一次函数方案选择问题

合集下载

一次函数方案选择问题

一次函数方案选择问题

一次函数方案选择问题一次函数是初中数学中的重要内容,也是数学建模和实际问题中常常使用的数学工具。

在实际问题中,我们常常需要根据具体情况选择合适的一次函数方案来进行建模和分析。

本文将围绕一次函数方案选择问题展开讨论,希望能够对读者有所帮助。

首先,我们需要明确一次函数的一般形式,y = kx + b。

其中,k称为斜率,b 称为截距。

在选择一次函数方案时,我们需要考虑如何确定斜率和截距,以及如何根据实际问题确定函数的具体形式。

在实际问题中,确定斜率和截距的方法有很多种,下面我们将介绍一些常用的方法。

首先,我们可以根据实际问题中的两个已知点来确定一次函数的斜率和截距。

假设已知两个点分别为(x1,y1)和(x2,y2),那么斜率k可以通过公式k = (y2 y1) / (x2 x1)来计算,截距b可以通过公式b = y1 kx1或b = y2 kx2来计算。

这种方法在实际问题中应用广泛,特别适合于已知两个具体点的情况。

其次,我们可以根据一次函数的特点来确定斜率和截距。

例如,当一次函数经过原点时,截距b为0,此时函数的一般形式可以简化为y = kx。

当一次函数与y 轴平行时,斜率k为0,此时函数的一般形式可以简化为y = b。

这些特殊情况在实际问题中也经常出现,我们可以根据实际情况灵活运用。

另外,我们还可以通过观察实际问题中的数据趋势来确定一次函数的斜率和截距。

例如,当实际问题中的数据呈现线性增长或减小的趋势时,我们可以通过线性回归分析来确定一次函数的斜率和截距。

这种方法在数据分析和预测中非常有用。

除了确定斜率和截距外,我们还需要考虑如何根据实际问题确定函数的具体形式。

在实际问题中,一次函数的具体形式可能会受到一些限制条件的约束,我们需要根据这些约束条件来确定函数的具体形式。

例如,当一次函数表示成本与产量的关系时,我们需要考虑成本不能为负的限制条件;当一次函数表示距离与时间的关系时,我们需要考虑距离不能为负的限制条件。

人教版七年级上册 第3章:一元一次方程的应用-方案选择问题(含答案)

人教版七年级上册 第3章:一元一次方程的应用-方案选择问题(含答案)

人教版七年级上册 一元一次方程的应用-方案选择问题(含答案)一、单选题1.某汽车队运送一批货物,每辆汽车装4 t ,还剩下8 t 未装,每辆汽车装4.5 t 就恰好装完.该车队运送货物的汽车共有多少辆?设该车队运送货物的汽车共有x 辆,可列方程为( ) A .4x +8=4.5x B .4x -8=4.5x C .4x =4.5x +8D .4(x +8)=4.5x2.某服装店出售一种优惠卡,花200元买这种卡后,凭卡可以在这家商店按8折购物,下列情况买购物卡合算的是( ) A .购物高于800元 B .购物低于800元 C .购物高于1 000元 D .购物低于1 000元3.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.若设这个班有x 名学生,则依题意所列方程正确的是( ) A .3x -20=4x -25 B .3x +20=4x +25 C .3x -20=4x +25 D .3x +20=4x -254.41人参加运土劳动,有30根扁担,要安排多少人抬,多少人挑,可以使扁担和人数相配不多不少?若设有x 人挑土,则可列出的方程是( ) A.2(30)41x x --= B.(41)302x x +-= C.41302xx -+= D.3041x x -=-5.小华带x 元去买甜点,若全买红豆汤圆刚好可买30杯,若全买豆花刚好可买40杯.已知豆花每杯比红豆汤圆便宜10元,依题意可列出下列哪一个方程式( )A.103040x x=+ B.104030x x =+ C.104030x x += D.104030x x+= 6.某土建工程共需动用15台挖运机械,每台机械每分钟能挖土3 m 3或者运土2 m 3.为了使挖土和运土工作同时结束,安排了x 台机械运土,这里x 应满足的方程是( )A.2x=3(15-x) B.3x-2x=15C.15-2x=3x D.3x=2(15-x)7.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元) 每次游泳收费(元) A类50 25B类200 20C类400 15例如,购买A类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为()A.购买A类会员年卡B.购买B类会员年卡C.购买C类会员年卡D.不购买会员年卡二、填空题8.张老师带学生乘车外出郊游,甲车主说:”不论师生,每人8折,"乙车主说:“学生9折,老师免费,“张老师算了一下,不论坐谁的车,费用一样,则张老师带的学生人数是________.9.学校买来大、小椅子共20张,共花去275元.已知大椅子每张15元,小椅子每张10元,问买了大椅子共多少张?若设买了大椅子x张,填写下表:大椅子小椅子张数(张)x钱数(元)小椅子____张,大椅子的钱数为____,小椅子的钱数为________,本题中的等量关系为________________,列出方程为____________,解得x=_______.因此,买了大椅子_________张.10.将一批490吨的货物分给甲、乙两船运输,现甲、乙两船分别运走了其任务的57、37,在已运走的货物中,甲船比乙船多运30吨,则分配给甲、乙两船的任务数分别是_______吨、_______吨.三、解答题11.某商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元. (1)若该商场同时购进甲、乙两种商品共100件,恰好用去2700元,求能购进甲、乙两种商品各多少件?(2)按规定,甲种商品的进货不超过50件,甲、乙两种商品共100件的总利润不超过760元,请你通过计算求出该商场所有的进货方案;(3)在“五一”黄金周期间,该商场对甲、乙两种商品进行如下优惠促销活动:打折前一次性购物总金额优惠措施不超过300元不优惠超过300元且不超过400元售价打九折超过400元售价打八折按上述优惠条件,若贝贝第一天只购买甲种商品一次性付款200元,第二天只购买乙种商品打折后一次性付款324元,那么这两天他在该商场购买甲、乙两种商品各多少件?12.现有若干本书分给班上的同学,若每人分5本,则还缺20本;若每人分4本,则剩余25本.班上共有多少名同学?多少本书?(1)设班上共有x名同学,根据题意列方程;(2)设共有y本书,根据题意列方程;(3)选择上面的一种设未知数的方法,解决问题.13.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价的8折优惠;在乙超市购买商品超出200元之后,超出部分按原价的8.5折优惠,设某顾客预计累计购物x元(x>300元).(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用;(2)当该顾客累计购物500元时,在哪个超市购物合算.14.小明用的练习本可以到甲、乙两家商店购买,已知两商店的标价都是每本2元,甲商店的优惠条件是购买10本以上,从第11本开始按标价的70%出售;乙商店的优惠条件是,从第一本起按标价的80%出售.(1)设小明要购买x(x>10)本练习本,则当小明到甲商店购买时,须付款元,当到乙商店购买时,须付款元;(2)买多少本练习本时,两家商店付款相同?(3)小明准备买50本练习本,为了节约开支,应怎样选择哪家更划算?15.淘淘到书店帮同学买书,售货员告诉他,如果用20元钱办会员卡,将享受八折优惠,请问在这次买书中,淘淘在什么情况下,办会员卡与不办会员卡费用一样?当淘淘买标价共计200元的书时,怎么做合算?能省多少钱?16.某班计划买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不少于5盒).问:(1)当分别购买20盒、40盒乒乓球时,去哪家商店购买更合算?(2)当购买乒乓球多少盒时,两种优惠办法付款一样?17.某原料供应商对购买其原料的顾客实行如下优惠办法:(1)一次购买金额不超过1万元,不予优惠;(2)一次购买金额超过1万元,但不超过3万元,全部9折优惠;(3)一次购买的超过3万元,其中3万元9折优惠,超过3万元的部分8折优惠.某人因库容原因,第一次在供应商处购买原料付7800元,第二次购买付款26100元,如果他是一次购买同样数量的原料,则应付款多少元?可少付款多少元?18.某地电话拨号上网有两种收费方式,用户可以任选其一:(A)计时制,0.05元∕分;(B)包月制,50元∕分(限一部个人住宅电话上网);此外,每种上网方式都附加通信费0.02元∕分。

一次函数课题学习--选择方案公开课获奖课件百校联赛一等奖课件

一次函数课题学习--选择方案公开课获奖课件百校联赛一等奖课件

问题3 怎样计算两种灯旳费用?
设照明时间是x小时, 节能灯旳费用y1元 表达,白炽灯旳费用y2元表达,则有: y1 =60+0.6×0.01x; y2 =3+0.6×0.06x .
观察上述两个函数
若使用节能灯省钱,它旳含义是什么? y1< y2 若使用白炽灯省钱,它旳含义是什么? y1> y2 若使用两种灯旳费用相等,它旳含义是什么?? y1= y2
化简为: y=120x+1680
问题
根据问题中旳条件,自变量x 旳取值应有几种可能? 为使240名师生有车坐,x不能 不大于_4___;为
使租车费用不超出2300元,X不能超出_6___。综合 起来可知x 旳取值为4_、_5__ 。
在考虑上述问题旳基础上,你能得出几种不同旳 租车方案?为节省费用应选择其中旳哪种方案?试阐 明理由。
(3)假如要使这50台收割机每天取得旳租金最高, 请你为光华农机企业提供一条合理化旳提议
八年级 数学
第十四章 函数
14.4课题学习 选择方案 怎样调水
解:(1)设派往A地域x台乙型收割机, 每天取得旳 租金为y元则,
派往A地域(30-x)台甲型收割机, 派往B地域(30-x)台乙型收割机, 派往B地域(x-10)台甲型收割机, 所以 y=1600x+1200(30-x)+1800(30-x)+1600(x-10)
60+0.6×0.01x =3+0.6×0.06x
解得:x=1900
即当照明时间等于1900小时,购置节能灯、白炽灯均可.
解:设照明时间是x小时, 节能灯旳费用y1元表达,白炽灯旳费用y2 元表达,则有:y1 =60+0.6×0.01x; y2 =3+0.6×0.06x .

一次函数选择方案技巧

一次函数选择方案技巧

一次函数选择方案技巧
选择一次函数 (一元函数) 的方案通常取决于所需表达的数学
关系和数据类型。

以下是一些常用的一次函数选择方案和技巧:
1. 常数函数:一次函数中系数为 0,即 y=0,表示没有任何变化。

通常用于表示常数或静止的状态。

2. 直线函数:一次函数可以是一条直线,其斜率为 1,截距为 0,表示 y 随 x 的增加而增加或减少。

可以使用 y 坐标轴表示直线,其中 x 轴表示自变量,y 轴表示因变量。

3. 斜率函数:一次函数中系数不为 0,表示 y 随 x 的变化率不是常数,而是随着时间的增加而增加或减少。

可以使用 x 坐标轴表示自变量,y 坐标轴表示因变量,并通过绘制折线图来显示它的变化率。

4. 指数函数:一次函数中指数为 1,表示 y 随 x 的增大而指数级增加。

可以使用 y 坐标轴表示指数函数,通常用于表示功率、速度、增长率等。

5. 对数函数:一次函数中指数为 e,表示 y 随 x 的增大而指数级增加,但与指数函数不同的是,它的变化是线性的。

可以使用 x 坐标轴表示自变量,y 坐标轴表示因变量,并通过绘制折线图来显示它的变化。

在选择一次函数时,需要考虑所需的数学关系和数据类型,并根据具体情况选择适当的一次函数。

同时,为了更好地表示一次函数的关系,可以使用坐标系和图形来更好地展示它的变化和关系。

一次函数应用题(选择方案)(一)

一次函数应用题(选择方案)(一)

一次函数应用题(选择方案)(一)1类型一: 利用函数值的大小选择方案例1 紧俏商品,经过市场调查发现,如果月初出售,可获得15%的利润,并可用本和利再投资其他商品,到月末又可获利10%;如果月末出售可获利30%,但要付存储费700元,请根据商场的资金情况,判断一下选择哪种销售方式获利较多,并说明商场投资25000元时,哪种销售方式获利较多。

2 类型二选择购买方案例2 甲乙两家体育器材商店出售同样地乒乓球拍和乒乓球,球拍每幅定价60元,乒乓求每盒定价10元。

今年世界乒乓球锦标赛期间,两家商店都搞促销活动:甲商店规定每买1副乒乓球拍赠2盒乒乓球;乙商店规定所有商品9折优惠。

某校乒乓球队需要2副乒乓球拍,乒乓球若干盒(不少于4盒)设该校要买乒乓求x盒,所需商品在甲商店购买需用y1元,在乙商店购买需要用y2元。

(1)请分别写出y1、y2与之间的函数解析式(不注明自变量x的取值范围);(2)对x的取值情况进行分析,试说明在哪一家商店购买所需商品比较便宜;(3)若该校要买2副乒乓球拍和20盒乒乓球,在不考虑其他因素的情况下,请你设计一个最省钱的购买方案。

例3、商店出售茶壶和茶杯,茶壶每只定价为20元,茶杯每只定价为5元,该店制定了两种优惠办法:(1)买一只茶壶送一只茶杯;(2)按总价的92%付款。

某顾客需购茶壶4只,茶杯若干只(不少于4只),若设购买茶杯数为x(只),付款数为y(元),试分别写出两种优惠办法中y(元)与x(只)之间的函数解析式,并讨论两种办法中哪种更省钱。

3类型三选择生产方案问题例4、某工厂生产某种产品,每件产品出厂价为1万元,其原材料成本价(含其他损耗)为0.55万元,同时在生产过程中平均每生产一件产品有1吨的废渣产出,为达到国家环保要求,需要对废渣进行处理,现有两种方案可供选择:方案一:由工厂对废渣直接处理,每处理1吨废渣所用的原料费为0.05万元,并且每月设备维护及损耗费为20万元。

方案二:工厂将废渣集中到废渣厂处理,每处理一吨需付0.1万元的处理费。

一次函数(方案选取)练习题与解答

一次函数(方案选取)练习题与解答

一次函数(方案选取)练习题与解答1.某工厂生产某种产品,每件产品的出厂价为1000元,其原材料成本价为550元,同时在生产过程中平均每生产一件产品有10千克的废渣产生。

为达到国家环要求,需要对废渣进行处理,现有两种方案可供选择:方案一:由工厂对废渣直接进行处理,每处理10千克废渣所用的原料费为50元,并且每月设备维护及损耗费为2000元。

方案二:工厂将废渣集中到废渣处理厂统一处理,每处理10千克废渣需付100元的处理费。

(1)设工厂每月生产x件产品.用方案一处理废渣时,每月利润为元;用方案二处理废渣时,每月利润为元(利润=总收人-总支出)。

(2)若每月生产30件和60件,用方案一和方案二处理废渣时,每月利润分别为多少元(3)如何根据月生产量选择处理方案,既可达到环保要求又最划算2.汛期来临,水库水位不断上涨,经勘测发现,水库现在超过警戒线水量640万米3,设水流入水库的速度是固定的,每个泄洪闸速度也是固定的,泄洪时,每小时流入水库的水量16万米3,每小时每个泄洪闸泄洪14万米3,已知泄洪的前a小时只打开了两个泄洪闸,水库超过警戒线的水量y(万米3)与泄洪时间s(小时)的关系如图所示,根据图象解答问题:(1)求a的值;(2)求泄洪20小时,水库现超过警戒线水量;(3)若在开始泄洪后15小时内将水库降到警戒线水量,问泄洪一开始至少需要同时打开几个泄洪闸3.水果商贩小李去水果批发市场采购被誉为“果中之王”的泰顺猕猴桃,他了解到猕猴桃有精品盒与普通盒两种包装,精品盒的批发价格每盒60元,普通盒的批发价格每盒40元,现小李购得精品盒与普通盒共60盒,费用共为3100元。

(1)问小李分别购买精品盒与普通盒多少盒(2)小李经营着甲、乙两家店铺,每家店铺每天部能售出精品盒与普通盒共30盒,并且每售出一盒精品盒与普通盒,在甲店获利分别为30元和40元,在乙店获利分别为24元和35元.现在小李要将购进的60盒弥猴桃分配给每个店铺各30盒,设分配给甲店精品盒a盒,请你根据题意填写下表:小李希望在甲店获利不少于1000元的前提下,使自己获取的总利润W最大,应该如何分配最大的总利润是多少4.某公司在甲、乙两座仓库分别有农用车12辆和6辆,现要调往A县10辆,调往B 县8辆,已知调运一辆农用车的费用如表:(1)设从乙仓库调往A县农用车x辆,求总运费y关于x的函数关系式。

培优专题20一次函数与方案的设计与选择

培优专题20一次函数与方案的设计与选择



数表达式为 y =- x +30.

(3)10:00时,甲容器中的水面高度为多少?当甲容器中的水面高度为20cm时

几点钟?
◉答案 解:(3)10:00时, x =60, y =-
器中的水面高度为27cm.当 y =20时,20=-

×60+30=27,∴10:00时,甲容


x +30,解得 x =200.∵9:00经过
(2)假设你是决策者,你认为应该选择哪种方案?请说明理由.
◉答案 解:(2) y2- y1=2.4 x +16 000-4 x =16 000-1.6 x .由 y1= y2得16
000-
1.6 x =0,解得 x =10 000,∴当 x <10 000时, y1< y2,选择方案一,从纸箱厂定
2.4元.
(1)若需要这种规格的纸箱 x 个,请分别写出从纸箱厂定制购买纸箱的费用 y1
(元)和蔬菜加工厂自己加工制作纸箱的费用 y2(元)关于 x (个)的函数关系式.
◉答案 解:(1)从纸箱厂定制购买纸箱费用 y1关于 x 的函数关系式为 y1=4 x .蔬菜
加工厂自己加工制作纸箱费用 y2关于 x 的函数关系式为 y2=2.4 x +16 000.
制购买纸箱所需的费用低;当 x >10 000时, y1> y2,选择方案二,蔬菜加工厂自己
加工制作纸箱所需的费用低;当 x =10 000时, y1= y2,选择两个方案的费用相同.
5. [应用意识]某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的
羽毛球拍,每副球拍配 x ( x ≥2)个羽毛球,供社区居民免费借用.该社区附近
第六章 一次函数
培优专题20:一次函数与方案的设计与选择

一次函数的应用——方案选择问题“微课”教学设计

一次函数的应用——方案选择问题“微课”教学设计

一次函数的应用——方案选择问题“微课”教学设计一. 教材分析本次微课的教学内容是一次函数的应用——方案选择问题。

一次函数是初中数学中的重要内容,也是实际生活中应用广泛的知识点。

通过本次微课的学习,让学生能够理解一次函数的概念,掌握一次函数的图像特征,并能运用一次函数解决实际问题。

二. 学情分析学生在学习本次微课之前,已经掌握了二次函数的相关知识,具备了一定的数学思维能力。

但部分学生对于一次函数的图像特征和实际应用可能还有一定的困惑。

因此,在教学过程中,需要关注学生的学习需求,针对性地进行讲解和辅导。

三. 教学目标1.让学生掌握一次函数的概念和图像特征。

2.培养学生运用一次函数解决实际问题的能力。

3.提高学生分析问题和解决问题的能力。

四. 教学重难点1.一次函数的概念和图像特征。

2.一次函数在实际问题中的应用。

五. 教学方法采用问题驱动的教学方法,通过生动的案例引导学生思考和探究,让学生在解决问题的过程中掌握一次函数的知识和应用。

同时,运用互动式教学,鼓励学生提问和发表见解,提高学生的参与度和积极性。

六. 教学准备1.准备相关的教学案例和问题,以便进行课堂讨论和练习。

2.准备一次函数的图像资料,以便进行直观讲解和分析。

七. 教学过程1.导入(5分钟)通过一个实际问题引出一次函数的概念,激发学生的兴趣。

例如:某商场举行打折活动,商品的原价可以表示为一次函数y=2x+1,其中x表示购买的商品数量,y表示需要支付的总金额。

请根据这个一次函数,回答以下问题:购买2件商品需要支付多少金额?购买5件商品需要支付多少金额?2.呈现(10分钟)讲解一次函数的一般形式y=kx+b,解释k和b的含义,并通过图像展示一次函数的特征。

同时,引导学生思考一次函数在实际生活中的应用,如路程、速度、单价等问题。

3.操练(10分钟)让学生通过实例计算和绘制一次函数的图像,加深对一次函数的理解。

例如:给出一次函数y=3x-2,让学生计算x=0、x=1、x=2时的y值,并绘制出函数的图像。

八年级数学(下)第十九章《一次函数——选择方案》同步练习题(含答案)

八年级数学(下)第十九章《一次函数——选择方案》同步练习题(含答案)

八年级数学(下)第十九章《一次函数——选择方案》同步练习题(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.若等腰△ABC的周长是50 cm,底边长为x cm,一腰长为y cm,则y与x的函数关系式及自变量x的取值范围是A.y=50-2x(0<x<50)B.y=50-2x(0<x<25)C.y=12(50-2x)(0<x<50)D.y=12(50-x)(0<x<25)【答案】D【解析】由题意得2y+x=50,所以y=12(50-x),且025x<<,故选D.2.在一定范围内,某种产品的购买量y吨与单价x元之间满足一次函数关系,若购买1000吨,每吨为800元;购买2000吨,每吨为700元,一客户购买400吨单价应该是A.820元B.840元C.860元D.880元【答案】C【解析】设购买量y吨与单价x元之间的一次函数关系式为y=kx+b,由题意,得1000800 2000700k bk b=+⎧⎨=+⎩,解得109000kb=-⎧⎨=⎩,解析式为:y=-10x+9000,当y=400时,400=-10x+9000,860x=,故选C.3.春节期间,某批发商欲将一批海产品由A地运往B地,汽车货运公司和铁路货运公司均开放海产品的运输业务,两货运公司的收费项目及收费标准如下表所示.已知运输路程为120千米,汽车和火车的速度分别为60千米/小时,100千米/小时,请你选择一种交通工具A.当运输货物重量为60吨,选择汽车B.当运输货物重量大于50吨,选择汽车C .当运输货物重量小于50吨,选择火车D .当运输货物重量大于50吨,选择火车 【答案】D【解析】(1)y 1=2×120x +5×(120÷60)x +200=250x +200, y 2=1.8×120x +5×(120÷100)x +1600=222x +1600; (2)若y 1=y 2,则x =50,∴当海产品不少于30吨但不足50吨时,选择汽车货运公司合算;当海产品恰好是50吨时选择两家公司都一样,没有区别;当海产品超过50吨时选择铁路货运公司费用节省一些,故选D .4.学校春季运动会期间,负责发放奖品的张也同学,在发放运动鞋(奖品)时,对运动鞋的鞋码统计如下表:如果获奖运动员李伟领取的奖品是43号(原鞋码)的运动鞋,则这双运动鞋的新鞋码是A .270B .255C .260D .265【答案】D【解析】由题中的表格知,y 是x 的一次函数,可设y 与x 的关系为y =kx +b , 由题意得22535k 24539b k b =+⎧⎨=+⎩,解得550k b =⎧⎨=⎩,∴y 与x 之间的函数关系式为y =5x +50,当x =43时,y =265,故选D .5.如图,小明从A 地前往B 地,到达后立刻返回,他与A 地的距离(y 千米)和所用时间(x 小时)之间的函数关系如图所示,则小明出发6小时后距A 地A .120千米B .160千米C .180千米D .200千米【答案】B【解析】设当46x ≤≤时,y 与x 的函数关系式为y kx b =+,4240100k b k b +=⎧⎨+=⎩,得40400k b =-⎧⎨=⎩, 即当46x ≤≤时,y 与x 的函数关系式为40400y x =-+, 当6x =时,406400160y =-⨯+=, 即小明出发6小时后距A 地160千米,故选B . 二、填空题:请将答案填在题中横线上.6.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400 m ,先到终点的人原地休息.已知甲先出发4 min ,在整个步行过程中,甲、乙两人的距离y (m )与甲出发的时间t (min )之间的关系如图所示,以下结论:①甲步行的速度为60 m /min ;②乙走完全程用了32 min ;③乙用16 min 追上甲;④乙到达终点时,甲离终点还有300 m ,其中正确的结论有___________(填序号).【答案】①【解析】由图可得,甲步行的速度为:240÷4=60米/分,故①正确; 乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误; 乙追上甲用的时间为:16-4=12(分钟),故③错误;乙到达终点时,甲离终点距离是:2400-(4+30)×60=360米,故④错误,故答案为:①. 7.某体育用品商场为推销某一品牌运动服,先做了市场调查,得到数据如下表:则P 与x 的函数关系式为___________,当卖出价格为60元时,销售量为___________件. 【答案】P =-10x +1000;400件【解析】(1)P 与x 成一次函数关系,设函数关系式为P =kx +b , 则5005049051k b k b=+⎧⎨=+⎩,解得101000k b =-=⎧⎨⎩ , ∴P =−10x +1000,经检验可知:当x =52,P =480,当x =53,P =470时也适合这一关系式, ∴所求的函数关系为P =−10x +1000.(2)当x=60时,P=−10×60+1000=400,故答案为:P=−10x+1000;400.三、解答题:解答应写出文字说明、证明过程或演算步骤.8.某移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元;“神州行”不缴月租费,每通话1 min付费0.6元.若一个月内通话x min,两种方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数解析式;(2)一个月内通话多少分钟,两种通讯业务费用相同;(3)某人估计一个月内通话300 min,应选择哪种移动通讯业务合算些?【解析】(1)y1=50+0.4x,y2=0.6x.(2)令y1=y2,则50+0.4x=0.6x,解之,得x=250.所以通话250分钟两种费用相同.(3)令x=300,则y1=50+0.4×300=170,y2=0.6×300=180,所以选择全球通合算.9.甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每张椅子80元.甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张桌子送三张椅子;乙厂家:桌子和椅子全部按原价8折优惠.现某公司要购买3张办公桌和若干张椅子,若购买的椅子数为x张(x≥9).(1)分别用含x的式子表示甲、乙两个厂家购买桌椅所需的金额;(2)购买的椅子至少多少张时,到乙厂家购买更划算?【解析】(1)根据甲、乙两个厂家推出各自销售的优惠方案:甲厂家所需金额为:3×800+80(x﹣9)=1680+80x;乙厂家所需金额为:(3×800+80x)×0.8=1920+64x.(2)由题意,得:1680+80x≥1920+64x,解得:x≥15.答:购买的椅子至少15张时,到乙厂家购买更划算.10.为响应绿色出行号召,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付和会员卡支付两种支付方式,如图描述了两种方式应支付金额y(元)与骑行时间x(时)之间的函数关系,根据图象回答下列问题:(1)求手机支付金额y (元)与骑行时间x (时)的函数关系式;(2)李老师经常骑行共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算. 【解析】(1)由题意和图象可设:手机支付金额y (元)与骑行时间x (时)的函数解析式为:1y kx b =+,由图可得:0.500.5k b k b +=⎧⎨+=⎩,解得10.5k b =⎧⎨=-⎩,∴手机支付金额y (元)与骑行时间x (时)的函数解析式为:10.5y x =-.(2)由题意和图象可设会员支付y (元)与骑行时间x (时)的函数解析式为:2y ax =, 由图可得:0.75a =,由0.750.5y x y x =⎧⎨=-⎩,可得21.5x y =⎧⎨=⎩, ∴图中两函数图象的交点坐标为(2,1.5), 又∵0x >,结合图象可得:当02x <<时,李老师用“手机支付”更合算; 当0x =时,李老师选择两种支付分式花费一样多; 当2x >时,李老师选择“会员支付”更合算.11.某工厂生产某种产品,每件产品的出厂价为1000元,其原材料成本价为550元,同时在生产过程中平均每生产一件产品有10千克的废渣产生.为达到国家环要求,需要对废渣进行处理,现有两种方案可供选择:方案一:由工厂对废渣直接进行处理,每处理10千克废渣所用的原料费为50元,并且每月设备维护及损耗费为2000元.方案二:工厂将废渣集中到废渣处理厂统一处理,每处理10千克废渣需付100元的处理费. (1)设工厂每月生产x 件产品.用方案一处理废渣时,每月利润为__________元;用方案二处理废渣时,每月利润为__________元(利润=总收入-总支出);(2)若每月生产30件和60件,用方案一和方案二处理废渣时,每月利润分别为多少元? (3)如何根据月生产量选择处理方案,既可达到环保要求又最划算?【解析】(1)由题意可得,用方案一处理废渣时,每月的利润为:x(1000-550)-50x-2000=400x-2000;用方案二处理废渣时,每月利润为:x(1000-550)-100x=350x,故答案为:400x-2000;350x.(2)当x=30时,用方案一处理废渣时,每月的利润为:400×30-2000=10000元;用方案二处理废渣时,每月利润为:350×30=10500元;x=60时,用方案一处理废渣时,每月的利润为:400×60-2000=22000;用方案二处理废渣时,每月利润为:350×60=21000.(3)令400x-2000=350x,解得x=40,即当生产产品数量少于40时,选择方案二;当生产产量大于40时,选择方案一.12.水果商贩小李去水果批发市场采购被誉为“果中之王”的泰顺猕猴桃,他了解到猕猴桃有精品盒与普通盒两种包装,精品盒的批发价格每盒60元,普通盒的批发价格每盒40元,现小李购得精品盒与普通盒共60盒,费用共为3100元。

8年级-上册-数学-第5章《一次函数》专题-方案最优、行程问题-每日好题分享

8年级-上册-数学-第5章《一次函数》专题-方案最优、行程问题-每日好题分享

浙教版-8年级-上册-数学-第5章《一元函数》《一次函数》专题-方案最优、行程问题-每日好题挑选一、一次函数的应用—方案最优化问题【例1】为促进青少年体育运动的发展,某教育集团需要购买一批篮球和足球,已知一个篮球比一个足球的单价高30元,买两个篮球和三个足球一共需要510元.(1)求篮球和足球的单价;(2)根据实际需要,集团决定购买篮球和足球共100个,其中篮球购买的数量不少于40个,若购买篮球x个,学校购买这批篮球和足球的总费用为y(元),求y与x之间的函数关系式;(3)在(2)的条件下,由于集团可用于购买这批篮球和足球的资金最多为10500元,求购买篮球和足球各多少个时,能使总费用y最小,并求出y的最小值.【练1-1】学校需要购买一批篮球和足球,已知一个篮球比一个足球的单价高30元,买两个篮球和三个足球一共需要510元.(1)求篮球和足球的单价分别为多少元?(2)根据实际需要,学校决定购买篮球和足球共100个,其中篮球购买的数量不少于足球数量的,学校可用于购买这批篮球和足球的资金最多为10500元.请问有几种购买方案?(3)若学校购买这批篮球和足球的总费用为W(元),在(2)的条件下,求哪种方案能使总费用W最小,并求出W的最小值.【练1-2】某商场筹集资金12.8万元,一次性购进空调,彩电共30台,根据市场需要,这些空调,彩电可以全部销售,全部销售后利润不低于1.5万元,其中空调、彩电的进价和售价如下表所示:设商场计划购进空调x台,空调和彩电全部销售后商场获得的利润为y元.(1)试出y与x之间的函数关系式;(2)商场有哪几种进货方案可以选择?(3)根据你所学的有关函数知识选择哪种方案获利最大,最大利润为多少?项目空调彩电进价(月/台)54003500售价(月/台)61003900【练1-3】湖南洞庭湖区盛产稻谷和棉花,销往全国各地,湖边某货运码头,有稻谷和棉花共3000吨,其中稻谷比棉花多500吨.(1)求稻谷和棉花各是多少吨;(2)现有甲、乙两种不同型号的集装箱共58个,将这批稻谷和棉花运往外地,已知稻谷35吨和棉花15吨可装满一个甲型集装箱;稻谷25吨和棉花35吨可装满一个乙型集装箱.在58个集装箱全部使用的情况下,共有几种方案安排使用甲、乙两种集装箱?(3)在(2)的情况下,甲种集装箱每箱收费1000元,乙种集装箱每箱收费1200元,乙种集装箱老板想扩大市场,提出惠民措施:每箱可优惠m 元(m<250).问怎么安排集装箱这批货物总运输费最少?二、一次函数的应用—行程问题【例2】甲车从A 地出发匀速驶向B 地,到达B 地后,立即按原路原速返回A 地;乙车从B 地出发沿相同路线匀速驶向A 地,出发1小时后,乙车因故障在途中停车1小时,然后继续按原速驶向A 地,乙车在行驶过程中的速度是80千米/时,甲车比乙车早1小时到达A 地,两车距各自出发地的路程y 千米与甲车行驶时间x 小时之间的函数关系如图所示,请结合图象信息解答下列问题:(1)写出甲车行驶的速度,并直接写出图中括号内正确的数;(2)求甲车从B 地返回A 地的过程中,y 与x 的函数关系式(不需要写出自变量x 的取值范围);(3)直接写出乙车出发多少小时,两车恰好相距80千米。

一次函数的方案设计问题

一次函数的方案设计问题

一次函数中的方案设计问题1.某市的C地和D地8月份发生水灾,急需救灾物资10吨和8吨,该市的A地和B地伸出援助之手,分别募集到救灾物资12吨和6吨,全部赠送给C地和D地,已知A地运货到C、D两地的运费(元╱吨),如表所示:(1)设B地到C地的救灾物资为x吨,求总运费w(元)关于x的函数关系式,并指出x的取值范围;(2)求最低的总运费,并说明总运费最低时的运送方案2.已知A市和B市分别库存某种机器12台和6台,现决定支援给C市10台和D市8台.•已知从A市调运一台机器到C市和D市的运费分别为400元和800元;从B市调运一台机器到C市和D市的运费分别为300元和500元.(1)设B市运往C市机器x台,求总运费W(元)关于x的函数关系式.(2)若要求总运费不超过9000元,问共有几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少?3.某市的A县和B县春季育苗,急需化肥分别为90吨和60吨,该市的C县和D县分别储存化肥100吨和50吨,全部调配给A县和B县.已知C,D两县运化肥到A,B两县的运费(元/吨)如下表所示.(1)设C县运到A县的化肥为x吨,求总运费W(元)与x(吨)的函数关系式,并写出自变量x的取值范围;(2)求最低总运费,并说明总运费最低时的运送方案.4.A地与B地市分别准备了同型号的取暖器1700台和1500台支援C地市与D地市两个地震灾区,现支援C地市1800台,D地市1400台,从A地、B地分别运到C地和D地的费用如下表:若从A地调运x台给C地,完成以上调运共需总费用y元.(1)写出y与x的函数关系式及x的取值范围;(2)设计调运总费用最少的运送方案,最少运费为多少?5.甲乙两仓库要向A、B两地运送钢材,已知甲库可调出100吨钢材,乙库可调出80吨钢材,A地需70吨钢材,B地需110吨钢材,两库到A、B两地的路程和运费如下表:(表中运费栏“元/吨·千米”表示每吨钢材送1千米所需钱数), 设甲库运往A地钢材x吨,由甲乙两仓库要向A、B两地运送钢材的总运费为y(元).①求总运费y(元)关于x(吨)的函数关系式;②当甲、乙两库各运往A、B两地多少吨钢材时,总运费最省,是多少?6.某公司在A、B两地分别有库存机器16台和12台。

一次函数应用分类

一次函数应用分类

1、(方案选择)第十二届运动会将在我市隆重开幕,根据大会组委会安排,某校接受了开幕式大型团体操表演任务.为此,学校需要采购一批演出服装,A、B两家制衣公司都愿成为这批服装的供应商.经了解:两家公司生产的这款演出服装的质量和单价都相同,即男装每套120元,女装每套100元.经洽谈协商:A公司给出的优惠条件是,全部服装按单价打七折,但校方需承担2200元的运费;B公司的优惠条件是男女装均按每套100元打八折,公司承担运费.另外根据大会组委会要求,参加演出的女生人数应是男生人数的2倍少100人,如果设参加演出的男生有x人.(1)分别写出学校购买A、B两公司服装所付的总费用y1(元)和y2(元)与参演男生人数x之间的函数关系式;(2)问:该学校购买哪家制衣公司的服装比较合算?请说明理由.2、(同向行驶)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.请根据图象解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式.(3)轿车到达乙地后,马上沿原路以CD段速度返回,求货车从甲地出发后多长时间再与轿车相遇(结果精确到0.01).3、(相向行驶)A,B两地相距1100米,甲从A地出发,乙从B地出发,相向而行,甲比乙先出发2分钟,乙出发7分钟后与甲相遇.设甲、乙两人相距y米,甲行进时间为t分钟,y与t之间的函数关系式如图所示.请你结合图象探究:(1)甲的行进速度为每分钟米,m= 分钟;(2)求直线PQ对应的函数表达式;(3)求乙的行进速度.4、(最值问题)某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?5、(分配调运)某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并求出x的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;6、(经济问题)某工厂投入生产一种机器的总成本为2000万元.当该机器生产数量至少为10台,但不超过70台时,每台成本y与生产数量x之间是一次函数关系,函数y与自变量x的部分对应值如下表:Array(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)市场调查发现,这种机器每月销售量z(台)与售价a(万元∕台)之间满足如图所示的函数关系.该厂生产这种机器50台后第一个月按同一售价共卖出这种机器25台,请你求出该厂第一个月销售这种机器的利润.(注:利润=售价﹣成本)。

一次函数 选择方案

一次函数 选择方案

引言一次函数是数学中的重要概念,它在实际问题中的应用非常广泛。

在选择一次函数的方案时,我们需要考虑多个因素,包括函数的表示形式、函数的斜率和截距、函数的性质等等。

本文将介绍三种常见的一次函数选择方案,并比较它们的优缺点,帮助读者更好地理解和应用一次函数。

方案一:标准形式(y = mx + b)一次函数的标准形式是 y = mx + b,其中 m 是斜率,b 是截距。

选择标准形式的优点是简单直观,易于理解和应用。

标准形式的一次函数可以通过两个已知的点来确定,只需要计算斜率和截距即可。

然而,标准形式的一次函数不够灵活,不能直接表示垂直于 x 轴或平行于 y 轴的直线。

此外,当函数需要进行复杂的运算时,标准形式不够方便,需要进行变形才能满足要求。

方案二:斜截式(y = kx + b)斜截式是另一种常见的一次函数表示形式,它也是 y = mx + b 的变形形式。

在斜截式中,k 代表斜率,b 代表截距。

斜截式的优点在于可以直接表示垂直于 x 轴或平行于 y 轴的直线,而无需进行额外的变形。

然而,斜截式的缺点是计算斜率时需要较多的步骤,增加了计算的复杂性。

此外,当问题涉及到垂直于 x 轴或平行于 y 轴的情况时,斜截式的表示形式可能造成误解或困惑。

方案三:点斜式(y - y1 = k(x - x1))点斜式是一种基于点和斜率的一次函数选择方案。

该方案中,我们已知一点(x1, y1) 和斜率 k,通过该点和斜率可以确定一次函数的方程。

点斜式的优点在于能够直观地表示一次函数通过给定点且具有给定斜率的特征。

然而,点斜式的计算过程较为复杂,包括计算斜率和点的坐标。

此外,当给定点的坐标不够明确或不准确时,点斜式可能会导致误解或错误的结果。

比较和选择在选择一次函数的方案时,我们需要根据具体情况考虑各个方案的优缺点。

以下是对三种方案的比较:•标准形式简单直观,适用于只涉及到基本运算的问题。

•斜截式可以直接表示垂直于 x 轴或平行于 y 轴的直线,但计算斜率较为复杂。

一次函数应用及方案选择问题(含阶梯计费问题)

一次函数应用及方案选择问题(含阶梯计费问题)

(升)(小时)6014504540302010876543210y t 一次函数应用题与方案选择问题一次函数图像及应用1.某企业有甲、乙两个长方体的蓄水池,两个蓄水池中水的深度y (m )与注水时间x (h )之间的函数图像如图所示,结合图像回答下列问题:(1)未注水前甲池水高____m ,乙池水高_____m(2)分别求出甲,乙两个蓄水池中水的深度y 与注水时间x 之间的函数关系式,并说明斜率表示的实际意义(2)求注水多长时间甲,乙两个蓄水池水的深度相同;(3)若甲池中的水以6立方米/小时的速度注入乙池,求注水多长时间甲,乙两个蓄水池水的体积相同.2.张师傅驾车运送荔枝到某地出售,汽车出发前油箱有油50升,行驶若干小时后,途中在加油站加油若干升,油箱中剩余油量y (升)与行驶时间t (小时)之间的关系如图所示. 请根据图象回答下列问题: (1)汽车行驶 小时后加油,中途加油 升; (2)求加油前油箱剩余油量y 与行驶时间t 的函数关系式; (3)已知加油前、后汽车都以70千米/小时匀速行驶,如果加油站距目的地210千米,要到达目的地,问油箱中的油是否够用?请说明理由.3.小明、小颖两名同学在学校冬季越野赛中的路程y(千米)与时间x(分)的函数关系如图所示。

(1)根据图象提供的数据,求比赛开始后,两人第一次相遇所用的时间;(2)根据图象提供的信息,请你设计一个问题,并给予解答4.小明从家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/min的速度从邮局沿同一条道路步行回家,小明在邮局停留2 min后沿原路以原速返回.设他们出发后经过t min时,小明与家之间的距离为s1 m,小明爸爸与家之间的距离为s2 m,图中折线OABD、线段EF分别表示s1、s2与t之间函数关系的图象。

(1)求s2与t之间的函数关系式;(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?阶梯定价问题OA BCED F t(min) 24001012s(m)1.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2012年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表:一户居民一个月用电量的范围电费价格(单位:元/千瓦时)不超过150千瓦时 a超过150千瓦时但不超过300千瓦时的部分 b超过300千瓦时的部分a+0.32012年5月份,该市居民甲用电100千瓦时,交电费60元;居民乙用电200千瓦时,交电费122.5元.该市一户居民在2012年5月以后,某月用电x千瓦时,当月交电费y元.(1)上表中,a=;b=;(2)请直接写出y与x之间的函数关系式;(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时时,其当月的平均电价每千瓦时不超过0.62元?2.为鼓励居民节约用水,某市决定对居民用水收费实行“阶梯价”,即当每月用水量不超过15吨时(包括15吨),采用基本价收费;当每月用水量超过15吨时,超过部分每吨采用市场价收费.小兰家4、5月份的用水量及收费(2)设每月用水量为n吨,应缴水费为m元,请写出m与n之间的函数关系式.(3)小兰家6月份的用水量为26吨,则她家要缴水费多少元?3.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户一表”生活用水及提示计(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a、b的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9200元,则小王家6月份最多能用水多少吨?4.为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.人均住房面积(平方米)单价(万元/平方米)不超过30(平方米)0.3超过30平方米不超过m(平方米)部分(45≤m≤60)0.5超过m平方米部分0.7根据这个购房方案:(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x的函数关系式;(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元,且57<y≤60 时,求m的取值范围.生产方案的设计1.某工厂有一种材料,可加工甲、乙、丙三种型号机械配件共240个.厂方计划由20个工人一天内加工完成,并(2)如果加工每种配件的人数均不少于3人,那么加工配件的人数安排方案有几种?并写出每种安排方案.(3)要使此次加工配件的利润最大,应采用(2)中哪种方案?并求出最大利润值.2.某高科技公司根据市场需求,计划生产A.B两种型号的医疗器械,其部分信息如下:信息一:A.B两种型号的医疔器械共生产80台.信息二:该公司所筹生产医疗器械资金不少于1800万元,但不超过1810万元.且把所筹资金全部用于生产此两种医疗器械.根据上述信息.解答下列问题:(1)该公司对此两种医疗器械有哪几种生产方案?哪种生产方案能获得最大利润?(2)根据市场调查,每台A型医疗器械的售价将会提高a万元(a>0).每台B型医疗器械的售价不会改变.该公司应该如何生产可以获得最大利润?(注:利润=售价﹣成本)营销方案的设计1.某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共15台,三种家电的进价和售其中购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半.国家规定:农民购买家电后,可根据商场售价的13%领取补贴.设购进电视机的台数为x台,三种家电国家财政共需补贴农民y元.(1)求出y与x之间的函数关系;(2)在不超出现有资金的前提下,商场有哪几种进货方案?(3)在(2)的条件下,如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元?2.两种T恤的相关信息如下表:根据上述信息,该店决定用不少于6195元,但不超过6299元的资金购进这两种T恤共100件.请解答下列问题:(1)该店有哪几种进货方案?(2)该店按哪种方案进货所获利润最大,最大利润是多少?(3)两种T恤在夏季销售的过程中很快销售一空,该店决定再拿出385元全部用于购进这两种T恤,在进价和售价不变的情况下,全部售出.请直接写出该店按哪种方案进货才能使所获利润最大.优惠方案的设计1.实验学校计划组织共青团员372人到某爱国主义基地接受教育,并安排8们老师同行,经学校与汽车出租公司协商,有两种型号客车可供选择,它们的载客量和租金如下表,为保证每人都有座位,学校决定租8辆车。

一次函数方案选择问题

一次函数方案选择问题

利用一次函数选择最佳方案(1)根据自变量的取值范围选择最佳方案:A 、列出所有方案,写出每种方案的函数关系式;B 、画出函数的图象,求出交点坐标,利用图象来讨论自变量在哪个范围内取哪种方案最佳; 2根据一次函数的增减性来确定最佳方案:A 、首先弄清最佳方案量与其他量之间的关系,设出最佳方案量和另外一个量,建立函数关系式;B 、根据条件列出不等式组,求出自变量的取值范围;C 、根据一次函数的增减性,确定最佳方案; 根据自变量的取值范围选择最佳方案:例1、某校实行学案式教学,需印制若干份数学学案;印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要;两种印刷方式的费用y 元与印刷份数x 份之间的函数关系如图所示:1填空:甲种收费方式的函数关系式是_______ ____;乙种收费方式的函数关系式是___________;(2)该校某年级每次需印制100∽450含100和450份学案, 选择哪种印刷方式较合算;例2、某校一名老师将在假期带领学生去北京旅游,甲旅行社说:“如果老师买全票,其他人全部半价优惠,”乙旅行社说:“所有人按全票价的6折优惠,”已知全票价为240元,设学生人数为x,甲旅行社的收费为甲y 元,乙旅行社的收费为乙y 元;(1)分别表示两家旅行社的收费甲y ,乙y 与x 的函数关系式; (2)就学生人数讨论哪家旅行社更优惠; 2根据一次函数的增减性来确定最佳方案:例3、博雅书店准备购进甲、乙两种图书共100本,购书款不高于2224元,预计这100本图书全部售完的利润不低于1100元,两种图书的进价、售价如下表所示:甲种图书 乙种图书 进价元/本 16 28 售价元/本 26 40 请解答下列问题: 1有哪几种进书方案2在这批图书全部售出的条件下,1中的哪种方案利润最大最大利润是多少3博雅书店计划用2中的最大利润购买单价分别为72元、96元的排球、篮球捐给贫困山区的学校,那么在钱恰好用尽的情况下,最多可以购买排球和篮球共多少个请你直接写出答案;例4、某学校计划在总费用2300元的限额内,利用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少有1名教师;现有甲、乙两种大客车,它们的载客量和租金如表 :甲种客车 乙种客车载客量单位:人/辆 45 30 租金 单位:元/辆 4002801共需租多少辆汽车2给出最节省费用的租车方案;例5、某市的A 县和B 县春季育苗,急需化肥分别为90吨和60吨,该市的C 县和D 县分别储存化肥100吨和50吨,全部调配给A 县和B 县,已知C 、D 两县运化肥到A 、B 两县的运费元/吨如下表所示: 1设C 县运到A 县的化肥为,并写出自变量x 的取值范围;2求最低总运费,一、 生产方案的设计例1 ,某医药器械厂接受了生产一批高,其中A型口罩不得少于万只,该厂的生产能力是:若生产A型口罩每天能生产万只,若生产B型口罩每天能生产万只,已知生产一只A型口罩可获利元,生产一只B型口罩可获利元.1设该厂在这次任务中生产了A型口罩x 万只.问:1该厂生产A型口罩可获利润_____万元,生产B型口罩可获利润_____万元;2设该厂这次生产口罩的总利润是y 万元,试写出y 关于x 的函数关系式,并求出自变量x 的取值范围;3如果你是该厂厂长:①在完成任务的前提下,你如何安排生产A型和B型口罩的只数,使获得的总利润最大最大利润是多少②若要在最短时间内完成任务,你又如何来安排生产A型和B型口罩的只数最短时间是多少 分析:1x ,5-x ; 2y =x +5-x =x +,首先,≤x ≤5,但由于生产能力的限制,不可能在8天之内全部生产A型口罩,假设最多用t 天生产A型,则8-t 天生产B型,依题意,得t +8-t =5,解得t =7,故x 最大值只能是×7=,所以x 的取值范围是万只≤x ≤万只;3错误!要使y 取得最大值,由于y =x +是一次函数,且y 随x 增大而增大,故当x 取最大值时,y 取最大值×+=万元,即按排生产A型万只,B型万只,获得的总利润最大,为万元;错误!若要在最短时间完成任务,全部生产B型所用时间最短,但要求生产A型万只,因此,除了生产A型万只外,其余的万只应全部改为生产B型.所需最短时间为÷+÷=7天.1、2011岳阳某工厂有一种材料,可加工甲、乙、丙三种型号机械配件共240个.厂方计划由20个工人一天1设加工甲种配件的人数为x,加工乙种配件的人数为y,求y 与x 之间的函数关系式.2如果加工每种配件的人数均不少于3人,那么加工配件的人数安排方案有几种并写出每种安排方案.3要使此次加工配件的利润最大,应采用2中哪种方案并求出最大利润值. 二、营销方案的设计例2湖北 一报刊销售亭从报社订购某晚报的价格是每份元,销售价是每份1元,卖不掉的报纸还可以元的价格退回报社.在一个月内以30天计算,有20天每天可卖出100份,其余10天每天只能卖出60份,但每天报亭从报社订购的份数必须相同.若以报亭每天从报社订购的份数为自变量x ,每月所获得的利润为函数y .1写出y 与x 之间的函数关系式,并指出自变量x 的取值范围;2报亭应该每天从报社订购多少份报纸,才能使每月获得的利润最大最大利润是多少分析:1由已知,得x 应满足60≤x ≤100,因此,报亭每月向报社订购报纸30x 份,销售20x +60×10份,可得利润20x +60×10=6x +180元;退回报社10x -60份,亏本×10x -60=5x -300元,故所获利润为y =6x +180-5x -300=x +480,即y =x +480.自变量x 的取值范围是60≤x ≤100,且x 为整数.2因为y 是x 的一次函数,且y 随x 增大而增大,故当x 取最大值100时,y 最大值为100+480=580元.2、2011营口某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共15台,三种家电的进价和售价如下表所示:其中购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半.国家规定:农民购买家电后,可根据商场售价的13%领取补贴.设购进电视机的台数为x 台,三种家电国家财政共需补贴农民y 元. 1求出y 与x 之间的函数关系;2在不超出现有资金的前提下,商场有哪几种进货方案3在2的条件下,如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元三、优惠方案的设计例3南通市 某果品公司急需将一批不易存放的水果从A市运到B市销售.现有三家运输公司可供选择,这三家运输公司提供的信息如下:解答下列问题:1若乙、丙两家公司的包装与装卸及运输的费用总和恰好是甲公司的2倍,求A,B两市的距离精确到个位;2如果A,B两市的距离为s 千米,且这批水果在包装与装卸以及运输过程中的损耗为300元/小时,那么要使果品公司支付的总费用包装与装卸费用、运输费用及损耗三项之和最小,应选择哪家运输公司分析:1设A,B两市的距离为x 千米,则三家运输公司包装与装卸及运输的费用分别是:甲公司为6x +1500元,乙公司为8x +1000元,丙公司为10x +700元,依题意,得8x +1000+10x +700=2×6x +1500,解得x =21632≈217千米;2设选择甲、乙、丙三家公司的总费用分别为1y ,2y ,3y 单位:元,则三家运输公司包装及运输所需的时间分别为:甲60s +4小时;乙50s +2小时;丙100s +3小时.从而 1y =6s +1500+60s+4×300=11s +2700,2y =8s +1000+50s+2×300=14s +1600,3y =10s+700+100s+3×300=13s+1600, 现在要选择费用最少的公司,关键是比较1y ,2y ,3y 的大小.∵s >0,∴2y >3y 总是成立的,也就是说在乙、丙两家公司中只能选择丙公司;在甲和丙两家中,究竟应选哪一家,关键在于比较1y 和3y 的大小,而1y 与3y 的大小与A,B两市的距离s 的大小有关,要一一进行比较.当1y >3y 时,11s +2700>13s +1600,解得s <550,此时表明:当两市距离小于550千米时,选择丙公司较好;当1y =3y 时,s =550,此时表明:当两市距离等于550千米时,选择甲或丙公司都一样; 当1y <3y 时,s >550,此时表明:当两市的距离大于550千米时,选择甲公司较好.3、实验学校计划组织共青团员372人到某爱国主义基地接受教育,并安排8们老师同行,经学校与汽车出租公司协商,有两种型号客车可供选择,它们的载客量和租金如下表,为保证每人都有座位,学校决定租8辆车;1写出符合要求的租车方案,并说明理由; 2设租甲种客车x 辆人,总租金共y 元,写出y 与x 之间的函数关系式;3在1方案中,求出租金最少租车方案;四.调运方案的设计例4 A城有化肥200吨,B城有化肥300吨,现要把化肥运往C,D两农村,如果从A城运往C,D两地运费分别是20元/吨与25元/吨,从B城运往C,D两地运费分别是15元/吨与22元/吨,现已知C地需要220吨,D地需要280吨,如果个体户承包了这项运输任务,请你帮他算一算,怎样调运花钱最小分析:根据需求,库存在A,B两城的化肥需全部运出,运输的方案决定于从某城运往某地的吨数.也就是说.如果设从A城运往C地x 吨,则余下的运输方案便就随之确定,此时所需的运费y 元也只与x 吨的值有关.因此问题求解的关键在于建立y 与x 之间的函数关系.解:设从A城运往x 吨到C地,所需总运费为y 元,则A城余下的200-x 吨应运往D地,其次,C地尚欠的220-x 吨应从B城运往,即从B城运往C地220-x 吨,B城余下的300-220-x =15220-x +2280+x ,即y =2x +10060,因为y 随x 增大而增大,故当x 取最小值时,y 的值最小.而0≤x ≤200, 故当x =0时,y 最小值=10060元.因此,运费最小的调运方案是将A城的200吨全部运往D地,B城220吨运往C地,余下的80吨运往D地.4、某商业集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种电器每台的利润元如下表:y元.1求y关于x的函数关系式,并求出x的取值范围;2为了促销,集团决定仅对甲连锁店的空调机每台让利a元销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如何设计调配方案,使总利润达到最大练习题:1.某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A,B两种产品,共50件.已知生产一件A种产品需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B种产品,需用甲种原料4千克、乙种原料10千克,可获利润1200元.1要求安排A,B两种产品的生产件数,有哪几种方案请你设计出来;2生产A,B两种产品获总利润是y元,其中一种的生产件数是x,试写出y与x之间的函数关系式,并利用函数的性质说明1中的哪种生产方案获总利润最大最大利润是多少2.北京某厂和上海某厂同时制成电子计算机若干台,北京厂可支援外地10台,上海厂可支援外地4台,现在决定给重庆8台,汉口6台.如果从北京运往汉口、重庆的运费分别是4百元/台、8百元/台,从上海运往汉口、重庆的运费分别是3百元/台、5百元/台.求:1若总运费为8400元,上海运往汉口应是多少台2若要求总运费不超过8200元,共有几种调运方案3求出总运费最低的调运方案,最低总运费是多少元3.某校校长暑假将带领该校市级“三好生”去北京旅游.甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优待.”乙旅行社说:“包括校长在内,全部按全票价的6折即按全票价的60%收费优惠.”若全票价为240元.1设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费建立表达式;2当学生数是多少时,两家旅行社的收费一样;3就学生数x讨论哪家旅行社更优惠.4.下表所示为装运甲、乙、丙三种蔬菜的重量及利润.某汽车运输公司计划装运甲、乙、丙三种蔬菜到外地销售每辆汽车按规定满载,1若用82公司计划用20辆汽车装运甲、乙、丙三种蔬菜36吨到B地销售每种蔬菜不少于一车,如何安排装运,可使公司获得最大利润最大利润是多少5.某童装厂现有甲种布料38米,乙种布料26米,现计划用这两种布料生产L、M两种型号的童装共50套,已知做一套L型号的童装需用甲种布料米,乙种布料1米,可获利45元;做一套M型号的童装需用甲种布料米,乙种布料米,可获利润30元.设生产L型号的童装套数为x,用这批布料生产这两种型号的童装所获利润为y元.1写出y元关于x套的函数解析式;并求出自变量x的取值范围;2该厂在生产这批童装中,当L型号的童装为多少套时,能使该厂所获的利润最大最大利润为多少。

一次函数方案类应用题(习题及答案).

一次函数方案类应用题(习题及答案).

一次函数方案类应用题(习题)1.某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要,两种印刷方式的费用y(元)与印刷份数x(份)之间的函数关系如图所示.(1)填空:甲种收费方式的函数关系式是,乙种收费方式的函数关系式是.(2)该校某年级每次需印刷200~500(含200和500)份学案,选择哪种印刷方式较合算.2.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克时,按22元收费;超过1千克时,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)在同一直角坐标系内画出它们的图象,并根据函数图象,直接写出小明应选择哪家快递公司更省钱?3.某食品加工厂需要一批食品包装盒,供应这种包装盒有两种方案可供选择:方案一:从包装盒加工厂直接购买,购买所需的费用y1与包装盒数x满足如图1所示的函数关系.方案二:租赁机器自己加工,所需费用y2(包括租赁机器的费用和生产包装盒的费用)与包装盒数x满足如图2所示的函数关系.根据图象回答下列问题:(1)方案一中每个包装盒的价格是多少元?(2)方案二中租赁机器的费用是多少元?生产一个包装盒的费用是多少元?(3)请分别求出y1,y2与x的函数关系式.(4)如果你是决策者,你认为应该选择哪种方案更省钱?并说明理由.4.某学校准备购进一批红外线测温仪和口罩若干包.已知购买1个红外线测温仪和2包口罩共需460元;购买2个红外线测温计和3包口罩共需880元.(1)求一个红外线测温仪和一包口罩的售价各是多少元;(2)学校准备购进红外线测温仪20个,口罩若干包(超过30包).某药店对这两种商品给出优惠活动,活动一:购买1个红外线测温仪送1包口罩;活动二:购买口罩30包以上,超出的部分按售价的五折优惠,红外线测温仪不打折.①设购买口罩x包,选择活动一的总费用为y1元,选择活动二的总费用为y2元,请分别求出y1,y2与x的函数关系式;②学校购买口罩的包数x在什么范围内,选择优惠活动一比活动二更省钱?请说明理由.5.某品牌包子铺出售两种包子:肉馅包子每个卖3元,素馅包子每个卖1元,春节来临之际,为酬谢新老客户,同时也为扩大店面影响,老板制定了两种让利方案.甲方案:买一个肉馅包子就免费送一个素馅包子;乙方案:均按八折出售.小马家筹备年货,计划在该店买20个肉馅包子,x(x>20)个素馅包子.(1)分别写出小马家按两种方案购买所需的费用y(元)与x(个)之间的函数关系式;(2)若小马家预计买肉馅包子20个,素馅包子30个,设按甲方案买n个肉馅包子,余下的按乙方案购买,如何购买才能使老板让利最多?并求出让利的金额.【参考答案】1.(1)y =0.1x +6,y =0.12x ;(2)当200≤x <300时,选择乙印刷方式较合算;当x =300时,选择甲、乙印刷方式一样合算;当300<x ≤500时,选择甲印刷方式较合算.2.(1)y =⎧22(0<x ≤1)y =16x +3(x >0);甲⎨;乙⎩15x +7(x >1)(2)图象略;当0<x <4时,乙快递公司更省钱;当x =4时,甲、乙快递公司费用一样多;当x >4时,甲快递公司更省钱.3.(1)方案一中每个包装盒的价格是5元;(2)方案二中租赁机器的费用是2万元;生产一个包装盒的费用是 2.5元;(3)y 1=5x ;y 2=2.5x +20000;(4)当0≤x <800时,方案一更省钱;当x =8000时,方案一、二费用一样多;当x >8000时,方案二更省钱.4.(1)一个红外线测温仪售价380元,一包口罩售价40元;(2)①y 1=40x +6800;y 2=20x +8200;②当购买口罩超过30包而不足70包时,选择优惠活动一更合算.5.(1)甲方案:y 甲=x +40(x >20);乙方案:y 乙=0.8x +48(x >20);(2)按甲方案买20个肉馅包子,按乙方案买10个素馅包子,能使老板让利最多,此时让利金额是22元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用一次函数选择最佳方案(1)根据自变量的取值范围选择最佳方案:A 、列出所有方案,写出每种方案的函数关系式;B 、画出函数的图象,求出交点坐标,利用图象来讨论自变量在哪个范围内取哪种方案最佳。

(2)根据一次函数的增减性来确定最佳方案:A 、首先弄清最佳方案量与其他量之间的关系,设出最佳方案量和另外一个量,建立函数关系式。

B 、根据条件列出不等式组,求出自变量的取值范围。

C 、根据一次函数的增减性,确定最佳方案。

根据自变量的取值范围选择最佳方案:例1、某校实行学案式教学,需印制若干份数学学案。

印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要。

两种印刷方式的费用y (元)与印刷份数x (份)之间的函数关系如图所示:(1)填空:甲种收费方式的函数关系式是_______ ____。

乙种收费方式的函数关系式是_______ ____。

(2)该校某年级每次需印制100∽450(含100和450)份学案, 选择哪种印刷方式较合算。

例2、某校一名老师将在假期带领学生去北京旅游,甲旅行社说:“如果老师买全票,其他人全部半价优惠,”乙旅行社说:“所有人按全票价的6折优惠,”已知全票价为240元,设学生人数为x ,甲旅行社的收费为甲y (元),乙旅行社的收费为乙y (元)。

(1)分别表示两家旅行社的收费甲y ,乙y 与x 的函数关系式;(2)就学生人数讨论哪家旅行社更优惠;(2)根据一次函数的增减性来确定最佳方案:例3、博雅书店准备购进甲、乙两种图书共100本,购书款不高于2224元,预计这100本图书全部售完的利润甲种图书 乙种图书 进价(元/本) 16 28 售价(元/本) 2640(1)有哪几种进书方案?(2)在这批图书全部售出的条件下,(1)中的哪种方案利润最大?最大利润是多少?(3)博雅书店计划用(2)中的最大利润购买单价分别为72元、96元的排球、篮球捐给贫困山区的学校,那么在钱恰好用尽的情况下,最多可以购买排球和篮球共多少个?请你直接写出答案。

例4、某学校计划在总费用2300元的限额内,利用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少有1名教师。

现有甲、乙两种大客车,它们的载客量和租金如表 :甲种客车 乙种客车 载客量(单位:人/辆) 45 30 租金 (单位:元/辆)400280(1)共需租多少辆汽车?(2)给出最节省费用的租车方案。

例5、某市的A 县和B 县春季育苗,急需化肥分别为90吨和60吨,该市的C 县和D 县分别储存化肥100吨和50吨,全部调配给A 县和B 县,已知C 、D 两县运化肥到A 、B 两县的运费(元/吨)如下表所示:(1)设C 县运到A 县的化肥为x 吨,求总运费W (元)与x (吨)的函数关系式,并写出自变量x 的取值范围; (2)求最低总运费,并说明总运费最低时的运送方案。

出发地 运费 目的地C 县D 县 A 县 35 40 B 县 30 45一、生产方案的设计例1(镇江市)在举国上下众志成城,共同抗击非典的非常时期,某医药器械厂接受了生产一批高质量医用口罩的任务.要求在8天之内(含8天)生产A型和B型两种型号的口罩共5万只,其中A型口罩不得少于1.8万只,该厂的生产能力是:若生产A型口罩每天能生产0.6万只,若生产B型口罩每天能生产0.8万只,已知生产一只A型口罩可获利0.5元,生产一只B型口罩可获利0.3元.(1)设该厂在这次任务中生产了A型口罩x万只.问:(1)该厂生产A型口罩可获利润_____万元,生产B型口罩可获利润_____万元;(2)设该厂这次生产口罩的总利润是y万元,试写出y关于x的函数关系式,并求出自变量x的取值范围;(3)如果你是该厂厂长:①在完成任务的前提下,你如何安排生产A型和B型口罩的只数,使获得的总利润最大?最大利润是多少?②若要在最短时间内完成任务,你又如何来安排生产A型和B型口罩的只数?最短时间是多少?分析:(1)0.5x,0.3(5-x);(2)y=0.5x+0.3(5-x)=0.2x+1.5,首先,1.8≤x≤5,但由于生产能力的限制,不可能在8天之内全部生产A型口罩,假设最多用t天生产A型,则(8-t)天生产B型,依题意,得0.6t+0.8(8-t)=5,解得t=7,故x最大值只能是0.6×7=4.2,所以x的取值范围是1.8(万只)≤x≤4.2(万只);(3)○1要使y取得最大值,由于y=0.2x+1.5是一次函数,且y随x增大而增大,故当x取最大值4.2时,y取最大值0.2×4.2+1.5=2.32(万元),即按排生产A型4.2万只,B型0.8万只,获得的总利润最大,为2.32万元;○2若要在最短时间完成任务,全部生产B型所用时间最短,但要求生产A型1.8万只,因此,除了生产A型1.8万只外,其余的3.2万只应全部改为生产B型.所需最短时间为1.8÷0.6+3.2÷0.8=7(天).二、营销方案的设计例2(湖北)一报刊销售亭从报社订购某晚报的价格是每份0.7元,销售价是每份1元,卖不掉的报纸还可以0.20元的价格退回报社.在一个月内(以30天计算),有20天每天可卖出100份,其余10天每天只能卖出60份,但每天报亭从报社订购的份数必须相同.若以报亭每天从报社订购的份数为自变量x,每月所获得的利润为函数y.(1)写出y与x之间的函数关系式,并指出自变量x的取值范围;(2)报亭应该每天从报社订购多少份报纸,才能使每月获得的利润最大?最大利润是多少?分析:(1)由已知,得x应满足60≤x≤100,因此,报亭每月向报社订购报纸30x份,销售(20x+60×10)份,可得利润0.3(20x+60×10)=6x+180(元);退回报社10(x-60)份,亏本0.5×10(x-60)=5x-300(元),故所获利润为y=(6x+180)-(5x-300)=x+480,即y=x+480.自变量x的取值范围是60≤x≤100,且x为整数.(2)因为y是x的一次函数,且y随x增大而增大,故当x取最大值100时,y最大值为100+480=580(元).三、优惠方案的设计例3(南通市) 某果品公司急需将一批不易存放的水果从A市运到B市销售.现有三家运输公司可供选择,这三家运输公司提供的信息如下:解答下列问题:(1)若乙、丙两家公司的包装与装卸及运输的费用总和恰好是甲公司的2倍,求A,B两市的距离(精确到个位);(2)如果A,B两市的距离为s 千米,且这批水果在包装与装卸以及运输过程中的损耗为300元/小时,那么要使果品公司支付的总费用(包装与装卸费用、运输费用及损耗三项之和)最小,应选择哪家运输公司?分析:(1)设A,B两市的距离为x 千米,则三家运输公司包装与装卸及运输的费用分别是:甲公司为(6x +1500)元,乙公司为(8x +1000)元,丙公司为(10x +700)元,依题意,得(8x +1000)+(10x +700)=2×(6x +1500),解得x =21632≈217(千米); (2)设选择甲、乙、丙三家公司的总费用分别为1y ,2y ,3y (单位:元),则三家运输公司包装及运输所需的时间分别为:甲(60s +4)小时;乙(50s +2)小时;丙(100s+3)小时.从而 1y =6s +1500+(60s+4)×300=11s +2700,2y =8s +1000+(50s+2)×300=14s +1600,3y =10s+700+(100s+3)×300=13s+1600,现在要选择费用最少的公司,关键是比较1y ,2y ,3y 的大小.∵s >0,∴2y >3y 总是成立的,也就是说在乙、丙两家公司中只能选择丙公司;在甲和丙两家中,究竟应选哪一家,关键在于比较1y 和3y 的大小,而1y 与3y 的大小与A,B两市的距离s 的大小有关,要一一进行比较.当1y >3y 时,11s +2700>13s +1600,解得s <550,此时表明:当两市距离小于550千米时,选择丙公司较好;当1y =3y 时,s =550,此时表明:当两市距离等于550千米时,选择甲或丙公司都一样; 当1y <3y 时,s >550,此时表明:当两市的距离大于550千米时,选择甲公司较好.运输单位 运输速度(千米/时) 运输费用(元/千米) 包装与装卸时间(小时)包装与装卸费用(元)甲公司 60 6 4 1500乙公司 50 8 2 1000丙公司 100 10 3 700四.调运方案的设计例4A城有化肥200吨,B城有化肥300吨,现要把化肥运往C,D两农村,如果从A城运往C,D两地运费分别是20元/吨与25元/吨,从B城运往C,D两地运费分别是15元/吨与22元/吨,现已知C地需要220吨,D地需要280吨,如果个体户承包了这项运输任务,请你帮他算一算,怎样调运花钱最小?分析:根据需求,库存在A,B两城的化肥需全部运出,运输的方案决定于从某城运往某地的吨数.也就是说.如果设从A城运往C地x吨,则余下的运输方案便就随之确定,此时所需的运费y(元)也只与x(吨)的值有关.因此问题求解的关键在于建立y与x之间的函数关系.解:设从A城运往x吨到C地,所需总运费为y元,则A城余下的(200-x)吨应运往D地,其次,C地尚欠的(220-x)吨应从B城运往,即从B城运往C地(220-x)吨,B城余下的300-(220-x)=15(220-x)+22(80+x),即y=2x+10060,因为y随x增大而增大,故当x取最小值时,y的值最小.而0≤x≤200,故当x=0时,y最小值=10060(元).因此,运费最小的调运方案是将A城的200吨全部运往D地,B城220吨运往C地,余下的80吨运往D地.练习题:1.某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A,B两种产品,共50件.已知生产一件A种产品需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B种产品,需用甲种原料4千克、乙种原料10千克,可获利润1200元.(1)要求安排A,B两种产品的生产件数,有哪几种方案?请你设计出来;(2)生产A,B两种产品获总利润是y (元),其中一种的生产件数是x,试写出y与x之间的函数关系式,并利用函数的性质说明(1)中的哪种生产方案获总利润最大?最大利润是多少?2.北京某厂和上海某厂同时制成电子计算机若干台,北京厂可支援外地10台,上海厂可支援外地4台,现在决定给重庆8台,汉口6台.如果从北京运往汉口、重庆的运费分别是4百元/台、8百元/台,从上海运往汉口、重庆的运费分别是3百元/台、5百元/台.求:(1)若总运费为8400元,上海运往汉口应是多少台?(2)若要求总运费不超过8200元,共有几种调运方案?(3)求出总运费最低的调运方案,最低总运费是多少元?3.某校校长暑假将带领该校市级“三好生”去北京旅游.甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优待.”乙旅行社说:“包括校长在内,全部按全票价的6折(即按全票价的60%收费)优惠.”若全票价为240元.(1)设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费(建立表达式);(2)当学生数是多少时,两家旅行社的收费一样;(3)就学生数x讨论哪家旅行社更优惠.4.下表所示为装运甲、乙、丙三种蔬菜的重量及利润.某汽车运输公司计划装运甲、乙、丙三种蔬菜到外地销售(每辆汽车按规定满载,并且每辆汽车只装一种蔬菜)甲乙丙每辆汽车能装的吨数 2 1 1.5每吨蔬菜可获利润(百元) 5 7 4(1)若用8?(2)公司计划用20辆汽车装运甲、乙、丙三种蔬菜36吨到B地销售(每种蔬菜不少于一车),如何安排装运,可使公司获得最大利润?最大利润是多少?5.某童装厂现有甲种布料38米,乙种布料26米,现计划用这两种布料生产L、M两种型号的童装共50套,已知做一套L型号的童装需用甲种布料0.5米,乙种布料1米,可获利45元;做一套M型号的童装需用甲种布料0.9米,乙种布料0.2米,可获利润30元.设生产L型号的童装套数为x,用这批布料生产这两种型号的童装所获利润为y (元).(1)写出y (元)关于x (套)的函数解析式;并求出自变量x的取值范围;(2)该厂在生产这批童装中,当L型号的童装为多少套时,能使该厂所获的利润最大?最大利润为多少?。

相关文档
最新文档