最新四边形经典试题50题及答案
(完整版)四边形经典试题50题及答案
经典四边形习题50道(附答案)1.已知:在矩形ABCD中,AE⊥BD于E,∠DAE=3∠BAE ,求:∠EAC的度数。
2.已知:直角梯形ABCD中,BC=CD=a且∠BCD=60︒,E、F分别为梯形的腰AB、DC的中点,求:EF的长。
3、已知:在等腰梯形ABCD中,AB∥DC,AD=BC,E、F分别为AD、BC的中点,BD平分∠ABC交EF于G,EG=18,GF=10求:等腰梯形ABCD的周长。
4、已知:梯形ABCD中,AB∥CD,以AD,AC为邻边作平行四边形ACED,DC延长线交BE于F,求证:F是BE的中点。
5、已知:梯形ABCD中,AB∥CD,AC⊥CB,AC平分∠A,又∠B=60︒,梯形的周长是20cm, 求:AB的长。
6、从平行四边形四边形ABCD的各顶点作对角线的垂线AE、BF、CG、DH,垂足分别是E、F、G、H,求证:EF∥GH。
7、已知:梯形ABCD的对角线的交点为E若在平行边的一边BC的延长线上取一点F,_B_C_A_B_A_B_E_A_B_B使S ABC ∆=S EBF ∆,求证:DF ∥AC 。
8、在正方形ABCD 中,直线EF 平行于 对角线AC ,与边AB 、BC 的交点为E 、F , 在DA 的延长线上取一点G ,使AG=AD , 若EG 与DF 的交点为H ,求证:AH 与正方形的边长相等。
9、若以直角三角形ABC 的边AB 为边, 在三角形ABC 的外部作正方形ABDE ,AF 是BC 边的高,延长FA 使AG=BC ,求证:BG=CD 。
10、正方形ABCD ,E 、F 分别是AB 、AD 延长线 上的一点,且AE=AF=AC ,EF 交BC 于G ,交AC 于K ,交CD 于H ,求证:EG=GC=CH=HF 。
11、在正方形ABCD 的对角线BD 上,取BE=AB , 若过E 作BD 的垂线EF 交CD 于F , 求证:CF=ED 。
12、平行四边形ABCD 中,∠A 、∠D 的平分线相交于E ,AE 、DE与DC 、AB 延长线交于G 、F ,求证:AD=DG=GF=FA 。
中考数学四边形专题训练50题含答案
中考数学四边形专题训练50题含答案(单选、填空、解答题)一、单选题1.若一个多边形的内角和是720︒,则该多边形是()A.四边形B.五边形C.六边形D.八边形2.下列哪个度数可能成为某个多边形的内角和()A.240°B.600°C.1980°D.21800°3.下列说法中错误..的是()A.平行四边形的对边相等B.正方形的对角线互相垂直平分且相等C.菱形的对角线互相垂直平分D.矩形的对角线互相垂直且相等4.有两张宽为3,长为9的矩形纸片如图所示叠放在一起,使重叠的部分构成一个四边形,则四边形的最大面积是A.27B.12C.15D.185.如图,平行四边形ABCD的对角线AC,BD相交于点O,下列结论错误的是()A.AO=CO B.AD∥BC C.AD=BC D.∥DAC=∥ACD6.每一个外角都等于36︒,这样的正多边形边数是()A.9B.10C.11D.127.如图,点O是ABCD对角线的交点,EF过点O分别交AD,BC于点E,F.下列结论成立的是( )A .OE OF =B .AE BF =C .DOC OCD ∠=∠ D .CFE DEF ∠=∠8.对角线互相平分且相等的四边形一定是( )A .等腰梯形B .矩形C .菱形D .正方形 9.如图,在平行四边形ABCD 中,∥B =70°,AE 平分∥BAD 交BC 于点E ,CF ∥AE 交AE 于点F ,则∥1=( )A .45°B .55°C .50°D .60° 10.下列说法正确的是( )A .对角线相等的四边形是矩形B .对角线互相垂直的四边形是菱形C .对角线相等的平行四边形是正方形D .对角线相等的菱形是正方形 11.如图,ABC 的周长为26,点D ,E 都在边BC 上,ABC ∠的平分线垂直于AE ,垂足为Q ,ACB ∠的平分线垂直于AD ,垂足为P ,若10BC =,则PQ 的长为( )A .32B .52C .3D .412.有一边长为2的正方形纸片ABCD ,先将正方形ABCD 对折,设折痕为EF (如图∥);再沿过点D 的折痕将角A 翻折,使得点A 落在EF 的H 上(如图∥),折痕交AE 于点G ,则EG 的长度为( )A .6 B .3 C .8﹣D .4﹣13.下列说法错误的是( )A .对角线互相垂直的平行四边形是正方形B .四条边都相等的四边形是菱形C .四个角都相等的四边形是矩形D .一组对边平行一组对角相等的四边形是平行四边形14.已知:如图,四边形ABCD 中,90,60A B C ∠=∠=︒∠=︒,2,3CD AD AB ==.在AB 边上求作点P ,则PC PD +的最小值为( )A .4B .6C .8D .10 15.如图,矩形ABCD 的两条对角线相交于点O ,602AOD AD ∠==°,,则AB 的长是( )A .2B .4C .D .16.如图,菱形ABCD 的对角线12AC =,面积为24,∥ABE 是等边三角形,若点P 在对角线AC 上移动,则PD PE +的最小值为( )A.4 B .C . D .617.如图,ABC 的内切圆O 与BC 、CA 、AB 分别相切于点D 、E 、F ,且8AB =,17BC =,15CA =,则阴影部分(即四边形AEOF )的面积是( )A .4B .6.25C .7.5D .9 18.如图,点E 在边长为5的正方形ABCD 的边CD 上,将ADE 绕点A 顺时针旋转90︒到ABF 的位置,连接EF ,过点A 作FE 的垂线,垂足为点H ,与BC 交于点.G 若2CG =,则CE 的长为( )A .54B .154C .4D .9219.如图,菱形ABCD 的对角线AC =12,面积为24,∥ABE 是等边三角形,若点P 在对角线AC 上移动,则PD +PE 的最小值为( )A .4B .C .D .6 20.如图,在矩形ABCD 中,AB =8,BC =4.将矩形沿AC 折叠,CD ′与AB 交于点F ,则AF :BF 的值为( )A.2B.53C.54D二、填空题21.如图所示,小明为了测量学校里一池塘的宽度AB,选取可以直达A,B两点的点O处,再分别取OA,OB的中点M,N,量得50mMN=,则池塘的宽度AB为______m.22.如图,已知矩形ABCD,P、R分别是BC和DC上的动点,E、F分别是P A、PR 的中点.如果DR=5,AD=12,则EF的长为_____.23.如图,已知矩形ABCD的对角线长为8cm,E、F、G、H分别是AB、BC、CD、DA的中点则四边形EFGH的周长等于___cm.24.如图,已知矩形ABCD中,8AB=,5πBC=.分别以B,D为圆心,AB为半径画弧,两弧分别交对角线BD于点E,F,则图中阴影部分的面积为________(用含π的式子表示)25.如图,四边形ABCD的对角线AC BD=,E,F,G,H分别是各边的中点,则四边形是___________(平行四边形,矩形,菱形,正方形中选择一个)26.如图,在△ABC 中,4BC =,D ,E 分别是AB ,AC 的中点,G ,H 分别是AD ,AE 的中点,则GH =______.27.已知O 是平行四边形ABCD 两条对角线的交点,24AB =,36AD =,则OBC △的周长比AOB 的周长大___________.28.平行四边形ABCD 中,∥A 比∥B 小20°,那么∥C =_____.29.如图,在ABCD 中,对角线AC 、BD 相交于点O ,BC =6,AC +BD =14,那么∥BOC 的周长是_____.30.如图,矩形ABCD 的对角线AC ,BD 交于点O ,分别以点A ,C 为圆心,AO 长为半径画弧,分别交AB ,CD 于点E ,F .若BD =6,∥CAB =30°,则图中阴影部分的面积为 _____.(结果保留π)31.如图,ABCD 的顶点A ,B ,C 的坐标分别是(0,1),(2,2)--,(2,2)-,则顶点D 的坐标是_________.32.判断题,对的画“√”错的画“×”(1)对角线互相垂直的四边形是菱形( )(2)一条对角线垂直另一条对角线的四边形是菱形( )(3)对角线互相垂直且平分的四边形是菱形( )(4)对角线相等的四边形是菱形( )33.如图,在菱形ABCD 中,2A B ∠=∠,2AB =,点E 和点F 分别在边AB 和边BC 上运动,且满足AE CF =,则DF CE +的最小值为_______.34.如果一个梯形的上底长为2cm ,中位线长是5cm ,那么这个梯形下底长为__________cm .35.如图,正方形ABCD 的边长是3cm ,在AD 的延长线上有一点E ,当BE 时,DE 的长是_____cm .36.如图,在菱形ABCD 中,∥BAD =110°,AB 的垂直平分线交AC 于点N ,点M 为垂足,连接DN ,则∥CDN 的大小是______.37.如图,在▱ABCD 中,BM 是∥ABC 的平分线,交CD 于点M ,且DM =2,平行四边形ABCD 的周长是16,则AB 的长等于______.38.已知:如图,正方形ABCD 中,点E 、M 、N 分别在AB 、BC 、AD 边上,CE =MN ,∥MCE =35°,∥ANM 的度数______.39.如图,在边长为8的正方形ABCD 中,E 、F 分别是边AB 、BC 上的动点,且EF =6,M 为EF 中点,P 是边AD 上的一个动点,则CP +PM 的最小值是_____.40.如图,在ABC 中,M 是BC 边上的中点,AP 是BAC ∠的平分线,BP AP ⊥于点P ,已知16AB =,24AC =,那么PM 的长为________.三、解答题41.如图,在ABCD 中,AE CF =.求证:ABE CDF ∠=∠.42.已知,如图长方形ABCD 中,3cm AB =,9cm AD =,将此长方形折叠,使点B 与点D 重合,折痕为EF ,求EF 的长.43.如图,在平面直角坐标系内,ABC 的顶点坐标分别为(4,4)A -,(2,5)B -,(2,1)C -.(1)平移ABC ,使点C 移到点1(2,2)C ,画出平移后的111A B C △;(2)将ABC 绕点(0,0)旋转180︒,得到222A B C △,画出旋转后的222A B C △;(3)连接12A C ,21A C ,求四边形1221A C A C 的面积.44.如图,在平面直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,顶点A ,C 分别在坐标轴上,顶点B 的坐标为()6,4,E 为AB 的中点,过点()8,0D 和点E 的直线分别与BC 、y 轴交于点F ,G .(1)求直线DE 的函数关系式;(2)函数2y mx =-的图象经过点F 且与x 轴交于点H ,求出点F 的坐标和m 值; (3)在(2)的条件下,求出四边形OHFG 的面积.45.如图,AMN 是边长为2的等边三角形,以AN ,AM 所在直线为边的平行四边形ABCD 交MN 于点E 、F ,且30EAF ∠=︒.(1)当F 、M 重合时,求AD 的长;(2)当NE 、FM )NE FM EF +=; (3)在(2)的条件下,求证:四边形ABCD 是菱形. 46.如图,在ABC 中,90ACB ∠=︒,30CAB ∠=︒,线段AB 为边向外作等边ABD △,点E 是线段AB 的中点,连接CE 并延长交线段AD 于点F . (1)求证:四边形BCFD 为平行四边形;(2)若4AB =,求平行四边形BCFD 的面积.47.阅读下面材料,并回答下列问题:小明遇到这样一个问题,如图,在ABC ∆中,//DE BC 分别交AB 于点D ,交AC 于点E .已知,3,5CD BE CD BE ⊥==,求BC DE +的值. 小明发现,过点E 作//EF DC ,交BC 的延长线于点F ,构造∆BEF ,经过推理和计算能够使问题得到解决(如图)请你回答:(1)证明:DE CF =;(2)求出BC DE +的值;(3)参考小明思考问题的方法,解决问题;如图,已知ABCD 和矩形,ABEF AC 与DF 交于点,G AC BF DF ==.求AGF ∠的度数.48.如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将A ,B 两点向右平移1个单位,再向上平移2个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD .(1)求点C ,D 的坐标;(2)若点P 在直线BD 上运动,连接PC ,PO .∥若点P 在线段BD 上(不与B ,D 重合)时,求S △CDP +S △BOP 的取值范围;∥若点P 在直线BD 上运动,试探索∥CPO ,∥DCP ,∥BOP 的关系,并证明你的结论.49.Rt∥ABC 中,∥BAC =90°,(1)如图1,分别以AB 、AC 、BC 为边向外作正方形ABFG 、ACPE 、BCDE ,其面积分别记为S 1,S 2,S 3,∥若AB =5,AC =12,则S 3= ;∥如图2,将正方形BCDE 沿C 折,点D 、E 的对应点分别记为M 、M ,若点从M 、N 分别在直线FG 和PH 上,且点M 是GO 中点时,求S 1∥S 2∥S 3;∥如图3,无论Rt∥ABC 三边长度如何变化,点M 必定落在直线FG 上吗? 请说明理由;(2)如图4,分别以AB ,AC ,BC 为边向外作正三角形ABD ,ACF ,BCE ,再将三角形BCE沿BC翻折,点E的对应点记为P,若AB=保持不变,随着AC的长度变化,点P也随之运动,试探究AP的值是否变化,若不变,直接写出AP的值;若改变,直接写出AP的最小值.50.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连结BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系:(1)∥请直接写出图1中线段BG、线段DE的数量关系及所在直线的位置关系;∥将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度 ,得到如图2、如图3情形.请你通过观察、测量等方法判断∥中得到的结论是否仍然成立,并选取图2证明你的判断.(2)将原题中正方形改为矩形(如图4~6),且,试判断(1)∥中得到的结论哪个成立,哪个不成立?(写出你的判断,不必证明.)(3)在图5中,连结DG、BE,且,则.参考答案:1.C【分析】根据多边形内角和定理进行求解即可.【详解】解;设这个多边形的边数为n ,由题意得;()1802720n ︒⋅-=︒,解得6n =,∥这个多边形是六边形,故选C .【点睛】本题主要考查了多边形内角和定理,熟知对于n 边形其内角和为()1802n ︒⋅-是解题的关键.2.C【分析】本题可根据多边形的内角和为(n ﹣2)×180°来确定解决本题的方法,即判断哪个度数可能是多边形的内角和,就看它是否能被180°整除,从而根据这一方法解决问题.【详解】判断哪个度数可能是多边形的内角和,我们主要看它是否能被180°整除. ∥只有1980°能被180°整除.故选C .【点睛】本题考查了多边形的内角和的计算公式.熟练掌握多边形内角和公式是解答本题的关键.3.D【分析】根据平行四边形的性质,正方形的性质,菱形的性质,矩形的性质对每个选项进行分析,即可得出答案.【详解】解:∥平行四边形的对边相等,∥选项A 不符合题意;∥正方形的对角线互相垂直平分且相等,∥选项B 不符合题意;∥菱形的对角线互相垂直平分,∥选项C 不符合题意;∥矩形的对角线相等但不一定互相垂直,∥选项D 符合题意;故选:D.【点睛】本题考查了平行四边形的性质,正方形的性质,菱形的性质,矩形的性质,熟练掌握平行四边形的性质,正方形的性质,菱形的性质,矩形的性质是解决问题的关键.4.C【分析】根据一组邻边相等的平行四边形是菱形判断出四边形的形状;当两张纸条如图所示放置时,菱形面积最大,然后根据勾股定理求出菱形的边长,然后根据菱形的面积公式计算即可.【详解】解:重叠的四边形的两组对边分别平行,那么可得是平行四边形,再根据宽度相等,利用面积的不同求法可得一组邻边相等,那么重叠的四边形应为菱形;如图,此时菱形ABCD的面积最大.设AB=x,EB=9-x,AE=3,则由勾股定理得到:32+(9-x)2=x2,解得x=5,S最大=5×3=15.故选C.【点睛】本题考查菱形的判定和性质,解题的关键是怎样放置纸条使得到的菱形的面积最大和最小,然后根据图形列方程.5.D【分析】根据平行四边形的性质解答.【详解】解:∵四边形ABCD是平行四边形,∴AO=OC,故A正确;∥,故B正确;∴AD BC∴AD=BC,故C正确;故选:D.【点睛】此题考查了平行四边形的性质,熟记平行四边形的性质是解题的关键.6.B【分析】根据多边形外角和为360°,然后除以36°即可得到正多边形的边数.【详解】每一个外角都等于36︒,这样的正多边形边数为360°÷36°=10,故选B【点睛】本题考查有关于多边形外角和的计算,记住多边形的外角和是360°是解题关键. 7.A【分析】首先可根据平行四边形的性质推出△AEO∥∥CFO,从而进行分析即可.【详解】∥点O是ABCD对角线的交点,∥OA=OC,∥EAO=∥CFO,∥∥AOE=∥COF,∥△AEO∥∥CFO(ASA),∥OE=OF,A选项成立;∥AE=CF,但不一定得出BF=CF,则AE不一定等于BF,B选项不一定成立;∠=∠,则DO=DC,若DOC OCD由题意无法明确推出此结论,C选项不一定成立;由△AEO∥∥CFO得∥CFE=∥AEF,但不一定得出∥AEF=∥DEF,则∥CFE不一定等于∥DEF,D选项不一定成立;故选:A.【点睛】本题考查平行四边形的性质,理解基本性质,利用全等三角形的判定与性质是解题关键.8.B【详解】分析:对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,判断即可.详解:对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,故选B.点睛:考查矩形的判定:对角线相等的平行四边形是矩形.9.B【分析】根据平行四边形的对边平行和角平分线的定义,以及平行线的性质求∥1的度数即可.【详解】:解:∥AD∥BC,∥B=70°,∥∥BAD=180°-∥B=110°.∥AE平分∥BAD∥∥DAE=12∥BAD=55°. ∥∥AEB=∥DAE=55°∥CF∥AE∥∥1=∥AEB=55°.故选B .【点睛】本题考查了平行四边形的性质,掌握平行四边形的性质是解题的关键. 10.D【分析】根据矩形、正方形、菱形的判定即可判断出正确答案.【详解】A 、对角线相等的四边形有可能是等腰梯形,故本选项错误;B 、对角线相互垂直的四边形有可能是等腰梯形或者是针形;故本选项错误;C 、对角线相等且垂直且相互平分的四边形是正方形,故本选项错误;D 、对角线相等的菱形是正方形,故本选项正确.故选D【点睛】本题考查了矩形、正方形、菱形的判定,熟记和掌握矩形、正方形、菱形的判定是解题关键.11.C【分析】首先判断BAE 、CAD 是等腰三角形,从而得出BA BE =,CA CD =,由ABC 的周长为26,及10BC =,可得6DE =,利用中位线定理可求出PQ .【详解】解:由题意得:BQ AE ⊥,BQ 平分ABE ∠,∥ABQ EBQ ∠=∠,90AQB BQE ∠=∠=︒,又∥BQ BQ =,∥()ASA ABQ EBQ ≌,∥,AB BE AQ QE ==,∥BAE 是等腰三角形,Q 为AE 的中点,同法可得:CA CD =,CAD 是等腰三角形,P 为AD 的中点,∥ABC 的周长2026AB BC AC BE BC CD BC BC DE DE =++=++=++=+=, ∥6DE =, ∥132PQ DE ==; 故选C .【点睛】本题考查全等三角形的判定和性质,等腰三角形的判定和性质,以及三角形的中位线定理.根据已知条件,证明三角形全等,是解题的关键.12.B【分析】由于正方形纸片ABCD的边长为2,所以将正方形ABCD对折后AE=DF=1,由翻折不变性的原则可知AD=DH=2,AG=GH,在Rt△DFH中利用勾股定理可求出HF的长,进而求出EH的长,再设EG=x,在Rt△EGH中,利用勾股定理即可求解.【详解】∥正方形纸片ABCD的边长为2,∥将正方形ABCD对折后AE=DF=1,∥∥GDH是△GDA沿直线DG翻折而成,∥AD=DH=2,AG=GH,在Rt△DFH中,HF==在Rt△EGH中,设EG=x,则GH=AG=1-x,∥GH2=EH2+EG2,即(1-x)2=(2+x2,解得.故选B.【点睛】考查的是图形翻折变换的性质,解答此类题目最常用的方法是设所求线段的长为x,再根据勾股定理列方程求解.13.A【分析】根据正方形、菱形、矩形及平行四边形的判定定理对各选项逐一判断即可得答案.【详解】A.对角线互相垂直的平行四边形是菱形,故该选项说法错误,符合题意,B.四条边都相等的四边形是菱形,故该选项说法正确,不符合题意,C.四个角都相等的四边形是矩形,故该选项说法正确,不符合题意,D.一组对边平行一组对角相等的四边形是平行四边形,故该选项说法正确,不符合题意,故选A.【点睛】本题考查了正方形、菱形、矩形及平行四边形的判定,注意正方形是特殊的菱形或者矩形.熟练掌握各特殊四边形的判定定理是解题关键.14.B【分析】作D点关于AB的对称点D',连接CD'交AB于P,根据两点之间线段最短可知此时PC+PD最小;再作D'E∥BC于E,则EB=D'A=AD,先根据等边对等角得出∥DCD'=∥DD'C,然后根据平行线的性质得出∥D'CE=∥DD'C,从而求得∥D'CE=∥DCD',得出∥D'CE=30°,根据30°角的直角三角形的性质求得D'C=2D'E=2AB,即可求得PC+PD 的最小值.【详解】作D点关于AB的对称点D',连接CD'交AB于P,P即为所求,此时PC+PD=PC+PD'=CD',根据两点之间线段最短可知此时PC+PD最小.作D'E∥BC于E,则EB=D'A=AD.∥CD=2AD,∥DD'=CD,∥∥DCD'=∥DD'C.∥∥DAB=∥ABC=90°,∥四边形ABED'是矩形,∥DD'∥EC,D'E=AB=3,∥∥D'CE=∥DD'C,∥∥D'CE=∥DCD'.∥∥DCB=60°,∥∥D'CE=30°,∥D'C=2D'E=2AB=2×3=6,∥PC+PD的最小值为6.故选:B.【点睛】本题考查了轴对称﹣最短路线问题,轴对称的性质,矩形的判定和性质,等腰三角形的性质,平行线的性质,30°角的直角三角形的性质等,确定出P点是解答本题的关键.15.C【分析】根据矩形的对角线相等且互相平分可得OA=OB=OD,然后判断出△AOD是等边三角形,再根据等边三角形的性质求出OD=AD,然后求出BD,再利用勾股定理列式计算即可得解.【详解】在矩形ABCD中,OA=OC,OB=OD,AC=BD,∥OA=OB=OD,∥∥AOD=60°,∥∥AOD是等边三角形,∥OD=AD=2,∥BD=2OD=4,由勾股定理得,AB=.故选:C.【点睛】本题考查了矩形的性质,等边三角形的判定与性质,勾股定理的应用,熟记性质并判断出△AOD是等边三角形是解题的关键.16.C【分析】如图,连接BD交AC于O,连接PB.因为AC与BD互相垂直平分,推出PD=PB,推出PE+PD=PE+PB,因为PE+PB≥BE,推出当E、P、B共线时,PE+PD的值最小,最小值为BE的长,求出BE即可解决问题;【详解】解:如图,连接BD交AC于O,连接PB.∥S菱形ABCD=12•AC•BD,∥24=12×12×BD,∥BD=4,∥OA=12AC=6,OB=12BD=2,AC∥BD,∥AB=∥AC 与BD 互相垂直平分,∥PD =PB ,∥PE +PD =PE +PB ,∥PE +PB ≥BE ,∥当E 、P 、B 共线时,PE +PD 的值最小,最小值为BE 的长,∥∥ABE 是等边三角形,∥BE =AB∥PD +PE 的最小值为故选:C .【点睛】本题考查轴对称-最短问题,等边三角形的判定和性质、菱形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考选择题中的压轴题.17.D【分析】先根据勾股定理的逆定理判定ABC 是直角三角形,再利用正方形的判定确定四边形OFAE 是正方形,进而利用圆的切线性质可知线段的关系,进而求出阴影部分的面积.【详解】解:∥8AB =,17BC =,15CA =,∥222AB CA BC +=,∥ABC 为直角三角形,90A ∠=︒,∥O 与AB AC ,分别相切于点F 、E ,∥OF AB ⊥ ,OE AC ⊥,OF OE =,∥四边形OFAE 是正方形,设OE r =,则AE AF r ==,∥ABC 的内切圆O 与BC 、CA 、AB 分别相切于点D 、E 、F ,∥8BD BF r ==-,15CD CE r ==-,∥81517r r -+-=, ∥8151732r +-==, ∥阴影部分的面积是:239=,故选:D .【点睛】本题考查了三角形的内切圆和内心:三角形的内心到三角形三边的距离相等,三角形的内心到顶点的连线平分这个内角;勾股定理的逆定理和切线性质等相关知识点.熟练运用知识点是解决问题的关键.18.B【分析】连接EG ,根据AG 垂直平分EF ,即可得出EG FG =,设CE x =,则5DE x BF =-=,8FG EG x ==-,再根据Rt CEG △中,222CE CG EG +=,即可得到CE 的长.【详解】解:如图所示,连接EG ,由旋转可得,ADE ∥ABF △,AE AF ∴=,DE BF =,又AG EF ⊥,H ∴为EF 的中点,AG ∴垂直平分EF ,EG FG ∴=,设CE x =,则5DE x BF =-=,8FG x =-,8EG x ∴=-,90C ∠=︒,Rt CEG ∴中,222CE CG EG +=,即2222(8)x x +=-, 解得154x =, CE ∴的长为154, 故选:B . 【点睛】本题主要考查了正方形的性质以及旋转的性质,解题时注意:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.19.C【分析】如图,连接BD交AC于O,连接PB,由菱形的性质可得AC与BD互相垂直平分,可得PD=PB,于是PE+PD=PE+PB,因为PE+PB≥BE,故当E、P、B共线时,PE+PD的值最小,最小值为BE的长,所以求出BE即可解决问题,而根据菱形的面积、菱形的性质和勾股定理即可求出AB的长,再根据等边三角形的性质即得答案.【详解】解:如图,连接BD交AC于O,连接PB.∥S菱形ABCD=12•AC•BD,∥24=12×12×BD,∥BD=4,∥四边形ABCD是菱形,∥OA=12AC=6,OB=12BD=2,AC∥BD,∥AB=∥AC与BD互相垂直平分,∥PD=PB,∥PE+PD=PE+PB,∥PE+PB≥BE,∥当E、P、B共线时,PE+PD的值最小,最小值为BE的长,∥∥ABE是等边三角形,∥BE=AB=∥PD+PE的最小值为故选:C.【点睛】本题考查了菱形的性质、菱形的面积公式、等边三角形的性质、勾股定理以及轴对称﹣最短问题,正确添加辅助线、熟练掌握上述知识是解题的关键.20.B【分析】由折叠的性质可得∥DCA=∥ACF,由平行线的性质可得∥DCA=∥CAB=∥ACF,可得FA=FC,设BF=x,在Rt∥BCF中,根据CF2=BC2+BF2,可得方程(8﹣x)2=x2+42,可求BF=3,AF=5,即可求解.【详解】解:设BF=x,∥将矩形沿AC折叠,∥∥DCA=∥ACF,∥四边形ABCD是矩形,∥CD∥AB,∥∥DCA=∥CAB=∥ACF,∥FA=FC=8﹣x,在Rt∥BCF中,∥CF2=BC2+BF2,∥(8﹣x)2=x2+42,∥x=3,∥BF=3,∥AF=5,∥AF:BF的值为53,故选:B.【点睛】本题考查矩形的性质、翻折变换、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.100【分析】根据三角形中位线的性质定理解答即可.【详解】解:∥点M、N是OA、OB的中点,∥MN是∥ABO的中位线,∥AB=2MN.又∥MN=50m,∥AB=100m.故答案是:100.【点睛】此题考查了三角形中位线的性质定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.22.6.5【分析】根据题意,连接AR,在直角∥ADR中,DR=5,AD=12,根据勾股定理可得AR.AR=13,又因为E、F分别是PA、PR的中点,即为∥PAR的中位线,故EF=12【详解】∥∥D=90°,DR=5,AD=12,∥AR,∥E、F分别是PA、PR的中点,AR=6.5,∥EF=12故答案为6.5.【点睛】本题考查了三角形中位线长度的求取,本题的解题关键是不要因为动点问题的包装而把题目想的复杂,根据中位线的性质解题即可.23.16.【分析】连接AC、BD,根据三角形的中位线求出HG、GF、EF、EH的长,再求出四边形EFGH的周长即可.【详解】如图,连接AC、BD,∥四边形ABCD是矩形,∥AC=BD=8cm,∥E、F、G、H分别是AB、BC、CD、DA的中点,AC=4cm,∥HG=EF=12BD=4cm,EH=FG=12∥四边形EFGH的周长=HG+EF+EH+FG=4cm+4cm+4cm+4cm=16cm,故答案为:16.【点睛】本题考查了矩形的性质,三角形的中位线的应用,解题的关键是能求出四边形的各个边的长.矩形的对角线相等,三角形的中位线平行于第三边,并且等于第三边的一半.24.4π【分析】根据阴影面积=三角形面积-2个扇形的面积即可求解.【详解】∥S △ABD =5π×8÷2=20π;设ABD n ∠=︒,S 扇形BAE =64360n π⨯;S 扇形DFM =()9064360n π-⨯; ∥阴影面积=20π-()649064360n n ππ⨯+-⨯=20π-16π=4π.故答案为:4π▱ 【点睛】本题主要是利用扇形面积和三角形面积公式计算阴影部分的面积解题关键是找到所求的量的等量关系.25.菱形 【分析】根据三角形中位线定理可得1122EH BD EH BD FG BD FG BD ==∥∥,,,,进一步可得EH FG EH FG =∥,,同理可得EF HG EF HG =∥,,又根据AC BD =即可得EF HG ==EH FG =,进一步即可得证.【详解】解:∥E ,F ,G ,H 分别是各边的中点, ∥1122EH BD EH BD FG BD FG BD ==∥∥,,,, ∥EH FG EH FG =∥,,同理可证EF HG EF HG =∥,,又∥AC BD =,∥EF HG ==EH FG =,∥四边形EFGH 是菱形.故答案为:菱形.【点睛】本题考查了菱形的判定和三角形中位线定理,解决本题的关键是掌握三角形中位线定理.26.1【分析】利用三角形中位线定理求得GH =12DE ,DE =12BC .【详解】解:∥D ,E 分别是AB ,AC 的中点,∥DE 是△ABC 的中位线,∥DE= 12BC=12×4=2,∥G,H分别是AD,AE的中点,∥GH是△ADE的中位线,∥GH=12DE=12×2=1,故答案为:1.【点睛】本题考查了三角形的中位线,熟记三角形的中位线等于第三边的一半是解题的关键.27.12【分析】根据平行四边形的性质可以得到OA=OC,BC=AD,然后根据AB=24,AD=36,即可计算出∥OBC的周长与∥AOB的周长之差.【详解】解:∵四边形ABCD是平行四边形,∴OA=OC,AD=BC,∵AB=24,AD=36,∴BC=36,∴C△OBC﹣C△AOB=(OB+OC+BC)﹣(OB+OA+AB)=OB+OC+BC﹣OB﹣OA﹣AB=BC﹣AB=36﹣24=12,故答案为:12.【点睛】本题考查平行四边形的性质,解答本题的关键是明确△OBC的周长与△AOB的差就是BC与AB的差.28.80°【分析】根据平行四边形的性质分别求出∥A和∥B的度数,然后根据平行四边形对角相等的性质可得∥C=∥A,即可求解.【详解】∥四边形ABCD为平行四边形,∥18020A BB A∠∠∠∠+=︒⎧⎨-=︒⎩,解得:80100AB∠∠=︒⎧⎨=︒⎩,∥∥C=∥A=80°.故答案为80°.【点睛】本题考查了平行四边形对边平行的性质,得到邻角互补的结论,这是运用定义求四边形内角度数的常用方法.29.13 【分析】先根据平行四边形的性质可得11,22OC AC OB BD ==,从而可得7OB OC +=,再根据三角形的周长公式即可得. 【详解】解:四边形ABCD 是平行四边形,11,22OC AC OB BD ∴==, 14AC BD +=,()172OB OC BD AC ∴+=+=, 又6BC =, BOC ∴的周长为7613OB OC BC ++=+=,故答案为:13.【点睛】本题考查了平行四边形的性质,熟练掌握平行四边形的性质是解题关键.30.32π 【分析】利用矩形的性质求得OA =OC =OB =OD =3,再利用扇形的面积公式求解即可.【详解】解:∥矩形ABCD 的对角线AC ,BD 交于点O ,且BD =6,∥AC=BD =6,∥OA =OC =OB =OD =3, ∥22303236032AOE S S ππ⨯⨯===阴影扇形, 故答案为:32π. 【点睛】本题考查了矩形的性质,扇形的面积等知识,解答本题的关键是明确题意,利用数形结合的思想解答.31.()41,【分析】首先根据B 、C 两点的坐标确定线段BC 的长,然后根据A 点向右平移线段BC 的长度得到D 点,即可由A 点坐标求得点D 的坐标.【详解】解:∥B ,C 的坐标分别是(−2,−2),(2,−2),∥BC=2−(−2)=2+2=4,∥四边形ABCD是平行四边形,∥AD=BC=4,∥点A的坐标为(0,1),∥点D的坐标为(4,1).故答案为:(4,1).【点睛】本题主要考查了平行四边形的性质及坐标与图形性质的知识,解题的关键是求得线段BC的长,难度不大.32.××√×【分析】根据菱形的判定定理即可解答.【详解】(1)错误,对角线相互垂直且平分的四边形是菱形.(2)错误,对角线相互垂直且平分的四边形是菱形.(3)正确,对角线相互垂直且平分的四边形是菱形.(4)错误,对角线相互垂直且平分的四边形是菱形.【点睛】本题考查菱形的判定定理,熟悉掌握是解题关键.33.4【分析】由“SAS”可证∥ABF∥∥CBE,可得AF=CE,则DF+CE=DF+AF=DF+FH,即当点F,点D,点H三点共线时,DF+CE的最小值为DH的长,由勾股定理可求解.【详解】解:连接AC,作点A关于BC的对称点H,连接AH,交BC于N,连接FH,如图所示:∥四边形ABCD为菱形,∥,∥AB=BC=CD=AD=2,AD BC∥180BAD ABC ∠+∠=︒,∥∥BAD =2∥B ,∥∥B =60°,∥∥ABC 是等边三角形,∥点A ,点H 关于BC 对称,∥AH ∥BC ,AN =NH ,∥FH =AF ,又∥∥ABC 是等边三角形,∥BN =NC =112BC =,AN ∥AH =2AN=∥AE =CF ,AB =BC ,∥BE =BF ,∥在∥ABF 和∥CBE 中AB BC B B BF BE ⎧⎪∠∠⎨⎪⎩===,∥∥ABF ∥∥CBE (SAS ),∥AF =CE ,∥DF +CE =DF +AF =DF +FH ,∥当点F ,点D ,点H 三点共线时,DF +CE 的最小值为DH 的长,∥AH ∥BC ,∥90HNC ∠=︒,∥AD BC ∥,∥90HAD HNC ∠=∠=︒,∥4DH ==, 即DF CE +的最小值为4.故答案为:4.【点睛】本题主要考查了菱形的性质,全等三角形的判定和性质,勾股定理,轴对称的性质,证明三角形全等是解题的关键.34.8。
四边形单元测试题及答案
四边形单元测试题及答案一、选择题1. 下列哪个图形不是四边形?A. 正方形B. 长方形C. 平行四边形D. 三角形答案:D2. 一个四边形的对角线数量是多少?A. 1B. 2C. 3D. 4答案:B3. 菱形具有以下哪些特性?A. 对角线相等B. 对角线互相垂直C. 四边相等D. 所有选项都正确答案:D二、填空题1. 一个平行四边形的对边_________。
答案:平行且相等2. 正方形是特殊的_________。
答案:平行四边形3. 菱形的对角线_________。
答案:互相垂直且平分三、简答题1. 请简述四边形的基本性质。
答案:四边形是一个平面图形,由四条直线段依次首尾相连组成。
其基本性质包括:对边平行且相等,对角线互相平分。
2. 什么是梯形?请简述其特点。
答案:梯形是一个四边形,其中一组对边平行,另一组对边不平行。
其特点是:非平行的两边称为腰,平行的两边称为底,两底之间的距离称为高。
四、计算题1. 已知一个平行四边形的两邻边长分别为3厘米和5厘米,求其对角线的长度。
答案:由于题目没有给出足够的信息,无法直接计算对角线的长度。
需要知道平行四边形的其他信息,如角度或对角线与边的关系。
2. 如果一个正方形的边长为4厘米,计算其面积。
答案:正方形的面积 = 边长× 边长 = 4厘米× 4厘米 = 16平方厘米。
五、解答题1. 如何证明一个四边形是平行四边形?答案:要证明一个四边形是平行四边形,可以采用以下方法之一:- 两组对边分别平行。
- 两组对边分别相等。
- 对角线互相平分。
2. 已知一个菱形的边长为6厘米,求其面积。
答案:菱形的面积可以通过以下公式计算:面积 = (对角线1 ×对角线2) / 2。
由于题目没有给出对角线的长度,我们可以使用菱形的边长和其特性来求解。
设对角线分别为d1和d2,根据菱形的性质,d1² + d2² = 4 × 边长² = 4 × 6² = 144。
四边形测试题(含答案)
八年级数学试题(考试时间:90分钟 满分:100分)一、填空:(每小题2分,共24分)1、对角线_____平行四边形是矩形。
2、如图⑴已知O 是□ABCD 的对角线交点,AC =24,BD =38,AD =14,那么△OBC 的周长等于_____。
3、在平行四边形ABCD 中,∠C =∠B+∠D,则∠A =___,∠D =___。
4、一个平行四边形的周长为70cm ,两边的差是10cm ,则平行四边形各边长为____cm 。
5、已知菱形的一条对角线长为12cm ,面积为30cm 2,则这个菱形的另一条对角线长为__________cm 。
6、菱形ABCD 中,∠A =60o ,对角线BD 长为7cm ,则此菱形周长_____cm 。
7,那么它的面积______。
8、如图2矩形ABCD 的两条对角线相交于O,∠AOB =60o ,AB =8,则矩形对角线的长___。
9、如图3,等腰梯形ABCD 中,AD ∥BC ,AB ∥DE ,BC =8,AB =6,AD =5则△CDE 周长___。
10、正方形的对称轴有___条11、如图4,BD 是□ABCD 的对角线,点E 、F 在BD 上,要使四边形AECF 是平行四边形,还需增加的一个条件是______12、要从一张长为40cm ,宽为20cm 的矩形纸片中,剪出长为18cm ,宽为12cm 的矩形纸片,最多能剪出______张。
二、选择题:(每小题3分,共18分)13、在□ABCD 中,∠A :∠B :∠C :∠D 的值可以是( )A 、1:2:3:4B 、1:2:2:1C 、2:2:1:1D 、2:1:2:1 14、菱形和矩形一定都具有的性质是( ) A 、对角线相等 B 、对角线互相垂直 C 、对角线互相平分 D 、对角线互相平分且相等 15、下列命题中的假命题是( )A 、等腰梯形在同一底边上的两个底角相等B 、对角线相等的四边形是等腰梯形C 、等腰梯形是轴对称图形D 、等腰梯形的对角线相等16、四边形ABCD 的对角线AC 、BD 交于点O ,能判定它是正方形的是( ) A 、AO =OC ,OB =OD B 、AO =BO =CO =DO ,AC ⊥BD C 、AO =OC ,OB =OD ,AC ⊥BD D 、AO =OC =OB =OD 17、给出下列四个命题⑴一组对边平行的四边形是平行四边形 ⑵一条对角线平分一个内角的平行四边形是菱形⑶两条对角线互相垂直的矩形是正方形 ⑷顺次连接等腰梯形四边中点所得四边形是等腰梯形。
四边形练习题及答案
四边形练习题及答案
四边形是平面几何中常见的图形,它有四条边和四个角。
本文将提供一些关于四边形的练习题及答案,帮助读者提高对四边形的认识和理解。
一、选择题
1. 下列哪个图形是四边形?
A. 圆形
B. 三角形
C. 正方形
D. 梯形
2. 以下哪个陈述是正确的?
A. 所有四边形都有相等长度的边
B. 四边形的四个角都是直角
C. 四边形的对边平行
D. 四边形的内角之和是180度
3. 以下哪个图形不是四边形?
A. 平行四边形
B. 长方形
D. 梯形
二、填空题
1. 矩形是一种特殊的_____形。
2. 一个正方形的内角度数是_____度。
3. 一对相对的边平行且长度相等的四边形是_____形。
4. 梯形有_____对平行边。
三、解答题
1. 画出一个平行四边形,并标明其各边和各角的名称。
(解答略)
2. 假设一个四边形的两条对边分别相等且平行,另外两条边分别相等但不平行,这个四边形是什么形状?
(解答略)
四、答案
选择题:
1. C
2. D
3. A
1. 正方形
2. 90
3. 平行四边形
4. 2
解答题:略
通过以上练习题,我们对四边形有了更深入的了解。
希望读者能够通过练习提高自己的几何知识和技能。
边形经典试题50题及
经典四边形习题50 道(附答案)1.已知:在矩形ABCD中, AE BD于 E,∠DAE=3∠BAE ,求:∠ EAC的度数。
2.已知:直角梯形ABCD中, BC=CD=a且∠ BCD=60 , E、F 分别为梯形的腰 AB、DC的中点,求: EF的长。
3、已知:在等腰梯形 ABCD中, AB∥DC,AD=BC, E、F 分别为 AD、 BC的中点, BD均分∠ ABC交 EF 于 G, EG=18, GF=10 求:等腰梯形 ABCD的周长。
ADE FB CD CEGFA BE4、已知:梯形ABCD中,AB∥CD,以AD,AC为邻边作平行四边形 ACED, DC延伸线交 BE于 F,求证: F 是 BE的中点。
DCFA BD C5、已知:梯形ABCD中, AB∥ CD, AC CB,AC均分∠ A,又∠ B=60,梯形的周长是20cm, 求: AB的长。
AB6、从平行四边形四边形ABCD的各极点作对角线的垂线AE、D C BF、 CG、 DH,垂足分别是E、 F、 G、 H,求证: EF∥ GH。
E FOH G7、已知:梯形 ABCD的对角线的交点为 EAA D B若在平行边的一边BC的延伸线上取一点F,EB C F使 S ABC =S EBF,求证: DF∥ AC。
8、在正方形ABCD中,直线 EF 平行于对角线 AC,与边 AB、 BC的交点为E、F,在 DA的延伸线上取一点 G,使 AG=AD,若 EG与 DF的交点为 H,求证: AH与正方形的边长相等。
9、若以直角三角形ABC的边 AB为边,在三角形ABC的外面作正方形ABDE,AF 是 BC边的高,延伸FA 使 AG=BC,求证: BG=CD。
10、正方形 ABCD,E、 F 分别是 AB、 AD延伸线上的一点,且 AE=AF=AC, EF 交 BC于 G,交AC于 K,交 CD于 H,求证: EG=GC=CH=HF。
11、在正方形 ABCD的对角线 BD上,取 BE=AB,若过 E 作 BD的垂线 EF 交 CD于 F,G A DEHB F CGEDAB F CFD H CKj GAB EA DE求证: CF=ED。
四边形测试题(通用8篇)
四边形测试题〔通用8篇〕篇1:数学四边形测试题数学四边形测试题一、选择题(每题3分,共30分)。
1、顺次连结四边形各边的中点,所成的四边形必定是A等腰梯形B直角梯形C矩形D平行四边形2、如图1:等腰梯形ABCD中,AD∥BC,对角线AC、BD 相交于点O,那么图中的全等三角形共有A1对B2对C3对D4对3、如图2,在矩形ABCD中,AD∥BC,AC与BD交于点O,那么图中面积相等的三角形有A4对B5对C6对D8对4、不能断定四边形ABCD为平行四边形的命题是AAB∥CD且AB=CDBAB=AD、BC=CDCAB=CD,AD=BCD∠A=∠C,∠B=∠D5、以下命题中,真命题是A一组对边平行,另一组对边相等的'四边形是平行四边形B有一组对边和一组对角分别相等的四边形是平行四边形C两组对角分别相等的四边形是平行四边形D两条对角线互相垂直且相等的四边形是平行四边形6、正方形具有而菱形不一定具有的性质是A对角线相等B对角线互相垂直且平分C四条边都相等D对角线平分一组对角篇2:初中数学四边形单元测试题参考初中数学四边形单元测试题参考一、精心选一选,相信你一定能选对!(每题3分,共30分)1.如图1,用两个完全一样的直角三角板,不能拼成以下图形的是( ).A.平行四边形B.矩形C.等腰三角形D.梯形2.以下说法中,正确的选项是( ).A.等腰梯形的对角线互相垂直B.菱形的对角线相等C.矩形的对角线互相垂直;D.正方形的对角线互相垂直且相等3.四边形ABCD是平行四边形,以下结论中,错误的选项是( ).A.AB=CD;B.AC=BD;C.当AC⊥BD时,它是菱形;D.当∠ABC =90°时,它是矩形4.如图2,将一张矩形纸片ABCD那样折起,使顶点C落在C′处,其中AB=4,假设∠C ′ED=30°,那么折痕ED的长为( ) .A.4B.4C.5D.85.如图3,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影局部的面积是矩形面积的( ).A. B. C. D.6.将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①, ②两局部,将①展开后得到的平面图形是( ).A.三角形B.矩形C.菱形D.梯形7. 等腰梯形ABCD的中位线EF的长为6,腰AD的长为5,那么等腰梯形的周长为(• ).A.11B.16C.17D.228.顺次连结菱形各边中点所围成的四边形是( ).A.一般的平行四边形B.矩形C.菱形D.等腰梯形9.如图4是一块电脑主板的示意图,每一转角处都是直角,数据如图所示,•那么该主板的周长是( ).A.88mmB.96mmC.80mmD.84mm10.如图5,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上一动点,那么DN+MN的最小值为( ).A.8B.8C.2D.10二、细心填一填,相信你填得又快又准!(每题2分,共16分)11. ABCD两邻角∠A:∠B=1:2,那么∠C=_ ____度.12.如图6,在 ABCD中,E、F和G、H分别是AD和BC的三等分点,那么图中平行四边形的个数共有______个.13., ABCD中,AB=4cm,AD=7cm,∠ABC的平分线交AD 于E,那么DE=_____cm.14.如图,在长方形ABCD中,AB=3,BC=2,E为BC的中点,F在AB上,且BF=2AF,那么四边形AFEC的面积为________.15.如图,矩形纸片ABCD中,AB=6cm,AD=9cm,再按以下步骤折叠:①将∠BAD对折,使AB落在AD上,得折痕AF(如图2);②将△AFB沿BF折叠,AF与CD交于点G(如图3),•那么CG的长等于_______c m.16.过边长为1的正方形的中心O引两条互相垂直的射线,分别与正方形的边交于A、B两点,那么线段 AB长的取值范围是_______.17.菱形ABCD的边长为6,∠A=60°,假如点P是菱形内一点,且PB=PD=2 ,那么AP的长为_______.18.下面图1的梯形符合_______条件时,可以经过旋转和翻折成图案三、耐心选一选,千万别漏选!(每题4分,共8分,错选一项得0分,•对而不全酌情给分)19.如图,在等腰梯形ABCD中,AD∥BC,AC与BD相交于点O.下面结论正确的选项是( ).A.AC=BDB.∠DAO=∠DBCC.S△BOC= S梯形ABCDD.△AOB≌△DOC20.如图,把两个边长为3的正方形叠放在一起,假设∠BCF=30°,•那么下面结论正确的选项是( ).A.∠DCG=30°B.∠AHF与∠BCF互余C.DH=FHD.DH=四、用心做一做,展示你的证明才能!21.如图,在矩形ABCD中,点E、F在BC边上,且BE=CF,AF、DE交于点M.求证:AM=DM.(6分)22.如图,等腰梯形ABCD中,AD∥BC,AB =CD,DE⊥BC 于E,AE=BE.BF⊥AE于F,请你判断线段BF与图中的哪条线段相等,先写出你的猜测,再加以证明.(6分)(1)猜测:BF=______.(2)证明:23.如图,△ABC为等边三角形,D、F分别是BC、AB上的点,且CD=BF,以AD•为边作等边△ADE.(1)求证:△ACD≌△CBF;(2)当D在线段BC上何处时,四边形CDEF为平行四边形,且∠DEF=30°?•证明你的结论.(8分)五、仔细想一想,相信你一定行!24.如图,以△ABC的各边向同侧作正△ABD,BCF,ACE.(1)求证:四边形AEFD是平行四边形;(2)当△ABC是______三角形时,四边形AEFD是菱形;(3)当∠BAC=_____时,四边形AEFD是矩形;(4)当∠BAC=_______时,以A、E、F、D 为顶点的四边形不存在.(8分)25.矩形,菱形由于其特殊的性质,为拼图提供了方便,因此墙面瓷砖一般设计为矩形,图案也以菱形居多.如图,是一种长30cm,宽20cm的矩形瓷砖,E、F、G、H•分别是矩形各边的中点,阴影局部为淡黄色,中间局部为白色,现有一面长4.2m,宽2.8m的墙壁准备贴瓷砖.问:(1)这面墙壁最少要贴这种瓷砖多少块?(2)全部贴满瓷砖后,这面墙壁最多会出现多少个面积相等的菱形?•其中淡黄色的菱形有多少个?六、动脑想一想,展示你的设计才能!26.在劳技课上,老师请同学们在一张长为17cm,宽为16cm的长方形纸板上,剪下一个腰长为10cm的等腰三角形(•要求等腰三角形的一个顶点与长方形的一个顶点重合,其余两个顶点在长方形的边长上).•请你帮助同学们计算剪下的'等腰三角形的面积.(6分)27.蓝天希望学校准备建一个多媒体教室,方案做长120cm,宽30cm的长方形桌面,现只有长80cm,宽45cm的木板,请你为该校设计不同的拼接方案,使拼起来的桌面符合要求.(只要求画出裁剪,拼接图形,并标上尺寸)(6分)七、理论与探究,展示你的创新才能!28.设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去…….(1)记正方形ABCD的边长为a1=1,按上述方法所作的正方形的边长依次为a2,a3,a4, ……,an,恳求出a2,a3,a4的值.(2)根据以上规律写出an的表达式.(8分)29.在△ABC中,借助作图工具可以作出中位线EF,沿着中位线EF一刀剪切后,•用得到的△AEF和四边形EBCF可以拼成平行四边形EBCP,剪切线与拼图如下图1.仿照上述的方法,按要求完成以下操作设计,并在规定位置画出图示.(1)在△ABC中,增加条件:_________,沿着_______一刀剪切后可以拼成矩形,剪切线与拼图画在图示2的位置上.(2)在△ABC中,增加条件:_________,沿着_______一刀剪切后可以拼成菱形,剪切线与拼图画在图示3的位置上.(3)在△ABC中,增加条件:_________,沿着_______一刀剪切后可以拼成正方形,剪切线与拼图画在图示4的位置上.(4)在△ABC中(AB≠AC),一刀剪切后也可以拼成等腰梯形,首先要确定剪切线,•其操作过程(剪切线的作法)是:___________,然后,沿着剪切线一刀剪切后可以拼成等腰梯形,剪切线与拼图画在图示5的位置上.(10分)篇3:四边形四边形有关概念四边形内角和例1十、随堂练习教材P122中1、2、3.篇4:四边形性质探究的测试题(有答案) 一、选择题(每题3分,共30分)1.以下各组图形中有可能不相似的是A.各有一个角是45°的两个等腰三角形B.各有一个角是60°的两个等腰三角形C.各有一个角是105°的两个等腰三角形D.两个等腰直角三角形2.以下说法①所有等腰三角形都相似;②有一个底角相等的两个等腰三角形相似;③有一个角相等的等腰三角形相似;④有一个角为60o的两个直角三角形相似,其中正确的说法是A.①③B.②④C.①②④D.②③④3.△ABC和△DEF满足以下条件,其中使△ABC和△DEF不相似的是A.∠A=∠D=45°,∠C=27°,∠E=108°B.AB=1,AC=1.5,BC=2,DE=12,EF=8,DF=16C.BC=a,AC=b,AB=c,DE=,EF=,DF=D.AB=AC,DE=DF,∠A=∠D=40o,4.如下图,给出以下条件:①; ②;③; ④.其中单独可以断定的个数为A.1B.2C.3D.45.假如一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x,那么x的值A.只有1个B.可以有2个C.有2个以上但有限D.有无数个6.如图,△ABC中,EF∥BC,DG∥AB,EF和DG相交于点H,那么图中与△ABC相似的三角形共有A.1个B.2个C.3个D.4个7.△ABC中,D是AB上一固定点。
中考数学四边形专题训练50题含参考答案
中考数学四边形专题训练50题含答案(单选、填空、解答题)一、单选题1.如图,已知1234290∠+∠+∠+∠=︒,那么5∠的大小是( )A .60︒B .70︒C .80︒D .90︒ 2.在▱ABCD 中,∠A ,∠B 的度数之比为4∠5,则∠C 的度数为( )A .60°B .80°C .100°D .120° 3.如图,在菱形ABCD 中,60A ∠=︒,4AB =,O 为对角线BD 的中点,过O 作OE AB ⊥,垂足为E ,则BE 的长为( )A .1B .2C .3D .4 4.如图,四边形ABCD 和四边形AEFC 是两个矩形,点B 在EF 边上,若1AB =,2AC =,则矩形AEFC 的面积为( )A .2 BC .D .32 5.已知∠ABCD 相邻两个内角的比为2:3,则其中较大的内角是( ) A .60° B .72° C .120°D .108°6.如图,将长方形ABCD 沿对角线BD 折叠,使点C 落在点C ′处,BC ′交AD 于E ,AD =8,AB =4,则重叠部分(即BDE △)的面积为( )A .6B .7.5C .10D .207.如图,在矩形ABCD 中,6cm,8cm AB BC ==,点E 是BC 的中点,点F 是边CD 上一动点,当AEF △的周长最小时,则DF 的长为( )A .1B .2C .3D .48.如图,在四边形ABCD 中,110C ∠=︒,与BAD ∠,ABC ∠相邻的外角都是120°,则α∠的值为( )A .50°B .55°C .60°D .65° 9.如图,点E 为正方形ABCD 外一点,且ED CD =,连接AE ,交BD 于点F .若38CDE ∠=︒,则BFC ∠的度数为( )A .71︒B .72︒C .81︒D .82︒ 10.在平行四边形ABCD 中,点E 在DC 边上,连接AE ,交BD 于点F ,若DE ∠EC =3:2,则∠DEF 的面积与∠BAF 的面积之比为( )A.3:5B.9:4C.9:25D.3:211.如图,四边形ABCD是正方形,直线a、b、c分别经过A、D、C三点,且a b c∥∥.若a与b之间的距离是2,b与c之间的距离是3,则正方形ABCD的面积是()A.12B.13C.14D.1512.如图,在∠ABC中,点D在边BC上,过点D作DE∠AC,DF∠AB,分别交AB,AC于E,F两点.则下列说法不正确的是()A.四边形AEDF是平行四边形B.若∠B+∠C=90°,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若BD=AD=DC,则四边形AEDF是矩形13.小明在计算某多边形的内角和时,由于马虎漏掉了一个角,结果得到970°,则原多边形是一个()A.七边形B.八边形C.九边形D.十边形14.如图,在菱形ABCD中,对角线AC,BD相交于点O,AC=6,BD=8,点E是AD边的中点,连接OE,则OE的长为()A.10B.52C.5D.415.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形中满足条件的是()∠平行四边形;∠菱形;∠任意四边形;∠对角线互相垂直的四边形A.∠∠B.∠∠C.∠∠D.∠∠16.如图,已知点O为∠ABC的AC边上的中点,连接BO并延长到D,使得OD=OB,要使四边形ABCD为矩形,∠ABC中需添加的条件是()A.AB=BC B.∠ABC=90°C.∠BAC=45°D.∠BCA=45°17.如图,在矩形ABCD中,AB=10,BC=12,点M,N分别在AD,BC上,且=,3AM BN=,E为BC边上一动点,连接DE,将DCEAD AM∆沿DE所在直线折叠得到∠DC E',当C'点恰好落在线段MN上时,NE的长为()A.B.5C.3D.18.如图,菱形ABCD中,∠ABC=60°,AB=4,对角线AC、BD交于点O,E是线段BO上一动点,F是射线DC上一动点,若∠AEF=120°,则线段EF的长度的整数值的个数有()A.1个B.2个C.3个D.4个19.如图,正方形ABCD边长为4,E,F分别为线段AD,BC上一点,且1AE=,CF=,AC与DF相交于H,I为线段AH上一点(不与端点重合),J为线段DH上1+的最小值为()一点(不与端点重合),则EI IJA B C D二、填空题20.如图,已知点A的坐标是(-2),点B的坐标是(1-,,菱形ABCD的对角线交于坐标原点O,则点D的坐标是______.21.如图,在矩形ABCD中,对角线AC,BD交于点O,过点A作EA∠CA交DB的延长线于点E,若AB=3,BC=4,则OAAE的值为__________.22.如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,若∠E=20°,则∠ADB=______.23.如图,□ABCD的对角线交于点O,且AB=4,∠OCD的周长为13,则□ABCD的两条对角线长度之和为________.24.一个多边形的内角和等于它外角和的7倍,则这个多边形的边数为_________. 25.如图,在矩形ABCD 中,5AB =,7BC =,点E 为BC 上一动点,把ABE 沿AE 折叠,当点B 的对应点B '落在ADC ∠或DAB ∠的角平分线上时,则点B '到BC 的距离为______________.26.如图,在平行四边形ABDC 中,点M 是CD 的中点,AM 与BC 相交于点N ,那么:ACN S △S 四边形BDMN 等于_______.27.如图,在周长为16,面积为6的矩形纸片ABCD 中,E 是AD 的中点.F 是AB 上一动点,将AEF ∆沿直线EF 折叠,点A 落在点'A 处.在EF 上任取一点G ,连接'GA ,GC ,则'A G GC +的最小值为___________.28.如图,∠ABC 中∠ACB =90°,BC =2,AC =4,若正方形DEFG 的顶点D 在AB 上,顶点F 、G 都在AC 上,射线AE 交BC 边于点H ,则CH 长为___.29.如图,在矩形ABCD 中,AB =6,AD =10,H 是CD 边上一点,现将BCH ∆沿BH 折叠,点C 的对应点C '正好落在AD 边上,点E 、F 分别是AD 、BH 边上的动点,再将四边形ABHD 沿EF 折叠,若点A 的对应点A '正好落在线段BH 上,且4BA HA ''=,则线段AE 的长为______.30.如图,在矩形ABCD 中,6cm AB =,BC =,点P 从点A 出发沿AB 以2cm /s 的速度向点B 移动,若出发t 秒后,2PA PC =,则t =_________秒.31.如图,已知菱形ABCD 的对角线AC=2,∠BAD=60°,BD 边上有2013个不同的点122013,,,p p p ⋯,过(1,2,,2013)i p i =⋯作i i PE AB ⊥于i E ,i i PFAD ⊥于i F ,111122222013201320132013PE PF P E P F P E P F ++++⋯++的值为_______________32.“七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”,图∠是由边长10cm 的正方形薄板分成7块制作成的“七巧板”图∠是用该“七巧板”拼成的一个“家”的图形,该“七巧板”中7块图形之一的正方形边长为_______cm (结果保留根号).33.在面积为15的平行四边形ABCD 中,过点A 作AE 垂直于直线BC 于点E ,作AF 垂直于直线CD 于点F ,若AB =5,BC =6,则CE +CF 的值为_________________. 34.在菱形ABCD 的纸板中画O ,随意向其投掷一枚飞镖.若4AB =,60A ∠=,则飞镖落在O 中的概率的最大值为______.35.如图,在ABC ∆中,D 为BC 边中点,P 为AC 边中点,E 为BC 上一点且27BE CE =,连接AE ,取中点Q 并连接QD ,取QD 中点G ,延长PG 与BC 边交于点H ,若9BC =,则HE =_________.36.如图所示,AE 是▱ABCD 的∠DAB 的平分线,且交BC 于点E ,EF ∠AB 交AD 于点F ,则四边形ABEF 一定是____________.37.如图,在矩形ABCD 中,点M 在AB 边上,把∠BCM 沿直线CM 折叠,使点B 落在AD 边上的点E 处,连接EC ,过点B 作BF ∠EC ,垂足为F ,若2CD =,4CF =,则线段AE 的长为______.38.如图,在矩形ABCD 中,3AB =,BC a =,点E 在边BC 上,且3.5BE a =连接AE ,将ABE 沿AE 折叠,若点B 的对应点B '落在矩形ABCD 的边上,则a 的值为______ .39.如图,Rt∠ABC ,AB =3,AC =4,点D 在以C 为圆心3为半径的圆上,F 是BD 的中点,则线段AF 的最大值是_____.三、解答题40.如图,四边形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 分别在线段OA ,OC 上,且OB OD =,12∠=∠,AE=CF .(1)证明;BEO DFO ≌;(2)证明:四边形ABCD 是平行四边形.41. 如图.在Rt ∠ABC 中,∠B =90°,AC =60cm ,∠A =60°,点D 从点A 出发沿AC 方向以4cm ∕秒的速度向点C 匀速运动,同时点E 从点B 出发沿BA 方向以2cm ∕秒的速度向点A 匀速运动,设点D 、E 运动的时间是t 秒(0<t <15),过点D 作DF ∠BC 于点F ,连接DE 、EF .(1)求证:四边形AEFD 是平行四边形;(2)当t 为何值时,动点D 恰好在AF 的垂直平分线上;(3)点D 、F 在运动过程中是否存在t 的值,使∠DEF 是直角三角形,若存在求出t 的值,若不存在,说明理由.42.如图,在Rt ABC 中,90ACB ∠=︒,D ,E 分别是AB ,AC 的中点,连接CD ,过点E 作EF ∥CD ,交BC 的延长线于点F .(1)求证:四边形DCFE 是平行四边形;(2)若四边形DCFE 的周长是18,AC 的长为6,求线段AB 、 BC 的长.43.知:如图,n 边形12345n A A A A A A .(1)求证:n 边形12345n A A A A A A 的内角和等于()2180n -⋅︒;(2)在一个各内角都相等的多边形中,每一个内角都比相邻的外角的3倍还大20°,求这个多边形的内角和;(3)粗心的小明在计算一个多边形的内角和时,误把一个外角也加进去了,得其和为1180°,这个多加的外角度数为 ,多边形的边数为 .44.如图,在ABCD 中,对角线AC ,BD 交于点O ,E 是AD 上任意一点,连接EO 并延长,交BC 于点F ,连接AF ,CE .(1)求证:四边形AFCE 是平行四边形;(2)若60DAC ︒∠=,15ADB ∠=°,4AC =.∠直接写出ABCD 的边BC 上的高h 的值;∠当点E 从点D 向点A 运动的过程中,下面关于四边形AFCE 的形状的变化的说法中,正确的是A .平行四边形→矩形→平行四边形→菱形→平行四边形B .平行四边形→矩形→平行四边形→正方形→平行四边形C .平行四边形→菱形→平行四边形→菱形→平行四边形D .平行四边形→菱形→平行四边形→矩形→平行四边形45.如图,在∠ABC 中,AB =AC ,D 为BC 中点.四边形ABDE 是平行四边形.求证:四边形ADCE 是矩形46.已知正方形OABC 在直角坐标系中(如图),A (1,﹣3),求点B 、C 的坐标.47.如图1,四边形ABCD 是正方形,G 是CD 边上的一个动点(点G 与C 、D 不重合),以CG 为一边在正方形ABCD 外作正方形CEFG ,连结BG ,DE .(正方形四条边都相等,四个角都是直角)1.我们探究下列图中线段BG 、线段DE 的长度关系及所在直线的位置关系:(1)猜想图1中线段BG 和线段DE 的长度和位置关系:______________.(2)将图1中的正方形CEFG 绕着点C 按顺时针(或逆时针)方向旋转任意角度a ,得到如图2.如图3情形.请你通过观察、测量等方法判断上述猜想是否仍然成立:_______(成立、不成立)若成立,请你选取图2或图3中的一种情况说明你的判断.48.在矩形ABCD 中,点P 是射线BC 上一动点,点B 关于直线AP 的对称点为E ,直线PE 与直线CD 交于点F .(1)如图1,当A ,C ,E 共线时,若30ACB ∠=︒,判断∠ACF 的形状,并证明;(2)若当点P 在线段BC 上的某个位置时(不与B ,C 重合),有45PAF ∠=︒,求证:当点P 在BC 延长线上任意位置时,都有45PAF ∠=︒.49.【教材呈现】下图是华师版数学教材的部分内容探索如图24.2.1,画Rt ABC ,并画出斜边AB 上的中线CD ,量一量,看看CD 与AB 有什么关系.相信你与你的伙伴一定会发现:CD 恰好是AB 的一半,下面让我们演绎推理证明这一猜想.已知:如图24.2.2,在Rt ABC ,90ACB ∠=,CD 是斜边AB 上的中线.求证:12CD AB =.【证明】请根据教材图24.2.2的提示,完成直角三角形的性质“直角三角形斜边中线等于斜边一半”的证明【延伸】如图∠,在四边形ABCD 中,90ADC ∠=︒,AB AC =,点E 、F 分别为AC ,BC 的中点,连结EF 、DE ,则线段DE 与EF 的数量关系是___________.【应用】(1)如图∠,在【延伸】的条件下,当AC 平分BAD ∠,90DEF ∠=时,则BAD ∠的大小为______.(2)如图∠,在【延伸】的条件下,当2AB =,四边形CDEF 是菱形时,直接写出四边形ABCD 的面积.参考答案:1.B【分析】根据多边形外角和为360︒度进行求解即可.【详解】解:∠1234290∠+∠+∠+∠=︒,12345360∠+∠+∠+∠+∠=︒,∠()5360123470=︒-∠+∠+∠+∠=︒∠,故选B .【点睛】本题主要考查了多边形外角和,熟知多边形外角和为360︒是解题的关键. 2.B【分析】根据平行四边形邻角互补,即可将角A 和角B 的度数求出,再利用对角相等即可求出角C.【详解】∠四边形ABCD 为平行四边形,∠∠A+∠B=180°,∠∠A ,∠B 的度数之比为4∠5 ∠∠A=180°49⨯=80°, 即∠C=80°,故选B.【点睛】本题考查了平行四边形的性质,属于简单题,熟悉平行四边形的性质是解题关键. 3.A【分析】先求出OB 的长和∠BOE 的度数,再根据30°角所对的直角边等于斜边的一半,即可求出BE 的值.【详解】解:在菱形ABCD 中,AB =AD ,60A ∠=︒,ABD ∴是等边三角形,4BD AB ∴==,O 为BD 的中点,122OB BD ∴==, 60OE AB ABD ⊥∠=︒,,30BOE ∴∠=︒,112BE OB ∴==. 故选A .【点睛】本题考查了等边三角形的判定和直角三角形30°角所对的直角边等于斜边的一半,熟练掌握等边三角形的判定和直角三角形30°角所对的直角边等于斜边的一半是解题的关键.4.B【分析】根据勾股定理可求出BC 的长度,再求解∠ACB 的度数,进而求出CF 的长度,最后用矩形面积公式求解即可.【详解】∠四边形ABCD 和四边形AEFC 是两个矩形,∠∠ABC =90°,在Rt ∠ABC 中,由勾股定理可得:BC连接BD 交AC 于点O ,∠四边形AEFC 是矩形,∠BD =AC =2,∠CO =DO =12BD =1, ∠CD =1,∠∠CDO 为等边三角形,∠∠ACD =60°,∠∠ACB =30°,∠四边形AEFC 是矩形,∠AC EF ∥,∠∠CBF =∠ACB =30°,∠CF =12BC∠矩形AEFC 的面积=AC ×CF故选:B 【点睛】本题主要考查了矩形的性质,含有30°角的直角三角形,等边三角形的判定与性质,以及勾股定理,熟练地掌握相关内容是解题的关键.5.D【分析】根据平行四边形邻角互补的性质及题意,可得出较大内角的度数.【详解】解:∠平行四边形ABCD∠相邻内角和为108o∠相邻内角的比为2:3∠较大内角度数是:3180=1085o o ⨯ 故答案是:D.【点睛】本题主要考查平行四边形邻角互补,准确应用平行四边形的性质是解题的关键. 6.C【分析】由折叠结合矩形的性质先证明,BE DE =设,BE DE x == 则8,AE x =- 再利用勾股定理求解,x 从而可得BDE △的面积. 【详解】解: 长方形ABCD ,8,4,AD AB ==//,AD BC ∴,ADB CBD ∴∠=∠由对折可得:,CBD C BD '∠=∠,ADB C BD '∴∠=∠,BE DE ∴=设,BE DE x == 则8,AE x =-由222,BE AB AE =+()22248,x x ∴=+-1680,x ∴=5,x ∴= 5,DE BE ∴==115410.22BDE S DE AB ∴==⨯⨯=故选:.C【点睛】本题考查的是矩形与折叠问题,勾股定理的应用,矩形的性质,掌握以上知识是解题的关键.7.D【分析】作点E 关于直线CD 的对称点E',连接AE'交CD 于点F ,再根据CE F BE A ∽即可求出CF 的长,进而得出DF 的长.【详解】解:如图所示:作点E 关于直线CD 的对称点E',连接AE'交CD 于点F ,此时,∠AEF 的周长最小, ∠在矩形ABCD 中,AB =6,BC = 8,点E 是BC 中点,∠'4BE CE CE ,∠CF AB ∥,∠CE F BE A ''∽, ∠CE CF BE AB ='' ,即4846CF , 解得:2CF =, ∠624DF CD CF ;故选:D .【点睛】本题考查的是轴对称最短路线问题及相似三角形的判定与性质,根据题意作出E 点关于直线CD 的对称点E',再根据轴对称的性质求出CE'的长,利用相似三角形的对应边成比例即可得出结论,熟练应用轴对称和相似的判定与性质相关知识解决问题是解题的关键.8.A【分析】先求出∠ABC =∠BAD =60°,再根据四边形的内角和等于360°,可得∠ADC =130°,即可求解.【详解】解:∠与BAD ∠,ABC ∠相邻的外角都是120°, ∠∠ABC =∠BAD =60°,∠∠ADC =360°-∠ABC -∠BAD -∠BCD =130°,∠18050ADC ∠=︒-∠=︒α.故选:A.【点睛】本题主要考查了四边形的内角和定理、邻补角,熟练掌握四边形的内角和等于360°是解题的关键.9.A【分析】根据正方形的性质,得AD CD =,90ADC ∠=︒,得45ADB CDB ∠=∠=︒;根据ED CD =,得AD DE =;根据等边对等角,38CDE ∠=︒,可求出DAE ∠;根据三角形的内角和,得AFD ∠;根据ADF △和CDF 全等,得AFD CFD ∠=∠,即可求出BFC ∠的角度.【详解】∠四边形ABCD 正方形∠AD CD =,90ADC ∠=︒∠45ADB CDB ∠=∠=︒∠ED CD =∠AD DE =∠DAE DEA ∠=∠∠38CDE ∠=︒∠9038128ADE ∠=︒+︒=︒∠26DAE DEA ∠=∠=︒∠在ADF △中,180DAF AFD ADF ∠+∠+∠=︒∠2645180AFD ︒+∠+︒=︒∠109AFD ∠=︒∠在ADF △和CDF 中AD CD ADF CDF DF DF =⎧⎪∠=∠⎨⎪=⎩∠ADF CDF ≅∠109AFD CFD ∠=∠=︒∠180180109BFC AFD ∠=︒-∠=︒-︒故选:A.【点睛】本题考查正方形和三角形的知识,解题的关键是掌握正方形的性质,全等三角形的性质和判定,等边对等角.10.C【分析】先判断∠DEF∠∠BAF,根据相似三角形的面积比等于相似比的平方计算即可.【详解】解:∠四边形ABCD是平行四边形,∠DC∠AB,DC=AB,∠∠DEF∠∠BAF,∠2DEFBAFS DES AB⎛⎫= ⎪⎝⎭.又∠DE:EC=3:2,∠3==5 DE DE DEAB DC DE EC=+,∠2239==525 DEFBAFS DES AB⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭△△.故选C.【点睛】本题考查平行四边形的性质、相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.11.B【分析】先作辅助线AE∠直线b于点E,CF∠直线b于点F,然后根据题目中的条件,可以证明△AED和△DFC全等,即可得到DF=AE,然后根据勾股定理,即可得到CD的长,从而可以得到正方形ABCD的面积.【详解】解:作AE∠直线b于点E,作CF∠直线b于点F,则AE=2,CF=3,∠四边形ABCD是正方形,∠AD =DC ,∠ADC =90°,∠∠ADE +∠CDF =90°,∠AE ∠直线b ,CF ∠直线b ,∠∠AED =∠DFC =90°,∠∠ADE +∠DAE =90°,∠∠DAE =∠CDF ,在△AED 和△DFC 中,AED DFC DAE CDF AD DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠AED ∠∠DFC (AAS ),∠AE =DF ,∠AE =2,CF =3,∠CFD =90°,∠DF =2,∠CD∠正方形ABCD13,故选:B .【点睛】本题考查正方形的性质、全等三角形的判定与性质、勾股定理,平行线之间的距离,解答本题的关键是明确题意,利用数形结合的思想解答.12.C【分析】根据平行四边形、矩形及菱形的判定方法分别判断后即可确定正确的选项.【详解】解:∠DE ∠AC ,DF ∠AB ,∠四边形AEDF 是平行四边形,故A 选项正确;∠四边形AEDF 是平行四边形,∠B +∠C =90°,∠∠BAC =90°,∠四边形AEDF 是矩形,故B 选项正确;若BD =CD ,则四边形AEDF 是平行四边形,不一定是菱形,故C 选项错误;∠BD =AD =DC ,∠∠DBA =∠DAB ,∠DAC =∠DCA ,∠∠DAB +∠DAC =90°,即∠BAC =90°,∠四边形AEDF 是矩形,故选C .【点睛】本题考查了命题与定理的知识,解题的关键是了解平行四边形、矩形及菱形的判定方法,难度不大.13.B【分析】根据n 边形的内角和是(n -2)•180°,少计算了一个内角,结果得970度.则内角和(n -2)•180°与970°的差大于0度,且(n -2)•180°小于970°+180°.因而可以解不等式()9702180970180n <-⨯<+,多边形的边数n 一定是最小的整数值即可.【详解】解:设多边形的边数是n ,依题意有:()9702180970180n <-⨯<+ 解得:77781818n <<, ∠则多边形的边数n =8;故选B .【点睛】本题主要考查了多边形的内角和定理,正确确定多边形的边数是解题的关键. 14.B【分析】根据菱形的性质得到OA =12AC =3,OD =12BD =4,AC ∠BD ,利用勾股定理求出AD ,再根据直角三角形斜边中线的性质求出OE 即可.【详解】∠四边形ABCD 为菱形,∠OA =12AC =3,OD =12BD =4,AC ∠BD ,∠AD 5,∠点E 是边AD 的中点,∠OE =12AD =52, 故选:B .【点睛】此题考查了菱形的性质,勾股定理,直角三角形斜边中线的性质,熟记菱形的性质是解题的关键.15.D【分析】根据中点四边形为平行四边形,当四边形的对角线互相垂直时则平行四边形为矩形,即可得到答案.【详解】解:顺次连接一个四边形的各边中点,得到的四边形是平行四边形,若四边形的对角线互相垂直,则所得平行四边形为矩形,则满足条件的是∠∠, 故选:D .【点睛】此题考查中点四边形的判定,矩形的判定,熟记判定定理是解题的关键. 16.B【分析】由题意可证四边形ABCD 是平行四边形,由矩形的判定可求解.【详解】解:∠点O 为∠ABC 的AC 边上的中点,∠AO =CO ,且OD =OB ,∠四边形ABCD 是平行四边形,∠有一个角为直角的平行四边形是矩形,对角线相等的平行四边形是矩形,∠添加条件为∠ABC =90°,故选B .【点睛】本题考查了矩形的判定,平行四边形的判定,熟练掌握矩形的判定是本题的关键.17.A【分析】设CE =x ,则C ′E =x ,证明四边形MNCD 是矩形,由矩形的性质得出∠DMN =∠MNC =90°,MN =CD =10,由折叠的性质得出C ′D =CD =10,求出6MC '=,则4NC '=,在Rt NEC '中,由勾股定理得出222(8)4x x --=,解方程可得出答案.【详解】解:设CE =x ,则C ′E =x ,∠矩形ABCD 中,AB =10,∠CD =AB =10,AD =BC =12,AD∥BC ,∠点M ,N 分别在AD ,BC 上,且3AM =AD ,BN =AM ,∠DM =CN =8,∠四边形CDMN 为平行四边形,∠∠NCD =90°,∠四边形MNCD 是矩形,∠∠DMN =∠MNC =90°,MN =CD =10,由折叠知,C ′D =CD ,10,∠6MC '==,∠1064CN '=-=,∠EN =CN -CE =8-x ,∠C ′E 2-NE 2=C ′N 2,∠222(8)4x x --=,解得,5x =,即853NE CN CE =-=-=.故选:C .【点睛】本题主要考查了矩形的性质与判定,勾股定理,一元一次方程的应用,折叠的性质,熟练掌握折叠的性质是解题的关键.18.C【分析】连结CE ,根据菱形的性质和全等三角形的判定可得∠ABE ∠∠CBE ,根据全等三角形的性质可得AE =CE ,设∠OCE =a ,∠OAE =a ,∠AEO =90°﹣a ,可得∠ECF =∠EFC ,根据等角对等边可得CE =EF ,从而得到AE =EF ,在Rt∠ABO 中,根据含30°的直角三角形的性质得到AO =2,可得2≤AE ≤4,从而得到EF 的长的整数值可能是2,3,4.【详解】解:如图,连结CE,∠在菱形ABCD 中,AB =BC ,∠ABE =∠CBE =30°,BE =BE ,∠∠ABE ∠∠CBE ,∠AE =CE ,设∠OCE =a ,∠OAE =a ,∠AEO =90°﹣a ,∠∠DEF =120°﹣(90°﹣a )=30°+a ,∠∠EFC =∠CDE +∠DEF =30°+30°+a =60°+a ,∠∠ECF=∠DCO+∠OCE=60°+a,∠∠ECF=∠EFC,∠CE=EF,∠AE=EF,∠AB=4,∠ABE=30°,∠在Rt∠ABO中,AO=2,∠OA≤AE≤AB,∠2≤AE≤4,∠AE的长的整数值可能是2,3,4,即EF的长的整数值可能是2,3,4.故选C.【点睛】考查了菱形的性质,全等三角形的判定与性质,等角对等边,根据含30°的直角三角形的性质,解题的关键是添加辅助线,证明∠ABE∠∠CBE.19.C有最小值,如下【分析】作点E关于AC的对称点K,EI+IJ=KI+KJ,当EJ∠DF时EI IJ图所示,延长KJ交DC于N点,过N作NM∠AD,得到∠KMN∠∠FCD,再由∠DJ0N∠∠DCF求出J0N,最后KN减去J0N即为所求.【详解】解:如图,作点E关于AC的对称点K,当EJ∠DF时EI+IJ有最小值为KJ0,此时设KN与DF、CD的交点分别为J0和N点,过N点作MN∠AD交AB于点M.∠∠KND+∠FDC=90°,∠DFC+∠FDC=90°∠∠KND=∠DFC又∠AB∠CD∠∠MKN=∠KND=∠DFC在∠MKN 和∠CFD 中90∠=∠⎧⎪∠=∠=⎨⎪=⎩MKN CFD KMN FCD MN DC ,∠∠MKN∠∠CFD(AAS)∠1,112=====+=KM CF KN DF DN AM ,又∠DJ 0N∠∠DCF ∠0=J N DN CF DF,代入数据:01J N,得0J∠00=-==KJ KN J N 故答案为:C.【点睛】本题考查了正方形的性质、相似三角形的性质和判定、线段最值问题等,两条折线段的最值问题一般通过平移、对称等转移到一条线段上去,然后再根据两点之间线段最短或点到直线的距离垂线段最短求解即可.20.(1【分析】根据菱形具有的平行四边形基本性质,对角线互相平分,且交点为坐标原点,则B ,D 关于原点对称, 因此在直角坐标系中两点的坐标关于原点对称,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数便可得.【详解】∠四边形ABCD 是菱形,对角线相交于坐标原点O∠根据平行四边形对角线互相平分的性质,A 和C ; B 和D 均关于原点O 对称 根据直角坐标系上一点(),x y 关于原点对称的点为()--x,y 可得已知点B的坐标是(-1, ,则点D的坐标是( .故答案为:(.【点睛】本题旨在考查菱形的基本性质及直角坐标系中关于原点对称点的坐标的知识点,熟练理解掌握该知识点为解题的关键.21.724 【分析】过点A 作AH BD ⊥于点H ,分别利用勾股定理和等面积法求出AH 和OH 的长度,从而可结合正切函数求出tan AOE ∠,进而结合题意可得出AE AO,即可得出结论.【详解】解:在Rt ABC 中,∠3,4AB BC ==,∠5AC =, ∠115222AO AC BD ===, 如解图,过点A 作AH BD ⊥于点H , ∠1122ABD S BD AH AB AD =⋅=⋅, ∠534AH =⨯, ∠125AH =,∠在Rt AOH 中,710OH ==, ∠tan 247AH OH AOE ==∠, 又∠EA CA ⊥,∠在Rt EAO △中,tan 247AE AO AOE ==∠, ∠724AO AE =, 故答案为:724.【点睛】本题考查矩形的性质,正切函数的定义等,理解矩形的基本性质,掌握正切函数的定义是解题关键.22.40°【分析】连接AC ,由矩形性质可得∠E =∠DAE 、BD =AC =CE ,知∠E =∠CAE ,而∠E =20°,可得∠ADB 度数.【详解】解:连接AC ,∠四边形ABCD是矩形,∠AD∠BE,AC=BD,且∠E=20°,∠∠E=∠DAE,又∠BD=CE,∠CE=CA,∠∠E=∠CAE,∠∠ADB=∠CAD=∠CAE+∠DAE=2∠E=40°,故答案为:40°.【点睛】本题主要考查矩形性质,熟练掌握矩形对角线相等且互相平分、对边平行是解题关键.23.18【详解】由平行四边形的性质和已知条件计算即可,解题注意求平行四边形ABCD的两条对角线的和时要把两条对角线看作一个整体.解:∠四边形ABCD是平行四边形,∠AB=CD=4,∠∠OCD的周长是13,∠OD+OC=13-4=9,∠BD=2DO,AC=2OC,∠平行四边形的两条对角线的和=BD+AC=2(DO+OC)=18故选A.“点睛”本题主要考查了平行四边形的基本性质,并利用性质解题.平行四边形的基本性质:∠平行四边形两组对边分别平行;∠平行四边形两组对边分别相等;∠平行四边形的两种对角分别相等;∠平行四边形的对角线互相平分.24.16【详解】设多边形的边数为n,依题意,得:(n−2)⋅180°=7×360°,解得n=16,故答案为16.25.2或1或52- 【分析】过点B '作B M AD '⊥于M ,延长MB '交BC 于点H ,则MH BC ⊥于点H ,则MH BC ⊥,5MH AB ==,分点B 的对应点B '落在ADC ∠的角平分线上和点B 的对应点B '落在DAB ∠的角平分线两种情况,利用勾股定理列方程,即可求得答案. 【详解】解:四边形ABCD 是矩形,5,7,90,AB CD AD BC ADC AD BC ∥,过点B '作B M AD '⊥于M ,延长MB '交BC 于点H ,则MH BC ⊥于点H ,则MH BC ⊥,5MH AB ==,∠当点B 的对应点B '落在ADC ∠的角平分线上时,连接B D ',45,ADB MB D,DM B M∠设DM B M x '==,则7AM x =-,又由折叠的性质知5AB AB '==,∠在直角AMB '△中,由勾股定理得到:222AM AB B M ,即()22275x x -=-, 解得:1234,x x ==,则点B '到BC 的距离为532MH B M '-=-=或541MH B M '-=-=.∠当点B 的对应点B '落在DAB ∠的角平分线上时,45,B AMMB A ,AM B M∠设AM m B M '==,又由折叠的性质知5AB AB '==,∠在直角AMB '△中,由勾股定理得到:222AB AM B M ,即2225m m =+,解得:12m m ==(不合题意,舍去),则点B '到BC 的距离为5MH B M '-=-故答案为:2或1或5- 【点睛】本题考查的是翻折变换的性质、勾股定理、矩形的性质、解一元二次方程等知识点,掌握翻折变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.26.2:5【详解】试题分析:根据平行四边形的性质可得∠ABN∠∠MCN ,再结合点M 是CD 的中点,根据相似三角形的性质及三角形的面积公式求解即可.∠平行四边形ABDC∠∠ABN∠∠MCN∠点M 是CD 的中点∠AN=2MN∠∠CAN 的面积是∠MCN 的面积的2倍,∠BCD 的面积是∠MCN 的面积的6倍 ∠四边形BDMN 是∠MCN 的面积的5倍∠:ACN BDMN S S ∆四边形=2:5.考点:平行四边形的性质,相似三角形的判定和性质,三角形的面积公式点评:平行四边形的性质是初中数学的重点,贯穿于整个初中数学的学习,是中考常见题,一般难度不大,需熟练掌握.27.【分析】连接AC 交EF 于H ,连接A ′H ,当点G 与点H 重合时,此时A 'G +GC 的值最小,由勾股定理求出AC 的长,则可得出答案.【详解】解:连接AC 交EF 于H ,连接A ′H ,当点G 与点H 重合时,此时A 'G +GC 的值最小,设AB =x ,BC =y ,∠矩形ABCD 的周长为16,面积为6,∠2()166x y xy +=⎧⎨=⎩, ∠22x y +52=,∠AC ==∠A 'G +GC 的最小值为故答案为:【点睛】本题考查翻折变换,矩形的性质,轴对称最短问题等知识,解题的关键是学会用转化的思想思考问题.28.43【分析】根据题意可知1tan =2BC DG BAC AC AG ==∠,tan =EF CH HAC AF AC=∠再利用正方形的性质求解即可.【详解】解:∠四边形DEFG 是正方形,∠DG=G F =EF ,∠DGF =∠EF A =90°,∠∠DGA =90°, ∠tan =DG BAC AG ∠,tan =EF HAC AF ∠ ∠∠ACB =90°,BC =2,AC =4, ∠1tan ==2BC BAC AC ∠,tan =CH HAC AC ∠ ∠1tan =2BC DG BAC AC AG==∠, ∠2AG DG =,∠3=3AF DG EF = ∠1tan =3EF CH HAC AF AC ==∠, ∠433AC CH ==, 故答案为:43【点睛】本题主要考查了正方形的性质和解直角三角形,解题的关键在于能够熟练掌握解直角三角形的相关知识.29.16936【分析】过点A 作MN ∠BC ,分别交BC 于M ,交AD 于N ,则四边形ABMN 是矩形,AM =AN ,MN =AB =6,然后证明A MB HCB '△∽△,得到485AN BM BC ===,45A M HC '=,再由折叠的性质可得10BC BC '==,AE A E '=,CH C H '=,则可由勾股定理得到8AC '=,则2C D AD AC ''=-=,从而可以求得103CH =,得到8=3A M ',则10=3A N MN A M ''=-,设=AE A E y '=,则8EN y =-,由222A E A N EN ''=+,得到()2221083y y ⎛⎫=+- ⎪⎝⎭,解方程即可. 【详解】解:如图所示,过点A 作MN ∠BC ,分别交BC 于M ,交AD 于N ,∠四边形ABCD 是矩形,∠=90A ABM BMN C ∠=∠=∠=︒∠ ,CD ∠BC ,∠四边形ABMN 是矩形,∠AM =AN ,∠A M BC '⊥,CD BC ⊥,∠A M CH '∥,∠A MB HCB '△∽△, ∠BA BM A M BH BC HC''==, ∠4BA HA ''=,∠5BH HA '=, ∠4=5BA BM A M BH BC HC ''==,∠485AN BM BC ===,45A M HC '=, 由折叠的性质可得10BC BC '==,AE A E '=,CH C H '=,∠8AC '=,∠2C D AD AC ''=-=,设C H CH x '==,则6DH x =-,∠222C H DH C D ''=+,∠()2264x x =-+, 解得103x =, ∠103CH =, ∠8=3A M ', ∠10=3A N MN A M ''=-, 设=AE A E y '=,则8EN y =-,∠222A E A N EN ''=+, ∠()2221083y y ⎛⎫=+- ⎪⎝⎭, 解得16936y =, ∠16936AE =, 故答案为:16936.【点睛】本题主要考查了矩形的性质与判定,折叠的性质,勾股定理,解题的关键在于能够熟练掌握矩形的性质与判定.30.【分析】根据矩形的性质和勾股定理,用含t 的代数式表示出P A ,PC ,再列出方程,即可求解.【详解】解:∠在矩形ABCD 中,6cm AB =,BC =,点P 从点A 出发沿AB 以2cm /s 的速度向点B 移动,∠P A =2t ,PC ∠2PA PC =,∠2t =t 1t 2, 故答案是:【点睛】本题主要考查矩形的性质,勾股定理,二次根式,一元二次方程,用用含t 的代数式表示出P A ,PC ,是解题的关键.31.2013【详解】试题分析:在菱形ABCD 中,BD∠AC ,BD 与AC 互相平分,因为∠BAD=60°,所以∠BAC=30°,又因为AC=2,设BD 的一半为x ,则AB=2x ,根据勾股定理,得1AP ,因为i i PE AB ⊥于i E ,i i PF AD ⊥于i F ,利用等面积法,得12·AD·1P F +12·AB·1P E =12·BD·12AC 1P F +1P E )1P F +1P E =1,同理可得,111122222013201320132013PE PF P E P F P E P F ++++⋯++=2013×1=2013.考点:菱形的相关性质和等面积法的应用点评:该题主要考查学生对菱形性质的理解和掌握程度,同时要求学生提高对题目的观察能力,找出其中的规律.32.2【分析】由题目中第一个图可到小正方形的边长与小等腰三角形的直角边相等,与平行四边形的短边相等,所以大正方形的对角线长度为4倍小正方形边长,设出小正方形边长,利用大正方形面积列出方程,解出方程即可【详解】设小正方形边长为a ,由题目中第一个图可到小正方形的边长与小等腰三角形的直角边相等,与平行四边形的短边相等, 所以大正方形对角线长4a ,S 大正方形=442a a ⨯。
四边形经典难题50题
基本四边形习题50道1.已知:在矩形ABCD 中,AE ⊥BD 于E ,∠DAE=3∠BAE ,求:∠EAC 的度数。
2.已知:直角梯形ABCD 中,BC=CD=a 且∠BCD=60︒,E 、F 分别为梯形的腰AB 、DC 的中点,求:EF 的长。
3、已知:在等腰梯形ABCD 中,AB ∥DC ,AD=BC ,E 、F 分别为AD 、BC 的中点,BD 平分∠ABC 交EF 于G ,EG=18,GF=10求:等腰梯形ABCD 的周长。
4、已知:梯形ABCD 中,AB ∥CD ,以AD ,AC 为邻边作平行四边形ACED ,DC 延长线交BE 于F ,求证:F 是BE 的中点。
_ D_ C_ B_ C_ A_ B_ A_ B_ E6、从平行四边形四边形ABCD 的各顶点作对角线的垂线AE 、BF 、CG 、DH ,垂足分别是E 、F 、G 、H ,求证:EF ∥GH 。
7、已知:梯形ABCD 的对角线的交点为E 若在平行边的一边BC 的延长线上取一点F ,使S ABC ∆=S EBF ∆,求证:DF ∥AC 。
8、在正方形ABCD 中,直线EF 平行于对角线AC ,与边AB 、BC 的交点为E 、F ,在DA 的延长线上取一点G ,使AG=AD ,若EG 与DF 的交点为H ,求证:AH 与正方形的边长相等。
_ A_ B_B_ C_B_ F9、若以直角三角形ABC 的边AB 为边,在三角形ABC 的外部作正方形ABDE ,AF 是BC 边的高,延长FA 使AG=BC ,求证:BG=CD 。
10、正方形ABCD ,E 、F 分别是AB 、AD 延长线 上的一点,且AE=AF=AC ,EF 交BC 于G ,交AC 于K ,交CD 于H ,求证:EG=GC=CH=HF 。
11、在正方形ABCD 的对角线BD 上,取BE=AB ,若过E 作BD 的垂线EF 交CD 于F ,求证:CF=ED 。
12、平行四边形ABCD 中,∠A 、∠D 的平分线相交于E ,AE 、DE 与DC 、AB 延长线交于G 、F ,求证:AD=DG=GF=FA 。
初中数学四边形专题训练50题含答案
中考数学四边形专题训练50题含答案(单选、填空、解答题)一、单选题1.平行四边形不一定具有的性质是( )A .对角线互相垂直B .对边平行且相等C .对角线互相平分D .对角相等 2.如图,在MON ∠的两边.上分别截取,OA OB ,使OA OB =;分别以点A ,B 为圆心,OA 长为半径作弧,两弧交于点C ;连接,,,AC BC AB OC .若2AB =,四边形OACB 的面积为4.则OC 的长为( )A .2B .3C .4D .5 3.在ABCD 中,下列结论错误的是( )A .//AB CD B .B D ∠=∠C .AC BD =D .180C D ∠+∠=︒ 4.如图,在平行四边形ABCD 中,E 是AB 延长线上的一点,若∠A=60°,则∠1的度数为( )A .120°B .60°C .45°D .30° 5.若平行四边形中两个内角的度数比为1∠2,则其中较大的内角是( ) A .100° B .60° C .120° D .90° 6.如图,正方形OABC 与正方形ODEF 是位似图形,点O 为位似中心,位似比为2:3,点B 、E 在第一象限.若点A 的坐标为()1,0,则点E 的坐标是( )A .0)B .33,22⎛⎫ ⎪⎝⎭C .D .(2,2) 7.四边形ABCD 中,对角线AC ,BD 交于点O ,AD//BC ,为了判定四边形是平行四边形,还需一个条件,其中错误..的是( ) A .AB//CD B .∠A=∠C C .AB=CD D .AO=CO 8.一个多边形的内角和等于外角和,则这个多边形的边数为( )A .10B .8C .6D .49.顺次连接等腰梯形各边中点所围成的四边形是( )A .平行四边形B .矩形C .菱形D .正方形 10.已知平行四边形ABCD 的周长为32,AB =4,则BC 的长为( )A .4B .12C .24D .48 11.如图,四边形ABCD 是矩形,,把矩形沿直线AC 折叠,点B 落在点E处,连结DE,则的值是( )A .B .C .8D .7:25 12.如图,在平行四边形ABCD 中,AB=4,CE 平分∠BCD 交AD 边于点E ,且AE=3,则BC 的长为( )A .4B .6C .7D .813.如图,在矩形ABCD ,对角线AC 与BD 相交于点O ,EO AC ⊥于点O ,交BC 于点E ,若ABE ∆的周长为8,3AB =,则AD 的长为 ( )A .2B .5.5C .5D .414.如图,矩形ABCD 中,4AB =,2BC =.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则BE 的长是( )A .B C .2.5 D .1.5 15.如图,在平行四边形ABCD 中,过点P 作直线EF 、GH 分别平行于AB 、BC ,那么图中共有( )平行四边形.A .4个B .5个C .8个D .9个 16.如图,已知直线PQ CD ⊥于点P ,B 是CPQ ∠内部一点,过点B 作BA PQ ⊥于点A ,BC CD ⊥于点C ,四边形PABC 是边长为8cm 的正方形,N 是AB 的中点,动点M 从点P 出发,以2cm/s 的速度,沿P A B C →→→方向运动,到达点C 停止运动,设运动时间为()s t ,当CM PN =时,t 等于( )A .2B .4C .2或4D .2或617.如图,在菱形中,,,是的中点.过点作,垂足为.将沿点到点的方向平移,得到.设、分别是、的中点,当点与点重合时,四边形的面积为A .B .C .D . 18.如图,点EF 、分别是菱形ABCD 的边AD 、DC 的中点,如果阴影部分的面积和是10,则菱形对角线AC 与BD 的乘积AC BD ⋅等于( )A .10B .32C .20D .1619.如图,在正方形1ABCB 中,AB =AB 与直线l 所夹锐角为60,延长1CB 交直线l 于点1A ,作正方形1112A B C B ,延长12C B 交直线l 于点2A ,作正方形2223A B C B ,延长23C B 交直线l 于点3A ,作正方形3334A B C B ⋯,依次规律,则线段20212022A A =( )A .20192⨯⎝⎭B .20202⨯⎝⎭C .20212⨯⎝⎭D .20222⨯⎝⎭20.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,添加一个条件使平行四边形ABCD 为矩形的是( )A .AD AB = B .AB AD ⊥C .AB AC =D .CA BD ⊥二、填空题21.如图,这个图案是用形状、大小完全相同的等腰梯形密铺而成的,则这个图案中的等腰梯形的底角(指锐角)是_________度.22.如图,点E 在矩形ABCD 的对角线BD 上,EF BC ⊥于点F ,连接AF ,若5BC =,2EF =,则ABF △的面积为_________.23.已知菱形的两条对角线长分别为3和4,则菱形的面积为______.24.有一个边长为50cm 的正方形洞口,要用一个圆盖去盖住这个洞口,那么圆盖的直径至少应为_____.25.如图,Rt ABC 中,90C BC AC ∠=︒>,,以AB BC AC ,,三边为边长的三个正方形面积分别为1S ,2S ,3S .若ABC 的面积为7,140S =,则32S S -的值等于______.26.如图,将长方形ABCD沿AE折叠,已知50∠=︒,则BADCED'∠'的大小是_____27.如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中点C的运动路径为CC',则图中阴影部分的面积为__.28.用直角边分别为3和4的两个直角三角形拼成一个平行四边形(非矩形),所得的平行四边形的周长是______.29.如图,菱形ABCD中,点O为对角线AC的三等分点且AO=2OC,连接OB,OD,OB=OC=OD,已知AC=3,那么菱形的边长为_____.30.如图,将四边形ABCD沿BD、AC剪开,得到四个全等的直角三角形,已知,OA =4,OB=3,AB=5将这四个直角三角形拼为一个没有重叠和缝隙的四边形,则重新拼成的四边形的周长为_____.31.在长方形ABCD中,10AB=,将长方形ABCD折叠,折痕为EF.AD=,8(1)如图1,当A'与B重合时,EF=_______;(2)如图1,当直线EF过点D时,点A的对应点A'落在线段BC上,则线段EF的长为______.32.如图,P 是▱ABCD 内的任意一点,连接P A 、PB 、PC 、PD ,得到△P AB 、△PBC 、△PCD 、△PDA ,设它们的面积分别是S 1、S 2、S 3、S 4,给出如下结论:∠S 1+S 3=S 2+S 4,∠若S 3=2S 1,则S 2=2S 4,∠若S 1+S 3=5,则ABCD 的面积为10;∠S 1+S 2=S 3+S 4.其中正确的结论的序号是____________(把所有正确结论的序号都填在横线上).33.如图, 直线l 是四边形ABCD 的对称轴,若AB CD =,有下面的结论:∠AB BC ⊥;∠AC BD ⊥;∠//AB CD ;∠AO OC =.其中正确的结论有__.34.如图1是三国时期的数学家赵爽创制的一幅“勾股圆方图”.将图2的矩形分割成四个全等三角形和一个正方形,恰好能拼成这样一个“勾股圆方图”,则该矩形与拼成的正方形的周长之比为________.35.如图,平行四边形ABCD 中,45B ∠=︒,7BC =,CD =E ,F 分别是边AB ,BC 的中点,连接CE ,DF ,取CE ,DF 的中点G ,H ,连接GH ,则GH 的长度为__________.36.如图,正方形ABCD的边长为1,AC,BD是对角线,将∠DCB绕着点D顺时针旋转45°得到∠DGH,HG交AB于点E,连接DE交AC于点F,连接FG,则下列结论:∠DE平分∠ADB;∠BE∠四边形AEGF是菱形;∠BC+FG=1.5.其中结论正确的序号是_______.37.如图,点E、F是平行四边形ABCD的边AB、DC上的点,F与DE相交于点P,BF与CE相交于点Q若S△APD=14cm2,S△BCQ=16cm2,四边形PEQF的面积为______.38.如图,在正方形ABCD中,AB=4,G是BC的中点,点E是正方形内一个动点,且EG=2,连接DE,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,则线段CF长的最小值为_____.39.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为__________.三、解答题40.□ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别交于E 、F ,四边形AFCE 是否是菱形?为什么?41.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,延长CD 到E ,使DE CD =,连接AE .(1)求证:四边形ABDE 是平行四边形;(2)连接OE ,若60ABC ∠=︒,且8AD DE ==,求OE 的长.42.如图,点E 、F 分别在ABCD 的边AB 、CD 的延长线上,且BE =DF ,连接AC 、EF 、AF 、CE ,AC 与EF 交于点O .(1)求证:AC 、EF 互相平分;(2)若EF 平分∠AEC ,判断四边形AECF 的形状并证明.43.正方形ABCD 的对角线交点为O ,连AE 交BC 于E ,交OB 于F ,2EC FO =,求证:AE 平分BAC ∠.44.如图,在三角形ABC 中,90C ∠=︒,四边形DEFC 是边长为4的正方形,且D 、E 、F 分别在边AC AB BC 、、上.把三角形ADE 绕点E 逆时针旋转一定的角度.(1)当点D 与点F 重合时,点A 的对应点G 落在边BC 上,此时四边形ACGE 的面积为___________;(2)当点D 的对应点1D 落在线段BE 上时,点A 的对应点为点1A ,在旋转过程中点A 经过的路程为1l ,点D 经过的路程为2l ,且12:3:2l l =,求线段1AD 的长. 45.如图所示,已知四边形ABCD 是平行四边形,在AB 的延长线上截取BE=AB ,BF=BD ,连接CE ,DF ,相交于点M .求证:CD=CM .46.如图,在直角梯形ABCD 中,AD ∠BC ,AD ∠CD ,M 为腰AB 上一动点,联结MC 、MD ,AD =10,BC =15,cot B 512=.(1)求线段CD 的长.(2)设线段BM 的长为x ,∠CDM 的面积为y ,求y 关于x 的函数解析式,并写出它的定义域.47.在Rt ABC 与Rt BDE 中,90ABC DBE ∠=∠=︒,AB BC =,BD BE =.(1)如图1,若点D ,B ,C 在同一直线上,连接AD ,CE ,则AD 与CE 的关系为_________;(2)如果将图1中的BDE △绕点B 在平面内顺时针旋转到如图2的位置,那么请你判断AD 与CE 的关系,并说明理由;(3)如图3,若6AB =,2BD =,连接AE ,分别取DE ,AE ,AC 的中点M ,P ,N ,连接MP ,NP ,MN ,将BDE △绕点B 在平面内顺时针旋转一周,请直接写出旋转过程中MPN△面积的最小值和最大值.48.如图,在矩形ABCD中,AD=4,CD=3,点E为AD的中点.连接CE,将∠CDE 沿CE折叠得∠CFE,CE交BD于点G,交BA的延长线于点M,延长CF交AB于点N.(1)求DG的长;(2)求MN的长.49.如图,抛物线顶点P(1,4),与y轴交于点C(0,3),与x轴交于点A,B.(1)求抛物线的解析式.(2)Q是抛物线上除点P外一点,△BCQ与△BCP的面积相等,求点Q的坐标.(3)若M,N为抛物线上两个动点,分别过点M,N作直线BC的垂线段,垂足分别为D,E.是否存在点M,N使四边形MNED为正方形?如果存在,求正方形MNED 的边长;如果不存在,请说明理由.参考答案:1.A【分析】结合平行四边形的性质即可判定.【详解】结合平行四边形的性质可知选项B、C、D均正确,但平行四边形的对角线不垂直,则A不正确.故选A.【点睛】本题考查了平行四边形的性质,熟练掌握平行四边形的性质是正确解题的关键.2.C【分析】根据作法判定出四边形OACB是菱形,再根据菱形的面积等于对角线乘积的一半列式计算即可得解.【详解】解:根据作图,AC=BC=OA,∠OA=OB,∠OA=OB=BC=AC,∠四边形OACB是菱形,∠AB=2,四边形OACB的面积为4,∠12AB•OC=12×2×OC=4,解得OC=4.故选:C.【点睛】本题主要考查菱形的性质与判定,熟练掌握菱形的性质与判定是解题的关键.3.C【分析】根据平行四边形的性质逐项判断即可.【详解】解:A、由平行四边形行两组对边分别平行可得//AB CD,故A正确;B、由平行四边形对角相等可得B D∠=∠,故B正确;C、AC、BD为平行四边形对角线,平行四边形对角线互相平分,但不一定相等,故C错误;D、由平行四边形行两组对边分别平行可得//AD BC,两直线平行同旁内角互补,可得180C D∠+∠=︒,故D正确.故选:C.【点睛】本题主要考查平行四边形的性质及其推论,熟练掌握平行四边形的性质是解题关键.4.B【详解】解:∠四边形ABCD 是平行四边形,∠AD∠BC ,∠∠1=∠A=60°.故选B .5.C【分析】据平行四边形的性质得出AB //CD ,推出∠B +∠C =180°,根据∠B :∠C =1:2,求出∠C 即可.【详解】解:∠四边形ABCD 是平行四边形∠AB //CD ,∠∠B +∠C =180°,∠∠B :∠C =1:2,∠∠C =23×180°=120°,故选:C .【点睛】本题考查了平行线的性质和平行四边形的性质的应用,能熟练地运用性质进行计算是解此题的关键,题目比较典型,难度不大.6.B【分析】由题意可得:2:3OA OD =,又由点A 的坐标为()1,0,即可求得OD 的长,又由正方形的性质,即可求得E 点的坐标.【详解】解:∠正方形OABC 与正方形ODEF 是位似图形,O 为位似中心,相似比为2:3, ∠:2:3OA OD =,∠点A 的坐标为()1,0,即1OA =, ∠32OD =, ∠四边形ODEF 是正方形,∠32 DE OD==.∠E点的坐标为:33,22⎛⎫ ⎪⎝⎭.故选:B.【点睛】此题考查了位似变换的性质与正方形的性质.此题比较简单,注意理解位似变换与相似比的定义是解此题的关键.7.C【分析】根据平行四边形的判定定理逐项判断即可.【详解】解:A.根据两组对边分别平行可判定是平行四边形,不符合题意;B.根据平行线性质可得另一对内角相等,根据两组对角分别相等可判定是平行四边形,不符合题意;C.不能判定是平行四边形,可能是等腰梯形,符合题意;D.可通过全等证对角线互相平分,能判定是平行四边形,不符合题意;故选:C.【点睛】本题考查了平行四边形的判定,解题关键是熟知平行四边形的判定定理,准确进行判断.8.D【分析】设这个多边形的边数为n,根据内角和等于外角和列方程解答即可.【详解】解:设这个多边形的边数为n,则()2180360n-⨯︒=︒,解得4n=,故选:D.【点睛】此题考查了多边形内角和与外角和的计算,熟练掌握多边形内角和公式及外角和是解题的关键.9.C【分析】由E、F、G、H分别为AB、BC、CD、DA的中点,得出EF,HG,FG,EH是中位线,再得出四条边相等,根据“四条边都相等的四边形是菱形”进行证明.【详解】解:如图所示,因为E、F、G、H分别为AB、BC、CD、DA的中点,连接AC、BD,因为E、F分别是AB、BC的中点,所以EF=12AC ,且EF∠AC同理可得HG=12AC ,且HG∠AC , FG=12BD ,且FG∠BD , EH=12BD ,且EH∠BD , ∠EF∠HG ,HE ∠FG ,∠四边形EFGH 是平行四边形,又因为等腰梯形的对角线相等,即AC=BD ,因此有EF=FG=GH=HE ,所以连接等腰梯形各中点所得四边形为菱形.故选:C【点睛】此题考查三角形中位线的性质,解题的关键是掌握三角形的中位线定理及菱形的判定.10.B【详解】由题意得:2()32,4,12AB BC AB BC +===得: .故选B.11.D【详解】试题分析:从D,E 处向AC 作高DF,EH .设AB=4k,AD=3k,则AC=5k .由∠AEC的面积=4k×3k=5k×EH,得EH=95k k;根据勾股定理得CH=,∠四边形ACED是等腰梯形,∠CH=AF=95 k,所以DE=5k﹣95k×2=75k.所以DE:AC=75k:5k=7:25.故选D.考点:翻折变换.12.C【分析】由平行四边形的性质可得AD∠BC,且AD=BC,结合角平分线的性质可求得DE=DC=AB=4,则可求得AD的长,可求得答案.【详解】解:∠四边形ABCD为平行四边形,∠AB=CD=4,AD∠BC,AD=BC,∠∠DEC=∠BCE.∠CE平分∠BCD,∠∠DCE=∠BCE,∠∠DEC=∠DCE,∠DE=DC=4.∠AE=3,∠AD=BC=3+4=7.故选C.【点睛】本题主要考查平行四边形的性质,利用平行线的性质及角平分线的性质求得DE=DC是解题的关键.13.C【分析】由矩形的性质可得AO=CO,由线段垂直平分线的性质可得AE=EC,即可求解.【详解】解:∵四边形ABCD是矩形,∴AO=CO,BC=AD,∵EO⊥AC,∴AE=EC,∵△ABE的周长为8,∴AB+AE+BE=8,∴3+BC=8,∴AD =BC =5,故选:C .【点睛】本题考查了矩形的性质,线段垂直平分线的性质,掌握矩形的性质是本题的关键.14.D【分析】由矩形ABCD 中,四边形EGFH 是菱形,易证得()COF AOE AAS ≌,即可得OA OC =,然后由勾股定理求得AC 的长,继而求得OA 的长,又由AOE ABC ∽△△,利用相似三角形的对应边成比例,即可求得答案.【详解】解:如图,连接EF ,交AC 于O ,∠四边形EHFG 是菱形,EF AC OE OF ∴⊥=,,∠四边形ABCD 是矩形,90B D ∴∠=∠=︒,AB CD ∥,ACD CAB ∴∠=∠,在COF 与AOE △中,FCO OAE FOC AOE OF OE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()COF AOE AAS ∴≌,AO CO ∴=,AC AB ==12AO AC ∴==, 90CAB CAB AOE B ∠=∠∠=∠=︒,,AOE ABC ∴∽,∠AO AE AB AC=,=, 2.5AE ∴=,1.5BE ∴=,故选:D .【点睛】本题考查了菱形的性质、矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质,准确作出辅助线是解此题的关键.15.D【详解】∠AD∠BC 、AB∠CD ,EF∠AB ,GH∠BC ,∠AB∠EF∠DC ,AD∠GH∠BC ,∠共有9个平行四边形,如平行四边形AGPE ,平行四边形BGPF ,平行四边形PEDH ,平行四边形PFCH ,平行四边形ABFE ,平行四边形EFCD ,平行四边形AGHD ,平行四边形BGHC ,平行四边形ABCD ,故选D.16.D【分析】分点M 是AP 的中点和点M 与点N 重合两种情况讨论,由全等三角形的性质和正方形的性质即可求解.【详解】解:当点M 是AP 的中点时,∵四边形P ABC 是正方形,∴PC =P A =AB ,∠CP A =∠P AN =90°,∵N 是AB 的中点,点M 是AP 的中点,∴PM =AN =4,在△CPM 和△P AN 中,PA CP CPA PAN PM AN =⎧⎪∠=∠⎨⎪=⎩∴△CPM ≌△P AN (SAS ),∴PN =CM ,∴t 42==2, 当点M 与点N 重合时,由正方形的对称性可得PN =CM ,∴t842+==6,故选:D【点睛】本题考查了正方形的性质,全等三角形的性质,利用分类讨论思想解决问题是解题的关键.17.A【详解】试题分析:作在菱形中,,,是的中点是的中点,故答案选A.考点:平行四边形的面积,三角函数.18.B【分析】设EF交BD于G,AC交BD于O,由三角形中位线的性质可得EF=12AC,EF//AC,可得EG为∠AOD的中位线,可得DG=12OD,根据菱形的性质可得BG=34BD,根据菱形的面积公式列方程即可得答案.【详解】设EF交BD于G,AC交BD于O,∠点E F 、分别是菱形ABCD 的边AD 、DC 的中点, ∠EF=12AC ,EF//AC ,∠EG 为∠AOD 的中位线, ∠OG=12OD ,∠四边形ABCD 是菱形, ∠OD=OB=12BD ,BD∠AC , ∠BG=34BD ,BG∠EF , ∠S 菱形ABCD =S 阴影+S △BEF ,阴影部分的面积和是10, ∠12AC·BD=10+12EF·BG=10+12·12AC·34BD , 解得:AC·BD=32.故选:B【点睛】本题考查菱形的性质、三角形中位线的性质及菱形的面积公式,菱形的对角线互相垂直且平分;菱形的面积等于两条对角线乘积的一半;三角形的中位线平行于第三边且等于第三边的一半;熟练掌握相关性质及公式是解题关键.19.C【分析】利用特殊角的三角函数值分别求出11A B 、22A B 、33A B ,以此类推找到规律求出20222022A B ,最后根据202120222022Rt A A B 中20212022202290A B A ∠=︒,20222021202230A A B ∠=︒,即可求解.【详解】解:∠AB 与直线l 所夹锐角为60︒,且1BAB ∠是正方形1ABCB 的一个顶角, ∠11180609030B AA ∠=︒-︒-︒=︒,又∠1190AB A ∠=︒,∠在11Rt AB A △中,11111tan A B AB A AB =⨯∠,∠正方形1ABCB 的边长AB∠11111tan A B AB A AB =⨯∠同理可求得: 222A B =⎝⎭,333A B =⎝⎭,以此类推可知: 20222021202120222022A B ===⎝⎭⎝⎭⎝⎭,∠202120222022Rt A A B 中20212022202290A B A ∠=︒,20222021202230A A B ∠=︒,∠2021202120222022202222A A A B ==⨯⎝⎭,故C 正确.故选:C . 【点睛】本题主要考查了正方形的性质、含特殊角的锐角三角函数等知识,含30°的直角三角形的性质.利用从特殊到一般寻找规律是解题的关键.20.B【分析】根据矩形的判定和平行四边形的性质分别对各个选项进行判断即可.【详解】解: A 、AD AB =时,平行四边形ABCD 是菱形,故选项A 不符合题意; B 、AB AD ⊥时,∠BAD =90°,则平行四边形ABCD 是矩形,故选项B 符合题意; C 、AB AC =时,平行四边形ABCD 不一定是矩形,故选项C 不符合题意;D 、CA BD ⊥时,平行四边形ABCD 是菱形,故选项D 不符合题意;故选:B .【点睛】此题考查的是平行四边形的性质、矩形的判定以及等腰三角形的判定等知识;熟练掌握矩形的判定和平行四边形的性质是解答此题的关键.21.60°【分析】根据图案的特点,可知密铺的一个顶点处的周角,由3个完全相同的等腰梯形的较大内角组成,即可求出等腰梯形的较大内角的度数,进而即可得到答案.【详解】由图案可知:密铺的一个顶点处的周角,由3个完全相同的等腰梯形的较大内角组成,∠等腰梯形的较大内角为360°÷3=120°,∠等腰梯形的两底平行,∠等腰梯形的底角(指锐角)是:180°-120°=60°.故答案是:60°.【点睛】本题主要考查等腰梯形的性质以及平面镶嵌,掌握平面镶嵌的性质是解题的关键.22.5【分析】证明∠BEF∠∠BCD,由相似三角形的性质求得BF•CD,即求得BF•AB,进而由三角形的面积公式求得结果.【详解】解:∠四边形ABCD是矩形,∠AB=CD,∠ABC=∠BCD=90°,∠EF∠BC,∠EF∠CD,∠∠BEF∠∠BDC,∠BF EF BC CD=,∠BC=5,EF=2,∠BF•CD=BC•EF=5×2=10,∠BF•AB=10,∠∠ABF的面积=12BF•AB=5,故答案为:5.【点睛】本题主要考查了矩形的性质,相似三角形的判定与性质,三角形的面积计算,关键是由相似三角形求得BF•AB的值.23.6【分析】根据菱形的面积等于对角线乘积的一半列式进行计算即可得解.【详解】解:∠菱形的两条对角线长分别为3和4,∠菱形的面积为134=6 2⨯⨯故答案为:6【点睛】本题考查了菱形的性质,菱形的面积通常有两种求法,可以用底乘以高,也可以用对角线乘积的一半求解,计算时要根据具体情况灵活运用.24.【分析】根据圆与其内切正方形的关系,易得圆盖的直径至少应为正方形的对角线的长,已知正方形边长为50cm,进而由勾股定理可得答案.【详解】解:根据题意,知圆盖的直径至少应为正方形的对角线的长;再根据勾股定理,50故答案为:.【点睛】题主要考查正多边形和圆的相关知识;注意:熟记等腰直角三角形的斜边是直角边的 倍,可以给解决此题带来方便.25.【分析】结合正方形面积公式,平方差公式,勾股定理,三角形面积公式,可知()()2223S S BC AC BC AC BC AC -=-=+-,2240BC AC +=,14BC AC ⋅=,然后运用完全平方公式()2222a b a b ab ±=+±求解即可.【详解】解:根据题意,2140S AB ==,22S BC =,23S AC = ∠()()2223S S BC AC BC AC BC AC -=-=+-在Rt ABC 中,根据勾股定理,222BC AC AB +=∠2240BC AC +=∠7Rt ABC S = ∠172BC AC ⋅⋅= ∠14BC AC ⋅=∠BC AC +==BC AC -====∠()()BC AC BC AC +-==即23S S -=故答案为:【点睛】本题考查勾股定理与三角形、正方形的面积,完全平方公式与平方差公式的灵活应用,掌握并熟练应用勾股定理和各类公式是解题的关键.26.40【详解】试题分析:先根据折叠的性质求得、的度数,即可求得、的度数,再根据长方形的性质求解即可.∠50CED ∠='︒,AE 为折痕∠∠∠BAD ∠'. 考点:折叠的性质点评:折叠的性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.27.342π+【分析】根据菱形的性质以及旋转角为30°,连接CD ′和BC ',可得A 、D′、C 及A 、B 、C′分别共线,求出扇形的面积,再根据AAS 证得两个小三角形全等,求得面积,最后根据扇形ACC '的面积-两个小的三角形的面积即可.【详解】解:连接CD ′和BC '∠∠DAB =60°∠30DAC CAB ∠=∠=︒∠30C AB ∠''=︒∠A 、D′、C 及A 、B 、C′分别共线∠AC =∠扇形ACC′的面积为:2303604ππ⨯=∠AC =AC ′,AD′=AB在OCD OC B ''和中CD BC ACD AC D COD C OB '='⎧⎪∠=∠''⎨⎪∠'=∠'⎩∠()OCD OC B AAS ''≌∠OB =OD′,CO =C′O又∠60,30CBC BC O ︒∠'∠=='︒∠90BOC ∠'=︒在Rt BOC '中,())22211BO BO +-=解得13,22BO C O ='=∠S △OCB=12BO C O '⨯⨯=,∠322442C B AC OC S S Sππ''=-=-=+阴影扇形 故答案为:342π+ 【点睛】本题考查了旋转的性质,菱形的性质,扇形的面积公式,熟练掌握旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.28.18或16【分析】首先由直角边分别为3和4,求得其斜边,然后分别从以边长为3,4,5的边为对角线拼成一个平行四边形(非矩形),去分析求解即可求得答案. 【详解】解:直角边分别为3和4,∴5=,若以边长为3的边为对角线,则所得的平行四边形的周长是:2(54)18⨯+=; 若以边长为4的边为对角线,则所得的平行四边形的周长是:2(53)16⨯+=;若以边长为5的边为对角线,则所得的平行四边形的周长是:2(34)14⨯+=(此时是矩形,舍去);综上可得:所得的平行四边形的周长是:16或18.故答案为:16或18.【点睛】此题考查了平行四边形的性质以及勾股定理.注意掌握分类讨论思想的应用是解此题的关键.29【分析】如图,连接BD交AC于E,由四边形ABCD是菱形,推出AC∠BD,AE=EC,在Rt△EOD中,利用勾股定理求出DE,在Rt△ADE中利用勾股定理求出AD即可.【详解】如图,连接BD交AC于E.∠四边形ABCD是菱形,∠AC∠BD,AE=EC,∠OA=2OC,AC=3,∠CO=DO=2EO=1,AE=32,∠EO=12,DE=EB==,∠AD=【点睛】本题考查菱形的性质、勾股定理等知识,解题的关键是灵活应用勾股定理解决问题.30.20,22,26,28【分析】以直角三角形边长相等的边为公共边,拼接四边形,再计算周长;【详解】解:∠如图周长=20;∠如图周长=22;∠如图周长=26;∠如图周长=28;∠如图周长=22;∠四边形的周长为:20,22,26,28;故答案为:20,22,26,28.【点睛】本题考查了图形的拼接,四边形的周长;作出拼接图形是解题关键.31.10【分析】(1)根据题意结合图形直接写出答案即可解决问题;(2)根据勾股定理首先求出A C'的长度;再次利用勾股定理求出AE的长度,即可解决问题.【详解】解:(1)如图1,当A'与B重合时,EF=10;(2)如图2,设AE=x,则BE=8-x;∠四边形ABCD为矩形,∠BC=AD=10,DC=AB=8;∠B=∠C=90°;由题意得:=A D AD '=10;由勾股定理得:222A C A D DC 1006436''=-=-=∠A C 6BA 1064''==-=, ,在Rt∠A BE '中,由勾股定理得:222(8)4x x =-+解得:x=5,由勾股定理得:222EF =10+5=125∠EF =【点睛】该命题主要考查了翻折变换及其应用问题;能根据翻折变换的性质准确找出命题图形中隐含的等量关系是解题的关键.32.∠∠【分析】根据平行四边形的的性质可以得到AB =CD ,AD =BC ,设点P 到AB 、BC 、CD 、DA 的距离分别为h 1、h 2、h 3、h 4,然后利用三角形的面积公式列式整理判断即可得到答案.【详解】解:∠四边形ABCD 是平行四边形,∠AB =CD ,AD =BC ,设点P 到AB 、BC 、CD 、DA 的距离分别为h 1、h 2、h 3、h 4,hAB 、hBC 分别为平行四边形的AB 边和BC 边的高则S 1=12AB •h 1,S 2=12BC •h 2,S 3=12CD •h 3,S 4=12AD •h 4,hAB = h 1+h 3,hBC =h 2+h 4 ∠12AB •h 1+12CD •h 3=12AB •hAB ,12BC •h 2+12AD •h 4=12BC •hBC ,又∠S 平行四边形ABCD =AB •hAB =BC •hBC ,∠S 2+S 4=S 1+S 3,故∠正确;根据S 3=2S 1只能判断h 3=2h 1,不能判断h 2=2h 4,即不能得出S 2=2S 4,故∠错误; 根据S 1+S 3=S 2+S 4,S 1+S 3=5,能得出ABCD 的面积为5×2=10,故∠正确;由题意只能得到S 2+S 4=S 1+S 3无法得到S 1+S 2=S 3+S 4,故∠错误;故答案为:∠∠.【点睛】本题主要考查了平行四边形的性质,三角形的面积,用平行四边形的面积表示出相对的两个三角形的面积是解题的关键.33.∠∠∠【分析】根据轴对称的性质得到直线l 垂直平分BD ,则根据线段垂直平分线的性质得AB AD =,CD CB =,由于AB=CD ,则AB BC CD BC ===,于是可判断四边形ABCD 为菱形,然后根据菱形的性质对4个结论进行判断.【详解】证明:∠直线l 是四边形ABCD 的对称轴,∴直线l 垂直平分BD ,AB AD ∴=,CD CB =,AB CD =,AB BC CD BC ∴===,∴四边形ABCD 为菱形,AC BD ∴⊥,//AB CD ,OA OC =,所以∠∠∠正确 .故答案为∠∠∠.【点睛】本题考查了轴对称的性质:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.也考查了菱形的判定与性质.34.35)【分析】设图2的矩形分割成四个全等三角形的两直角边为a 、b (a >b ),由图1与图2的两个小正方形相同,得出a 与b 的关系,再求出矩形的边长和大正方形的边长,应用周长公式求得其周长,最后便可求得其比值.【详解】解:设图2的矩形分割成四个全等三角形的两直角边为a 、b (a >b ),小正方形的边长为a-b ,矩形的长为2a+a-b=3a-b ,宽为b ,∠矩形的周长为:2(3a-b+b )=6a ,由图2知,中间小正方形的边长为b ,∠a-b=b ,∠a=2b ,∠大正方形的周长为,==∠该矩形与拼成的正方形的周长之比:=故答案为:3:5).【点睛】本题主要考查了勾股定理,矩形的性质,正方形的性质,关键是根据图形求得全等直角三角形的两直角边与矩形和大正方形的边长的关系.35.134【分析】连接DG 并延长,交于AB 延长线于点M ,过点M 作MN ∠CB ,交于CB 延长线于点N ,首先根据平行四边形的性质证明(),CGD EGM AAS ≅得出,DG GM =即可得出1,2HG FM =再利用勾股定理求出FM ,即可求得答案. 【详解】连接DG 并延长,交于AB 延长线于点M ,过点M 作MN ∠CB ,交于CB 延长线于点N ,如图,∠四边形ABCD 为平行四边形,∠CD ∠AB,AB CD ==∠CDG EMG ∠=∠又∠G 为CE 中点,∠,CG GE =在CGD △和EGM 中∠CDG EMG DGC MGE CG GE ∠=∠⎧⎪∠=∠⎨⎪=⎩∠(),CGD EGM AAS ≅∠,DG GM = ,CD EM = ∠1,2HG FM = AB EM =, ∠,AE BM =∠点E 为AB 的中点,∠1,2AE EB AB ==∠12EB BM AB ===, 又∠45,B ∠=︒∠45,MBN ∠=︒∠,BN MN =设,BN MN x ==在Rt BMN 中,∠222,BN MN BM +=∠222x x +=, 解得,5,2x = 即5,2BN MN == ∠点F 为BC 的中点, ∠17,22BF BC == ∠75622FN BF BN =+=+=, 在Rt MNF △中,∠222,NF MN MF +=∠13,2MF = ∠113,24HG FM == 故填:134. 【点睛】本题考查平行四边形的性质,全等三角形的判定与性质,三角形中位线定理,勾股定理,解题关键是熟练掌握平行四边形的性质和三角形中位线定理.36.∠∠∠【分析】根据旋转的性质可知,∠DGH ∠∠DCB ,进而得知DH =DB ,∠H =∠CBD =45°,∠DGH =∠DCB =90°,DG =DC =AD ,之后可证∠ADF ∠∠GDF ,四边形AEGF 是菱形,再根据勾股定理可知AE 的长度,进而可以一一判断选出答案.【详解】解:根据旋转的性质可知,∠DGH ∠∠DCB ,∠DH =DB ,∠H =∠CBD =45°,∠DGH =∠DCB =90°,DG =DC =AD ,在Rt ∠AED 与Rt ∠GED 中,AD =DG ,ED =ED∠Rt ∠AED ∠Rt ∠GED (HL )∠∠ADE =∠GDE ,即DE 平分∠ADB ,故∠正确;在∠ADF 和∠GDF 中,AD =DG ,∠ADF =∠GDF ,DF =DF ,∠∠ADF ∠∠GDF (SAS )∠AF =GF ,∠DAF =∠DGF =45°又∠∠ABD =45°∠FG ∠AE∠∠DAC =45°,∠∠DAC =∠H ,∠AF ∠EG∠四边形AEGF 是平行四边形,又∠AF =GF∠平行四边形AEGF 是菱形,故∠正确;∠∠H =45°,∠HAE =90°∠AE =AH∠AE =AF =HD -AD =BD -AD∠正方形ABCD 的边长为1,根据勾股定理可知BD ==即HD∠AE 1∠BE =)11=2-∠正确; ∠四边形AEGF 是菱形∠FG =AE 1∠BC +FG =1∠错误;综上答案为:∠∠∠.【点睛】本题考查的是正方形的性质,菱形的判定与性质,勾股定理和直角三角形的性质,是一道综合性较强的题,能够充分调动所学知识是解题的关键.37.30cm 2。
初二数学经典四边形习题50道(附答案)
初二数学经典四边形习题50道(附答案)1.在矩形ABCD中,已知AE垂直于BD于点E,且角DAE是角BAE的三倍。
求角EAC的度数。
2.在直角梯形ABCD中,BC=CD=a,且角BCD为60度。
点E和F分别为梯形的腰AB和DC的中点。
求EF的长度。
3.在等腰梯形ABCD中,AB平行于DC,AD=BC,E和F分别为AD和BC的中点。
BD平分角ABC,与EF交于点G,且EG=18,GF=10.求等腰梯形ABCD的周长。
4.在梯形ABCD中,AB平行于CD,以AD和EAC为邻边作平行四边形ACED。
DC的延长线交于BE于点F。
证明:F是BE的中点。
5.在梯形ABCD中,AB平行于CD,AC垂直于CB,AC平分角A,且角B为60度。
已知梯形的周长为20厘米。
求AB的长度。
6.从平行四边形ABCD的各顶点作对角线的垂线AE、BF、CG、DH,垂足分别是E、F、G、H。
证明:EF平行于GH。
7.在梯形ABCD中,对角线交点为E。
在平行边的一边BC的延长线上取一点F,使得三角形ABC和三角形EBF的面积相等。
证明:DF平行于AC。
8.在正方形ABCD中,直线EF平行于对角线AC,与边AB和BC相交于点E和F。
在DA的延长线上取一点G,使AG等于AD。
若EG与DF相交于点H,证明:AH等于正方形的边长。
9.以直角三角形ABC的边AB为边,在三角形ABC的外部作正方形ABDE。
AF是BC边的高,延长FA使AG等于BC。
证明:BG等于CD。
10.在正方形ABCD中,E和F分别是AB和AD延长线上的一点,且AE、AF和AC相等。
EF交BC于点G,交AC于点K,交CD于点H。
证明:EG等于GC等于CH等于HF。
11.在正方形ABCD的对角线BD上,取BE等于AB。
过点E作BD的垂线EF,与CD相交于点F。
证明:CF等于ED。
12.在平行四边形ABCD中,角A和角D的平分线相交于点XXX与DC和AB的延长线交于点G和F。
中考数学四边形专题训练50题(含答案)
中考数学四边形专题训练50题含答案(单选、填空、解答题)一、单选题1.若正多边形的一个外角是24°,则这个正多边形( )A .正十二边形B .正十五边形C .正十八边形D .正二十边形 2.若平行四边形中两个相邻内角的度数比为1:2,则其中较小的内角是( ) A .120︒ B .90︒ C .60︒ D .45︒ 3.如图,四边形ABCD ∽四边形EFGH ,80E ∠=︒,90G ∠=︒,120D ∠=︒,则B ∠等于( )A .50︒B .60︒C .70︒D .80︒ 4.已知三角形的3条中位线分别为3cm 、4cm 、6cm ,则这个三角形的周长是( )A .13cmB .26cmC .24cmD .65cm 5.如图,正方形ABCD 中,E ,F 分别在边AD ,CD 上,AF ,BE 相交于G ,若34AE ED =,DF CF =,则AG GF 的值是( )A .59B .611C .713D .1115 6.在平行四边形ABCD 中,∠B =60°,那么下列各式中,不能成立的是( ) A .∠D =60° B .∠A =120° C .∠C +∠D =180° D .∠C +∠A =180°7.下列说法中,不正确的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的矩形是正方形D.对角线互相垂直的平行四边形是菱形8.对角线互相平分且相等的四边形是()A.菱形B.矩形C.正方形D.等腰梯形9.如图,过O外一点P作O的两条切线PD、PB,切点分别为D、B,作直径∠的度数为()AB,连接AD、BD,若80P∠=︒,则AA.50°B.60°C.70°D.80°10.如图,在∠ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE∠AB于E,PF∠AC于F,M为EF中点,则AM的最小值为()A.1B.1.3C.1.2D.1.5∠=︒,11.如图,将平行四边形ABCD沿对角线AC折叠,使点B落在点B'处,若148∠=︒,则B232∠的度数为().A.124°B.114°C.104°D.56°12.下列说法正确的是()A.矩形的对角线相互垂直B.菱形的对角线相等C.平行四边形是轴对称图形D.等腰梯形的对角线相等13.如图,正方形ABCD中,AB=12,点E在边CD上,且BG=CG,将△ADE沿AE 对折至△AFE,延长EF交边BC于点G,连接AG、CF,下列结论:∠△EAG=45°:∠CE=3DE;∠AG∠CF;∠S△FGC=725,其中正确结论的个数是()A.1个B.2个C.3个D.4个14.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,若AB=6,EF=2,则BC的长为()A.8B.10C.12D.1415.如图,在四边形ABCD中,∠A=90°,AB=AD=3,M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),E、F分别为D M,MN的中点,则EF长度的最大值为() .A.4B.3C.D.16.下列说法错误的是()A.菱形的面积等于两条对角线乘积的一半B.矩形的对角线相等C.对角线互相垂直的平行四边形是矩形D.对角线相等的菱形是正方形17.如图所示,将正六边形与正五边形按此方式摆放,正六边形与正五边形的公共顶点为O,且正六边形的边AB与正五边形的边DE共线,则∠COF的度数是()A.86°B.84°C.76°D.74°18.如图,在矩形ABCD中,点E、F分别在边AD、DC上,ABE DEF,AB=,26DF=,则BE的长是()DE=,3D.A.12B.15C.19.如图,在一张矩形纸片ABCD中4BC=,点E,F分别在AD,BC上,AB=,8将纸片ABCD沿直线EF折叠,点C落在AD上的点H处,点D落在点G处,连接CE,CH.有以下四个结论:∠四边形CFHE是菱形;∠CE平分∠DCH;∠线段BF的EF=.以上结论中,其中正确结取值范围为34BF≤≤;∠当点H与点A重合时,5论的个数有()A.1个B.2个C.3个D.4个二、填空题=,连接AE交CD于F,那么20.四边形ABCD是正方形,延长BC至E,使CE AC∠的度数为________.AFC21.M为矩形ABCD中AD的中点,P为BC上一点,PE∠MC,PF∠MB,当AB、BC 满足_________时,四边形PEMF为矩形.22.如图,在矩形ABCD中,E,F分别是边AB,BC上的点.将∠A,∠B,∠C按如图所示的方式向内翻折,EQ ,EF ,DF 为折痕.若A ,B ,C 恰好都落在同一点P 上,AE =1,则ED =___.23.如图,△ABC 内接于∠O ,∠BAC =120°,AB =AC ,BD 为∠O 的直径,CD =8,OA 交 BC 于点 E ,则 AE 的长度是________.24.如图,在正五边形ABCDE 中,AC 为对角线,以点A 为圆心,AE 为半径画圆弧交AC 于点F ,连结EF ,则∠1的度数为__.25.如图,小靓用七巧板拼成一幅装饰图,放入长方形ABCD 内,装饰图中的三角形顶点E ,F 分别在边AB ,BC 上,三角形∠的边GD 在边AD 上,若图1正方形中MN=1,则CD=____.26.如图,在正方形ABCD 中,点E ,F 分别是BC ,CD 上的点,连接AE ,EF ,AF ,若DF BE EF +=,则EAF ∠=______︒.27.如图,已知抛物线24=-+的顶点为D,与y轴交于点C,过点C作x轴的y x x c平行线AC交抛物线于点A,过点A作y轴的平行线AB交射线OD于点B,若OA OB=,则c的值为_____________.28.如图,点E、F、G、H分别是矩形ABCD边AB、BC、CD、DA上的点,且HG 与EF交于点I,连接HE、FG,若AB=7,BC=6,EF//AD,HG//AB,则HE+FG的最小值是______.29.在□ABCD中,∠A:∠B=2:3,则∠B=____,∠C=_____,∠D=____.30.如图,菱形ABCD中,∠BCD=50°,BC的垂直平分线交对角线AC于点F,垂足为E,连接BF、DF,则∠DFC的度数是_____.'沿对角线AC折叠,得到如图所示的图形.若∠BAO=34°,则31.把长方形AB CD∠BAC的大小为_______.32.如图,M 是▭ABCD 的AB 的中点,CM 交BD 于E ,则图中阴影部分的面积与▱ABCD 的面积之比为_____.33.如图,矩形ABCD 中,AD=6,P 为边AD 上一点,且AP=2,在对角线BD 上寻找一点M ,使AM+PM 最小,则AM+PM 的最小值为_____.34.如图,在▱ABCD 中,BE 、CE 分别平分∠ABC 、∠BCD ,E 在AD 上,BE=12cm ,CE=5cm .则▱ABCD 的周长为_____,面积为_____.35.在平面直角坐标系中,对于不在坐标轴上的任意一点(),P x y ,我们把点11,Q y x ⎛⎫ ⎪⎝⎭称为点P 的“逆倒数点”.如图,在矩形OABC 中,点B 的坐标为(48),,反比例函数()0k y x x =>的图象经过矩形对角线交点M .点D 是该反比例函数图象上的点,点E 是对角线上的一点,且点E 是点D 的“逆倒数点”,点E 的坐标为______.36.如图,正方形ABCD 的对角线AC ,BD 交于点O ,M 是边AD 上一点,连接OM ,过点O 作ON ∠OM ,交CD 于点N .若四边形MOND 的面积是1,则AB 的长为 _____.37.如图,点E 为正方形ABCD 外一点,且ED CD =,连接AE ,交BD 于点F .若40CDE ∠=,则∠DCF 的度数为_______.38.如图,在矩形ABCD 中,5,3AB BC ==,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是 _____ .39.如图,点E 、F 分别为正方形ABCD 的边AB 、BC 上的点,满足∠EDF =45°.连接DE 、DF 分别交正方形对角线AC 于点H 、G ,再连接EG ,有如下结论:∠AE CF EF +>;∠ED 始终平分∠AEF ;∠∠AEH ∠∠DGH ;∠DE ;∠14DGH DEF S S =△△.在上述结论中,正确的有______.(请填正确的序号)三、解答题40.如图,方格纸中每个小正方形的边长均为1,ABC 的顶点和线段的端点均在小正方形的顶点上.(利用格点和没有刻度的直尺作图,保留作图痕迹)(1)在方格纸1中画出ADC △,使ADC △与ABC 关于直线AC 对称;(2)在方格纸2中画出以EF 线段为一边的平行四边形(点G ,点H 均在小正方形的顶点上),且平行四边形面积为4;(3)在方格纸3中,连接FM ,在FM 上确定一点P ,使得点P 为FM 中点. 41.如图,在平行四边形ABCD 中,∠BAD 的平分线交CD 于点E ,连接BE 并延长交AD 延长线于点F ,若AB =AF .(1)求证:点D 是AF 的中点;(2)若∠F =60︒,CD =6,求∠ABF 的面积.42.如图1,在等腰ABO 中,AB AO =,分别延长AO 、BO 至点C 、点D ,使得CO AO =、DO BO =,连接AD 、BC .()1如图1,求证:AD BC =;()2如图2,分别取边AD 、CO 、BO 的中点E 、F 、H ,猜想EFH 的形状,并说明理由.43.如图,在矩形ABCD 中,M ,N 分别是AD ,BC 的中点,E ,F 分别是线段BM ,CM 的中点,若AB=8,AD=12,则四边形ENFM 的周长是多少?44.如图∠,在矩形OACB 中,点A 在x 轴正半轴上,点B 在y 轴正半轴上,点C 在第一象限,8OA =,6OB =.(1)直接写出点C 的坐标:________;(2)如图∠,点G 在BC 边上,连接AG ,将ACG 沿AG 折叠,点C 恰好与线段AB 上一点C '重合,求线段CG 的长度;(3)如图∠,P 是直线26y x =-上一点,PD PB ⊥交线段AC 于D .若P 在第一象限,且PB PD =,试求符合条件的所有点P 的坐标.45.直线443y x =-+与x 轴交于点A ,与y 轴交于点B ,菱形ABCD 如图放置在平面直角坐标系中,其中点D 在x 轴负半轴上,直线y =x +m 经过点C ,交x 轴于点E .(1)请直接写出点C ,点D 的坐标,并求出m 的值;(2)点P (0,t )是线段OB 上的一个动点(点P 不与O 、B 重合),经过点P 且平行于x 轴的直线交AB 于M ,交CE 于N .当四边形NEDM 是平行四边形时,求点P 的坐标;(3)点P (0,t )是y 轴正半轴上的一个动点,Q 是平面内任意一点,t 为何值时,以点C 、D 、P 、Q 为顶点的四边形是菱形?46.如图,在Rt ∠ABC 中,∠C =90°,AC =8,BC =6.动点P 从点A 出发,沿AB 以每秒5个单位长度的速度向终点B 运动.当点P 不与点A 重合时,过点P 作PD ∠AC 于点D ,以AP ,AD 为边作▱APED .设点P 的运动时间为t 秒.(1)线段AD的长为(用含t的代数式表示).(2)当点E落在BC边上时,求t的值.(3)连结BE,当tan∠CBE=13时,求t的值.(4)若线段PE的中点为Q,当点Q落在∠ABC一边垂直平分线上时,直接写出t的值.47.如图,BC为∠O的直径,BD平分∠ABC交∠O于点D,DA∠AB于点A.(1)求证:AD是∠O的切线;(2)∠O交AB于点E,若AD=2AE,求sin ABC∠的值.48.如图1,已知在四边形ABCD中,AB//CD,90ABC∠=︒,8BC=,6CD=,1tan2A=.动点P从点D DA方向运动,到A点结束;点Q同时从点A出发,以3个单位的速度沿射线AB运动,点P停止运动后,点Q 也随之停止.以AP,AQ为边作平行四边形AQGP.设运动时间为t.(1)求AB的长;(2)连接GC 、GB ,当CGB △为等腰三角形时,求t 的值;(3)如图2,以PQ 为直径作圆与AD 、PG 分别交于点M 、N ,连接MQ 交PG 于点F ,连接NQ 、DG ,∠当点N 为弧MQ 的中点时,求PMQPNQ S S △△的值;∠当PQM CDG ∠=∠时,求PQ =______(请直接写出答案).49.思维启迪:(1)如图1,A ,B 两点分别位于一个池塘的两端,小亮想用绳子测量A ,B 间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达B 点的点C ,连接BC ,取BC 的中点P (点P 可以直接到达A 点),利用工具过点C 作CD∠AB 交AP 的延长线于点D ,此时测得CD =100米,那么A ,B 间的距离是_____米.思维探索:(2)在∠ABC 和∠ADE 中,AC =BC ,AE =DE ,且AE <AC ,∠ACB =∠AED =90°,将∠ADE 绕点A 逆时针方向旋转,把点E 在AC 边上时∠ADE 的位置作为起始位置(此时点B 和点D 位于AC 的两侧),设旋转角为α,连接BD ,点M 是线段BD 的中点,连接MC ,ME .∠如图2,当∠ADE 在起始位置时,猜想:MC 与ME 的数量关系和位置关系分别是______;∠如图3,当α=90°时,点D 落在AB 边上,请判断MC 与ME 的数量关系和位置关系,并证明你的结论;参考答案:1.B【详解】分析:利用任意凸多边形的外角和均为360°,正多边形的每个外角相等即可求出答案.详解:∠多边形的每个外角相等,且其和为360°,∠这个正多边形的边形为3602415o o ÷=,∠这个正多边形是正十五边形.故选B.点睛:考查了正多边形外角和的知识,正多边形的每个外角相等,且其和为360°,用360除以一个外角的度数,结果即为正多边形的边形.2.C【分析】根据平行四边形的性质来解答即可.【详解】解:∠平行四边形,∠两个相邻内角互补,又∠两个相邻内角的度数比为1:2,∠两个相邻的内角为60°、120°,∠较小的内角为60°.故选:C .【点睛】本题考查平行四边形的性质,熟练掌握平行四边形的相关性质是解题的关键. 3.C【分析】根据相似多边形的对应角相等以及四边形的内角和为360︒解答即可.【详解】解:∠四边形ABCD ∽四边形EFGH∠120H D ∠=∠=︒∠360()70B F E G H ∠=∠=︒-∠+∠+∠=︒故选:C .【点睛】本题考查了相似多边形的性质、多边形的内角和;理解相似多边形的对应角相等是解题的关键.4.B【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出三角形的三边,再求解即可.【详解】解:∠三角形的三条中位线分别为3cm、4cm、6cm,∠三角形的三边分别为6cm,8cm,12cm,∠这个三角形的周长=6+8+12=26cm.故选:B.【点睛】本题考查了三角形中位线的性质,解题的关键是熟记三角形中位线的性质定理.5.B【分析】延长AF交BC的延长线于点H,证明∠ADF∠∠HCF,得到CH=AD,设AE=3x,则DE=4x,AD=7x,证得∠AEG∠∠HBG,得到AE AGBH HG==314,即可求出AGGF【详解】解:延长AF交BC的延长线于点H,∠四边形ABCD是正方形,∠∠D=∠DCH=90°,AD∥BC,∠∠DAF=∠H,∠DF CF=,∠∠ADF∠∠HCF(AAS),∠CH=AD,设AE=3x,则DE=4x,AD=7x,∠CH=AD=BC=7x,∠AD∥BC,∠∠AEG∠∠HBG,∠AE AGBH HG==314,∠AGGF =6 11,故选:B.【点睛】此题考查了正方形的性质,相似三角形的性质,全等三角形的判定及性质,熟记各定理是解题的关键.6.D【详解】解:∠四边形ABCD是平行四边形,∠∠D=∠B=60°.故A成立;∠AD△BC,∠∠A+∠B=180°,∠∠A=180°-∠B=120°,故B成立;∠AD△BC,∠∠C+∠D=180°,故C成立;∠四边形ABCD是平行四边形,∠∠C=∠A=120°,故D不成立,故选D.7.B【分析】根据各四边形的性质对各个选项进行分析从而得出最后答案.【详解】解:A、对角线互相平分的四边形是平行四边形,正确;B、错误,对角线相等的四边形不一定是矩形,对角线相等的平行四边形才是矩形;C、对角线互相垂直的矩形是正方形,正确;D、对角线互相垂直的平行四边形是菱形,正确.故选:B.【点睛】本题主要考查了正方形、平行四边形、菱形的判定方法.解决此题的关键是熟练掌握运用这些判定.8.B【分析】根据平行四边形的判定与矩形的判定定理,即可求得答案.【详解】∠对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,∠对角线相等且互相平分的四边形一定是矩形.故选B.【点睛】此题考查了平行四边形,矩形,菱形以及等腰梯形的判定定理.此题比较简单,解题的关键是熟记定理.9.A【分析】如图,连接OD ,可得90ODP OBP ∠=∠=︒,再利用四边形的内角和定理求解BOD ∠,从而可得答案.【详解】解:如图,连接OD ,∠过O 外一点P 作O 的两条切线PD 、PB ,∠90ODP OBP ∠=∠=︒,∠80P ∠=︒,∠360909080100DOB ∠=︒-︒-︒-︒=︒, ∠1502A DOB ∠=∠=︒, 故选A .【点睛】本题考查的是切线的性质,四边形的内角和定理的应用,圆周角定理的应用,作出过切点的半径是解本题的关键.10.C【分析】首先证明四边形AEPF 为矩形,可得AM =12AP ,最后利用垂线段最短确定AP 的位置,利用面积相等求出AP 的长,即可得AM .【详解】在△ABC 中,因为AB 2+AC 2=BC 2,所以△ABC 为直角三角形,∠A =90°,又因为PE ∠AB ,PF ∠AC ,故四边形AEPF 为矩形,因为M 为 EF 中点,所以M 也是 AP 中点,即AM =12AP ,故当AP ∠BC 时,AP 有最小值,此时AM 最小, 由1122ABC S AB AC BC AP ∆=⨯⨯=⨯⨯,可得AP =125,AM =12AP =6 1.25= 故本题正确答案为C.【点睛】本题考查了矩形的判定和性质,确定出AP ∠BC 时AM 最小是解题关键.11.A【分析】根据折叠、平行四边形的性质,三角形的内角和定理,即可求出答案.【详解】解:由折叠得,45∠=∠,∠四边形ABCD 是平行四边形,∠AB CD ,∠53∠=∠,∠3=4∠∠,又∠13448∠=∠+∠=︒, ∠154348242∠=∠=∠=⨯︒=︒, 在ABC 中,180521802432124B ∠=︒-∠-∠=︒-︒-︒=︒,故选:A .【点睛】本题考查折叠的性质、平行四边形的性质,三角形的内角和定理等知识,由图形直观得出各个角之间的关系是正确解答的关键.12.D【分析】根据矩形、菱形、平行四边形、等腰梯形的性质进行逐一分析解答即可.【详解】A 、错误,矩形的对角线相等;B 、错误,菱形的对角线相互垂直;C 、错误,平行四边形是中心对称图形;D 、正确,等腰梯形的对角线相等.故选D . 【点睛】此题考查命题与定理,解题关键在于掌握正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉其性质定理.13.C【分析】∠由正方形的性质和翻折的性质可证明Rt△ABG∠Rt△AFG(HL),推出∠BAG=∠F AG,根据∠DAE=∠F AE,可得∠EAG=12∠BAD=45°;∠由题意得EF=DE,GB=CG=GF=6,设DE=EF=x,则CE=12-x,在Rt△ECG中,(12-x)2+36=(x+6)2,求出x,则可得到CE=2DE;∠由CG=BG,BG=GF,可得CG=GF,则∠GFC=∠GCF,因为∠AGB+∠AGF=2∠AGB=∠GFC+∠GCF=2∠GCF,可推出∠AGB=∠GCF,则AG∠CF;∠由S△GCE=12×GC×CE,又因为△GFC和△FCE等高,可得S△GFC:S△FEC=3:2,S△GFC=3 5×24=725.【详解】解:∠∠正方形ABCD,∠AB=BC=CD=AD=12,∠B=∠GCE=∠D=90°,由折叠的性质可得,AF=AD,∠AFE=∠D=90°,∠∠AFG=90°=∠B,AB=AF,又∠AG=AG,∠Rt△ABG∠Rt△AFG(HL),∠∠BAG=∠F AG,∠∠DAE=∠F AE,∠∠EAG=12∠BAD=45°,故∠正确;∠由题意得EF=DE,GB=CG=GF=6,设DE=EF=x,则CE=12-x,在Rt∠ECG中,(12-x)2+62=(x+6)2,∠x=4,∠DE=4,CE=8,∠CE=2DE,故∠错误;∠∠CG=BG,BG=GF,∠CG=GF,∠∠GFC=∠GCF,∠Rt∠ABG∠Rt∠AFG,∠∠AGB=∠AGF,∠∠AGB+∠AGF=2∠AGB=∠GFC+∠GCF=2∠GCF,∠∠AGB=∠GCF,∠AG∠CF,故∠正确;∠∠S△GCE=12×GC×CE=12×6×8=24,又∠GF=6,EF=4,∠GFC和∠FCE等高,∠S△GFC:S△FEC=3:2,∠S△GFC=35×24=725,故∠正确;综上,正确的是∠∠∠,共3个.故选:C.【点睛】本题考查翻折变换的性质、正方形的性质,本题综合性很强,熟练掌握全等三角形的判定和性质,勾股定理,三角形面积的计算方法是解题的关键.14.B【详解】试题分析:根据平行四边形的性质可知AB=CD,AD∠BC,AD=BC,然后根据平行线的性质和角平分线的性质可知AB=AF,DE=CD,因此可知AF+DE=AD+EF=2AB=12,解得AD=BC=12-2=10.故选B.点睛:此题主要考查了平行四边形的性质和等腰三角形的性质,解题关键是把所求线段转化为题目中已知的线段,根据等量代换可求解.15.B【分析】根据三角形的中位线定理得出EF=12DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,此时根据勾股定理求得DN=DB=6,从而求得EF的最大值为3.【详解】解:∠ED=EM,MF=FN,∠EF=12DN,∠DN最大时,EF最大,∠N与B重合时DN最大,此时DN=DB=6,∠EF的最大值为3.故选:B.【点睛】本题考查了三角形中位线定理,勾股定理的应用,熟练掌握定理是解题的关键.16.C【分析】根据有关的定理和定义找到错误的命题即可得到答案;【详解】A、菱形的面积等于对角线乘积的一半,故正确,不符合题意;B、矩形的对角线相等,正确,不符合题意;C、对角线平分且相等的平行四边形是矩形,错误,符合题意;D、对角线相等的菱形是正方形,正确,不符合题意;故选C.【点睛】考查了命题与定理的知识,在判断一个命题正误的时候可以举出反例.17.B【分析】利用正多边形的性质求出∠EOF,∠BOC,∠BOE即可解决问题.【详解】解:由题意:∠EOF=108°,∠BOC=120°,∠OEB=72°,∠OBE=60°,∠∠BOE=180°﹣72°﹣60°=48°,∠∠COF=360°﹣108°﹣48°﹣120°=84°,故选:B.【点睛】本题考查正多边形,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于常考题型.18.C【分析】利用相似三角形的性质求出AE的长,再利用勾股定理求解即可.【详解】解:∠ABE DEF,∠AB AE DE DF,∠623AE =,∠9AE=,∠矩形ABCD中,90A∠=︒,∠BE故选:C.【点睛】本题考查了矩形的性质、相似三角形的性质、勾股定理,解题关键是求出AE的长后利用勾股定理求解.19.B【分析】先根据翻折的性质可得CF=FH,∠HFE=∠CFE,可证∠FEH是等腰三角形,可得HE=HF=FC,判断出四边形CFHE是平行四边形,然后根据邻边相等的平行四边形是菱形证明,判断出∠正确;根据菱形的对角线平分一组对角线可得∠BCH=∠ECH,然后求出只有∠DCE=30°时CE平分∠DCH,判断出∠错误;过点F作FM∠AD于M,点H与点A 重合时,设BF=x,表示出AF=FC=8﹣x,利用勾股定理列出方程求解得到BF的最小值,点G与点D重合时,CF=FM=MD=CD,求出BF=4,然后写出BF的取值范围,判断出∠正确;求出ME,再利用勾股定理列式求解得到EF,判断出∠正确.【详解】解:∠将纸片ABCD沿直线EF折叠,∠FC=FH,∠HFE=∠CFE,∠AD△BC,∠∠HEF=∠EFC=∠HFE,HE△FC,∠∠HFE为等腰三角形,∠HE=HF=FC,∠EH与CF都是矩形ABCD的对边AD、BC的一部分,∠EH△CF,且HE=FC,∠四边形CFHE是平行四边形,∠FC=FH,∠四边形CFHE是菱形,故∠正确;∠HC为菱形的对角线,∠∠BCH=∠ECH,∠BCD=90°,∠只有∠DCE=30°时CE平分∠DCH,故∠错误;过点F作FM∠AD于M,点H与点A重合时,BF最小,设BF=x,则AF=FC=8﹣x,在Rt∠ABF中,AB2+BF2=AF2,即42+x2=(8﹣x)2,解得:x=3,点G与点D重合时,点H与点M重合,BF最大,CF=FM=DM=CD=4,∠BF=4,∠线段BF的取值范围为3≤BF≤4,故∠正确;当点H与点A重合时,由∠中BF=3,∠AF=AE=CF=EC=8-3=5,则ME=5﹣3=2,由勾股定理得,EF=∠错误;综上所述,结论正确的有∠∠共2个,故B正确.故选:B.【点睛】本题考查矩形折叠性质,等腰三角形的判定,菱形的判定与性质,勾股定理,掌握矩形折叠性质,菱形的判定与性质,勾股定理是解题关键.20.112.5【分析】根据正方形的性质有∠ACD=∠ACB=45°=∠CAE+∠AEC,根据CE=AC就可以求出∠CAE=22.5°,在△AFC中由三角形的内角和就可以得出∠AFC的度数.【详解】解:∠四边形ABCD是正方形,∠∠ACD=∠ACB=45°.∠∠ACB═∠CAE+∠AEC,∠∠CAE+∠AEC=45°.∠CE=AC,∠∠CAE=∠AEC,∠∠CAE=22.5°.∠∠CAE+∠ACD+∠AFC=180°,∠∠AFC=180°-22.5°-45°=112.5°.故答案为112.5°.【点睛】本题考查了正方形的性质的运用,等腰三角形的性质的运用,三角形的外角与内角的关系的运用及三角形内角和定理的运用.21.12AB BC =##2BC AB =【详解】∠在矩形ABCD 中,M 为AD 边的中点,AB=12BC ,∠AB =DC =AM =MD ,∠A =∠D =90°,∠∠ABM =∠MCD =45°,∠∠BMC =90°,又∠PE ∠MC ,PF ∠MB ,∠∠PFM =△PEM =90°,∠四边形PEMF 是矩形.故答案为:AB =12BC .22.3【分析】连接,EP DP ,根据折叠的性质得出三角形全等,根据三角形全等的性质得出对应边相等,由ED EP PD =+,利用等量代换分别求出,EP PD .【详解】解:连接,EP DP 如下图所示:根据A ,B ,C 恰好都落在同一点P 上及折叠的性质,有,,AQE PQE EBF EPF FPD FCD ≌≌≌,1,1,AE PE EB EP CD PD ∴=====,2AB AE EB =+=,根据正方形的性质得:2AB DC ==,2PD ∴=,ED EP PD =+,123ED ∴=+=,故答案是:3.【点睛】本题考查了翻折的性质,三角形全等的性质,解题的关键是添加辅助线,通过等量代换的思想进行解答.23.4【分析】证明△OAB 是等边三角形,OA ∠BC 即可推出OE =AE ,再利用三角形中位线定理即可解决问题.【详解】解:∠AB =AC ,∠AB AC =,∠OA ∠BC ,BE =EC ,AB =AC∠∠ABC 是等腰三角形∠∠BAE =∠CAE =12∠BAC =60°,∠OA =OB ,∠∠OAB 是等边三角形,∠BE ∠OA ,∠OE =AE ,∠OB =OD ,BE =EC ,∠ OE是△BCD的中位线∠OE=AE=12CD=4.故答案为:4.【点睛】本题考查三角形的外接圆与外心,圆周角定理,垂径定理,三角形的中位线定理,等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.54°【分析】根据五边形的内角和公式求出∠ABC,根据等腰三角形的性质,三角形内角和的定理计算∠BAC,再求∠EAF,利用圆的性质得AE=AF,最后求出∠1即可.【详解】解:∠五边形ABCDE是正五边形,∠∠EAB=∠ABC=()5-21805⨯︒=108°,∠BA=BC,∠∠BAC=∠BCA=180-1082︒︒=36°,∠∠EAF=108°﹣36°=72°,∠以点A为圆心,AE为半径画圆弧交AC于点F,∠AE=AF,∠∠1=180-722︒︒=54°.故答案为:54°.【点睛】本题考查了正多边形的内角与圆,熟练掌握正多边形的内角的计算公式、和圆的性质,等腰三角形的性质是解题的关键.25122【分析】根据七巧板中图形分别是等腰直角三角形和正方形计算PH的长,即FF'的长,作高线GG',根据直角三角形斜边中线的性质可得GG'的长,即AE的长,可得结论.【详解】解:如图:∠四边形MNQK是正方形,且MN=1,∠∠MNK=45°,在Rt△MNO中,OM=ON∠NL=PL=OL∠PN=12,∠PQ=12,∠∠PQH是等腰直角三角形,∠PH=FF'BE,过G作GG'∠EF',∠GG'=AE=12MN=12,∠CD=AB=AE+BE=12122.故答案为122.【点睛】本题主要考查了正方形的性质、七巧板、等腰直角三角形的性质及勾股定理等知识.熟悉七巧板是由七块板组成的,完整图案为一正方形:五块等腰直角三角形(两块小形三角形、一块中形三角形和两块大形三角形)、一块正方形和一块平行四边.26.45【分析】延长CB到G,使BG=DF,根据正方形的性质得到AD=AB,∠D=∠ABE=90°,求得∠ABG=∠D=90°,根据全等三角形的性质得到AG=AF,∠GAB=∠DAF,求得GE=EF,推出∠AGE∠∠AFE(SSS),根据全等三角形的性质得到∠GAE=∠EAF,根据全等三角形的性质即可得到结论.【详解】解:延长CB到G,使BG=DF,∠四边形ABCD是正方形,∠AD=AB,∠D=∠ABE=90°,∠∠ABG =∠D =90°,在∠ADF 与∠ABG 中,AB AD ABG D BG DF =⎧⎪∠=∠⎨⎪=⎩,∠∠ADF ∠∠ABG (SAS ),∠AG =AF ,∠GAB =∠DAF ,∠DF +BE =EF ,EG =BG +BE =DF +BE ,∠GE =EF ,在∠AGE 与∠AFE 中,AG AF AE AE GE EF =⎧⎪=⎨⎪=⎩,∠∠AGE ∠∠AFE (SSS ),∠∠GAE =∠EAF ,∠∠GAE =∠GAB +∠BAE =∠DAF +∠BAE =∠EAF ,∠∠BAD =90°,∠∠EAF =45°,故答案为:45.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,正确的作出辅助线构造全等三角形是解题的关键.27.83【分析】根据抛物线的解析式求得4DH c =-,BF AF OC c ===,然后根据三角形中位线定理得到142c c -=,解得即可. 【详解】解:作抛物线的对称轴,交OA 于E ,交x 轴于H ,∠224()42y x x c x c =-+=-+-,∠顶点为(2)4c -,,∠4DH c =-,∠AC x ∥轴,∠AF OC c AB x ==⊥,轴,∠OA OB =,∠AF BF c ==,∠OH FH =, ∠12DH BF =, ∠142c c -= ∠83c =, 故答案为:83. 【点睛】本题考查了二次函数与几何的综合运用,熟练掌握三角形的中位线定理是解决本题的关键.28【分析】由EF ∠AD ,HG ∠AB ,结合矩形的性质可得四边形AHIE 和四边形IFCG 为矩形,然后根据矩形的性质可的HE +FG 的长度即为AI +CI 的长度,最后利用两点之间,线段最短,求出AC 的长即可.【详解】解:如图所示,连接AI ,CI ,AC ,在矩形ABCD 中,∠BAD =∠BCD =∠B =90°,AB ∠CD ,AD ∠BC ,又∠EF ∠AD ,HG ∠AB ,∠四边形AHIE和四边形IFCG为矩形,∠HE=AI,FG=CI,∠HE+FG的长度即为AI+CI的长度,又∠AI+CI≥AC,∠当A,I,C三点共线时,AI+CI最小值等于AC的长度,在Rt∠ABC中,AC∠HE+FG【点睛】本题考查矩形的判定和性质以及两点之间,线段最短的运用,正确判定四边形AHIE和四边形IFCG为矩形,运用矩形的对角线相等是解题的关键.29.108º,72º,108º【详解】解:∠平行四边形ABCD中,∠A+∠B=180°,又∠∠A:∠B=2:3,∠∠A=72°,∠B=108°,∠∠D=∠B=108°,∠C=∠A=72°.故答案为108º,72º,108º.30.130°【分析】首先求出∠CFB=130°,再根据对称性可知∠CFD=∠CFB即可解决问题.【详解】∠四边形ABCD是菱形,∠BCD=25°,∠∠ACD=∠ACB=12∠EF垂直平分线段BC,∠FB=FC,∠∠FBC=∠FCB=25°,∠∠CFB=180°﹣25°﹣25°=130°,根据对称性可知:∠CFD=∠CFB=130°,故答案为130°.【点睛】本题考查菱形的性质、线段的垂直平分线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.31.62°【分析】先利用AAS 证明∠AOB∠∠COD ,得出∠BAO=∠DCO=34°,∠B′CO=68°,结合折叠的性质得出∠B′CA=∠BCA=34°,则∠BAC=∠B′AC=56°.【详解】由题意,得∠B′CA∠∠BCA ,∠AB′=AB ,∠B′CA=∠BCA ,∠B′AC=∠BAC .∠长方形AB′CD 中,AB′=CD ,∠AB=CD .在∠AOB 与∠COD 中,90B D AOB COD AB CD ∠∠︒⎧⎪∠∠⎨⎪⎩==== , ∠∠AOB∠∠COD (AAS ),∠∠BAO=∠DCO=34°,∠∠B′CO=90°-∠DCO=56°,∠∠B′CA=∠BCA=28°,∠∠B′AC=90°-∠B′CA=62°,∠∠BAC=∠B′AC=62°.【点睛】考查了折叠的性质、矩形的性质和全等三角形的判定与性质,解题关键是证明∠AOB∠∠COD ,得出∠BAO=∠DCO=34°是解题的关键.32.1:3【详解】试题解析:设平行四边形的面积为1,∠四边形ABCD 是平行四边形, ∠12DAB ABCD S S =,又∠M 是ABCD 的AB 的中点, 则1124DAM DAB ABCD S S S ==,1,2BE MB DE CD == ∠EMB △上的高线与DAB 上的高线比为1.3BE BD ==∠1113212 EMB DABS S=⨯=,∠143 DEC MEBS S,==S阴影面积1111141233 =---=,则阴影部分的面积与▱ABCD的面积比为13.故填空答案:13.33.【详解】分析:作DH平分∠BDC交BC于H.连接AH交BD于M.首先证明P、H关于BD对称,连接AH交BD于M,则AM+PM的值最小,最小值=AH.详解:作DH平分∠BDC交BC于H.连接AH交BD于M.∠四边形ABCD是矩形,∠∠C=∠BAD=∠ADC=90°,∠tan∠ADB=ABAD∠∠ADB=30°,∠∠BDC=60°,∠∠CDH=30°,∠CD∠CH2,△DH=2CH=4,∠DP=DH,∠∠MDP=∠MDH,∠P、H关于BD对称,连接AH交BD于M,则AM+PM的值最小,最小值=AH=点睛:本题考查了矩形的性质,解直角三角形,勾股定理,含30º角的直角三角形的性质,轴对称的性质,作DH平分∠BDC交BC于H.连接AH交BD于M.说明P和H关于BD成轴对称是解答本题的关键.34.39cm60cm2【分析】根据角平分线的定义和平行线的性质得到等腰三角形ABE和等腰三角形CDE和直角三角形BCE.根据直角三角形的勾股定理得到BC=13cm,根据等腰三角形的性质得到AB=CD=12AD=12CD=6.5cm,从而求得该平行四边形的周长;根据直角三角形的面积可以求得平行四边形BC边上的高.【详解】∠BE、CE分别平分∠ABC、∠BCD,∠∠1=∠3=12∠ABC,∠DCE=∠BCE=12∠BCD,在▱ABCD中,AB=CD,AD=BC,AD∠BC,AB∠CD,∠AD∠BC,AB∠CD,∠∠2=∠3,∠BCE=∠CED,∠ABC+∠BCD=180°,∠∠1=∠2,∠DCE=∠CED,∠3+∠BCE=90°,∠AB=AE,CD=DE,∠BEC=90°,在Rt△BCE中,根据勾股定理得:BC=13cm,∠平行四边形的周长等于:AB+BC+CD+AD=6.5+13+6.5+13=39cm;作EF∠BC于F,根据直角三角形的面积公式得:EF=·6013BE CEBC=cm,∠平行四边形ABCD的面积=BC·EF=601313⨯=60cm2,故答案为39cm,60cm2.【点睛】本题考查了平行四边形的性质、等腰三角形的判定与性质、勾股定理等,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.。
四边形测试题及答案
四边形测试题及答案# 四边形测试题及答案题目1:定义题题目:请定义什么是四边形,并列举出四边形的三种基本类型。
答案:四边形是由四条直线段依次首尾相连围成的平面图形。
四边形的三种基本类型包括:平行四边形、矩形和梯形。
题目2:计算题题目:给定一个平行四边形,其两组对边分别长为10cm和6cm,求其周长。
答案:平行四边形的周长等于两组对边之和的两倍。
因此,周长= 2 ×(10cm + 6cm) = 32cm。
题目3:判断题题目:所有的矩形都是平行四边形。
答案:正确。
矩形是特殊的平行四边形,其四个角都是直角。
题目4:应用题题目:一个梯形的上底长为3cm,下底长为7cm,高为4cm,求其面积。
答案:梯形的面积 = (上底 + 下底) × 高÷ 2面积= (3cm + 7cm) × 4cm ÷ 2 = 20cm²。
题目5:选择题题目:下列哪个选项不是四边形的特性?A. 内角和为360度B. 对边平行C. 对角线相等D. 有四条边答案:C. 对角线相等。
不是所有四边形的对角线都相等,只有矩形和正方形的对角线相等。
题目6:解析题题目:解释为什么正方形既是矩形也是菱形。
答案:正方形是特殊的四边形,其四条边都相等,且四个角都是直角。
由于四个角都是直角,它满足矩形的定义;由于四条边相等,它也满足菱形的定义。
因此,正方形既是矩形也是菱形。
题目7:证明题题目:证明平行四边形的对角线互相平分。
答案:在平行四边形ABCD中,设对角线AC和BD相交于点E。
由于AB平行于CD,根据平行线的性质,三角形ABC与三角形ADC全等(SAS),因此BE = EC。
同理,三角形ABD与三角形CBD全等,因此AE = ED。
这证明了平行四边形的对角线互相平分。
题目8:填空题题目:如果一个四边形的对角线互相垂直且相等,那么这个四边形是________。
答案:正方形。
当四边形的对角线互相垂直且相等时,它是一个正方形。
初中数学四边形专题训练50题含参考答案
初中数学四边形专题训练50题含答案(单选、填空、解答题)一、单选题1.如果从某个多边形的一个顶点出发,可以作2条对角线,则这个多边形的边数是( )A .4B .5C .6D .7 2.如图,用一根绳子检查一平行四边形书架的侧边是否和上、下底都垂直,只需要用绳子分别测量比较书架的两条对角线AC ,BD 就可以判断,其推理依据是( )A .矩形的对角线相等B .矩形的四个角是直角C .对角线相等的四边形是矩形D .对角线相等的平行四边形是矩形3.在Rt ABC 中,90,30,4,C A BC D E ∠=︒∠=︒=、分别为AC AB 、边上的中点,连接DE 到F ,使得2EF ED =,连接BF ,则BF 长为( )A .2B .C .4D .4.一个多边形的内角和是外角和的5倍,这个多边形边数为( ) A .14 B .12 C .10 D .8 5.在平面直角坐标系中,矩形ABCD 的位置如图所示,其中(1,1)B --,点A 在第二象限,//AB y 轴,3,4AB BC ==,则顶点D 的坐标为( )A.(3,2)B.(2,2)C.(3,3)D.(2,3)6.下列选项中,能判定四边形ABCD是平行四边形的是()A.AB//CD,AD=BC B.∠A=∠D,∠B=∠CC.AB//CD,∠A+∠B=180°D.∠A=∠C,∠B+∠D=180°7.下列命题正确的是()A.同一边上两个角相等的梯形是等腰梯形B.一组对边平行,一组对边相等的四边形是平行四边形C.如果顺次连接一个四边形各边中点得到的是一个正方形,那么原四边形一定是正方形D.对角线互相垂直的四边形面积等于对角线乘积的一半8.下列命题中,正确的是()A.梯形的对角线相等B.菱形的对角线不相等C.矩形的对角线不能互相垂直D.平行四边形的对角线可以互相垂直9.如图,已知点D、E分别是△ABC的边AB、CB的中点,若AB=8,CE=6,AC=10,则△BDE的周长为()A.12B.15C.19D.2410.一个正多边形的每个外角都等于36°,那么它是()A.正五边形B.正六边形C.正八边形D.正十边形11.如图,将一边长AB为4的矩形纸片折叠,使点D与点B重合,折痕为EF,若EF=)A .32B .28C .30D .36 12.将如图甲所示的长方形沿着虚线剪开得到两个全等三角形,现拼成如图乙所示的图形,取BC 的中点O ,连接OA ,OD ,AD ,若22.5ACB ∠=︒,4BC =,则AOD △的周长是( )A .4B .C .4D .4+13.如图,ABD △是等边三角形,CBD △是等腰三角形,且BC DC =,点E 是边AD 上的一点,满足//CE AB ,如果8AB =,6CE =,那么BC 的长是( )A .6B .CD .14.如图,在矩形ABCD 中,3AB =,6BC =,点O 为对角线AC 和BD 的交点,延长BA 至E ,使AE AB =,以AE 为边向右侧作矩形AEFG ,点G 在AD 上,若4AG =,过点O 的一条直线平分该组合图形的面积,并分别交EF 、BC 于点P 、Q ,则2PQ 的值为( )A .39B .40C .41D .42 15.凸n 边形恰好只有三个内角是钝角,这样的多边形边数n 的最大值是( ) A .7 B .6 C .5 D .4 16.如图,点E 为菱形ABCD 边上的一个动点,并沿A →B →C →D 的路径移动,设点E 经过的路径长为x ,∠ADE 的面积为y ,则下列图象能大致反映y 与x 的函数关系的是( )A .B .C .D .17.如图,AB CD =,AD BC =,4=AD ,6BE =,DCE △的面积为3,则四边形ABCD 的面积为( )A .10B .12C .15D .2018.如图,在矩形纸片ABCD 中,5AB =,3BC =,将BCD △沿BD 折叠到BED 位置,DE 交AB 于点F ,则cos ADF ∠的值为( )A .817B .715C .1517D .815 19.如图,矩形ABCD 中,2AB =,4BC =.点E ,G 分别在边BC ,AD 上,点F ,H 在对角线AC 上.若四边形EFGH 是菱形,则AG 的长是( )A .2BC .52D 20.如图,矩形ABCD 中,6,8AB BC ==.点E 、F 分别为边BC 、AD 上一点,连接EF ,将矩形ABCD 沿着EF 折叠,使得点A 落到边CD 上的点A '处,且2DA A C '=',则折痕EF 的长度为( )A .B .C D二、填空题21.▱ABCD 中,AC 、BD 交于点O ,已知6AB =,8AC =,10BD =,则DOC 的周长为______.22.如图,平行四边形OABC 的边OA 在x 轴上,顶点C 在反比例函数y =k x的图象上,BC 与y 轴相交于点D ,且D 为BC 的中点,若平行四边形OABC 的面积为6,则k =_____.23.四边形具有不稳定性.如图,矩形ABCD 按箭头方向变形成平行四边形A B C D '''',当变形后图形面积是原图形面积的一半时,则A '∠=________.24.如图,ABCD 的对角线交于点O .点M ,N ,P ,Q 分别是ABCD 四条边上不重合的点.下列条件能判定四边形MNPQ 是平行四边形的有_____(填序号). ∠,AQ CN AM CP ==;∠,MP NQ 均经过点O :∠NQ 经过点O ,AQ CN =.25.如图,DE 为ABC ∆的中位线,点F 在DE 上,且AFC ∠为直角,若6AC cm =,8BC cm =,则DF 的长为__________cm .26.在ABCD 中,3AD =,2AB =,则ABCD 的周长是______.27.如图,在▱ABCD 中,对角线 AC 、BD 相交于 O ,E 为 DC 边的中点,如果▱ABCD 的周长为 24, 且12AB BC =,则 OE 的长为_______.28.矩形纸片ABCD ,长8cm AD =,宽4cm AB =,折叠纸片,使折痕经过点B ,交AD 边于点E ,点A 落在点A '处,展平后得到折痕BE ,同时得到线段BA ',EA ',不再添加其它线段,当图中存在30角时,AE 的长为__________厘米.29.如图,将边长为4的正方形ABCD 沿着折痕EF 折叠,使点B 落在边AD 的中点G 处,则BE 的长为________.30.各角都相等的十五边形的每个内角的度数是_____度.31.如图,在Rt ABC 中,90ACB ∠=︒,以斜边AB 为边向下作正方形ADEB ,过点E 作EF BC ∥交AC 于点F ,过点C 作CG BE ∥交EF 于点G ,连接DG ,若3AF =,15DE =,则四边形CGEB 的面积为______.32.如图,矩形ABCD的两条对角线相交于点O,CD=A为圆心,AD长为半径画弧,此弧恰好经过点O,并与AB交于点E,则图中阴影部分的面积为_____.33.如图,在平行四边形ABCD中,AD=5,AB=3,BE平分∠ABC,则DE=_____.34.在平面直角坐标系中,直线y=﹣x+3与x轴、y轴分别交于A、B,在AOB内部作正方形,使正方形的四个顶点都落在该三角形的边上,则此正方形落在x轴正半轴的顶点坐标为_____.35.如图,在矩形ABCD中,点E在BC上,连接AE、DE,若2==,AD DE∠=︒,则CE的长为______________.BAE15AE=,四边形ABCD是平行四边形,且顶点A、B、36.如图,在半圆O中,直径10C在半圆上,点D在直径AE上,连接CE,若8AD=,则CE长为________.37.如图,正方形ABCD内接于圆O,点E为BC上一点,连接BE,若15∠=,CBE5BE =,则正方形ABCD 的边长为________,BE 的长为________.38.如图,ABCD 的顶点A 、B 的坐标分别是()1,0-、()0,2-,顶点C 、D 均在函数(0,0)k y k x x =>>的图象上,AD 交y 轴于点E ,若612ABE ABCD S S ==四边形,则k 的值为_____________.39.如图,将边长为4的正方形ABCD 纸片沿EF 折叠,点C 落在AB 边上的点G 处,点D 与点H 重合, CG 与EF 交于点P ,取GH 的中点Q ,连接PQ ,则GPQ 的周长最小值是__________.40.在ABC 中,已知45ABC ∠=,BD AC ⊥于D ,2CD =,3AD =,则BD 的长为________.三、解答题41.如图,二次函数2y x bx c =-++的图像经过()0A 1,,()03B -,两点.(1)求这个抛物线的解析式及顶点坐标;(2)在抛物线的对称轴上是否存在一点P ,使得O 、B 、C 、P 四点为顶点的四边形是平行四边形?若存在,请直接写出P 点坐标;若不存在,请说明理由.42.如图,点A 在双曲线y=(x >0)上,点B 在双曲线y=﹣(x <0)上,且AB 平行于x 轴,BC∠AO 交x 轴于点C ,交双曲线y=﹣(x <0)于点D ,连接AD . (1)设点A 的纵坐标为n ,用n 表示AB 的长为_________;(2)当OC=3时,求点D 的坐标.43.已知:如图,四边形DEBF 是平行四边形,且AE CF =.求证:四边形ABCD 是平行四边形.44.已知:点D 是ABC ∆的边BC 的中点,DE AB ⊥,DF AC ⊥,垂足分别为E 、F ,且BE CF =.(1)如图1,求证:AE AF =;(2)如图2,若90BAC ︒∠=,连接AD 交EF 于M ,连接BM 、CM ,在不添加任何辅助线的情况下,直接写出图中所有与AEF ∆面积相等的等腰三角形.45.已知:如图,已知∠O 的半径为1,菱形ABCD 的三个顶点A 、B 、D 在∠O 上,且CD 与∠O 相切.(1)求证:BC 与∠O 相切;(2)求阴影部分面积.46.在综合与实践课上,老师组织同学们以“矩形的折叠”为主题开展数学活动.【动手操作】某数学小组对图1的矩形纸片ABCD 进行如下折叠操作:第一步:如图2,把矩形纸片ABCD 对折,使AD 与BC 重合,得到折痕MN ,然后把纸片展开;第二步:如图3,将图2中的矩形纸片沿过点B 的直线折叠,使得点A 落在MN 上的点A '处,折痕与AD 交于点E ,然后展开纸片,连接AA ',BA ',EA .【问题解决】(1)观察猜想:A BC '∠=______度(2)请判断图3中ABA '△的形状,并说明理由;(3)如图4,折痕BE 与MN 交于点F ,BA '的延长线交直线CD 于点P ,若1MF =,7BC =,请求出PD 的长.47.如图,在矩形ABCD 中,E 是对角线AC 上一点(不与A 、C 重合),过点E 作EF //CD ,且EF =DC ,连接DE 、BF 、CF .(1)如图1,若AE=AB,求证:四边形ABFE是菱形.DE∠AC时,求线段BF的长.(2)如图2,若AB=2,BC48.已知:ABCD的对角线AC、BD相交于点O,E,F分别是OA,OC的中点.(1)如图∠,求证:DF=BE;(2)如图∠,连接DE、BF,求证:四边形DEBF是平行四边形.49.如图,在菱形ABCD中,M,N分别是边AB,BC的中点,MP∠AB交边CD于点P,连接NM,NP.(1)若∠B=60°,这时点P与点C重合,则∠NMP= 度;(2)求证:NM=NP;(3)当∠NPC为等腰三角形时,求∠B的度数.参考答案:1.B【分析】根据n 边形从一个顶点出发可引出()3n -条对角线,得出32n -=,求出n 即可.【详解】解:设这个多边形的边数是n ,由题意得32n -=,解得5n =.故选:B .【点睛】本题考查了多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.掌握n 边形从一个顶点出发可引出()3n -条对角线是解题的关键.2.D【分析】根据矩形的判定定理:对角线相等的平行四边形是矩形即可判定.【详解】解:这种做法的依据是对角线相等的平行四边形为矩形,故选D .【点睛】本题主要考查对矩形的性质和判定的理解和掌握,能熟练地运用矩形的性质解决实际问题是解此题的关键.3.C【分析】根据直角三角形的性质求出AB ,进而求出AE 、EB ,根据三角形中位线定理得到DE ∠BC ,得到∠AED =∠AED =60°,根据等边三角形的判定定理和性质定理解答即可.【详解】解:在Rt ∠ABC 中,∠C =90°,∠A =30°,BC =4,∠AB =2BC =8,∠ABC =60°,∠E 为AB 边上的中点,∠AE =EB =4,∠D 、E 分别为A C 、AB 边上的中点,∠DE ∠BC ,∠∠AED =∠AED =60°,∠∠BEF =∠ABC =60°,在Rt ∠AED 中,∠A =30°,∠AE =2DE ,∠EF =2DE ,∠AE =EF ,∠∠BEF 为等边三角形,∠BF =BE =4,故选:C .【点睛】本题考查的是三角形中位线定理、等边三角形的判定和性质、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键. 4.B【分析】设这个多边形有n 条边,根据内角和是它的外角和的5倍,列出方程,然后解方程即可.【详解】解:设这个多边形有n 条边.由题意得:(2)1803605n -⨯︒=︒⨯,解得n =12.故这个多边形的边数是12.故选B【点睛】此题主要考查了多边形的外角和,内角和公式,做题的关键是正确把握多边形的内角和公式为:2180()n -⨯︒,外角和为360°.5.A【分析】由矩形的性质可得3AB CD ==,4CB AD ==,////AD BC x 轴,////AB CD y 轴,则可求点D 坐标. 【详解】解:四边形ABCD 是矩形3AB CD ∴==,4CB AD ==,//AD BC ,//AB CD ,且//AB y 轴,////AD BC x ∴轴,////AB CD y 轴,(1,1)B --,3AB =,4BC =,∴点C 横坐标为3,点A 纵坐标为2,∴点D 坐标为(3,2),故选:A .【点睛】本题考查了矩形的性质,坐标与图形性质,熟练运用矩形的性质是本题的关键. 6.C【分析】平行四边形的判定定理:(1)两组对边分别平行的四边形是平行四边形(2)两组对边分别相等的四边形是平行四边形(3)一组对边平行且相等的四边形是平行四边形(4)两组对角分别相等的四边形是平行四边形(5)对角线互相平分的四边形是平行四边形.根据平行四边形的判定定理逐个分析即可解答.【详解】解:A、AB//CD,AD=BC不能判定四边形ABCD是平行四边形,故此选项错误;B、∠A=∠D,∠B=∠C不能判定四边形ABCD是平行四边形,故此选项错误;C、因为∠A+∠B=180°,所以AD//BC,又因为AB//CD,所以四边形ABCD是平行四边形,故此选项正确;D、∠A=∠C,∠B+∠D=180°不能判定四边形ABCD是平行四边形,故此选项错误;故选C.【点睛】本题主要考查平行四边形的判定定理,解决本题的关键是要熟练掌握平行四边形的判定定理.7.D【详解】试题分析:A、同一底上两个角相等的梯形可能是等腰梯形也可能是直角梯形,故A选项错误;B、一组对边平行且相等的四边形不一定是平行四边形,故B选项错误;C、如果顺次连接一个四边形各边中点得到的是一个正方形,那么原四边形对角线相等且互相垂直,不是任意的四边形,故C选项错误;D、对角线互相垂直的四边形面积等于对角线乘积的一半,故D选项正确.故选D.考点:1.等腰梯形的判定;2.平行四边形的判定;3.正方形的判定.8.D【详解】试题分析:根据特殊四边形的性质逐一作出判断:A .梯形的对角线不一定相等,命题错误;B.当菱形满足一个角是直角,即为正方形时,菱形的对角线相等,命题错误;C.当矩形满足一组邻边相等,即为正方形时,矩形的对角线互相垂直,命题错误;D.当平行四边形满足一组邻边相等,即为菱形时,平行四边形的对角线可以互相垂直,命题正确.故选D.考点:特殊四边形的性质.9.B【分析】根据三角形中位线定理得到DE=12AC=5,根据中点定义可得BE=CE=6,BD=12AB=4,再根据三角形的周长公式得到BD+BE+DE,计算即可.【详解】解:∠点D、E分别是△ABC的边AB、CB的中点,∠DE=12AC=5,BE=CE=6,BD=12AB=4,∠△BDE的周长=BD+BE+DE=4+6+5=15,故选:B.【点睛】本题考查三角形中位线性质,熟练掌握三角形中位线性质是解题的关键.10.D【详解】试题分析:正多边形的边数=外角和÷每个外角的度数.考点:多边形的外角11.A【分析】连接BD交EF于O,由折叠的性质可推出BD∠EF,BO=DO,然后证明∠EDO∠∠FBO,得到OE=OF,设BC=x,利用勾股定理求BO,再根据∠BOF∠∠BCD,列出比例式求出x,即可求矩形面积.【详解】解:连接BD交EF于O,如图所示:∠折叠纸片使点D与点B重合,折痕为EF,∠BD∠EF,BO=DO,∠四边形ABCD是矩形,∠AD∠BC∠∠EDO=∠FBO在∠EDO和∠FBO中,∠∠EDO=∠FBO,DO=BO,∠EOD=∠FOB=90°∠∠EDO∠∠FBO(ASA)∠OE =OF =12EF ∠四边形ABCD 是矩形,∠AB =CD =4,∠BCD =90°,设BC =x ,BD∠BO , ∠∠BOF =∠C =90°,∠CBD =∠OBF ,∠∠BOF ∠∠BCD , ∠OB BC =OF CD,即:2x 解得:x =8,∠BC =8,∠S 矩形ABCD =AB •BC =4×8=32,故选:A .【点睛】本题考查矩形的折叠问题,熟练掌握折叠的性质,全等三角形的判定,以及相似三角形的判定与性质是解题的关键.12.D【分析】根据直角三角形斜边的中线等于斜边的一半可得AOC 和BOD 均为等腰三角形,由22.5ACB ∠=︒,可得:45AOB DOC ∠=∠=︒,证得AOD △为等腰直角三角形,根据勾股定理求得AD =【详解】解:由题意可知ABC 与DBC △全等,且都为直角三角形,∠点O 是BC 的中点, ∠122OA OD BC BO CO =====, ∠AOC 和BOD 均为等腰三角形,∠22.5ACB ∠=︒,∠22.5OAC ∠=︒,∠45AOB OAC ACB ∠=∠+∠=︒,同理可得:45DOC ∠=︒,∠18090AOD AOB COD ∠=︒-∠-∠=︒,在Rt AOD 中,AD∠AOD △的周长是224AD OA OD ++=+=+故选:D .【点睛】本题考查了矩形的性质,全等三角形的性质,直角三角形斜边的中线,勾股定理等知识,根据题意证出AOD △为等腰直角三角形是解题的关键.13.B【分析】连结AC ,过E 作EF ∠AB 于F ,过C 作CG ∠AB 于G ,先确定AC 为对称轴,得到∠BAC =∠DAC ,∠ACB =∠ACD ,由CE∥AB ,可得∠ECA =∠BAC =∠EAC ,得等腰三角形AE =CE =6,求出AF =AE cos60°=3,EF =AE sin60°=EFGC 为矩形,求出GB = AF +FG -AB =1,在Rt △BCG 中,由勾股定理BC【详解】解:连结AC ,过E 作EF ∠AB 于F ,过C 作CG ∠AB 于G ,∠△ABC 为等边三角形,△BCD 为等腰三角形,AC 为对称轴,∠∠BAC =∠DAC ,∠ACB =∠ACD ,∠CE∥AB ,∠∠ECA =∠BAC =∠EAC ,∠AE =CE =6,∠AF =AE cos60°=61=32⨯,∠EF =AE sin60°=6 ∠CE∥AB ,EF ∠AB , CG ∠AB ,∠FE ∠EC ,CG ∠EC ,∠∠EFG =∠FEC =∠CGF =90°∠四边形EFGC 为矩形,∠EF =CG CE =FG =6,∠GB = AF +FG -AB =3+6-8=1,在Rt ∠BCG 中,由勾股定理BC =故选择:B .【点睛】本题考查等边三角形性质,等腰三角形判定与性质,锐角三角函数,矩形判定与性质,勾股定理,掌握等边三角形性质,等腰三角形判定与性质,锐角三角函数,矩形判定与性质,勾股定理是解题关键.14.B【分析】根据题意可得PQ 必过矩形EFGA 的对角线交点,连接AF ,EG 交于点H ,取AE 的中点M ,AB 的中点N ,连接HM ,ON ,过点H 作HT ∠ON 于T ,设PQ 与AD 的交点为S ,根据三角形中位线定理可得133,22ON BC AN ===,∠ANO =∠ABC =90°,32,2NH AM ==,∠AMH =90°,再由勾股定理可得OH 的长,再证明∠ASO ∠∠CQO ,可得SO =OQ ,即可求解.【详解】解:∠过点O 的一条直线平分该组合图形的面积,∠PQ 必过矩形EFGA 的对角线交点,连接AF ,EG 交于点H ,取AE 的中点M ,AB 的中点N ,连接HM ,ON ,过点H 作HT ∠ON 于T ,设PQ 与AD 的交点为S ,∠四边形ABCD 是矩形,∠AO =CO ,又∠点N 是AB 的中点,∠133,22ON BC AN ===,ON ∠BC , ∠∠ANO =∠ABC =90°,同理:32,2NH AM ==,∠AMH =90°,∠HT∠NO,∠四边形MHTN为矩形,∠MH=NT=2,MT=MN=3,∠TO=1,∠HO=∠AD∠BC,∠∠DAC=∠BCA,∠ASO=∠CQO,在∠ASO和∠CQO中,∠DAC ACBASO CQOAO CO∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠ASO∠∠CQO(AAS),∠SO=OQ,同理PH=SH,∠2PQ HO==∠240PQ=.故选:B【点睛】本题考查了矩形的性质,三角形中位线定理,全等三角形的判定和性质,勾股定理,灵活运用这些性质解决问题是本题的关键.15.B【分析】由题意知在n边形的外角中恰好有3个锐角,则其余(n-3)个外角是直角或钝角,而n个外角中最多只能有4个直角或3个钝角,而4个直角已不可能,所以n-3≤3,由此即得答案.【详解】解:因为n 边形恰好只有三个内角是钝角,所以在n 边形的外角中恰好有3个锐角,所以其余(n -3)个外角是直角或钝角,又由于n 边形的外角和是360°,其n 个外角中最多只能有4个直角或3个钝角,而4个直角显然已不可能,所以n -3≤3,解得n ≤6,即n 的最大值为6.故选B.【点睛】本题考查了多边形的内角、外角的概念与外角和,从多边形的外角的角度入手分析是解题的关键.16.D【分析】分三段来考虑点E 沿A→B 运动,∠ADE 的面积逐渐变大;点E 沿B→C 移动,∠ADE 的面积不变;点E 沿C→D 的路径移动,∠ADE 的面积逐渐减小,据此选择即可.【详解】解:点E 沿A →B 运动,∠ADE 的面积逐渐变大,设菱形的边长为a ,∠A =β, ∠AE 边上的高为AB sinβ=a •sinβ,∠y =12•a •sinβ,点E 沿B →C 移动,∠ADE 的面积不变;点E 沿C →D 的路径移动,y =12(3a ﹣x )•sinβ,∠ADE 的面积逐渐减小.故选:D .【点睛】本题考查了动点问题的函数图像,分析判断几何动点问题的函数图象的题目一般有两种类型:(1)观察型(函数的图象有明显的增减性差异):根据题目描述,只需确定函数值在每段函数图象上随自变量的增减情况或变化的快慢即可得解.(2)计算型:先根据自变量的取值范围对函数进行分段,再求出每段函数的解析式,最后由每段函数的解析式确定每段函数的图象.17.B【分析】根据两组对边分别相等的四边形是平行四边形证明四边形ABCD 是平行四边形,再根据DCE △的面积为3计算出DH ,最后根据平行四边形的面积公式即可得到答案.【详解】解:过点D 作DH CE ⊥,垂足为H ,∠AB CD =,AD BC =,∠四边形ABCD 是平行四边形,∠2CE BE BC BE AD =-=-=, ∠112322DCE S CE DH DH =⨯=⨯⨯=, ∠3DH =,∠4312ABCD S BC DH =⨯=⨯=,故选:B .【点睛】本题考查平行四边形的判断,解题的关键是熟知两组对边分别相等的四边形是平行四边形.18.C【分析】先根据矩形的性质和折叠的性质,利用“AAS”证明AFD EFB ∆∆≌,得出AF EF =,DF BF =,设AF EF x ==,则5BF x =-,根据勾股定理列出关于x 的方程,解方程得出x 的值,最后根据余弦函数的定义求出结果即可.【详解】解:∠四边形ABCD 为矩形,∠CD =AB =5,AB =BC =3,90A C ∠=∠=︒,根据折叠可知,3BE BC ==,5DE DE ==,90∠=∠=︒E C ,∠在∠AFD 和∠EFB 中903A E AFD EFB AD BE ∠=∠=︒⎧⎪∠=∠⎨⎪==⎩,∠AFD EFB ∆∆≌(AAS ),∠AF EF =,DF BF =,设AF EF x ==,则5BF x =-,在Rt BEF ∆中,222BF EF BE =+,即()22253x x -=+, 解得:85x =,则817555DF BF ==-=, ∠315cos 17175AD ADF DF ∠===,故C 正确.故选:C .【点睛】本题主要考查了矩形的折叠问题,三角形全等的判定和性质,勾股定理,三角函数的定义,根据题意证明AFD EFB ∆∆≌,是解题的关键.【分析】连接EG 交AC 于O ,根据菱形和矩形的性质证明∠CEO ∠∠AGO ,推出AO=CO ,由勾股定理求出AC 得到AO ,再证明∠AOG ∠∠ADC ,得到AG AO AC AD=,代入数值即可求出AG .【详解】解:连接EG 交AC 于O ,∠四边形EFGH 是菱形,∠EG ∠FH ,OE=OG ,∠四边形ABCD 是矩形,∠∠B =∠D =90°,AD BC ∥,∠∠ACB =∠CAD ,∠∠CEO ∠∠AGO ,∠AO=CO ,∠AC ==∠12AO AC == ∠∠AOG =∠D =90°,∠OAG =∠CAD ,∠∠AOG ∠∠ADC , ∠AG AO AC AD=,=, ∠AG =52故选:C .【点睛】此题考查了菱形的性质,矩形的性质,勾股定理,全等三角形的判定及性质,相似三角形的判定及性质,是图形类的综合题,熟练掌握各知识点是解题的关键.【分析】由2DA A C '=',6DC =,可求出DA ',A C '的长,再根据折叠和勾股定理可求出DF 和FA ',依据三角形相似可求出NC 、NA ',进而求出MF ,最后根据勾股定理求出EF .【详解】解:如图,过点E 作EM AD ⊥,垂足为M ,2DA A C ''=,6DC =, 243DA DC '==,123A C DC '==, 由折叠得,AF FA =',6AB A B =''=,设DF x =,则8FA FA x ='=-,在Rt DFA ∆'中,由勾股定理得,2224(8)x x +=-,解得3x =,即3DF =,835FA FA ∴='=-=,1809090NAC DA F ∠'+∠'=︒-︒=︒,90NAC A NC ∠'+∠'=︒,DA F A NC ∴∠'=∠',90C D ∴∠=∠=︒,∴∠A NC '∽∠FA D ',∴A C NC A N FD A D FA ''=='',即2345NC A N '==, 解得83NC =,103A N '=, 108633B N A B A N NC ∴'=''-'=-==, ∴∠()A CN ENB AAS '≅∆',103EN A N ∴='=, 108633EC EN NC MD ∴=+=+==, 633MF ∴=-=,在Rt EFM ∆中,EF故选:A .【点睛】本题考查矩形的性质、折叠轴对称、相似三角形、全等三角形以及勾股定理等知识,掌握折叠的性质和直角三角形的边角关系是得出答案的前提,建立图形中线段之间的关系是解决问题的关键.21.15【分析】根据平行四边形的对角线互相平分,求得OC 与OD 的长,继而可求得答案. 【详解】解:四边形ABCD 是平行四边形,142OC AC ∴==,152OD BD ==,6CD AB ==, OCD ∴△的周长为:64515CD OC OD ++=++=.故答案为:15.【点睛】本题重点考查了平行四边形的性质,并利用性质解题.平行四边形基本性质:∠平行四边形两组对边分别平行;∠平行四边形的两组对边分别相等;∠平行四边形的两组对角分别相等;∠平行四边形的对角线互相平分.22.3-【分析】由D 为BC 的中点,平行四边形OABC 的面积为6,可得∠OCD 的面积为平行四边形OABC 的面积的14,再根据反比例函数系数k 的几何意义即可求出答案. 【详解】解:∠D 为BC 的中点,平行四边形OABC 的面积为6,∠∠OCD 的面积为6×14=1.5, ∠12|k |=1.5, ∠k <0,∠3k =-.故答案为:3-.【点睛】本题考查了反比例函数k 的几何意义,平行四边形的性质,求得∠OCD 的面积是解题的关键.23.30︒【分析】根据矩形和平行四边形的面积公式可知,平行四边形A 'B 'C 'D '的底边A D ''边上的高等于A B ''的一半,据此可得∠A '为30°.【详解】解:如图,过点B '作B E A D '⊥''于点E .设矩形ABCD 的边AD 长为a ,AB 长为b ,B E '长为c ,则ABCD S ab =矩形,A B C D Sac ''''=. ∠12A B C D ABCDS S ''''=矩形, ∠12ac ab =, ∠12c b =, ∠sin A '12c b ==, ∠30A ∠'=︒.【点睛】本题主要考查了四边形的不稳定性、矩形与平行四边形的面积公式、解直角三角形等相关知识,熟记特殊角的三角函数值是解答本题的关键.24.∠∠##∠∠【分析】∠根据平行四边形的性质结合已知条件,证明AMQ CPN ≌,DQP BNM ≌,可得MQ NP =,MN PQ =,根据两组对边相等的四边形是平行四边形,即可判断∠,∠根据平行四边形是中心对称图形,即可判断∠,根据已知条件不能判断∠.【详解】解:∠四边形ABCD 是平行四边形A C ∴∠=∠,B D ∠=∠,,AD BC AB CD == ∠,AQ CN AM CP ==∠AMQ CPN ≌∠MQ NP =,AQ CN AM CP ==∴,DQ BN DP BM ==又B D ∠=∠DQP BNM ∴≌MN PQ ∴=∴四边形MNPQ 是平行四边形故∠正确 ∠四边形ABCD 的对角线交于点O ,,MP NQ 均经过点O :,OQ ON OM OP ∴==∴四边形MNPQ 是平行四边形故∠正确∠NQ 经过点O ,AQ CN =,,M P 的位置未知,不能判断四边形MNPQ 是平行四边形 故∠不正确故答案为:∠∠【点睛】本题考查了平行四边形的性质与判定,掌握平行四边形的性质与判定是解题的关键.25.1【分析】根据三角形中位线定理求出DE ,根据直角三角形的性质求出EF ,结合图形计算即可.【详解】∠DE 为△ABC 的中位线, ∠DE=12BC=4(cm), ∠∠AFC 为直角,E 为AC 的中点, ∠FE=12AC=3(cm),∠DF=DE−FE=1(cm),故答案为1cm.【点睛】此题考查三角形中位线定理,解题关键在于掌握其性质定义.26.10【分析】平行四边形的两组对边相等,以此便可求解.【详解】解:如图:平行四边形ABCD 的周长为:2()2(32)10AD AB +=⨯+=.故答案是:10.【点睛】本题考查平行四边形两组对边相等的性质,解题的关键是掌握其性质. 27.4【分析】直接利用三角形中位线的性质,证明EO =AB ,然后根据平行四边形的性质列方程得出答案.【详解】解:∠四边形ABCD 是平行四边形,∠AB =DC ,BO =DO ,又∠E 为DC 边的中点,∠EO 是△DBC 的中位线,∠EO =12BC , ∠EO =AB∠▱ABCD 的周长为24,∠设AB =x ,则BC =2x ,则2(x +2x )=24,解得:x =4,故EO =4.故答案为4.【点睛】此题主要考查了平行四边形的性质、三角形中位线的性质等,正确得出EO 是△DBC 的中位线是解题关键.28 8-【分析】分∠ABE=30°或∠AEB=30°或∠ABA′=30°时三种情况,利用锐角三角函数进行求解即可.【详解】解:当∠ABE=30°时,∠AB=4cm ,∠A=90°,; 当∠AEB=30°时,则∠ABE=60°,∠AB=4cm ,∠A=90°,∠AE=AB·tan60°=;当∠ABE=15°时,∠ABA′=30°,延长BA′交AD 于F ,如下图所示,设AE=x ,则EA′=x ,sin 60x EF ==︒∠x +=∠8x =-∠8AE =-cm .8- 【点睛】本题考查了矩形与折叠,以及分类讨论的数学思想,分类讨论是解答本题的关键.29.2.5【分析】由折叠的性质可得CF=HF ,BE=GE ,设BE=GE=x ,则AE=4-x ,在Rt △AEG 中利用勾股定理求出x 的值.【详解】解:由题意,点C 与点H ,点B 与点G 分别关于直线EF 对称,∠CF=HF ,BE=GE ,设BE=GE=x ,则AE=4-x ,∠四边形ABCD 是正方形,∠∠A=90°,∠AE 2+AG 2=EG 2,∠B 落在边AD 的中点G 处,∠AG=2,∠(4-x )2+22=x 2,解得:x=2.5,∠BE=2.5.故答案为:2.5.【点睛】本题考查了折叠问题与勾股定理以及正方形的性质,掌握翻折的性质是解题的关键.30.156【分析】根据多边形的内角和公式即可得出结果.【详解】解:∠十五边形的内角和=(15﹣2)•180°=2340°,又∠十五边形的每个内角都相等,∠每个内角的度数=2340°÷15=156°.故答案为156.【点睛】本题考查了多边形的内角和计算公式.多边形内角和定理:多边形内角和等于(n ﹣2)•180°.31.81【分析】先证明四边形CGBE 是平行四边形, 然后证明CGF BAC ≌,再解直角三角形即可求得BH 的长度,进而根据BE BH ⨯即可求得答案.【详解】如图,设,AB CG 交于点H ,四边形ADEB 是正方形,15AB BE ∴==,EF BC ∥,CG BE ∥,∴四边形CGBE 是平行四边形,15CG BE AB ∴===,BE AB ⊥,CG AB ∴⊥,90ABC HCB ∴∠+∠=︒,90ACB ∠=︒,∴90ABC CAB ∠+∠=︒,HCB CAB ∴∠=∠,EF BC ∥,HCB CGF ∴∠=∠,90GFC ACB ∠=∠=︒,CGF BAC ∴∠=∠,∴CGF BAC ≌,CB FC ∴=,设CB x =,则3AC AF FC x =+=+,Rt ABC 中,222AB AC BC =+,即()222153x x =++,解得9x =或12x =-(舍), 9312,9AC BC ∴=+==,93cos 155BC CBA AB ∴∠===, 327cos 955HB BC CBA ∴=⋅∠=⨯=, ∴平行四边形CGEB 的面积为BE BH ⨯2715815BE BH =⨯=⨯=, 故答案为:81.【点睛】本题考查了正方形的性质,平行四边形的判定,全等三角形的性质与判定,勾股定理,解直角三角形等知识,熟练掌握知识间的联系,是解答本题的关键.32.43π 【分析】根据题意得到ADO ∆是等边三角形,从而得到角度,再结合特殊角的直角三角形三边关系得到4=AD ,8AC =,分别求出ACD S ∆=83AOD S π=扇形,43AOE S π=扇形,最后根据图形得到=ACD AOD AOE S S S S ∆-+阴影扇形扇形,代值求解即可. 【详解】解:矩形ABCD 的两条对角线相交于点O ,OA OB OC OD ∴===,以点A 为圆心,AD 长为半径画弧,此弧恰好经过点O ,AO AD OD ∴==,即ADO ∆是等边三角形,60DAO ∴∠=︒,30OAE ∠=︒,在Rt ACD ∆中,30ACD OAE ∠=∠=︒,90ADC ∠=︒,CD =4=AD ,8AC =, 11422ACD S AD CD ∆∴==⨯⨯ 260843603AOD S ππ︒=⨯⨯=︒扇形, 230443603AOE S ππ︒=⨯⨯=︒扇形, 844=333ACD AOD AOE S S S S πππ∆∴-+=+=阴影扇形扇形,故答案为:43π 【点睛】本题考查阴影图形面积,对于不规则图形面积求解,我们要根据题中图形转化为规则图形面积间接表示出来,在求解此题过程中涉及到矩形的性质、等边三角形的判定与性质、特殊角度的直角三角形三边关系、三角形面积公式和扇形面积公式,将阴影部分面积转化为常见图形面积来间接求解是解决问题的关键.33.2【分析】根据平行四边形性质求出AD∠BC ,由平行线的性质可得∠AEB=∠CBE ,然后由角平分线的定义知∠ABE=∠AEB ,所以∠ABE=∠AEB ,即可得AB=AE ,由此即可求出DE 的长.【详解】∠四边形ABCD 是平行四边形,∠AD∠BC ,∠∠AEB=∠CBE .∠BE 平分∠ABC ,∠∠ABE=∠CBE ,∠∠ABE=∠AEB ,∠AB=AE=3,∠DE=AD-AE=5-3=2.故答案是:2.【点睛】本题考查了平行四边形性质、三角形的角平分线的定义,平行线的性质的应用,证得AB=AE 是解题的关键.34.(1.5,0)或(1,0).。
四边形练习题(含答案)
四边形练习题(含答案)1、阅读下面材料,再回答问题:有一些几何图形可以被某条直线分成面积相等的两部分,我们将“把一个几何图形分成面积相等的两部分的直线叫做该图形的二分线”,如:圆的直径所在的直线是圆的“二分线”,正方形的对角线所在的直线是正方形的“二分线”。
解决下列问题:(1)菱形的“二分线”可以是。
(2)三角形的“二分线”可以是。
(3)在下图中,试用两种不同的方法分别画出等腰梯形ABCD的“二分线”.2、用配方法解方程时,原方程可变形为()A. B.C. D.3、用两块边长为a的等边三角形纸片拼成的四边形是【】A.等腰梯形 B.菱形 C.矩形 D.正方形4、在下面图形中,每个大正方形网格都是由边长为1的小正方形组成,则图中阴影部分面积最大的是()5、下列命题中错误的是()A.两组对边分别相等的四边形是平行四边形B.对角线相等的平行四边形是矩形C.一组邻边相等的平行四边形是菱形D.一组对边平行的四边形是梯形6、如图,每个小正方形的边长为1,把阴影部分剪下来,用剪下来的阴影部分拼成一个正方形,那么新正方形的边长是( )A. B.2 C. D.7、将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形.将纸片展开,得到的图形是()8、如下图1,在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动至点A停止.设点P运动的路程为x,△ABP 的面积为y,如果y关于x的函数图象如图2所示,则△ABC的面积是A.10 B.16 C.18 D.209、如图,在梯形ABCD中,AD//BC,AD=2,AB=3,BC=6,沿AE翻折梯形ABCD,使点B落在AD的延长线上,记为B′,连接B′E交CD于F,则的值为( )A. B. C. D.10、用任意两个全等的直角三角形拼下列图形:①平行四边形②矩形③菱形④正方形⑤等腰三角形⑥等边三角形其中一定能够拼成的图形是_______(只填题号).11、某陶瓷市场现出售的有边长相等的正三角形、正方形、正五边形的地板砖,某顾客想买其中的镶嵌着铺地板,则他可以选择的是.12、在一张三角形纸片中,剪去其中一个50°的角,得到如图所示的四边形,则图中∠1+∠2的度数为______________。
初二数学经典四边形习题50道(附答案)
1.已知:在矩形ABCD 中,AE ⊥BD 于E , ∠DAE=3∠BAE ,求:∠EAC 的度数。
2.已知:直角梯形ABCD 中,BC=CD=a 且∠BCD=60︒,E 、F 分别为梯形的腰AB 、 DC 的中点,求:EF 的长。
3、已知:在等腰梯形ABCD 中,AB ∥DC , AD=BC ,E 、F 分别为AD 、BC 的中点,BD 平分∠ABC 交EF 于G ,EG=18,GF=10 求:等腰梯形ABCD 的周长。
4、已知:梯形ABCD 中,AB ∥CD ,以AD , AC 为邻边作平行四边形ACED ,DC 延长线 交BE 于F ,求证:F 是BE 的中点。
5、已知:梯形ABCD 中,AB ∥CD ,AC ⊥CB , AC 平分∠A ,又∠B=60︒,梯形的周长是 20cm, 求:AB 的长。
6、从平行四边形四边形ABCD 的各顶点作对角线的垂线AE 、BF 、CG 、DH ,垂足分别是E 、F 、G 、H ,求证:EF ∥GH 。
_ D_ C_B _ C_ A _ B_ A _ B_ E _A_ B7、已知:梯形ABCD的对角线的交点为E 若在平行边的一边BC的延长线上取一点F,使SABC∆=SEBF∆,求证:DF∥AC。
8、在正方形ABCD中,直线EF平行于对角线AC,与边AB、BC的交点为E、F,在DA的延长线上取一点G,使AG=AD,若EG与DF的交点为H,求证:AH与正方形的边长相等。
9、若以直角三角形ABC的边AB为边,在三角形ABC的外部作正方形ABDE,AF是BC边的高,延长FA使AG=BC,求证:BG=CD。
10、正方形ABCD,E、F分别是AB、AD延长线上的一点,且AE=AF=AC,EF交BC于G,交AC于K,交CD于H,求证:EG=GC=CH=HF。
11、在正方形ABCD的对角线BD上,取BE=AB,若过E作BD的垂线EF交CD于F,求证:CF=ED。
_B_C_B_F_B_C_F_C_D _B_F_B_A_E12、平行四边形ABCD 中,∠A 、∠D 的平分线相交于E ,AE 、DE 与DC 、AB 延长线交于G 、F ,求证:AD=DG=GF=FA 。
初中八年级数学经典四边形习题60道(附答案)
_B _D
_C _C
_E
_G
_F
_A
_B
_E
_D
_C _F
5、已知:梯形 ABCD中, AB∥ CD, AC CB, AC 平分∠ A,又∠ B=60 ,梯形的周长是 20cm, 求: AB的长。
_A _D
_A
_B _C
_B
6、从平行四边形四边形 ABCD的各顶点作对角线的垂线 AE、BF、CG、DH,垂足分别是 E、F、G、H, 求证: EF∥ GH。
_D
_H
_G
_F
_C
_E
_C _E
_F
32、若分别以三角形 ABC的边 AB、 AC
_A _E
_D _B
_D _G _B
_G _A
_H _F
_C
为边,在三角形外作正方形 求证: BG=EC, BG EC。
ABDE、 ACFG,
33、求证:对角线相等的梯形是等腰梯形。
34、正方形 ABCD中, M为 AB的任意点, MN DM, BN平分∠ CBF, 求证: MD=NM
_D
_C
_N
_A
_M
_B
_F
_A
_E _D
35、在梯形 ABCD中, AD∥ BC, AD=12cm, BC=28cm, EF∥AB且 EF 平分 ABCD的面积, 求: BF 的长。
_B
_F
_C
36、平行四边形 ABCD中, E 为 AB上的任一点, 若 CE的延长线交 DA于 F,连结 DE,
求证: S ADE =S BEF
46、正方形 ABCD中,点 P 与 B、 C 的 连线和 BC的夹角为 15 求证: PA=PD=A。D
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
经典四边形习题50道(附答案)
1.已知:在矩形ABCD中,AE⊥BD于E,
∠DAE=3∠BAE ,求:∠EAC的度数。
2.已知:直角梯形ABCD中,BC=CD=a
且∠BCD=60︒,E、F分别为梯形的腰AB、
DC的中点,求:EF的长。
3、已知:在等腰梯形ABCD中,AB∥DC,
AD=BC,E、F分别为AD、BC的中点,BD
平分∠ABC交EF于G,EG=18,GF=10
求:等腰梯形ABCD的周长。
4、已知:梯形ABCD中,AB∥CD,以AD,
AC为邻边作平行四边形ACED,DC延长线
交BE于F,求证:F是BE的中点。
5、已知:梯形ABCD中,AB∥CD,AC⊥CB,
AC平分∠A,又∠B=60︒,梯形的周长是
20cm, 求:AB的长。
6、从平行四边形四边形ABCD的各顶点作对角线的垂线AE、BF、CG、DH,垂足分别是E、F、G、H,求证:EF∥GH。
7、已知:梯形ABCD的对角线的交点为E
若在平行边的一边BC的延长线上取一点F,
_B_C
_A_B
_A_B
_E
_A
_B
_B
使S ABC ∆=S EBF ∆,求证:DF ∥AC 。
8、在正方形ABCD 中,直线EF 平行于 对角线AC ,与边AB 、BC 的交点为E 、F , 在DA 的延长线上取一点G ,使AG=AD , 若EG 与DF 的交点为H ,
求证:AH 与正方形的边长相等。
9、若以直角三角形ABC 的边AB 为边, 在三角形ABC 的外部作正方形ABDE ,
AF 是BC 边的高,延长FA 使AG=BC ,求证:BG=CD 。
10、正方形ABCD ,E 、F 分别是AB 、AD 延长线 上的一点,且AE=AF=AC ,EF 交BC 于G ,交AC 于K ,交CD 于H ,求证:EG=GC=CH=HF 。
11、在正方形ABCD 的对角线BD 上,取BE=AB , 若过E 作BD 的垂线EF 交CD 于F , 求证:CF=ED 。
12、平行四边形ABCD 中,∠A 、∠D 的平分线相交于E ,AE 、DE
与DC 、AB 延长线交于G 、F ,求证:AD=DG=GF=FA 。
13、在正方形ABCD 的边CD 上任取一点E , 延长BC 到F ,使CF=CE , 求证:BE ⊥DF _ C
_B
_ F
_ B _ C
_ F
_ C
_ D
_ B
_ F
_ F
_ G
_ B
_A _ E
14、在四边形ABCD中,AB=CD,P、Q 分别是AD、BC中点,M、N分别是对角线AC、BD的中点,求证:PQ⊥MN。
15、平行四边形ABCD中,AD=2AB,
AE=AB=BF求证:CE⊥DF。
16、在正方形ABCD中,P是BD上一点,过P引PE⊥BC交BC于E,过P引PF⊥CD 于F,求证:AP⊥EF。
17、过正方形ABCD的顶点B引
对角线AC的平行线BE,
在BE上取一点F,
使AF=AC,若作菱形CAFÉ,
求证:AE及AF三等分∠BAC。
18、以∆ABC的三边AB、BC、CA分别
为边,在BC的同侧作等边三角形ABD、BCE、CAF,求证:ADEF是平行四边形。
19、M、N为∆ABC的边AB、AC的中点,
E、F为边AC的三等分点,延长ME、NF 交于D点,连结AD、DC,求证:
_B_C
_Q
_E_F
_A_B
_C
_D_F
_E
_F _B_C
_B_C
_N
⑴BFDE是平行四边形,
⑵ABCD是平行四边形。
20、平行四边形ABCD的对角线交于O,作OE⊥BC,AB=37cm, BE=26cm, EC=14cm, 求:平行四边形ABCD的面积。
21、在梯形ABCD中,AD∥BC,高AE=DF =12cm,两对角线BD=20cm,AC=15cm,
求梯形ABCD的面积。
22、在梯形ABCD中,二底AD、BC
的中点是E、F,在EF上任取一点O,
求证:S
OAB
∆=S
OCD
∆
23、平行四边形ABCD中,EF平行于
对角线AC,且与AB、BC分别交于E、F,
求证:S
ADE
∆=S
CDF
∆
24、梯形ABCD的底为AD、BC,若CD的中点为E
求证:S
ABE
∆=
2
1
S
ABCD
25、梯形ABCD的面积被对角线BD分成3:7两部分,求这个梯形被中位线EF分成的两部分的面积的比。
_B_E
_B_C
_E_F
_B_C
_F
_B_C
_F
_B_C
_A_B
26、在梯形ABCD 中,AB ∥CD ,M 是BC 边 的中点,且MN ⊥AD 于N , 求证:S ABCD =MN ∙AD 。
27、求证:四边形ABCD 的两条对角线之和小于它的周长而大于它的周长之半。
28、平行四边形ABCD 的对边AB 、 CD 的中点为E 、F , 求证:DE 、BF 三等分对角线AC 。
29、证明:顺次连结四边形的各边中点的四边形是平行四边形,其周长等于原四边形的对角线之和。
30、在正方形ABCD 的CD 边上取一点G , 在CG 上向原正方形外作正方形GCEF ,
求证:DE ⊥BG ,DE=BG 。
31、在直角三角形ABC 中,CD 是斜边AB 的高,∠A 的平分线AE 交CD 于F ,交BC 于E ,EG ⊥AB 于G ,求证:CFGE 是菱形。
32、若分别以三角形ABC 的边AB 、AC
_ A
_ B
_ B _ C
_ C _ B _ E
_ A
_
B _D
_ G
为边,在三角形外作正方形ABDE 、ACFG , 求证:BG=EC ,BG ⊥EC 。
33、求证:对角线相等的梯形是等腰梯形。
34、正方形ABCD 中,M 为AB 的任意点, MN ⊥DM ,BN 平分∠CBF , 求证:MD=NM
35、在梯形ABCD 中,AD ∥BC ,AD=12cm , BC=28cm ,EF ∥AB 且EF 平分ABCD 的面积, 求:BF 的长。
36、平行四边形ABCD 中,E 为AB 上的任一点, 若CE 的延长线交DA 于F ,连结DE , 求证:S ADE ∆=S BEF ∆
37、过四边形ABCD 的对角线BD 的中点E 作AC 的平行线FEG ,与AB 、AC 的交点分别为 F 、G ,求证:AG 或FC 平分此四边形的面积,
38、若以三角形ABC 的边AB 、AC 为边 向三角形外作正方形ABDE 、ACFG , 求证:S AEG ∆=S ABC ∆。
_
_ B _ C
_ F
_ A
_ B
_F
_ D
_ A
_ F
39、四边形ABCD 中,M 、N 分别是对角线 AC 、BD 的中点,又AD 、BC 相交于点P , 求证:S PMN ∆=4
1
S ABCD 。
40、正方形ABCD 的边AD 上有一点E , 满足BE=ED+DC ,如果M 是AD 的中点, 求证:∠EBC=2∠ABM ,
41、若以三角形ABC 的边AB 、BC 为边向 三角形外作正方形ABDE 、BCFG ,N 为AC 中点,求证:DG=2BN ,BM ⊥DG 。
42、从正方形ABCD 的一个顶点C 作CE 平行 于BD ,使BE=BD ,若BE 、CD 的交点为F , 求证:DE=DF 。
43、平行四边形ABCD 中,直线FH 与AB 、 CD 相交,过A 、D 、C 、B ,向FH 作垂线, 垂足为G 、F 、E 、H , 求证:AG-DF=CE-BH 。
44、四边形ABCD 中,若∠A=∠C ,
求证各角平分线围成的四边形等腰梯形。
_ A
_ B
_ C
_B
_A _C _
N
45、正方形ABCD 中,∠EAF=45︒ 求证:BE+DF=EF 。
46、正方形ABCD 中,点P 与B 、C 的 连线和BC 的夹角为15︒ 求证:PA=PD=AD 。
47、四边形ABCD 中,AD=BC ,EF 为AB 、DC 的中点的连线,并分别与AD 、BC 延长线交于 M 、N ,求证:∠AME=∠BNE 。
48、正方形ABCD 中,MN ⊥GH , 求证:MN=HG 。
49、正方形ABCD 中,E 是边CD 的中点,F 是线段CE 的中点
求证:∠DAE=2
1
∠BAF 。
50、等腰梯形ABCD 中,DC ∥AB ,
AB>CD ,AD=BC ,AC 和BD 交于O ,
且所夹的锐角为60︒,E 、F 、M 分别
为OD 、OA 、BC 的中点。
_ B _ E
_ F
_ B
_ A
_A
_ B _ E
_ N
_ C
_ B
_ E
_ A
_ B
求证:三角形EFM为等边三角形。