小学思维数学讲义:牛吃草问题(一)-含答案解析

合集下载

小学奥数之牛吃草问题(附含答案解析)

小学奥数之牛吃草问题(附含答案解析)

“牛吃草问题就是追及问题,牛吃草问题就是工程问题。

”英国大数学家牛顿曾编过这样一道数学题:牧场上有一片青草,每天都生长得一样快。

这片青草供给10头牛吃,可以吃22天,或者供给16头牛吃,可以吃10天,如果供给25头牛吃,可以吃几天?解题关键:牛顿问题,俗称“牛吃草问题”,牛每天吃草,草每天在不断均匀生长。

解题环节主要有四步:1、求出每天长草量;2、求出牧场原有草量;3、求出每天实际消耗原有草量4、最后求出可吃天数想:这片草地天天以同样的速度生长是分析问题的难点。

把10头牛22天吃的总量与16头牛10天吃的总量相比较,得到的10×22-16×10=60,是60头牛一天吃的草,平均分到(22-10)天里,便知是5头牛一天吃的草,也就是每天新长出的草。

求出了这个条件,把25头牛分成两部分来研究,用5头吃掉新长出的草,用20头吃掉原有的草,即可求出25头牛吃的天数。

解:新长出的草供几头牛吃1天:(10×22-16×1O)÷(22-1O)=(220-160)÷12=60÷12=5(头)这片草供25头牛吃的天数:(10-5)×22÷(25-5)=5×22÷20=5.5(天)答:供25头牛可以吃5.5天。

----------------------------------------------------------------“一堆草可供10头牛吃3天,这堆草可供6头牛吃几天?”这道题太简单了,一下就可求出:3×10÷6=5(天)。

如果我们把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了,因为草每天都在生长,草的数量在不断变化。

这类工作总量不固定(均匀变化)的问题就是牛吃草问题。

例1 牧场上一片青草,每天牧草都匀速生长。

这片牧草可供10头牛吃20天,或者可供15头牛吃10天。

5.1 牛吃草问题(一)

5.1 牛吃草问题(一)
草每天的减少量:(100-96)÷(6-4)=2(份) 原有草: 100+2×4=108(份)或96+2×6=108(份)
108÷(10+2)=9(天)
答:可供10头牛吃9天。
小结
“草减少型”具体解题步骤:
1)根据已知条件求出两个不同时间内草的总量; 2)草的减少速度=草的总量差÷时间差; 3)原草量=实际草的总量+草的减少速度×对应
已经有10头外来牛 在吃草
150÷10=15(头) 15-10=5(头) 答:可供5头牛吃10天。
即学即练 由于天气逐渐冷起来,牧场上的草不仅不长,反而
以固定的速度在减少。如果某块草地上的草可供25头牛 吃4天,或可供16头牛吃6天,那么可供多少头牛吃12天?
解:假设1头牛1天吃1份草。 25×4=100(份) 16×6=96(份)
解:假设1头牛1天吃1份草。
20×5=100(份) ……原草量-5天的减少量 16×6=96(份) ……原草量-6天的减少量 草每天的减少量: (100-96)÷(6-5)=4(份) 原草量: 100+4×5 =120(份) 或 96+4×6=120(份)
120份
4份/天
120份草可供(11+4) 头牛吃多少天?
草每天的生长量:(12×20-15×15)÷(20-15)=3(份)
原有草: 12×20-3×20=180(份)或15×15-3×15=180(份)
180÷(8+10-3)=12(天)
答:8头牛和40只羊一起吃12天。
知识点四:草减少型 例5:由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定
的速度在减少。如果某块草地上的草可供20头牛吃5天,或可供15头 牛吃6天,那么可供多少头牛吃10天?

牛吃草问题(讲义)

牛吃草问题(讲义)

牛吃草问题(讲义)一、教学目标1、知识与技能:(1)能够理解牛吃草问题的实质,掌握该类问题的解法。

(2)通过问题的解法,可以根据所给条件图示或思维图,finding the answer。

2、过程与方法:通过引领学生自主探究、合作学习等方式,激发学生的问题意识和探究欲望,培养学生的思维能力和解决问题的能力。

二、教学内容牛吃草问题的讲解三、教学方法1、解释法2、举例法3、归纳法四、教学过程Step1、引入(1)学生在小组中集思广益,思考有没有什么常识可以与牛吃草问题相关联。

比如:牛一定会一口一口地吃草,不会一口吃掉。

(2)老师引入牛吃草问题。

如果有一头牛在一片长满草的牧场上吃草,它平均每天可以吃掉牧场上草的90%。

那么如果这头牛吃了2天,牧场上还剩下多少草?Step2、探究(1)老师让学生分组探究。

思考:如果牛吃了1天,牧场上还剩下多少草?如果牛连续吃了两个周六(即2天),又会吃掉多少?如果吃了3天、4天呢?请你们探究该问题的解法。

(2)学生分享与总结。

学生展示自己的解法,并总结出如下规律:n 天后还剩1 ($ 1 \div 10 $) $\times 10 = 1$2 ($ 1 \div 10 $) $\times 9 = 0.9$3 ($ 1 \div 10 $) $\times 8 = 0.8$……n ($ 1 \div 10 $) $\times (10-n) $Step3、引申(1)如上所述,牧场的草只剩10%。

如果这时再入一只牛来吃草,那么还能支撑多少天?(2)如果现在牛吃1天最多能吃掉30%草,那么还能支撑多少天?Step4、总结回顾笔记,让学生总结解决牛吃草问题的方法。

五、教学总结本节课学习到了牛吃草问题。

引入问题后,老师呈现出其解决方式,学生自主学习和合作学习,掌握相关知识与技能。

通过此类问题的引导,学生可以从一系列看似简单的问题中,慢慢发展出自己的数学思维和解题方法,从而增加解决问题的能力。

牛吃草问题含例题答案讲解

牛吃草问题含例题答案讲解

小学数学牛吃草问题知识点总结: 牛吃草问题:牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。

典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。

由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。

小升初冲刺第2讲牛吃草问题基本公式:1) 设定一头牛一天吃草量为“1”2)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);3)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`4)吃的天数=原有草量÷(牛头数-草的生长速度);5)牛头数=原有草量÷吃的天数+草的生长速度。

例1、牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天。

问:这片牧草可供25头牛吃多少天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(200-150)÷(20-10)=5份10×20=200份……原草量+20天的生长量原草量:200-20×5=100 或150-10×5=100份15×10=150份……原草量+10天的生长量 100÷(25-5)=5天[自主训练] 牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(180-150)÷(20-10)=3份9×20=180份……原草量+20天的生长量原草量:180-20×3=120份或150-10×3=120份15×10=150份……原草量+10天的生长量 120÷(18-3)=8天例2、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少。

牛吃草讲义及练习答案

牛吃草讲义及练习答案

牛吃草讲义及练习答案牛吃草问题教学目标:1.理解牛吃草这类题目的解题步骤,掌握牛吃草问题的解题思路.2.初步了解牛吃草的变式题,会将一些变式题与牛吃草问题进行区别与联系知识点拨:英国科学家牛顿在他的《普通算术》一书中,有一道关于牛在牧场上吃草的问题,即牛在牧场上吃草,牧场上的草在不断的、均匀的生长.后人把这类问题称为牛吃草问题或叫做“牛顿问题”.“牛吃草”问题主要涉及三个量:草的数量、牛的头数、时间.难点在于随着时间的增长,草也在按不变的速度均匀生长,所以草的总量不定.“牛吃草”问题是小学应用题中的难点.解“牛吃草”问题的主要依据:①草的每天生长量不变;②每头牛每天的食草量不变;③草的总量=草场原有的草量+新生的草量,其中草场原有的草量是一个固定值④新生的草量=每天生长量⨯天数.同一片牧场中的“牛吃草”问题,一般的解法可总结为:⑴设定1头牛1天吃草量为“1”;⑵草的生长速度=(对应牛的头数⨯较多天数-对应牛的头数⨯较少天数)÷(较多天数-较少天数);⑶原来的草量=对应牛的头数⨯吃的天数-草的生长速度⨯吃的天数;⑷吃的天数=原来的草量÷(牛的头数-草的生长速度);⑸牛的头数=原来的草量÷吃的天数+草的生长速度.“牛吃草”问题有很多的变例,像抽水问题、检票口检票问题等等,只有理解了“牛吃草”问题的本质和解题思路,才能以不变应万变,轻松解决此类问题.例题精讲:板块一、一块地的“牛吃草问题”【例 1】青青一牧场,牧草喂牛羊;放牛二十七,六周全吃光。

改养廿三只,九周走他方;若养二十一,可作几周粮?(注:“廿”的读音与“念”相同。

“廿”即二十之意。

)【解说】题目翻译过来是:一牧场长满青草,27头牛6个星期可以吃完,或者23头牛9个星期可以吃完。

若是21头牛,要几个星期才可以吃完?(注:牧场的草每天都在生长)【解析】设1头牛1天的吃草量为“1”,27头牛吃6周共吃了276162⨯=份.第二⨯=份;23头牛吃9周共吃了239207种吃法比第一种吃法多吃了20716245-=份草,这45份草是牧场的草963-=周生长出来的,所以每周生长的草量为45315-⨯=.÷=,那么原有草量为:16261572供21头牛吃,若有15头牛去吃每周生长的草,剩下6头牛需要72612÷=(周)可将原有牧草吃完,即它可供21头牛吃12周.【巩固】牧场上长满牧草,每天牧草都匀速生长.这片牧场可供10头牛吃20天,可供15头牛吃10天.供25头牛可吃几天?【解析】设1头牛1天的吃草量为“1”,10头牛吃20天共吃了1020200⨯=份.第⨯=份;15头牛吃10天共吃了1510150一种吃法比第二种吃法多吃了20015050-=份草,这50份草是牧场的草201010-=天生长出来的,所以每天生长的草量为50105-⨯=.÷=,那么原有草量为:200520100供25头牛吃,若有5头牛去吃每天生长的草,剩下20头牛需要100205÷=(天)可将原有牧草吃完,即它可供25头牛吃5天.【例 2】 牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供多少头牛吃18周?【解析】 设1头牛1周的吃草量为“1”,草的生长速度为(239276)(96)15⨯-⨯÷-=,原有草量为(2715)672-⨯=,可供72181519÷+=(头)牛吃18周【巩固】 有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天.那么它可供几头牛吃20天?【解析】 设1头牛1天的吃草量为“1”,那么251015-=天生长的草量为1225241060⨯-⨯=,所以每天生长的草量为60154÷=;原有草量为:()24410200-⨯=.20天里,草场共提供草200420280+⨯=,可以让2802014÷=头牛吃20天.【巩固】 一牧场放牛58头,7天把草吃完;若放牛50头,则9天吃完.假定草的生长量每日相等,每头牛每日的吃草量也相同,那么放多少头牛6天可以把草吃完?【解析】设1头牛1天的吃草量为1个单位,则每天生长的草量为:(509587)(97)22⨯-⨯=,⨯-⨯÷-=,原有草量为:509229252 +⨯÷=(头)(252226)664【巩固】林子里有猴子喜欢吃的野果,23只猴子可在9周内吃光,21只猴子可在12周内吃光,问如果要4周吃光野果,则需有多少只猴子一起吃?(假定野果生长的速度不变)【解析】设一只猴子一周吃的野果为“1”,则野果的生长速度是(2112239)(129)15-⨯=,如果⨯-⨯÷-=,原有的野果为(2315)972要4周吃光野果,则需有7241533÷+=只猴子一起吃【例 3】由于天气逐渐冷起来,牧场上的草不仅不生长,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可以供多少头牛吃10天?【解析】设1头牛1天的吃草量为“1”,那么每天自然减少的草量为:()()+⨯=;201051502051566510⨯-⨯÷-=,原有草量为:()10天吃完需要牛的头数是:15010105÷-=(头).【巩固】由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少。

牛吃草问题--2024年六年级下册小升初数学思维拓展

牛吃草问题--2024年六年级下册小升初数学思维拓展

牛吃草问题【知识点归纳】牛顿问题的难点在于草每天都在不断生长,草的数量都在不断变化.解答这类题目的关键是想办法从变化中找出不变量,我们可以把总草量看成两部分的和,即原有的草量加新长的草量.显而易见,原有的草量是一定的,新长的草量虽然在变,但如果是匀速生长,我们也能找到另一个不变量﹣﹣每天(每周)新长出的草的数量.基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量.基本特点:原草量和新草生长速度是不变的;关键问题:确定两个不变的量.基本公式:生长量=(较长时间×长时间牛头数﹣较短时间×短时间牛头数)÷(长时间﹣短时间);原有草量=较长时间×长时间牛头数﹣较长时间×生长量;牛吃草问题常用到四个基本公式:牛吃草问题又称为消长问题,是17世纪英国伟大的科学家牛顿提出来的.典型牛吃草问题的条件是假设草多少天.由于吃的天数不同,草又是天天在生长的,所以草的存量随着吃的天数不断地变化.解决牛吃草问题常用到四个基本公式,分别是:(1)草的生长速度=(对应的牛头数×吃的较多天数﹣相应的牛头数×吃的较少天数)÷(吃的较多天数﹣吃的较少天数);(2)原有草量=牛头数×吃的天数﹣草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数﹣草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度.这四个公式是解决消长问题的基础.由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量.牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的.正是由于这个不变量,才能够导出上面的四个基本公式.这类问题的基本数量关系是:1、(牛的头数×吃草较多的天数﹣牛头数×吃草较少的天数)÷(吃的较多的天数﹣吃的较少的天数)=草地每天新长草量.2、牛的头数×吃草天数﹣每天新长量×吃草天数=草地原有的草.1.12头牛28天吃完10公顷牧场上的全部牧草,21头牛63天吃完30公顷牧场上的全部牧草,如果每公顷牧场上原有的牧草相等,且每公顷每天新生长的草量相同,那么多少头牛126天可以吃完72公顷牧场上的全部牧草?2.一片牧场,每天生长草的速度相同.这片牧场可供14头牛吃30天,或者可供70只羊吃16天.如果4头羊的吃草量相当于1头牛的吃草量.那么17头牛和20只羊一起吃这片牧场上的草,可以吃多少天?3.4头牛28天可以吃完10公顷牧场上全部牧草,7头牛63天可以吃完30公顷牧场上全部牧草,那么60头牛多少天可以吃完40公顷牧场上全部牧草?(每公顷牧场上原有草量相等,且每公顷牧场上每天生长草量相等)4.有一片草地,可供8只羊吃20天,或供14只羊吃10天.假设草每天的生长速度不变,现有羊若干只.吃了4天后又增加了6只,这样又吃了2天便将草吃完,原有羊多少只?5.某火车站在检票前若干分钟就有人排队,假设每分钟新增的旅客一样多,若同时开放4个检票口,则30分钟检票完毕,若同时开放5个检票口,则20分钟可检票完毕,若同时开放7个检票口,需要检票多少分钟?6.西安美术馆举办画展,美术馆9时开门,但早有人来等候.从第一个观众来到时起,每分钟来的观众数一样多.如果开3个入场口,9时9分就不再有人排队;如果开5个入场口,9时5分就不再有人排队.那么,第一个观众到达时是8时几分?7.有一片牧场,每天都在均匀地生长草,每头牛每天吃1份草.如果在牧场上放养18头牛,那么10天能把草吃完;如果只放养13头牛,那么15天能把草吃完.那么草地原有几份草?8.牧场上长满牧草,每天匀速生长,这片牧场可供10头牛吃20天,可供15头牛吃10天.这片牧场每天新生的草可供几头牛吃?这片牧场可供30头牛吃几天?9.一片匀速生长的牧草,可供9头牛吃12天,或可供8头牛吃16天.问可供13头牛吃多少天?要使这片牧草永远吃不完,至多可以放牧多少头牛?10.两个顽皮的孩子逆着自动扶梯的方向行走,在15秒钟里,男孩可走12级梯级,女孩可走10级梯级,结果男孩走了3分钟到达另一端,女孩走了4分钟到达另一端,该扶梯共多少级?11.进入冬季后,有一片牧场的草开始枯萎,因此草会均匀地减少,现在开始在这片牧场上放羊.如果放38只羊,需要25天把草吃完;如果放30只羊,需要30天把草吃完.(1)要放养多少只羊,12天才能把草吃完?(2)如果放养20只羊,这片牧场可以吃多少天?12.两个调皮的孩子逆着自动扶梯行驶的方向行走,从扶梯的一端到达另一端,男孩走了100秒,女孩走了300秒,已知在电梯静止时,男孩每秒走3米,女孩每秒走2米。

小学六年级奥数系列讲座:牛吃草问题(含答案解析)

小学六年级奥数系列讲座:牛吃草问题(含答案解析)

牛吃草问题牛吃草问题在普通工程问题的基础上,工作总量随工作时间均匀的变化,这样就增加了难度.牛吃草问题的关键是求出工作总量的变化率.下面给出几例牛吃草及其相关问题.1. 草场有一片均匀生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供21头牛吃几周?(这类问题由牛顿最先提出,所以又叫“牛顿问题”.)【分析与解】27头牛吃6周相当于27×6=162头牛吃1周时间,吃了原有的草加上6周新长的草;23头牛吃9周相当于23×9=207头牛吃1周时间,吃了原有的草加上9周新长的草;于是,多出了207-162=45头牛,多吃了9-6=3周新长的草.所以45÷3=15头牛1周可以吃1周新长出的草.即相当于给出15头牛专门吃新长出的草.于是27-15=12头牛6周吃完原有的草,现在有21头牛,减去15头吃长出的草,于是21-15=6头牛来吃原来的草;所以需要12×6÷6=12(周),于是2l头牛需吃12周.评注:我们求出单位“1”面积的草需要多少头年来吃,这样就把问题化归为一般工程问题了.一般方法:先求出变化的草相当于多少头牛来吃:(甲牛头数×时间甲-乙牛头数×时间乙)÷(时间甲-时间乙);再进行如下运算:(甲牛头数-变化草相当头数)×时问甲÷(丙牛头数-变化草相当头数)=时间丙.或者:(甲牛头数-变化草相当头数)×时间甲÷时间丙+变化草相当头数丙所需的头数.2.有三块草地,面积分别是4公顷、8公顷和10公顷.草地上的草一样厚而且长得一样快.第一块草地可供24头牛吃6周,第二块草地可供36头牛吃12周.问:第三块草地可供50头牛吃几周?【分析与解】我们知道24×6=144头牛吃一周吃2个(2公顷+2公顷周长的草).36×12=432头牛吃一周吃4个(2公顷+2公顷12周长的草).于是144÷2=72头牛吃一周吃2公顷+2公顷6周长的草.432÷4=108头牛吃一周吃2公顷+2公顷12周长的草.所以108-72=36头牛一周吃2公顷12—6=6周长的草.即36÷6=d头牛1周吃2公顷1周长的草.对每2公顷配6头牛专吃新长的草,则正好.于是4公顷,配4÷2×6=12头牛专吃新长的草,即24-12=12头牛吃6周吃完4公顷,所以1头牛吃6×1÷(4÷2)=36周吃完2公顷.所以10公顷,需要10÷2×6=30头牛专吃新长的草,剩下50-30=20头牛来吃10公顷草,要36 ×(10÷2)÷20=9周.于是50头牛需要9周吃10公顷的草.3.如图,一块正方形的草地被分成完全相等的四块和中间的阴影部分,已知草在各处都是同样速度均匀生长.牧民带着一群牛先在①号草地上吃草,两天之后把①号草地的草吃光.(在这2天内其他草地的草正常生长)之后他让一半牛在②号草地吃草,一半牛在③号草地吃草,6天后又将两个草地的草吃光.然后牧民把13的牛放在阴影部分的草地中吃草,另外号的牛放在④号草地吃草,结果发现它们同时把草场上的草吃完.那么如果一开始就让这群牛在整块草地上吃草,吃完这些草需要多少时间?【分析与解】一群牛,2天,吃了1块+1块2天新长的;一群牛,6天,吃了2块+2块2+6=8天新长的;即3天,吃了1块+1块8天新长的.即16群牛,1天,吃了1块1天新长的.又因为,13的牛放在阴影部分的草地中吃草,另外23的牛放在④号草地吃草,它们同时吃完.所以,③=2⨯阴影部分面积.于是,整个为19422+=块地.那么需要193624⨯=群牛吃新长的草,于是19 1262 -⨯⨯()=现在314⨯-().所以需要吃:19312130624-⨯⨯÷-()()=天.所以,一开始将一群牛放到整个草地,则需吃30天.4.现在有牛、羊、马吃一块草地的草,牛、马吃需要45天吃完,于是马、羊吃需要60天吃完,于是牛、羊吃需要90天吃完,牛、羊一起吃草的速度为马吃草的速度,求马、牛、羊一起吃,需多少时间?【分析与解】我们注意到:牛、马45天吃了原有+45天新长的草① →牛、马90天吃了2原有+90天新长的草⑤马、羊60天吃了原有+60天新长的草②牛、羊90天吃了原有+90天新长的草③↓↓↓马 90天吃了原有+90天新长的草④所以,由④、⑤知,牛吃了90天,吃了原有的草;再结合③知,羊吃了90天,吃了90天新长的草,所以,可以将羊视为专门吃新长的草.所以,②知马60天吃完原有的草,③知牛90天吃完原有的草.现在将牛、马、羊放在一起吃;还是让羊吃新长的草,牛、马一起吃原有的草.所需时间为l÷11()9060+=36天.所以,牛、羊、马一起吃,需36天.5. 有三片牧场,场上草长得一样密,而且长得一样快.它们的面积分别是133公顷、10公顷和24公顷.已知12头牛4星期吃完第一片牧场的草,21头牛9星期吃完第二片牧场的草,那么多少头牛18星期才能吃完第三片牧场的草?【分析与解】由于三片牧场的公顷数不一致,给计算带来困难,如果将其均转化为1公顷时的情形.所以表1中,3.6-0.9=2.7头牛吃4星期吃完l公顷原有的草,那么18星期吃完1公顷原有的草需要2.7÷(18÷4)=0.6头牛,加上专门吃新长草的O.9头牛,共需0.6+0.9=1.5头牛,18星期才能吃完1公顷牧场的草.所以需1.5×24=36头牛18星期才能吃完第三片牧场的草.。

六年级上册数学讲义-牛吃草问题-人教版(含答案)

六年级上册数学讲义-牛吃草问题-人教版(含答案)

牛吃草问题一、知识梳理英国科学家牛顿在他的《普通算术》一书中,有一道关于牛在牧场上吃草的问题,即牛在牧场上吃草,牧场上的草在不断的、均匀的生长.后人把这类问题称为牛吃草问题或叫做“牛顿问题”.“牛吃草”问题主要涉及三个量:草的数量、牛的头数、时间.难点在于随着时间的增长,草也在按不变的速度均匀生长,所以草的总量不定.“牛吃草”问题是小学应用题中的难点.解“牛吃草”问题的主要依据:① 草的每天生长量不变;② 每头牛每天的食草量不变;③ 草的总量=草场原有的草量+新生的草量,其中草场原有的草量是一个固定值④ 新生的草量=每天生长量⨯天数.二、方法归纳同一片牧场中的“牛吃草”问题,一般的解法可总结为:⑴设定 1 头牛 1 天吃草量为“1”;⑵草的生长速度=(对应牛的头数⨯较多天数-对应牛的头数⨯较少天数) ÷(较多天数-较少天数);⑶原来的草量=对应牛的头数⨯吃的天数-草的生长速度⨯吃的天数;⑸牛的头数=原来的草量÷吃的天数+草的生长速度.“牛吃草”问题有很多的变例,像抽水问题、检票口检票问题等等,只有理解了“牛吃草”问题的本质和解题思路,才能以不变应万变,轻松解决此类问题.三、课堂精讲(一)、草匀速增长,不同头数的牛吃同一片次的草:例1. 牧场上长满牧草,每天牧草都匀速生长,这片牧草可供10 头牛吃20 天,可供15 头牛吃10 天,那么,供25 头牛吃多少天?【规律方法】掌握牛吃草问题的解题步骤及解题思路。

【搭配课堂训练题】【难度分级】 A1.牧场上有一片牧草,供24 头牛6 周吃完,供18 头牛10 周吃完。

假定草的生长速度不变,那么供19 头牛几周吃完?2.牧场上有一片匀速生长的草地,可供 27 头牛吃 6 周,或供 23 头牛吃 9 周,那么它可供多少头牛吃 18 周?头牛吃几周?例2.一片牧草,每天生长的速度相同,现在这片牧草可供16 头牛吃20 天,或者可供80 只羊吃12 天,如果1 头牛的吃草量等于4 只羊的吃草量,那么10 头牛与60 只羊一起吃可吃多少天?【规律方法】理解把两种不同动物的吃草量转化为同一种动物的吃草量。

牛吃草问题(例题和解答)1

牛吃草问题(例题和解答)1

牛吃草问题(例题和解答)1首先,牛吃草问题的数学模型为:有一片牧场,原有草量为W,草匀速生长且每天生长的草量为x,牧场里有N头牛,每头牛每天吃的草量为1,牛吃完所有草的时间为t。

其次,牛吃草问题解题思路是:可以将牛吃草问题类比为追及问题,也就是牛在追草,当牛追上草的时候,也就是草被吃完的时候。

这时,原有草量就等于路程差,N头牛吃草的速度就为N×1=N,草生长的速度为x,结合追及问题的公式:路程差=速度差×时间,就有:W=(N-x)t。

再次,牛吃草问题的基本题型主要有以下三种:基本题型一:求时间。

【例题1】有一片草场,每天草在匀速增长。

这块牧场可供10头牛吃20天,或者供15头牛吃10天。

问:可供25头牛吃多少天?A.4B.5C.6D.7【答案】B【中公解析】根据题意,假设牧场原来有草W,每天生长的草量为x,每头牛每天吃的草量为1,草场能够供25头牛t天。

再结合这块牧场可供10头牛吃20天,或者供15头牛吃10天,可列式:W=(10-x)×20=(15-x)×10=(25-x)t;解方程可得:x=5,W=100,t=5,所以这片草场可供25头牛吃5天,故本题选B。

基本题型二:求数量。

【例题2】有一池泉水,泉底不断涌出泉水且涌出泉水速度不变。

如果用8台抽水机10小时能把水池抽干或用12台抽水机6小时能把水池抽干。

如果想要在5小时内把水池抽干,需要多少台抽水机?A.16B.15C.14D.13【答案】C【中公解析】根据题意,假设原来有泉水W,每小时涌出的泉水为x,用N台抽水机能在5小时内把水。

结合用8台抽水机10小时能把全池水抽干,用12台抽水机6小时能把全池水抽干,可列式:W=(8-x)×10=(12-x)×6=(N-x)×5,解得:x=2,W=60,N=14,所以用14台抽水机可以在5小时内把水池抽干,故本题选C。

基本题型三:极限情况。

小学“牛吃草”应用题详解

小学“牛吃草”应用题详解

小学“牛吃草”应用题详解“牛吃草”问题【含义】“牛吃草”问题是大科学家牛顿提出的问题,也叫“牛顿问题”。

这类问题的特点在于要考虑草边吃边长那个因素。

【数量关系】草总量=原有草量+草每天生长量×天数【解题思路和方法】解这类题的关键是求出草每天的生长量。

例1 一块草地,10头牛20天能够把草吃完,15头牛10天能够把草吃完。

问多少头牛5天能够把草吃完?解草是平均生长的,因此,草总量=原有草量+草每天生长量×天数。

求“多少头牛5天能够把草吃完”,确实是说5 天内的草总量要5 天吃完的话,得有多少头牛?设每头牛每天吃草量为1,按以下步骤解答:(1)求草每天的生长量因为,一方面20天内的草总量确实是10头牛20天所吃的草,即(1×10×20);另一方面,20天内的草总量又等于原有草量加上20天内的生长量,因此1×10×20=原有草量+20天内生长量同理1×15×10=原有草量+10天内生长量由此可知(20-10)天内草的生长量为1×10×20-1×15×10=50因此,草每天的生长量为50÷(20-10)=5(2)求原有草量原有草量=10天内总草量-10内生长量=1×15×10-5×10=100(3)求5 天内草总量5 天内草总量=原有草量+5天内生长量=100+5×5=125(4)求多少头牛5 天吃完草因为每头牛每天吃草量为1,因此每头牛5天吃草量为5。

因此5天吃完草需要牛的头数125÷5=25(头)答:需要5头牛5天能够把草吃完。

例2 一只船有一个漏洞,水以平均速度进入船内,发觉漏洞时差不多进了一些水。

假如有12个人淘水,3小时能够淘完;假如只有5人淘水,要10小时才能淘完。

求17人几小时能够淘完?解这是一道变相的“牛吃草”问题。

数学公开课体验课《牛吃草问题》讲义及答案

数学公开课体验课《牛吃草问题》讲义及答案

数学公开课体验课《牛吃草问题》学生讲义及答案【牛吃草问题】牛吃草问题的关键:原有草量、每天新长出草量学会通过画辅助图解决实际问题【例1】一块草地有草240份,每天长6份,如果每头牛每天吃1份草,那么:(1)要使草永远吃不完,那么最多放养(6)头牛;(2)10头牛,吃(60)天;18头牛,吃(20)天;(3)(24)头牛,吃12天;(14)头牛,吃24天【练1】一块草地有草150份,每天长2份,如果每头牛每天吃1份草,那么:(1)要使草永远吃不完,那么最多放养(2)头牛;(2)8头牛,吃(25)天;(3)17头牛,吃(10)天;(4)(12)头牛,吃15天;(5)(7)头牛,吃30天。

【例2】一片草地,每天都匀速长出青草。

现在这块草地可供37头牛吃7天,27头牛吃17天,可供21头牛吃多少天?解:设一头牛一天吃1份草37头牛7天吃:37×7=259(份)27头牛17天吃:27×17=459(份)每天长草:(459-259)÷(17-7)=20(份)原来有草:259-20×7=119(份)或459-17×7=119(份)能吃:119÷(21-20)=119(天)答:那么可供21头牛吃119天。

【练2】有一个牧区长满草,每天匀速生长。

这个牧区的草可供27头牛食用6周,或供23头牛食用9周,可供多少头牛食用12周?(2014广东公务员考试)解:假设一头牛一周吃草量是1份,则草的生长速度:(23×9-27×6)÷(9-6)=(207-162)÷3=15(份)原有的草量为:27×6-6×15=72(份)能吃:72÷(21-15)=12(周)答:那么可供21头牛吃12周。

精选牛吃草问题(含例题、答案、讲解)

精选牛吃草问题(含例题、答案、讲解)

小学数学牛吃草问题知识点总结:牛吃草问题:牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。

典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。

由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。

小升初冲刺第2讲牛吃草问题基本公式:1) 设定一头牛一天吃草量为“1”2)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);3)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`4)吃的天数=原有草量÷(牛头数-草的生长速度);5)牛头数=原有草量÷吃的天数+草的生长速度。

例1、牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天。

问:这片牧草可供25头牛吃多少天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(200-150)÷(20-10)=5份10×20=200份……原草量+20天的生长量原草量:200-20×5=100 或150-10×5=100份15×10=150份……原草量+10天的生长量 100÷(25-5)=5天[自主训练] 牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(180-150)÷(20-10)=3份9×20=180份……原草量+20天的生长量原草量:180-20×3=120份或150-10×3=120份15×10=150份……原草量+10天的生长量 120÷(18-3)=8天例2、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少。

五年级下册数学思维拓展训练:牛吃草问题

五年级下册数学思维拓展训练:牛吃草问题
(207-162)÷(9-6)=15份 原草量:
162-6×15=72份 或 207-9×15 =72份
72份
15份
( )头
吃18周?
15头

72份草可供几头牛吃18周?
72÷18=4 (头)
4+15=19(头)
答:可供19头牛吃18周。
“草增加型”具体解题步骤:
1)根据已知条件求出两个不同时间内草的总量; 2)草的生长速度=草的总量差÷时间差; 3)原草量=实际草的总量-草的生长速度×对应
生长时间; 4)解决问题
时间=原草量÷(牛的头数-草的生长速度) 牛的头数=原草量÷时间+草的生长速度
知识点二:草吃不完型 例3:有一片牧场,24头牛6天可以将草吃完,21
头牛8天可以将草吃完,要使牧草永远吃不完,至多 可以放多少头牛?
解:假设1头牛1天吃1份草。 24×6=144份……原草量+6天的生长量 21×8=168份……原草量+8天的生长量
“牛吃草问题”基本的类型:
1.草增加型 2.草吃不完型 3.吃草动物不同型 4.草减少型 5.牛头数变化型
1、牛吃草问题(一)
“牛吃草问题”的特点:
随着时间的变化,草的总量也在变化着。
牧场上原有的草量 新长的草量 注意:一般将一头牛一天(周)的吃草量设为“1”。
求解步骤:
1.草每天(周)的生长量; 2.牧场上原有的草量; 3.依题意解答。
知识点一:草增加型 例1:牧场上有一片青草,每天匀速生长。这片青
只羊吃10天。假设草的每天生长速度不变,现有羊 若干只,吃了4天后又增加了6只,这样又吃了2天 便将草吃完,问原有羊多少只?
若不增加6只羊,原有的这群羊在4+2=6天内共吃草 120+2×6 -6×2 =120份

牛吃草讲义及练习答案

牛吃草讲义及练习答案

牛吃草问题教学目标:1.理解牛吃草这类题目得解题步骤,掌握牛吃草问题得解题思路、2.初步了解牛吃草得变式题,会将一些变式题与牛吃草问题进行区别与联系知识点拨:英国科学家牛顿在她得《普通算术》一书中,有一道关于牛在牧场上吃草得问题,即牛在牧场上吃草,牧场上得草在不断得、均匀得生长.后人把这类问题称为牛吃草问题或叫做“牛顿问题".“牛吃草”问题主要涉及三个量:草得数量、牛得头数、时间.难点在于随着时间得增长,草也在按不变得速度均匀生长,所以草得总量不定.“牛吃草”问题就是小学应用题中得难点.解“牛吃草”问题得主要依据:①草得每天生长量不变;②每头牛每天得食草量不变;③草得总量草场原有得草量新生得草量,其中草场原有得草量就是一个固定值④新生得草量每天生长量天数。

同一片牧场中得“牛吃草”问题,一般得解法可总结为:⑴设定1头牛1天吃草量为“1";⑵草得生长速度(对应牛得头数较多天数对应牛得头数较少天数)(较多天数较少天数);⑶原来得草量对应牛得头数吃得天数草得生长速度吃得天数;⑷吃得天数原来得草量(牛得头数草得生长速度);⑸牛得头数原来得草量吃得天数草得生长速度。

“牛吃草”问题有很多得变例,像抽水问题、检票口检票问题等等,只有理解了“牛吃草”问题得本质与解题思路,才能以不变应万变,轻松解决此类问题.例题精讲:板块一、一块地得“牛吃草问题"【例 1】青青一牧场,牧草喂牛羊;放牛二十七,六周全吃光。

改养廿三只,九周走她方;若养二十一,可作几周粮?(注:“廿”得读音与“念"相同。

“廿”即二十之意、)【解说】题目翻译过来就是:一牧场长满青草,27头牛6个星期可以吃完,或者23头牛9个星期可以吃完、若就是21头牛,要几个星期才可以吃完?(注:牧场得草每天都在生长)【解析】设1头牛1天得吃草量为“1”,27头牛吃6周共吃了份;23头牛吃9周共吃了份.第二种吃法比第一种吃法多吃了份草,这45份草就是牧场得草周生长出来得,所以每周生长得草量为,那么原有草量为:、供21头牛吃,若有15头牛去吃每周生长得草,剩下6头牛需要(周)可将原有牧草吃完,即它可供21头牛吃12周、【巩固】牧场上长满牧草,每天牧草都匀速生长。

牛吃草问题(含例题、答案、讲解)

牛吃草问题(含例题、答案、讲解)

小学数学牛吃草问题知识点总结牛吃草问题:牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。

典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。

由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。

小升初冲刺第2讲牛吃草问题基本公式:1)设定一头牛一天吃草量为“ 1”2)草的生长速度=(对应的牛头数X吃的较多天数一相应的牛头数X吃的较少天数)十(吃的较多天数一吃的较少天数);3)原有草量=牛头数X吃的天数一草的生长速度X吃的天数;'4)吃的天数=原有草量十(牛头数—草的生长速度);5)牛头数=原有草量十吃的天数+草的生长速度。

例1、牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天。

问:这片牧草可供25头牛吃多少天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(200-150)-(20-10)=5 份10X 20=200份……原草量+20天的生长量原草量:200-20 X 5=100 或150-10 X 5=100份15X 10=150份……原草量+10天的生长量100 -(25-5 )=5天[自主训练]牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(180-150)-(20-10)=3 份9X 20=180份……原草量+20天的生长量原草量:180-20 X 3=120份或150-10 X 3=120 份15X 10=150份……原草量+10天的生长量120 -(18-3)=8天例2、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少。

已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天。

牛吃草问题讲义__一

牛吃草问题讲义__一

牛吃草问题牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。

典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。

由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。

“牛吃草”问题主要涉及三个量:草的数量、牛的头数、时间。

难点在于随着时间的增长,草也在按不变的速度均匀生长,所以草的总量不定。

“牛吃草”问题是小学应用题中的难点.解“牛吃草”问题的主要依据:①草的每天生长量不变;②每头牛每天的食草量不变;③草的总量=草场原有的草量+新生的草量,其中草场原有的草量是一个固定值④新生的草量=每天生长量⨯天数.同一片牧场中的“牛吃草”问题,一般的解法可总结为:⑴设定1头牛1天吃草量为“1”;⑵草的生长速度=(对应牛的头数⨯较多天数-对应牛的头数⨯较少天数)÷(较多天数-较少天数);⑶原来的草量=对应牛的头数⨯吃的天数-草的生长速度⨯吃的天数;⑷吃的天数=原来的草量÷(牛的头数-草的生长速度);⑸牛的头数=原来的草量÷吃的天数+草的生长速度.“牛吃草”问题有很多的变例,像抽水问题、检票口检票问题等等,只有理解了“牛吃草”问题的本质和解题思路,才能以不变应万变,轻松解决此类问题.题型1、一块地的“牛吃草问题”1、牧场上长满牧草,每天牧草都匀速生长.这片牧场可供10头牛吃20天,可供15头牛吃10天.供25头牛可吃几天?【解析】设1头牛1天的吃草量为“1”,10头牛吃20天共吃了1020200⨯=份;15头牛吃10天共吃了1510150-=份草,这⨯=份.第一种吃法比第二种吃法多吃了2001505050份草是牧场的草201010÷=,那么原-=天生长出来的,所以每天生长的草量为50105有草量为:200520100-⨯=.供25头牛吃,若有5头牛去吃每天生长的草,剩下20头牛需要100205÷=(天)可将原有牧草吃完,即它可供25头牛吃5天.2、由于天气逐渐变冷,牧场上的草每天以均匀的速度减少.经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天.那么,可供11头牛吃几天?【解析】设1头牛1天的吃草量为“1”,651⨯-⨯=,-=天自然减少的草量为2051664原有草量为:()+=;所以可供11 2045120+⨯=。

小学五年级数学思维专题训练—牛吃草问题(含答案解析)

小学五年级数学思维专题训练—牛吃草问题(含答案解析)

小学五年级数学思维专题训练—牛吃草问题1、牧场上的青草每天都匀速生长。

这片青草可供27头牛吃6周,或者供23头牛吃9周。

那么,这片青草可供21头牛吃多少周?2、经测算,地球上的资源可供100亿人生活100年,或可供80亿人生活300年。

假设地球上新生资源的生长速度是一定的,那么为了使人类有不断发展的潜力,地球上最多能养活多少亿人?3、一只船被发现漏水时,已经进了一些水,水均匀进入船内。

如果10人淘水,3小时淘完;如果5人淘水,8小时淘完。

如果要求2小时淘完,需要安排多少人淘水?4、某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多。

从开始检票到等候检票的的队伍消失,若同时开5个检票口则需要30分钟,若同时开6个检票口则需要20分钟。

如果要使队伍10分钟内消失,至少需要同时开多少个检票口?5、某超市平均每消失有60个人排队付款,每一个收银台每小时能应付80人,某天某时段内,该超市只有一个收银台工作,付款开始4小时就没有顾客排队;如果当时有两个收银台工作,那么付款开始多少小时就没有人排队?6、有一片草场,草每天的生长速度相同。

若14头牛30天可将草吃完,70只羊16天也可将草吃完(4只羊一天的吃草量相当于1头牛一天的吃草量)。

那么,17头牛和20头羊多少天可将草吃完?7、2006年夏,我国某地区遭遇了严重干旱,政府为了解决村民饮水问题,在山下的一眼泉水旁修了一个蓄水池,每小时有40立方米泉水注入池中。

第一周开动5台抽水机2.5小时就把一池水抽完,接着第二周开动8台抽水机1.5小时就把一池水抽完。

后来由于旱情严重,开动13台抽水机同时抽水,请问几小时可以把这池水抽完?8、某个售票处,在卖票之前,就已经有人排队。

到开始卖票时,已经排了75人,卖票后,由于每分钟来买票的人数一样多,因此,一个窗口花15分钟才不再有人排队,如果开两个窗口,则经过5分钟不再有人排队。

如果开三个窗口,则经过几分钟不再有人排队?9、李大爷在草地上放羊一群牛,草地每天均匀生长。

牛吃草问题(含例题、答案、讲解)

牛吃草问题(含例题、答案、讲解)
2*20*10=400
400-100=300
300/20=15
100+15*4=160
160/(4*10)=4
(1)因为草量=原有草量+新长出的草量,而且草量是均匀增长的。
所以对应的牛头数X吃的较多天数”就代表了第一次情况下的总草量,即为:
吃的较多天数时的总草量=草地原有草量+草的生长速度*较多天数时的时间。
5*40=200;6*30=180
200-180=20
每天长的草:20/(40-30)=2
原有草:200-2*40=120
4*30=120,30*2=6060/4=15天
3,假设地球上新增长资源的增长速度是一定的,照此推算,地球上的资源可供
1 1 0亿人生活90年,或可供90亿人生活21 0年,为了人类不断繁衍,那么地球 最多可以养活多少亿人
小升初冲刺第2讲
牛吃草问题
基本公式:
1)设定一头牛一天吃草量为“T
2)草的生长速度=(对应的牛头数X吃的较多天数一相应的牛头数X吃的较少
天数)*(吃的较多天数一吃的较少天数);
3) 原有草量=牛头数X吃的天数一草的生长速度X吃的天数;'
4) 吃的天数=原有草量十(牛头数—草的生长速度);
5)牛头数=原有草量十吃的天数+草的生长速度。
=3份
9X20=180份……原草量+20天的生长量原草量:180-20X3=120份或150-10
X3=120份
15X10=150份……原草量+10天的生长量120-(18-3)=8天
例2、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少。
已知某块
草地上的草可供20头牛吃5天,或可供15头牛吃6天。照此计算,可供多少头 牛吃10天

牛吃草问题详解

牛吃草问题详解

牛吃草问题详解牛吃草问题学习资料。

一、基本公式。

1. 设定一头牛一天吃草量为“1”。

2. 草的生长速度=(对应的牛头数×吃的较多天数 - 相应的牛头数×吃的较少天数)÷(吃的较多天数 - 吃的较少天数)。

3. 原有草量 = 牛头数×吃的天数 - 草的生长速度×吃的天数。

4. 吃的天数 = 原有草量÷(牛头数 - 草的生长速度)。

5. 牛头数 = 原有草量÷吃的天数+草的生长速度。

二、例题解析。

(一)基础题型。

例1。

有一片牧场,草每天都在匀速生长(草每天增长量相等),如果放牧24头牛,则6天吃完牧草;如果放牧21头牛,则8天吃完牧草。

设每头牛每天吃草的量是相等的,问:如果放牧16头牛,几天可以吃完牧草?要使牧草永远吃不完,最多放牧多少头牛?解析:1. 首先求草的生长速度:- 设每头牛每天吃草量为1份。

- 24头牛6天的吃草量为24×6 = 144份。

- 21头牛8天的吃草量为21×8=168份。

- 草的生长速度(168 - 144)÷(8 - 6)=12份/天。

2. 然后求原有草量:- 原有草量=24×6-12×6 = 72份。

3. 计算16头牛吃完牧草的天数:- 吃的天数=72÷(16 - 12)=18天。

4. 要使牧草永远吃不完,那么牛吃草的速度最多等于草生长的速度,所以最多放牧12头牛。

例2。

牧场上长满牧草,每天牧草都匀速生长。

这片牧场可供10头牛吃20天,可供15头牛吃10天。

供25头牛可吃几天?解析:1. 求草的生长速度:- 设每头牛每天吃草量为1份。

- 10头牛20天吃草量10×20 = 200份。

- 15头牛10天吃草量15×10 = 150份。

- 草的生长速度(200 - 150)÷(20 - 10)=5份/天。

2. 求原有草量:- 原有草量=10×20 - 5×20=100份。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

牛吃草问题(一)1. 理解牛吃草这类题目的解题步骤,掌握牛吃草问题的解题思路.2. 初步了解牛吃草的变式题,会将一些变式题与牛吃草问题进行区别与联系英国科学家牛顿在他的《普通算术》一书中,有一道关于牛在牧场上吃草的问题,即牛在牧场上吃草,牧场上的草在不断的、均匀的生长.后人把这类问题称为牛吃草问题或叫做“牛顿问题”.“牛吃草”问题主要涉及三个量:草的数量、牛的头数、时间.难点在于随着时间的增长,草也在按不变的速度均匀生长,所以草的总量不定.“牛吃草”问题是小学应用题中的难点.解“牛吃草”问题的主要依据:① 草的每天生长量不变;② 每头牛每天的食草量不变;③ 草的总量=草场原有的草量+新生的草量,其中草场原有的草量是一个固定值④ 新生的草量=每天生长量⨯天数.同一片牧场中的“牛吃草”问题,一般的解法可总结为:⑴设定1头牛1天吃草量为“1”;⑵草的生长速度=(对应牛的头数⨯较多天数-对应牛的头数⨯较少天数)÷(较多天数-较少天数); ⑶原来的草量=对应牛的头数⨯吃的天数-草的生长速度⨯吃的天数;⑷吃的天数=原来的草量÷(牛的头数-草的生长速度);⑸牛的头数=原来的草量÷吃的天数+草的生长速度.“牛吃草”问题有很多的变例,像抽水问题、检票口检票问题等等,只有理解了“牛吃草”问题的本质和解题思路,才能以不变应万变,轻松解决此类问题.模块一、一块地的“牛吃草问题”【例 1】 牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供多少头牛吃18周?【考点】牛吃草问题 【难度】3星 【题型】解答【关键词】对比思想方法【解析】 设1头牛1周的吃草量为“1”,草的生长速度为(239276)(96)15⨯-⨯÷-=,原有草量为(2715)672-⨯=,可供72181519÷+=(头)牛吃18周【答案】19头牛【巩固】 有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天.那么它可供几头牛吃20天?【考点】牛吃草问题 【难度】3星 【题型】解答【关键词】对比思想方法【解析】 设1头牛1天的吃草量为“1”,那么251015-=天生长的草量为1225241060⨯-⨯=,所以每天生长的草量为60154÷=;原有草量为:()24410200-⨯=.20天里,草场共提供草200420280+⨯=,可以让2802014÷=头牛吃20天.【答案】14头牛【巩固】 牧场有一片青草,每天长势一样,已知70头牛24天把草吃完,30头牛60天把草吃完,则 头例题精讲 知识精讲教学目标牛96天可以把草吃完.【考点】牛吃草问题 【难度】3星 【题型】填空【关键词】湖北省,创新杯,对比思想方法【解析】 设1头牛1天的吃草量为“1”,那么每天新生长的草量为()()103060702460243⨯-⨯÷-=,牧场原有草量为10306016003⎛⎫-⨯= ⎪⎝⎭,要吃96天,需要10160096203÷+=(头)牛. 【答案】20头牛【巩固】 一牧场放牛58头,7天把草吃完;若放牛50头,则9天吃完.假定草的生长量每日相等,每头牛每日的吃草量也相同,那么放多少头牛6天可以把草吃完?【考点】牛吃草问题 【难度】3星 【题型】解答【关键词】对比思想方法【解析】 设1头牛1天的吃草量为1个单位,则每天生长的草量为:(509587)(97)22⨯-⨯÷-=,原有草量为:509229252⨯-⨯=,(252226)664+⨯÷=(头)【答案】64头牛【例 2】 青青一牧场,牧草喂牛羊; 放牛二十七,六周全吃光。

改养廿三只,九周走他方;若养二十一,可作几周粮?(注:“廿”的读音与“念”相同。

“廿”即二十之意。

)题目翻译过来是:一牧场长满青草,27头牛6个星期可以吃完,或者23头牛9个星期可以吃完。

若是21头牛,要几个星期才可以吃完?(注:牧场的草每天都在生长)【考点】牛吃草问题 【难度】3星 【题型】解答【关键词】对比思想方法【解析】 设1头牛1天的吃草量为“1”,27头牛吃6周共吃了276162⨯=份;23头牛吃9周共吃了239207⨯=份.第二种吃法比第一种吃法多吃了20716245-=份草,这45份草是牧场的草963-=周生长出来的,所以每周生长的草量为45315÷=,那么原有草量为:16261572-⨯=.供21头牛吃,若有15头牛去吃每周生长的草,剩下6头牛需要72612÷=(周)可将原有牧草吃完,即它可供21头牛吃12周.【答案】12周【巩固】 牧场上长满牧草,每天牧草都匀速生长.这片牧场可供10头牛吃20天,可供15头牛吃10天.供25头牛可吃几天?【考点】牛吃草问题 【难度】3星 【题型】解答【关键词】对比思想方法【解析】 设1头牛1天的吃草量为“1”,10头牛吃20天共吃了1020200⨯=份;15头牛吃10天共吃了1510150⨯=份.第一种吃法比第二种吃法多吃了20015050-=份草,这50份草是牧场的草201010-=天生长出来的,所以每天生长的草量为50105÷=,那么原有草量为:200520100-⨯=.供25头牛吃,若有5头牛去吃每天生长的草,剩下20头牛需要100205÷=(天)可将原有牧草吃完,即它可供25头牛吃5天.【答案】5天【例 3】 由于天气逐渐冷起来,牧场上的草不仅不生长,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可以供多少头牛吃10天?【考点】牛吃草问题 【难度】3星 【题型】解答【关键词】对比思想方法【解析】 设1头牛1天的吃草量为“1”,那么每天自然减少的草量为:()()2051566510⨯-⨯÷-=,原有草量为:()20105150+⨯=;10天吃完需要牛的头数是:15010105÷-=(头).【答案】5头【巩固】 由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少。

如果某块草地上的草可供25头牛吃4天,或可供16头牛吃6天,那么可供多少头牛吃12天?【考点】牛吃草问题 【难度】3星 【题型】解答【关键词】对比思想方法【解析】 设1头牛1天吃的草为“1”。

牧场上的草每天自然减少 (254166)(64)2⨯-⨯÷-=;原来牧场有草(252)4108+⨯=,12天吃完需要牛的头数是:1081227÷-=(头)或(108122)127-⨯÷=(头)。

【答案】7头【例 4】 由于天气逐渐变冷,牧场上的草每天以均匀的速度减少.经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天.那么,可供11头牛吃几天?【考点】牛吃草问题 【难度】3星 【题型】解答【关键词】对比思想方法【解析】 设1头牛1天的吃草量为“1”,651-=天自然减少的草量为2051664⨯-⨯=,原有草量为:()2045120+⨯=.若有11头牛来吃草,每天草减少11415+=;所以可供11头牛吃120158÷=(天).【答案】8天【巩固】 由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少。

如果某块草地上的草可供25头牛吃4天,或可供16头牛吃6天,那么可供10头牛吃多少天?【考点】牛吃草问题 【难度】3星 【题型】解答【关键词】对比思想方法【解析】 设1头牛1天吃的草为“1”。

牧场上的草每天自然减少 (254166)(64)2⨯-⨯÷-=原来牧场有草(252)4108+⨯=可供10头牛吃的天数是:108(102)9÷+=(天)。

【答案】9天模块二、牛羊一起吃草的“牛吃草问题”【例 5】 一块匀速生长的草地,可供16头牛吃20天或者供100只羊吃12天.如果一头牛一天吃草量等于5只羊一天的吃草量,那么这块草地可供10头牛和75只羊一起吃多少天?【考点】牛吃草问题 【难度】4星 【题型】解答【关键词】对比思想方法【解析】 设1头牛1天的吃草量为“1”,由于一头牛一天吃草量等于5只羊一天的吃草量,所以100只羊吃12天相当于20头牛吃12天.那么每天生长的草量为()()16202012201210⨯-⨯÷-=,原有草量为:()161020120-⨯=.10头牛和75只羊1天一起吃的草量,相当于25头牛一天吃的草量;25头牛中,若有10头牛去吃每天生长的草,那么剩下的15头牛需要120158÷=天可以把原有草量吃完,即这块草地可供10头牛和75只羊一起吃8天.【答案】8天【巩固】 有一片草场,草每天的生长速度相同。

若14头牛30天可将草吃完,70只羊16天也可将草吃完(4只羊一天的吃草量相当于1头牛一天的吃草量)。

那么,17头牛和20只羊多少天可将草吃完?【考点】牛吃草问题 【难度】4星 【题型】解答【关键词】希望杯,六年级,二试,第13题,对比思想方法【解析】 “4只羊一天的吃草量相当于1头牛一天的吃草量”,所以可以设一只羊一天的食量为1,那么14头牛30天吃了144301680⨯⨯=单位草量,而70只羊16天吃了16701120⨯=单位草量,所以草场在每天内增加了(16801120)(3016)40-÷-=草量,原来的草量为11204016480-⨯=草量,所以如果安排17头牛和20只羊,即每天食草88草量,经过480(8840)10÷-=天,可将草吃完。

【答案】10天【巩固】 一片牧草,每天生长的速度相同。

现在这片牧草可供20头牛吃12天,或可供60只羊吃24天。

如果1头牛的吃草量等于4只羊的吃草量,那么12头牛与88只羊一起吃可以吃几天?【考点】牛吃草问题 【难度】4星 【题型】解答【关键词】对比思想方法【解析】设1头牛1天的吃草量为“1”,60只羊的吃草量等于15头牛的吃草量,88只羊的吃草量等于22头牛的吃草量,所以草的生长速度为(15242012)(2412)10⨯-⨯÷-=,原有草量为(2010)12120-⨯=,12头牛与88只羊一起吃可以吃120(122210)5÷+-=(天)【答案】5天【巩固】一片茂盛的草地,每天的生长速度相同,现在这片青草16头牛可吃15天,或者可供100只羊吃6天,而4只羊的吃草量相当于1头牛的吃草量,那么8头牛与48只羊一起吃,可以吃多少天?【考点】牛吃草问题【难度】4星【题型】解答【关键词】对比思想方法【解析】设1头牛1天的吃草量为“1”,摘录条件,将它们转化为如下形式方便分析16头牛15天16×15=240:原有草量+15天生长的草量100只羊(25头牛)6天25×6=150:原有草量+6天生长的草量从上易发现:1天生长的草量=10;那么原有草量:150-10×6=90;8头牛与48只羊相当于20头牛的吃草量,其中10头牛去吃新生草,那么剩下的10头牛吃原有草,90只需9天,所以8头牛与48只羊一起吃,可以吃9天。

相关文档
最新文档