平行四边形 经典例题
平行四边形性质经典例题及练习
平行四边形性质经典例题及练习(4)一、平行四边形的性质: 1、平行四边形对边相等且平行 2、平行四边形对角相等,邻角互补 3、平行四边形对角线互相平分 二、典型例题 1、角度的计算例1 、 一个平行四边形的一个内角是它邻角的3倍,那么这个平行四边形的四个内角各是多少度?解 设平行四边形的一个内角的度数为x ,则它的邻角的度数为3x ,根据题意,得x+3x=180,解得x=45,∴ 3x=135∴这个平行四边形的四个内角的度数分别为45°,135°,45°,135°. 练习:(1).在平行四边形ABCD 中,∠A : ∠B=3:2,则∠C=____ 度, ∠D=_______度. (2)平行四边形 ABCD 中,∠A+∠C=200°.则:∠A= _______,∠B= _____ . (3) 在平行四边形ABCD 中,∠B -∠A=20°,则∠D 的度数是 。
2、边长及周长计算 例2 已知:如图,ABCD 的周长为60cm ,对角线AC 、BD 相交于点O ,的周长比 的 周长多8cm ,求这个平行四边形各边的长. (答案:19cm ,11cm ,19cm ,11cm .)说明:学习本题可以得出两个结论:(1)平行四边形两邻边之和等于平行四边形周长的一半.(2)平行四边形被对角线分成四个小三角形,相邻两个三角形周长之差等于邻边之差. 练习:(1)已知:平行四边形一边AB=12 cm,它的长是周长的1/6,则BC=______ cm,CD=______ cm.(2)已知平行四边形的周长是100cm, AB:BC=4 : 1,则AB 的长是______.(3)已知平行四边形的面积是144,相邻两边上的高分别为8和9,则它的周长是______________.(4)用20米长的一铁丝围成一个平行四边形,使长边与短边的比为3:2,则它的边长为________短边长为__________.3、面积计算例3、已知:如图,ABCD 的周长是,由钝角顶点D 向AB ,BC 引两条高DE ,DF ,且,.求这个平行四边形的面积.解答:设. ∵ 四边形ABCD 为平行四边形,∴.又∵四边形ABCD 的周长为36,∴ ① ∵, ∴∴ ② 解由①,②组成的方程组,得.∴.说明:本题考查平行四边形的性质及面积公式,解题关键是把几何问题转化为方程组的问题. 练习:1、平行四边形两邻边分别是4和6,其中一边上的高是3,则平行四边形的面积是____________.2、如图,中,对角线AC 长为10 cm ,∠CAB =30°,AB 长为6 cm ,则的面积是____________.3、平行四边形邻边长是4 cm 和8cm ,一边上的高是5 cm ,则另一边上的高是____________. 4、在中,∠A =30°,AB =7 cm ,AD =6 cm ,则=______.5、如图,平行四边形ABCD 的周长为50,其中AB=15,∠ABC=60°,求平行四边形面积。
特殊平行四边形经典例题汇编(青岛版)
特殊平行四边形典型习题汇编一1、已知:如图,AC ,BD 是矩形ABCD 的两条对线,AC ,BD 相交于点O ,∠AOD =120°,AB =2.5cm.求矩形对角线的长.2、若已知∠CAB=40°,则∠OCB= _____, ∠OBA= _______,∠AOB=( ) ∠AOD=( ); 若已知∠DOC=120°,AD =6㎝,则AC= ________㎝3、如图四边形ABCD 中,∠ABC=∠ADC=900,E 是AC 中点,EF 平分∠BED 交BD 于点F ,(1)猜想EF 与BD 具有怎样的关系? (2)试证明你的猜想。
4、已知:如图,在 ABCD 中,E 、F 分别为边 AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于G . (1)求证:DE =BF ;(2)若四边形 BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论.5、在下列性质中,平行四边形具有的是_______,矩形具有的是_________,菱形具有的____________,正方形具有的是_______________。
(1)四边都相等; (2)对角线互相平分; 6、如图,将矩形ABCD 沿AE 折叠,使点D 落 在BC 边上的F 点处。
(1)若∠BAF =60°,求∠EAF 的度数;(2)若AB =6cm ,AD =10cm ,求线段CE 的长及△AEF 的面积.(3)对角线相等;(4)对角线互相垂直; (5)四个角都是直角;(6)每条对角线 平分一组对角;(7)对边相等且平行; (8)有两条对称轴。
D B C A O B B FAC DE7、如图,矩形纸片ABCD 中,现将A 、C 重合,使纸片折叠压平,设折痕为EF 。
(1)连结CF ,四边形AECF 是什么特殊的四边形?为什么? 8、在四边形ABCD 中O 是对角线的交点,能判定这个四边形是正方形的是( )A 、AC = BD ,AB ∥CD ,AB = CDB 、AD ∥BC ,∠A =∠ C C 、AO=BO=CO=DO ,AC ⊥BD D 、AO=CO ,BO=DO ,AB=BC9、如图,边长为a 的菱形ABCD 中,∠DAB=60度,E 是异于A 、D 两点的动点,F 是CD 上的动点,满足AE+CF=a 。
中考数学专题复习 专题23 平行四边形(教师版含解析)
中考专题23 平行四边形问题1.平行四边形定义有两组对边分别平行的四边形叫做平行四边形。
平行四边形用符号“□ABCD”表示,读作“平行四边形ABCD”。
2.平行四边形的性质(1)平行四边形的对边平行且相等;(2)平行四边形的对角相等;(3)平行四边形的对角线互相平分。
3.平行四边形的判定(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)对角线互相平分的四边形是平行四边形;(5)两组对角分别相等的四边形是平行四边形。
4.平行四边形的面积:S平行四边形=底边长×高=ah【经典例题1】(2020年•温州)如图,在△ABC中,∠A=40°,AB=AC,点D在AC边上,以CB,CD为边作▱BCDE,则∠E的度数为( )A.40°B.50°C.60°D.70°【标准答案】D【分析】根据等腰三角形的性质可求∠C,再根据平行四边形的性质可求∠E.【答案剖析】∵在△ABC中,∠A=40°,AB=AC,∴∠C=(180°﹣40°)÷2=70°,∵四边形BCDE是平行四边形,∴∠E=70°.【知识点练习】(2019•山东临沂)如图,在平行四边形ABCD中,M、N是BD上两点,BM=DN,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是( )A.OM=AC B.MB=MO C.BD⊥AC D.∠AMB=∠CND【标准答案】A【答案剖析】由平行四边形的性质可知:OA=OC,OB=OD,再证明OM=ON即可证明四边形AMCN是平行四边形.证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD∵对角线BD上的两点M、N满足BM=DN,∴OB﹣BM=OD﹣DN,即OM=ON,∴四边形AMCN是平行四边形,∵OM=AC,∴MN=AC,∴四边形AMCN是矩形.【经典例题2】(2020年•凉山州)如图,▱ABCD的对角线AC、BD相交于点O,OE∥AB交AD于点E,若OA=1,△AOE的周长等于5,则▱ABCD的周长等于16 .【标准答案】16.【答案剖析】由平行四边形的性质得AB=CD,AD=BC,OB=OD,证OE是△ABD的中位线,则AB=2OE,AD=2AE,求出AE+OE=4,则AB+AD=2AE+2OE=8,即可得出标准答案.∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OB=OD,∵OE∥AB,∴OE是△ABD的中位线,∴AB=2OE,AD=2AE,∵△AOE的周长等于5,∴OA+AE+OE=5,∴AE+OE=5﹣OA=5﹣1=4,∴AB+AD=2AE+2OE=8,∴▱ABCD的周长=2×(AB+AD)=2×8=16;【知识点练习】(2019•湖北武汉)如图所示,在▱ABCD中,E.F是对角线AC上两点,AE=EF=CD,∠ADF=90°,∠BCD=63°,则∠ADE的大小为.【标准答案】21°.【答案剖析】设∠ADE=x,∵AE=EF,∠ADF=90°,∴∠DAE=∠ADE=x,DE=AF=AE=EF,∵AE=EF=CD,∴DE=CD,∴∠DCE=∠DEC=2x,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠BCA=x,∴∠DCE=∠BCD﹣∠BCA=63°﹣x,∴2x=63°﹣x,解得:x=21°,即∠ADE=21°。
(完整版)平行四边形(知识点、经典例题、常考题型练习),推荐文档
(3)在图 2 的 AB 边上是否存在一点 M ,使得四边形 DMEP 是平行四边形?若存在,请给予证明;
若不存在,请说明理由.
6
A
D
F
BE
C
图1
A
D
FP
BE
C
图2
【例 3】如图,在矩形 ABCD 中,已知 AD=12,AB=5,P 是 AD 边上任意一点,PE⊥BD 于 E,PF⊥AC 于 F,求 PE+PF 的值。
A
E
B
D
G F
C
【巩固】如图,在平行四边形 ABCD 中,∠B,∠D 的平分线分别交对边于点 E、F,交四边形的对角线 AC 于点 G、H。求证:AH=CG。
例 6. 已知:如图,在□ABCD 中,E、F 分别为边 AB、CD 的中点,BD 是对角线,AG∥DB 交 CB 的延长线于 G. (1) 求证:△ADE≌△CBF; (2) 若四边形 BEDF 是菱形,则四边形 AGBD 是什么特殊四边形?并证明你的结论.
1、下列说法中错误的是( )
A.四个角相等的四边形是矩形
B.四条边相等的四边形是正方形
C.对角线相等的菱形是正方形
D.对角线互相垂直的矩形是正方形
2、如果一个四边形的两条对角线互相平分,互相垂直且相等,那么这个四边形是 ( )
A.矩形
B.菱形
C.正方形
D.菱形、矩形或正方形
3、下面结论中,正确的是( )
②如果 BAC 90 ,那么四边形 AEDF 是矩形;
③如果 AD 平分 BAC ,那么四边形 AEDF 是菱形;
④如果 AD BC 且 AB AC ,那么四边形 AEDF 是菱形.
其中,正确的有
.(只填写序号)
平行四边形的典型例题的解析
D´
E
25
答:由(4)可知AE=FC= ,
4
在Rt△ADC中 由勾股定理可得
AC=10
1
∴ ∙ = ∙
即
25
4
A
D
O
2
× 6 = 5
15
∴EF=
2
B
F
C
三、自主练习
1、如图所示,把一张矩形纸片沿对角线折叠,
(1)重合部分是什么图形?试说明理由
C´
解:(1)重合部分是等腰三角形
∴EC=AE=x,
在Rt△EDC中 DC2+ED2=EC2
即 62+(8-x)2=x2
25
解之得,x=
25
即A是菱形
∴菱形AFCE的周长为25
D´
E
A
D
O
B
F
C
二、综合探究
1、如图,在矩形纸片ABCD中,AB=6cm,
BC=8cm,将矩形纸片折叠,使点C与点A重合。
(5)怎样求图中折痕EF的长?
一、折叠的性质
请大家拿出手中的矩形纸片折一折,能折出
多少种不同的图案。
C´
A F
D A
B
C
B
E D
F
C
全等
图形的折叠部分在折叠前、折叠后是_______
轴对称
图形,两图形关于折痕成_______。
一、折叠的性质
找出右图中相等的角和
相等的线段,并说明理
由。
相等的角:∠AFE=∠CFE
∠D´EF=∠DEF
解得x=2
即BG=2
∠D´=∠D
∠FAD´=∠FCD
相等的线段:AF=CF =AE
平行四边形10道经典例题
平行四边形经典例题一、已知平行四边形的性质求角度例题:在平行四边形ABCD 中,∠A 的度数比∠B 的度数小40°,求∠A 和∠B 的度数。
解析:因为平行四边形的邻角互补,即∠A + ∠B = 180°。
又已知∠A 比∠B 小40°,即∠B - ∠A = 40°。
联立这两个方程可得:∠A = 70°,∠B = 110°。
二、利用平行四边形的性质求边长例题:平行四边形ABCD 的周长为40,AB = 6,求BC 的长。
解析:平行四边形的对边相等,所以AB = CD = 6,BC = AD。
周长为40,则2(AB + BC) = 40,即2×(6 + BC) = 40,解得BC = 14。
三、判断四边形是否为平行四边形例题:已知四边形ABCD 中,AB∠CD,AB = CD,判断四边形ABCD 是否为平行四边形。
解析:一组对边平行且相等的四边形是平行四边形,所以四边形ABCD 是平行四边形。
四、根据平行四边形的性质求线段长度例题:在平行四边形ABCD 中,AC、BD 是对角线,AC = 10,BD = 8,且AC 与BD 的夹角为60°,求AB 的长度。
解析:过 A 作AE∠BD 于E。
设O 为AC 与BD 的交点,则AO = 5,BO = 4。
在直角三角形AOE 中,因为∠AOE = 60°,所以OE = AO×cos60° = 5×1/2 = 2.5,AE = AO×sin60° = 5×√3/2。
在直角三角形ABE 中,根据勾股定理可得AB = √(AE² + BE²) = √[(5×√3/2)²+(4 + 2.5)²]。
五、利用平行四边形的性质证明线段相等例题:在平行四边形ABCD 中,E、F 分别是AB、CD 的中点,连接DE、BF。
平行四边形的判定例题和练习题
平行四边形的判定【知识要点】平行四边形的边的方面的判定:(1)(3)【典型例题】例1、如图,ABCD中,点M、N是对角线AC上的点,且AM=CN,DE=BF.求证:四边形MFNE为平行四边形例2、已知:如图,在ABCD中,对角线AC和BD相交于点O,且OA=OC,AB∥DC,求证:四边形ABCD是平行四边形CD【知识要点】平行四边形角的方面和对角线的方面的判定(1)由角方面的判定(2)由对角线方面的判定【经典例题】例1、如图所示,在平行四边形ABCD中,点E、F是对角线AC上两点,且AE=CF.求证四边形BEDF是平行四边形。
例2、已知,如图,AB、CD相交于点O,AC∥DB,AO=BO,E、F分别是OC、OD中点.连接AF、BE,求证:AF//BE.练习1、如图,在 ABCD 中,AE=CG ,求证:GF=HE 。
2、如图,AB//CD ,∠ABC=∠ADC ,AE=CF ,BE=DF ,求证:EF 与AC 互相平分。
3、已知:如图,在平行四边形ABCD 中,BE ⊥AC 于点E ,DF ⊥AC 于点F ,又M 、N 分别是DC 、AB 的中点。
求证:四边形EMFN 是平行四边形。
·A BCDEFHACNM4、已知:如图,分别以△ABC 的三边为边长在BC 边的同侧面作等边△ABD 、△BCE 、△ACF ,连结DE 、EF 。
求证:四边形ADEF 是平行四边形。
5、如图,△ABC 为等边三角形,D 、F 分别为CB 、BA 上的点,且CD=BF ,以AD为一边作等边△ADE 。
求证:(1)△ACD ≌△CBF ;(2)四边形CDEF 为平行四边形。
6、如图,以ABCD 的边AD 、BC 为一边向外作等边△ADE 和等边△BCF ,连结AC 、EF 求证:AC 和EF 互相平分EFCB。
初三数学-平行四边形经典例题
初三数学平行四边形经典例题【练习】一、选择题1. 下列命题正确的是( )(A)、一组对边相等,另一组对边平行的四边形一定是平行四边形(B)、对角线相等的四边形一定是矩形(C)、两条对角线互相垂直的四边形一定是菱形(D) 、在两条对角线相等且互相垂直平分的四边形一定是正方形2. 已知平行四边形ABC的周长32, 5AB=3BC,则AC勺取值范围为()A. 6<AC<10;B. 6<AC<16 ;C. 10<AC<16 ;D. 4<AC<163. 两个全等的三角形(不等边)可拼成不同的平形四边形的个数是( )(A) 1 ( B) 2 (C) 3 (D) 44. 延长平形四边形ABCD勺一边AB到E,使BE^ BD连结DE交BC于F,若/ DAB= 120° , / CFE= 135°, A吐1,则AC 的长为( )(A) 1 (B)1.2 (C) ^2 (D) 1.55 .若菱形ABC中, AE垂直平分BC于E, AE= 1cm 则BD勺长是( )(A) 1cm ( B) 2cm (C) 3cm (D) 4cm6. 若顺次连结一个四边形各边中点所得的图形是矩形,那么这个四边形的对角线( )(A)互相垂直(B)相等(C)互相平分(D)互相垂直且相等7. 如图,等腰△ ABC中, D是BC边上的一点,DE// AC, DF// AB AB=5那么四边形AFDE勺周长是( )(A) 5(B) 10 (C)15(D) 20(第7题) (第8题)(第10题)8. 如图,将边长为8cm fi 勺正方形纸片ABCD边中点E 处,点A 落在点F 处,折痕为MN 贝懺段CN 勺长是( )(A ) 3cm(B ) 4cm(C ) 5cm(D ) 6cm9. 如图,在直角梯形ABCD 中, AD// BC ,/ B=90°,AC 将梯形分成两个三角形, 其中△ ACD 是周长为18 cm 的等边三角形,则该梯形的中位线的长是().(A )9 cm (B )12cm(c ) 9 cm (D )18 cm210. 如图,在周长为20cm 的^□ ABCI 中, A 盼AD ,AC BD 相交于点O, OELBD 交AD于巳则厶ABE 勺周长为()(A)4cm (B)6cm (C)8cm (D)10cm11. 如图2,四边形ABCD 为矩形纸片•把纸片 ABC 晰叠,使点B 恰好落在CD(A ) 4、3(B ) 3312. 如图,已知四边形ABCI 中, R 、P 分别是BC CDh 的点,分别是BF CAP 、RP 勺中点,当点P 在CDk 从C 向D 移动而点R 不动时,那么下列结论 成立的是()A 、线段EF 的长逐渐增大B 、线段EF 的长逐渐减小C 、线段EF 的长不变 D、线段EF 的长与点P13.在梯形 ABCD 中, AD//BC ,对角线 AC L BD,且AC 5cm , BD=12c m 则梯 形中位线的长等于( )A. 7.5cmB. 7 cmC. 6.5cm14. 国家级历史文化名城一一金华,风光秀丽,花木葱茏•某广场上 一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜 色的花.边的中点E 处,折痕为AF 若C — 6,则AF 等于h ro?第12题图D. 6cm(第 9题)折叠,使点D 落在BCADE'F橙绿红H A 紫F C 第14题如果有AB // EF // DC , BC // GH // AD,那么下列说法中错误的是(3. 若矩形一个内角的平分线,把另一边分为 4cm,5cm 两部分,则这个矩形周长是4. 已知:平行四边形ABC 的周长是30cm 对角线AC BD 相交于点0, △ A0的周长 比厶B0C 勺周长长5cm ,则这个平行四边形的各边长为 _______ 。
人教版苏科版初中数学—平行四边形(经典例题)
班级小组姓名成绩(满分120)一、平行四边形的性质(一)平行四边形的定义:(共4小题,每题3分,题组共计12分)例1.在平行四边形ABCD中,∠A=∠B+24°,那么∠D等于()A.65°B.78°C.85°D.95°例1.变式1.平行四边形ABCD的周长为40cm,△ABC的周长为25cm,则对角线AC的长为() A.5cm B.15cm C.6cm D.16cm例1.变式2.如图,AD∥BC,AB∥DC,P为四边ABCD一点,过P点作EG∥AB,FH∥AD.则图中的平行四边形有个.例1.变式3.如图所示,如果平行四边形ABCD的一内角∠BAD的平分线交BC于点E,且AE=BE,求平行四边形ABCD各内角的度数.(二)平行四边形的性质:(共4小题,每题3分,题组共计12分)例2.如图,在周长为20的平行四边形ABCD中,AB<AD,AC与BD交于点O,OE」BD,交AD于点E,则△ABE的周长为.例2.变式1.已知平行四边形ABCD中,∠B=4∠A,则∠C=()A.18°B.36°C.72°D.144°例2.变式2.如图所示,平行四边形ABCD中,对角线AC,BD相交于点O,且AB≠AD,则下列式子不正确的是()A.AC⊥BDB.AB=CDC.BO=ODD.∠BAD=∠BCD例2.变式3.如图,已知平行四边形ABCD的对角线AC,BD相交于点O,AC=12,BD=18,且△AOB的周长为23,求AB的长.(三)平行四边形性质的综合问题(共4小题,每题3分,题组共计12分)例3.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.3B.3C.4D.8例3.变式1.以三角形的三个顶点为其中的三个顶点作形状不同的平行四边形,一共可以作出()A.1个B.2个C.3个D.4个例3.变式2.如图所示,BD是平行四边形ABCD的对角线,∠ABD的平分线BE交AD于点E,∠CDB 的平分线DF交BC于点F.求证:△ABE≌△CDF.例3.变式3.如图,在平行四边形ABCD中,对角线AC,BD交于点O,经过点O的直线交AB于E,交CD于F.求证:OE=OF.二、平行四边形的判定(一)(共4小题,每题3分,题组共计12分)例4.能够判别一个四边形是平行四边形的条件是()A.一组对角相等B.两条对角线互相垂直且相等C.两组对边分别相等D.一组对边平行例4.变式1.有公共顶点的两个全等三角形,其中一个三角形绕公共顶点旋转180后与另一个重合,那么不共点的四个顶点的连线构成形.例4.变式2.如图,已知AB=DC,AD=BC,E,F是DB上两点且AE∥CF,若∠AEB=115°,∠ADB=35°,则∠BCF等于()A.150°B.40°C.80°D.90°例4.变式3.如图所示,在△ABC中,D,E分别为AB,AC的中点,延长DE到F,使EF=DE,若AB=10,BC=8,则四边形BCFD的周长是.三、平行四边形的判定(二)(共4小题,每题3分,题组共计12分)例5.用两个不等边的同样大小的三角形按不同的方法拼成四边形,在这些四边形中,平行四边形有()A.1个B.3个C.6个D.无数个例5.变式1.已知:如图所示,E,F分别是平行四边形ABCD的边AD,BC的中点.求证:AF=CE.例5.变式2.下列说法正确的是()A.对角线相等的四边形是平行四边形B.对角线相互垂直的四边形是平行四边形C.对角线互相垂直且相等的四边形是平行四边形D.两条对角线的中点为同一点的四边形是平行四边形例5.变式3.如图所示,平行四边形ABCD的对角线相交于点O,直线EF经过点O,分别与AB,CD 的延长线交于点E,F.求证:四边形AECF是平行四边形.四、平行线间的距离及性质(共4小题,每题3分,题组共计12分)例6.如图,AB⊥BC,CD⊥BC,AD∥BC,若AB=3cm,AD=4cm,则BC的长为()A.3cmB.4cmC.3cm或4cmD.不确定例6.变式1.下列说法中,错误的个数是()①在同一平面内,垂直于同一直线的两直线平行;②两条直线被第三条直线所截,同旁内角互补;③两条平行线中,一条直线上的点到另一条直线的距离处处相等;④若两条平行线被第三条直线所截,一组同旁内角的角平分线互相垂直.A.1B.2C.3D.4例6.变式2.把直线a沿水平方向平移4cm,平移后为直线b,则直线a与直线b之间的距离为()A.等于4cmB.小于4cmC.大于4cmD.小于或等于4cm例6.变式3.如图,已知12l l ∥,AB CD ∥,2CE l ⊥,2FG l ⊥,下列说法错误的是()A.1l 与2l 之间的距离是FG 的长度B.CE FG=C.线段CD 的长度就是1l 与2l 两条平行线间的距离D.AC BD=五、三角形的中位线(一)三角形中位线定理及其应用(共4小题,每题3分,题组共计12分)例7.如果等边三角形的边长为4,那么等边三角形的一条中位线长为()A.2B.4C.6D.8例7.变式1.如图,在四边形ABCD 中,点P 是对角线BD 的中点,点E,F 分别是AB,CD 的中点,AD=BC,∠PEF=30°,则∠PFE 的度数是()A.15°B.20°C.25°D.30°例7.变式2.如图,梯形ABCD 中,点E,F 分别为AB,CD 的中点,∠ABC 和∠DCB 的平分线相交于EF 上的一点P,若EF=3,则梯形ABCD 的周长为()A.9B.10.5C.12D.15例7.变式3.如图,在△ABC 中,AB=BC,∠ABC=100°,BD 是∠ABC 的平分线,E 是AB 的中点.求∠EDB 的度数.(二)利用三角形的中位线求线段的长(共4小题,每题3分,题组共计12分)例8.如图,△ABC的周长为26,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=10,则PQ的长为()A.32 B.52C.3D.4例8.变式1.如图,AB∥CD,E,F分别为AC,BD的中点,若AB=5,CD=3,则EF的长是()A.4B.3C.2D.1例8.变式2.如图,△ABC的周长是32,以它的三边中点为顶点组成第二个三角形,再以第二个三角形的三边中点为顶点组成第三个三角形,……,则第n个三角形的周长为.例8.变式3.如图,在梯形ABCD中,AD∥BC,AB=DC=8,∠B=60°,BC=12,连接AC.若M,N分别是AB,DC的中点,连接MN,求线段MN的长.六、多边形的内角和和外角和(一)多边形的内角和(共4小题,每题3分,题组共计12分)例9.一个多边形的内角和是720°,这个多边形的边数是()A.4B.5C.6D.7例9.变式1.正八边形的每个内角为()A.1120°B.135°C.140°D.144°例9.变式2.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为()A.5B.5或6C.5或7D.5或6或7例9.变式3.有两个正多边形,若此两个正多边形的边数之比为1∶2,内角和的比为3∶8,求这两个正多边形的边数.(二)多边形的外角和(共4小题,每题3分,题组共计12分)例10.一个正多边形的每个外角都是36°,这个正多边形的边数是()A.9B.10C.11D.12例10.变式1.如果某个多边形的外角分别是10°,20°,30°,…,80°,则这个多边形的边数是()A.9B.8C.7D.6例10.变式2.一个正多边形的每个外角都等于30°,则这个多边形的边数是.例10.变式3.一个正多边形的每个内角都比与它相邻的外角的3倍还多20°,求此正多边形的边数.。
平行四边形知识点及经典例题
第十八章平行四边形18.1.1 平行四边形的性质第一课时平行四边形的边、角特征知识点梳理1、有两组对边分别平行的四边形叫做平行四边形,平行四边形ABCD记作□ABCD。
2、平行四边形的对边相等,对角相等,邻角互补。
3、两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条直线之间的距离。
知识点训练1.(3分)如图,两X对边平行的纸条,随意穿插叠放在一起,转动其中一X,重合的局部构成一个四边形,这个四边形是________.2.(3分)如图,在□ABCD中,EF∥BC,GH∥AB,EF,GH相交于点O,那么图中共有平行四边形( )A.6个B.7个C.8个D.9个3.(3分)在□ABCD中,AB=6 cm,BC=8 cm,那么□ABCD的周长为cm.4.(3分)用40 cm长的绳子围成一个平行四边形,使其相邻两边的长度比为3∶2,那么较长的边的长度为cm.5.(4分)在□ABCD中,假设∠A∶∠B=1∶5,那么∠D=;假设∠A+∠C=140°,那么∠D=.6.(4分)(2014·XX)如图,在□ABCD中,DE平分∠ADC,AD=6,BE=2,那么□ABCD 的周长是.7.(4分)如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,假设∠EAD =53°,那么∠BCE的度数为( )A.53°B.37°C.47°D.123°8.(8分)(2013·XX)如下图,在平行四边形ABCD中,BE=DF.求证:AE=CF.9.(4分)如图,点E,F分别是□ABCD中AD,AB边上的任意一点,假设△EBC的面积为10 cm²,那么△DCF的面积为。
10.(4分)如图,梯形ABCD中,AD∥BC,记△ABO的面积为S1,△COD的面积为S2,那么S1,S2的大小关系是( )A.S1>S2 B.S1=S2 C.S1<S2 D.无法比拟11.在□ABCD中,∠A∶∠B∶∠C∶∠D的值可能是( )A.1∶2∶3∶4 B.1∶2∶2∶1C.2∶2∶1∶1 D.2∶1∶2∶112.如图,将平行四边形ABCD折叠,使顶点D恰落在AB边上的点M处,折痕为AN,那么对于结论:①MN∥BC;②MN=AM,以下说法正确的选项是( )A.①②都对B.①②都错C.①对②错D.①错②13.如图,在□ABCD中,BE⊥CD,BF⊥AD,垂足分别为E,F,CE=2,DF=1,∠EBF =60°,那么□ABCD的周长为__.14.(2013·XX)如图,□ABCD与□DCFE的周长相等,且∠BAD=60°,∠F=110°,那么∠DAE的度数为。
平行四边形练习题及答案
平行四边形练习题及答案平行四边形是初中数学中的重要概念之一,它具有特殊的性质和特点。
通过练习题的形式,我们可以更好地理解和掌握平行四边形的相关知识。
本文将为大家提供一些平行四边形的练习题及答案,希望能对大家的学习有所帮助。
1. 练习题一:已知平行四边形ABCD中,AB = 6cm,BC = 8cm,角A的度数为60°,求AD的长度。
解答:由平行四边形的性质可知,平行四边形的对边长度相等。
因此,AD = BC =8cm。
2. 练习题二:已知平行四边形EFGH中,EF = 10cm,GH = 15cm,角E的度数为120°,求FG的长度。
解答:由平行四边形的性质可知,平行四边形的对边长度相等。
因此,FG = EH =15cm。
3. 练习题三:已知平行四边形IJKL中,IJ = 12cm,KL = 18cm,角I的度数为135°,求JK的长度。
解答:由平行四边形的性质可知,平行四边形的对边长度相等。
因此,JK = IL = 18cm。
4. 练习题四:已知平行四边形MNOP中,MN = 5cm,NO = 7cm,角M的度数为45°,求OP的长度。
解答:由平行四边形的性质可知,平行四边形的对边长度相等。
因此,OP = MN = 5cm。
5. 练习题五:已知平行四边形QRST中,QR = 9cm,ST = 12cm,角Q的度数为30°,求RS 的长度。
解答:由平行四边形的性质可知,平行四边形的对边长度相等。
因此,RS = QT =9cm。
通过以上练习题,我们可以发现平行四边形的一个重要性质:平行四边形的对边长度相等。
这个性质在解题过程中起到了关键的作用,帮助我们求解未知的边长。
除了对边长度相等外,平行四边形还具有其他一些重要的性质。
例如,平行四边形的对角线互相平分,即对角线互相等长。
这个性质在解题过程中也经常被用到。
练习题只是帮助我们巩固平行四边形的相关知识点,实际问题中,平行四边形的应用非常广泛。
专题10:--平面直角坐标系与平行四边形
18.18专题16:--平面直角坐标系与平行四边形一.【知识要点】1.平面直角坐标系与平行四边形二.【经典例题】1.在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(6,0),点B(0,8).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F,记旋转角为α(0°<α<90°).如图,当α=30°时,点D的坐标为.2.如图,在直角坐标系XOY中,菱形OABC的边OA在x轴正半轴上,点B,C在第一象限,∠C=120°,边长OA=8,点M从原点O出发沿x轴正半轴以每秒1个单位长的速度作匀速运动,点N从A出发沿边AB→BC→CO以每秒2个单位长的速度作匀速运动.过点M作直线MP 垂直于x轴并交折线OCB于P,交对角线OB于Q,点M和点N同时出发,分别沿各自路线运动,点N运动到原点O时,M和N两点同时停止运动,设运动时间为t s.(1)当t=2时,求线段PQ的长;(2)求t为何值时,点P与N重合.3.如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC的中点,连接BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:B的坐标为;(2)求BF的长。
4.如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0).点D是对角线AC上一动点(不与A、C重合),连接BD,作DE⊥DB.交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为.(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由.三.【题库】【A】【B】1.在平面直角坐标系xOy中,边长为2的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C、D都在第一象限.(1)当∠BAO=45°时,求点P的坐标;(2)求证:无论点A在x轴正半轴上、点B在y轴正半轴上怎样运动,点P都在∠AOB的平分线上;【C】1. 在平面直角坐标系中,有点A(0,4)、B(9,4)、C(12,0)。
平行四边形经典例题
平行四边形经典例题
平行四边形的经典例题包括但不限于以下几种:
1. 计算平行四边形的周长:
例题:已知平行四边形的一组邻边分别是3厘米和4厘米,这组对角线长分别为5厘米和6厘米,求这个平行四边形的周长。
答案:根据平行四边形的性质,对角线互相平分,所以可以计算出平行四边形的周长为22厘米。
2. 判断平行四边形:
例题:给出四个四边形,其中一个是平行四边形,另外三个是梯形,请判断哪个是平行四边形。
答案:根据平行四边形的性质,如果一个四边形的两组对边都分别平行,则该四边形是平行四边形。
所以只有一个是平行四边形。
3. 求平行四边形的面积:
例题:已知平行四边形的底为6厘米,高为4厘米,求这个平行四边形的面积。
答案:根据平行四边形的面积公式,面积 = 底× 高,所以这个平行四边形的面积是24平方厘米。
4. 利用平移性质证明平行四边形:
例题:已知一个三角形ABC,D、E分别是AB、AC上的点,且DE 平行于BC,证明三角形ADE是平行四边形。
答案:由于DE平行于BC,根据平移性质,有AE平行于DC,从而得出结论:三角形ADE是平行四边形。
八年级下册数学平行四边形经典题型
八年级下册数学平行四边形经典题型例题1:如图,E、F在ABCD的对角线AC上,AE=EF=CD,∠ADF=90°,∠BCD=54°,求∠ADE的度数分析:直角三角形斜边上的中线等于斜边的一半,由此可以得到DE=AE=EF=CD,多条线段相等,可设最小的角为x,即设∠EAD=∠ADE=x,根据外角等于不相邻的内角和,得到∠DEC=∠DCE=2x,由平行四边形的性质得出∠DCE=∠BCD-∠BCA=54°-x,得出方程,解方程即可。
例题2:如图,已知四边形ABCD和四边形ADEF均为平行四边形,点B,C,F,E在同一直线上,AF交CD于O,若BC=10,AO=FO,求CE的长。
分析:根据平行四边形的性质得出AD=BC=EF,AD∥BE,从而得到∠DAO=∠CFO,再加上对顶角相等,可以得到△AOD≌△FOC,根据全等三角形的性质得到AD=CF,即AD=BC=EF=CF,从而得到线段CE的长度。
也可以借助中位线定理解决。
解:∵四边形ABCD和四边形ADEF均为平行四边形,∴AD=BC,AD=FE,AD∥BE,AF∥DE,∴AD=BC=FE=10,∵AF∥DE,AO=FO,∴CF=FE=10,∴CE=10+10=20(2)求线段(边或对角线)的取值范围例题3:在平行四边形ABCD中,AB=4,BC=6,对角线AC、BD相交于点O,则OA的取值范围是多少?分析:由AB=4,BC=6,利用三角形的三边关系,即可求得2<AC<10,根据平行四边形的对角线互相平分,得到OA的取值范围,为1<OA<5.(3)利用平行四边形的性质证明角相等、边相等和直线平行例题4:如图,已知E,F分别是ABCD的边CD,AB上的点,且DE=BF.求证:AE∥CF.分析:由四边形ABCD为平行四边形可得:AB=CD,AB∥CD。
由已知条件DE=BF,根据等边减等边可得AF=CE,由此可证明四边形AECF为平行四边形,从而得到AE∥CF。
平行四边形经典证明题例题讲解
经纬教育 平行四边形证明题 经典例题(附带详细答案)1.如图,E F 、是平行四边形ABCD 对角线AC 上两点,BE DF ∥,求证:AF CE =.【答案】证明:平行四边形ABCD 中,AD BC ∥,AD BC =,ACB CAD ∴∠=∠. 又BE DF ∥,BEC DFA ∴∠=∠, BEC DFA ∴△≌△, ∴CE AF =2.如图6,四边形ABCD 中,AB ∥CD ,∠B=∠D ,,求四边形ABCD 的周长. 【答案】20、解法一: ∵∴ 又∵∴∴∥即得是平行四边形∴ ∴四边形的周长解法二:连接∵∴又∵ ∴≌∴ ∴四边形的周长解法三:连接∵∴又∵ ∴∴∥即是平行四边形∴ ∴四边形的周长3.(在四边形ABCD 中,∠D =60°,∠B 比∠A 大20°,∠C 是∠A 的2倍,求∠A ,∠B ,∠C 的大小.【关键词】多边形的内角和【答案】设x A =∠(度),则20+=∠x B ,x C 2=∠.根据四边形内角和定理得,360602)20(=++++x x x .3 ,6==AB BC AB CD ∥︒=∠+∠180C B B D ∠=∠︒=∠+∠180D C AD BC ABCD 36AB CD BC AD ====,ABCD 183262=⨯+⨯=AC AB CD ∥DCA BAC ∠=∠B DAC CA ∠=∠=,ABC △CDA △36AB CD BC AD ====,ABCD 183262=⨯+⨯=BD AB CD ∥CDB ABD ∠=∠ABC CDA ∠=∠ADB CBD ∠=∠AD BC ABCD 36AB CD BC AD ====,ABCD 183262=⨯+⨯=DCABE FADCBAD CBAD CB解得,70=x .∴︒=∠70A ,︒=∠90B ,︒=∠140C .4.(如图,E F ,是四边形ABCD的对角线AC上两点,AF CE DF BE DF BE ==,,∥. 求证:(1)AFD CEB △≌△. (2)四边形ABCD 是平行四边形.【关键词】平行四边形的性质,判定 【答案】证明:(1)DF BE ∥,DFE BEF ∴∠=∠.180AFD DFE ∠+∠=°,180CEB BEF ∠+∠=°,AFD CEB ∴∠=∠.又AF CE DF BE ==,,AFD CEB ∴△≌△(SAS).(2)由(1)知AFD CEB △≌△,DAC BCA AD BC ∴∠=∠=,,AD BC ∴∥.∴四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形)5.)25.如图13-1,在边长为5的正方形ABCD 中,点E 、F 分别是BC 、DC 边上的点,且AE EF ⊥,2BE =. (1)求EC ∶CF 的值;(2)延长EF 交正方形外角平分线CP P 于点(如图13-2),试判断AE EP 与的大小关系,并说明理由; (3)在图13-2的AB 边上是否存在一点M ,使得四边形DMEP 是平行四边形?若存在,请给予证明;若不存在,请说明理由.【关键词】平行四边形的判定【答案】解:(1)AE EF ⊥2390∴∠+∠=°四边形ABCD 为正方形90B C ∴∠=∠=° 1390∴∠+∠=° 12∠=∠90DAM ABE DA AB ∠=∠==°,DAM ABE ∴△≌△ DM AE ∴= AE EP = DM PE ∴=∴四边形DMEP 是平行四边形.解法②:在AB 边上存在一点M ,使四边形DMEP 是平行四边形证明:在AB 边上取一点M ,使AM BE =,连接ME 、MD 、DP .90AD BA DAM ABE =∠=∠=,° Rt Rt DAM ABE ∴△≌△ 14DM AE ∴=∠=∠, 1590∠+∠=° 4590∴∠+∠=° AE DM ∴⊥ AE EP ⊥ DM EP ∴⊥ABDEFCA DCBEBCEDA F PF∴四边形DMEP 为平行四边形6.(2009年广州市)如图9,在ΔABC 中,D 、E 、F 分别为边AB 、BC 、CA 的中点。
初中数学平行四边形经典例题
初中数学平行四边形经典例题【练习】一、选择题1.下列命题正确的是()(A)、一组对边相等,另一组对边平行的四边形一定是平行四边形 (B)、对角线相等的四边形一定是矩形(C)、两条对角线互相垂直的四边形一定是菱形 (D)、在两条对角线相等且互相垂直平分的四边形一定是正方形2. 已知平行四边形ABCD的周长32, 5AB=3BC,则AC的取值范围为( )A. 6<AC<10;B. 6<AC<16;C. 10<AC<16;D. 4<AC<163.两个全等的三角形(不等边)可拼成不同的平形四边形的个数是()(A)1 (B)2 (C)3 (D)44.延长平形四边形ABCD的一边AB到E,使BE=BD,连结DE交BC于F,若∠DAB=120°,∠CFE=135°,AB=1,则AC 的长为()(A)1 (B)1.2 (C)32(D)1.55.若菱形ABCD中,AE垂直平分BC于E,AE=1cm,则BD的长是()(A)1cm (B)2cm (C)3cm (D)4cm6.若顺次连结一个四边形各边中点所得的图形是矩形,那么这个四边形的对角线( )(A)互相垂直(B)相等(C)互相平分(D)互相垂直且相等7. 如图,等腰△ABC中,D是BC边上的一点,DE∥AC,DF∥AB,AB=5那么四边形AFDE的周长是()(A)5 (B)10 (C)15(D)20AB C DO ERPD CBAEF 第12题图(第7题) (第8题) (第9题) (第10题)8.如图,将边长为8cm 的正方形纸片ABCD折叠,使点D 落在BC边中点E 处,点A 落在点F 处,折痕为MN ,则线段CN 的长是( ). (A )3cm (B )4cm (C )5cm (D )6cm9. 如图,在直角梯形ABCD 中,AD∥BC,∠B=90°,AC 将梯形分成两个三角形,其中△ACD 是周长为18 cm 的等边三角形,则该梯形的中位线的长是( ). (A)9 cm (B)12cm (c)29cm (D)18 cm 10.如图,在周长为20cm 的□ABCD中,AB≠AD,AC 、BD 相交于点O ,OE ⊥BD 交AD 于E ,则△ABE 的周长为( )(A)4cm (B)6cm (C)8cm (D)10cm11. 如图2,四边形ABCD 为矩形纸片.把纸片ABCD 折叠,使点B 恰好落在CD边的中点E 处,折痕为AF .若CD =6,则AF 等于 ( )(A )34 (B )33 (C )24 (D )812.如图,已知四边形ABCD 中,R 、P 分别是BC 、CD 上的点,E 、F 分别是 AP 、RP 的中点,当点P 在CD 上从C 向D 移动而点R 不动时,那么下列结论成立的是 ( )A 、线段EF 的长逐渐增大B 、线段EF 的长逐渐减小C 、线段EF 的长不变D 、线段EF 的长与点P13. 在梯形ABCD 中,AD//BC ,对角线AC ⊥BD ,且cm AC 5 ,BD=12c m ,则梯形中位线的长等于( )A. 7.5cmB. 7cmC. 6.5cmD. 6cm14. 国家级历史文化名城——金华,风光秀丽,花木葱茏.某广场上一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB EF DC ∥∥,BC GH AD ∥∥,那么下列说法中错误的是( ) A .红花、绿花种植面积一定相等 B .紫花、橙花种植面积一定相等ABC DEF图 2 黄蓝紫 橙红 绿 AG EDH C FB第14题第10题图DABCP MN (1)(2)图9A BCDE FO 图C .红花、蓝花种植面积一定相等D .蓝花、黄花种植面积一定相等 二、填空题1.如果四边形四个内角之比1:2:3:4,则这四边形为____形。
平行四边形经典例题
平行四边形典题1.如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.(1)求证:BE=DF;(2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状.2.AECF的对角线相交于点O,DB经过点O,分别与AE,CF交于B,D.求证:四边形ABCD是平行四边形.3.在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.4.已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.5. 已知,ABCD中,AE=CF,M、N分别是DE、BF的中点.求证:四边形MFNE是平行四边形.6.平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.求证:四边形AECF是平行四边形.7.在ABCD中,分别以AD、BC为边向内作等边△ADE和等边△BCF,连接BE、DF.求证:四边形BEDF是平行四边形.8.在ABCD中,MN∥AC,试说明MQ=NP.9. 平行四边形ABCD的对角线AC,BD相交于点O,EF经过点O并且分别和AB,CD相交于点E,F,点G,H分别为OA,OC的中点.求证:四边形EHFG是平行四边形.10. 如图,已知在ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.(1)求证:四边形GEHF是平行四边形;(2)若点G、H分别在线段BA和DC上,其余条件不变,则(1)中的结论是否成立?11. 如图,在△ABC中,D是AC的中点,E是线段BC延长线一点,过点A作BE 的平行线与线段ED的延长线交于点F,连接AE、CF.(1)求证:AF=CE;(2)如果AC=EF,且∠ACB=135°,试判断四边形AFCE是什么样的四边形,并证明你的结论.12.如图平行四边形ABCD中,∠ABC=60°,点E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BF,垂足为点F,DF=2(1)求证:D是EC中点;(2)求FC的长.13. 如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,DC=EF.(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD.14. 如图,△ACD、△ABE、△BCF均为直线BC同侧的等边三角形.(1)当AB≠AC时,证明:四边形ADFE为平行四边形;(2)当AB=AC时,顺次连接A、D、F、E四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.15.已知平行四边形的三个顶点的坐标分别为O(0,0)、A(2,0)、B(1,1),则第四个顶点C的坐标是多少?16.已知平行四边形ABCD的周长为36cm,过D作AB,BC边上的高DE、DF,且cm ,,求平行四边形ABCD的面积.17.如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A、B、C的坐标分别是A(﹣3,),B(﹣2,3),C(2,3),点D在第一象限.(1)求D点的坐标;(2)将平行四边形ABCD 先向右平移个单位长度,再向下平移个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少?(3)求平行四边形ABCD与四边形A1B1C1D1重叠部分的面积?18.如图所示.▱ABCD中,AF平分∠BAD交BC于F,DE⊥AF交CB于E.求证:BE=CF.(18)(19)19..已知D、E、F分别是△ABC各边的中点,求证:AE与DF互相平分.(注:不能直接用中位线定理,可用证明中位线定理的方法)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行四边形一、 基础知识平行四边形二、1、三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三遍的一半。
2、由矩形的性质得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半。
三、例题 例1、如图1,平行四边形ABCD 中,AE ⊥BD ,CF ⊥BD ,垂足分别为E 、F. 求证:∠BAE =∠DCF.例2、如图2,矩形ABCD 中,AC 与BD 交于O 点,BE ⊥AC 于E ,CF ⊥BD 于F. 求证:BE = CF.例3、已知:如图3,在梯形ABCD 中,AD ∥BC ,AB = DC ,点E 、F 分别在AB 、CD 上,且BE = 2EA ,CF = 2FD. 求证:∠BEC =∠CFB.(图1) BO A B C D E F (图2)例4、如图6,E 、F 分别是 ABCD 的AD 、BC 边上的点,且AE = CF. (1△ABE ≌△CDF ;(2)若 、N 分别是BE 、DF 的中点,连结MF 、EN ,试判断四边形MFNE 是怎样的四边形,并证明你的结论.例5、如图7 的对角线AC 的垂直平分线与边AD ,BC 分别相交于点E ,F.,求证:四边形AFCE 是菱形.例6、如图8,四边形ABCD 是平行四边形,O 是它的中心,E 、F 是对角线AC 上的点.(1)如果 ,则△DEC ≌△BFA (请你填上一个能使结论成立的一个条件);(2)证明你的结论.例7、如图9,已知在梯形ABCD 中,AD ∥BC ,AB = DC ,对角线AC 和BD 相交于点O ,E 是BC 边上一个动点(点E 不与B 、C 两点重合),EF ∥BD 交AC 于点F ,EG ∥AC 交BD 于点C.(1)求证:四边形EFOG 的周长等于2OB ;(2)请你将上述题目的条件“梯形ABCD 中,AD ∥BC ,AB = DC”改为另一种四边形,其他条件不变,使得结论,“四边形EFOG 的周长等于2OB”仍成立,并将改编后的题目画出图形,写出已知、求证、不必证明.例8、有一块梯形形状的土地,现要平均分给两个农户种植(即将梯形的面积两等分),试设计两种方案(平分方案画在备用图13(1)、(2)上),并给予合理的解释.A DBC EF (图6) M N 备用图(1) 备用图(2)B C BRPDCBAEF 第12题图四、练习 一、选择题1.下列命题正确的是( )(A)、一组对边相等,另一组对边平行的四边形一定是平行四边形 (B)、对角线相等的四边形一定是矩形(C)、两条对角线互相垂直的四边形一定是菱形 (D)、在两条对角线相等且互相垂直平分的四边形一定是正方形 2. 已知平行四边形ABCD 的周长32, 5AB=3BC,则AC 的取值范围为( ) A. 6<AC<10; B. 6<AC<16; C. 10<AC<16; D. 4<AC<16 3.两个全等的三角形(不等边)可拼成不同的平形四边形的个数是( ) (A )1 (B )2 (C )3 (D )44.延长平形四边形ABCD 的一边AB 到E ,使BE =BD ,连结DE 交BC 于F ,若∠DAB =120°,∠CFE =135°,AB =1,则AC 的长为( )(A )1 (B )1.2 (C )32(D )1.5 5.若菱形ABCD 中,AE 垂直平分BC 于E ,AE =1cm ,则BD 的长是( ) (A )1cm (B )2cm (C )3cm (D )4cm6.若顺次连结一个四边形各边中点所得的图形是矩形,那么这个四边形的对角线( ) (A )互相垂直 (B )相等 (C )互相平分 (D )互相垂直且相等7. 如图,等腰△ABC 中,D 是BC 边上的一点,DE ∥AC ,DF ∥AB ,AB=5那么四边形AFDE 的周长是( )(A )5 (B )10 (C )15 (D )20(第7题) (第8题) (第9题) (第10题)8.如图,将边长为8cm 的正方形纸片ABCD 折叠,使点D 落在BC 边中点E 处,点A 落在点F 处,折痕为MN ,则线段CN 的长是( ). (A )3cm (B )4cm (C )5cm (D )6cm9. 如图,在直角梯形ABCD 中,AD∥BC,∠B=90°,AC 将梯形分成两个三角形,其中△AC D 是周长为18 cm 的等边三角形,则该梯形的中位线的长是( ). (A)9 cm (B)12cm (c)29cm (D)18 cm 10.如图,在周长为20cm 的□ABCD中,AB≠AD,AC 、BD 相交于点O ,OE ⊥BD 交AD 于E ,则△ABE 的周长为( ) (A)4cm (B)6cm (C)8cm (D)10cm11. 如图2,四边形ABCD 为矩形纸片.把纸片ABCD 折叠,使点B 恰好落在CD 边的中点E 处,折痕为AF .若CD =6,则AF 等于 ( )(A )34 (B )33 (C )24(D )812.如图,已知四边形ABCD 中,R 、P 分别是BC 、CD 上的点,E 、F 分别是 AP 、RP 的中点,当点P 在CD 上从C 向D 移动而点R 不动时,那么下列结论 成立的是 ( )A 、线段EF 的长逐渐增大B 、线段EF 的长逐渐减小C 、线段EF 的长不变D 、线段EF 的长与点P13. 在梯形ABCD 中,AD//BC ,对角线AC ⊥BD ,且cm AC 5 ,BD=12c m ,则梯形中位线的长等于( ) AB CDOEA BCDEF图 2ABCDEFO第10题图DABCPMN (1)(2)图9A B CDE F O 图A. 7.5cmB. 7cmC. 6.5cmD. 6cm14. 国家级历史文化名城——金华,风光秀丽,花木葱茏.某广场上一个形状是 平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花. 如果有AB EF DC ∥∥,BC GH AD ∥∥,那么下列说法中错误的是( )A .红花、绿花种植面积一定相等B .紫花、橙花种植面积一定相等C .红花、蓝花种植面积一定相等D .蓝花、黄花种植面积一定相等 二、填空题1.如果四边形四个内角之比1:2:3:4,则这四边形为____形。
2.若正方形的对角线长为2错误!未找到引用源。
cm ,则正方形的面积为___。
3.若矩形一个内角的平分线,把另一边分为4cm,5cm 两部分,则这个矩形周长是___4.已知:平行四边形ABCD 的周长是30cm ,对角线AC ,BD 相交于点O ,△AOB 的周长比△BOC 的周长长5cm ,则这个平行四边形的各边长为_____。
5. 已知:平行四边形ABCD 中, AE ⊥BC 交CB 的延长线于点E ,AF ⊥CD 交CD 的延长线于点F ,AB +BC +CD +DA =32cm ,BC =35AB ,∠EAF =2∠C ,则BE 长为___,则∠C ___.6. 在平面直角坐标系中,点A 、B 、C 的坐标分别是A(-2,5),B(-3,-1),C(1,-1),在第一象限内找一点D ,使四边形ABCD 是平行四边形,那么点D 的坐标是 .7.已知:如图8,正方形ABCD 中,对角线AC 和BD 相交于点O ,E 、F 分别是边AB 、BC 上的点,若AE =4cm ,DF =3cm ,且OE ⊥OF ,则EF 的长为 。
8. 如图9(1)是一个等腰梯形,由6个这样的等腰梯形恰好可以拼出如图10(2)所示的一个菱形.对于图10(1)中的等腰梯形,请写出它的内角的度数或腰与底边长度之间关系的一个正确结论:.9.如图,在四边形ABCD 中,P 是对角线BD 的中点,E F ,分别是AB CD ,的中点,18AD BC PEF =∠=o ,,则PFE ∠的度数是 .10.如图,菱形ABCD 的两条对角线分别长6和8,点P 是对角线AC 上的一个动点,点M 、N 分别是边AB 、BC 的中点,则PM +PN 的最小值是_____________.11. 如图,在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BD 、CD 、AC 的中点,要使四边形EFGH是菱形,四边形ABCD 还应满足的一个条件是 。
(12题) (13题) (14题)12、 如图所示,O 为矩形ABCD 的对角线交点,DF 平分∠ADC 交AC 于E ,BC 于F ,∠BDF=15°,则∠COF=______. 13. 如图,矩形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AD 和BC 于点E 、F ,23AB BC ==,,则图中阴影部分的面积为 .14、如图,矩形1111ABCD的面积为4,顺次连结各边中点得到四边形2222AB CD,再顺次连结四边形2222AB CD四边中点得CFDBE AP(第9题)黄蓝紫 橙红 绿 A G EDH C B第14题O FEDCBA到四边形3333ABCD,依此类推,求四边形n n n nABCD的面积是。
15、如图⑴已知O是□ABCD的对角线交点,AC=24,BD=38,AD=14,那么△OBC的周长等于_____。
16、在平行四边形ABCD中,∠C=∠B+∠D,则∠A=___,∠D=___。
17、一个平行四边形的周长为70cm,两边的差是10cm,则平行四边形各边长为____cm。
18、已知菱形的一条对角线长为12cm,面积为30cm2,则这个菱形的另一条对角线长为__________cm。
19、菱形ABCD中,∠A=60o,对角线BD长为7cm,则此菱形周长_____cm。
202,那么它的面积______。
21、如图2矩形ABCD的两条对角线相交于O,∠AOB=60o,AB=8,则矩形对角线的长___。
22、如图3,等腰梯形ABCD中,AD∥BC,AB∥DE,BC=8,AB=6,AD=5则△CDE周长___。
21、正方形的对称轴有___条22、如图4,BD是□ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需增加的一个条件是______23、要从一张长为40cm,宽为20cm的矩形纸片中,剪出长为18cm,宽为12cm的矩形纸片,最多能剪出______张。
三、解答题1.如图,在四边形ABCD中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求AB的长。
2.如图,在等腰梯形ABCD中,AD∥BC,AB=CD=2,∠BAD=120°,对角线AC平分∠BCD,求等腰梯形ABCD的周长。
3.将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D′处,折痕为EF.(1)求证:△ABE≌△AD′F;(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论4.已知:如图,在梯形ABCD中,AD∥BC,AB=CD,对角线AC、BD相交于点E,∠ADB=60°,BD=10,BE∶ED=4∶1,求梯形ABCD的腰长.AB CDEFD′DAABDCO⑴AB CO⑵A D⑶A DB CFE⑷5. 如图,菱形ABCD,E,F分别是BC,CD上的点,∠B=∠EAF=60°,∠BAE=18°求∠CEF的度数。