöæö=++=---ç÷ç÷ç÷èøèøèø.(3) ()22220022()sin 1cos 82x f x dx xdx xdxx p pp pp ppp =+=+=+-òòò(4) 33232002(2)2(2)(2)x dx xdx x dx x dx -=-=-+-òòòò232202115(2)(2)222x x x x =-+-=.5.设函数()f x 在区间[],a b 上连续上连续,,在(),a b 内可导内可导,,()0f x ¢£,1()()xaF x f t dt x a =-ò;证明:在(),a b 内有()0F x ¢£.证明证明 22111()()()()()()()()xx aa F x f t dt f x x a f x f t dt x a x a x a éù¢=-+=--êúëû---òò[][][]21()()()(),(,,)()x a f x x a f a x a b x a x x =---ÎÎ-(),((,)(,))x f x a b x ax h h x -¢=ÎÎ-. 由已知条件可知结论成立.由已知条件可知结论成立.习题习题 6-3 6-31. 计算下列积分:计算下列积分: (1) 3sin()x dx pp p +3ò; (2) 32(115)dx x 1-+ò; (3) 11154dx x--ò; (4) 320sin cos d j j j pò;(5) 22cos udu p p 6ò; (6) 2e 11ln dx x x+ò;(7) 32211dx xx +ò; (8) 2202x dx -ò; (9) ln 3ln 2e e x x dx--ò; (10)3222dxx x +-ò.解 (1) 333sin()sin()()[cos()]x dx x d x x pp p pp p p p p p +=++=-+3333òò42cos cos 033p p =-+=.(2) 123322211(511)151(511)(115)5(511)10512dxd x x x x 11---+==-=+++òò(3)1111111111(54)154425454dx d x x x x---=--=-=---òò.(4)233422011sin cos cos cos cos 44d d p ppj j j j j j=-==-òò.(5)222221cos 211cos cos 2(2)224u udu du du ud u pp p p ppp p 6666+==+òòòò26131sin 2268264up p p p p æö=+=--ç÷èø. (6) 222111(ln 1)22(31)1ln 1ln 1ln e e e dx d x x x x x+===-+++òò. (7) 令tan x t =,则2sec dx tdt =,当1x =时,4t p =;当3x =时,3t p =;于是于是 333222144cos 2123sin 3sin 1dx t dt t t x x p p p p==-=-+òò. (8) 令2sin x t =,则2cos dx tdt =,当0x =时,0t =;当2x =时,2t p=;于是2222220122cos (1cos 2)(sin 2)22x dx tdt t dt tt pppp-==+==+òòò.(9) 令xe t =,则1ln ,d x t x dt t ==,当ln 2x =时,2t =;;当ln 3x =时,3t =;于是于是3ln3332ln 22221113111(ln ln)12222111x xdxdt t dt e e t t t t --æö====-ç÷---++èøòòò.(10)333222211111()ln 231232dx x dx x x x x x -=-=+--++òò 1211(ln ln )ln 2ln 53543=-=- 2. 计算下列定积分:计算下列定积分: (1) 10e x x dx -ò; (2)e1ln x xdx ò;(3) 41ln x dx x ò; (4) 324sin xdx xpp ò; (5) 220e cos x xdx p ò; (6) 221log x xdx ò;(7)π20(sin )x x dx ò; (8) e1sin(ln )x dx ò.解 (1) (1)111100xxxxxedx xdexee dx ----=-=-+òòò1110121x e ee e e e----=--=--+=-.(2) 2222211111111111ln ln ln (1)222244e e e ee x xdx xdx x x xdx e x e ==-=-=+òòò. (3) 4444411111ln 12ln 2ln 28ln 24x dx xd x x x x dx x x x ==-×=-òòò 8ln 24=-.(4) 333324444cot cot cot sin x dx xd x x x xdx x p p p pp p p p =-=-+òòò34π131ln ln sin 492249x ppp p 3æö3=-+=+-ç÷èø. (5) 222222220cos sin sin 2sin xx x x exdx e d x e x e xdx p p p p ==-òòò222222002cos 2cos 4cos xxxe e d x e e xe xdx pp ppp=+=+-òò220e 24cos x e xdx pp =--ò于是于是221cos (2)5x e xdx e pp =-ò. (6) ()2222222111122221111log ln ln 2ln 22ln 211ln 2ln 22x xdx xdx x x xdx x x x ==-æö=-ç÷ç÷èøòòò 133(4ln 2)22ln 224ln 2=-=-. (7) 223200001111(sin )(1cos 2)(sin2)2232x x dx x x dx x x d x pp p p =-=-òòò 33200011(sin 22sin2)cos26464x x x xdx xd x p p p p p =--=-òò 3001(cos 2cos2)64x x xdx p p p =--ò 3301sin 264864x p p p p p=-+=-.(8)111sin(ln )sin(ln )cos(ln )eee x dx x x x dx =-òò11sin1cos(ln )sin(ln )ee e x x x dx =--ò1sin1cos11sin(ln )e e e x dx =-+-ò所以所以11sin(ln )(sin1cos11)2ex dx e e =-+ò.3. 利用被积函数的奇偶性计算下列积分:利用被积函数的奇偶性计算下列积分:(1) 121ln(1)x x dx -++ò ; (2)1212sin 1xdx x -++ò (3) 2222(4)x x dx -+-ò; (4) 4224cos d q q pp -ò.解 (1) 2ln(1)x x ++ 是奇函数,是奇函数, 121ln(1)0x x dx -\++=ò.(2) 2sin 1x x+ 是奇函数,121sin 01x dx x -\=+ò, 因此因此 111221112sin 22arctan 11x dx dx x x x p ---+===++òò. (3) 222222222(4)(424)416x x dx x x dx dx ---+-=+-==òòò. (4) ()244222022201cos 24cos 8cos 82212cos 2cos231384222d d d d q q q q q qq q qp p pp p p -p+æö==ç÷èø=++=×××=òòòò.4. 证明下列等式:证明下列等式:(1) 证明:1100(1)(1)mnn m x x dx x x dx -=-òò;(2) 证明:1122111xx dx dx x x=++òò (0x >); (3) 设()f x 是定义在区间(,)-¥+¥上的周期为T 的连续函数,则对任意(,)a Î-¥+¥,有()()a TTaf x dx f x dx +=òò.证 (1)令1x t -=,则dx dt =-,当0x =时,1t =;当1x =时,0t =;于是于是1111(1)(1)()(1)(1)m n m n n m n mx x dx t t dt t t dt x x dx -=--=-=-òòòò,即11(1)(1)m n n m x x dx x x dx -=-òò.(2) 令1x t =则21dx dt t-=, 于是11111112222211211111111111t x x t tdx dt t dt dx x t t x t tæö=×=-×==-ç÷++++èø+òòòòòd ,即1122111xxdxdxx x =++òò.(3) 因为因为()()()a TT a Taa f x dx f x dx f x dx ++=+òòò,而,而()()()a Taaaf x dx x t Tf t T dt f t dt +=++=òòò令 0()()()aTTaf x dx f x dx f x dx ==-òòò故()()a TTaf x dx f x dx +=òò.4. 若()f t 是连续函数且为奇函数,是连续函数且为奇函数,证明证明0()xf t dt ò是偶函数;若()f t 是连续函数且为偶函数,证明()xf t dt ò是奇函数.是奇函数.证 令0()()xF x f t dt =ò.若()f t 为奇函数,则()()f t f t -=-,令t u =-,可得,可得()()()()()xxxF x f t dt f u du f u du F x --==--==òòò, 所以0()()xF x f t dt =ò是偶函数.是偶函数.若()f t 为偶函数,则()()f t f t -=,令t u =-,可得,可得()()()()()xxxF x f t dt f u du f u du F x --==--=-=-òòò, 所以0()()xF x f t dt =ò是奇函数.是奇函数.5. 利用分部积分公式证明:利用分部积分公式证明:()()()()d xxu f u x u du f x x du -=òòò.证 令0()()uF u f x dx =ò则()()F u f u ¢=, 则(())()()()xu xxxf x dx du F u du uF u uF u du ¢==-òòòò()()()()xxxxF x uf u du xf x dx uf u du =-=-òòò()()()()xxxxx f u du uf u du xf u du uf u du =-=-òòòò()()xx u f u du =-ò. 习题6-41. 求由下列曲线所围成的平面图形的面积:求由下列曲线所围成的平面图形的面积:(1) 2y x =与22y x =-; (2) x y e =与0x =及y e =; (3) 24y x =-与0y =; (4) 2y x =与y x =及2y x =;(5) 1y x =与y x =及2x =; (6) 2y x =与2y x =-; (7) ,xx y e y e -==与1x =;(8) sin (0)2y x x p =££与0,1x y ==.解 (1)两曲线的交点为(1,1),(1,1)-,取x 为积分变量,[]1,1x Î-,面积元素22(2)dA x x dx =--,于是所求的面积为,于是所求的面积为112311182(1)2()33A x dx x x --=-=-=ò.(2) 曲线x y e =与y e =的交点坐标(1,)e , x y e =与0x =的交点为(0,1),取y 为积分变量,[]1,y e Î,面积元素ln dA ydy =;于是所求面积为;于是所求面积为111ln (ln )1eeeA ydy ydy y y y ===-=òò. (3)曲线24y x =-与0y =的交点为(2,0),(2,0)-,取x 为积分变量,[]2,2x Î-,面积元素2(4)dA x dx =-,于是所求的面积为,于是所求的面积为222322132(4)(4)33A x dx x x --=-=-=ò. (4) 曲线2y x =与y x =的交点为(0,0),(1,1);2y x =与2y x =的交点为(0,0),(2,4); 它们所围图形面积为:它们所围图形面积为:1212220101(2)(2)(2)A x x dx x x dx xdx x x dx =-+-=+-òòòò2231201117()236x x x =+-=.(5) 曲线1y x =与y x =的交点为(1,1),1y x=与2x =的交点为1(2,)2;取x 积分变量,[]1,2x Î,面积元素1()dA x dx x =-,于是所求的面积为,于是所求的面积为22211113()(ln )ln 222A x dx x x x =-=-=-ò.(6) 曲线2y x =与2y x =-的交点为()()114,2-,和,取y 作积分变量,[]1,2y Î-,面积元素2(2)dA y y dy =+-,于是所求的面积为,于是所求的面积为2222311117(2)(2)232A y y dy y y y --=+-=+-=ò.(7) 曲线x y e =与xy e -=的交点(0,1),取x 作积分变量,[]0,1x Î,面积元素()xxdA e e dx -=-,于是所求图形的面积为,于是所求图形的面积为10)()2xxxxA e e dx e e e e--=-=+=+-ò11(.(8)取x 作积分变量,0,2x p éùÎêúëû,面积元素(1sin )dA x dx =-,于是所求的面积为,于是所求的面积为220(1sin )(cos )12A x dx x x ppp =-=+=-ò.2. 求由下列曲线围成的平面图形绕指定坐标轴旋转而成的旋转体的体积:求由下列曲线围成的平面图形绕指定坐标轴旋转而成的旋转体的体积:(1) ,1,4,0y x x x y ====,绕x 轴;轴; (2) 3,2,y x x x ==轴,分别绕x 轴与y 轴;轴;(3) 22,y x x y ==,绕y 轴;轴;(4) 22(5)1x y -+=,绕y 轴.轴. 解 (1)取x 作积分变量,[]1,4x Î,体积元素2()dV x dx xdx p p ==,于是所求旋转体的体积为的体积为442111522V xdx x p p p ===ò.(2)绕x 轴旋转时,取x 作积分变量,[]0,2x Î,体积元素32()x dV x dx p =,于是,于是22267012877x V x dx xp p p ===ò; 同理可求平面图形绕y 旋转所成的旋转体的体积旋转所成的旋转体的体积8582233003642()(4)55yV y dy y y pp péù=-=-=ëûò. (3)曲线2y x =与2x y =的交点为(0,0),(1,1),取y 作积分变量[]0,1y Î,体积元素222()()dV y y dyp éù=-ëû,于是所求的旋转体的体积为,于是所求的旋转体的体积为114250113()()2510V y y dx y y p p p =-=-=ò. (4) 取y 作积分变量[]1,1y Î-,体积元素22222(51)(51)201dV y y dy y dy p p éù=+----=-ëû,于是所求的旋转体的体积为于是所求的旋转体的体积为 122120120102V y dy ppp p -=-=×=ò.3.设某企业边际成本是产量Q (单位)的函数0.2()2QC Q e ¢=(万元/单位),其固定成本为090C =(万元),求总成本函数.,求总成本函数. 解 总成本函数为总成本函数为0.200()()290QQQ C Q C Q dQ C e dQ ¢=+=+òò0.20.2010901080Q QQ e e =+=+.4.设某产品的边际收益是产量Q (单位)的函数()152R Q Q ¢=-(元/单位),试求总收益函数与需求函数.益函数与需求函数. 解 总收益函数为总收益函数为20()(152)15QR Q Q dQ Q Q =-=-ò需求函数为需求函数为()15R Q P Q Q==-.5.已知某产品产量的变化率是时间t (单位:单位:月月)的函数()25,0f t t t =+³,问:问:第一个第一个5月和第二个5月的总产量各是多少? 解 设产品总产量为()Q t ,则()()Q t f t ¢=,第一个5月的总产量月的总产量5525100()(25)(5)50Q f t dt t dt t t ==+=+=òò. 第二个5月的总产量为月的总产量为10102102555()(25)(5)100Q f t dt t dt t t ==+=+=òò.6.某厂生产某产品Q (百台)的总成本()C Q (万元)的变化率为()2C Q ¢=(设固定成本为零),总收益()R Q (万元)的变化率为产量Q (百台)的函数()72R Q Q ¢=-.问:.问: (1) 生产量为多少时,总利润最大?最大利润为多少? (2) 在利润最大的基础上又多生产了50台,总利润减少了多少? 解 (1)总利润()()()L Q R Q C Q =-当()0L Q ¢=即()()0R Q C Q ¢¢-=即7220Q --=, 2.5Q =(百台)时,总利润最大,此时的总成本和总收益分别为总利润最大,此时的总成本和总收益分别为2.52.52.5()225C C Q dQ dQ Q¢====òò2.52.52.520()(72)(7)11.25R R Q dQ Q dQ Q Q ¢==-=-=òò总利润11.255 6.25L R C =-=-=(万元). 即当产量为2.5(百台)时,总利润最大,最大利润是6.25万元.万元.(2)在利润最大的基础上又生产了50台,此时产量为3百台, 总成本3300()26C C Q dQ dQ ¢===òò,总收入3323000()(72)(7)12R R Q dQ Q dQ Q Q ¢==-=-=òò, 总利润为1266L R C =-=-=(万元).减少了6.2560.25-=万元.万元.即在利润最大的基础上又生产了50台时,总利润减少了0.25万元.万元.习题习题 6-51. 判断下列反常积分的敛散性,若收敛,则求其值:判断下列反常积分的敛散性,若收敛,则求其值:(1) 41dxx+¥ò; (2)1dx x+¥ò;(3) 0xe dx +¥-ò (a >0); (4) 0sin xdx +¥ò; (5)1211dxx--ò; (6) 222dxx x +¥-¥++ò; (7) 211xdx x -ò; (8)10ln x xdx ò; (9) e211ln dxx x-ò; (10)23(1)dxx -ò.解 (1) 14311133dx x x +¥+¥=-=ò.此反常积分收敛..此反常积分收敛. (2) 112dx x x+¥+¥==+¥ò.此反常积分发散..此反常积分发散.(3) 101x xe dx e +¥--+¥=-=ò.此反常积分收敛..此反常积分收敛.(4) 00sin cos lim cos 1x xdx x x +¥+¥®+¥=-=-+ò不存在,此反常积分发散.不存在,此反常积分发散.(5) 11121arcsin 1dx x x p --==-ò.此反常积分收敛..此反常积分收敛.(6)22(1)arctan(1)22(1)1dx d x x x x x p +¥+¥+¥-¥-¥-¥+==+=++++òò.此反常积分收敛..此反常积分收敛.(7)2322211001112lim lim (1)21113xdx x dx x x x x e e e e +++®®+-+éù==-+-êú--ëûòò320222lim 222333e e e +®æö==--ç÷èø.此反常积分收敛..此反常积分收敛. (8)1112222100111111ln limln limln limln 222424x xdxxdxx xxdx eee e e e ee e ®®®æöæö==-=--ç÷ç÷èøèøòòò, 所以11220001111ln lim ln lim (ln )4244x xdx x xdx e e e e e e ++®®==--=-òò.此反常积分收敛..此反常积分收敛. (9) 12211ln πarcsin(ln )21(ln )1(ln )e e e dx d x x x x x ===--òò.此反常积分收敛..此反常积分收敛. (10) 212333001(1)(1)(1)dx dx dxx x x =+---òòò,因为反常积分1132001(1)(1)dx x x ==¥--ò发散,所以反常积分230(1)dxx -ò发散.发散. 2. 当k 为何值时,反常积分+2(ln )kdxx x ¥ò收敛?当k 为何值时,这反常积分发散? 解 当1k =时,时,++222ln ln(ln )ln ln dxd x x x x x¥¥+¥===+¥òò,发散发散.. 当1k ¹时,1++122211(ln )(1)(ln 2)(ln )ln (ln )11kk k k k dx x k x d xx x kk -¥¥--+¥ì>ï-===í-ï+¥<îòò所以,当1k >时,此广义积分收敛;当1k £时,此广义积分发散.时,此广义积分发散. 3. 利用递推公式计算反常积分+0e n xn I x dx ¥-=ò. 解 ++1100n x n xn xn n I x de x e n x e dx nI ¥¥----+¥-=-=-+=òò, 因为因为 +101xx xI xde xe e ¥---+¥+¥=-=--=ò,所以所以 121(1)(1)2!n n n I nI n n I n n I n --==-=-= .复习题6(A )1、 求下列积分:求下列积分:(1)121tan sin 1xdx x -+ò; (2)1202x x dx -ò;(3)22204x x dx -ò; (4)ln 21x e dx -ò;(5)21220(1)x dx x +ò; (6)2211x dx x -ò;(7)120xx e dx -ò; (8) 21(ln )ex dx ò;(9) 401cos 2x dx xp+ò; (10) 20cos xe xdx p -ò; (11) 20sin 1cos x x dx x p++ò; (12) 40ln(1tan )x dx p+ò.解 (1) 因为被积函数2tan sin 1x x +是奇函数是奇函数,,所以121tan 0sin 1xdx x -=+ò. (2) 1122021(1)x x dx x dx -=--òò,令1sin x t -=,则cos dx tdt =;当0x =时,2t p=-;当1x =时,0t =;所以;所以010*******1cos 2sin 22cos 2244t t t x x dx tdt dt p p p p ---+éù-===+=êúëûòòò. (3) 令2sin x t =,则2cos dx tdt =,当0x =时,0t =;当2x =时,2t p =;所以222222222044sin 4cos 4sin 22(1cos 4)xx dx t tdt tdt t dt p pp-=×==-òòòò2012(sin 4)4t t pp =-=.(4) 令1x e t -=,则221t dx dt t =+,当0x =时,0t =;当ln 2x =时,1t =;所以2ln 2112000212(arctan )2(1)14x t e dx dt t t t p -==-=-+òò. (5) 令tan x t =,则2sec dx tdt =,当0x =时,0t =;当1x =时,4t p=;所以22412442240000tan 1cos 2sin 21sec ()(1)sec 22484x t t t t dx tdt dt x t pp pp -===-=-+òòò.(6) 令sec x t =,则sec tan dx t tdt =,当1x =时,0t =;当2x =时,3t p=;所以22233301001tan sec tan tan (tan )3sec 3x t dx t tdt tdt t t x t p p pp -===-=-òòò. (7) 111112221000022xxxxx x e dx x dex exe dx e xde ------=-=-+=--òòòò111111000223225xxxe xee dx e e e ------=--+=--=-ò. (8) 22111111(ln )ln 2ln 2ln 22e e e e e x dx x x x x dx e x x dx e x=-×=-+=-òòò.(9) 444400tan tan tan 1cos 2x dx xd x x x xdx xpppp==-+òòò401ln cos ln 2442x pp p =+=-.(10) 2222000cos cos cos sin xxxxe xdx xdee x e xdx pppp----=-=--òòò22201sin 1sin cos xxxxdee x e xdx ppp ---=+=+-òò2201cos x ee xdx pp--=+-ò, 所以所以 2201cos (1)2x e xdx e p p--=+ò.(11) 22222000002sin sin cos tan 1cos 1cos 21cos 2cos2x x x x x d x dx dx dx xd x x x x p p p p p +=+=-+++òòòòò2222200tantan ln(1cos )222ln cos ln(1cos )22x x x dx x x x p pp ppp=--+=--+ò20ln 22ln cos 222xp pp=++=. (12) 44440cos sin ln(1tan )lnln(cos sin )ln cos cos x x x dx dx x x dx xdx xpppp++==+-òòòò令4x u p-=,可得044041ln(cos sin )ln 2cos()(ln 2ln cos )42x x dx x dx u du p p p p éù+=-=-+êúëûòòò40ln 2ln cos 8xdx p p =+ò所以所以4ln 2ln(1tan )8x dx pp +=ò.2、设()f x 在[],a b 上连续,且()1b af x dx =ò,求()b af a b x dx +-ò.解令a b x t +-=,则dx dt =-,当x a =时,t b =;当x b =时,t a =;所以;所以 ()()()1b ababaf a b x dx f t dt f t dt +-=-==òòò.3、设()f x 为连续函数,试证明:()()(())xxtf t x t dt f u du dt -=òòò.证 用分部积分法,000(())()(())xx t tx tf u du dt tf u du td f u du =-òòòòò()()()()x x x x x f u du tf t dt xf t dt tf t dt =-=-òòòò()()xf t x t dx =-ò.4、设()u j 为连续函数,试证明:22()2()aaa x dx x dx j j -=òò.证2220()()()aa aaa x dx x dx x dx j j j --=+òòò,令x t =-,则00222200()(())()()aaa a x dx t dt t dt x dx j j j j -=--==òòòò 所以22220()()()2()aa aaaaa x dxx dx x dx x dx j j j j --=+=òòòò. 5、计算下列反常积分:、计算下列反常积分:(1)2048dx x x +¥++ò; (2)21arctan x dx x+¥ò; (3)101(1)dx x x -ò; (4)1ln e dx x x ò. 解 (1) 222000(2)12arctan 48(2)2228dx d x x x x x p +¥+¥+¥++===++++òò. (2) 221111arctan 1arctan 1arctan (1)x x dx xddx x xxx x +¥+¥+¥+¥=-=-++òòò22111ln ln 242142xx p p +¥=+=++. (3) 1110001122arcsin (1)1dx d x x x x x p éù===ëû--òò.(4) 111ln 2ln 2ln ln e eedxd xx x x x ===òò.6、求抛物线22y px =及其在点(,)2p p 处的法线所围成的平面图形的面积.处的法线所围成的平面图形的面积.解 抛物线22y px =在点(,)2p p 处的法线方程为32x y p +=,两曲线的交点为9(,3),(,)22p p p p -;取y 作积分变量3p y p -££,所求的平面图形面积为,所求的平面图形面积为 2232333131116()()222263p pp pA p y y dy py y y p p p --=--=--=ò. 7、求由曲线32y x =与直线4,x x =轴所围图形绕y 轴旋转而成的旋转体的体积.轴旋转而成的旋转体的体积.解 曲线32y x =与直线4x =的交点为(4,8),取y 作积分变量,08y ££,体积元素2232434()(16)dy y dy y dy p p éù=-=-ëû于是,所求的旋转体的体积为于是,所求的旋转体的体积为88437303512(16)(16)77V y dy y y p p p =-=-=ò. 8、设某产品的边际成本为()2C Q Q ¢=-(万元/台),其中Q 代表产量,固定成本022C ==(万元),边际收益()204R Q Q ¢=-(万元/台).试求:.试求: (1) 总成本函数和总收益函数;总成本函数和总收益函数; (2) 获得最大利润时的产量;获得最大利润时的产量;(3) 从最大利润时的产量又生产了4台,总利润的变化.台,总利润的变化. 解 (1)总成本函数201()(2)2222QC Q Q dQ C Q Q =-+=-+ò,总收益函数20()(204)202QR Q Q dQ Q Q =-=-ò. (2)利润函数23()()()18222L Q R Q C Q Q Q =-=--,令()0L Q ¢=,得6Q =(台),而(6)30L ¢¢=-<,所以当产量6Q =(台)时,利润最大.时,利润最大.(3)(10)(6)83224L L -=-=-,所以从最大利润时的产量又生产了4台,总利润减少了24(万元).(B)1、填空题:填空题:(1) 22cos xd x t dt dx =ò . (2) (2) 设设()f x 连续,220()()x F x xf t dt =ò,则()F x ¢= .(3)2sin()xd x t dt dx-=ò.(4) (4) 设设()f x 连续,则220()xd tf x t dt dx -=ò . (5) (5) 设设20cos ()1sin x t f x dt t =+ò,则220()1()f x dx f x p¢=+ò . (6) (6) 设设()f x 连续,且10()2()f x x f x dx =+ò,,则()f x = .(7) (7) 设设()f x 连续,且()1cos xtf x t dtx -=-ò,则20()f x dx p=ò .(8)2ln e dxx x +¥=ò .解 (1) 2220002224cos (cos )cos (cos )2x xx d dx t dt x t dt t dt x x x dx dx ==+-×òòò2224cos 2cos x t dt x x =-ò.(2) 2222200()(())()()2xx d F x xf t dt f t dt x f x x dx ¢==+××òò 22220()2()x f t dt x f x =+ò.(3) (3) 令令x t u -=,则22200sin()sin ()sin xxx x t dt u du u du -=-=òòò 所以所以22200sin()sin sin xxddx t dt u du x dx dx -==òò.(4) (4)令令22x t u -= 则222222001()()()2x x tf x t dt f x t d x t -=---òò220011()()22x x f u du f u du =-=òò.所以.所以 2222001()()()2xx d d tf x t dt f u du xf x dx dx -=×=òò.(5)22200()arctan ()arctan ()arctan (0)1()2f x dx f x f f f x ppp ¢==-+ò, 而02222000cos cos (0)0,()arctan(sin )1sin 21sin 4t t f dt f dt t t t pp p p =====++òò,所以220()arctan 1()4f x dx f x pp ¢=+ò (6) (6) 等式等式1()2()f x x f x dx =+ò两边在区间[]0,1积分得积分得111101()2()2()2f x dx xdx f x dx f x dx =+=+òòòò11()2f x dx =-ò, 所以所以()1f x x =-.(7) (7)令令x t u -=,则du dt =-,于是,于是00()()()xxtf x t dt x u f u du -=-òò原等式化为原等式化为()()1cos xxxf u du uf u du x -=-òò两边对x 求导求导()sin xf u du x =ò在上式中,令2x p=,得,得()1xf x dx =ò.。

分析化学(第六版)第六章习题详解

分析化学(第六版)第六章习题详解

第六章 氧化还原滴定法思考题答案1. 处理氧化还原平衡时,为什么引入条件电极电位?外界条件对条件电极电位有何影响?答:(1) 在能斯特方程中,是用离子的活度而非离子的浓度计算可逆氧化还原电对的电位。

实际上通常知道的是离子的浓度而不是活度,往往忽略溶液中离子强度的影响,以浓度代替活度进行计算。

但实际上,溶液浓度较大时,溶液中离子强度不可忽略,且溶液组成的改变(即有副反应发生)也会影响电极的电对电位,为考虑此两种因素的影响,引入了条件电极电位。

(2) 副反应:加入和氧化态产生副反应(配位反应或沉淀反应)的物质,使电对电极电位减小;加入和还原态产生副反应(配位反应或沉淀反应)的物质,使电对电极电位增加。

另外有H +或OH -参加的氧化还原半反应,酸度影响电极电位,影响结果视具体情况而定。

离子强度的影响与副反应相比一般可忽略。

2. 为什么银还原器(金属银浸于1 mol.L -1 HCl 溶液中)只能还原Fe 3+而不能还原Ti(Ⅳ)?试由条件电极电位的大小加以说明。

答:金属银浸于1 mol.L -1 HCl 溶液中产生AgCl 沉淀。

+sp +-(Ag /Ag)0.059lg[Ag ](AgCl) (Ag /Ag)0.059lg[Cl ]K ϕϕϕθθ+θ=+=+ 在1 mol.L -1HCl 溶液中+sp 9.50(Ag /Ag)0.059lg (AgCl) 0.800.059lg100.24(V)K ϕϕ'θθ-=+=+=在1mol·L -1 HCl 中,3+2+(Fe /Fe )=0.70ϕ'θ, ()()()04.0/T i T i '-=ⅢⅣθϕ,故银还原器(金属银浸于1 mol.L -1 HCl 溶液中)只能还原Fe 3+而不能还原Ti(Ⅳ)。

3. 如何判断氧化还原反应进行的完全程度?是否平衡常数大的氧化还原反应都能用于氧化还原滴定中?为什么?答:(1) 根据条件平衡常数判断,若滴定允许误差为0.1%,要求lg K ≥3(n 1+ n 2),即(E 10,-E 20,)n / 0.059≥3(n 1+ n 2),n 为n 1,n 2的最小公倍,则n 1 = n 2 =1, lg K ≥3(1+1)≥6, E 10’-E 20’≥0.35V n 1 =1, n 2 =2,lg K ≥3(1+2)≥9, E 10’-E 20’≥0.27V ;n 1= n 2 =2, lg K ≥3(1+1)≥6, E 10’- E 20’≥0.18V (E 0’=ϕθ')(2) 不一定。

物理学简明教程(马文蔚等著)第六章课后练习题答案详解

物理学简明教程(马文蔚等著)第六章课后练习题答案详解

物理学简明教程(马文蔚等著)第六章课后练习题答案详解6 -1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A )放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B )中的( )分析与解 “无限大”均匀带电平板激发的电场强度为02εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B ).6 -2 下列说法正确的是( )(A )闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(B )闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零(C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零(D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零分析与解依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B).6 -3下列说法正确的是( )。

(A) 电场强度为零的点,电势也一定为零(B) 电场强度不为零的点,电势也一定不为零(C) 电势为零的点,电场强度也一定为零(D) 电势在某一区域内为常量,则电场强度在该区域内必定为零分析与解电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D).6 -5一半径为R的半球壳,均匀地带有电荷,电荷面密度为σ,求球心处电场强度的大小.分析这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第5 -3 节的例1 可以看出,所有平行圆环在轴线上P 处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心O 处的电场强度. 解 将半球壳分割为一组平行细圆环,任一个圆环所带电荷元θθR δS δq d sin π2d d 2⋅==,在点O 激发的电场强度为()i E 3/2220d π41d r x qx ε+=由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系θR x cos =,θR r sin =统一积分变量,有()θθθεδθθR πδR θR πεr x q x πεE d cos sin 2 d sin 2cos 41d 41d 02303/2220=⋅=+= 积分得 02/004d cos sin 2εδθθθεδE π⎰==6 -6 地球周围的大气犹如一部大电机,由于雷雨云和大气气流的作用,在晴天区域,大气电离层总是带有大量的正电荷,云层下地球表面必然带有负电荷.晴天大气电场平均电场强度约为1m V 120-⋅,方向指向地面.试求地球表面单位面积所带的电荷(以每平方厘米的电子数表示).分析 考虑到地球表面的电场强度指向地球球心,在大气层中取与地球同心的球面为高斯面,利用高斯定理可求得高斯面内的净电荷. 解 在大气层临近地球表面处取与地球表面同心的球面为高斯面,其半径E R R ≈(E R 为地球平均半径).由高斯定理∑⎰=-=⋅q εR E E 021π4d S E地球表面电荷面密度∑--⨯-=-≈=2902cm 1006.1π4/E εR q σE单位面积额外电子数25cm 1063.6/-⨯=-=e σn6 -7 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 >R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2) R 1 <r <R 2 ,(3) r >R 2 .分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且⎰⋅=rL E d π2S E ,求出不同半径高斯面内的电荷∑q .即可解得各区域电场的分布.解 作同轴圆柱面为高斯面,根据高斯定理∑=⋅0/π2εq rL Er <R 1 , 0=∑q01=E在带电面附近,电场强度大小不连续,电场强度有一跃变R 1 <r <R 2 ,L λq =∑rελE 02π2= r >R 2, 0=∑q03=E在带电面附近,电场强度大小不连续,电场强度有一跃变00π2π2ΔεσrL εL λr ελE === 这与5 -20 题分析讨论的结果一致.6 -8 两个同心球面的半径分别为R 1 和R 2 ,各自带有电荷Q 1 和Q 2 .求:(1) 各区域电势分布,并画出分布曲线;(2) 两球面间的电势差为多少?分析 通常可采用两种方法(1) 由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由⎰∞⋅=p p V l E d 可求得电势分布.(2) 利用电势叠加原理求电势.一个均匀带电的球面,在球面外产生的电势为r εQ V 0π4= 在球面内电场强度为零,电势处处相等,等于球面的电势RεQ V 0π4= 其中R 是球面的半径.根据上述分析,利用电势叠加原理,将两个球面在各区域产生的电势叠加,可求得电势的分布.解1 (1) 由高斯定理可求得电场分布()()()22021321201211 π4 π40R r r εQ Q R r R r εQ R r r r >+=<<=<=e E e E E 由电势⎰∞⋅=r V l E d 可求得各区域的电势分布.当r ≤R 1 时,有202101202121013211π4π4π411π40d d d 2211R εQ R εQ R εQ Q R R εQ V R R R R r +=++⎥⎦⎤⎢⎣⎡-+=⋅+⋅+⋅=⎰⎰⎰∞l E l E l E当R 1 ≤r ≤R 2 时,有202012021201322π4π4π411π4d d 22R εQ r εQ R εQ Q R r εQ V R R r +=++⎥⎦⎤⎢⎣⎡-=⋅+⋅=⎰⎰∞l E l E当r ≥R 2 时,有rεQ Q V r 02133π4d +=⋅=⎰∞l E (2) 两个球面间的电势差⎪⎪⎭⎫ ⎝⎛-=⋅=⎰210121211π4d 21R R εQ U R R l E 解2 (1) 由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1 ,则2021011π4π4R εQ R εQ V += 若该点位于两个球面之间,即R 1 ≤r ≤R 2 ,则202012π4π4R εQ r εQ V += 若该点位于两个球面之外,即r ≥R 2 ,则rεQ Q V 0213π4+= (2) 两个球面间的电势差()2011012112π4π42R εQ R εQ V V U R r -=-==6 -9 一圆盘半径R =3.00 ×10-2 m .圆盘均匀带电,电荷面密度σ=2.00×10-5 C·m -2 .(1) 求轴线上的电势分布;(2) 根据电场强度与电势梯度的关系求电场分布;(3) 计算离盘心30.0 cm 处的电势和电场强度.分析 将圆盘分割为一组不同半径的同心带电细圆环,利用带电细环轴线上一点的电势公式,将不同半径的带电圆环在轴线上一点的电势积分相加,即可求得带电圆盘在轴线上的电势分布,再根据电场强度与电势之间的微分关系式可求得电场强度的分布.解 (1) 带电圆环激发的电势220d π2π41d xr r r σεV += 由电势叠加,轴线上任一点P 的电势的()x x R εσx r r r εσV R -+=+=⎰22002202d 2 (1)(2) 轴线上任一点的电场强度为i i E ⎥⎦⎤⎢⎣⎡+-=-=22012d d x R x εσx V (2) 电场强度方向沿x 轴方向.(3) 将场点至盘心的距离x =30.0 cm 分别代入式(1)和式(2),得V 1691=V-1m V 5607⋅=E当x >>R 时,圆盘也可以视为点电荷,其电荷为C 1065.5π82-⨯==σR q .依照点电荷电场中电势和电场强度的计算公式,有V 1695π40==xεq V 1-20m V 5649π4⋅==xεq E 由此可见,当x >>R 时,可以忽略圆盘的几何形状,而将带电的圆盘当作点电荷来处理.在本题中作这样的近似处理,E 和V 的误差分别不超过0.3%和0.8%,这已足以满足一般的测量精度.6 -10 在一次典型的闪电中,两个放电点间的电势差约为109 V,被迁移的电荷约为30 C .(1) 如果释放出来的能量都用来使0 ℃的冰融化成0 ℃的水,则可溶解多少冰? (冰的融化热L =3.34 ×105 J· kg )(2) 假设每一个家庭一年消耗的能量为300kW·h ,则可为多少个家庭提供一年的能量消耗?解 (1) 若闪电中释放出来的全部能量为冰所吸收,故可融化冰的质量Kg 1098.8Δ4⨯===LqU L E m 即可融化约 90 吨冰.(2) 一个家庭一年消耗的能量为J 1008.1h kW 3000100⨯=⋅=E8.2Δ00===E qU E E n 一次闪电在极短的时间内释放出来的能量约可维持3 个家庭一年消耗的电能.6 -11 一真空二极管,其主要构件是一个半径R 1 =5.0×10-4m 的圆柱形阴极和一个套在阴极外,半径R 2 =4.5×10-3m 的同轴圆筒形阳极.阳极电势比阴极电势高300V ,阴极与阳极的长度均为L =2.5×10-2m .假设电子从阴极射出时的速度为零.求:(1) 该电子到达阳极时所具有的动能和速率;(2)电子刚从阳极射出时所受的力.分析 (1) 由于半径R 1<<L ,因此可将电极视作无限长圆柱面,阴极和阳极之间的电场具有轴对称性.从阴极射出的电子在电场力作用下从静止开始加速,电子所获得的动能等于电场力所作的功,也即等于电子势能的减少.由此,可求得电子到达阳极时的动能和速率. (2) 计算阳极表面附近的电场强度,由F =qE 求出电子在阴极表面所受的电场力.解 (1) 电子到达阳极时,势能的减少量为J 108.4Δ17-⨯-=-=eV E ep由于电子的初始速度为零,故J 108.4ΔΔ17-⨯-=-==ep ek ek E E E因此电子到达阳极的速率为1-7s m 1003.122⋅⨯===meVm E ekv (2) 两极间的电场强度为r rελe E 0π2-= 两极间的电势差1200ln π2π2d 21R Re ελr ελV R R -=-=⋅=⎰r E 负号表示阳极电势高于阴极电势.阴极表面电场强度r r R R R V R ελe e E 12110ln π2=-=电子在阴极表面受力N 1037.414r e e E F -⨯=-=这个力尽管很小,但作用在质量为9.11 ×10-31kg 的电子上,电子获得的加速度可达重力加速度的5 ×1015 倍.6 -12 一导体球半径为R 1 ,外罩一半径为R 2 的同心薄导体球壳,外球壳所带总电荷为Q ,而内球的电势为V 0 .求此系统的电势和电场的分布.分析 若200π4R εQV =,内球电势等于外球壳的电势,则外球壳内必定为等势体,电场强度处处为零,内球不带电.若200π4R εQV ≠,内球电势不等于外球壳电势,则外球壳内电场强度不为零,内球带电.一般情况下,假设内导体球带电q ,导体达到静电平衡时电荷的分布如图所示.依照电荷的这一分布,利用高斯定理可求得电场分布.并由⎰∞⋅=p p V l E d 或电势叠加求出电势的分布.最后将电场强度和电势用已知量V 0、Q 、R 1、R 2表示.解 根据静电平衡时电荷的分布,可知电场分布呈球对称.取同心球面为高斯面,由高斯定理()()∑⎰⋅=⋅=⋅02/π4d εq r E r r E S E ,根据不同半径的高斯面内的电荷分布,解得各区域内的电场分布为 r <R 1时, ()01=r E R 1<r <R 2 时,()202π4r εqr E =r >R 2 时, ()202π4r εqQ r E +=由电场强度与电势的积分关系,可得各相应区域内的电势分布. r <R 1时,20103211π4π4d d d d 2211R εQR εq V R R R R rr+=⋅+⋅+⋅=⋅=⎰⎰⎰⎰∞∞l E l E l E l E R 1<r <R 2 时,200322π4π4d d d 22R εQr εq V R R rr+=⋅+⋅=⋅=⎰⎰⎰∞∞l E l E l E r >R 2 时,rεQq V r 03π4d +=⋅=⎰∞l E 3 也可以从球面电势的叠加求电势的分布.在导体球内(r <R 1)20101π4π4R εQR εq V +=在导体球和球壳之间(R 1<r <R 2 )2002π4π4R εQr εq V +=在球壳外(r >R 2)rεQq V 03π4+=由题意102001π4π4R εR εV V +== 得102001π4π4R εQR εq V V +== 代入电场、电势的分布得 r <R 1时,01=E ;01V V =R 1<r <R 2 时,22012012π4r R εQ R r V R E -=;r R εQR r r V R V 201012π4)(--= r >R 2 时,220122013π4)(r R εQ R R r V R E --=;r R εQ R R r V R V 2012013π4)(--=6 -13 两线输电线,其导线半径为3.26 mm ,两线中心相距0.50 m ,导线位于地面上空很高处,因而大地影响可以忽略.求输电线单位长度的电容.解 由教材第六章6 -4 节例3 可知两输电线的电势差RεU =ln π0 因此,输电线单位长度的电容Rd εR R d εU λC ln /πln /π00≈-==代入数据 F 1052.512-⨯=C6 -14 在A 点和B 点之间有5 个电容器,其连接如图所示.(1) 求A 、B 两点之间的等效电容;(2) 若A 、B 之间的电势差为12 V ,求U A C 、U CD 和U D B .解 (1) 由电容器的串、并联,有μF 1221=+=C C C AC μF 843=+=C C C CD51111C C C C CD AC AB ++= 求得等效电容C AB =4 μF .(2) 由于AB DB CD AC Q Q Q Q ===,得V 4==AB ACABAC U C C U V 6==AB CDABCD U C C U V 2==AB DBABDB U C C U6 -15 半径为0.10 cm 的长直导线,外面套有内半径为1.0 cm 的共轴导体圆筒,导线与圆筒间为空气.略去边缘效应,求:(1) 导线表面最大电荷面密度;(2) 沿轴线单位长度的最大电场能量. 分析 如果设长直导线上单位长度所带电荷为λ,导线表面附近的电场强度0π2εσR ελE ==查表可以得知空气的击穿电场强度E b =3.0 ×106(V /m ),只有当空气中的电场强度E ≤E b 空气才不会被击穿,由于在导线表面附近电场强度最大,因而可以求出σ的极限值.再求得电场能量密度,并通过同轴圆柱形体元内电场能量的积分求得单位长度的最大电场强度.解 (1) 导线表面最大电荷面密度250max m C 1066.2--⋅⨯==b E εσ显然导线表面最大电荷面密度与导线半径无关.(2) 由上述分析得b E R ελ10max π2=,此时导线与圆筒之间各点的电场强度为()1210π2R r R rRr ελE m <<==0=E (其他)22210202121rE R εE εw b m m ==沿轴线单位长度的最大电场能量r rE R εr r w W R R b Ωm d 1πd π2212210⎰⎰⎰⎰=⋅= 14122210m J 1076.5lnπ--⋅⨯==R R E R εW b m。

物理化学核心教程(第二版)沈文霞编科学出版社_课后习题详解第六章

物理化学核心教程(第二版)沈文霞编科学出版社_课后习题详解第六章

第六章 相平衡三.思考题参考答案1.硫氢化铵4NH HS(s)的分解反应:① 在真空容器中分解;② 在充有一定3NH (g)的容器中分解,两种情况的独立组分数是否一样?答: 两种独立组分数不一样。

在①中,C =1。

因为物种数S 为3,但有一个独立的化学平衡和一个浓度限制条件,所以组分数等于1。

在②中,物种数S 仍为3,有一个独立的化学平衡,但是浓度限制条件被破坏了,两个生成物之间没有量的限制条件,所以独立组分数C =2。

2.纯的碳酸钙固体在真空容器中分解,这时独立组分数为多少?答: 碳酸钙固体的分解反应为 32CaCO (s)CaO(s)CO (g)+物种数为3,有一个平衡限制条件,但没有浓度限制条件。

因为氧化钙与二氧化碳不处在同一个相,没有摩尔分数的加和等于1的限制条件,所以独立组分数为2。

3.制水煤气时有三个平衡反应,求独立组分数C ?(1) H 2O(g)+ C(s)= H 2(g)+ CO(g)(2) CO 2(g)+ H 2(g)= H 2O(g)+ CO(g)(3) CO 2(g)+ C(s)= 2CO(g)答: 三个反应中共有5个物种,5S =。

方程(1)可以用方程(3)减去(2)得到,因而只有2个独立的化学平衡,2R =。

没有明确的浓度限制条件,所以独立组分数3C =。

4.在抽空容器中,氯化铵的分解平衡,43NH Cl(s)NH (g)HCl(g)+。

指出该系统的独立组分数、相数和自由度数?答:反应中有三个物种,一个平衡限制条件,一个浓度限制条件,所以独立组分数为1,相数为2。

根据相律,自由度为1。

即分解温度和分解压力两者之中只有一个可以发生变化。

5.在含有氨的容器中氯化铵固体分解达平衡,43NH Cl(s)NH (g)HCl(g)+。

指出该系统的独立组分数、相数和自由度?答: 反应中有三个物种,一个平衡限制条件,没有浓度限制条件。

所以独立组分数为2,相数为2,自由度为2。

6.碳和氧在一定条件下达成两种平衡,指出该系统的独立组分数、相数和自由度数。

习题详解-第6章 定积分

习题详解-第6章 定积分

习题6-11. 利用定积分的几何意义求定积分:(1)12xdx ⎰;(2)⎰(0)a >.解 (1) 根据定然积分的几何意义知, 102xdx ⎰表示由直线2,1y x x ==及x 轴所围的三角形的面积,而此三角形面积为1,所以121xdx =⎰.(2) 根据定积分的几何意义知,⎰表示由曲线0,y x x a ===及x 轴所围成的14圆的面积,而此14圆面积为214πa ,所以2014a a =⎰π.2. 根据定积分的性质,比较积分值的大小:(1)12x dx ⎰与13x dx ⎰; (2)1xe dx ⎰与1(1)x dx +⎰.解 (1) ∵当[0,1]x ∈时,232(1)0x x x x -=-≥,即23x x ≥,又2x3x ,所以11230x dx x dx >⎰⎰.(2) 令()1,()1x x f x e x f x e '=--=-,因01x ≤≤,所以()0f x '>, 从而()(0)0f x f ≥=,说明1xe x ≥+,所以110(1)x e dx x dx >+⎰⎰.3. 估计下列各积分值的范围:(1)421(1)x dx +⎰;(2) arctan xdx ;(3)2ax aedx --⎰(0a >); (4)22x xe dx -⎰.解 (1) 在区间[]1,4上,函数2()1f x x =+是增函数,故在[1,4]上的最大值(4)17M f ==,最小值(1)2m f ==,所以4212(41)(1)17(41)d xx -≤+≤-⎰,即 4216(1)51x dx ≤+≤⎰.(2) 令()arctan f x x x =,则2()arctan 1x f x x x '=++,当x ∈时,()0f x '>,从而()f x在上是增函数,从而f (x )在上的最大值M f ==,最小值m f ==,所以2arctan 93xdx =≤≤=ππ即2arctan 93xdx ≤≤ππ.(3) 令2()x f x e -=,则2()2x f x xe -'=-,令()0f x '=得驻点0x =,又(0)1f =,2()()a f a f a e -=-=,a >0时, 21a e -<,故()f x 在[],a a -上的最大值1M =,最小值2e a m -=,所以2222aa x aa dx a ---≤≤⎰e e .(4) 令2()x xf x e-=,则2()(21)xxf x x e -'=-,令()0f x '=得驻点12x =,又(0)1,f = 1241(),(2)2f e f e -==,从而()f x 在[]0,2上的最大值2M e =,最小值14m e -=,所以 212242xxee dx e --≤≤⎰.习题6-21. 求下列导数:(1)0d dx ⎰; (2) 5ln 2x t d t e dt dx -⎰; (3) cos 20cos()x d t dt dx π⎰; (4)sin x d t dt dx t π⎰ (0x >). 解 (1)d dx =⎰ (2) 55ln 2x t xd te dt x e dx --=⎰. (3)cos 222cos()cos(cos )(cos )sin cos(cos )x d t dt x x x x dx πππ'=⋅=-⎰. (4) sin sin sin x x d t d t xdt dt dx t dx t xππ=-=-⎰⎰.2. 求下列极限:(1) 02arctan limxx tdt x →⎰; (2)()22220e lime xt xx t dt t dt→⎰⎰.解 (1) ()022000021arctan arctan arctan 11(1)lim limlim lim 222x xx x x x tdt tdt x x x x x →→→→'⎡⎤--⎣⎦+====-'⎰⎰.(2) ()()22222222222000020000220022lim lim lim lim xxx x t t t x tx x x x x x x t x t e dt e dt e dt e dt xe xe te dtte dt →→→→'⎡⎤⋅⎢⎥⎣⎦==='⎡⎤⎣⎦⎰⎰⎰⎰⎰⎰e []2222202000222lim lim lim 2122x t x x x x x x x e dt e x e xe x xe →→→'⎡⎤⎣⎦====+'+⋅⎰. 3. 求由方程e cos 0yxt dt tdt +=⎰⎰所确定的隐函数()y y x =的导数.解 方程两边对x 求导数得:cos 0e y y x '⋅+=, cos e yxy '∴=-, 又由已知方程有000sin e y xtt +=,即1sin sin 00e y x -+-=, 即1sin e yx =-,于是有cos cos sin 1e yx xy x '=-=-. 4. 计算下列定积分:(1)1⎰; (2)221d x x x --⎰;(3) 设,0,2()sin ,2x x f x x x πππ⎧≤≤⎪⎪=⎨⎪≤≤;⎪⎩ ,求0()f x dx π⎰(4)⎰.解 (1)4321121433x ==⎰.(2)21222221101()()()dx x x dx x x dx x x dx x x --=-+-+--⎰⎰⎰⎰012322332101111111116322332x x x x x x -⎛⎫⎛⎫⎛⎫=++=--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(3) ()2222022()sin 1cos 82xf x dx xdx xdx x ππππππππ=+=+=+-⎰⎰⎰(4)32322(2)(2)xdx x dx x dx =-=-+-⎰⎰⎰⎰232202115(2)(2)222x x x x =-+-=.5.设函数()f x 在区间[],a b 上连续,在(),a b 内可导,()0f x '≤,1()()xaF x f t dt x a =-⎰;证明:在(),a b 内有()0F x '≤. 证明 22111()()()()()()()()xx aa F x f t dt f x x a f x f t dt x a x a x a ⎡⎤'=-+=--⎢⎥⎣⎦---⎰⎰[][][]21()()()(),(,,)()x a f x x a f a x a b x a ξξ=---∈∈- (),((,)(,))x f x a b x aξηηξ-'=∈∈-. 由已知条件可知结论成立.习题 6-31. 计算下列积分:(1) 3sin()x dx πππ+3⎰; (2) 32(115)dx x 1-+⎰;(3)1-⎰; (4) 320sin cos d ϕϕϕπ⎰;(5)22cos udu ππ6⎰;(6)2e 1⎰(7)1;(8);(9)ln 3ln 2e e x xdx --⎰; (10) 3222dxx x +-⎰. 解 (1)333sin()sin()()[cos()]x dx x d x x ππππππππππ+=++=-+3333⎰⎰42coscos 033ππ=-+=. (2) 123322211(511)151(511)(115)5(511)10512dx d x x x x 11---+==-=+++⎰⎰. (3)1111(54)14x --=--==⎰⎰.(4)23342200011sin cos cos cos cos 44d d πππϕϕϕϕϕϕ=-==-⎰⎰.(5) 222221cos 211cos cos 2(2)224u udu du du ud u ππππππππ6666+==+⎰⎰⎰⎰2611sin 226264u πππππ⎛⎫=+=- ⎪⎝⎭ (6)222111)e e ===⎰⎰. (7) 令tan x t =,则2sec dx tdt =,当1x =时,4t π=;当x =3t π=; 于是332144cos 1sin sin t dt t tππππ==-=⎰. (8)令x t =,则dx tdt =,当0x =时,0t =;当x =,2t π=; 于是2222012cos (1cos 2)(sin 2)22tdt t dt t t ππππ==+==+⎰⎰.(9) 令xe t =,则1ln ,d x t x dt t==,当ln 2x =时,2t =;;当ln 3x =时,3t =;于是3ln3332ln 22221113111(ln ln )12222111x x dx dt t dt e e t t t t --⎛⎫====- ⎪---++⎝⎭⎰⎰⎰. (10)333222211111()ln 231232dx x dx x x x x x -=-=+--++⎰⎰1211(ln ln )ln 2ln 53543=-=- 2. 计算下列定积分: (1)10e xx dx -⎰; (2)e1ln x xdx ⎰;(3)41⎰; (4) 324sin xdx xππ⎰; (5) 220e cos x xdx π⎰; (6) 221log x xdx ⎰;(7)π2(sin )x x dx ⎰; (8) e1sin(ln )x dx ⎰.解 (1)1111000x x x xxe dx xde xe e dx ----=-=-+⎰⎰⎰1110121x e ee e e e----=--=--+=-.(2) 2222211111111111ln ln ln (1)222244e e e e ex xdx xdx x x xdx e x e ==-=-=+⎰⎰⎰.(3) 444111112ln 28ln 2dx x dx x ==-=-⎰⎰⎰8ln 24=-.(4)333324444cot cot cot sin xdx xd x x x xdx x ππππππππ=-=-+⎰⎰⎰34π131ln ln sin 4224xπππ⎛=+=+ ⎝.(5)22222222cos sin sin 2sin x x xx e xdx e d x e xe xdx ππππ==-⎰⎰⎰22222202cos 2cos 4cos x xx e e d x e e xe xdx πππππ=+=+-⎰⎰220e 24cos x e xdx ππ=--⎰于是221cos (2)5xe xdx e ππ=-⎰. (6) ()2222222111122221111log ln ln 2ln 22ln 211ln 2ln 22x xdx xdx x x xdx x x x ==-⎛⎫=- ⎪ ⎪⎝⎭⎰⎰⎰ 133(4ln 2)22ln 224ln 2=-=-. (7) 223200001111(sin )(1cos 2)(sin2)2232x x dx x x dx x x d x ππππ=-=-⎰⎰⎰ 33200011(sin 22sin2)cos26464x x x xdx xd x πππππ=--=-⎰⎰ 3001(cos 2cos2)64x x xdx πππ=--⎰ 3301sin 264864x πππππ=-+=-. (8)111sin(ln )sin(ln )cos(ln )eeex dx x x x dx =-⎰⎰11sin1cos(ln )sin(ln )eee x x x dx =--⎰1sin1cos11sin(ln )ee e x dx =-+-⎰所以11sin(ln )(sin1cos11)2ex dx e e =-+⎰. 3. 利用被积函数的奇偶性计算下列积分:(1)11ln(x dx -⎰ ; (2)1212sin 1xdx x -++⎰(3)222(x dx -+⎰; (4)4224cos d θθππ-⎰.解 (1)ln(x 是奇函数,11ln(0x dx -∴=⎰.(2) 2sin 1xx +是奇函数,121sin 01x dx x -∴=+⎰, 因此 111221112sin 22arctan 11x dx dx x x x π---+===++⎰⎰. (3)2222222((42416x dx dx dx ---=+==⎰⎰⎰.(4) ()244222022201cos 24cos 8cos 82212cos 2cos231384222d d d d θθθθθθθθθππππππ-π+⎛⎫== ⎪⎝⎭=++=⋅⋅⋅=⎰⎰⎰⎰.4. 证明下列等式: (1) 证明:1100(1)(1)m n n m x x dx x x dx -=-⎰⎰;(2) 证明:1122111xx dx dx x x =++⎰⎰ (0x >); (3) 设()f x 是定义在区间(,)-∞+∞上的周期为T 的连续函数,则对任意(,)a ∈-∞+∞,有0()()a TTaf x dx f x dx +=⎰⎰.证 (1)令1x t -=,则dx dt =-,当0x =时,1t =;当1x =时,0t =;于是1111(1)(1)()(1)(1)m nm nnmn m x x dx t t dt t t dt x x dx -=--=-=-⎰⎰⎰⎰,即11(1)(1)m n n m x x dx x x dx -=-⎰⎰.(2) 令1x t=则21dx dt t -=,于是11111112222211211111111111t xx t t dx dt t dt dx x tt x t t⎛⎫=⋅=-⋅==- ⎪++++⎝⎭+⎰⎰⎰⎰⎰d ,即 1122111xx dx dx x x =++⎰⎰. (3) 因为()()()a TT a Taaf x dx f x dx f x dx ++=+⎰⎰⎰,而()()()a Taaaf x dx x t T f t T dt f t dt +=++=⎰⎰⎰令()()()aT Taf x dx f x dx f x dx ==-⎰⎰⎰故()()a TT af x dx f x dx +=⎰⎰.4. 若()f t 是连续函数且为奇函数,证明0()xf t dt ⎰是偶函数;若()f t 是连续函数且为偶函数,证明()xf t dt ⎰是奇函数.证 令0()()xF x f t dt =⎰.若()f t 为奇函数,则()()f t f t -=-,令t u =-,可得()()()()()xx xF x f t dt f u du f u du F x --==--==⎰⎰⎰,所以0()()xF x f t dt =⎰是偶函数.若()f t 为偶函数,则()()f t f t -=,令t u =-,可得()()()()()xx xF x f t dt f u du f u du F x --==--=-=-⎰⎰⎰,所以0()()xF x f t dt =⎰是奇函数.5. 利用分部积分公式证明:()()()()d xxuf u x u du f x x du -=⎰⎰⎰.证 令0()()uF u f x dx =⎰则()()F u f u '=,则(())()()()xu x xxf x dx du F u du uF u uF u du '==-⎰⎰⎰⎰()()()()xx xxF x uf u du x f x dx uf u du =-=-⎰⎰⎰()()()()xxxxx f u du uf u du xf u du uf u du =-=-⎰⎰⎰⎰()()xx u f u du =-⎰. 习题6-41. 求由下列曲线所围成的平面图形的面积:(1) 2y x =与22y x =-; (2) x y e =与0x =及y e =; (3) 24y x =-与0y =; (4) 2y x =与y x =及2y x =;(5) 1y x=与y x =及2x =; (6) 2y x =与2y x =-; (7) ,x x y e y e -==与1x =;(8) sin (0)2y x x π=≤≤与0,1x y ==. 解 (1)两曲线的交点为(1,1),(1,1)-,取x 为积分变量,[]1,1x ∈-,面积元素22(2)dA x x dx =--,于是所求的面积为112311182(1)2()33A x dx x x --=-=-=⎰.(2) 曲线x y e =与y e =的交点坐标(1,)e , x y e =与0x =的交点为(0,1),取y 为积分变量,[]1,y e ∈,面积元素ln dA ydy =;于是所求面积为111ln (ln )1eee A ydy ydy y y y ===-=⎰⎰.(3)曲线24y x =-与0y =的交点为(2,0),(2,0)-,取x 为积分变量,[]2,2x ∈-,面积元素2(4)dA x dx =-,于是所求的面积为222322132(4)(4)33A x dx x x --=-=-=⎰. (4) 曲线2y x =与y x =的交点为(0,0),(1,1);2y x =与2y x =的交点为(0,0),(2,4);它们所围图形面积为:121222011(2)(2)(2)A x x dx x x dx xdx x x dx =-+-=+-⎰⎰⎰⎰2231201117()236x x x =+-=.(5) 曲线1y x =与y x =的交点为(1,1),1y x =与2x =的交点为1(2,)2;取x 积分变量,[]1,2x ∈,面积元素1()dA x dx x=-,于是所求的面积为22211113()(ln )ln 222A x dx x x x =-=-=-⎰.(6) 曲线2y x =与2y x =-的交点为()()114,2-,和,取y 作积分变量,[]1,2y ∈-,面积元素2(2)dA y y dy =+-,于是所求的面积为2222311117(2)(2)232A y y dy y y y --=+-=+-=⎰.(7) 曲线x y e =与x y e -=的交点(0,1),取x 作积分变量,[]0,1x ∈,面积元素()x x dA e e dx -=-,于是所求图形的面积为1)()2x x x x A e e dx e e e e--=-=+=+-⎰101(.(8)取x 作积分变量,0,2x π⎡⎤∈⎢⎥⎣⎦,面积元素(1sin )dA x dx =-,于是所求的面积为 220(1sin )(cos )12A x dx x x πππ=-=+=-⎰.2. 求由下列曲线围成的平面图形绕指定坐标轴旋转而成的旋转体的体积:(1) 1,4,0y x x y ====,绕x 轴;(2) 3,2,y x x x ==轴,分别绕x 轴与y 轴; (3) 22,y x x y ==,绕y 轴; (4) 22(5)1x y -+=,绕y 轴.解 (1)取x 作积分变量,[]1,4x ∈,体积元素2dV dx xdx ππ==,于是所求旋转体的体积为442111522V xdx x πππ===⎰. (2)绕x 轴旋转时,取x 作积分变量,[]0,2x ∈,体积元素32()x dV x dx π=,于是2267012877x V x dx x πππ===⎰; 同理可求平面图形绕y 旋转所成的旋转体的体积858223003642(4)55y V dy y y πππ⎡⎤=-=-=⎣⎦⎰.(3)曲线2y x =与2x y =的交点为(0,0),(1,1),取y 作积分变量[]0,1y ∈,体积元素222()dV y dy π⎡⎤=-⎣⎦,于是所求的旋转体的体积为1142500113()()2510V y y dx y y πππ=-=-=⎰. (4) 取y 作积分变量[]1,1y ∈-,体积元素22(5(520dV dy π⎡⎤=-=⎣⎦,于是所求的旋转体的体积为1212020102V πππ-==⋅=⎰.3.设某企业边际成本是产量Q (单位)的函数0.2()2QC Q e '=(万元/单位),其固定成本为090C =(万元),求总成本函数. 解 总成本函数为0.200()()290Q QQ C Q C Q dQ C e dQ '=+=+⎰⎰0.20.2010901080QQ Q e e =+=+.4.设某产品的边际收益是产量Q (单位)的函数()152R Q Q '=-(元/单位),试求总收益函数与需求函数. 解 总收益函数为20()(152)15QR Q Q dQ Q Q =-=-⎰需求函数为()15R Q P Q Q==-. 5.已知某产品产量的变化率是时间t (单位:月)的函数()25,0f t t t =+≥,问:第一个5月和第二个5月的总产量各是多少?解 设产品总产量为()Q t ,则()()Q t f t '=,第一个5月的总产量552510()(25)(5)50Q f t dt t dt t t ==+=+=⎰⎰. 第二个5月的总产量为10102102555()(25)(5)100Q f t dt t dt t t ==+=+=⎰⎰.6.某厂生产某产品Q (百台)的总成本()C Q (万元)的变化率为()2C Q '=(设固定成本为零),总收益()R Q (万元)的变化率为产量Q (百台)的函数()72R Q Q '=-.问: (1) 生产量为多少时,总利润最大?最大利润为多少?(2) 在利润最大的基础上又多生产了50台,总利润减少了多少? 解 (1)总利润()()()L Q R Q C Q =-当()0L Q '=即()()0R Q C Q ''-=即7220Q --=,2.5Q =(百台)时,总利润最大,此时的总成本和总收益分别为2.5 2.52.50()225C C Q dQ dQ Q'====⎰⎰2.52.52.520()(72)(7)11.25R R Q dQ Q dQ Q Q '==-=-=⎰⎰总利润11.255 6.25L R C =-=-=(万元).即当产量为2.5(百台)时,总利润最大,最大利润是6.25万元.(2)在利润最大的基础上又生产了50台,此时产量为3百台,总成本3300()26C C Q dQ dQ '===⎰⎰,总收入3323000()(72)(7)12R R Q dQ Q dQ Q Q '==-=-=⎰⎰, 总利润为1266L R C =-=-=(万元).减少了6.2560.25-=万元.即在利润最大的基础上又生产了50台时,总利润减少了0.25万元.习题 6-51. 判断下列反常积分的敛散性,若收敛,则求其值: (1)41dxx+∞⎰; (2)1+∞⎰; (3) 0xe dx +∞-⎰(a >0); (4)sin xdx +∞⎰;(5)1-⎰; (6)222dxx x +∞-∞++⎰;(7)21⎰; (8)10ln x xdx ⎰;(9)e1⎰; (10)23(1)dxx -⎰.解 (1)14311133dx x x +∞+∞=-=⎰.此反常积分收敛.(2)1+∞==+∞⎰.此反常积分发散. (3) 11x xe dx e +∞--+∞=-=⎰.此反常积分收敛.(4) 00sin cos lim cos 1x xdx xx +∞+∞→+∞=-=-+⎰不存在,此反常积分发散.(5)111arcsin x π--==⎰.此反常积分收敛.(6)22(1)arctan(1)22(1)1dxd x x x x x π+∞+∞+∞-∞-∞-∞+==+=++++⎰⎰.此反常积分收敛.(7)23222110012lim lim (1)3x εεεε+++→→+⎡==-+⎢⎣⎰⎰320222lim 22333εε+→⎛==-- ⎝.此反常积分收敛. (8)11122221000111111ln limln lim ln lim ln 222424x xdx xdx x x xdx εεεεεεεεε→→→⎛⎫⎛⎫==-=-- ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰, 所以11220001111ln lim ln lim (ln )4244x xdx x xdx εεεεεε++→→==--=-⎰⎰.此反常积分收敛.(9)111πarcsin(ln )2eeex ===⎰⎰.此反常积分收敛. (10)21233301(1)(1)(1)dx dx dxx x x =+---⎰⎰⎰, 因为反常积分1132001(1)(1)dx x x ==∞--⎰发散,所以反常积分230(1)dxx -⎰发散. 2. 当k 为何值时,反常积分+2(ln )kdxx x ∞⎰收敛?当k 为何值时,这反常积分发散? 解 当1k =时,++222ln ln(ln )ln ln dxd x x x x x∞∞+∞===+∞⎰⎰,发散.当1k ≠时,1++122211(ln )(1)(ln 2)(ln )ln (ln )11kk kk k dx x k x d x x x kk -∞∞--+∞⎧>⎪-===⎨-⎪+∞<⎩⎰⎰所以,当1k >时,此广义积分收敛;当1k ≤时,此广义积分发散. 3. 利用递推公式计算反常积分+0e n x n I x dx ∞-=⎰.解 ++110n x n xn x n n I x de x e n x e dx nI ∞∞----+∞-=-=-+=⎰⎰,因为 +101x x xI xde xe e ∞---+∞+∞=-=--=⎰,所以 121(1)(1)2!n n n I nI n n I n n I n --==-=-= .复习题6(A )1、 求下列积分:(1)121tan sin 1xdx x -+⎰; (2)⎰; (3)2x⎰; (4)ln 0⎰;(5)21220(1)x dx x +⎰; (6)1⎰;(7)120x x e dx -⎰; (8)21(ln )ex dx ⎰;(9) 401cos 2xdx xπ+⎰; (10) 20cos x e xdx π-⎰;(11) 20sin 1cos x xdx xπ++⎰; (12) 40ln(1tan )x dx π+⎰. 解 (1) 因为被积函数2tan sin 1x x +是奇函数,所以121tan 0sin 1xdx x -=+⎰.(2)=⎰⎰,令1sin x t -=,则cos dx tdt =;当0x =时,2t π=-;当1x =时,0t =;所以022221cos 2sin 2cos 2244t t t tdt dt ππππ---+⎡⎤===+=⎢⎥⎣⎦⎰⎰⎰. (3) 令2sin x t =,则2cos dx tdt =,当0x =时,0t =;当2x =时,2t π=;所以222222204sin 4cos 4sin 22(1cos 4)xt tdt tdt t dt πππ=⋅==-⎰⎰⎰⎰2012(sin 4)4t t ππ=-=. (4)t =,则221tdx dt t =+,当0x =时,0t =;当ln 2x =时,1t =;所以2ln 11200022(arctan )2(1)14t dt t t t π==-=-+⎰⎰. (5) 令tan x t =,则2sec dx tdt =,当0x =时,0t =;当1x =时,4t π=;所以22412442240000tan 1cos 2sin 21sec ()(1)sec 22484x t t t t dx tdt dt x t ππππ-===-=-+⎰⎰⎰.(6) 令sec x t =,则sec tan dx t tdt =,当1x =时,0t =;当2x =时,3t π=;所以223330100tan sec tan tan (tan )sec 3t dx t tdt tdt t t x t ππππ===-=⎰⎰⎰. (7)111112221000022xxx x x x e dx x dex exe dx e xde ------=-=-+=--⎰⎰⎰⎰1111110223225x x x e xe e dx e e e ------=--+=--=-⎰.(8)22111111(ln )ln 2ln 2ln 22ee e e ex dx x x x x dx e x x dx e x=-⋅=-+=-⎰⎰⎰.(9) 44440000tan tan tan 1cos 2x dx xd x x x xdx x ππππ==-+⎰⎰⎰ 401ln cos ln 2442x πππ=+=-. (10)2222cos cos cos sin xxxx e xdx xdee x e xdx ππππ----=-=--⎰⎰⎰2220001sin 1sin cos xxx xdee x e xdx πππ---=+=+-⎰⎰221cos x ee xdx ππ--=+-⎰,所以 2201cos (1)2xe xdx e ππ--=+⎰.(11)22222000002sin sin cos tan 1cos 1cos 21cos 2cos2x x x x x d x dx dx dx xd x x x x πππππ+=+=-+++⎰⎰⎰⎰⎰2220002200tan tan ln(1cos )222ln cos ln(1cos )22x x x dx x x x ππππππ=--+=--+⎰20ln 22ln cos222x πππ=++=. (12) 4444000cos sin ln(1tan )ln ln(cos sin )ln cos cos x x x dx dx x x dx xdx xππππ++==+-⎰⎰⎰⎰令4x u π-=,可得0440041ln(cos sin )ln cos()(ln 2ln cos )42x x dx x dx u du ππππ⎤+=-=-+⎥⎦⎰⎰⎰40ln 2ln cos 8xdx ππ=+⎰所以40ln 2ln(1tan )8x dx ππ+=⎰.2、设()f x 在[],a b 上连续,且()1baf x dx =⎰,求()b af a b x dx +-⎰.解 令a b x t +-=,则dx dt =-,当x a =时,t b =;当x b =时,t a =;所以()()()1bababaf a b x dx f t dt f t dt +-=-==⎰⎰⎰.3、设()f x 为连续函数,试证明:()()(())xx tf t x t dt f u du dt -=⎰⎰⎰.证 用分部积分法,(())()(())xxt tx tf u du dt t f u du td f u du =-⎰⎰⎰⎰⎰()()()()xx x xx f u du tf t dt xf t dt tf t dt =-=-⎰⎰⎰⎰()()xf t x t dx =-⎰.4、设()u ϕ为连续函数,试证明:220()2()aa ax dx x dx ϕϕ-=⎰⎰.证2220()()()aaaax dx x dx x dx ϕϕϕ--=+⎰⎰⎰,令x t =-,则0022220()(())()()a aaax dx t dt t dt x dx ϕϕϕϕ-=--==⎰⎰⎰⎰所以022220()()()2()aa aaax dx x dx x dx x dx ϕϕϕϕ--=+=⎰⎰⎰⎰.5、计算下列反常积分:(1)2048dxx x +∞++⎰; (2)21arctan x dx x+∞⎰; (3)1⎰; (4)1e ⎰ 解 (1)222000(2)12arctan 48(2)2228dx d x x x x x π+∞+∞+∞++===++++⎰⎰. (2)221111arctan 1arctan 1arctan (1)x x dx xd dx x x x x x +∞+∞+∞+∞=-=-++⎰⎰⎰ 22111lnln 242142xx ππ+∞=+=++.(3)1110022π⎡===⎣⎰⎰.(4)112ee ===⎰⎰. 6、求抛物线22y px =及其在点(,)2pp 处的法线所围成的平面图形的面积. 解 抛物线22y px =在点(,)2p p 处的法线方程为32x y p +=,两曲线的交点为9(,3),(,)22pp p p -;取y 作积分变量3p y p -≤≤,所求的平面图形面积为 2232333131116()()222263ppp pA p y y dy py y y p p p --=--=--=⎰. 7、求由曲线32y x =与直线4,x x =轴所围图形绕y 轴旋转而成的旋转体的体积.解 曲线32y x =与直线4x =的交点为(4,8),取y 作积分变量,08y ≤≤,体积元素2232434()(16)dy y dy y dy ππ⎡⎤=-=-⎣⎦于是,所求的旋转体的体积为8847003512(16)(16)77V y dy y y πππ=-=-=⎰.8、设某产品的边际成本为()2C Q Q '=-(万元/台),其中Q 代表产量,固定成本022C ==(万元),边际收益()204R Q Q '=-(万元/台).试求: (1) 总成本函数和总收益函数; (2) 获得最大利润时的产量;(3) 从最大利润时的产量又生产了4台,总利润的变化.解 (1)总成本函数2001()(2)2222Q C Q Q dQ C Q Q =-+=-+⎰, 总收益函数20()(204)202QR Q Q dQ Q Q =-=-⎰.(2)利润函数23()()()18222L Q R Q C Q Q Q =-=--,令()0L Q '=,得6Q =(台),而(6)30L ''=-<,所以当产量6Q =(台)时,利润最大.(3)(10)(6)83224L L -=-=-,所以从最大利润时的产量又生产了4台,总利润减少了24(万元).(B) 1、填空题:(1)202cos x d x t dt dx=⎰ . (2) 设()f x 连续,220()()x F x xf t dt =⎰,则()F x '= .(3) 20sin()xd x t dt dx -=⎰ . (4) 设()f x 连续,则220()xd tf x t dt dx -=⎰ . (5) 设20cos ()1sin xt f x dt t=+⎰,则220()1()f x dx f x π'=+⎰ . (6) 设()f x 连续,且1()2()f x x f x dx =+⎰,,则()f x = .(7) 设()f x 连续,且()1cos xtf x t dt x -=-⎰,则20()f x dx π=⎰ .(8)2ln e dxx x +∞=⎰ .解 (1) 2220002224cos (cos )cos (cos )2x x x d d x t dt x t dt t dt x x x dx dx==+-⋅⎰⎰⎰2224cos 2cos xt dt x x =-⎰.(2) 2222200()(())()()2x x d F x x f t dt f t dt x f x x dx '==+⋅⋅⎰⎰ 22220()2()x f t dt x f x =+⎰.(3) 令x t u -=,则02220sin()sin ()sin xxxx t dt u du u du -=-=⎰⎰⎰所以22200sin()sin sin x x d d x t dt u du x dx dx -==⎰⎰. (4)令22x t u -= 则222222001()()()2x x tf x t dt f x t d x t -=---⎰⎰220011()()22x x f u du f u du =-=⎰⎰.所以2222001()()()2x x d d tf x t dt f u du xf x dx dx -=⋅=⎰⎰. (5)22200()arctan ()arctan ()arctan (0)1()2f x dx f x f f f x πππ'==-+⎰, 而02222000cos cos (0)0,()arctan(sin )1sin 21sin 4t t f dt f dt t t t ππππ=====++⎰⎰,所以220()arctan1()4f x dx f x ππ'=+⎰(6) 等式1()2()f x x f x dx =+⎰两边在区间[]0,1积分得1111001()2()2()2f x dx xdx f x dx f x dx =+=+⎰⎰⎰⎰11()2f x dx =-⎰, 所以 ()1f x x =-.(7)令x t u -=,则du dt =-,于是00()()()xxtf x t dt x u f u du -=-⎰⎰原等式化为 0()()1cos xxx f u du uf u du x -=-⎰⎰两边对x 求导()sin xf u du x =⎰在上式中,令2x π=,得()1xf x dx =⎰.(8)22ln 11ln ln ln ee edx d x x x x x +∞+∞+∞==-=⎰⎰ 2、计算下列积分:(1) 120ln(1)(2)x dx x +-⎰; (2)3142(1)x x dx -⎰;(3)31(2)f x dx -⎰,其中21()x x f x e-⎧+=⎨⎩0x x ≤>; (4)()f x dx π⎰,其中0sin ()xtf x dt tπ=-⎰. 解 (1) 111120000ln(1)1ln(1)ln(1)(2)22(1)(2)x x dxdx x d x x x x x ++=+=----+-⎰⎰⎰ 1100111111ln 2()ln 2ln ln 2312323x dx x x x +=--=-=+--⎰. (2) 令2sin x t =,则331144242222200001111cos 2(1)(1)cos ()2222t x x dx x dx tdt dt ππ+-=-==⎰⎰⎰⎰220011cos 41313(12cos 2)(sin 2sin 4)8282832t t dt t t t πππ+=++=++=⎰. (3) 令2x t -=,则dx dt =,当1x =时,1t =-;当3x =时,1t =;于是3101111(2)()()()f x dx f t dt f x dx f x dx ---==+⎰⎰⎰⎰12171(1)3x x dx e dx e--=++=-⎰⎰. (4) 由题设有sin ()xf x xπ'=-,用分部积分法得 00000sin sin ()()()t x f x dx xf x xf x dx dt x dx tx ππππππππ'=-=---⎰⎰⎰⎰ 000sin sin sin ()x x xdx x dx x dx x x xππππππππ=-=----⎰⎰⎰ 0sin 2xdx π==⎰.3、设13201()()1f x x f x dx x =++⎰,求10()f x dx ⎰. 解 等式两边在区间[]0,1上积分得11113200001()()1f x dx dx f x dx x dx x =+⋅+⎰⎰⎰⎰11100011arctan ()()444x f x dx f x dx π=+=+⎰⎰解得1()3f x dx π=⎰.4、求函数2()(1)x t f x t e dt -=-⎰的极值.解 令222()(1)22(1)(1)0x x f x x e x x x x e --'=-⋅=--+=,得函数()f x 的驻点:1,0,1-;当1x <-时,()0f x '>;当10x -<<时,()0f x '<; 当01x <<时,()0f x '>;当1x >时,()0f x '<;所以函数()f x 在0x =处取得极小值(0)0f =,在1x =±处取得极大值:11(1)(1)t f t e dt e-±=-=⎰. 5、设21sin ()x tf x dt t=⎰,求10()xf x dx ⎰.解 用分部积分法得221211122220011001sin 1sin 1sin ()2222x x t t x xf x dx dt dx x dt x xdx t t x ⎡⎤⎡⎤==-⋅⋅⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰⎰112220011cos11sin cos 222x dx x -=-==⎰.6、求曲线(1)(2)y x x =--和x 轴围成的平面图形绕y 轴旋转所成的旋转体体积. 解 抛物线(1)(2)y x x =--的顶点坐标为31(,)24-,左、右半支方程分别为:11()(32x y =-和21()(32x y =+;取y 作积分变量,104y -≤≤;体积元素为2221(())(())3dV x y x y dy π⎡⎤=-=⎣⎦,因此所求的旋转体的体积为0302114433(14)(14)422V y y πππ--==+=+=⎰⎰.7、设2()()()xax x t f t dt Φ=-⎰,证明:()2()()xax x t f t dt 'Φ=-⎰.证 2222()(2)()()2()()xxx xaaaax x xt t f t dt xf t dt x tf t dt t f t dt Φ=-+=-+⎰⎰⎰⎰,所以()22()()2()()xx xaaax xf t dt x tf t dt t f t dt ''Φ=-+⎰⎰⎰222()()2()2()()xxa ax f t dt x f x tf t dt x xf x x f x =+--⋅+⎰⎰2()2()2()()xx xaaaxf t dt tf t dt x t f t dt =-=-⎰⎰⎰.8、设连续函数()f x 满足(2)2()f x f x =,证明:2110()7()xf x dx xf x dx =⎰⎰. 证 202110()()()xf x dx xf x dx xf x dx =+⎰⎰⎰, 令2x t =,则21110000()2(2)(2)42()8()xf x dx tf t d t t f t dt xf x dx ==⋅=⎰⎰⎰⎰, 所以 202110()()()xf x dx xf x dx xf x dx =+⎰⎰⎰ 111000()8()7()xf x dx xf x dx xf x dx =-+=⎰⎰⎰.。

高等数学习题详解-第6章 定积分

高等数学习题详解-第6章 定积分

习题6-11. 利用定积分的几何意义求定积分:(1)12xdx ⎰;(2)⎰(0)a >.解 (1) 根据定然积分的几何意义知, 102xdx ⎰表示由直线2,1y x x ==及x 轴所围的三角形的面积,而此三角形面积为1,所以121xdx =⎰.(2) 根据定积分的几何意义知,⎰表示由曲线0,y x x a ===及x 轴所围成的14圆的面积,而此14圆面积为214πa ,所以2014a a =⎰π.2. 根据定积分的性质,比较积分值的大小:(1)12x dx ⎰与13x dx ⎰; (2)1xe dx ⎰与1(1)x dx +⎰.解 (1) ∵当[0,1]x ∈时,232(1)0x x x x -=-≥,即23x x ≥,又2x3x ,所以11230x dx x dx >⎰⎰.(2) 令()1,()1x x f x e x f x e '=--=-,因01x ≤≤,所以()0f x '>, 从而()(0)0f x f ≥=,说明1xe x ≥+,所以110(1)x e dx x dx >+⎰⎰.3. 估计下列各积分值的范围:(1)421(1)x dx +⎰;(2) arctan xdx ;(3)2ax aedx --⎰(0a >); (4)22x xe dx -⎰.解 (1) 在区间[]1,4上,函数2()1f x x =+是增函数,故在[1,4]上的最大值(4)17M f ==,最小值(1)2m f ==,所以4212(41)(1)17(41)d xx -≤+≤-⎰,即 4216(1)51x dx ≤+≤⎰.(2) 令()arctan f x x x =,则2()arctan 1x f x x x '=++,当x ∈时,()0f x '>,从而()f x在上是增函数,从而f (x )在上的最大值M f ==,最小值m f ==,所以2arctan 93xdx =≤≤=ππ即2arctan 93xdx ≤≤ππ.(3) 令2()x f x e -=,则2()2x f x xe -'=-,令()0f x '=得驻点0x =,又(0)1f =,2()()a f a f a e -=-=,a >0时, 21a e -<,故()f x 在[],a a -上的最大值1M =,最小值2e a m -=,所以2222aa x aa dx a ---≤≤⎰e e .(4) 令2()x xf x e-=,则2()(21)xxf x x e -'=-,令()0f x '=得驻点12x =,又(0)1,f = 1241(),(2)2f e f e -==,从而()f x 在[]0,2上的最大值2M e =,最小值14m e -=,所以 212242xxee dx e --≤≤⎰.习题6-21. 求下列导数:(1)0d dx ⎰; (2) 5ln 2x t d t e dt dx -⎰; (3) cos 20cos()x d t dt dx π⎰; (4)sin x d t dt dx t π⎰ (0x >). 解 (1)d dx =⎰ (2) 55ln 2x t xd te dt x e dx --=⎰. (3)cos 222cos()cos(cos )(cos )sin cos(cos )x d t dt x x x x dx πππ'=⋅=-⎰. (4) sin sin sin x x d t d t xdt dt dx t dx t xππ=-=-⎰⎰.2. 求下列极限:(1) 02arctan limxx tdt x →⎰; (2)()22220e lime xt xx t dt t dt→⎰⎰.解 (1) ()022000021arctan arctan arctan 11(1)lim limlim lim 222x xx x x x tdt tdt x x x x x →→→→'⎡⎤--⎣⎦+====-'⎰⎰.(2) ()()22222222222000020000220022lim lim lim lim xxx x t t t x tx x x x x x x t x t e dt e dt e dt e dt xe xe te dtte dt →→→→'⎡⎤⋅⎢⎥⎣⎦==='⎡⎤⎣⎦⎰⎰⎰⎰⎰⎰e []2222202000222lim lim lim 2122x t x x x x x x x e dt e x e xe x xe →→→'⎡⎤⎣⎦====+'+⋅⎰. 3. 求由方程e cos 0yxt dt tdt +=⎰⎰所确定的隐函数()y y x =的导数.解 方程两边对x 求导数得:cos 0e y y x '⋅+=, cos e yxy '∴=-, 又由已知方程有000sin e y xtt +=,即1sin sin 00e y x -+-=, 即1sin e yx =-,于是有cos cos sin 1e yx xy x '=-=-. 4. 计算下列定积分:(1)1⎰; (2)221d x x x --⎰;(3) 设,0,2()sin ,2x x f x x x πππ⎧≤≤⎪⎪=⎨⎪≤≤;⎪⎩ ,求0()f x dx π⎰(4)⎰.解 (1)4321121433x ==⎰.(2)21222221101()()()dx x x dx x x dx x x dx x x --=-+-+--⎰⎰⎰⎰012322332101111111116322332x x x x x x -⎛⎫⎛⎫⎛⎫=++=--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(3) ()2222022()sin 1cos 82xf x dx xdx xdx x ππππππππ=+=+=+-⎰⎰⎰(4)32322(2)(2)xdx x dx x dx =-=-+-⎰⎰⎰⎰232202115(2)(2)222x x x x =-+-=.5.设函数()f x 在区间[],a b 上连续,在(),a b 内可导,()0f x '≤,1()()xaF x f t dt x a =-⎰;证明:在(),a b 内有()0F x '≤. 证明 22111()()()()()()()()xx aa F x f t dt f x x a f x f t dt x a x a x a ⎡⎤'=-+=--⎢⎥⎣⎦---⎰⎰[][][]21()()()(),(,,)()x a f x x a f a x a b x a ξξ=---∈∈- (),((,)(,))x f x a b x aξηηξ-'=∈∈-. 由已知条件可知结论成立.习题 6-31. 计算下列积分:(1) 3sin()x dx πππ+3⎰; (2) 32(115)dx x 1-+⎰;(3)1-⎰; (4) 320sin cos d ϕϕϕπ⎰;(5)22cos udu ππ6⎰;(6)2e 1⎰(7)1;(8);(9)ln 3ln 2e e x xdx --⎰; (10) 3222dxx x +-⎰. 解 (1)333sin()sin()()[cos()]x dx x d x x ππππππππππ+=++=-+3333⎰⎰42coscos 033ππ=-+=. (2) 123322211(511)151(511)(115)5(511)10512dx d x x x x 11---+==-=+++⎰⎰. (3)1111(54)14x --=--==⎰⎰.(4)23342200011sin cos cos cos cos 44d d πππϕϕϕϕϕϕ=-==-⎰⎰.(5) 222221cos 211cos cos 2(2)224u udu du du ud u ππππππππ6666+==+⎰⎰⎰⎰2611sin 226264u πππππ⎛⎫=+=- ⎪⎝⎭ (6)222111)e e ===⎰⎰. (7) 令tan x t =,则2sec dx tdt =,当1x =时,4t π=;当x =3t π=; 于是332144cos 1sin sin t dt t tππππ==-=⎰. (8)令x t =,则dx tdt =,当0x =时,0t =;当x =,2t π=; 于是2222012cos (1cos 2)(sin 2)22tdt t dt t t ππππ==+==+⎰⎰.(9) 令xe t =,则1ln ,d x t x dt t==,当ln 2x =时,2t =;;当ln 3x =时,3t =;于是3ln3332ln 22221113111(ln ln )12222111x x dx dt t dt e e t t t t --⎛⎫====- ⎪---++⎝⎭⎰⎰⎰. (10)333222211111()ln 231232dx x dx x x x x x -=-=+--++⎰⎰1211(ln ln )ln 2ln 53543=-=- 2. 计算下列定积分: (1)10e xx dx -⎰; (2)e1ln x xdx ⎰;(3)41⎰; (4) 324sin xdx xππ⎰; (5) 220e cos x xdx π⎰; (6) 221log x xdx ⎰;(7)π2(sin )x x dx ⎰; (8) e1sin(ln )x dx ⎰.解 (1)1111000x x x xxe dx xde xe e dx ----=-=-+⎰⎰⎰1110121x e ee e e e----=--=--+=-.(2) 2222211111111111ln ln ln (1)222244e e e e ex xdx xdx x x xdx e x e ==-=-=+⎰⎰⎰.(3) 444111112ln 28ln 2dx x dx x ==-=-⎰⎰⎰8ln 24=-.(4)333324444cot cot cot sin xdx xd x x x xdx x ππππππππ=-=-+⎰⎰⎰34π131ln ln sin 4224xπππ⎛=+=+ ⎝.(5)22222222cos sin sin 2sin x x xx e xdx e d x e xe xdx ππππ==-⎰⎰⎰22222202cos 2cos 4cos x xx e e d x e e xe xdx πππππ=+=+-⎰⎰220e 24cos x e xdx ππ=--⎰于是221cos (2)5xe xdx e ππ=-⎰. (6) ()2222222111122221111log ln ln 2ln 22ln 211ln 2ln 22x xdx xdx x x xdx x x x ==-⎛⎫=- ⎪ ⎪⎝⎭⎰⎰⎰ 133(4ln 2)22ln 224ln 2=-=-. (7) 223200001111(sin )(1cos 2)(sin2)2232x x dx x x dx x x d x ππππ=-=-⎰⎰⎰ 33200011(sin 22sin2)cos26464x x x xdx xd x πππππ=--=-⎰⎰ 3001(cos 2cos2)64x x xdx πππ=--⎰ 3301sin 264864x πππππ=-+=-. (8)111sin(ln )sin(ln )cos(ln )eeex dx x x x dx =-⎰⎰11sin1cos(ln )sin(ln )eee x x x dx =--⎰1sin1cos11sin(ln )ee e x dx =-+-⎰所以11sin(ln )(sin1cos11)2ex dx e e =-+⎰. 3. 利用被积函数的奇偶性计算下列积分:(1)11ln(x dx -⎰ ; (2)1212sin 1xdx x -++⎰(3)222(x dx -+⎰; (4)4224cos d θθππ-⎰.解 (1)ln(x 是奇函数,11ln(0x dx -∴=⎰.(2) 2sin 1xx +是奇函数,121sin 01x dx x -∴=+⎰, 因此 111221112sin 22arctan 11x dx dx x x x π---+===++⎰⎰. (3)2222222((42416x dx dx dx ---=+==⎰⎰⎰.(4) ()244222022201cos 24cos 8cos 82212cos 2cos231384222d d d d θθθθθθθθθππππππ-π+⎛⎫== ⎪⎝⎭=++=⋅⋅⋅=⎰⎰⎰⎰.4. 证明下列等式: (1) 证明:1100(1)(1)m n n m x x dx x x dx -=-⎰⎰;(2) 证明:1122111xx dx dx x x =++⎰⎰ (0x >); (3) 设()f x 是定义在区间(,)-∞+∞上的周期为T 的连续函数,则对任意(,)a ∈-∞+∞,有0()()a TTaf x dx f x dx +=⎰⎰.证 (1)令1x t -=,则dx dt =-,当0x =时,1t =;当1x =时,0t =;于是1111(1)(1)()(1)(1)m nm nnmn m x x dx t t dt t t dt x x dx -=--=-=-⎰⎰⎰⎰,即11(1)(1)m n n m x x dx x x dx -=-⎰⎰.(2) 令1x t=则21dx dt t -=,于是11111112222211211111111111t xx t t dx dt t dt dx x tt x t t⎛⎫=⋅=-⋅==- ⎪++++⎝⎭+⎰⎰⎰⎰⎰d ,即 1122111xx dx dx x x =++⎰⎰. (3) 因为()()()a TT a Taaf x dx f x dx f x dx ++=+⎰⎰⎰,而()()()a Taaaf x dx x t T f t T dt f t dt +=++=⎰⎰⎰令()()()aT Taf x dx f x dx f x dx ==-⎰⎰⎰故()()a TT af x dx f x dx +=⎰⎰.4. 若()f t 是连续函数且为奇函数,证明0()xf t dt ⎰是偶函数;若()f t 是连续函数且为偶函数,证明()xf t dt ⎰是奇函数.证 令0()()xF x f t dt =⎰.若()f t 为奇函数,则()()f t f t -=-,令t u =-,可得()()()()()xx xF x f t dt f u du f u du F x --==--==⎰⎰⎰,所以0()()xF x f t dt =⎰是偶函数.若()f t 为偶函数,则()()f t f t -=,令t u =-,可得()()()()()xx xF x f t dt f u du f u du F x --==--=-=-⎰⎰⎰,所以0()()xF x f t dt =⎰是奇函数.5. 利用分部积分公式证明:()()()()d xxuf u x u du f x x du -=⎰⎰⎰.证 令0()()uF u f x dx =⎰则()()F u f u '=,则(())()()()xu x xxf x dx du F u du uF u uF u du '==-⎰⎰⎰⎰()()()()xx xxF x uf u du x f x dx uf u du =-=-⎰⎰⎰()()()()xxxxx f u du uf u du xf u du uf u du =-=-⎰⎰⎰⎰()()xx u f u du =-⎰. 习题6-41. 求由下列曲线所围成的平面图形的面积:(1) 2y x =与22y x =-; (2) x y e =与0x =及y e =; (3) 24y x =-与0y =; (4) 2y x =与y x =及2y x =;(5) 1y x=与y x =及2x =; (6) 2y x =与2y x =-; (7) ,x x y e y e -==与1x =;(8) sin (0)2y x x π=≤≤与0,1x y ==. 解 (1)两曲线的交点为(1,1),(1,1)-,取x 为积分变量,[]1,1x ∈-,面积元素22(2)dA x x dx =--,于是所求的面积为112311182(1)2()33A x dx x x --=-=-=⎰.(2) 曲线x y e =与y e =的交点坐标(1,)e , x y e =与0x =的交点为(0,1),取y 为积分变量,[]1,y e ∈,面积元素ln dA ydy =;于是所求面积为111ln (ln )1eee A ydy ydy y y y ===-=⎰⎰.(3)曲线24y x =-与0y =的交点为(2,0),(2,0)-,取x 为积分变量,[]2,2x ∈-,面积元素2(4)dA x dx =-,于是所求的面积为222322132(4)(4)33A x dx x x --=-=-=⎰. (4) 曲线2y x =与y x =的交点为(0,0),(1,1);2y x =与2y x =的交点为(0,0),(2,4);它们所围图形面积为:121222011(2)(2)(2)A x x dx x x dx xdx x x dx =-+-=+-⎰⎰⎰⎰2231201117()236x x x =+-=.(5) 曲线1y x =与y x =的交点为(1,1),1y x =与2x =的交点为1(2,)2;取x 积分变量,[]1,2x ∈,面积元素1()dA x dx x=-,于是所求的面积为22211113()(ln )ln 222A x dx x x x =-=-=-⎰.(6) 曲线2y x =与2y x =-的交点为()()114,2-,和,取y 作积分变量,[]1,2y ∈-,面积元素2(2)dA y y dy =+-,于是所求的面积为2222311117(2)(2)232A y y dy y y y --=+-=+-=⎰.(7) 曲线x y e =与x y e -=的交点(0,1),取x 作积分变量,[]0,1x ∈,面积元素()x x dA e e dx -=-,于是所求图形的面积为1)()2x x x x A e e dx e e e e--=-=+=+-⎰101(.(8)取x 作积分变量,0,2x π⎡⎤∈⎢⎥⎣⎦,面积元素(1sin )dA x dx =-,于是所求的面积为 220(1sin )(cos )12A x dx x x πππ=-=+=-⎰.2. 求由下列曲线围成的平面图形绕指定坐标轴旋转而成的旋转体的体积:(1) 1,4,0y x x y ====,绕x 轴;(2) 3,2,y x x x ==轴,分别绕x 轴与y 轴; (3) 22,y x x y ==,绕y 轴; (4) 22(5)1x y -+=,绕y 轴.解 (1)取x 作积分变量,[]1,4x ∈,体积元素2dV dx xdx ππ==,于是所求旋转体的体积为442111522V xdx x πππ===⎰. (2)绕x 轴旋转时,取x 作积分变量,[]0,2x ∈,体积元素32()x dV x dx π=,于是2267012877x V x dx x πππ===⎰; 同理可求平面图形绕y 旋转所成的旋转体的体积858223003642(4)55y V dy y y πππ⎡⎤=-=-=⎣⎦⎰.(3)曲线2y x =与2x y =的交点为(0,0),(1,1),取y 作积分变量[]0,1y ∈,体积元素222()dV y dy π⎡⎤=-⎣⎦,于是所求的旋转体的体积为1142500113()()2510V y y dx y y πππ=-=-=⎰. (4) 取y 作积分变量[]1,1y ∈-,体积元素22(5(520dV dy π⎡⎤=-=⎣⎦,于是所求的旋转体的体积为1212020102V πππ-==⋅=⎰.3.设某企业边际成本是产量Q (单位)的函数0.2()2QC Q e '=(万元/单位),其固定成本为090C =(万元),求总成本函数. 解 总成本函数为0.200()()290Q QQ C Q C Q dQ C e dQ '=+=+⎰⎰0.20.2010901080QQ Q e e =+=+.4.设某产品的边际收益是产量Q (单位)的函数()152R Q Q '=-(元/单位),试求总收益函数与需求函数. 解 总收益函数为20()(152)15QR Q Q dQ Q Q =-=-⎰需求函数为()15R Q P Q Q==-. 5.已知某产品产量的变化率是时间t (单位:月)的函数()25,0f t t t =+≥,问:第一个5月和第二个5月的总产量各是多少?解 设产品总产量为()Q t ,则()()Q t f t '=,第一个5月的总产量552510()(25)(5)50Q f t dt t dt t t ==+=+=⎰⎰. 第二个5月的总产量为10102102555()(25)(5)100Q f t dt t dt t t ==+=+=⎰⎰.6.某厂生产某产品Q (百台)的总成本()C Q (万元)的变化率为()2C Q '=(设固定成本为零),总收益()R Q (万元)的变化率为产量Q (百台)的函数()72R Q Q '=-.问: (1) 生产量为多少时,总利润最大?最大利润为多少?(2) 在利润最大的基础上又多生产了50台,总利润减少了多少? 解 (1)总利润()()()L Q R Q C Q =-当()0L Q '=即()()0R Q C Q ''-=即7220Q --=,2.5Q =(百台)时,总利润最大,此时的总成本和总收益分别为2.5 2.52.50()225C C Q dQ dQ Q'====⎰⎰2.52.52.520()(72)(7)11.25R R Q dQ Q dQ Q Q '==-=-=⎰⎰总利润11.255 6.25L R C =-=-=(万元).即当产量为2.5(百台)时,总利润最大,最大利润是6.25万元.(2)在利润最大的基础上又生产了50台,此时产量为3百台,总成本3300()26C C Q dQ dQ '===⎰⎰,总收入3323000()(72)(7)12R R Q dQ Q dQ Q Q '==-=-=⎰⎰, 总利润为1266L R C =-=-=(万元).减少了6.2560.25-=万元.即在利润最大的基础上又生产了50台时,总利润减少了0.25万元.习题 6-51. 判断下列反常积分的敛散性,若收敛,则求其值: (1)41dxx+∞⎰; (2)1+∞⎰; (3) 0xe dx +∞-⎰(a >0); (4)sin xdx +∞⎰;(5)1-⎰; (6)222dxx x +∞-∞++⎰;(7)21⎰; (8)10ln x xdx ⎰;(9)e1⎰; (10)23(1)dxx -⎰.解 (1)14311133dx x x +∞+∞=-=⎰.此反常积分收敛.(2)1+∞==+∞⎰.此反常积分发散. (3) 11x xe dx e +∞--+∞=-=⎰.此反常积分收敛.(4) 00sin cos lim cos 1x xdx xx +∞+∞→+∞=-=-+⎰不存在,此反常积分发散.(5)111arcsin x π--==⎰.此反常积分收敛.(6)22(1)arctan(1)22(1)1dxd x x x x x π+∞+∞+∞-∞-∞-∞+==+=++++⎰⎰.此反常积分收敛.(7)23222110012lim lim (1)3x εεεε+++→→+⎡==-+⎢⎣⎰⎰320222lim 22333εε+→⎛==-- ⎝.此反常积分收敛. (8)11122221000111111ln limln lim ln lim ln 222424x xdx xdx x x xdx εεεεεεεεε→→→⎛⎫⎛⎫==-=-- ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰, 所以11220001111ln lim ln lim (ln )4244x xdx x xdx εεεεεε++→→==--=-⎰⎰.此反常积分收敛.(9)111πarcsin(ln )2eeex ===⎰⎰.此反常积分收敛. (10)21233301(1)(1)(1)dx dx dxx x x =+---⎰⎰⎰, 因为反常积分1132001(1)(1)dx x x ==∞--⎰发散,所以反常积分230(1)dxx -⎰发散. 2. 当k 为何值时,反常积分+2(ln )kdxx x ∞⎰收敛?当k 为何值时,这反常积分发散? 解 当1k =时,++222ln ln(ln )ln ln dxd x x x x x∞∞+∞===+∞⎰⎰,发散.当1k ≠时,1++122211(ln )(1)(ln 2)(ln )ln (ln )11kk kk k dx x k x d x x x kk -∞∞--+∞⎧>⎪-===⎨-⎪+∞<⎩⎰⎰所以,当1k >时,此广义积分收敛;当1k ≤时,此广义积分发散. 3. 利用递推公式计算反常积分+0e n x n I x dx ∞-=⎰.解 ++110n x n xn x n n I x de x e n x e dx nI ∞∞----+∞-=-=-+=⎰⎰,因为 +101x x xI xde xe e ∞---+∞+∞=-=--=⎰,所以 121(1)(1)2!n n n I nI n n I n n I n --==-=-= .复习题6(A )1、 求下列积分:(1)121tan sin 1xdx x -+⎰; (2)⎰; (3)2x⎰; (4)ln 0⎰;(5)21220(1)x dx x +⎰; (6)1⎰;(7)120x x e dx -⎰; (8)21(ln )ex dx ⎰;(9) 401cos 2xdx xπ+⎰; (10) 20cos x e xdx π-⎰;(11) 20sin 1cos x xdx xπ++⎰; (12) 40ln(1tan )x dx π+⎰. 解 (1) 因为被积函数2tan sin 1x x +是奇函数,所以121tan 0sin 1xdx x -=+⎰.(2)=⎰⎰,令1sin x t -=,则cos dx tdt =;当0x =时,2t π=-;当1x =时,0t =;所以022221cos 2sin 2cos 2244t t t tdt dt ππππ---+⎡⎤===+=⎢⎥⎣⎦⎰⎰⎰. (3) 令2sin x t =,则2cos dx tdt =,当0x =时,0t =;当2x =时,2t π=;所以222222204sin 4cos 4sin 22(1cos 4)xt tdt tdt t dt πππ=⋅==-⎰⎰⎰⎰2012(sin 4)4t t ππ=-=. (4)t =,则221tdx dt t =+,当0x =时,0t =;当ln 2x =时,1t =;所以2ln 11200022(arctan )2(1)14t dt t t t π==-=-+⎰⎰. (5) 令tan x t =,则2sec dx tdt =,当0x =时,0t =;当1x =时,4t π=;所以22412442240000tan 1cos 2sin 21sec ()(1)sec 22484x t t t t dx tdt dt x t ππππ-===-=-+⎰⎰⎰.(6) 令sec x t =,则sec tan dx t tdt =,当1x =时,0t =;当2x =时,3t π=;所以223330100tan sec tan tan (tan )sec 3t dx t tdt tdt t t x t ππππ===-=⎰⎰⎰. (7)111112221000022xxx x x x e dx x dex exe dx e xde ------=-=-+=--⎰⎰⎰⎰1111110223225x x x e xe e dx e e e ------=--+=--=-⎰.(8)22111111(ln )ln 2ln 2ln 22ee e e ex dx x x x x dx e x x dx e x=-⋅=-+=-⎰⎰⎰.(9) 44440000tan tan tan 1cos 2x dx xd x x x xdx x ππππ==-+⎰⎰⎰ 401ln cos ln 2442x πππ=+=-. (10)2222cos cos cos sin xxxx e xdx xdee x e xdx ππππ----=-=--⎰⎰⎰2220001sin 1sin cos xxx xdee x e xdx πππ---=+=+-⎰⎰221cos x ee xdx ππ--=+-⎰,所以 2201cos (1)2xe xdx e ππ--=+⎰.(11)22222000002sin sin cos tan 1cos 1cos 21cos 2cos2x x x x x d x dx dx dx xd x x x x πππππ+=+=-+++⎰⎰⎰⎰⎰2220002200tan tan ln(1cos )222ln cos ln(1cos )22x x x dx x x x ππππππ=--+=--+⎰20ln 22ln cos222x πππ=++=. (12) 4444000cos sin ln(1tan )ln ln(cos sin )ln cos cos x x x dx dx x x dx xdx xππππ++==+-⎰⎰⎰⎰令4x u π-=,可得0440041ln(cos sin )ln cos()(ln 2ln cos )42x x dx x dx u du ππππ⎤+=-=-+⎥⎦⎰⎰⎰40ln 2ln cos 8xdx ππ=+⎰所以40ln 2ln(1tan )8x dx ππ+=⎰.2、设()f x 在[],a b 上连续,且()1baf x dx =⎰,求()b af a b x dx +-⎰.解 令a b x t +-=,则dx dt =-,当x a =时,t b =;当x b =时,t a =;所以()()()1bababaf a b x dx f t dt f t dt +-=-==⎰⎰⎰.3、设()f x 为连续函数,试证明:()()(())xx tf t x t dt f u du dt -=⎰⎰⎰.证 用分部积分法,(())()(())xxt tx tf u du dt t f u du td f u du =-⎰⎰⎰⎰⎰()()()()xx x xx f u du tf t dt xf t dt tf t dt =-=-⎰⎰⎰⎰()()xf t x t dx =-⎰.4、设()u ϕ为连续函数,试证明:220()2()aa ax dx x dx ϕϕ-=⎰⎰.证2220()()()aaaax dx x dx x dx ϕϕϕ--=+⎰⎰⎰,令x t =-,则0022220()(())()()a aaax dx t dt t dt x dx ϕϕϕϕ-=--==⎰⎰⎰⎰所以022220()()()2()aa aaax dx x dx x dx x dx ϕϕϕϕ--=+=⎰⎰⎰⎰.5、计算下列反常积分:(1)2048dxx x +∞++⎰; (2)21arctan x dx x+∞⎰; (3)1⎰; (4)1e ⎰ 解 (1)222000(2)12arctan 48(2)2228dx d x x x x x π+∞+∞+∞++===++++⎰⎰. (2)221111arctan 1arctan 1arctan (1)x x dx xd dx x x x x x +∞+∞+∞+∞=-=-++⎰⎰⎰ 22111lnln 242142xx ππ+∞=+=++.(3)1110022π⎡===⎣⎰⎰.(4)112ee ===⎰⎰. 6、求抛物线22y px =及其在点(,)2pp 处的法线所围成的平面图形的面积. 解 抛物线22y px =在点(,)2p p 处的法线方程为32x y p +=,两曲线的交点为9(,3),(,)22pp p p -;取y 作积分变量3p y p -≤≤,所求的平面图形面积为 2232333131116()()222263ppp pA p y y dy py y y p p p --=--=--=⎰. 7、求由曲线32y x =与直线4,x x =轴所围图形绕y 轴旋转而成的旋转体的体积.解 曲线32y x =与直线4x =的交点为(4,8),取y 作积分变量,08y ≤≤,体积元素2232434()(16)dy y dy y dy ππ⎡⎤=-=-⎣⎦于是,所求的旋转体的体积为8847003512(16)(16)77V y dy y y πππ=-=-=⎰.8、设某产品的边际成本为()2C Q Q '=-(万元/台),其中Q 代表产量,固定成本022C ==(万元),边际收益()204R Q Q '=-(万元/台).试求: (1) 总成本函数和总收益函数; (2) 获得最大利润时的产量;(3) 从最大利润时的产量又生产了4台,总利润的变化.解 (1)总成本函数2001()(2)2222Q C Q Q dQ C Q Q =-+=-+⎰, 总收益函数20()(204)202QR Q Q dQ Q Q =-=-⎰.(2)利润函数23()()()18222L Q R Q C Q Q Q =-=--,令()0L Q '=,得6Q =(台),而(6)30L ''=-<,所以当产量6Q =(台)时,利润最大.(3)(10)(6)83224L L -=-=-,所以从最大利润时的产量又生产了4台,总利润减少了24(万元).(B) 1、填空题:(1)202cos x d x t dt dx=⎰ . (2) 设()f x 连续,220()()x F x xf t dt =⎰,则()F x '= .(3) 20sin()xd x t dt dx -=⎰ . (4) 设()f x 连续,则220()xd tf x t dt dx -=⎰ . (5) 设20cos ()1sin xt f x dt t=+⎰,则220()1()f x dx f x π'=+⎰ . (6) 设()f x 连续,且1()2()f x x f x dx =+⎰,,则()f x = .(7) 设()f x 连续,且()1cos xtf x t dt x -=-⎰,则20()f x dx π=⎰ .(8)2ln e dxx x +∞=⎰ .解 (1) 2220002224cos (cos )cos (cos )2x x x d d x t dt x t dt t dt x x x dx dx==+-⋅⎰⎰⎰2224cos 2cos xt dt x x =-⎰.(2) 2222200()(())()()2x x d F x x f t dt f t dt x f x x dx '==+⋅⋅⎰⎰ 22220()2()x f t dt x f x =+⎰.(3) 令x t u -=,则02220sin()sin ()sin xxxx t dt u du u du -=-=⎰⎰⎰所以22200sin()sin sin x x d d x t dt u du x dx dx -==⎰⎰. (4)令22x t u -= 则222222001()()()2x x tf x t dt f x t d x t -=---⎰⎰220011()()22x x f u du f u du =-=⎰⎰.所以2222001()()()2x x d d tf x t dt f u du xf x dx dx -=⋅=⎰⎰. (5)22200()arctan ()arctan ()arctan (0)1()2f x dx f x f f f x πππ'==-+⎰, 而02222000cos cos (0)0,()arctan(sin )1sin 21sin 4t t f dt f dt t t t ππππ=====++⎰⎰,所以220()arctan1()4f x dx f x ππ'=+⎰(6) 等式1()2()f x x f x dx =+⎰两边在区间[]0,1积分得1111001()2()2()2f x dx xdx f x dx f x dx =+=+⎰⎰⎰⎰11()2f x dx =-⎰, 所以 ()1f x x =-.(7)令x t u -=,则du dt =-,于是00()()()xxtf x t dt x u f u du -=-⎰⎰原等式化为 0()()1cos xxx f u du uf u du x -=-⎰⎰两边对x 求导()sin xf u du x =⎰在上式中,令2x π=,得()1xf x dx =⎰.(8)22ln 11ln ln ln ee edx d x x x x x +∞+∞+∞==-=⎰⎰ 2、计算下列积分:(1) 120ln(1)(2)x dx x +-⎰; (2)3142(1)x x dx -⎰;(3)31(2)f x dx -⎰,其中21()x x f x e-⎧+=⎨⎩0x x ≤>; (4)()f x dx π⎰,其中0sin ()xtf x dt tπ=-⎰. 解 (1) 111120000ln(1)1ln(1)ln(1)(2)22(1)(2)x x dxdx x d x x x x x ++=+=----+-⎰⎰⎰ 1100111111ln 2()ln 2ln ln 2312323x dx x x x +=--=-=+--⎰. (2) 令2sin x t =,则331144242222200001111cos 2(1)(1)cos ()2222t x x dx x dx tdt dt ππ+-=-==⎰⎰⎰⎰220011cos 41313(12cos 2)(sin 2sin 4)8282832t t dt t t t πππ+=++=++=⎰. (3) 令2x t -=,则dx dt =,当1x =时,1t =-;当3x =时,1t =;于是3101111(2)()()()f x dx f t dt f x dx f x dx ---==+⎰⎰⎰⎰12171(1)3x x dx e dx e--=++=-⎰⎰. (4) 由题设有sin ()xf x xπ'=-,用分部积分法得 00000sin sin ()()()t x f x dx xf x xf x dx dt x dx tx ππππππππ'=-=---⎰⎰⎰⎰ 000sin sin sin ()x x xdx x dx x dx x x xππππππππ=-=----⎰⎰⎰ 0sin 2xdx π==⎰.3、设13201()()1f x x f x dx x =++⎰,求10()f x dx ⎰. 解 等式两边在区间[]0,1上积分得11113200001()()1f x dx dx f x dx x dx x =+⋅+⎰⎰⎰⎰11100011arctan ()()444x f x dx f x dx π=+=+⎰⎰解得1()3f x dx π=⎰.4、求函数2()(1)x t f x t e dt -=-⎰的极值.解 令222()(1)22(1)(1)0x x f x x e x x x x e --'=-⋅=--+=,得函数()f x 的驻点:1,0,1-;当1x <-时,()0f x '>;当10x -<<时,()0f x '<; 当01x <<时,()0f x '>;当1x >时,()0f x '<;所以函数()f x 在0x =处取得极小值(0)0f =,在1x =±处取得极大值:11(1)(1)t f t e dt e-±=-=⎰. 5、设21sin ()x tf x dt t=⎰,求10()xf x dx ⎰.解 用分部积分法得221211122220011001sin 1sin 1sin ()2222x x t t x xf x dx dt dx x dt x xdx t t x ⎡⎤⎡⎤==-⋅⋅⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰⎰112220011cos11sin cos 222x dx x -=-==⎰.6、求曲线(1)(2)y x x =--和x 轴围成的平面图形绕y 轴旋转所成的旋转体体积. 解 抛物线(1)(2)y x x =--的顶点坐标为31(,)24-,左、右半支方程分别为:11()(32x y =-和21()(32x y =+;取y 作积分变量,104y -≤≤;体积元素为2221(())(())3dV x y x y dy π⎡⎤=-=⎣⎦,因此所求的旋转体的体积为0302114433(14)(14)422V y y πππ--==+=+=⎰⎰.7、设2()()()xax x t f t dt Φ=-⎰,证明:()2()()xax x t f t dt 'Φ=-⎰.证 2222()(2)()()2()()xxx xaaaax x xt t f t dt xf t dt x tf t dt t f t dt Φ=-+=-+⎰⎰⎰⎰,所以()22()()2()()xx xaaax xf t dt x tf t dt t f t dt ''Φ=-+⎰⎰⎰222()()2()2()()xxa ax f t dt x f x tf t dt x xf x x f x =+--⋅+⎰⎰2()2()2()()xx xaaaxf t dt tf t dt x t f t dt =-=-⎰⎰⎰.8、设连续函数()f x 满足(2)2()f x f x =,证明:2110()7()xf x dx xf x dx =⎰⎰. 证 202110()()()xf x dx xf x dx xf x dx =+⎰⎰⎰, 令2x t =,则21110000()2(2)(2)42()8()xf x dx tf t d t t f t dt xf x dx ==⋅=⎰⎰⎰⎰, 所以 202110()()()xf x dx xf x dx xf x dx =+⎰⎰⎰ 111000()8()7()xf x dx xf x dx xf x dx =-+=⎰⎰⎰.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第6章 触发器和定时器已知由与非门构成的基本RS 触发器的输入波形如图所示。

画出基本RS 触发器的Q 和Q 端波形。

解:与非门构成的基本RS 触发器输入信号R 和S 直接改变触发器的状态,且它的特性方程是:1n n Q S RQ +=+且1R S +=,则其波形如下:RS图P6.1QQ在图所示的输入波形下,由或非门构成的基本RS 触发器会出现状态不定吗如果有,请指出状态不定的区域。

RS 图P6.2解:或非门构成的基本RS 触发器输入信号R 和S 直接改变触发器的状态,且它的特性方程是:1n n Q S RQ +=+且0RS =,1R S ==时0Q Q ==,违反了互补关系所以如上图虚线部分就会出现不能确定的状态。

/同步RS 触发器的逻辑符号和输入波形如图所示。

设初始状态Q =0。

画出Q 和Q 端的波形。

解:同步RS 触发器的触发时刻时在CP 的上升沿,其它的特性方程是:1n n Q S RQ +=+且0RS =,则其波形如下:CP S RS 图P6.3Q Q由各种TTL 逻辑门组成的电路如图所示,分析图中各电路是否具有触发器的功能 。

解:a)的特性方程是:1n n Q R Q +=•, 1n n Q S Q +=•|b)的特性方程是:1n n Q R Q +=+, 1n n Q S Q +=+&&·≥1=1=1=1=1(a)(b)【(c)(d)图&&≥1=1'=1=1=1(a)(b)(c)(d)图c)的特性方程是:1n n Q R Q +=⊕, 1n n Q S Q +=⊕ d)的特性方程是:1n n Q R Q +=⊕, 1n n Q S Q +=⊕ 列出真值表如下:据真值表得以上四图都无两个稳定的状态,所以无触发功能。

—分析图电路的逻辑功能,对应于CP 、A 、B 的波形,画出Q 和Q 端波形。

1Q(a)(b)图P6.5CPAB1Q4Q3Q3Q4QQQQQQ1)2)3)4)QQQ解:根据CP、A、B的波形图画出'A、'B的波形图,再据'A、'B构成的与非门和或非门基本RS触发器画出波形如上:1)'',A CP AB CP B=•=•或非门基本RS触发器特性方程为:1''n nQ A BQ+=+且''0A B=,2)'',A CP AB CP B=•=•与非门基本RS触发器特性方程为:1''n nQ A BQ+=+且''1B A+=,3)'',A CP A B CP B =+=+ 或非门基本RS 触发器特性方程为:1''n nQ A BQ +=+且''0A B =,4)'',A CP A B CP B =+=+ 与非门基本RS 触发器特性方程为:1''n n Q A BQ +=+且''1B A +=,已知JK 触发器组成的电路及各输入端波形如图所示,画出Q 端的电压波形,假设初态Q=0。

{解:1)由传输延时型边沿JK 触发器的触发时刻是CP 的下降沿,输入J 、K 时CP 下降沿前瞬的逻辑值,即触发器状态的更新发生在CP 脉冲的下降沿2)又已知JK 触发器的特性方程为1n n n Q JQ KQ +=+及设触发器的初始状态为0Q = 3)由此,可用A 、B 的波形定出J 、K 的波形即:J A B =+且K A =根据已知的波形画出Q 的波形如下:BAABCP 图P6.6Q逻辑电路图及A ,B ,CP 的波形如图所示,试画出Q 的波形(设Q 的初始状态为0)。

解:1)由传输延时型边沿JK 触发器的触发时刻是CP 的下降沿,输入J 、K 时CP 下降沿前瞬的逻辑值,即触发器状态的更新发生在CP 脉冲的下降沿2)又已知JK 触发器的特性方程为1n n n Q JQ KQ +=+及设触发器的初始状态为0Q = 3)由此,可用A 、B 的波形定出J 、K 的波形即:J A B =+且K悬空(输入1),根据已知的波形画出Q 的波形如下:CP B A 图P6.7Q·JK 触发器的输入端波形如题图所示,试画出输出端的波形。

解:1)由传输延时型边沿JK 触发器的触发时刻是CP 的下降沿,输入J 、K 时CP 下降沿前瞬的逻辑值,即触发器状态的更新发生在CP 脉冲的下降沿2)又已知JK 触发器的特性方程为1n n n Q JQ KQ +=+。

且知当异步置位信号0d S =,可将触发器置为1,当异步复位信号0d R =,可将触发器置为0,且它们优于时钟信号。

3)由此,根据已知的波形画出Q 、Q的波形如下:CP d Rd S JK图P6.8CPd SJ K d RQ Q电路如图(a)所示,若已知CP 和J 的波形如图 (b)所示,试画出Q 端的波形图,设触发器的初始状态为Q =0。

解:1)由传输延时型边沿JK 触发器的触发时刻是CP 的下降沿,输入J 、K 时CP 下降沿前瞬的逻辑值,即触发器状态的更新发生在CP 脉冲的下降沿?2)又已知JK 触发器的特性方程为1n n n Q JQ KQ +=+及设触发器的初始状态为0Q =,当异步信号d R 为0时,可将触发器置为0,且它们优于时钟信号。

3)由此,根据已知的波形画出Q 的波形如下:图P6.9CP JJ (a)(b)QJK 触发器组成的电路如图所示,试画出Q 、Q 和Y 1、Y2的波形。

设触发器的初始状态为Q=0。

解:1)由传输延时型边沿JK 触发器的触发时刻是CP 的下降沿,输入J 、K 时CP 下降沿前瞬的逻辑值,即触发器状态的更新发生在CP 脉冲的下降沿2)又已知JK 触发器的特性方程为1n n n Q JQ KQ +=+及设触发器的初始状态为0Q = 3)由此,由Q 、Q 定出J 、K 的输入信号:J Q =、K Q =,据1Y CP Q =•、2Y CP Q =•,和已知的波形可画出12,,,Q Q Y Y 的波形:2图P 6.10CPQ Q Y1Y2逻辑电路如图所示,当A=“0”,B=“1”时,C 的正脉冲来到后D 触发器( A )。

"(A) 具有计数功能 (B) 保持原状态 (C) 置“0” (D) 置“1”解:()D B Q A BQ QB A=⊕+=++ 因为0,1A B ==所以D Q A Q =+=即1n n Q Q +=已知CMOS 边沿D 触发器输入端D 和时钟信号CP 的电压波形图如图所示,试画出Q 和Q 端波形。

触发器的初始状态为Q =0。

B图解:1)CMOS 边沿触发器的动作特点及图所示的D 触发器的图形符号可得触发器状态更新发生在CP 的上升沿2)又已知D 触发器的特性方程1n QD +=,及其初始状态为03)由此,在触发器各输入端CP 和D 的波形,可得,Q Q 的波形CP D图P6.12 QQ`已知维持阻塞D 触发器输入端CP 、A 、B 的波形如图所示,画出输出端Q 的波形(设触发器初态为0)。

解:1)CMOS 边沿触发器的动作特点及图所示的D 触发器的图形符号可得触发器状态更新发生在CP 的上升沿2)又已知D 触发器的特性方程1n QD +=,及其初始状态为03)由此,由A 、B 的输入波形定出D 的输入信号D AB =,根据已知的波形画出Q 的波形如下: A BCPA B图P6.13D Q图所示各边沿D 触发的初始状态都为0,试对应输入CP 波形画出Q 端的输出波形。

解:1)CMOS 边沿触发器的动作特点及图所示的D 触发器的图形符号可得触发器状态更新发生在CP 的上升沿 >2)又已知D 触发器的特性方程1n QD +=,及其初始状态为03)由于D 的输入端口为高电平及根据已知的波形画出Q 的波形如下:QQ ~ 1J1K FF C1 1 &X CP Y 图由于D 的输入端口接地(输入0)及根据已知的波形画出Q 的波形如下: 由于D 的输入端口为Q 及根据已知的波形画出Q 的波形如下: 由于D 的输入端口为Q 及根据已知的波形画出Q 的波形如下:V DD CPCPCP图P6.14Q1Q4Q3Q2电路如图所示,分析电路逻辑功能,画出状态转换图。

《解:该图是由JK 触发器和与非门构成的逻辑电路,其中X K X J ==、将其代入JK 触发器特性方程n n n Q K Q J Q +=+1可求得X Qn =+1从而可得Y=X 。

该电路可以看做用JK 触发器构成的D 触发器,其状态转换图如下图所示—QQ1TC1 && & CPA B ;用T 触发器组成图所示电路。

分析电路功能,写出电路的状态方程,并画出状态图。

解:该电路是有T 触发器和与非门组成的逻辑电路,其中T 触发器输入端nn Q B AQ •=T&并将其代入T 触发器的逻辑功能表达式n n n Q T Q T Q +=+1整理可得该电路状态方程为n n n Q A Q B Q +=+1;由该电路的状态方程可知该电路为由T 触发器构成的JK 触发器,其状态图如下图所示$在图电路中,A Q Q n n +=+1的电路为图(3)、图(4)。

用RS 触发器和与非门构成D 、T 和T′触发器。

解:用RS 触发器构成D 触发器:由RS 触发器特性方程01=+=+RS Q R SQn n且和D 触发A A A]A 图器特性方程D n =+1Q 可知令S R =且R 输入端作为D 触发器输入端即可,逻辑电路图如下图所示QQ1SC11R&DCPQ用RS 触发器构成T 触发器:由RS 触发器特性方程01=+=+RS Q R S Qn n 且和T 触发器特性方程n n n Q T Q T Q +=+1可知令RS 触发器n Q R S =且将R 输入端作为T 触发器输入端即可,电路图如下图所示BCD CPQ&&QQ1SC11RT用RS 触发器构成T`触发器:由RS 触发器特性方程01=+=+RS Q R S Qn n 且和T`触发器特性方程n n Q Q =+1可知令n Q S =、nQ R =即可,电路图如下图所示}CPQQQ1SC11R1J C1 1K Q Q≥1DCPQ6 54543解:由T 触发器构成D 触发器:由T 触发器特性方程n n n Q T Q T Q +=+1和D 触发器特性方程D n =+1Q则可知令T 触发器输入端n n Q D DQ T +=则可构成D 触发器,电路图如下图所示1T C1QQ&&1≥1DCPQ由T 触发器构成JK 触发器:由T 触发器特性方程n n n Q T Q T Q +=+1和JK 触发器特性方程n n n Q K Q J Q +=+1可知令nn Q J KQ •=T 则可构成JK 触发器,电路图如下图所示|CPQ1T C1QQ&&&K Jt若使电路正常工作,触发信号必须将555定时器2脚电压(触发输入端)拉到V T-以下,而在触发信号到来之前2端电压应高于V T-,由于V T-=5V,而触发脉冲最高电平仅为3.4V所以需要在输入端加入分压电阻,使2端电压在没有触发脉冲时略高于5V,可取R 1=22KΩ,R2=18KΩ,分压后2端电压为6.75V,触发脉冲经微分电容Cd加到2端(2)若TW在1~10S 范围内变化,取C=100uF 则电阻R 的阻值变化范围为Ω=Ω⨯⨯==Ω=Ω⨯⨯==--K C T R K C T R W W 91101001.1101.11.9101001.111.16max max6min min可取100KΩ的电位器与另一电阻串联作为R ,即可满足在指定范围内调节脉冲宽度T W 的要求。

相关文档
最新文档