二次函数常见模型
函数模型及其应用
函数模型及其应用‖知识梳理‖1.几种常见的函数模型| 微点提醒|1.“直线上升”是匀速增长,其增长量固定不变;“指数增长”先慢后快,其增长量成倍增加,常用“指数爆炸”来形容;“对数增长”先快后慢,其增长速度缓慢.2.充分理解题意,并熟悉掌握几种常见函数的图象和性质是解题的关键.3.易忽视实际问题中自变量的取值范围,需合理确定函数的定义域,必须验证数学结果对实际问题的合理性.‖易错辨析‖判断下列结论是否正确(请在括号中打”√”或“×”)(1)幂函数增长比一次函数增长更快.(×)(2)在(0,+∞)内,随着x的增大,y=a x(a>1)的增长速度会超过并远远大于y=xα(α>0)的增长速度.(√)(3)指数型函数模型,一般用于解决变化较快,短时间内变化量较大的实际问题.(√)(4)不存在x0,使ax0<x n0<log a x0.(×)‖自主测评‖1.下表是函数值y随自变量x变化的一组数据,它最可能的函数模型是()x 4 5 6 7 8 9 10 y15171921232527A.一次函数模型 C .指数函数模型D .对数函数模型解析:选A 根据已知数据可知,自变量每增加1,函数值增加2,因此函数值的增量是均匀的,故为一次函数模型.2.(教材改编题)一根蜡烛长20 cm ,点燃后每小时燃烧5 cm ,燃烧时剩下的高度h (cm)与燃烧时间t (h)的函数关系用图象表示为图中的( )答案:B3.生产一定数量商品的全部费用称为生产成本,某企业一个月生产某种商品x 万件时的生产成本为C (x )=12x 2+2x +20(万元).一万件售价是20万元,为获取更大利润,该企业一个月应生产该商品数量为( ) A .36万件 B .18万件 C .22万件D .9万件解析:选B 设利润为L (x ),则利润L (x )=20x -C (x )=-12(x -18)2+142,当x =18时,L (x )有最大值.4.某城市客运公司确定客票价格的方法是:如果行程不超过100 km ,票价是0.5元/km ,如果超过100 km ,超过100 km 的部分按0.4元/km 定价,则客运票价y (元)与行驶千米数x (km)之间的函数关系式是________.解析:由题意可得y =⎩⎪⎨⎪⎧0.5x ,0<x ≤100,0.4x +10,x >100.答案:y =⎩⎪⎨⎪⎧0.5x ,0<x ≤100,0.4x +10,x >1005.(教材改编题)某公司为了业务发展制定了一个激励销售人员的奖励方案,在销售额x 为8万元时,奖励1万元.销售额x 为64万元时,奖励4万元.若公司拟定的奖励模型为y =a log 4x +b .某业务员要得到8万元奖励,则他的销售额应为________万元.解析:依题意得⎩⎪⎨⎪⎧a log 48+b =1,a log 464+b =4,即⎩⎪⎨⎪⎧32a +b =1,3a +b =4,解得a =2,b =-2. 所以y =2log 4x -2,当y =8时,即2log 4x -2=8. x =1 024(万元) 答案:1 024…………考点一 函数模型的选择…………………|自主练透型|……………|典题练全|1.下表是在某个投资方案中,整理到的投入资金x (万元)与收益y (万元)的统计表.投入资金x (万元) 1 2 3 4 5 6 收益y (万元)0.40.81.63.16.212.3A .y =ax +bB .y =a ·b xC .y =ax 2+bx +cD .y =b log a x +c解析:选B 画出大致散点图如图所示,根据散点图可知选B.2.某研究所对人体在成长过程中,年龄与身高的关系进行研究,根据统计,某地区未成年人,从1岁到16岁的年龄x (岁)与身高y (米)的散点图如图,则该关系较适宜的函数模型为( )A .y =ax +bB .y =a +log b xC .y =a ·b xD .y =ax 2+b解析:选B 根据散点图可知,较适宜的函数模型为y =a +log b x ,故选B.3.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )的影响。
《一题可破万题——二次函数压轴题常见模型小结》
——二次函数压轴题常见模型小结DBO AxyC问题1:求抛物线解析式和顶点D 坐标12()()y a x x x x =--2y ax bx c=++2()y a x h k=-+十字相乘配方法(★)12轴交点(,0)、(,0)x x x 轴交点(0,c )y 顶点(h,k )原始三角形:重视四点围成的三角形(边、角关系)函数 点形2223(3)(1)(1)4y x x y x x y x =+-=+-=+-问题2:判断△ACD 的形状,并说明理由DBOAxyCD (-1,-4)BOA (-3,0)xyC (0,-3)问题3:E是y轴上一动点,若BE=CE,求点E的坐标DB OA xyCB(1,0)O xyC(0,-3)B(1,0)O xyC(0,-3)问题4:抛物线上有一动点P,过点P作PM⊥x轴于点M,交直线AC与点N,在线段PM、MN中,若其中一条线段是另一条线段的2倍,求点P的坐标。
DB OA xyC最大值及此时点P 的坐标DBO Ax yC PH DB O Ax yC PHEFDB O AxyC PHE F于G ,PH 为邻边作矩形PEGH ,求矩形PEGH 周长的最大值。
DBO Ax yCDB O AxyC PHEG问题7:在对称轴上找一点P,使得△BCP的周长最小,求出P点坐标及△BCP的周长DB OA xyCB(1,0)OA(-3,0)xyC(0,-3).x=1P问题8:在对称轴上找一点P,使得∣PA-PC∣最大,求出P点坐标DB OA xyCB(1,0)OA(-3,0)xyC(0,-3).x=1P问题9:线段MN=1,在对称轴上运动(M 点在N 点上方),求四边形BMNC 周长的最小值及此时M 点坐标DBOAxyC已知抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,OA=OC=3,顶点为D 2y x bx c =++B (1,0)OA (-3,0)xyC (0,-3).x=1NB ’ B ’’M将军饮马:这个将军饮的不是马,是数学!解题依据:两点间线段最短;点到直线的垂直距离最短;翻折,对称。
二次函数(一)——常见二次函数模型
二次函数(一)——所描述的关系、结识抛物线、刹车距离与二次函数一、 知识点回顾1.函数概念小结2.待定系数法求函数解析式3.图像平移法则二、 典例剖析考点1【二次函数的相关概念】例1下列函数中,哪些是二次函数?y=3(x-1)²+1 (2)y=x +x 1 (3)s=3-2t (4)y=21x x- (5)y=(x+3)²-x² (6) v=10πr²随堂练习11.下列结论正确的是A .y =ax 2是二次函数B .二次函数自变量的取值范围是所有实数C .二次方程是二次函数的特例D .二次函数的取值范围是非零实数2.下列函数中:①y =-x 2;②y =2x ;③y =22+x 2-x 3;④m =3-t -t 2是二次函数的是______(其中x 、t 为自变量).3.下列各关系式中,属于二次函数的是(x 为自变量)A .y =81x 2 B .y C .y =21x D .y =a 2x考点2【二次函数的一般式】例2-1若y=(m +1)x 267m m --是二次函数,则m=( )A .-1B .7C .-1或7D .以上都不对例2-2.已知抛物线y=ax²经过点A (-2,-8).(1)求此抛物线的函数解析式;(2)判断点B (-1,-4)是否在此抛物线上.(3)求出此抛物线上纵坐标为-6的点的坐标.随堂练习21.函数y =ax 2+bx +c (a ,b ,c 是常数)是二次函数的条件是A .a ≠0,b ≠0,c ≠0B .a <0,b ≠0,c ≠0C .a >0,b ≠0,c ≠0D .a ≠02.已知函数y =(m 2-m )x 2+(m -1)x +m +1.(1)若这个函数是一次函数,求m 的值;(2)若这个函数是二次函数,则m 的值应怎样?3.如果函数y=x 232k k -++kx+1是二次函数,则k 的值一定是______考点3【常见的二次函数模型】例3-1【面积问题】如图5,一块草地是长80 m 、宽60 m 的矩形,欲在中间修筑两条互相垂直的宽为x m 的小路,这时草坪面积为y m 2.求y 与x 的函数关系式,并写出自变量x 的取值范围.例3-2【密植问题】某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子. 假设果园增种x 棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子?如果果园橙子的总产量为y 个,那么请你写出y 与x 之间的关系式.例3-3【利率问题】人民币一年定期储蓄的年利率是x ,一年到期后,银行将本息合计自动转存,到支取时,银行将扣除利息的20%作为利息税,我如果将10000元存入银行,请写出两年后支取时的本息和y(元)与年利率x的函数表达式。
二次函数入门
二次函数入门二次函数是高中数学中较为重要的一种函数类型,也是一种常见的数学模型。
它的一般形式可以表示为y=ax^2+bx+c,其中a、b、c是实数,而且a不等于0。
二次函数的图像为一条开口向上或向下的抛物线,具有很多有趣的性质和应用。
在本文中,我们将初步介绍二次函数的定义、图像、性质以及解题方法。
首先,我们来了解二次函数的图像特点。
当a大于0时,抛物线开口向上,形状像一个U,称为顶点向上的抛物线;当a小于0时,抛物线开口向下,形状像一个倒置的U,称为顶点向下的抛物线。
抛物线的顶点坐标为(-b/2a,f(-b/2a))。
在二次函数图像中,顶点是抛物线的最低点或最高点,是抛物线的一个特殊点。
除了顶点外,二次函数图像还可以通过x轴与y轴相交,交点称为零点和纵截距。
零点是函数的解,即函数值为0的x坐标;纵截距是函数与y轴的交点坐标。
从图像上看,二次函数图像关于顶点对称,即关于x=-b/2a对称。
接下来,我们了解一些二次函数的性质。
首先是二次函数的单调性。
对于开口向上的二次函数,a大于0,图像右侧的值大于左侧的值,因此函数是上升的;对于开口向下的二次函数,a小于0,图像右侧的值小于左侧的值,因此函数是下降的。
其次,二次函数的最值。
对于开口向上的二次函数,最小值就是顶点的y坐标;对于开口向下的二次函数,最大值就是顶点的y坐标。
最后,二次函数的零点。
二次函数的零点可以通过求解方程ax^2+bx+c=0来得到,可以使用公式法、因式分解法或配方法来求解。
在解决实际问题时,我们可以利用二次函数的性质和解题方法来建立数学模型。
例如,我们可以使用二次函数来描述抛射物体的运动轨迹、汽车的运动距离与时间的关系等等。
通过观察问题的特点,我们可以建立二次函数模型,然后利用数学方法求解问题。
对于一些简单的模型,可以通过计算顶点、零点和纵截距来得到具体的解。
总之,二次函数是高中数学中的一个重要知识点。
通过了解二次函数的定义、图像、性质以及解题方法,我们可以更好地理解和应用这一概念。
《一题可破万题山——二次函数压轴题常见模型小结》
y
y
x=-1
A
OB
C D
x
A
OB
x
M
C N
25
已知抛物线y x 2 bx c与x轴交于A、B两点,与y轴交于点C,OA=OC=3,顶点为D
问题22:在对称轴上有一点M,在抛物线上有一点N,若以A、B、M、N为顶点 的四边形为平行四边形,求M、N的坐标
y
y
y
A
OB
x
C D
A
OB
x
C
D
A
OB
x
C D
问题14:抛物线上是否存在点H,使得S△BCH= S△ABC,若存在,求出点H的坐标;
若不存在,请说明理由
H
y y
A
OB
x
C D
A
OB
x
DC
18
已知抛物线y x 2 bx c与x轴交于A、B两点,与y轴交于点C,OA=OC=3,顶点为D
问题15:抛物线上是否存在点Q,使得S△AOQ= S△COQ,若存在,求出点Q的坐标;
问题23:点E是抛物线上一动点,点F在抛物线的对称轴上,若以C、D、E、F为顶 点的四边形为菱形,求点E的坐标
y
y
x=-1
A
B
x
A
OB
x
C D
O C
D
28
已知抛物线y x 2 bx c与x轴交于A、B两点,与y轴交于点C,OA=OC=3,顶点为D
问题24:在线段AC上是否存在点M,使得三角形AOM与△ABC相似?若存在, 求出点M的坐标,若不能,请说明理由
A
OB
x
C D
30
已知抛物线y x 2 bx c与x轴交于A、B两点,与y轴交于点C,OA=OC=3,顶点为D
二次函数十大解题模型汇总(模型+例题+练习题)
角线 a 的关系.
2、已知:一等腰直角三角形的面积为 S,请写出 S 与其斜边长 a 的关系表达式,并分别求出 a=1,a= 2 ,
a=2 时三角形的面积.
1 3、在物理学内容中,如果某一物体质量为 m,它运动时的能量 E 与它的运动速度 v 之间的关系是 E= 2 mv2
(m 为定值).(1)若物体质量为 1,填表表示物体在 v 取下列值时,E 的取值:
例 2、如果人民币一年定期储蓄的年利率是 x,一年到期后,银行将本金和利息自动按一年定期储蓄转存, 到期支取时,银行将扣除利息的 20%作为利息税.请你写出两年后支付时的本息和 y(元)与年利率 x 的 函数表达式.
例 3、某商场将进价为 40 元的某种服装按 50 元售出时,每天可以售出 300 套.据市场调查发现,这种服 装每提高 1 元售价,销量就减少 5 套,如果商场将售价定为 x,请你得出每天销售利润 y 与售价的函数表 达式.
二次函数十大解题模型汇总(模型+例题+练习题)
模型 1:根据二次函数的定义求字母的值
例 1:函数 y=(m+2)x m2−2 +2x-1 是二次函数,则 m=
.
对象:y=(m+2)x m2−2 +2x-1 角度:二次函数的稀疏,次数
【高中数学】函数模型及其应用
函数模型及其应用一、基础知识1.常见的8种函数模型(1)正比例函数模型:f(x)=kx(k为常数,k≠0);(2)反比例函数模型:f(x)=kx(k为常数,k≠0);(3)一次函数模型:f(x)=kx+b(k,b为常数,k≠0);(4)二次函数模型:f(x)=ax2+bx+c(a,b,c为常数,a≠0);(5)指数函数模型:f(x)=ab x+c(a,b,c为常数,a≠0,b>0,b≠1);(6)对数函数模型:f(x)=m log a x+n(m,n,a为常数,m≠0,a>0,a≠1);(7)幂函数模型:f(x)=ax n+b(a,b,n为常数,a≠0,n≠1);(8)“对勾”函数模型:y=x+ax(a>0).(1)形如f(x)=x+ax(a>0)的函数模型称为“对勾”函数模型,“对勾”函数的性质:①该函数在(-∞,-a]和[a,+∞)上单调递增,在[-a,0)和(0,a]上单调递减.②当x>0时,x=a时取最小值2a,当x<0时,x=-a时取最大值-2a.(2)函数f(x)=xa+bx(a>0,b>0,x>0)在区间(0,ab]内单调递减,在区间[ab,+∞)内单调递增.2.三种函数模型的性质函数性质y=a x(a>1)y=log a x(a>1)y=x n(n>0)在(0,+∞)上的增减性单调递增单调递增单调递增增长速度越来越快越来越慢相对平稳图象的变化随x的增大,逐渐表现为与y轴平行随x的增大,逐渐表现为与x轴平行随n值变化而各有不同值的比较存在一个x0,当x>x0时,有log a x<x n<a x幂函数模型y=x n(n>0)可以描述增长幅度不同的变化,当n,值较小(n≤1)时,增长较慢;当n值较大(n>1)时,增长较快.考点一二次函数、分段函数模型[典例]国庆期间,某旅行社组团去风景区旅游,若每团人数在30或30以下,飞机票每张收费900元;若每团人数多于30,则给予优惠:每多1人,机票每张减少10元,直到达到规定人数75为止.每团乘飞机,旅行社需付给航空公司包机费15000元.(1)写出飞机票的价格关于人数的函数;(2)每团人数为多少时,旅行社可获得最大利润?[解](1)设每团人数为x,由题意得0<x≤75(x∈N*),飞机票价格为y元,则y ,0<x≤30,-10(x-30),30<x≤75,即y,0<x≤30,200-10x,30<x≤75.(2)设旅行社获利S元,则Sx-15000,0<x≤30,200x-10x2-15000,30<x≤75,即Sx-15000,0<x≤30,10(x-60)2+21000,30<x≤75.因为S=900x-15000在区间(0,30]上为增函数,故当x=30时,S取最大值12000.又S=-10(x-60)2+21000,x∈(30,75],所以当x=60时,S取得最大值21000.故当x=60时,旅行社可获得最大利润.[解题技法]二次函数、分段函数模型解决实际问题的策略(1)在建立二次函数模型解决实际问题中的最值问题时,一定要注意自变量的取值范围,需根据函数图象的对称轴与函数定义域在坐标系中对应区间之间的位置关系讨论求解.(2)对于分段函数模型的最值问题,应该先求出每一段上的最值,然后比较大小.(3)在利用基本不等式求解最值时,一定要检验等号成立的条件,也可以利用函数单调性求解最值.[题组训练]1.某市家庭煤气的使用量x(m3)和煤气费f(x)(元)满足关系f(x),0<x≤A,+B(x-A),x>A.已知某家庭2018年前三个月的煤气费如表:月份用气量煤气费一月份4m34元二月份25m314元三月份35m 319元若四月份该家庭使用了20m 3的煤气,则其煤气费为()A .11.5元B .11元C .10.5元D .10元解析:选A根据题意可知f (4)=C =4,f (25)=C +B (25-A )=14,f (35)=C +B (35-A )=19,解得A =5,B =12,C =4,所以f (x ),0<x ≤5,+12(x -5),x >5,所以f (20)=4+12×(20-5)=11.5.2.A ,B 两城相距100km ,在两城之间距A 城x (km)处建一核电站给A ,B 两城供电,为保证城市安全,核电站距城市距离不得小于10km.已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25倍,若A 城供电量为每月20亿度,B 城供电量为每月10亿度.(1)求x 的取值范围;(2)把月供电总费用y 表示成x 的函数;(3)核电站建在距A 城多远,才能使月供电总费用y 最少?解:(1)由题意知x 的取值范围为[10,90].(2)y =5x 2+52(100-x )2(10≤x ≤90).(3)因为y =5x 2+52(100-x )2=152x 2-500x +25000+500003,所以当x =1003y min =500003.故核电站建在距A 城1003km 处,能使月供电总费用y 最少.考点二指数函数、对数函数模型[典例]某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量y (微克)与时间t (小时)之间近似满足如图所示的曲线.(1)写出第一次服药后y 与t 之间的函数关系式y =f (t );(2)据进一步测定,每毫升血液中含药量不少于0.25微克时治疗疾病有效,求服药一次后治疗疾病有效的时间.[解](1)由题图,设y 0≤t ≤1,a,t >1,当t =1时,由y =4,得k =4,由-a =4,得a =3.所以y 0≤t ≤1,-3,t >1.(2)由y ≥0.25≤t ≤1,t ≥0.253≥0.25,解得116≤t ≤5.故服药一次后治疗疾病有效的时间是5-116=7916(小时).[解题技法]1.掌握2种函数模型的应用技巧(1)与指数函数、对数函数模型有关的实际问题,在求解时,要先学会合理选择模型,在三类模型中,指数函数模型是增长速度越来越快(底数大于1)的一类函数模型,与增长率、银行利率有关的问题都属于指数函数模型.(2)在解决指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函数解析式,再借助函数的图象求解最值问题,必要时可借助导数.2.建立函数模型解应用问题的4步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择模型.(2)建模:将文字语言转化为数学语言,利用数学知识建立相应的数学模型.(3)求模:求解数学模型,得出数学结论.(4)还原:将利用数学知识和方法得出的结论,还原到实际问题中.[题组训练]1.某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n 次涨停(每次上涨10%),又经历了n 次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为()A.略有盈利B.略有亏损C.没有盈利也没有亏损D.无法判断盈亏情况解析:选B设该股民购进这支股票的价格为a元,则经历n次涨停后的价格为a(1+10%)n=a×1.1n元,经历n次跌停后的价格为a×1.1n×(1-10%)n=a×1.1n×0.9n=a×(1.1×0.9)n=0.99n·a<a,故该股民这支股票略有亏损.2.声强级Y(单位:分贝)由公式Y=10lg I为声强(单位:W/m2).(1)平常人交谈时的声强约为10-6W/m2,求其声强级.(2)一般常人能听到的最低声强级是0分贝,求能听到的最低声强为多少?解:(1)当声强为10-6W/m2时,由公式Y=得Y=10lg106=60(分贝).(2)当Y=0时,由公式Y=得0.∴I10-12=1,即I=10-12W/m2,则最低声强为10-12W/m2.[课时跟踪检测]1.(2018·福州期末)某商场销售A型商品.已知该商品的进价是每件3元,且销售单价与日均销售量的关系如下表所示:销售单价/元45678910日均销售量/件400360320280240200160请根据以上数据分析,要使该商品的日均销售利润最大,则此商品的定价(单位:元/件)应为()A.4B.5.5C.8.5D.10解析:选C由数据分析可知,当单价为4元时销售量为400件,单价每增加1元,销售量就减少40件.设定价为x 元/件时,日均销售利润为y 元,则y =(x -3)·[400-(x -4)·40]=-+1210,故当x =172=8.5时,该商品的日均销售利润最大,故选C.2.(2019·绵阳诊断)某单位为鼓励职工节约用水,作出如下规定:每位职工每月用水不超过10立方米的,按每立方米3元收费;用水超过10立方米的,超过的部分按每立方米5元收费.某职工某月的水费为55元,则该职工这个月实际用水为()A .13立方米B .14立方米C .15立方米D .16立方米解析:选C 设该职工某月的实际用水为x 立方米时,水费为y 元,由题意得y =x ,0≤x ≤10,+5(x -10),x >10,即y x ,0≤x ≤10,x -20,x >10.易知该职工这个月的实际用水量超过10立方米,所以5x -20=55,解得x =15.3.利民工厂某产品的年产量在150吨至250吨之间,年生产的总成本y (万元)与年产量x (吨)之间的关系可近似地表示为y =x 210-30x +4000,则每吨的成本最低时的年产量为()A .240吨B .200吨C .180吨D .160吨解析:选B 依题意,得每吨的成本为y x =x 10+4000x -30,则yx≥2x 10·4000x-30=10,当且仅当x 10=4000x,即x =200时取等号,因此,当每吨成本最低时,年产量为200吨.4.某工厂产生的废气经过过滤后排放,排放时污染物的含量不得超过1%.已知在过滤过程中废气中的污染物数量P (单位:毫克/升)与过滤时间t (单位:时)之间的函数关系为P =P 0e -kt (k ,P 0均为正常数).如果在前5个小时的过滤过程中污染物被排除了90%,那么排放前至少还需要过滤的时间是()A.12小时 B.59小时C .5小时D .10小时解析:选C 由题意,前5个小时消除了90%的污染物.∵P =P 0e -kt ,∴(1-90%)P 0=P 0e -5k,∴0.1=e-5k,即-5k =ln 0.1,∴k =-15ln 0.1.由1%P 0=P 0e -kt ,即0.01=e -kt ,得-kt =ln 0.01,=ln 0.01,∴t =10.∴排放前至少还需要过滤的时间为t -5=5(时).5.(2019·蚌埠模拟)某种动物的繁殖数量y (单位:只)与时间x (单位:年)的关系式为y =a log 2(x +1),若这种动物第1年有100只,则到第7年它们发展到________只.解析:由题意,得100=a log 2(1+1),解得a =100,所以y =100log 2(x +1),当x =7时,y =100log 2(7+1)=300,故到第7年它们发展到300只.答案:3006.某人根据经验绘制了从12月21日至1月8日自己种植的西红柿的销售量y (千克)随时间x (天)变化的函数图象如图所示,则此人在12月26日大约卖出了西红柿________千克.解析:前10天满足一次函数关系,设为y =kx +b ,将点(1,10)和点(10,30)代入函数解析=k +b ,=10k +b ,解得k =209,b =709,所以y =209x +709,则当x =6时,y =1909.答案:19097.候鸟每年都要随季节的变化进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v (单位:m/s)与其耗氧量Q 之间的关系为:v =a +b log 3Q10(其中a ,b 是实数).据统计,该种鸟类在静止的时候其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1m/s.(1)求出a ,b 的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2m/s ,求其耗氧量至少要多少个单位?解:(1)由题意可知,当这种鸟类静止时,它的速度为0m/s ,此时耗氧量为30个单位,故有a +b log 33010=0,即a +b =0.当耗氧量为90个单位时,速度为1m/s ,故a +b log 39010=1,整理得a +2b =1.+b =0,+2b =1,=-1,=1.(2)由(1)知,v =a +b log 3Q 10=-1+log 3Q10.所以要使飞行速度不低于2m/s ,则有v ≥2,所以-1+log 3Q10≥2,即log 3Q 10≥3,解得Q10≥27,即Q ≥270.所以若这种鸟类为赶路程,飞行的速度不能低于2m/s ,则其耗氧量至少要270个单位.8.据气象中心观察和预测:发生于沿海M 地的台风一直向正南方向移动,其移动速度v (单位:km/h)与时间t (单位:h)的函数图象如图所示,过线段OC 上一点T (t,0)作横轴的垂线l ,梯形OABC 在直线l 左侧部分的面积为时间t 内台风所经过的路程s (单位:km).(1)当t =4时,求s 的值;(2)将s 随t 变化的规律用数学关系式表示出来;(3)若N 城位于M 地正南方向,且距M 地650km ,试判断这场台风是否会侵袭到N 城,如果会,在台风发生后多长时间它将侵袭到N 城?如果不会,请说明理由.解:(1)由图象可知,直线OA 的方程是v =3t (0≤t ≤10),直线BC 的方程是v =-2t +70(20<t ≤35).当t =4时,v =12,所以s =12×4×12=24.(2)当0≤t ≤10时,s =12×t ×3t =32t 2;当10<t ≤20时,s =12×10×30+(t -10)×30=30t -150;当20<t ≤35时,s =150+300+12×(t -20)×(-2t +70+30)=-t 2+70t -550.综上可知,s 随t 变化的规律是s2,t ∈[0,10],t -150,t ∈(10,20],t 2+70t -550,t ∈(20,35].(3)当t ∈[0,10]时,s max =32×102=150<650,当t ∈(10,20]时,s max =30×20-150=450<650,当t ∈(20,35]时,令-t 2+70t -550=650,解得t =30或t =40(舍去),即在台风发生30小时后将侵袭到N 城.。
二次函数的定义压轴题四种模型全攻略(解析版)
专题01 二次函数的定义压轴题四种模型全攻略考点一 二次函数的识别 考点二 二次函数的二次项系数、一次项系数、常数项 考点三 根据二次函数的定义求参数 考点四 列二次函数关系式考点一 二次函数的识别例题:(2022·江苏·盐城市初级中学一模)下列函数中为二次函数的是( )A .31y x =-B .231y x =-C .2y x =D .323y x x =+-【答案】B【解析】【分析】直接利用二次函数的定义进而分析得出答案.【详解】解:A 、31y x =-,是一次函数,故此选项不符合题意;B 、231y x =-,是二次函数,故此选项符合题意;C 、2y x =,不是二次函数,故此选项不符合题意;D 、323y x x =+-,未知数的最高次为3,不是二次函数,故此选项错误.故选:B .【点睛】本题考查了二次函数的定义;熟练掌握二次函数解析式的一般形式2y ax bx c =++(0a ≠),是解题的关键.【变式训练】1.(2020·陕西·西安市大明宫中学三模)观察:①26y x =;②235y x =-+;③2200400y x x =+;④32y x x =-;⑤213y x x=-+;⑥()221y x x =+-.这六个式子中二次函数有( )个. A .2B .3C .4D .5【答案】B【解析】【分析】 根据二次函数的定义判断即可.典型例题【详解】①26y x =是二次函数;②235y x =-+是二次函数;③2200400y x x =+是二次函数;④32y x x =-不是二次函数;⑤213y x x=-+不是二次函数; ⑥()22121y x x x =+-=+不是二次函数;这六个式子中二次函数有①②③故选:B .【点睛】本题考查二次函数的定义,即一般地,形如2y ax bx c =++(a ,b ,c 是常数,0a ≠)的函数,叫做二次函数.2.(2022·全国·九年级课时练习)下列函数①55y x =-;②231y x =-;③3243y x x =-;④2221y x x =-+;⑤21y x =.其中是二次函数的是____________. 【答案】②④##④②【解析】【分析】根据二次函数的定义,函数式为整式且自变量的最高次数为2,二次项系数不为0,逐一判断.【详解】解:①y =5x -5为一次函数;②y =3x 2-1为二次函数;③y =4x 3-3x 2自变量次数为3,不是二次函数;④y =2x 2-2x +1为二次函数;⑤y =21x 函数式为分式,不是二次函数. 故答案为②④.【点睛】本题考查二次函数的定义,熟记定义“函数式为整式且自变量的最高次数为2,二次项系数不为0”是解题关键.考点二 二次函数的二次项系数、一次项系数、常数项例题:(2022·福建省福州外国语学校八年级期末)二次函数223y x x =-+的一次项系数是( )A .1B .2C .2-D .3【答案】C【解析】【分析】 根据二次函数的定义:一般地,形如y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的函数,叫做二次函数.其中x 、y 是变量,a 、b 、c 是常量,a 是二次项系数,b 是一次项系数,c 是常数项作答.【详解】解:二次函数y =x 2-2x +3的一次项系数是-2;故选:C .【点睛】此题主要考查了二次函数的定义,关键是注意在找二次项系数,一次项系数和常数项时,不要漏掉符号.【变式训练】1.(2022·全国·九年级)设a ,b ,c 分别是二次函数y =﹣x 2+3的二次项系数、一次项系数、常数项,则( ) A .a =﹣1,b =3,c =0B .a =﹣1,b =0,c =3C .a =﹣1,b =3,c =3D .a =1,b =0,c =3【答案】B【解析】【分析】根据二次函数的一般形式可得答案.【详解】解:二次函数y =﹣x 2+3的二次项系数是a =﹣1,一次项系数是b =0,常数项是c =3;故选:B .【点睛】此题主要考查了二次函数的一般形式,关键是注意在找二次项系数,一次项系数和常数项时,不要漏掉符号.2.(2022·全国·九年级)已知二次函数y =1﹣5x +3x 2,则二次项系数a =___,一次项系数b =___,常数项c =___.【答案】 3 -5 1【解析】【分析】形如:()20y ax bx c a =++≠这样的函数是二次函数,其中二次项系数为,a 一次项系数为,b 常数项为,c 根据定义逐一作答即可.【详解】解:二次函数y =1﹣5x +3x 2,则二次项系数a =3,一次项系数b =﹣5,常数项c =1,故答案为:3,﹣5,1.【点睛】本题考查了二次函数的定义,熟记二次函数的定义是解题关键.考点三 根据二次函数的定义求参数例题:(2022·全国·九年级课时练习)已知y =21(1)m m x +-+2x ﹣3是二次函数式,则m 的值为 _____.【答案】-1【解析】【分析】若y =21(1)m m x +-+2x ﹣3是二次函数式,则二次项系数不等于零,可得答案;【详解】 解:由题意得:21012m m -≠⎧⎨+=⎩, 解得:m =-1,故答案为:-1.【点睛】本题考查了二次函数的定义,理解二次函数的定义是解题关键.【变式训练】1.(2021·黑龙江·塔河县第一中学校九年级期中)已知(2)21m y m x x =-+-是y 关于x 的二次函数,那么m 的值____.【答案】2-【解析】 【分析】根据二次函数的定义,(2)m m x -中,未知数x 的指数为2,系数不为0,列式计算即可. 【详解】解:∵(2)21m y m x x =-+-是y 关于x 的二次函数,∵2m =且20m -≠,∵2m =-.故答案为:2-.【点睛】本题考查的是二次函数的定义,熟练掌握形如y =ax 2+bx +c (a ,b ,c 是常数,且a ≠0)的函数,叫做二次函数是解题的关键.2.(2021·广东广州·九年级期中)关于x 的函数()21m m y m x -=+是二次函数,则m 的值为__________.【答案】2【解析】【分析】根据二次函数的定义:一般地,形如y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的函数,叫做二次函数,求出m 的值即可解决问题.【详解】解:∵()21m m y m x -=+是关于x 的二次函数,∵m 2-m =2,m +1≠0,解得:m =2.故答案为:2.【点睛】本题主要考查了二次函数的定义及解一元二次方程;牢固掌握定义和方程的解法是解题的关键.考点四 列二次函数关系式例题:(2022·上海市青浦区教育局二模)为防治新冠病毒,某医药公司一月份的产值为1亿元,若每月平均增长率为x ,第一季度的总产值为y (亿元),则y 关于x 的函数解析式为________________.【答案】233y x x =++【解析】【分析】根据题意分别求得每个月的产值,然后相加即可求解.【详解】解:∵某医药公司一月份的产值为1亿元,若每月平均增长率为x ,∵二月份的为()111x x +⨯=+三月份的为()()()2111x x x +⨯+=+第一季度的总产值为y (亿元),则()2211133y x x x x =++++=++ 故答案为:233y x x =++【点睛】本题考查了二次函数的应用,根据题意列出函数关系式是解题的关键.【变式训练】1.(2021·山东滨州·九年级期中)某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价,若每件商品的售价为x 元,则可卖出()35010x -件,那么卖出商品所赚钱y 元与售价x 元之间的函数关系为【答案】2105607350y x x =-+-【解析】【分析】由题意分析出每件商品的盈利为:()21x -元,再根据:总利润等于每件商品的利润乘以销售的数量,再化简即可.【详解】解:由题意得:每件商品的盈利为:()21x -元,所以:()()2135010y x x =--2102103507350x x x =-++-2105607350x x =-+-故答案为:2105607350y x x =-+-【点睛】本题考查的是列二次函数关系式,掌握“总利润等于每件商品的利润乘以销售的数量”是解题的关键. 2.(2022·全国·九年级课时练习)如图,在长方形ABCD 中,8cm AB =,6cm AD =,点M ,N 从A 点出发,点M 沿线段AB 运动,点N 沿线段AD 运动(其中一点停止运动,另一点也随之停止运动).若设cm AM AN x ==,阴影部分的面积为2cm y ,则y 与x 之间的关系式为______.【答案】y =-212x +48 【解析】【分析】先求出212AMN S x =,进而即可得到答案. 【详解】由题意得:21122AMN S AM AN x =⋅=, ∵阴影部分的面积=6×8-212x ,即:y =-212x +48. 故答案是:y =-212x +48.本题主要考查列二次函数解析式,解题的关键是掌握割补法求面积.一、选择题1.(2022·吉林·安图县第三中学九年级阶段练习)下列函数中是二次函数的是( )A .y =2x +1B .22y x =-C .y =-8xD .3y x = 【答案】B【分析】根据二次函数的定义进行判断.【详解】解:A 、该函数是一次函数,不是二次函数,故本选项错误;B 、该函数是二次函数,故本选项正确;C 、该函数是反比例函数,故本选项错误;D 、该函数是三次函数,故本选项错误;故选B .【点睛】本题考查二次函数的定义.熟知一般地,形如2y ax bx c =++(a 、b 、c 是常数,a ≠0)的函数,叫做二次函数是解答此题的关键.2.(2020·北京房山·九年级期中)二次函数24+3y x x =-的二次项系数、一次项系数和常数项分别是( )A .1,4,3B .0,4,3C .1,-4,3D .0,-4,3【答案】C【分析】根据二次函数的定义:一般地,形如()2,,0y ax bx c a b c a =++≠是常数,的函数,叫做二次函数.其中x ,y 是变量,,,a b c 是常量, a 是二次项系数, b 是一次项系数, c 是常数项作答.【详解】解:解:二次函数24+3y x x =-的二次项系数是1,一次项系数是4-,常数项是3.故选:C .【点睛】此题主要考查了二次函数的定义,关键是注意在找二次项系数, 一次项系数和常数项时,不要漏课后训练3.(2022·江苏·九年级专题练习)一台机器原价100万元,若每年的折旧率是x ,两年后这台机器约为y 万元,则y 与x 的函数关系式为( ) A .y =100(1﹣x )B .y =100﹣x 2C .y =100(1+x )2D .y =100(1﹣x )2【答案】D【分析】根据两年后机器价值=机器原价值×(1﹣折旧百分比)2可得函数解析式.【详解】解:根据题意知y =100(1﹣x )2,故选:D .【点睛】本题主要考查根据实际问题列二次函数关系式,根据实际问题确定二次函数关系式关键是读懂题意,建立二次函数的数学模型来解决问题.需要注意的是实例中的函数图像要根据自变量的取值范围来确定.4.(2021·河北·唐山市第九中学九年级阶段练习)若函数24(m 2)3m m y x mx +-=++-是关于x 的二次函数,则m 的取值为( )A .3-B .2C .3D .3-或2 【答案】D【分析】根据二次函数的定义,必须二次项系数不等于0,且未知数的次数等于2,据此列不等式组并求解即可. 【详解】解:由二次函数的定义可知,当22042m m m +≠⎧⎨+-=⎩时,该函数是二次函数, ∵m =-3或m =2,故选:D .【点睛】本题考查了二次函数的定义,明确二次函数的定义并正确列式,是解题的关键.5.(2022·江苏·九年级专题练习)如图所示,在Rt ABO 中,AB OB ⊥,且3AB OB ==,设直线x t =截此三角形所得的阴影部分的面积为S ,则S 与t 之间的函数关系式为( )A .S t =B .212S t =C .2S t =D .2112S t =- 【答案】B【分析】Rt ABO 中,AB OB ⊥,且3AB OB ==,可得45AOB A ∠=∠=︒;再由平行线的性质得出45OCD A ∠=∠=︒,即45COD OCD ∠=∠=︒,进而证明CD OD t ==,最后根据三角形的面积公式,求出S与t 之间的函数关系式.【详解】解:如图所示,∵Rt ABO 中,AB OB ⊥,且3AB OB ==,∵45AOB A ∠=∠=︒,∵CD OB ⊥,∵CD AB ∥,∵45OCD A ∠=∠=︒,∵45COD OCD ∠=∠=︒,∵CD OD t ==,∵12OCD S OD CD =⨯△ ()21032t t =<≤, 即:()21032S t t =<≤. 故选:B .【点睛】本题主要考查的是二次函数解析式的求法,考查了等腰直角三角形的性质,平行线的判定和性质,等腰三角形的判定,三角形的面积等知识点.解题的关键是能够找到题目中的有关面积的等量关系.二、填空题6.(2021·全国·九年级课前预习)把y =(2-3x )(6+x )变成y =ax ²+bx +c 的形式,二次项为____,一次项系数为______,常数项为______.【答案】 23x - -16 12【解析】略7.(2022·全国·九年级课时练习)如图,△ABC 中,AB =AC ,CD ∵AB 于D ,BD =1,设BC =x ,AD =y ,当x >2时,y 关于x 的函数解析式为 _____.【答案】21122y x x【分析】由BD =1,AD =y ,可得AB =AC =y +1,在Rt ∵ACD 中,CD 2=AC 2-AD 2=2y +1,在Rt ∵BCD 中,CD 2=BC 2-BD 2=x 2-1,即得2y +1=x 2-1,可得答案.【详解】解:∵BD =1,AD =y ,∵AB =y +1,∵AB =AC ,∵AC =y +1,在Rt ∵ACD 中,CD 2=AC 2-AD 2=(y +1)2-y 2=2y +1,在Rt ∵BCD 中,CD 2=BC 2-BD 2=x 2-12=x 2-1,∵2y +1=x 2-1,∵2112y x =-. 故答案为:21122yx x . 【点睛】本题考查勾股定理的应用,解题的关键是将CD 2作等量,列出y 与x 的关系式.8.(2021·重庆·垫江第八中学校九年级阶段练习)若函数y =(a +1)x |a |+1是二次函数,则a 的值是 ______ .【答案】1【分析】根据二次函数的定义,列出关于a 的方程和不等式,即可求解.【详解】根据二次函数的定义可得:1210a a ⎧+=⎨+≠⎩,解得:a =1. 故答案为:1.【点睛】本题主要考查二次函数的定义,掌握二次函数的最高次项的次数为2,二次项系数不等于零,是解题的关键.9.(2021·山东·泰安市泰山区大津口中学九年级阶段练习)已知2324m m ym x 是二次函数,则m 的值为___________.【答案】-1【分析】根据二次函数的定义,即可求解.【详解】解:∵2324m m y m x 是二次函数,∵2322m m --=且40m -≠,解得:1m =-.故答案为:-1【点睛】本题主要考查了二次函数的定义,熟练掌握二次函数()20y ax a =≠是解题的关键.10.(2021·全国·九年级专题练习)下列函数一定是二次函数的是__________.①2y ax bx c =++;②3y x=-;③2431y x x =-+;④2(1)y m x bx c =-++;⑤y =(x -3)2-x 2 【答案】③【分析】根据二次函数的定义: 一般地,把形如y =ax ²+bx +c (a ≠0)(a 、b 、c 是常数)的函数叫做二次函数,据此判断即可.【详解】解:①2y ax bx c =++,必须满足a ≠0才为二次函数,故①不一定是二次函数;②等号右边为分式,故②不是二次函数;③2431y x x =-+是二次函数,故③是二次函数;④2(1)y m x bx c =-++,1m =时,该式不是二次函数;⑤2222(3)6969y x x x x x x =--=-+-=-+,该式不是二次函数;故答案为:③.【点睛】本题考查了二次函数的识别,熟知二次函数的定义是解本题的关键.三、解答题11.(2022·全国·九年级专题练习)下列函数中,哪些是二次函数?(1)y =3x —1;(2)232y x =+ ;(3)3232y x x =+ ;(4)2221y x x =-+ ;(5)2()1y x x x =-+ ;(6)2y x x -=+【答案】(2)(4)是二次函数【分析】根据二次函数的定义,即可求解.【详解】解∵(1)不是二次函数,因为自变量的最高次数是1.(2)是二次函数,因为符合二次函数的概念.(3)不是二次函数,因为自变量的最高次数是3.(4)是二次函数,因为符合二次函数的概念.(5)不是二次函数,因为原式整理后为y =-x .(6)不是二次函数,因为x -2为分式,不是整式.故(2)(4)是二次函数.【点睛】本题主要考查了二次函数的定义,熟练掌握形如2y ax bx c =++(其中a 、b 、c 均为常数,且0a ≠)的函数关系称为二次函数是解题的关键.12.(2022·全国·九年级课时练习)已知函数y =(a +1) 21ax ++(a ﹣2)x (a 为常数),求a 的值:(1)函数为二次函数;(2)函数为一次函数.【答案】(1)a =1(2)a =0或﹣1【分析】(1)直接利用二次函数的定义得出a 2+1=2,a +1≠0得出即可;(2)利用一次函数的定义分别求出即可.(1) 当 21210a a ⎧+=⎨+≠⎩时,函数为二次函数, 解得:a =±1,a ≠-1,∵a =1;(2)当 211120a a a ⎧+=⎨++-≠⎩时,函数为一次函数, 解得:a =0,当a +1=0,即a =﹣1时,函数为一次函数,所以,当函数为二次函数时,a =1,当函数为一次函数时,a =0或﹣1.【点睛】此题主要考查了二次函数与一次函数的定义,正确把握相关定义是解题关键.13.(2022·全国·九年级课时练习)一个二次函数234(1)21kk y k x x -+=-+-.(1)求k 的值.(2)求当x =3时,y 的值?【答案】(1)k =2;(2)14【分析】(1)根据二次函数的定义列出关于k 所满足的式子,求解即可;(2)在(1)的基础上,先求出二次函数解析式,然后代入x =3求解即可. 【详解】解:(1)依题意有234210k k k ⎧-+=⎨-≠⎩, 解得:k =2,∵k 的值为2;(2)把k =2代入函数解析式中得:221y x x =+-,当x =3时,y =14,∵y 的值为14.【点睛】本题考查二次函数的定义,以及求二次函数的函数值,理解并掌握二次函数的基本定义是解题关键.14.(2022·全国·九年级专题练习)已知函数y =(k 2﹣k )x 2+kx +k +1(k 为常数).(1)若这个函数是一次函数,求k 的值;(2)若这个函数是二次函数,则k 的值满足什么条件?【答案】(1)k =1;(2)k ≠0且k ≠1【分析】(1)由一次函数的定义求解可得;(2)由二次函数的定义求解可得.【详解】解:(1)若这个函数是一次函数,则k 2﹣k =0且k ≠0,解得k =1;(2)若这个函数是二次函数,则k 2﹣k ≠0,解得k ≠0且k ≠1.【点睛】本题主要考查了一次函数的定义、二次函数的定义,准确分析判断是解题的关键.15.(2022·浙江宁波·八年级期末)荔枝是夏季的时令水果,储存不太方便.某水果店将进价为18元/千克的荔枝,以28元/千克售出时,每天能售出40千克.市场调研表明:当售价每降低1元/千克时,平均每天能多售出10千克.设降价x 元.(1)降价后平均每天可以销售荔枝 千克(用含x 的代数式表示).(2)设销售利润为y ,请写出y 关于x 的函数关系式.(3)该水果店想要使荔枝的销售利润平均每天达到480元,且尽可能地减少库存压力,应将价格定为多少元/千克?【答案】(1)()4010x +(2)21060400y x x =-++(3)24元/千克【分析】(1)根据“当售价每降低1元/千克时,平均每天能多售出10千克”可直接得出结论;(2)利用利润=(售价-成本)×销售量可得出结论;(3)令y =480,求出x 的值,再根据题意对x 的值进行取舍即可.(1)根据题意得,降价后平均每天可以销售荔枝:(40+10x )千克,故答案为:(40+10x ).(2)根据题意得,()()40102818y x x =+--整理得21060400y x x =-++(3)令480y =,代入函数得,21060400480x x -++=解方程,得14x =,22x =因为要尽可能地清空库存,所以2x =舍去取4x =此时荔枝定价为28424-=(元/千克)答:应将价格定为24元/千克.【点睛】本题考查了一元二次方程的应用,列函数关系式,列代数式,根据题意列出函数关系式是解题的关键.。
几种不同类型的函数模型知识点
几种不同类型的函数模型一 函数模型及数学建模函数模型是解决实际问题的重要数学模型,将实际问题中的变量关系用函数表现出来,然后对函数进行研究得出相关数学结论,并依此解决实际问题.那么如何建立数学模型呢?可按以下步骤完成.(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)求模:求解数学模型,得出数学结论;(4)还原:将数学结论还原为实际问题.建模过程示意图:二 几种常见的函数模型1.一次函数模型:f(x)=kx +b(k 、b 为常数,k ≠0);2.反比例函数模型:f(x)=k x+b(k 、b 为常数,k ≠0); 3.二次函数模型:f(x)=ax 2+bx +c(a 、b 、c 为常数,a ≠0);4.指数函数模型:f(x)=ab x +c(a 、b 、c 为常数,a ≠0,b>0,b ≠1);5.对数函数模型:f(x)=mlog a x +n(m 、n 、a 为常数,a>0,a ≠1);6.幂函数模型:f(x)=ax n +b(a 、b 、n 为常数,a ≠0,n ≠1);7.分段函数模型:这个函数模型实则是以上两种或多种模型的综合,因此应用也十分广泛.三 指、对、幂三种函数模型增长速度的比较正确认识“直线上升”、“指数爆炸”、“对数增长”和幂函数的增长差异.直线上升反映了一次函数(一次项系数大于零)的增长趋势,其增长速度均匀(恒为常数);在区间(0,+∞)上,尽管函数y =a x (a>1),y =log a x(a>1)和y =x n (n>0)都是增函数,但它们的增长速度不在同一个“档次”上. 随着x 的增大,y =a x (a>1)的增长速度越来越快,会超过并远远大于y =x n (n>0)的增长速度,而y =log a x(a>1)的增长速度则会越来越慢,因此总会存在一个x 0,当x>x 0时,就有log a x<x n <a x ,此式揭示了在充分远处三种函数的变化规律.总结:(1)在区间(0,+∞)上,函数y=a x (a>1),y=log a x(a>1)和y=x n (n>0)都是增函数,但它们的增长速度不同,而且不在同一个“档次”上;(2)随着x 的增大,y=a x (a>1)的增长速度越来越快,会超过并远远大于y=x n (n>0)的增长速度,表现为指数爆炸;(3)随着x 的增大,y=log a x(a>1)的增长速度会越来越慢;(4)随着x 的增大,y=a x (a>1)的图象逐渐表现为与y 轴平行一样,而y=log a x(a>1)的图象逐渐表现为与x 轴平行一样;(5)当a>1,n>0时,总会存在一个x 0,当x>x 0时,有a x >x n >log a x ;(6)当0<a<1,n<0时,总会存在一个x 0,当x>x 0时,有log a x<x n <a x一次函数模型例1 为了发展电信事业方便用户,电信公司对移动电话采用不同的收费方式,其中所使用的“如意卡”和“便民卡”在某市范围内每月(30天)的通话时间x(分)与通话费y 1(元)、y 2(元)的关系分别如图(1)、图(2)所示.图(1) 图(2)(1)分别求出通话费y 1,y 2与通话时间x 之间的函数关系式;(2)请帮助用户计算,在一个月(30天)内使用哪种卡便宜.思路点拨:由题目可知函数模型为直线型,可先用待定系数法求出解析式,然后再进行函数值大小的比较.解:(1)由图象可设y 1=k 1x +29,y 2=k 2x ,把点B(30,35),C(30,15)分别代入y 1,y 2得k 1=15,k 2=12.∴y 1=15x +29(x≥0),y 2=12x(x≥0).(2)令y 1=y 2,即15x +29=12x ,则x =9623.当x =9623时,y 1=y 2,两种卡收费一致;当x<9623时,y 1>y 2,即便民卡便宜;当x>9623时,y 1<y 2,即如意卡便宜. 函数的图象是表示函数的三种方法之一,正确识图、用图、译图是解决函数应用题的基本技能和要求.本题由于过原点的直线是正比例函数图象,因此运用了待定系数法求得一次函数解析式,然后利用函数解析式解决了实际问题.借助函数图象表达题目中的信息,读懂图象是关键.例2 一个报刊推销员从报社买进报纸的价格是每份0.20元,卖出的价格是每份0.30元,卖不完的还可以以每份0.08元的价格退回报社.在一个月(以30天计算)内有20天每天可卖出400份,其余10天每天只能卖出250份,但每天从报社买进报纸的份数都相同,问应该从报社买进多少份才能使每月所获得的利润最大?并计算每月最多能获得的利润.解:设每天从报社买进设每月所获利润为y ∵y=0.8x +550在[250,400]上是增函数,∴当x =400时,y 取得最大值870.即每天从报社买进400份报纸时,每月获得的利润最大,最大利润为870元. 二次函数模型例3 以100元/件的价格购进一批羊毛衫,以高于进价的相同价格出售.羊毛衫的销售有淡季与旺季之分.标价越高,购买人数越少.我们称刚好无人购买时的最低标价为羊毛衫的最高价格.某商场经销某品牌的羊毛衫,无论销售淡季还是旺季,进货价都是100元/件.针对该品牌羊毛衫的市场调查显示:①购买该品牌羊毛衫的人数是标价的一次函数;②该品牌羊毛衫销售旺季的最高价格是淡季最高价格的32倍;③在销售旺季,商场以140元/件价格销售时能获取最大利润.(1)分别求出该品牌羊毛衫销售旺季的最高价格与淡季的最高价格;(2)在淡季销售时,商场要获取最大利润,羊毛衫的标价应定为多少?思路点拨:首先用标价x 表示出购买人数和旺季价格,进而可表示出利润函数,再利用函数关系解决相关问题.解:(1)设在旺季销售时羊毛衫的标价为x 元/件,购买人数为kx +b(k<0),则旺季的最高价格为-b k元/件,利润函数L(x)=(x -100)(kx +b)=kx 2-(100k -b)x -100b ,x∈[100,-b k ].当x =100k -b 2k =50-b 2k时,L(x)最大.由题意知50-b 2k =140,解得-b k =180.即旺季的最高价格是180(元/件),则淡季的最高价格是180×23=120(元/件).(2)设在淡季销售时羊毛衫的标价为t 元/件,购买人数为mt +n(m<0),则淡季的最高价格为-n m=120(元/件),即n =-120m ,利润函数L(t)=(t -100)(mt -120m)=m(t -110)2-100m ,t∈[100,120].当t =110时,L(t)最大.所以,在淡季销售时,商场要获取最大利润,羊毛衫的标价应定为110元/件.二次函数模型是初等数学阶段研究的最为广泛的多项式函数,由于具有二次函数、二次方程、二次不等式、二次曲线等四个“二次”互为关联的重要特征,因此在应用型问题中是最为重要的模型.此外作为一个考点,由于二次函数涉及函数单调性、区间最值等诸多方面,因此有理由相信,今后这类试题仍将是重点.本题最为重要的特点是逆向运用二次函数最值问题,通过旺季最值的取得来获得参变量之间的关系进而对淡季羊毛衫的价格作出判断与预测.这种方法值得去关注.指数函数模型例4 按复利计算利率的一种储蓄,本金为a ,每期利率为r ,设本利和为y ,存期为x ,写出本利和y 随存期x 变化的函数式.如果存入本金1000元,每期利率为2.25%,试计算5期后的本利和是多少?思路点拨:复利是计算利息的一种方法,即把前一期的利息和本金加在一起作本金,再计算下一期的利息 解:已知本金为a 元.1期后的本利和为y 1=a +a×r=(1+r)a ;2期后的本利和为y 2=a(1+r)+a(1+r)r =a(1+r)2;3期后的本利和为y 3=a(1+r)3;…x 期后的本利和为y =a(1+r)x .将a =1000(元),r =2.25%,x =5代入上式得y =1000×(1+2.25%)5=1000×(1.0225)5≈1117.68(元).故复利函数式为y =a(1+r)x,5期后的本利和为1117.68元.在实际问题中,常常遇到有关平均增长率的问题,如果原来产值的基础数为N ,平均增长率为P ,则对于时间x 的总产值y ,可以用公式y =N(1+P)x 来表示,解决平均增长率的问题时要用到这个函数式.例5 光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为a ,通过x 块玻璃后强度为y.(1)写出y 关于x 的函数关系式;(2)至少通过多少块玻璃后,光线强度减弱到原来的13以下?(lg 3≈0.4771) 解:(1)y =a(1-10%)x (x∈N *)(2)∵y≤13a ,∴a(1-10%)x ≤13a ,∴0.9x ≤13,x≥log 0.913=-lg 32 lg 3-1≈10.4,∴x =11.对数函数模型例6 燕子每年秋天都要从北方飞向南方过冬,研究燕子的科学家发现,两岁燕子的飞行速度可以表示为函数v=5log 2Q 10,单位是m/s ,其中Q 表示燕子的耗氧量. (1)计算:燕子静止时的耗氧量是多少个单位?(2)当一只燕子的耗氧量是80个单位时,它的飞行速度是多少?思路点拨:该问题已经给出了函数模型,故赋值后可求出Q 的值,进而求出v 的值.解:(1)由题知,当燕子静止时,它的速度v =0,代入题给公式可得:0=5log 2Q 10,解得Q =10.即燕子静止时的耗氧量是10个单位.(2)将耗氧量Q =80代入题给公式得:v =5log 28010=5log 28=15(m/s). 即当一只燕子的耗氧量是80个单位时,它的飞行速度为15 m/s.直接以对数函数为模型的应用题不是很多,此类问题一般是先给出对数函数模型,利用对数运算性质求解. 例7 某中学的研究性学习小组为考察一个小岛的湿地开发情况,从某码头乘汽艇出发,沿直线方向匀速开往该岛,靠近岛时,绕小岛环行两周后,把汽艇停靠岸边,上岸考察,然后又乘汽艇沿原航线提速返回.设t 为出发后的某一时刻,S 为汽艇与码头在时刻t 的距离,下列图象中能大致表示S =f(t)的函数关系的为( C )解析:当汽艇沿直线方向匀速开往该岛时,S =vt ,图象为一条线段;当环岛两周时,S 两次增至最大,并减少到与环岛前的距离S 0;上岛考察时,S =S 0; 返回时,S =S 0-vt ,图象为一条线段.所以选C.例8 用清水洗衣服,若每次能洗去污垢的34,要使存留的污垢不超过1%,则至少要洗的次数是( B ) A 3 B 4 C 5 D 6解析:设至少要洗x 次,则(1-34)x ≤1100,所以x≥1lg2≈3.32,因此至少要洗4次. 例9 函数y =f(x)与y =g(x)的图象如图:则函数y =f(x)·g(x)的图象可能是( A )解析:明确函数图象在x 轴上下方与函数值符号改变的关系,数值相乘“同号为正、异号为负”.∵函数y =f(x)·g(x)的定义域是函数y =f(x)与y =g(x)的定义域的交集(-∞,0)∪(0,+∞),图象不经过坐标原点,故可以排除C 、D.由于当x 为很小的正数时f(x)>0且g(x)<0,故f(x)·g(x)<0.故选A.例 10 下列函数中,随x 值的增大,增长速度最快的是( D )(A)y =50x(x∈Z) (B)y=1000x (C)y =0.4×2x -1 (D)y =110000·e x解析:指数“爆炸式”增长,y =0.4×2x -1和y =110000·e x 虽然都是指数型函数,但y =110000·e x 的底数e 较大些,增长速度更快.例11 把长为12厘米的细铁丝截成两段,各自围成一个正三角形,求这两个正三角形面积之和的最小值解析:设一个正三角形的边长为x(cm),则另一个正三角形的边长为12-3x 3=4-x(cm),两个正三角形的面积和为S =34x 2+34(4-x)2=32[(x -2)2+4](0<x <4).当x =2(cm)时,S min =23(cm 2). 例12 当2<x<4时,2x ,x 2,log 2x 的大小关系是( B )(A)2x >x 2>log 2x (B)x 2>2x >log 2x (C)2x >log 2x>x 2 (D)x 2>log 2x>2x解析:法一:在同一平面直角坐标系中分别画出函数y =log 2x ,y =x 2,y =2x ,在区间(2,4)上从上往下依次是y =x 2,y =2x ,y =log 2x 的图象,所以x 2>2x >log 2x.法二:比较三个函数值的大小,作为选择题,可以采用特殊值代入法.可取x =3,经检验易知选B. 例13 已知函数的图象如图所示,试写出它的一个可能的解析式__________________.解:可由图象的两点特征去确定.第一点:过两定点(0,1),(10,3).第二点:增长情况.答案:y =lg(99100x 2+1)+1(x≥0)(答案不唯一)例14 奇瑞曾在2009年初公告:2009年生产目标定为39.3万辆;而奇瑞董事长极力表示有信心达成这个生产目标,并在09年实现更为平衡的增长.我们不妨来看看近三年奇瑞的政绩吧:2006年,奇瑞汽车年销量8万辆;2007年,奇瑞汽车年销量18万辆;2008年,奇瑞汽车年销量30万辆;如果我们分别将06,07,08,09定义为第一,二,三,四年.现在你有两个函数模型:二次函数模型f(x)=ax 2+bx +c(a≠0),指数函数模型g(x)=a·b x +c(a≠0,b>0,b≠1),哪个模型能更好地反映奇瑞公司年销量y 与年份x 的关系?解:建立年销量y 与年份x 的函数,可知函数必过点(1,8),(2,18),(3,30).(1)构造二次函数模型f(x)=ax 2+bx +c(a≠0),将点坐标代入,可得⎩⎪⎨⎪⎧ a +b +c =8,4a +2b +c =18,9a +3b +c =30,解得a =1,b =7,c =0,则f(x)=x 2+7x ,故f(4)=44,与计划误差为4.7. (2)构造指数函数模型g(x)=a·b x +c(a≠0,b >0,b≠1),将点坐标代入,可得⎩⎪⎨⎪⎧ ab +c =8,ab 2+c =18,ab 3+c =30,解得a =1253,b =65,c =-42,则g(x)=1253·(65)x -42,故g(4)=1253·(65)4-42=44.4,与计划误差为5.1. 由(1)(2)可得,f(x)=x 2+7x 模型能更好地反映奇瑞公司年销量y 与年份x 的关系.例15 近年来,太阳能技术运用的步伐日益加快.2002年全球太阳能电池的年生产量达到670兆瓦,年生产量的增长率为34%.以后四年中,年生产量的增长率逐年递增2%(如,2003年的年生产量的增长率为36%).(1)求2006年全球太阳能电池的年生产量(结果精确到0.1兆瓦);(2)目前太阳能电池产业存在的主要问题是市场安装量远小于生产量,2006年的实际安装量为1420兆瓦.假设以后若干年内太阳能电池的年生产量的增长率保持在42%,到2010年,要使年安装量与年生产量基本持平(即年安装量不少于年生产量的95%),这四年中太阳能电池的年安装量的平均增长率至少应达到多少(结果精确到0.1%)?解:(1)由已知得2003,2004,2005,2006年太阳能电池的年生产量的增长率依次为36%,38%,40%,42%.则2006年全球太阳能电池的年生产量为670×1.36×1.38×1.40×1.42≈2499.8(兆瓦).(2)设太阳能电池的年安装量的平均增长率为x ,则+4+4≥95%,解得x≥0.615. 因此,这四年中太阳能电池的年安装量的平均增长率至少应达到61.5%.例16 假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0.4元,以后每天的回报比前一天翻一番。
中考数学解题技巧(五)二大类八模型
中考数学解题技巧(五)、两大类八模型———二次函数综合应用题(马铁汉)函数的表示方法有表格法、解析式法和图像法三种方法。
因此,二次函数综合应用题,题干图文并茂,内容丰富多彩,有时还有表格插入;由于题目较长,文字较多,数量复杂,光审题就是件困难的事。
审题一定要仔细。
读题时,篇幅较大的背景文字了解即可,重点阅读有用的数量信息;为了弄清楚重要信息,可把各个量用不同记号标注出来,加深印象,以免搞糊涂。
哪些是常量,哪些是变量;哪个是自变量,哪个是自变量的函数;有时还有参数渗入,它是什么含义,都要搞准确。
二次函数综合应用题,涉及的知识面较广(一次函数、二次函数,不等式,一元一次方程、一元二次方程、分式方程等)。
解答此题,需要具备数形结合思想、方程思想、函数思想,建模思想等数学思想;需要扎实的基础知识和熟练的基本技能,然后做到稳扎稳打,层层分析,逐步解决。
二次函数综合应用题,考查方式有两大类八个模型。
1、考查函数最值类:求实际问题中函数最值。
有下面四个模型:①求二次函数顶点纵坐标,即为实际问题的最值;②求区间内函数最值,即为实际问题的最值;③求函数整数点最值,即为实际问题的最值;④分段函数,需比较各区间函数最值后,确定实际问题的最值。
2、考查自变量范围类:求自变量取值范围或求复合函数中参数范围。
有下面四种模型:①由函数增减性,结合函数值要求,求自变量取值范围;②复合函数,由函数增减性,结合对称轴位置,求参数;③复合函数,由函数增减性,结合对称轴位置,确定区间最值,求参数;④复合函数,由二次函数顶点坐标,求参数。
模型一、求二次函数顶点纵坐标,即为实际问题的最值例1、(2022武汉.22.)(本小题满分10分)在一条笔直的滑道上有黑、白两个小球同向运动,黑球在A处开始减速,此时白球在黑球前面70cm处.小聪测量黑球减速后的运动速度v(单位:cm/s)、运动距离y(单位:cm)随运动时间t(单位:s)变化的数据,整理得下表.小聪探究发现,黑球的运动速度与运动时间之间成一次函数关系,运动距离与运动时间t 之间成二次函数关系.(1)直接写出v 关于t 的函数解析式和y 关于t 的函数解析式(不要求写出自变量的取值范围)(2)当黑球减速后运动距离为64cm 时,求它此时的运动速度;(3)若白球一.直.以2cm/s 的速度匀速运动,问黑球在运动过程中会不会碰到白球?请说明理由. 解:(1)1102v t =-+,21104y t t =-+. (2)解:依题意,得2110644t t -+=.∴2402560t t -+=. 解得,18t =,232t =.当18t =时,6v =;当232t =时,6v =-(舍). 答:黑球减速后运动64cm 时的速度为6cm/s . (3)解:设黑白两球的距离为cm w .270218704w t y t t =+-=-+ 21(16)64t =-+. ∵104>,抛物线开口向上, ∴当16t =时,w 的值最小为6. (在取值范围内,顶点纵坐标即为实际问题的最值) ∴黑、白两球的最小距离为6cm ,大于0,黑球不会碰到白球.另解1:当0w =时,2187004r t -+=,判定方程无解. 另解2:当黑球的速度减小到2cm/s 时,如果黑球没有碰到白球,此后,速度低于白球速度,不会碰到白球。
二次函数知识点归纳总结
二次函数知识点归纳总结二次函数知识点总结二次函数是形如y=ax²+bx+c(a≠0)的函数。
与一元二次方程类似,二次项系数a≠0,而b和c可以为零。
二次函数的定义域是全体实数。
二次函数的根本形式是y=ax²。
a的绝对值越大,抛物线的开口越小。
a的符号决定开口方向。
当a>0时,开口向上;当a<0时,开口向下。
顶点坐标是(0,0),对称轴是y轴。
当x增大时,y随之增大,当x减小时,y随之减小,当x=0时,y有最小值。
当二次函数的形式为y=ax²+c时,顶点坐标是(0,c),对称轴是y轴。
其他性质与y=ax²相同。
当二次函数的形式为y=a(x-h)²时,顶点坐标是(h,0),对称轴是以顶点为中心的垂直于x轴的直线。
当x增大时,y随之增大,当x减小时,y随之减小,当x=h时,y有最小值。
当二次函数的形式为y=a(x-h)²+k时,顶点坐标是(h,k),对称轴是以顶点为中心的垂直于x轴的直线。
其他性质与y=a(x-h)²相同。
平移二次函数的图像,可以将抛物线的顶点平移到(h,k)处。
具体方法是保持抛物线形状不变,将其顶点平移到(h,k)处。
如果k>0,则向上平移|k|个单位;如果k<0,则向下平移|k|个单位。
y=ax^2+k向右移动h个单位(h>0)或向左移动|h|个单位(h0)或向下移动|k|个单位(k<0)。
y=a(x-h)^2向上移动k个单位(k>0)或向下移动|k|个单位(k<0),平移规律为“左加右减,上加下减”,概括为八个字。
另一种方法是对于y=ax^2+bx+c,沿y轴平移m个单位向上(下)为y=ax^2+bx+c+m(或y=ax^2+bx+c-m),沿轴平移m个单位向左(右)为y=a(x+m)^2+b(x+m)+c(或y=a(x-m)^2+b(x-m)+c)。
对于二次函数y=a(x-h)^2+k和y=ax+bx+c,两者是不同的表达形式,通过配方可以得到y=ax^2+bx+c,其中h=-b/2a,k=a(h^2)+b(h)+c。
二次函数的变形和性质的推理归纳
二次函数的变形和性质的推理归纳一、二次函数的基本形式1.一般形式:y = ax^2 + bx + c (a ≠ 0)2.顶点式:y = a(x - h)^2 + k3.标准式:y = a(x - m)^2 + n二、二次函数的变形1.横向平移:h → h + p,m → m + p2.纵向伸缩:a → k * a (k > 1 或 0 < k < 1)3.横向拉伸:a → k * a (k > 1 或 0 < k < 1),m → m + p4.旋转:顶点(h, k) → (h + p, k + q)三、二次函数的性质1.开口方向:a > 0 时,开口向上;a < 0 时,开口向下2.顶点坐标:(-b/2a, c - b^2/4a)3.对称轴:x = -b/2a4.判别式:Δ = b^2 - 4ac5.Δ > 0:抛物线与x轴有两个交点6.Δ = 0:抛物线与x轴有一个交点7.Δ < 0:抛物线与x轴无交点四、二次函数的增减性1. a > 0 时:2.x < -b/2a 时,y随x增大而减小3.-b/2a < x < +∞ 时,y随x增大而增大4. a < 0 时:5.x < -b/2a 时,y随x增大而增大6.-b/2a < x < +∞ 时,y随x增大而减小五、二次函数的图像特点1.顶点:最小值(a > 0)或最大值(a < 0)2.开口:a > 0 时,向上;a < 0 时,向下3.交点:Δ > 0 时,与x轴有两个交点;Δ = 0 时,与x轴有一个交点;Δ < 0 时,与x轴无交点4.对称性:以直线x = -b/2a为对称轴六、二次函数的应用1.最值问题:求函数在定义域内的最大值或最小值2.交点问题:求函数与x轴的交点坐标3.范围问题:求函数值域4.几何问题:求抛物线与坐标轴围成的三角形面积等七、二次函数的变换规律1.横向平移:改变顶点横坐标2.纵向伸缩:改变函数值3.横向拉伸:改变顶点横坐标,同时改变函数值4.旋转:改变顶点坐标八、二次函数与现实生活的联系1.抛物线:如投篮、射击、跳伞等运动的轨迹2.二次函数模型:如物体运动、人口增长、商品销售等领域的数学模型以上是对二次函数的变形和性质的推理归纳的知识点总结,希望能对您的学习有所帮助。
【常考压轴题】二次函数的定义五种模型全攻略—2023-2024学年九年级数学上册(浙教版)(解析版)
二次函数的定义五种模型全攻略【考点导航】目录【典型例题】 (1)【考点一 二次函数的识别】 ............................................................................................................................ 1 【考点二 二次函数中各项的系数】 ................................................................................................................ 3 【考点三 利用二次函数的定义求参数】 ........................................................................................................ 4 【考点四 已知二次函数上一点,求字母或式子的值】 ................................................................................ 5 【考点五 列二次函数的关系式】 .................................................................................................................... 6 【过关检测】 .. (8)【典型例题】【考点一 二次函数的识别】【答案】B【分析】根据二次函数的定义逐个判断即可.【详解】解:A .函数是一次函数,不是二次函数,故本选项不符合题意; B .函数是二次函数,故本选项符合题意;C .,函数是一次函数,不是二次函数,故本选项不符合题意; D .函数不是二次函数,故本选项不符合题意; 故选:B .【点睛】本题考查了二次函数的定义,能熟记二次函数的定义是解此题的关键,形如(、、为常数,)的函数,叫二次函数.22(1)21y x x x =+-=+2y ax bx c =++a b c 0a ¹【变式训练】【答案】D【分析】根据二次函数的定义:一般地,形如(a 、b 、c 是常数,)的函数叫做二次函数,进行判断.【详解】解:A 、当时,不是二次函数,故本选项错误;B 、由得到,是一次函数,故本选项错误;C 、该等式的右边是分式,不是整式,不符合二次函数的定义,故本选项错误;D 、由原函数解析式得到,符合二次函数的定义,故本选项正确.应选:D .【点睛】此题考查了二次函数的定义,掌握定义,会根据定义进行判断是解题的关键. 【答案】D【分析】将函数进行化简后,根据二次函数的定义进行判断.【详解】A 、,是二次函数,故A 不符合题意;B 、,是二次函数,故B 不符合题意; C 、,是二次函数,故C 不符合题意;D 、,不是二次函数,故D 符合题意; 故选:D .【点睛】本题主要考查二次函数的定义,正确识别二次函数是解题的关键. 2y ax bx c =++0a ¹0a =2y ax bx c =++()22214y x x =--41y x =-+232y x x =-+21y =()2214y x =+-()()2113142222y x x x x =-+=+-()221122y x x x =--+=-+【考点二 二次函数中各项的系数】例题:(2023·全国·九年级假期作业)二次函数的二次项系数是( )A .B .C .D .【答案】B【分析】根据二次函数的定义“一般地,形如(a 、b 、c 是常数,)的函数,叫做二次函数.其中x 、y 是变量,a 、b 、c 是常量,a 是二次项系数,b 是一次项系数,c 是常数项”作答即可.【详解】解:二次函数的二次项系数是. 故选:B .【点睛】此题主要考查了二次函数的定义,关键是注意在找二次项系数,一次项系数和常数项时,不要漏掉符号. 【变式训练】1.(2023·浙江·九年级假期作业)二次函数的二次项系数与一次项系数的和为( ) A . B . C . D .【答案】D【分析】将函数解析式化简,得到各系数,计算即可.【详解】解:, ∴二次项系数是2,一次项系数是,∴,故选:D .【点睛】此题考查了二次函数定义,正确理解二次函数的各项的系数是解题的关键. 2.(2022·全国·九年级假期作业)二次函数的二次项系数是________. 【答案】2【分析】首先把二次函数化为一般形式,再进一步求得二次项系数. 【详解】解:y=2x (x-1) =2x2-2x .所以二次项系数2. 故答案为:2.221y x x =--+11-22-2y ax bx c =++0a ¹221y x x =--+1-()32-=x x y 22-1-4-()23622x y x x x --==6-264-=-2(1)y x x =-【点睛】本题主要考查了二次函数的定义,一般地,形如y=ax2+bx+c (a 、b 、c 是常数,a≠0)的函数,叫做二次函数.其中x 、y 是变量,a 、b 、c 是常量,a 是二次项系数,b 是一次项系数,c 是常数项.【考点三 利用二次函数的定义求参数】例题:(2023·全国·九年级假期作业)若函数是二次函数,则( )A .B .C .D .【答案】C【分析】根据二次函数的定义,即可求解. 【详解】解:根据题意得, 解得, 故选:C .【点睛】本题主要考查了二次函数的定义,熟练掌握形如(a ,b ,c 是常数,)的函数,叫做二次函数是解题的关键. 【变式训练】【答案】C【分析】利用二次函数定义可得:,且,再解即可.【详解】由题意得:,且,解得:. 故选:C .【点睛】本题主要考查了二次函数定义,解题的关键是掌握形如(a 、b 、c 是常数,)的函数,叫做二次函数.2.(2023春·四川内江·九年级校考阶段练习)是二次函数,则m 的值是( ) A . B .C .D .【答案】B()2231y m x mx =+++2m ³-2m ¹2m ¹-2m =-20m +¹2m ¹-2y ax bx c =++0a ¹22m -=0m ¹22m -=0m ¹4m =2y ax bx c =++0a ¹()211m y m x +=-0m =1m =-1m =1m =±【分析】根据二次函数的定义即可求解.【详解】解:是二次函数,∴,,解得,, ∴. 故选:B .【点睛】本题考查了二次函数的定义,解题关键是掌握二次函数的定义条件:二次函数的定义条件是:a 、b 、c 为常数,,自变量最高次数为2.【考点四 已知二次函数上一点,求字母或式子的值】例题:(2022秋·浙江温州·九年级校考阶段练习)若抛物线经过点,则a 的值为( )A .0B .1C .2D .3【答案】B【分析】将点P 代入函数表达式中,解方程可得a 值.【详解】解:将代入中,得:, 解得:, 故选B .【点睛】本题考查了二次函数图象上的点,熟知二次函数图像上的点的坐标满足函数表达式是解题的关键. 【变式训练】1.(2022秋·天津西青·九年级校考阶段练习)抛物线过点(2,4),则代数式的值为( ) A .14 B .2C .-2D .-14【答案】A【分析】将点(2,4)的坐标代入抛物线y=ax2+bx-3关系式,再整体扩大2倍,即可求出代数式的值. 【详解】解:将点(2,4)代入抛物线y=ax2+bx-3得: 4a+2b-3=4,()211m y m x +=-212m +=10m -¹1m =±1m ¹1m =-2y ax bx c =++0a ¹223y ax x =-+(1,2)P (1,2)P 223y ax x =-+22=121+3a -´´=1a 23y ax bx =+-84a b +.co整理得8a+4b=14. 故选:A .【点睛】本题考查了二次函数图象上点的坐标特征,熟悉整体思想是解题的关键.2.(2022秋·山东泰安·九年级统考阶段练习)若抛物线经过点,则的值是( ) A . B . C . D .【答案】B 【分析】先把点代入解析式,得到,然后化简,整体代入即可得到答案.【详解】解:把点代入,得:, ∵ ;故选择:B.【点睛】本题考查了一元二次方程,解题的关键是灵活运用整体代入法解题.【考点五 列二次函数的关系式】一边长为,用含有x 的代数式表示y 为______,自变量x 的取值范围是_____.【答案】【分析】先求出另一边长,再根据长方形的面积公式即可得出y 与x 的关系式. 【详解】解:①由题意可知,这个长方形的周长为 又因为一边长为,所以另一边长为又∵长方形面积长宽,2y x bx c =-++()2,3-247c b --67820()2,3-2=7c b -247=2c b --(c-4b )-7()2,3-2y x bx c =-++2=7c b -247=2c b --(c-2b )-7277=7=´-xcm ()5y x x =-05x <<10cm,cm x 10cm,2x æö-ç÷èø=´10y x x æö\=´-.所以.②∵,∴∴自变量x 的取值范围是.故答案为:①;②.【点睛】本题主要考查了列函数关系式,准确分析列式是解题的关键. 【变式训练】1.(2022秋·九年级单元测试)一台机器原价为万元,如果每年的折旧率是,两年后这台机器的价格为万元,则与之间的函数关系式为_____.【答案】【分析】根据题意列出函数解析式即可.【详解】解:∵一台机器原价为万元,每年的折旧率是,两年后这台机器的价格为万元,∴与之间的函数关系式为.故答案为:.【点睛】本题主要考查了列二次函数关系式,解题的关键是理解题意,掌握两年后价格原价.2.(2023·浙江·九年级假期作业)某市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克70元,不低于每千克30元.经市场调查发现:日销售量(千克)是销售单价(元)的一次函数,且当时,时,.在销售过程中,每天还要支付其它费用450元.(1)求与的函数关系式,并写出自变量的取值范围.(2)求该公司销售该原料日获利润(元)与销售单价(元)之间的函数关系式. 【答案】(1)();(2)()【分析】(1)根据与写成一次函数解析式,设为,把与的两对值代入求出与的值,即可确定出与的解析式,并求出的范围即可;25y x x =-1002x ->5x <05x <<25y x x =-05x <<50()0x x >y y x ()2501y x =-50()0x x >y y x ()2501y x =-()2501y x =-=()21x ´-y x 60x =8050y x ==;100y =y x x w x 2200y x =-+3070x ££222606450w x x =-+-3070x ££y x y kx b =+x y k b y x xz(2)根据利润=单价销售量列出关于的二次函数解析式即可. 【详解】(1)设与的函数关系式为.时,,时,,,解得,,根据部门规定,得.(2)【点睛】本题考查了二次函数的应用,待定系数法求一次函数解析式,以及二次函数的性质,熟练掌握二次函数性质是解本题的关键.【过关检测】一、选择题【答案】D【分析】根据二次函数的一般形式,即(,且a ,b ,c 为常数),即可一一判定.【详解】解:A.中含分式,不满足二次函数的一般形式,故该函数不是二次函数;B.在中,当时,不是二次函数,故该选项不符合题意;´w x y x y kx b =+60x =Q 80y =50x =100y =608050100k b k b +=ì\í+=î2200k b =-ìí=î2200y x \=-+3070x ££22(30)450(30)(2200)45030702260600045022606450w x y x x x x x x x =--=--+-=-+--=-£-£+()2y ax bx c =++0a ¹2121y x x =-+2y ax bx c =++0a =C.,不是二次函数,故该选项不符合题意; D.,是二次函数,故该选项符合题意; 故选:D .【点睛】本题考查了二次函数的识别,熟练掌握和运用二次函数的一般形式是解决本题的关键. 2.(2022春·全国·九年级专题练习)函数的一次项系数是( ) A . B .1 C .3 D .6【答案】A【分析】根据二次函数的相关概念即可得.【详解】解:函数的一次项系数是;故选:A.【点睛】本题考查了二次函数的基本概念,属于应知应会题型,熟知二次函数的基本知识是关键. 3.(2022·全国·九年级假期作业)在抛物线上的一个点的坐标为( ) A . B . C . D .【答案】D【分析】将各个点的坐标代入抛物线解析式中,如等式成立,则点在抛物线上. 【详解】A ,(0,−4)的坐标代入抛物线解析式中,02-4×0-5≠-4,A 错误 B ,(2,0)的坐标代入抛物线解析式中,22-4×2-5≠0,B 错误C ,(1,0)的坐标代入抛物线解析式中,12-4×1-5≠0,C 错误D ,(-1,0)的坐标代入抛物线解析式中,(-1)2-4×(-1)-5=0,D 正确 故选:D【点睛】此题考查抛物线的解析式,将点的坐标一一代入抛物线解析式中,判断等式是否成立是解本题的关键.4.(2023·浙江·九年级假期作业)下列函数关系中,是二次函数的是( ) A .在弹性限度内,弹簧的长度y 与所挂物体质量x 之间的关系 B .当距离一定时,火车行驶的时间t 与速度v 之间的关系 C .等边三角形的周长C 与边长a 之间的关系 D .半圆面积S 与半径R 之间的关系()2271449y x x x =-+=--()()2131321y x x x x =+-=+-2361y x x =-+6-2361y x x =-+6-245y x x =--()0,4-()2,0()1,0()1,0-【答案】D【分析】根据二次函数的定义,分别列出关系式,进行选择即可.二次函数定义:一般地,把形如(a 、b 、c 是常数,且)的函数叫做二次函数,其中a 称为二次项系数,b 为一次项系数 ,c 为常数项.x 为自变量,y 为因变量.【详解】解:A 、关系式为:y=kx+b ,是一次函数,不符合题意; B 、关系式为:,是反比例函数,不符合题意;C 、关系式为:,是正比例函数,不符合题意;D 、关系式为:,是二次函数,符合题意.故选:D .【点睛】此题考查了二次函数的定义,根据题意列出函数关系式是解题的关键. 5.(2022秋·九年级单元测试)对于关于x 的函数,下列说法错误的是( )A .当时,该函数为正比例函数B .当时,该函数为一次函数C .当该函数为二次函数时,或D .当该函数为二次函数时, 【答案】C【分析】根据正比例函数、一次函数、二次函数的定义判断即可. 【详解】、当时,该函数为正比例函数,故不符合题意;、当时,,即,该函数为一次函数,故不符合题意;、当时,该函数为正比例函数,故符合题意;、当该函数为二次函数时,,故不符合题意; 故选:C .【点睛】本题考查了一次函数、正比例函数、二次函数的定义,熟练掌握相关定义是解题的关键. 二、填空题6.(2023秋·江西宜春·九年级统考期末)二次函数中,当时,y 的值是________. 【答案】0【分析】把代入计算即可. 【详解】解:当时,,2y ax bx c =++0a ¹st v =3C a =2S R p =2(1)3m my m x x -=++1m =-21m m -=2m =1m =-2m =A 1m =-3y x =B 21mm -=m =40m +¹C 1m =-3y x =D 2m =2=23y x x --=1x -=1x -2=23y x x --=1x -2=23=123=0y x x ---+故答案为:0.【点睛】本题考查了求二次函数的值,解题的关键是把代入计算.7.(2022春·全国·九年级专题练习)把y =(2-3x )(6+x )变成y =ax ²+bx +c 的形式,二次项为____,一次项系数为______,常数项为______.【答案】 -16 12【解析】略8.(2023秋·河南洛阳·九年级统考期末)已知函数是关于 的二次函数,则一次函数的图像不经过第_______象限.【答案】二【分析】先根据二次函数的定义得到,,解得,然后根据一次函数的性质进行判断. 【详解】∵函数是关于 的二次函数, ∴且,解得:,∴一次函数的图像经过第一、三、四象限,不经过第二象限,故答案为:二【点睛】本题考查了二次函数的定义以及一次函数的性质,求得是解题的关键.【答案】②④/④②【分析】根据二次函数的定义,函数式为整式且自变量的最高次数为2,二次项系数不为0,逐一判断.【详解】解:①为一次函数;②为二次函数; ③自变量次数为3,不是二次函数;④为二次函数; =1x -2=23y x x --23x -||1(1)45m y m x x +=++-x y mx m =-12m +=10m +¹1m =||1(1)45m y m xx +=++-x 12m +=10m +¹1m =y mx m =-1m =55y x =-231y x =-3343y x x =-2221y x x =-+z m ⑤函数式为分式,不是二次函数.故答案为②④.【点睛】本题考查二次函数的定义,能够根据二次函数的定义判断函数是否属于二次函数是解决本题的关键.10.(2023春·北京西城·九年级北师大实验中学校考开学考试)如图,矩形绿地的长和宽分别为和.若将该绿地的长、宽各增加,扩充后的绿地的面积为,则y 与x 之间的函数关系是______.(填“正比例函数关系”、“一次函数关系”或“二次函数关系”)【答案】二次函数关系【分析】根据矩形面积公式求出y 与x 之间的函数关系式即可得到答案.【详解】解:由题意得,∴y 与x 之间的函数关系是二次函数关系,故答案为;二次函数关系.【点睛】本题主要考查了列函数关系式和二次函数的定义,正确列出y 与x 之间的函数关系式是解题的关键.三、解答题11.(2023·浙江·九年级假期作业)下列式子哪些是二次函数?如果是,请指出其二次项系数、一次项系数y =21x 30m 20m m x 2m y ()()2302050600y x x x x =++=++【答案】(1)不是二次函数,是一次函数(2),是二次函数,二次项系数是、一次项系数是0,常数项是0 (3)不是二次函数(4),是二次函数,二次项系数是、一次项系数是2,常数项是-3(5)时,不是二次函数 (6)时,不是二次函数【分析】(1)观察函数解析式,不含二次项,不是二次函数;(2)根据二次函数的定义即可判断;(3)根据二次函数的定义即可判断;(4)根据二次函数的定义即可判断; (5)根据二次函数的定义即可判断;(6)根据二次函数的定义即可判断.【详解】(1)不是二次函数,是一次函数; (2),是二次函数,二次项系数是、一次项系数是0,常数项是0; (3)不是二次函数; (4),是二次函数,二次项系数是、一次项系数是2,常数项是;(5)时,不是二次函数; (6)时,不是二次函数.【点睛】本题考查了二次函数的识别,掌握二次函数的定义是解题的关键.二次函数的定义:一般地,形如(是常数,)的函数,叫做二次函数. 12.(2023·浙江·九年级假期作业)若.(1)m 取什么值时,此函数是二次函数?(2)m 取什么值时,此函数是一次函数? 1y x =-+22x y =-12-222y x x =+-21233y x x =+-130a =2y ax bx c =++0m =2243y m x x =+-1y x =-+22x y =-12-222y x x =+-21233y x x =+-133-0a =2y ax bx c =++0m =2243y m x x =+-2y ax bx c =++a b c 、、0a ¹()22113m m y m +-=-+z【答案】(1)(2)【分析】(1)根据二次函数的定义得出,进而即可求解;(2)根据一次函数的定义得出,进而即可求解.【详解】(1)解:(1)当是二次函数时,有,解得,∴当时,此函数是二次函数;(2)当是一次函数时,有,解得∴【点睛】本题考查了二次函数与一次函数的定义,解一元二次方程,熟练掌握二次函数与一次函数的定义是解题的关键.13.(2022秋·浙江·九年级期末)荔枝是夏季的时令水果,储存不太方便.某水果店将进价为18元/千克的荔枝,以28元/千克售出时,每天能售出40千克.市场调研表明:当售价每降低1元/千克时,平均每天能多售出10千克.设降价x 元.(1)降价后平均每天可以销售荔枝 千克(用含x 的代数式表示).(2)设销售利润为y ,请写出y 关于x 的函数关系式.(3)该水果店想要使荔枝的销售利润平均每天达到480元,且尽可能地减少库存压力,应将价格定为多少元/千克?【答案】(1)3m =-1m =-1m =-210212m m m -¹ìí+-=î210211m m m -¹ìí+-=î()22113m m y m +-=-+210212m m m -¹ìí+-=î3m =-3m =-()22113m m y m +-=-+210211m m m -¹ìí+-=î1m =-1m =-1m =-1m =-()4010x +(2)(3)24元/千克【分析】(1)根据“当售价每降低1元/千克时,平均每天能多售出10千克”可直接得出结论;(2)利用利润=(售价-成本)×销售量可得出结论;(3)令y=480,求出x 的值,再根据题意对x 的值进行取舍即可.【详解】(1)根据题意得,降价后平均每天可以销售荔枝:(40+10x )千克,故答案为:(40+10x ).(2)根据题意得,整理得(3)令,代入函数得,解方程,得,因为要尽可能地清空库存,所以舍去取此时荔枝定价为(元/千克)答:应将价格定为24元/千克.【点睛】本题考查了一元二次方程的应用,列函数关系式,列代数式,根据题意列出函数关系式是解题的关键.14.(2023秋·宁夏石嘴山·九年级统考期末)在矩形中,,E 是AB 边上一动点,以1cm /s 的速度从点B 出发,到A 停止运动;F 是BC 边上一动点,以2cm /s 的速度从点B 出发,到点C 停止运动.设动点运动的时间为t(s ),的面积为S (cm 2)(1)求S 关于t 的函数表达式,并求自变量t 的取值范围.(2)当△DEF 是直角三角形时,求△DEF 的面积.【答案】(1)21060400y x x =-++()()40102818y x x =+--21060400y x x =-++480y =21060400480x x -++=14x =22x =2x =4x =28424-=ABCD 6,12AB cm BC cm ==DEF !212,06S t t t =-+<£(2)或【分析】(1)先求出,再根据解答即可; (2)先求出,,,再分①当为直角时,②当为直角时,③当为直角时三种情况讨论,应用勾股定理求出t 的值,即可得答案.【详解】(1)解:, ,,根据题意得,解得:;(2)由勾股定理可得, ,,,①当为直角时,,即 解得,;②当为直角时,,即, 解得或, 23334cm 236cm ()(),2,6,122BE tcm BF tcm AE t cm CF t cm ===-=-D E F A E D B E F C D FA B C D S S S S S =---!!!!矩形22225E F B E B F t =+=2222448180D F C D C F t t =+=-+222212180D E A D A E t t =+=-+EDF ÐDEF ÐDFE Ð()()26122!!!B E t cmBF t cmA E t cmC F t cm ===-=-!D E F A E D B E F C D F A B C D S S S S S =---!!!!"矩形()()21111261262612212222S t t t t t t \=喘创--喘创-=-+0601220t t t >ìï-³íï-³î06t <£22225E F B E B F t =+=2222448180D F C D C F t t =+=-+222212180D E A D A E t t =+=-+EDF Ð222EF DE DF =+222512180448180t t t t t =-++-+6t =()22612636S cm \=-+´=DEF Ð222DF DE EF =+22612180448180t t t t -+=-+0=t 18-,都不符合;③当为直角时,,即, 解得(舍)或, . 【点睛】本题考查了函数关系式,解题的关键是找到. 06t !\DFE Ð222DE DF EF =+222544818012180t t t t t +-+=-+0=t 92t =()229931233224S cm æö\=-+´=ç÷èøD E F A E D B E F C D F A B C D S S S S S =---!!!!矩形。
二次函数模型1
二、新知探索三、课堂练习观察图象并完成填空函数y=a x2的图象,当a>0时开口.当a<0时开口,对称轴是,顶点坐标是.| a | 越大,开口越.例1研讨二次函数f (x)=12x2+4 x+6的性质与图象.解 (1) 因为f (x)=12x2+4 x+6=12(x2+8 x+12)=12(x+4)2-2.由于对任意实数x,都有12(x+4)2≥0,所以 f (x)≥-2,并且,当x=-4时取等号,即f(-4)=-2.得出性质:x=-4时,取得最小值-2.记为 y min=-2.点(-4,-2)是这个图象的顶点.(2) 当y=0时,12x2+4 x+6=0,x2+8 x+12=0,解得x1=-6,x2=-2.故该函数图象与x 轴交于两点(-6,0),(-2,0).(a≠0),下面我们先来研究这类函数的性质.出示引例.学生在初中已经重点学过二次函数的作图,所以教师只讲述y=x2的图象画法,其余5个函数的图象,学生分组合作解答,教师巡回观察.最后通过屏幕演示,集体对照.教师总结二次函数的图像以及相关性质。
生:观察图象,小组合作讨论.然后每组选一名代表汇报各组的交流结果,最后师生一起汇总得出结论.师生共同解决例1,教师详细板书解题过通过引例,使学生进一步掌握二次函数图象的描点作图法,并根据所做图象来分析函数y=a x2中系数a 对图象的影响,提高学生读图能力.学生合作,集体回忆初中所学二次函数的知识.开口方向,对称轴,顶点坐标等性质应用。
通过对例1中二次三项式的代数分析,使学生对二次函数的直观感知上升到理性认识的高度,更重要的是使学生掌握数形结合研究函数的方法,初步培养学生的画图、识图能力.分析图象与x轴的交点,一方面为描点作图,另一方面为下节研究函数与方程,不等式的关系做铺垫.2xy=2xy-=22xy=23xy=22xy-=23xy-=四、课堂小结五、作业布置(3) 列表作图.以x=-4为中间值,取x 的一些值,列出这个函数的对应值表然后画出函数的图象.观察上表或图形回答:1.关于x=-4对称的两个自变量的值对应的函数值有什么特点?答:相同.2.-4-h 与-4+h (h>0) 关于x=-4对称吗?分别计算-4-h与-4+h的函数值,你能发现什么?答:f (-4-h)=f (-4+h).得出性质:直线x=-4为该函数的对称轴.函数在(-∞,-4]上是减函数,在[-4,+∞)上是增函数.小结例2中的函数性质:1.开口.2.最值.3.顶点.4.对称轴.5.单调性.总结:1.二次函数的性质.2.一元二次方程、一元二次不等式与二次函数的关系.3.数形结合研究二次函数的方法.1..对应作业本完成2.学有余力的同学做一下同步考卷程,带领学生仔细分析各个性质的由来.回顾总结函数单调性的相关性质以及证明。
数学一轮复习第二章函数2.9函数模型及其应用学案理
2.9函数模型及其应用必备知识预案自诊知识梳理1.常见的函数模型(1)一次函数模型:f(x)=kx+b(k,b为常数,k≠0);(2)二次函数模型:f(x)=ax2+bx+c(a,b,c为常数,a≠0);(3)反比例函数模型:f(x)=kk(k为常数,k≠0);(4)指数型函数模型:f(x)=ab x+c(a,b,c为常数,a≠0,b〉0,b≠1);(5)对数型函数模型:f(x)=m log a x+n(m,n,a为常数,m≠0,a〉0,a≠1);(6)幂型函数模型:f(x)=ax n+b(a,b,n为常数,a≠0);(7)分段函数模型:y={k1(k),k∈k1,k2(k),k∈k2,k3(k),k∈k3;(8)对勾函数模型:y=x+kk(a为常数,a>0)。
2。
指数、对数、幂函数模型的性质比较性质函数y=a x(a>1)y=log a x(a〉1)y=xα(α〉0)在(0,+∞)内的增减性增长速度越来越快越来越慢相对平稳图像的变化随x的增大逐渐表现为与平行随x的增大逐渐表现为与平行随α值变化而各有不同值的比较存在一个x0,当x〉x0时,有log a x<xα〈a x考点自诊1。
判断下列结论是否正确,正确的画“√”,错误的画“×"。
(1)幂函数增长比一次函数增长更快。
() (2)在(0,+∞)内,随着x的增大,y=a x(a〉1)的增长速度会超过并远远大于y=xα(α〉0)的增长速度.()(3)指数型函数模型,一般用于解决变化较快,短时间内变化量较大的实际问题。
()(4)f(x)=x2,g(x)=2x,h(x)=log2x,当x∈(4,+∞)时,恒有h(x)〈f(x)〈g(x)。
()(5)“指数爆炸”是指数型函数y=a·b x+c(a>0,b>1)增长速度越来越快的形象比喻。
()2。
(2020山东潍坊临朐模拟二,3)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况。
二次函数模型
函数模型一二次函数模型一价格竞争[问题提出]:甲乙两个加油站位于同一条公路旁,为在公路上行驶的汽车提供同样的汽油,彼此竞争激烈。
一天,甲站推出“降价销售”吸引顾客,结果造成乙站的顾客被拉走,影响了乙站的赢利。
我们知道,利润是受销售价和销售量的影响及控制的,乙站为挽回损失,必须采取降价销售这一对策来争取顾客。
那么,乙站如何决定汽油的价格,既可以同甲站竞争,又可以获取尽可能高的利润呢?[分析]:在这场“价格战”中,我们将站在乙站的立场上为其制定价格对策,因此需要组建一个模型来描述甲站汽油价格下调后乙站销售量的变化情况,从而得到乙站的销售利润。
[引入参数]:为描述汽油价格和销售量间的关系,引入指标:1)价格战前,甲、乙两站汽油的正常销售价格为P(元/升);2)降价前乙站的销售量均为L(升);3)汽油的成本价格为W(元/升);4)降价后乙站的销售价格为x(元/升),这是变量;5)降价后甲站的销售价格为y(元/升)。
[模型假设]:影响乙站汽油销售量的因素,主要有以下几个:1)甲站汽油降价的幅度;2)乙站汽油降价的幅度;3)甲乙两站之间汽油销售价格之差(x-y)。
我们知道,随着甲站汽油降价幅度的增加,乙站汽油销售量随之减小;而随着乙站汽油降价幅度的增加,乙站汽油销售量随之增大;同时,随着两站之间汽油销售价格之差(x-y)的增加,乙站汽油销售量也随之减小。
假设1:在这场价格战中,假设汽油的正常销售价格保持不变;假设2:以上各因素对乙加油站汽油销售量的影响是线性的,比例系数分别为a,b,c(均为正常数)。
[建立模型]:由假设2,乙站的汽油销售量为L-a(P-y)+b(P-x)-c(x-y),所以,乙站的利润函数R(x,y)=(x-W)[L-a(P-y)+b(P-x)-c(x-y)]。
[模型求解]:当y确定时,利润函数R(x,y)=(x-W)[L-a(P-y)+b(P-x)-c(x-y)]是关于x的二次函数。
求出R(x,y)的最大值点为x*=[L+(a+c)y-P(a-b)+W(b+c)]/2(b+c)。
函数模型及其应用
1.几种常见的函数模型函数模型函数解析式一次函数模型f(x)=ax+b(a,b为常数,a≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)指数函数模型f(x)=ba x+c(a,b,c为常数,a>0且a≠1,b≠0) 对数函数模型f(x)=b log a x+c(a,b,c为常数,a>0且a≠1,b≠0) 幂函数模型f(x)=ax n+b(a,b,n为常数,a≠0,n≠0)2.三种函数模型性质比较y=a x(a>1)y=log a x(a>1)y=x n(n>0) 在(0,+∞)上的单调性增函数增函数增函数增长速度越来越快越来越慢相对平稳图象的变化随x值增大,图象与y轴接近平行随x值增大,图象与x轴接近平行随n值变化而不同常用结论“对勾”函数的性质形如f(x)=x+ax(a>0)的函数模型称为“对勾”函数模型:(1)该函数在(-∞,-a)和(a,+∞)上单调递增,在[-a,0)和(0,a]上单调递减.(2)当x>0时,x=a时取最小值2a,当x<0时,x=-a时取最大值-2a.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)幂函数增长比直线增长更快.()(2)不存在x0,使a x0<x n0<log a x0.()(3)在(0,+∞)上,随着x的增大,y=a x(a>1)的增长速度会超过并远远大于y =x a (a >1)的增长速度.( )(4)“指数爆炸”是指数型函数y =a ·b x +c (a ≠0,b >0,b ≠1)增长速度越来越快的形象比喻.( )答案:(1)× (2)× (3)√ (4)× 二、易错纠偏常见误区| (1)对三种函数增长速度的理解不深致错; (2)建立函数模型出错;(3)分段函数模型的分并把握不准.1.已知f (x )=x 2,g (x )=2x ,h (x )=log 2x ,当x ∈(4,+∞)时,对三个函数的增长速度进行比较,下列选项中正确的是 ( )A .f (x )>g (x )>h (x )B .g (x )>f (x )>h (x )C .g (x )>h (x )>f (x )D .f (x )>h (x )>g (x )解析:选B .由图象知,当x ∈(4,+∞)时,增长速度由大到小依次为g (x )>f (x )>h (x ).故选B .2.在某个物理实验中,测量得变量x 和变量y 的几组数据,如表,则对x ,y A .y =2x B .y =x 2-1 C .y =2x -2D .y =log 2x解析:选D .根据x =0.50,y =-0.99,代入计算,可以排除A ;根据x =2.01,y =0.98,代入计算,可以排除B ,C ;将各数据代入函数y =log 2x ,可知满足题意.3.某城市客运公司确定客票价格的方法是:如果行程不超过100 km ,票价是0.5元/km ,如果超过100 km ,超过100 km 的部分按0.4元/km 定价,则客运票价y (元)与行程千米数x (km)之间的函数关系式是________.解析:由题意可得y =⎩⎪⎨⎪⎧0.5x ,0<x ≤100,0.4x +10,x >100.答案:y =⎩⎨⎧0.5x ,0<x ≤100,0.4x +10,x >100利用函数图象刻画实际问题(师生共研)(2020·高考北京卷)为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改.设企业的污水排放量W 与时间t 的关系为W =f (t ),用-f (b )-f (a )b -a的大小评价在[]a ,b 这段时间内企业污水治理能力的强弱.已知整改期内,甲、乙两企业的污水排放量与时间的关系如图所示.给出下列四个结论:①在[t 1,t 2]这段时间内,甲企业的污水治理能力比乙企业强; ②在t 2时刻,甲企业的污水治理能力比乙企业强; ③在t 3时刻,甲、乙两企业的污水排放都已达标;④甲企业在[0,t 1],[t 1,t 2],[t 2.t 3]这三段时间中,在[0,t 1]的污水治理能力最强.其中所有正确结论的序号是________. 【解析】 设y =-f (b )-f (a )b -a,由已知条件可得甲、乙两个企业在[t 1,t 2]这段时间内污水治理能力强弱的数值计算式为-f (t 2)-f (t 1)t 2-t 1,由题图易知y 甲>y 乙,即甲企业的污水治理能力比乙企业强,所以①对;由题意知在某一时刻企业污水治理能力的强弱由这一时刻的切线的斜率的绝对值表示,所以②对;在t3时刻,由题图可知甲、乙两企业的污水排放量都在污水达标排放量以下,所以③对;由计算式-f(b)-f(a)b-a可知,甲企业在[0,t1]这段时间内污水治理能力最弱,所以④错.【答案】①②③正确理解题目所给的信息,并把信息翻译成数学问题是解决本题的第一个关键;理解一段时间内企业污水治理能力的强弱的计算式,并把这个计算式与函数图象在某点处切线的斜率联系起来是正确解决本题的第二个关键.1.(2020·河南信阳质量检测)如图1是某条公共汽车线路收支差额y与乘客量x的图象.由于目前本条线路亏损,公司有关人员提出了两种扭亏为盈的建议,如图2,3所示.根据图象判断下列说法正确的是()①图2的建议为减少运营成本;②图2的建议可能是提高票价;③图3的建议为减少运营成本;④图3的建议可能是提高票价.A.①④B.②④C.①③D.②③解析:选A.根据题意和题图2知,两条直线平行即票价不变,直线向上平移说明当乘客量为0时,收入是0,但是支出变少了,说明此建议是降低成本而保持票价不变.由题图3知,当乘客量为0时,支出不变,但是直线的倾斜角变大,即相同的乘客量时收入变大,也就是票价提高了,说明此建议是提高票价而保持成本不变,综上可得①④正确,②③错误.故选A.2.汽车的“燃油效率”是指汽车每消耗1 L汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是()A.消耗1 L汽油,乙车最多可行驶5 kmB.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80 km/h的速度行驶1 h,消耗10 L汽油D.某城市机动车最高限速80 km/h,相同条件下,在该市用丙车比用乙车更省油解析:选D.对于A选项,从图中可以看出当乙车的行驶速度大于40 km/h 时的燃油效率大于5 km/L,故乙车消耗1 L汽油的行驶路程可大于5 km,所以A错误,对于B选项,由图可知甲车消耗汽油最少.对于C选项,甲车以80 km/h 的速度行驶时的燃油效率为10 km/L,故行驶1 h的路程为80 km,消耗8 L汽油,所以C错误,对于D选项,当最高限速为80 km/h且速度相同时丙车的燃油效率大于乙车的燃油效率,故用丙车比用乙车更省油,所以D正确.已知函数模型解决实际问题(师生共研)(1)人们用分贝(dB)来划分声音的等级,声音的等级d(x)(单位:dB)与声音强度x(单位:W/m2)满足d(x)=9lgx1×10-13.一般两人小声交谈时,声音的等级约为54 dB,在有50人的课堂上讲课时,老师声音的等级约为63 dB,那么老师上课时声音强度约为一般两人小声交谈时声音强度的()A .1倍B .10倍C .100倍D .1 000倍(2)(2020·陇西咸阳二模)为了抗击新型冠状病毒肺炎,某医药公司研究出一种消毒剂,据实验表明,该药物释放量y (mg/m 3)与时间t (h)的函数关系式为y =⎩⎪⎨⎪⎧kt ,0<t <12,1kt ,t ≥12(如图所示),实验表明,当药物释放量y <0.75(mg/m 3)时对人体无害.求:①k =________;②为了不使人身体受到药物伤害,若使用该消毒剂对房间进行消毒,则在消毒后至少经过________分钟人方可进入房间.【解析】 (1)设老师上课时声音强度,一般两人小声交谈时声音强度分别为x 1 W/m 2,x 2 W/m 2,根据题意得d (x 1)=9lg x 11×10-13=63,解得x 1=10-6, d (x 2)=9lg x 21×10-13=54, 解得x 2=10-7,所以x 1x 2=10,所以老师上课时声音强度约为一般两人小声交谈时声音强度的10倍,故选B .(2)①由题图可知,当t =12时,y =1,即1k ×12=1⇒k =2.②由题意可得⎩⎪⎨⎪⎧t ≥12,12t <0.75,解得t >23,故为了不使人身体受到药物伤害,若使用该消毒剂对房间进行消毒,则在消毒后至少经过23×60=40(分钟)人方可进入房间.【答案】 (1)B (2)2 40求解所给函数模型解决实际问题的关键点(1)认清所给函数模型,弄清哪些量为待定系数. (2)根据已知利用待定系数法,确定模型中的待定系数. (3)利用该模型求解实际问题.(2020·河南安阳模拟)5G 技术的数学原理之一便是著名的香农公式:C =W log 2⎝ ⎛⎭⎪⎫1+S N .它表示:在受噪声干扰的信道中,最大信息传递速率C 取决于信道带宽W 、信道内信号的平均功率S 、信道内部的高斯噪声功率N 的大小,其中S N 叫做信噪比.按照香农公式,若不改变带宽W ,而将信噪比SN 从1 000提升至2 000,则C 大约增加了( )A .10 %B .30 %C .50 %D .100 %解析:选A .将信噪比SN 从 1 000提升至 2 000,C 大约增加了W log 2(1+2 000)-W log 2(1+1 000)W log 2(1+1 000)=log 22 001-log 21 001log 21 001≈10.967-9.9679.967≈10 %,故选A .构建函数模型解决实际问题(多维探究) 角度一 构造一次函数、二次函数模型(1)某航空公司规定,乘飞机所携带行李的质量x (kg)与其运费y (元)之间的关系由如图所示的一次函数图象确定,那么乘客可免费携带行李的质量最大为______kg.(2)将进货单价为80元的商品按90元一个出售时,能卖出400个,已知这种商品每涨价1元,其销售量就要减少20个.为了赚得最大利润,每个售价应定为______元.【解析】 (1)由图象可求得一次函数的解析式为y =30x -570,令30x -570=0,解得x =19.(2)设每个售价定为x 元,则利润y =(x -80)·[400-(x -90)·20]=-20[(x -95)2-225].所以当x =95时,y 最大. 【答案】 (1)19 (2)95角度二 构建指数函数、对数函数模型某公司为激励创新,计划逐年加大研发资金投入.若该公司2021年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30) A .2023年 B .2024年 C .2025年D .2026年【解析】 根据题意,知每年投入的研发资金增长的百分率相同,所以,从2021年起,每年投入的研发资金组成一个等比数列{a n },其中,首项a 1=130,公比q =1+12%=1.12,所以a n =130×1.12n -1.由130×1.12n -1>200,两边同时取对数,得n -1>lg 2-lg 1.3lg 1.12,又lg 2-lg 1.3lg 1.12≈0.30-0.110.05=3.8,则n >4.8,即a 5开始超过200,所以2025年投入的研发资金开始超过200万元,故选C .【答案】 C角度三构建函数y=ax+bx(a>0,b>0)模型某养殖场需定期购买饲料,已知该场每天需要饲料200千克,每千克饲料的价格为1.8元,饲料的保管费与其他费用平均每千克每天0.03元,购买饲料每次支付运费300元.求该养殖场多少天购买一次饲料才能使平均每天支付的总费用最少.【解】设该养殖场x(x∈N*)天购买一次饲料可使平均每天支付的总费用最少,平均每天支付的总费用为y元.因为饲料的保管费与其他费用每天比前一天少200×0.03=6(元),所以x天饲料的保管费与其他费用共是6(x-1)+6(x-2)+…+6=3x2-3x(元).从而有y=1x(3x2-3x+300)+200×1.8=300x+3x+357≥417,当且仅当300x =3x,即x=10时,y有最小值.故该养殖场10天购买一次饲料才能使平均每天支付的总费用最少.角度四构建分段函数模型某景区提供自行车出租,该景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超过1元,租不出的自行车就增加3辆.为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求租自行车一日的总收入必须高于这一日的管理费用,用y(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后得到的部分).(1)求函数y=f(x)的解析式;(2)试问当每辆自行车的日租金为多少元时,才能使一日的净收入最多?【解】(1)当x≤6时,y=50x-115,令50x-115>0,解得x>2.3,因为x为整数,所以3≤x≤6,x∈Z.当x>6时,y=[50-3(x-6)]x-115=-3x2+68x-115.令-3x 2+68x -115>0, 有3x 2-68x +115<0,结合x 为整数得6<x ≤20,x ∈Z .所以y =f (x )=⎩⎪⎨⎪⎧50x -115(3≤x ≤6,x ∈Z ),-3x 2+68x -115(6<x ≤20,x ∈Z ).(2)对于y =50x -115(3≤x ≤6,x ∈Z ), 显然当x =6时,y max =185; 对于y =-3x 2+68x -115=-3⎝ ⎛⎭⎪⎫x -3432+8113(6<x ≤20,x ∈Z ),当x =11时,y max =270.因为270>185,所以当每辆自行车的日租金定为11元时,才能使一日的净收入最多.(1)实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同关系式构成,如出租车计价与路程之间的关系,应构建分段函数模型求解.但应关注以下两点:①分段要简洁合理,不重不漏;②分段函数的最值是各段的最大(或最小)值中的最大(或最小)值.(2)指数函数、对数函数模型解题,关键是对模型的判断,先设定模型,将有关数据代入验证,确定参数,求解时要准确进行指、对数运算,灵活进行指数与对数的互化.1.(2020·四川绵阳模拟)2020年3月,国内新冠肺炎疫情得到有效控制,人们开始走出家门享受春光.某旅游景点为吸引游客,推出团体购票优惠方案如表:1 290元;若合并成一个团队购票,则需支付门票费990元,那么这两个旅游团队的人数之差为( )A .20B .30C .35D .40解析:选B .设两个旅游团队的人数分别为a ,b 且a ,b ∈N *,不妨令a ≥b ,因为1 290不能被13整除,所以a +b ≥51.若51≤a +b ≤100,则11(a +b )=990,得a +b =90,①由分别购票共需支付门票费为1 290元可知,11a +13b =1 290,② 联立①②解得b =150,a =-60,不符合题意; 若a +b >100,则9(a +b )=990,得a +b =110,③由分别购票共需支付门票费为1 290元可知,1≤b ≤50,51≤a ≤100, 得11a +13b =1 290,④联立③④解得a =70,b =40. 所以这两个旅游团队的人数之差为70-40=30.故选B .2.某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少13,至少应过滤______次才能达到市场要求.(已知lg 2≈0.301 0,lg 3≈0.477 1)解析:设至少过滤n 次才能达到市场要求, 则2%⎝ ⎛⎭⎪⎫1-13n ≤0.1%,即⎝ ⎛⎭⎪⎫23n ≤120,所以n lg 23≤-1-lg 2,所以n ≥7.39,所以n =8. 答案:83.为了响应政府推进“菜篮子”工程建设的号召,某经销商投资60万元建了一个蔬菜生产基地,第一年支出各种费用8万元,以后每年支出的费用比上一年多2万元,每年销售蔬菜的收入为26万元.设f (n )表示前n 年的纯利润,则从第________年开始盈利.[f (n )=前n 年的总收入—前n 年的总费用支出—投资额]解析:由题意知f (n )=26n -⎣⎢⎡⎦⎥⎤8n +n (n -1)2×2-60=-n 2+19n -60. 令f (n )>0,即-n 2+19n -60>0,解得4<n <15, 所以从第5年开始盈利. 答案:5高考新声音2 美育为魂,陶养身心“美”是景与情的交融,以美育人,让学生懂得爱、爱美,提高学生审美和人文素养,以美育为背景的考题,多以提高学生审美和人文素养为题材,常以图、文并用的方式表现,意在考查逻辑推理和数学运算等核心素养.(2019·高考全国卷Ⅰ)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5-12(5-12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是5-12.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是( )A .165 cmB .175 cmC .185 cmD .190 cm【解析】 26+26÷0.618+(26+26÷0.618)÷0.618≈178(cm),故其身高可能是175 cm,故选B.【答案】 B本题涉及了“黄金比”和“断臂维纳斯”,并渗透了估值思想.以往高考试题中往往选择中国古代《九章算术》中的数学文化题,这一网红题选择大家熟悉的黄金分割为背景,通过设置真实情景,引导学生从“解题”到“解决问题”能力的培养,使学生能够灵活运用所学知识分析问题和解决问题.中国传统文化中很多内容体现了数学的对称美,如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分展现了相互转化、对称统一的形式美、和谐美.给出定义:能够将圆的周长和面积同时平分的图象对应的函数称为这个圆的“优美函数”,给出下列命题:①对于任意一个圆O,其“优美函数”有无数个;②函数f(x)=ln(x2+x2+1)可以是某个圆的“优美函数”;③函数y=1+sin x可以同时是无数个圆的“优美函数”;④函数y=2x+1可以同时是无数个圆的“优美函数”;⑤函数y=f(x)是“优美函数”的充要条件为函数y=f(x)的图象是中心对称图形.其中正确的命题是________.(填序号)解析:①对于任意一个圆O,其对称轴有无数条,所以其“优美函数”有无数个,①正确;②函数f(x)=ln(x2+x2+1)的定义域为R,值域为[0,+∞),其图象关于y轴对称,且在x轴及其上方,故不可以是某个圆的“优美函数”,②错误;③根据y=sin x的图象可知函数y=1+sin x的图象可以将圆的周长和面积平分,又y=1+sin x的图象可以延伸,所以可以同时是无数个圆的“优美函数”,③正确;④函数y =2x +1的图象只要过圆心,就可以同时是无数个圆的“优美函数”,④正确;⑤错误,有些中心对称图形对应的函数不一定是圆的“优美函数”,比如“双曲线”,故答案为①③④.答案:①③④[A 级 基础练]1.(2020·江西南昌模拟)衡东土菜辣美鲜香,享誉三湘.某衡东土菜馆为实现100万元年经营利润目标,拟制订员工的奖励方案:在经济利润超过6万元的前提下奖励,且奖金y (单位:万元)随经营利润x (单位:万元)的增加而增加,但奖金总数不超过3万元,同时奖金不能超过利润的20%.下列函数模型中,符合该要求的是( )(参考数据:1.015100≈4.432,lg 11≈1.041) A .y =0.04x B .y =1.015x -1 C .y =tan ⎝ ⎛⎭⎪⎫x 19-1D .y =log 11(3x -10)解析:选D .对于函数y =0.04x ,当x =100时,y =4>3,不符合题意;对于函数y =1.015x -1,当x =100时,y ≈3.432>3,不符合题意;对于函数y =tan ⎝ ⎛⎭⎪⎫x 19-1,不满足在x ∈(6,100]上单调递增,不符合题意;对于函数y =log 11(3x -10),满足在x ∈(6,100]上是增函数,且y ≤log 11(3×100-10)=log 11290<log 111 331=3,画出y =15x 与y =log 11(3x -10)的图象如图所示,符合题意,故选D .2.已知某服装厂生产某种品牌的衣服,销售量q (x )(单位:百件)关于每件衣服的利润x (单位:元)的函数解析式为q (x )=⎩⎨⎧1 260x +1,0<x ≤20,90-35x ,20<x ≤180,则当该服装厂所获效益最大时,x =( )A .20B .60C .80D .40解析:选C .设该服装厂所获效益为f (x )元, 则f (x )=100xq (x )=⎩⎪⎨⎪⎧126 000x x +1,0<x ≤20,100x (90-35x ),20<x ≤180.当0<x ≤20时,f (x )=126 000x x +1=126 000-126 000x +1, f (x )在区间(0,20]上单调递增, 所以当x =20时,f (x )有最大值120 000. 当20<x ≤180时,f (x )=9 000x -3005·x x , 则f ′(x )=9 000-4505·x ,令f ′(x )=0,得x =80,当20<x <80时,f ′(x )>0,f (x )单调递增,当80≤x ≤180时,f ′(x )≤0,f (x )单调递减,所以当x =80时,f (x )有极大值,也是最大值,为240 000.故选C . 3.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对于进价),则该家具的进价是( )A .118元B .105元C .106元D .108元解析:选D .设进价为a 元,由题意知132×(1-10%)-a =10%·a ,解得a =108.故选D .4.素数也叫质数,法国数学家马林·梅森是研究素数的数学家中成就很高的一位,因此后人将“2n -1”形式(n 是素数)的素数称为梅森素数.已知第20个梅森素数为P =24 423-1,第19个梅森素数为Q =24 253-1,则下列各数中与PQ 最接近的数为(参考数据:lg 2≈0.3)( )A .1045B .1051C .1056D .1059解析:选B .由题知P Q =24 423-124 253-1≈2170.令2170=k ,则lg 2170=lg k ,所以170lg2=lg k .又lg 2≈0.3,所以51=lg k ,即k =1051,所以与PQ 最接近的数为1051.故选B .5.车辆驾驶人员饮酒后或者醉酒后驾车血液中的酒精含量阈值见表.经过反复试验,一般情况下,某人喝一瓶啤酒后酒精在人体血液中的变化规律的“散点图”如图,且该图表示的函数模型为f (x )=⎩⎪⎨⎪⎧40sin ⎝ ⎛⎭⎪⎫π3x +13,0≤x <2,90e -0.5x +14,x ≥2,则该人喝一瓶啤酒后至少经过多长时间才可以驾车(时间以整小时计算)?(参考数据:ln 15≈2.71,ln 30≈3.40)( )车辆驾驶人员血液酒精含量阈值 驾驶行为类型 阈值(mg/100 mL) 饮酒后驾车 ≥20,<80 醉酒后驾车≥80A .5 hB .6 hC .7 hD .8 h解析:选B .由题意可知当酒精含量阈值低于20时才可以开车,结合分段函数建立不等式90e -0.5x +14<20,解得x >5.42,取整数,故为6个小时.故选B .6.(2020·辽宁辽南协作校一模)考古学家经常利用碳14的含量来推断古生物死亡的时间.当有机体生存时,会持续不断地吸收碳14,从而其体内的碳14含量会保持在一定的水平;但当有机体死亡后,就会停止吸收碳14,其体内的碳14含量就会逐渐减少,而且每经过大约5 730年后会变为原来的一半.假设有机体生存时碳14的含量为1,如果用y 表示该有机体死亡x 年后体内碳14的含量,则y 与x 的关系可以表示为________.解析:依题意可设y =⎝ ⎛⎭⎪⎫12ax,当x =5 730时,y =12,即有12=⎝ ⎛⎭⎪⎫12 5 730a ,解得a=15 730,故答案为y =⎝ ⎛⎭⎪⎫12x5 730.答案:y =⎝ ⎛⎭⎪⎫12x5 7307.(2020·安徽滁州定远4月模拟)某工厂产生的废气经过过滤后排放,过滤过程中废气的污染物数量P (毫克/升)与时间t (小时)的关系为P = P 0e -kt ,如果在前5小时消除了10%的污染物,那么污染物减少19%需要花费的时间为________小时.解析:由题意可知,(1-0.1)P 0 =P 0e -5k ,即0.9=e -5k ,故-5k =ln 0.9,又(1-0.19)P 0=P 0e -kt ,即0.81=e -kt ,所以-kt =ln 0.81=2ln 0.9=-10k ,所以t =10.答案:108.为研究西南高寒山区一种常见树的生长周期中前10年的生长规律,统计显示,生长4年的树高为73米,如图所示的散点图记录了样本树的生长时间t (年)与树高y (米)之间的关系.请你据此判断,在下列函数模型:①y =2t -a ;②y =a +log 2t ;③y =12t +a ;④y =t +a 中(其中a 为正的常实数),拟合生长年数与树高的关系最好的是________(填写序号),估计该树生长8年后的树高为________米.解析:由散点图的走势,知模型①不合适.曲线过点⎝ ⎛⎭⎪⎫4,73,则后三个模型的解析式分别为②y =13+log 2t ;③y =12t +13;④y =t +13,易知拟合最好的是②.将t =8代入②得8年后的树高为103米.答案:② 1039.声强级Y (单位:分贝)由公式Y =10lg ⎝ ⎛⎭⎪⎫I 10-12给出,其中I 为声强(单位:W/m 2).(1)平常人交谈时的声强约为10-6W/m 2,求其声强级;(2)一般常人能听到的最低声强级是0分贝,求能听到最低声强为多少? (3)比较理想的睡眠环境要求声强级Y ≤50分贝,已知熄灯后两位同学在宿舍说话的声强为5×10-7W/m 2,问这两位同学是否会影响其他同学休息?解:(1)当声强为10-6W/m 2时, 由公式Y =10lg ⎝ ⎛⎭⎪⎫I 10-12得Y =10lg ⎝ ⎛⎭⎪⎪⎫10-610-12=10lg 106=60(分贝). (2)当Y =0时,由公式Y =10lg ⎝ ⎛⎭⎪⎫I 10-12得10lg ⎝ ⎛⎭⎪⎫I 10-12=0.所以I 10-12=1,即I =10-12W/m 2,则常人能听到的最低声强为10-12W/m 2. (3)当声强为5×10-7W/m 2时,声强级Y =10lg ⎝ ⎛⎭⎪⎪⎫5×10-710-12=10lg(5×105)=50+10lg 5, 因为50+10lg 5>50,所以这两位同学会影响其他同学休息.10.某书商为提高某套丛书的销售量,准备举办一场展销会.据市场调查,当每套丛书售价定为x 元时,销售量可达到(15-0.1x )万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格,问:(1)每套丛书售价定为100元时,书商能获得的总利润是多少万元? (2)每套丛书售价定为多少元时,单套丛书的利润最大?解:(1)每套丛书售价定为100元时,销售量为15-0.1×100=5(万套),此时每套丛书的供货价格为30+105=32(元),所以书商所获得的总利润为5×(100-32)=340(万元).(2)每套丛书售价定为x 元时,由⎩⎪⎨⎪⎧15-0.1x >0,x >0,解得0<x <150.依题意,设单套丛书的利润为P ,则P =x -⎝ ⎛⎭⎪⎫30+1015-0.1x =x -100150-x -30,=-⎣⎢⎡⎦⎥⎤(150-x )+100150-x +120. 因为0<x <150,所以150-x >0,则(150-x )+100150-x≥2(150-x )·100150-x=2×10=20,当且仅当150-x =100150-x,即x =140时等号成立, 此时,P max =-20+120=100.所以每套丛书售价定为140元时,单套丛书的利润最大,最大值为100元.[B 级 综合练]11.某种热饮需用开水冲泡,其基本操作流程如下:①先将水加热到100 ℃,水温y (℃)与时间t (min)近似满足一次函数关系;②用开水将热饮冲泡后在室温下放置,温度y (℃)与时间t (min)近似满足的函数关系式为y =80⎝ ⎛⎭⎪⎫12t -a10+b (a ,b为常数).通常这种热饮在40 ℃时口感最佳.某天室温为20 ℃时,冲泡热饮的部分数据如图所示,那么按上述流程冲泡一杯热饮,并在口感最佳时饮用,最少需要的时间为( )A .35 minB .30 minC .25 minD .20 min解析:选C .由题意知,当0≤t ≤5时,函数图象是一条线段;当t ≥5时,函数的解析式为y =80⎝ ⎛⎭⎪⎫12t -a10+b .将点(5,100)和点(15,60)代入解析式可得⎩⎨⎧100=80⎝ ⎛⎭⎪⎫125-a10+b ,60=80⎝ ⎛⎭⎪⎫1215-a10+b ,解得a =5,b =20,故函数的解析式为y =80⎝ ⎛⎭⎪⎫12t -510+20,t≥5.令y =40,解得t =25,所以最少需要的时间为25 min.故选C .12.(2020·安徽淮北一中第五次月考)华罗庚是上世纪我国伟大的数学家,以华氏命名的数学科研成果有“华氏定理”“华氏不等式”“华王方法”等.他除了数学理论研究,还在生产一线大力推广了“优选法”和“统筹法”.“优选法”是指研究如何用较少的试验次数,迅速找到最优方案的一种科学方法.在当前防疫取得重要进展的时刻,为防范机场带来的境外输入,某机场海关在对入境人员进行检测时采用了“优选法”提高检测效率:每1 6人为一组,把每个人抽取的鼻咽拭子分泌物混合检查,如果为阴性则全部放行;若为阳性,则对该16人再次抽检确认感染者.某组16人中恰有一人感染(鼻咽拭子样本检验是阳性),若逐一检测可能需要15次才能确认感染者.现在先把这16人均分为2组,选其中一组8人的样本检查,若为阴性则认定在另一组;若为阳性则认定在本组.继续把认定的这组的8人均分两组,选其中一组4人的样本混合检查……以此类推,最终从这16人中认定那名感染者需要检测的次数为()A.3 B.4C.6 D.7解析:选B.先把这16人均分为2组,选其中一组8人的样本混合检查,若为阴性则认定在另一组;若为阳性则认定在本组,此时进行了1次检测.继续把认定的这组的8人均分两组,选其中一组4人的样本混合检查,若为阴性则认定在另一组;若为阳性则认定在本组,此时进行了2次检测.继续把认定的这组的4人均分两组,选其中一组2人的样本混合检查,若为阴性则认定在另一组;若为阳性则认定在本组,此时进行了3次检测.选认定的这组的2人中一人进行样本检查,若为阴性则认定是另一个人;若为阳性则认定为此人,此时进行了4次检测.所以,最终从这16人中认定那名感染者需要经过4次检测.故选B.13.某地下车库在排气扇发生故障的情况下测得空气中一氧化碳含量达到了危险状态,经抢修排气扇恢复正常.排气4分钟后测得车库内的一氧化碳浓度为64 ppm,继续排气4分钟后又测得浓度为32 ppm.由检验知该地下车库一氧化碳浓度y(ppm)与排气时间t(分钟)之间存在函数关系y=c(12)mt(c,m为常数).(1)mc的值为________;(2)若空气中一氧化碳浓度不高于0.5 ppm 为正常,则这个地下车库中的一氧化碳含量达到正常状态至少需排气________分钟.解析:(1)由题意可列方程组⎩⎪⎨⎪⎧64=c ⎝ ⎛⎭⎪⎫124m ,32=c ⎝ ⎛⎭⎪⎫128m ,两式相除,解得⎩⎨⎧c =128,m =14, 则mc =128×14=32.(2)由题意可列不等式128⎝ ⎛⎭⎪⎫1214t ≤0.5, 所以⎝ ⎛⎭⎪⎫1214t ≤⎝ ⎛⎭⎪⎫128,即14t ≥8,解得t ≥32. 故至少排气32分钟,这个地下车库中的一氧化碳含量才能达到正常状态. 答案:(1)32 (2)3214.某旅游景点预计2021年1月份起前x 个月的旅游人数的和p (x )(单位:万人)与x 的关系近似为p (x )=12x (x +1)·(39-2x )(x ∈N *,且x ≤12).已知第x个月的人均消费额q (x )(单位:元)与x 的近似关系是q (x )=⎩⎪⎨⎪⎧35-2x ,x ∈N *,且1≤x ≤6,160x,x ∈N * 且7≤x ≤12. (1)写出2021年第x 个月的旅游人数f (x )(单位:万人)与x 的函数关系式;(2)试问2021年第几个月的旅游消费总额最大?最大月旅游消费总额为多少元?解:(1)当x =1时,f (1)=p (1)=37,当2≤x ≤12,且x ∈N *时,f (x )=p (x )-p (x -1)=12x (x +1)(39-2x )-12x (x -1)(41-2x )=-3x 2+40x ,经验证x =1时也满足此式.所以f (x )=-3x 2+40x (x ∈N *,且1≤x ≤12).(2)第x (x ∈N *)个月的旅游消费总额为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学二次函数压轴题基本题型
在平面直角坐标系中,二次函数2
2y ax bx =++的图象与x 轴交于A (-3,0),B (1,0)两点,与y 轴交于
点C .(1)求这个二次函数的关系解析式;长度型:(2)点M 为直线AC 上方抛物线上一动点,过M 点作MN ∥y 轴交直线AC 于点N , 当点M 的坐标为多少时,线段MN 有最大值,并求出其最大值;
(3)点M 为直线AC 上方抛物线上一动点,过M 点作MN ∥y 轴交直线AC 于点N , 作ME ⊥AC 于点E ,当点M 的坐标为多少时,△MEN 的周长有最大值,并求出其最大值;
面积型:(4)点P 是直线AC 上方的抛物线上一动点,是否存在点P ,使△ACP 的面积最大?若存在,求出点P 的坐标;若不存在,说明理由
变式:点P 是直线AC 上方的抛物线上一动点,使△ACP 的面积为整数的点P 有几个,并说明理由;
(5)点Q 是直线AC 下方的抛物线上一动点,是否存在点Q ,使10ACQ
S =?若存在,求出点Q 的坐标;若
不存在,说明理由
(6)点Q 是直线AC 下方的抛物线上一动点,是否存在点Q ,使32ACQ
ACO
S S
=?若存在,求出点Q 的坐
标;若不存在,说明理由
变式:抛物线上是否存在点P ,使OPC
OPA
S
S
=,若存在,求出点P 的坐标,若不存在,说明理由
特殊三角形存在性:(7)在平面直角坐标系中,是否存在点Q ,使△BCQ 是等腰直角三角形?若存在,求出点Q 的坐标;若不存在,说明理由
(8)在抛物线的对称轴上是否存在点Q使△BCQ是等腰三角形?若存在,求出点Q的坐标;若不存在,说明理由;(等腰三角形:两圆一线)
(9)在抛物线的对称轴上是否存在点Q,使△ACQ为直角三角形;若存在,求出点Q的坐标;若不存在,说明理由;
几何最值型:(10)在抛物线的对称轴上是否存在点Q,使△BCQ的周长最小;若存在,求出点Q的坐标与周长最小值;若不存在,说明理由
(11
由;
(12)若D为OC的中点,P是抛物线对称轴上一动点,Q是x轴上一动点,当P、Q两点的坐标为多少时四边形CPQD的周长最小?并直接写出四边形CPQD周长的最小值;
相似存在性:(13)点Q是坐标轴上一动点,是否存在点Q,使以点B、O、Q为顶点的三角形与△AOC相似?若存在,求出点Q的坐标;若不存在,说明理由;
(14)点Q是抛物线上一动点,过点Q作QE垂直于x轴,垂足为E.是否存在点Q,使以点B、Q、E为顶点的三角形与△AOC相似?若存在,求出点Q的坐标;若不存在,说明理由;
角度问题:(15)抛物线上是否存在的点Q,使∠QCA=45°,若存在,求出Q点的坐标;若不存在,说明理由;
(16)抛物线上是否存在的点Q,使∠QCA=∠OCB,若存在,求出Q点的坐标;若不存在,说明理由;
*变式:抛物线上是否存在的点Q,使∠QCA+∠OCB =45°,若存在,求出Q点的坐标;若不存在,说明理由;
(17)在抛物线的对称轴上是否存在点Q到直线BC的距离与到x轴的距离相等?若存在求出点Q,若不存在请说明理由;(在抛物线的对称轴上是否存在点Q,使⊙Q与x轴和直线BC都相切?)
特殊四边形存在性问题:(18)点M为抛物线上一动点,过M点作MN∥y轴交直线AC于点N,当以O、C、M、N为顶点的四边形是平行四边形时,求出点M的坐标;若不存在,说明理由;
(19)点M为抛物线上一动点,在x轴上是否存在点Q,使以A、C、M、Q为顶点的四边形是平行四边形?若存在,求出点Q的坐标;若不存在,说明理由;
(20)点Q是抛物线上一动点,点M为抛物线对称轴上一动点,当以A、C、M、Q为顶点的四边形是平行四边形?,求出点Q的坐标;
(21)Q为抛物线的对称轴上一动点,点P在坐标平面内,若以A、C、P、Q为顶点的四边形为矩形,求Q 点的坐标;以A、C、P、Q为顶点的四边形能为正方形吗?若能,请直接写出此时Q点的坐标;(矩形存在性问题转化成直角三角形存在性问题)
(22)Q为抛物线上一动点,点P在坐标平面内,若四边形APCQ为菱形,求Q点的坐标;
(23)Q为抛物线的对称轴上一动点,点P在坐标平面内,若以A、C、P、Q为顶点的四边形为菱形,求Q 点的坐标;(菱形存在性问题转化成等腰三角形存在性问题)。