广东省2021届高三数学月考试题 理

合集下载

2021届广东省深圳实验学校高三11月月考数学试题

2021届广东省深圳实验学校高三11月月考数学试题

绝密★启用前深圳实验学校高中部2021届11月份月考数学试卷 2020年11月本试卷共6页,22小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

2.作答选择题时,选项出每小题答案后,用2B 铅笔在答题卡上将对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目定区域内相应位置上;如需要改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、单项选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项符合要求。

1.设集合2{|20}A x x x =+-<,{|03}B x x =<<,则A B =A .{|23}x x -<<B .{|01}x x <<C .{|13}x x -<<D .{|02}x x <<2.已知i 是虚数单位,z 是复数,若(13i)2i z +=-,则复数z 的虚部为A .7i 10B .710-C .710D .7i 10-3.在△ABC 中,“sin cos A B =”是“π2C =”的 A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件4.函数2()ln(1)f x x kx =+-的图象不可能是A .B .C .D .5.已知圆22440x y x y a +-++=截直线40x y +-=所得弦的长度小于6,则实数a 的取值范围为A .(817,817)-+B .(817,8)C .(9,)-+∞D .(9,8)-6.621(2)x x x ⎛⎫+- ⎪⎝⎭的展开式中的常数项是A .5-B .15C .20D .25-7.已知双曲线2222:1(0,0)x y C a b a b-=>>的实轴长为16,左焦点为F ,M 是双曲线C 的一条渐近线上的点,且OM MF ⊥,O 为坐标原点,若△OMF 的面积为16,则双曲线C 的离心率为A 33B 5C 3D 5 8.已知函数1()221xf x x =+++,若不等式(41)(2)5x xf m f m ⋅++-≥对任意的0x > 恒成立,则实数m 的最小值为 A 122-B 21C .212D .21二、多项选择题:本大题共4小题,每小题5分,共20分。

高三数学上学期月考试题理试题1

高三数学上学期月考试题理试题1

卜人入州八九几市潮王学校HY2021届高三数学上学期10月月考试题理一、选择题:此题一共12小题,每一小题5分,一共60分。

在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的。

θ的顶点与原点O 重合,始边与x 轴的正半轴重合,假设它的终边经过点()()P 20a a a ≠,,那么tan 2θ4π⎛⎫+⎪⎝⎭= A.−7B .17- C .17D .72.p :22xy <q :22log log x y <pq 的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件 3ABC ∆,角A B C 、、的对边分别为,,a b c ,且满足()sin ()(sin sin )b a A b c B C -=-+,那么角C 等于〔〕A.3π B.6π C.4π D.23π 4.假设αβ,为锐角,且2cos 63sin ππαβ⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭,那么 A .αβ3π+=B .αβ6π+=C .αβ3π-=D .αβ6π-=5.双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别为直线l 1,l 2,经过右焦点F 且垂直于l 1的直线l 分别交l 1,l2于A ,B 两点,且2FB AF =,那么该双曲线的离心率为〔〕A .233B .3C .43D .433()21f x x lnx =+-的值域为A.(0,+∞)B.3,2⎡⎫+∞⎪⎢⎣⎭C.31 222ln ∞⎡⎫++⎪⎢⎣⎭, D.31222ln ∞⎛⎤-+ ⎥⎝⎦, () 22221f x sin x cos x =-+的图像向左平移4π个单位,再向下平移1个单位,得到函数y =g(x)的图像,那么以下关于函数y =g(x)的说法错误的选项是 A .函数y =g(x)的最小正周期是πB .函数y =g(x)的一条对称轴是8x π=y =g(x)的一个零点是38πD .函数y =g(x)在区间5,128ππ⎡⎤⎢⎥⎣⎦上单调递减 ()()()23ln 442x x f x x -+=-的图象可能是A .B . C.D .x ∈[1e,e 2]不等式2ax e x >恒成立(其中是自然对数的底数〕,那么实数a 的取值范围是A .2e ∞⎛⎫+ ⎪⎝⎭,B .1e ∞⎛⎫+ ⎪⎝⎭,C .1,2e ∞⎛⎫-- ⎪⎝⎭D .24e ∞⎛⎫- ⎪⎝⎭,()f x 满足(1)(1)f x f x +=-,且()f x 是偶函数,当[]1,0x ∈-时,2()f x x =,假设在区间[]1,3-内,函数()()log (2)a g x f x x =-+有4个零点,那么实数a 的取值范围是A .(1,5)B .(1,,5]C.(5,+∞)D .[5,+∞) 11.f ()()x x xe x R -=∈,假设12x x ≠,且12()()f x f x =,那么x 1+x 2与2的关系为A.x 1+x 2>2B.x 1+x 2≥2C.x 1+x 2<2()ln ,()(a )2f x x g x e x b ==-+,假设不等式()()f x g x ≤在(0,)x ∈+∞上恒成立,那么2ba的最小值是A .12e -B .1e- C.e -D .e 二、填空题:此题一共4小题,每一小题5分,一共20分.13.曲线y 2=x 与y =x −2的图象所围成的阴影局部面积为_________. 14.定义在R 上的函数f(x)满足f(x +2)=1f(x),当x ∈[0,2)时,f(x)=x +e x ,那么f(2019)=____________.△ABC 中,角A,B,C 所对的边分别是a,b,c ,且a,b,c 成等差数列,那么角B 的取值范围是___________.①假设12()()f x f x =,那么12()x x k k Z π-=∈。

广东省中山市小榄中学高三数学理月考试题含解析

广东省中山市小榄中学高三数学理月考试题含解析

广东省中山市小榄中学高三数学理月考试题含解析一、 选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 若函数f (x )=x 3+ax 2+bx+c 有极值点x 1,x 2,且f (x 1)=x 1<x 2,则关于x 的方程3(f (x ))2+2af (x )+b=0的不同实根个数是( ) A .3 B .4 C .5 D .6参考答案:A【考点】函数在某点取得极值的条件;根的存在性及根的个数判断. 【专题】综合题;压轴题;导数的综合应用.【分析】求导数f′(x ),由题意知x 1,x 2是方程3x 2+2ax+b=0的两根,从而关于f (x )的方程3(f (x ))2+2af (x )+b=0有两个根,作出草图,由图象可得答案. 【解答】解:f′(x )=3x 2+2ax+b ,x 1,x 2是方程3x 2+2ax+b=0的两根,由3(f (x ))2+2af (x )+b=0,则有两个f (x )使等式成立,x 1=f (x 1),x 2>x 1=f (x 1), 如下示意图象: 如图有三个交点, 故选A .【点评】考查函数零点的概念、以及对嵌套型函数的理解,考查数形结合思想.2. 函数f (x )=-x 2+(2a -1)|x |+1的定义域被分成了四个不同的单调区间,则实数a 的取值范围是( )A .a >B .<a <C .a >D .a < 参考答案:C3. 已知函数,设,则是 ( )A.奇函数,在上单调递减B.奇函数,在上单调递增C.偶函数,在上递减,在上递增D.偶函数,在上递增,在上递减参考答案:B 略4. 若命题“或”是真命题,“且”是假命题,则( ▲ )A.命题和命题都是假命题B.命题和命题都是真命题C.命题和命题“”的真值不同 D.命题和命题的真值不同参考答案:D 略5. 在等比数列中,若,则.参考答案:略6. 三棱柱的侧棱与底面垂直,且底面是边长为2的等边三角形,其正视图(如图所示)的面积为8,侧视视图的面积为__________.A. 8B. 4C.D.参考答案:D7. 已知过抛物线焦点的直线交抛物线于、两点(点在第一象限),若,则直线的斜率为A.B.C.D. 2参考答案:A 8. 已知,“”是“函数在上为减函数”的( )A .充分不必要条件B .必要不充分条件 C.充要条件 D .既不充分也不必要条件参考答案:D试题分析:若,则,可知充分性不成立;若函数在上为减函数,则,故不成立,必要性不成立.考点:充分必要性.9. 设、是两条不同的直线,、是两个不同的平面,则下列命题正确的是( )A .若则B .若则C .若则D .若则参考答案:D10. 对于函数,若存在常数,使得取定义域内的每一个值,都有,则称为准偶函数,下列函数中是准偶函数的是 ( ) A .B .C.D.参考答案:【知识点】抽象函数及其应用. A 解:对于函数,若存在常数,使得取定义域内的每一个值,都有,则称为准偶函数,∴函数的对称轴是x=a ,a≠0,选项B 、C 、D 函数没有对称轴;函数f (x )=cos (x+1),有对称轴,且x=0不是对称轴,选项A 正确. 故选:A .【思路点拨】由题意判断f (x )为准偶函数的对称轴,然后依次判断选项即可.二、 填空题:本大题共7小题,每小题4分,共28分11. 双曲线的渐近线与抛物线相切,则该双曲线的离心率等于.参考答案:略12. 若实数满足条件则的最大值为_____.参考答案:4试题分析:由约束条件作出可行域区域图,令目标函数,则,先作13. 直线和将单位圆分成长度相等的四段弧,则________.参考答案:214. 已知数列 (n)的公差为3,从中取出部分项(不改变顺序)a1,a4,a10,…组成等比数列,则该等比数列的公比是参考答案:215. 已知函数在区间上是增函数,则实数的取值范围为 .参考答案:略16. 设变量满足约束条件,则目标函数的最小值___________;参考答案:【知识点】简单线性规划.E5【答案解析】3 解析:设变量x、y满足约束条件,在坐标系中画出可行域△ABC,A(2,0),B(1,1),C(3,3),则目标函数z=2x+y的最小值为3.故答案为:3.【思路点拨】先根据条件画出可行域,设z=2x+y,再利用几何意义求最值,将最小值转化为y轴上的截距,只需求出直线z=2x+y,过可行域内的点B(1,1)时的最小值,从而得到z最小值即可.17. 设,则等于.参考答案:,所以,故答案为.三、解答题:本大题共5小题,共72分。

高三数学上学期第一次月考试题含解析

高三数学上学期第一次月考试题含解析

一中2021-2021学年第一学期高三年级阶段性检测〔一〕创作人:历恰面日期:2020年1月1日数学学科一、填空题:本大题一一共14小题,每一小题5分,一共70分.,,那么___________.【答案】【解析】【分析】此题是集合A与集合B取交集。

【详解】因为,所以【点睛】交集是取两集合都有的元素。

是虚数单位)是纯虚数,那么实数的值是___________.【答案】-2【解析】【分析】此题考察的是复数的运算,可以先将复数化简,在通过复数是纯虚数得出结果。

【详解】,因为是纯虚数,所以。

【点睛】假如复数是纯虚数,那么。

3.“〞是“直线与直线互相垂直〞的___________条件〔填“必要不充分〞“充分不必要〞“充要〞或者“既不充分又不必要〞〕.【答案】充分不必要【解析】【分析】可以先通过“直线与直线互相垂直〞解得的取值范围,再通过与“〞进展比照得出结论。

【详解】因为直线与直线互相垂直,所以两直线斜率乘积为或者者一条直线与轴平行、一条与轴平行,所以或者者,解得或者者,由“〞可以推出“或者者〞,但是由“或者者〞推不出“〞,所以为充分不必要条件。

【点睛】在判断充要条件的时候,可以先将“假设A那么B〞中的A和B化为最简单的数集形式,在进展判断。

的递增区间是___________.【答案】【解析】【分析】此题可以先通过的取值范围来将函数分为两段函数,再依次进展讨论。

【详解】当时,,开口向下,对称轴为,所以递增区间是,当时,,开口向上,对称轴是,所以在定义域内无递增区间。

综上所述,递增区间是。

【点睛】在遇到带有绝对值的函数的时候,可以根据的取值范围来将函数分为数段函数,在依次求解。

5.按如下图的程序框图运行后,输出的结果是63,那么判断框中的整数的值是___________.【答案】5【解析】【分析】此题中,,可根据这几个式子依次推导出每一个A所对应的S的值,最后得出结果。

【详解】因为当时输出结果,所以【点睛】在计算程序框图时,理清每一个字母之间的关系,假如次数较少的话可以依次罗列出每一步的运算结果,最后得出答案。

高三月考数学试卷含解析

高三月考数学试卷含解析

一、选择题(每题5分,共50分)1. 已知函数$f(x) = x^3 - 3x^2 + 4$,则$f(x)$的对称中心为()。

A. $(0, 4)$B. $(1, 2)$C. $(2, 0)$D. $(3, 1)$2. 在等差数列$\{a_n\}$中,$a_1 + a_5 = 10$,$a_3 + a_4 = 12$,则$a_1$的值为()。

A. 1B. 2C. 3D. 43. 已知圆$x^2 + y^2 - 4x - 6y + 9 = 0$的半径为()。

A. 1B. 2C. 3D. 44. 函数$y = \log_2(x - 1)$的图象与直线$y = 3x - 1$的交点个数为()。

A. 1B. 2C. 3D. 45. 若复数$z = a + bi$($a, b \in \mathbb{R}$)满足$|z - 3i| = |z + 2|$,则$z$在复平面内的轨迹是()。

B. 圆C. 直线D. 双曲线6. 在三角形ABC中,$AB = 4$,$AC = 6$,$BC = 8$,则$\cos A$的值为()。

A. $\frac{1}{4}$B. $\frac{1}{2}$C. $\frac{3}{4}$D. $\frac{5}{8}$7. 已知函数$f(x) = ax^2 + bx + c$($a \neq 0$),若$f(-1) = 0$,$f(1) = 0$,则$f(0)$的值为()。

A. $-a$B. $-b$C. $-c$D. $a$8. 若$|x - 1| + |x + 2| = 3$,则$x$的取值范围是()。

A. $-2 \leq x \leq 1$B. $-2 < x < 1$C. $x \leq -2$ 或 $x \geq 1$D. $x > -2$ 且 $x < 1$9. 已知数列$\{a_n\}$的前$n$项和为$S_n$,若$S_n = 3n^2 - 2n$,则$a_5$的值为()。

2021届广东省深圳高级中学高三上学期10月月考数学试题(解析版)

2021届广东省深圳高级中学高三上学期10月月考数学试题(解析版)

2021届广东省深圳高级中学高三上学期10月月考数学试题一、单选题1.设集合2{|0}M x x x =-≥,{|2}N x x =<,则M N =( )A .{|0}x x ≤B .{|12}x x ≤<C .{|01}x x ≤≤D .{|0x x ≤或12}x ≤<【答案】D【解析】先解不等式得集合M ,再根据交集定义求结果. 【详解】2{|0}(,0][1,)M x x x =-≥=-∞+∞ (,0][1,2)MN ∴=-∞故选:D 【点睛】本题考查集合交集、解一元二次不等式,考查基本分析求解能力,属基础题. 2.已知i 为虚数单位,则复数131ii-+的虚部为( ) A .2- B .2i -C .2D .2i【答案】A【解析】先化简复数z ,然后由虚部定义可求. 【详解】()()()()131********i i i ii i i -----===++-﹣1﹣2i , ∴复数131ii-+的虚部是﹣2, 故选A . 【点睛】该题考查复数代数形式的运算、复数的基本概念,属基础题.3.设a R ∈,则“1a =-”是“直线10ax y +-=与直线50x ay ++=平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【解析】【详解】【分析】试题分析:若1a =-,则直线 10ax y +-=与直线50x ay ++=平行,充分性成立;若直线 10ax y +-=与直线50x ay ++=平行,则 1a =或,必要性不成立. 【考点】充分必要性.4.设向量a ,b 满足(3,1)a b +=,1a b ⋅=,则||a b -=( ) A .2 B 6C .22D 10【答案】B【解析】由题意结合向量的运算法则,以及向量的模的运算公式,即可求解. 【详解】由题意结合向量的运算法则,可知:()222431416a b a b a b -=+-⋅=+-⨯=故选:B. 【点睛】本题主要考查向量的运算法则,向量的模的求解等知识,意在考查学生的转化能力和计算求解能力.5.在6x x ⎫⎝的二项展开式中,2x 的系数为( ) A .154-B .154C .38-D .38【答案】C 【解析】【详解】因为1r T +=66((rr r x C x-⋅⋅,可得1r =时,2x 的系数为38-,C 正确.6.已知函数()()1f x x x =+,则不等式()()220f x f x +->的解集为( )A .(2,1)-B .(1,2)-C .(,1)(2,)-∞-+∞D .(,2)(1,)-∞-+∞【答案】D【解析】判断出()f x 的奇偶性与单调性,然后将不等式转化为()()22f xf x <-,【详解】()()1f x x x =+()()()()11f x x x x x f x ∴-=--+=-+=-()f x ∴为奇函数,当0x ≥时,()2f x x x =+,可知()f x 在[)0,+∞上单调递增;()f x ∴在(],0-∞上也单调递增,即()f x 为R 上的增函数;由()()220f xf x +->()()22f x f x ⇒>--()()22f x f x ⇒>-,22x x ∴>-,解得:2x <-或1x >故选:D. 【点睛】本题考查利用函数单调性与奇偶性求解函数不等式的问题,解题关键在于将不等式转化为符合单调性定义的形式,利用单调性转变为自变量的比较,属于常考题型.7.如图,双曲线()2222:10,0x y C a b a b-=>>的左,右焦点分别为1F ,2F ,过2F 作直线与C 及其渐近线分别交于Q ,P 两点,且Q 为2PF 的中点.若等腰三角形12PF F 的底边2PF 的长等于C 的半焦距.则C 的离心率为( )A 2215-+ B .43C 2215+ D .32【答案】C【解析】先根据等腰三角形的性质得12QF PF ⊥,再根据双曲线定义以及勾股定理列方程,解得离心率. 【详解】连接1QF ,由12PF F △为等腰三角形且Q 为2PF 的中点,得12QF PF ⊥,由2PF c =知22c QF =.由双曲线的定义知122cQF a =+,在12Rt FQF 中,()2222222c c a c ⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭,22284708470a ac c e e ∴+-=∴+-= 2157e +∴=(负值舍去). 故选:C 【点睛】本题考查双曲线的定义、双曲线的离心率,考查基本分析求解能力,属基础题. 8.将函数sin 2y x =的图象向右平移ϕ(02πϕ<<)个单位长度得到()y f x =的图象.若函数()f x 在区间0,4⎡⎤⎢⎥⎣⎦π上单调递增,且()f x 的最大负零点在区间5,126ππ⎛⎫-- ⎪⎝⎭上,则ϕ的取值范围是( ) A .,64ππ⎛⎤⎥⎝⎦ B .,62ππ⎛⎫⎪⎝⎭ C .,124ππ⎛⎤⎥⎝⎦ D .,122ππ⎛⎫⎪⎝⎭ 【答案】C【解析】利用函数sin()y A x ωϕ=+的图象变换规律,求得()f x 的解析式,再利用正弦函数的性质求得ϕ的取值范围. 【详解】将函数sin 2y x =的图象向右平移ϕ(02πϕ<<)个单位长度得到()sin(22)y f x x ϕ==-的图象.若函数()f x 在区间0,4⎡⎤⎢⎥⎣⎦π上单调递增,则22πϕ-≤-,且222ππϕ-≤,求得04πϕ<≤①.令22x k ϕπ-=,求得2k x πϕ=+,Z k ∈,故函数的零点为2k x πϕ=+,k Z ∈. ∵()f x 的最大负零点在区间5,126ππ⎛⎫-- ⎪⎝⎭上, ∴51226k πππϕ-<+<-, ∴512262k k ππππϕ--<<--②. 由①②令1k =-,可得124ππϕ<≤, 故选:C . 【点睛】本题主要考查函数sin()y A x ωϕ=+的图象变换规律,正弦函数的性质综合应用,属于中档题.二、多选题9.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、“90后”从事互联网行业岗位分布条形图,则下列结论中正确的是( )注:“90后”指1990年及以后出生的人,“80后”指1980-1989年之间出生的人,“80前”指1979年及以前出生的人.A .互联网行业从业人员中“90后”占一半以上B .互联网行业中从事技术岗位的人数超过总人数的20%C .互联网行业中从事运营岗位的人数“90后”比“80前”多D .互联网行业中从事技术岗位的人数“90后”比“80后”多 【答案】ABC【解析】根据饼状图确定互联网行业从业人员中“90后”占总人数比例,即可判断A; 根据条形图确定互联网行业从业人员中“90后”从事技术岗位的人数占总人数比例,即可判断B;饼状图确定“80前”的人数占总人数的比例,两者比较可判断C;根据条形图确定互联网行业从业人员中“90后”从事技术岗位的人数占总人数的比例,但“80后”中从事技术岗位的比例不可确定,即可判断D. 【详解】由题图可知,互联网行业从业人员中“90后”占总人数的56%,超过一半,A 正确; 互联网行业从业人员中“90后”从事技术岗位的人数占总人数的56%39.6%22.176%⨯=,超过20%,所以互联网行业从业人员(包括“90后”“80后”“80前”)从事技术岗位的人数超过总人数的20%,B 正确;互联网行业从业人员中“90后”从事运营岗位的人数占总人数的56%17%9.52%⨯=,超过“80前”的人数占总人数的比例,且“80前”中从事运营岗位的比例未知,C 正确; 互联网行业从业人员中“90后”从事技术岗位的人数占总人数的56%39.6%22.176%⨯=,小于“80后”的人数占总人数的比例,但“80后”中从事技术岗位的比例未知,D 不一定正确. 故选:ABC 【点睛】本题考查饼状图与条形图,考查数据分析与判断能力,属基础题. 10.对于实数a 、b 、m ,下列说法正确的是( ) A .若22am bm >,则a b > B .若a b >,则a ab bC .若0b a >>,0m >,则a m ab m b+>+ D .若0a b >>且ln ln a b =,则()23,a b +∈+∞ 【答案】ABCD【解析】首先可根据22am bm >以及20m >判断出A 正确,然后将B 项分为0a b >>、0a b 以及0a b >≥三种情况进行讨论,即可判断出B 正确,再然后通过判断0a m a b m b +->+即可得出C 正确,最后可根据题意得出1a b =以及122a b a a,设()()121f a a a a=+>,通过函数()f a 的单调性即可判断出D 正确.【详解】A 项:因为22am bm >,20m >,所以a b >,A 正确;当0a b 时,22a aa b b b ,当0a b >≥时,22a a ab b b ,综上所述,a ab b 成立,B 正确;C 项:因为0b a >>,0m >, 所以0a m b a b mb a ma m a ab mb ab amb m bb b mb b mb b m,C 正确;D 项:因为0a b >>,ln ln a b =,所以1a b =,1a >,122a b a a, 设()()121f a a a a =+>,因为2120f aa,所以函数()f a 在区间()1,+∞上单调递增, 故13f af ,即()23,a b +∈+∞,D 正确,故选:ABCD. 【点睛】本题主要考查绝对值不等式的证明以及导数的灵活应用,考查通过去绝对值证明绝对值不等式,考查化归与转化思想以及函数方程思想,考查分类讨论思想,考查计算能力,是中档题.11.已知函数()122log xf x x =-,且实数a ,b ,()0c a b c >>>满足()()()0f a f b f c <.若实数0x 是函数()y f x =的一个零点,那么下列不等式中可能成立的是( ) A .0x a < B .0x a > C .0x b < D .0x c <【答案】ABC【解析】先判断()f x 单调性,根据题设条件,得到()()(),,f a f b f c 的符号,结合零点的定义,即可求解. 【详解】由题意,函数()1222log 2log xxf x x x =-=+,可知函数()f x 在区间()0,∞+上单调递增,则()()(),,f a f b f c 可能()()()0,0,0f b f a f c >><或()()()0,0,0f a f b f c <<<,又由实数0x 是函数()y f x =的一个零点,即()00f x =, 综上可得,只有x c >成立,结合选项,可得不等式中可能成立的是0x a <,0x a >和0x b <. 故选:ABC. 【点睛】本题主要考查了函数的零点的概念,以及指数函数、对数函数的单调性的应用,其中解答中熟记指数函数与对数函数的图象与性质,结合函数零点的概念求解是解答的关键,着重考查推理与运算能力. 12.已知函数()ln f x x =,若()f x 在1x x =和()212x x x x =≠处切线平行,则( ) A.12= B .12128x x <C .1232x x +<D .2212512x x +>【答案】AD【解析】根据()()12f x f x ='',即可判断A 选项;再结合均值不等式即可判断其它选项. 【详解】由题意知1()(0)f x x x'=->,因为()f x 在1x x =和()212x x x x =≠处切线平行, 所以()()12f x f x ''=,1211x x -=-,12=,A 正确; 由基本不等式及12x x ≠,可得12=>12256x x >,B错误;1232x x +>>,C 错误;2212122512x x x x +>>,D 正确.故选:AD本题考查利用导数的几何意义处理切线平行的问题,涉及均值不等式的使用,属综合中档题.三、填空题13.已知cos θ=,且,2πθπ⎛⎫∈ ⎪⎝⎭,则tan 2θ=__________.【答案】43【解析】先利用已知条件和同角三角函数的关系求出tan θ的值,再利用正切的二倍角公式可求出tan 2θ的值. 【详解】解:因为cos 5θ=-,且,2πθπ⎛⎫∈ ⎪⎝⎭,所以sin θ===, 所以sin tan 2cos θθθ==-, 所以222tan 2(2)4tan 21tan 1(2)3θθθ⨯-===---,故答案为:43. 【点睛】三角函数的化简求值问题,可以从四个角度去分析:(1)看函数名的差异;(2)看结构的差异;(3)看角的差异;(4)看次数的差异.对应的方法是:弦切互化法、辅助角公式(或公式的逆用)、角的分拆与整合(用已知的角表示未知的角)、升幂降幂法. 14.一组数据的平均数是8,方差是16,若将这组数据中的每一个数据都减去4,得到一组新数据,则所得新数据的平均数与方差的和是________. 【答案】20【解析】根据新数据与原数据平均数与方差的关系直接求解,即得结果. 【详解】因为原数据平均数是8,方差为16,将这组数据中的每一个数据都减去4,所以新数据的平均数为844-=,方差不变仍为16,所以新数据的方差与平均数的和为20. 故答案为:20本题考查新数据与原数据平均数与方差的关系,考查基本分析求解能力,属基础题. 15.已知A ,B ,C 为球O 的球面上的三个定点.60ABC ∠=︒,2AC =,P 为球O 的球面上的动点,记三棱锥РABC -的体积为1V ,三棱锥O ABC -的体积为2V .若12V V 的最大值为3.则球O 的表面积为________. 【答案】649π【解析】先求出ABC 的外接圆半径,根据题意确定12V V 的最大值取法,再根据12V V 的最大值为3,解得球半径,最后根据球的表面积公式得结果. 【详解】如图所示,设ABC 的外接圆圆心为1O ,半径为r ,则1OO ⊥平面ABC . 设球O 的半径为R ,1OO d =,则2432sin sin 603AC r ABC ===∠︒,即233r =.121313P ABCABCP ABC ABC h S h V V d d S --⋅⋅==⋅⋅所以当P ,O ,1O 三点共线时,12max3V R dV d ⎛⎫+==⎪⎝⎭,即2R d =. 由222R d r =+,得2169R =,所以球O 的表面积26449S R ππ==. 故答案为:649π【点睛】本题考查三棱锥及其外接球的体积,考查空间想象能力以及基本分析求解能力,属中档四、双空题16.已知直线:2l y x b =+与抛物线()2:20C y px p =>相交于A 、B 两点,且5AB =,直线l 经过C 的焦点.则p =________,若M 为C 上的一个动点,设点N 的坐标为()3,0,则MN 的最小值为________.【答案】2【解析】将直线l 的方程与抛物线C 的方程联立,列出韦达定理,利用抛物线的焦点弦长公式可求得p 的值,设点()00,M x y ,可得()200040y x x =≥,利用两点间的距离公式结合二次函数的基本性质可求得MN 的最小值. 【详解】由题意知,直线:2l y x b =+,即22b y x ⎛⎫=+⎪⎝⎭. 直线l 经过抛物线()2:20C y px p =>的焦点,22b p∴-=,即b p =-. ∴直线l 的方程为2y x p =-.设()11,A x y 、()22,B x y ,联立222y x p y px=-⎧⎨=⎩,消去y 整理可得22460x px p -+=,由韦达定理得1232p x x +=, 又5AB =,12552x p p x ∴++==,则2p =,∴抛物线2:4C y x =.设()()000,0M x y x ≥,由题意知2004y x =,则()()()2222200000334188x y x x MNx =-+=-+=-+≥,当01x =时,2MN 取得最小值8,MN ∴的最小值为.故答案为:2;. 【点睛】本题考查利用抛物线的焦点弦长求参数,同时也考查了抛物线上的点到定点距离最值的求解,考查了抛物线方程的应用,考查计算能力,属于中等题.五、解答题17.请从下面三个条件中任选一个,补充在下面的问题中,并解决该问题①2252b c +=;②ABC 的面积为;③26AB AB BC +⋅=-.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .在已知2b c -=,A 为钝角,sin A (1)求边a 的长;(2)求sin 26C π⎛⎫- ⎪⎝⎭的值.【答案】选择条件见解析;(1)8a =;(2)1764.【解析】(1)方案一:选择条件①,结合向量数量积的性质可求bc ,进而可求b ,c ,然后结合余弦定理可求;方案二:选择条件②:由已知即可直接求出b ,c ,然后结合余弦定理可求; 方案三:选择条件③,由已知结合三角形的面积公式可求bc ,进而可求b ,c ,然后结合余弦定理可求.(2)由余弦定理可求cos C ,然后结合同角平方关系及二倍角公式,和差角公式即可求解. 【详解】方案一:选择条件①(1)由22522b c b c ⎧+=⎨-=⎩,解得64b c =⎧⎨=⎩,A 为钝角,sin A 1cos 4A =-,则22212cos 3616264644a b c bc A ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭, 故8a =;(2)2226436167cos 22868a b c C ab +-+-===⨯⨯,∴sin 8C ==,∴217cos 22cos 132C C =-=,sin 22sin cos 32C C C ==, ∴sin 2sin 2cos cos 2sin 666C C C πππ⎛⎫-=- ⎪⎝⎭1711732232264=-⨯=; 方案二:选择条件②(1)sin A =1sin 2ABC S bc A ===△24bc =, 由242bc b c =⎧⎨-=⎩,解得64b c =⎧⎨=⎩,则22212cos 3616264644a b c b A ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭, 故8a =;(2)2226436167cos 22868a b c C ab +-+-===⨯⨯,∴sin C ==,∴217cos 22cos 132C C =-=,sin 22sin cos C C C ==, ∴sin 2sin 2cos cos 2sin 666C C C πππ⎛⎫-=- ⎪⎝⎭1711732232264=-⨯=; 方案三:选择条件③:(1)A 为钝角,sin A =1cos 4A =-,2()cos 6AB AB BC AB AB BC AB AC bc A +⋅=⋅+=⋅==-,24bc =,由242bc b c =⎧⎨-=⎩,解得6b =,4c =,则22212cos 3616264644a b c bc A ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭, 故8a =;(2)2226436167cos 22868a b c C ab +-+-===⨯⨯,∴sin C ==, ∴217cos 22cos 132C C =-=,sin 22sin cos C C C ==, ∴sin 2sin 2cos cos 2sin 666C C C πππ⎛⎫-=- ⎪⎝⎭171322=-⨯=. 【点睛】本题主要考查了余弦定理,三角形的面积公式,和差角公式、二倍角公式在求解三角形中的应用,属于中档试题.18.已知等差数列{}n a 的公差0d ≠,若611a =,且2a ,5a ,14a 成等比数列. (1)求数列{}n a 的通项公式; (2)设11n n n b a a +=⋅,求数列{}n b 的前n 项和n S .【答案】(1)21n a n =-;(2)21n nS n =+. 【解析】(1)利用等差数列的通项公式以及等比中项列方程组可求解. (2)利用裂项求和法即可求解. 【详解】 (1)611=a ,1511a d ∴+=,①2a ,5a ,14a 成等比数列,∴2111(4)()(13)a d a d a d +=++,化简得212d a d =,②又因为0d ≠且由①②可得,11a =,2d =.∴数列的通项公式是21n a n =-(2)由(1)得111111()(21)(21)22121n n n b a a n n n n +===--+-+, 12111111(1)23352121n n S b b b n n ∴=++⋯+=-+-+⋯+--+11(1)221n =-+21nn =+ 所以21n nS n =+. 【点睛】本题考查了等差数列的通项公式、裂项求和法,考查了基本运算求解能力,属于基础题. 19.如图所示,在三棱柱中111ABC A B C -,侧面11ABB A 是矩形,2AB =,122AA =,D 是1AA 的中点,BD 与1AB 交于O ,且CO ⊥面11ABB A .(1)求证:1BC AB ⊥;(2)若OC OA =,求二面角D BC A --的余弦值. 【答案】(1)详见解析;(2)105. 【解析】(1)推导出DB ⊥AB 1,1CO AB ⊥,从而AB 1⊥平面BDC ,由此能证明AB 1⊥BC ,(2)以O 为坐标原点,OA ,O 1B ,OC 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,利用向量法能求出二面角D BC A --的余弦值. 【详解】解:(1)由于侧面11ABB A 是矩形,D 是中点, 故12tan 2AB B ∠=,2tan 2ABD ∠=,所以1AB B ABD ∠=∠,又1190BAB AB B ∠+∠=, 于是190BAB ABD ∠+∠=,1BD AB ⊥,而CO ⊥面1ABB A ,所以1CO AB ⊥1AB ⊥面BCD ,得到1BC AB ⊥(2)如图,建立空间直角坐标系,则20,3,03A ⎛⎫ ⎪⎝⎭,26,0,03B ⎛⎫ ⎪⎝⎭,20,0,33C⎛⎫⎪⎝⎭,6,0,03D⎛⎫⎪⎪⎝⎭可以计算出面ABC的一个法向量的坐标为()11,2,2n=-而平面BCD的一个法向量为()20,1,0n=设二面角D BC A--的大小为θ,则121210cos5n nn nθ⋅==【点睛】本题考查线线垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.20.如图,设点A,B的坐标分别为(3,0)-,(3,0),直线AP,BP相交于点P,且它们的斜率之积为23-.(1)求P的轨迹方程;(2)设点P的轨迹为C,点M、N是轨迹为C上不同于A,B的两点,且满足//AP OM,//BP ON,求MON△的面积.【答案】(1)(221332x yx+=≠;(2)62.【解析】(1)先设动点坐标,根据条件斜率之积为23-列方程即得解;(2)由平行条件得斜率关系得23OM ONk k=-,即得坐标关系121223y yx x=-;设直线MN的方程x my t =+,与椭圆方程联立,利用韦达定理可得韦达定理,代入121223y y x x =-可得22223t m =+,再求三角形面积,将22223t m =+代入化简即得解. 【详解】(1)由已知设点P 的坐标为(),x y ,由题意知(23AP BP k k x ⋅==-≠,化简得P的轨迹方程为(22132x y x +=≠.(2)证明:由题意M N 、是椭圆C 上非顶点的两点,且//AP OM ,//BP ON , 则直线AP ,BP 斜率必存在且不为0,又由已知23AP BP k k =-⋅. 因为//AP OM ,//BP ON ,所以23OM ON k k =-. 设直线MN 的方程为x my t =+,代入椭圆方程22132x y+=,得()222324260m ymty t +++-=,设,M N 的坐标分别为()()1122,,,x y x y ,则2121222426,3232mt t y y y y m m-+=-=++. 又()2121222221212122636OM ONy y y y t k k x x m y y mt y y t t m -===+++-, 所以222262363t t m -=--,得22223t m =+.又1212MONSt y y ∆=-=, 所以2MONS∆==,即MON △的面积为定值2.【点睛】本题主要考查动点的轨迹方程的求法,考查椭圆中的定值问题的求解,考查直线和椭圆的位置关系,意在考查学生对这些知识的理解掌握水平和计算分析推理能力》 21.某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为(01)p p <<,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为()f p ,求()f p 的最大值点0p ; (2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的0p 作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ;(ii )以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?【答案】(1)0.1;(2)(i )490;(ii )应该对余下的产品作检验.【解析】(1)利用独立重复实验成功次数对应的概率,求得()()182220C 1f p p p =-,之后对其求导,利用导数在相应区间上的符号,确定其单调性,从而得到其最大值点,这里要注意01p <<的条件;(2)先根据第一问的条件,确定出0.1p =,在解(i )的时候,先求件数对应的期望,之后应用变量之间的关系,求得赔偿费用的期望;在解(ii )的时候,就通过比较两个期望的大小,得到结果. 【详解】(1)20件产品中恰有2件不合格品的概率为()()182220C 1f p p p =-. 因此()()()()()1817172222020C 211812C 1110f p p p p p p p p ⎡⎤='---=--⎣⎦.令()0f p '=,得0.1p =.当()0,0.1p ∈时,()0f p '>;当()0.1,1p ∈时,()0f p '<. 所以()f p 的最大值点为00.1p =; (2)由(1)知,0.1p =.(i )令Y 表示余下的180件产品中的不合格品件数,依题意知()180,0.1Y B ~,20225X Y =⨯+,即4025X Y =+.所以()40254025490EX E Y EY =+=+=.(ii )如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.由于400EX >,故应该对余下的产品作检验. 【点睛】该题考查的是有关随机变量的问题,在解题的过程中,一是需要明确独立重复试验成功次数对应的概率公式,再者就是对其用函数的思想来研究,应用导数求得其最小值点,在做第二问的时候,需要明确离散型随机变量的可取值以及对应的概率,应用期望公式求得结果,再有就是通过期望的大小关系得到结论. 22.已知0a >,函数()ln (1),()x f x x a x g x e =--=.(1)经过原点分别作曲线(),()y f x y g x ==的切线12l l 、,若两切线的斜率互为倒数,证明:211e e a e e--<<; (2)设()(1)()h x f x g x =++,当0x ≥时,()1h x ≥恒成立,试求实数a 的取值范围.【答案】(1)证明见解析;(2)](,2-∞.【解析】(1)求出两条直线的斜率,设1l 与曲线()y f x =的切点为()11,x y 1111111e e x y ax a x ⇒==-⇒=-,令11()ln 1m x x x e=-+-利用导数单调性可得答案;(2)构造函数()(1)()h x f x g x =++ln(1)e xx ax =+-+,求其导数利用函数的单调性,得出()h x 在区间()00,x 上递减,在区间()0,x +∞递增,又()0(0)1h x h <=,得到实数a 的取值范围. 【详解】(1)设切线22:l y k x =,切点为()22,x y .则22e x y =,()22222e x y k g x x ===' 22x 22e e 1x x x ⇒=⇒=,2e y =2e k ⇒=.由题意,知切线1l 的斜率为1211e k k ==,方程为1ey x =.设1l 与曲线()y f x =的切点为()11,x y . 则()111111y k f x a x x =-='= 1111111e ex y ax a x ⇒==-⇒=-. 又()111ln 1y x a x =--,消去1y 、a 后,整理得1111ln 10ex x -+-=. 令11()ln 1m x x x e=-+-,则 22111()x m x x x x-'=-=. 于是,()m x 在区间()0,1上单调递减,在区间()1,+∞上单调递增.若1(0,1)x ∈,由112e 0e e m ⎛⎫=-+-> ⎪⎝⎭,()110e m =-<, 则11,1x e ⎛⎫∈ ⎪⎝⎭.而111e a x =-在11,1x e ⎛⎫∈ ⎪⎝⎭上单调递减, 故211e e a e e--<<. 若()11,x ∈+∞,因为()m x 在区间()1,+∞上单调递增,则()0m e =,所以,1110a x e=-=,这与题设0a >矛盾. 综上,211e e a e e--<<. (2)注意到,()(1)()h x f x g x =++ ln(1)e x x ax =+-+1()e 1x h x a x =++'⇒-.第 1 页 共 6 页 i .当2a ≤时,由1x e x ≥+,则1()e 1x h x a x =+-+' 11201x a a x ≥++-≥-≥+. 于是,()h x 在区间[]0,+∞上递增,()0()1h x h x ≥=恒成立,符合题意. ii .当2a >时,由[0,)x ∈+∞,且2221(1)e 1()e 0(1)(1)x xx h x x x +-=-=≥+'+', 则()h x '在区间[]0,+∞上递增.又(0)20h a '=-<,则存在0(0,)x ∈+∞,使得()00h x '=.于是,()h x 在区间()00,x 上递减,在区间()0,x +∞递增.又()0(0)1h x h <=,此时,()1h x ≥不恒成立,不符合题意.综上,实数a 的取值范围是](,2-∞.【点睛】本题主要考查利用导数研究曲线的切线及结合方程有零点存在得到不等式的证明;考查利用导数处理函数最值和不等式恒成立的问题.。

广东省广州市天河区2021届高三数学10月一模考试试题 理(含解析)

广东省广州市天河区2021届高三数学10月一模考试试题 理(含解析)

广东省广州市天河区2020届高三数学10月一模考试试题 理(含解析)一、选择题:本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|60A x x x =--<,集合{|1}B x x =>,则()R C A B ⋂=A. [3)+∞,B. (13],C. (13),D. (3)+∞,【答案】A 【解析】 【分析】先化简集合A,再求R C A 和()R C A B ⋂.【详解】由题得A={x|-2<x<3},所以R C A ={x|x≤-2或x≥3},所以()R C A B ⋂=[]3+∞,. 故答案为:A【点睛】(1)本题主要考查集合的化简和运算,意在考查学生对这些知识的掌握水平和分析推理计算能力.(2) 集合的运算要注意灵活运用维恩图和数轴,一般情况下,有限集的运算用维恩图分析,无限集的运算用数轴,这实际上是数形结合的思想的具体运用.2.设复数z 满足(2)34z i i i +=-,则复数z 在复平面内对应的点位于( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限【答案】B 【解析】 【分析】先根据(2)34z i i i +=-计算出复数z ,写出其共轭复数z ,即可根据复数的坐标表示选出答案。

【详解】设复数z a bi =+,(2)(2)3423z i i ai b i b ∴+=-+=-⇒+=-,4a =-;4a ∴=-,5b =-;∴复数45z i =--,∴45z i =-+,复数z 在复平面内对应的点位于第二象限. 故选:B .【点睛】本题考查共轭复数与复数的坐标表示,属于基础题。

3.设等差数列{}an 的前n 项和为Sn ,若则28155a a a +=-,9S =( ) A. 18 B. 36C. 45D. 60【答案】C 【解析】 试题分析:,故选C.考点:等差数列的通项公式的性质、前项和公式.4.已知,m n 是两条不同的直线,,,αβγ是三个不同的平面,则下列命题正确的是( ) A. 若//,//m n αα,则//m n B. 若,αγβγ⊥⊥,则//αβC. 若//,//m n αα,且,m n ββ⊂⊂,则//αβD. 若,m n αβ⊥⊥,且αβ⊥,则m n ⊥ 【答案】D 【解析】 【分析】根据空间中直线和平面的位置关系分别去判断各个选项,,,A B C 均可举出反例;D 可证明得出.【详解】若//m α,//n α,则//m n 或m 与n 异面或m 与n 相交,故选项A 错误; 若αγ⊥,βγ⊥,则α与β可能相交,故选项B 错误; 若直线,m n 不相交,则平面,αβ不一定平行,故选项C 错误;αβ⊥,m α⊥ //m β∴或m β⊂,又n β⊥ m n ∴⊥,故选项D 正确.本题正确选项:D【点睛】本题考查空间中直线、平面之间位置关系有关命题的判断,考查学生的空间想象能力和对定理的掌握程度.5.2521(2)(1)x x+-的展开式的常数项是( ) A. 3- B. 2-C. 2D. 3【答案】D 【解析】 【详解】的展开式通项为:,由2100r -=得=5r ,所以的常数项系数为;由2102r -=-得4r =,所以的项系数为,所以的展开式的常数项是,故选D.6.已知12121ln ,2x x e -==,3x 满足33ln xe x -=,则( )A. 123x x x <<B. 132x x x <<C. 213x x x <<D.312x x x <<【答案】A 【解析】 【分析】根据对数的化简公式得到11ln202x ln ==-<,由指数的运算公式得到122x e-=()0,1e,由对数的性质得到33ln x e x -=>0,31x ∴>,进而得到结果. 【详解】已知11ln 202x ln ==-<,122 x e -=()0,1e ,33ln x e x -=>0,31x ∴> 进而得到123x x x <<.故答案为:A.【点睛】本题考查了指对函数的运算公式和对数函数的性质;比较大小常用的方法有:两式做差和0比较,分式注意同分,进行因式分解为两式相乘的形式;或者利用不等式求得最值,判断最值和0的关系.7.中国古代十进制的算筹计数法,在数学史上是一个伟大的创造,算筹实际上是一根根同长短的小木棍.如图,是利用算筹表示数1~9的一种方法.例如:3可表示为“≡”,26可表示为“=⊥”.现有6根算筹,据此表示方法,若算筹不能剩余,则可以用1~9这9数字表示两位数的个数为( )A. 13B. 14C. 15D. 16【答案】D 【解析】 【分析】6根算筹可分为1、5,2、4,3、3,再根据图示写出可能的组合,即可得出答案。

2021年高三3月联合检测数学(理)试题 含答案

2021年高三3月联合检测数学(理)试题 含答案

2021年高三3月联合检测数学(理)试题含答案本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.其中第Ⅱ卷第22、23、24题为三选一,其它题为必考题.考生作答时,将答案写在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回.本试卷满分150分,考试时间120分钟.注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置.2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其它答案标号;非选择题答案使用0.5毫米的黑色中性笔或碳素笔书写,字体工整、笔迹清楚.3.请按题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.4.保持卡面清洁,不折叠,不破损.5.做选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的题号涂黑.第Ⅰ卷(选择题)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合,.若,则实数的值是(☆)A. B.或C. D.或或2.如图,在复平面内,复数,对应的向量分别是,,则复数对应的点位于(☆)A.第一象限B.第二象限C.第三象限D.第四象限3.若向量,,,则下列说法中错误..的是(☆)A. B. 向量与向量的夹角为 C. ∥D.对同一平面内的任意向量,都存在一对实数,使得4.在△ABC中,已知,,△ABC的面积为,则=(☆)A. B. C. D.5.已知一个三角形的三边长分别是5,5,6,一只蚂蚁在其内部爬行,若不考虑蚂蚁的大小,则某时刻该蚂蚁距离三角形的三个顶点的距离均超过2的概率是(☆)A. B. C. D.6.一个四面体的顶点在空间直角坐标系中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的主视图时,以平面为投影面,则得到主视图可以为(☆)A.B.C.D.7.某程序框图如图所示,若该程序运行后输出的值是,则(☆)A. B.C. D.8.函数的导函数的图像如图所示,那么的图像最有可能的是(☆)9.已知x,y满足,则的最小值为(☆)A. B. C. D.10.已知命题:存在,曲线为双曲线;命题:的解集是.给出下列结论中正确的有(☆)①命题“且”是真命题;②命题“且()”是真命题;③命题“()或”为真命题;④命题“()或()”是真命题.A.1个B.2个C.3个D.4个11.如右图二面角的大小为,平面上的曲线在平面上的正射影为曲线,在直角坐标系下的方程,则曲线的离心率(☆)A. B. C. D.12.设函数,其中表示不超过的最大整数,如,,,若直线与函数的图象恰有两个不同的交点,则的取值范围是(☆)A. B. C. D.第Ⅱ卷(非选择题)二、填空题:本大题共4小题,每小题5分,共20分.13.设5260126(1)(12)x x a a x a x a x,则☆.14.函数的最小值为☆.15.已知函数是定义在上的奇函数,在上单调递减,且,若,则的取值范围为☆.16.椭圆绕轴旋转一周所得的旋转体的体积为☆.三、解答题:(本大题5小题,每题12分,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知是一个单调递增的等差数列,且满足,,数列的前项和为,数列满足.(Ⅰ)求数列的通项公式;(Ⅱ)求数列的前项和.18.某市为了了解“陕西分类招生考试”宣传情况,从四所中学的学生当中随机抽取50名学生参加问卷调查,已知四所中学各抽取的学生人数分别为15,20,10,5.(Ⅰ)从参加问卷调查的名学生中随机抽取两名学生,求这两名学生来自同一所中学的概率; (Ⅱ)在参加问卷调查的名学生中,从来自两所中学的学生当中随机抽取两名学生,用表示抽得中学的学生人数,求的分布列及期望值.19.在梯形中,,,,,如图把沿翻折,使得平面平面. (Ⅰ)求证:平面;(Ⅱ)若点为线段中点,求点到平面的距离.20.设到定点的距离和它到直线距离的比是. (Ⅰ)求点的轨迹方程;(Ⅱ)为坐标原点,斜率为的直线过点,且与点的轨迹交于点,,若,求△的面积. 21.设函数,其中为自然对数的底数. (Ⅰ)已知,求证:;(Ⅱ)函数是的导函数,求函数在区间上的最小值.请考生从第22、23、24题中任选一题做答.多答按所答的首题进行评分. 22.(本题满分10分)选修4—1:几何证明选讲.已知圆内接△ABC 中,D 为BC 上一点,且△ADC 为正三角形,点E 为BC 的延长线上一点,AE 为圆O 的切线.(Ⅰ)求∠BAE 的度数; (Ⅱ)求证:23.(本题满分10分)选修4—4:坐标系与参数方程.坐标系与参数方程在直角坐标系xOy 中,圆C 的参数方程为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆C 的极坐标方程;(Ⅱ)射线与圆C 的交点为O 、P 两点,求P 点的极坐标. 24.(本题满分10分)选修4—5: 不等式选讲. (Ⅰ)设函数.证明:; (Ⅱ)若实数满足,求证:B宝鸡石油中学 张新会 宝鸡石油中学 齐宗锁 张亚会题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BDDCCAAABBCD13. 30 14. 15. 16.(课本P95第6题)旋转体的体积为323300124(1)8()16927x V dx x x πππ=-=-=⎰三、解答题:本大题5小题,每题12分,共70分.17.解:(Ⅰ)设等差数列的公差为,则依题知. 由,又可得. 由,得,可得.所以.可得 ……………………6分 (Ⅱ)由(Ⅰ)得 当时,当时,满足上式,所以 所以,即, 因为,所以数列是首项为,公比为的等比数列. 所以前项和 ………………………12分18.解: (Ⅰ)从名学生中随机抽取两名学生的取法共有种, 来自同一所中学的取法共有∴从名学生中随机抽取两名学生来自同一所中学的概率为. (Ⅱ)因为名学生中,来自两所中学的学生人数分别为. 依题意得,的可能取值为, ,,∴的分布列为:的期望值为 ………………………12分 19.解:(Ⅰ)证明:因为,, ,, 所以,222(22)2222cos 45CD =+-⨯⨯,,所以.因为平面平面,平面平面, 所以平面.………… 6分(Ⅱ)解:由(Ⅰ)知.以点为原点,所在的直线为轴, 所在直线为轴,如图建立空间直角坐标系. 则,,,,. 所以,,.设平面的法向量为,则且,所以令,得平面的一个法向量为所以点到平面的距离为.………………12分 20.解:(Ⅰ)由已知得化简得点的轨迹方程为.………………………6分 (Ⅱ)设直线的方程为.联立方程组 消去并整理得 故22121212122(3)(3)[3()3]41k y y k x k x k x x x x k -=--=-++=+ 又所以,可得,所以由222121212||11()42AB k x x k x x x x =+-=+⨯+-= 原点到直线的距离所以 ……………………………… 12分21.(Ⅰ)证明:121212222211(e e 2e )(e e )0.22x x x x x x +=+-=-≥ ………………………6分(Ⅱ)22()()11xg x f x ax bx e ax bx =---=---,,(1)当时,∵,,∴恒成立,即,在上单调递增, 所以. (2)当时,∵,,∴恒成立,即,在上单调递减, 所以. (3)当时,得在上单调递减,在上单调递增, 所以 ………………………12分23.解:(Ⅰ)圆C 的普通方程是,又所以圆C 的极坐标方程是 ………………………5分 (Ⅱ)因为射线的普通方程为联立方程组消去并整理得解得或,所以P点的坐标为所以P点的极坐标为………………………10分解法2:把代入得所以P点的极坐标为………………………10分24.证明:(Ⅰ)由,有111()=|||||)()|2 f x x x a x x a aa a a-++≥--+=+≥(所以………………………5分(Ⅱ),由柯西不等式得:2222222[(2)+](111)(2)x y z x y z+++≥++(当且仅当即时取“”号)整理得:,即……………………10分37642 930A 錊 40321 9D81 鶁-28712 7028 瀨~U35047 88E7 裧f37195 914B 酋)40405 9DD5 鷕31753 7C09 簉u21206 52D6 勖。

2021年高三第四次月考数学(理)试题

2021年高三第四次月考数学(理)试题

2021年高三第四次月考数学(理)试题参考公式:线性回归方程中系数计算公式:,其中表示样本均值.第Ⅰ卷一、选择题(本题共8小题;每小题5分,共40分)1.下列命题正确的是()A.B.C.是的充分不必要条件 D.若,则2.复数z=(a²-1)+(a+1)i,(a∈R)为纯虚数,则的取值是()A.3 B.-2 C.-1 D.13.在等腰中,,,则( )A.(-3,-1)B.(-3,1)C.D.(3,1)4.已知在等比数列中,,则等比数列的公比q的值为()A.B.C.2 D.85.为调查中山市中学生平均每人每天参加体育锻炼时间x(单位:分钟),按锻炼时间分下列四种情况统计:①0~10分钟;②11~20分钟;③21~30分钟;④30分钟以上.有10000名中学生参加了此项活动,下图是此次调查中某一项的流程图,其输出的结果是6200,则平均每天参加体育锻炼时间在0~20分钟内的学生的频率是()A.3800 B.6200 C.0.62D.0.386.已知直线,平面,且,给出下列命题:①若∥,则m⊥;②若⊥,则m∥;③若m⊥,则∥;④若m∥,则⊥其中正确命题的个数是()A.1 B.2 C.3 D.47.若,则的值为 ( ) A . B . C . D .8.已知是定义在上的函数,其图象是一条连续的曲线,且满足下列条件: ①的值域为M ,且M ⊆;②对任意不相等的,∈, 都有|-|<|-|.那么,关于的方程=在区间上根的情况是 ( )A .没有实数根B .有且仅有一个实数根C .恰有两个不等的实数根D .实数根的个数无法确定第Ⅱ卷二、填空题:(本题共7小题,考生作答6小题,每小题5分,满分30分) (一)必做题(9~13题)9.若实数x ,y 满足的最小值为3,则实数b 的值为10.某校开设A 类选修课3门,B 类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有 种(用数字作答). 11.抛物线的准线经过双曲线的一个焦点,则双曲线的离心率为 12.已知函数,对定义域内任意,满足,则正整数的取值个数是13.某商店经营一批进价为每件4元的商品,在市场调查时得到,此商品的销售单价x 与日销售量y 之间的一组数据满足:,,,,则当销售单价x 定为(取整数) 元时,日利润最大.(二)选做题(14~15题,考生只能从中选做一题) 14.(坐标系与参数方程选做题)直角坐标系xOy 中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,设点A ,B 分别在曲线C 1:⎩⎪⎨⎪⎧x =3+cos θ,y =4+sin θ(θ为参数)和曲线C 2:ρ=1上,则|AB |的最小值为________. 15.(几何证明选讲选做题)如图,∠B =∠D ,AE ⊥BC ,∠ACD =90°,且AB =6,AC =4,AD =12,则BE =________三、解答题(本大题共6小题,满分80分,解答须写出文字说明、证明过程和演算步骤.) 16.(本小题满分12分)设,且满足 (1)求的值.(2)求的值.17(本小题满分12分)某公司向市场投放三种新型产品,经调查发现第一种产品受欢迎的概率为,第二、第三种产品受欢迎的概率分别为,(>),且不同种产品是否受欢迎相互独立。

(新高考)广东省2021届高三数学下学期5月卫冕联考试题(含解析)

(新高考)广东省2021届高三数学下学期5月卫冕联考试题(含解析)

(新高考)广东省2021届高三数学下学期5月卫冕联考试题(含解析)本试卷共4页,22题。

全卷满分150分。

考试用时120分钟。

注意事项:1.答题前,先将自己的姓名、考号等填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.填空题和解答题的作答:用签字笔直接写在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、单项选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={-2,-1,0,1,2,3},B ={x|x 2-4x<0},则A ∩B = A.{0,1,2,3} B.{1,2,3} C.{0,1,2} D.{-1,1,2,3}2.复数z =31i 12i-+的虚部为A.-15iB.15iC.-15D.153.“a<8”是“方程x 2+y 2+2x +4y +a =0表示圆”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.函数f(x)=2|x|3x 1xe x-+;的大致图象为5.在梯形ABCD中,AB//CD,AB=4CD,M为AD的中点,BM BA BCλμ=+,则λ+μ=A.98 B.58C.54D.326.核酸检测分析是用荧光定量PCR法,通过化学物质的荧光信号,对在PCR扩增进程中成指数级增加的靶标DNA实时监测,在PCR扩增的指数时期,荧光信号强度达到阈值时,DNA的数量X n与扩增次数n满足lgX n=nlg(1+p)+lgX0,其中p为扩增效率,X0为DNA的初始数量。

已知某被测标本DNA扩增10次后,数量变为原来的100倍,那么该样本的扩增效率p约为(参考数据:100.2≈1.585,10-0.2≈0.631)A.0.369B.0.415C.0.585D.0.6317.已知双曲线C:22221x ya b-=(a>0,b>0)的左、右焦点分别为F1,F2,M是C的渐近线上一点,|F1F2|=|MF2|,∠F1F2M=120°,则双曲线C的离心率为57 C.3238.已知函数f(x)的定义域为R,f(5)=4,f(x+3)是偶函数,任意x1,x2∈[3,+∞)满足()()1212f x f xx x-->0,则不等式f(3x-1)<4的解集为A.(23,3) B.(-∞,23)∪(2,+∞) C.(2,3) D.(23,2)二、多项选择题:本题共4小题,每小题5分,共20分。

2021-2022年高三上学期第二次月考数学(理)试题含答案

2021-2022年高三上学期第二次月考数学(理)试题含答案

2021-2022年高三上学期第二次月考数学(理)试题含答案一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集为R ,集合A={x|()x ≤1},B={x|x 2﹣6x+8≤0}, 则A∩()=( )A .{x|x ≤0}B .{x|2≤x ≤4}C .{x|0≤x <2或x >4}D .{x|0<x ≤2或x ≥4}2.下列函数在其定义域内既是奇函数又是增函数的是( ) (A)y=tanx (B)y=3x (C)y= (D)y=lg|x|3.下列四种说法中,错误的个数是( ) ①A={0,1}的子集有3个;②“若am 2<bm 2,则a<b ”的逆命题为真;③“命题p ∨q 为真”是“命题p ∧q 为真”的必要不充分条件;④命题“∀x ∈R,均有x 2-3x-2≥0”的否定是:“∃x 0∈R,使得x 02-3x 0-2≤0”. (A)0 (B)1 (C)2 (D)3 4.已知函数则f(f())的值是( ) (A)9(B)(C)-9(D)-5.若a=log 20.9,则( )(A)a<b<c (B)a<c<b (C)c<a<b(D)b<c<a6.若函数y=-x 2+1(0<x<2)的图象上任意点处切线的倾斜角为α,则α的最小值是( )()()()()53A B C D 4664ππππ7.已知命题p:函数f(x)=2ax 2-x-1(a ≠0)在(0,1)内恰有一个零点;命题q:函数y=x 2-a 在(0,+∞)上是减函数.若p 且﹁q 为真命题,则实数a 的取值范围是 ( ) (A)a>1(B)a ≤2 (C)1<a ≤2(D)a ≤1或a>28.函数f(x)=的大致图象为( )9.设函数f (x )=x 2+xsinx ,对任意x 1,x 2∈(﹣π,π), 若f (x 1)>f (x 2),则下列式子成立的是( ) A .x 1>x 2B .C .x 1>|x 2|D .|x 1|<|x 2|10函数y=f(x)(x ∈R)满足f(x+1)=-f(x),且x ∈[-1,1]时f(x)=1-x 2,函数()lg x,x 0,g x 1,x 0,x>⎧⎪=⎨-<⎪⎩则函数h(x)=f(x)-g(x)在区间[-5,4]内的零点的个数为( ) (A)7(B)8(C)9(D)10二、填空题(本大题共5小题,每小题5分,共25分.请把正确答案填在题中横线上)11.已知集合M={y|y=x 2﹣1,x ∈R},,则M∩N=_____ 12.已知函数f (x )=a x +b (a >0,a ≠1)的定义域和值域都是 [﹣1,0],则a+b= .13.已知p:≤x ≤1,q:(x-a)(x-a-1)>0,若p 是﹁q 的充分不必要条件,则实数a 的取值范围是 .14.若f (x )=是R 上的单调函数,则实数a 的取值范围为 . 15.若方程有正数解,则实数的取值范围是_______三、解答题(本大题共6小题,共75分.解答时应写出必要的文字说明、证明过程或演算步骤)16.(12分)已知p :∀x ∈R ,2x >m (x 2+1),q :∃x 0∈R , x+2x 0﹣m ﹣1=0,且p ∧q 为真,求实数m 的取值范围.17、(12分)已知函数.(1)求f(x)的定义域;(2)讨论f(x)的奇偶性;(3)证明f(x)在(0,1)内单调递减.18.(12分)已知函数f(x)=x3﹣ax2﹣3x(1)若f(x)在区间[1,+∞)上是增函数,求实数a的取值范围;(2)若x=﹣是f(x)的极值点,求f(x)在[1,4]上的最大值.19.(12分)提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(Ⅰ)当0≤x≤200时,求函数v(x)的表达式;(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到1辆/小时).20. (13分)已知函数f(x)满足()()()x 121f x f 1e f 0x x .2-='-+(1)求f(x)的解析式及单调区间.(2)若f(x)≥x 2+ax+b,求(a+1)b 的最大值.21、 (14分)已知函数21()(21)2ln ()2f x ax a x x a R =-++∈.(Ⅰ)若曲线y=f (x )在x=1和x=3处的切线互相平行,求a 的值; (Ⅱ)求f (x )的单调区间;(Ⅲ)设g (x )=x 2﹣2x ,若对任意x 1∈(0,2],均存在x 2∈(0,2],使得 f (x 1)<g (x 2),求a 的取值范围.高三数学第一次检测题答案解析1. C .2.C.3.D.4.B.5.B.6.D.7.C 8、D.9.【解析】∵f (﹣x )=(﹣x )2﹣xsin (﹣x )=x 2+xsinx=f (x ),∴函数f (x )=x 2+xsinx 为偶函数,又f′(x )=2x+sinx+xcosx ,∴当x >0时,f′(x )>0,∴f (x )=xsinx 在[0,π]上单调递增,∴f (﹣x )=f (|x|);∵f (x 1)>f (x 2),∴结合偶函数的性质得f (|x 1|)>f (|x 2|),∴|x 1|>|x 2|,∴x 12>x 22.故选B .10.选A.由f(x+1)=-f(x),可得f(x+2)=-f(x+1)=f(x),所以函数f(x)的周期为2,求h(x)=f(x)-g(x)的零点,即求f(x)=g(x)在区间[-5,4]的解的个数.画出函数f(x)与g(x)的图象,如图,由图可知两图象在[-5,4]之间有7个交点,所以所求函数有7个零点,选A.11、解:∵集合M={y|y=x2﹣1,x∈R}={y|y≥﹣1},={x|﹣},∴M∩N=.故答案为:.12、解:当a>1时,函数f(x)=a x+b在定义域上是增函数,所以,解得b=﹣1,=0不符合题意舍去;当0<a<1时,函数f(x)=a x+b在定义域上是减函数,所以,解得b=﹣2,a=,综上a+b=,故答案为:13.q:x>a+1或x<a,从而﹁q:a≤x≤a+1.由于p是﹁q的充分不必要条件,故a111a2≥⎧⎪⎨≤⎪⎩+,,即0≤a≤.答案:[0,]14、解:∵f(x)=是R上的单调函数,∴,解得:a≥,故实数a的取值范围为[,+∞),故答案为:[,+∞)15.16、解:不等式2x>m(x2+1),等价为mx2﹣2x+m<0,若m=0,则﹣2x<0,即x>0,不满足条件.若m≠0,要使不等式恒成立,则,即,解得m<﹣1.即p:m<﹣1.———————————————————————4分若∃x0∈R,x+2x﹣m﹣1=0,则△=4+4(m+1)≥0,解得m≥﹣2,即q:m≥﹣2.———————————————————————8分若p∧q为真,则p与q同时为真,则,即﹣2≤m<﹣1————12分17、解:(1)⇔﹣1<x<0或0<x<1,故f(x)的定义域为(﹣1,0)∪(0,1);————————————4分(2)∵,∴f(x)是奇函数;————————————————————————————6分(3)设0<x1<x2<1,则∵0<x1<x2<1,∴x2﹣x1>0,x1x2>0,(1﹣x1)(1+x2)=1﹣x1x2+(x2﹣x1)>1﹣x1x2﹣(x2﹣x1)=(1+x1)(1﹣x2)>0∴,∴f(x1)﹣f(x2)>0,即f(x1)>f(x2)∴f(x)在(0,1)内递减——————————————————12分另解:∴当x∈(0,1)时,f′(x)<0故f(x)在(0,1)内是减函数.—————————————————12分18、解:(1)求导函数,可得f′(x)=3x2﹣2ax﹣3,∵f(x)在区间[1,+∞)上是增函数,∴f′(x)≥0在区间[1,+∞)上恒成立∴3x2﹣2ax﹣3≥0在区间[1,+∞)上恒成立∴且f′(1)=﹣2a≥0∴a≤0———4分(2)∵x=﹣是f(x)的极值点,∴∴∴a=4——6分∴f(x)=x3﹣4x2﹣3x,f′(x)=3x2﹣8x﹣3,∴x1=﹣,x2=3令f′(x)>0,1<x<4,可得3<x<4;令f′(x)<0,1<x<4,可得1<x<3;∴x=3时,函数取得最小值﹣18∵f(1)=﹣6,f(4)=﹣12∴f(x)在[1,4]上的最大值为﹣6.————————————————12分19、解:(Ⅰ)由题意:当0≤x≤20时,v(x)=60;当20<x≤200时,设v (x)=ax+b再由已知得,解得故函数v(x)的表达式为.——————4分(Ⅱ)依题并由(Ⅰ)可得当0≤x<20时,f(x)为增函数,故当x=20时,其最大值为60×20=1200当20≤x≤200时,当且仅当x=200﹣x,即x=100时,等号成立.所以,当x=100时,f(x)在区间(20,200]上取得最大值.综上所述,当x=100时,f(x)在区间[0,200]上取得最大值为,即当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.—————————————————————————10分答:(Ⅰ)函数v(x)的表达式(Ⅱ)当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.——————————————————————————12分20.(1)∵f(x)=f′(1)e x-1-f(0)x+x2,∴f′(x)=f′(1)e x-1-f(0)+x,令x=1得:f(0)=1,∴f(x)=f′(1)e x-1-x+x2,∴f(0)=f′(1)e-1=1,∴f′(1)=e得:f(x)=e x-x+x2.—————————4分设g(x)=f′(x)=e x-1+x,g′(x)=e x+1>0,∴y=g(x)在R上单调递增.令f′(x)>0=f′(0),得x>0,令f′(x)<0=f′(0)得x<0,∴f(x)的解析式为f(x)=e x-x+x2且单调递增区间为(0,+∞),单调递减区间为(-∞,0).————————————-4分(2)由f(x)≥x2+ax+b得e x-(a+1)x-b≥0,令h(x)=e x-(a+1)x-b,则h′(x)=e x-(a+1).①当a+1≤0时,h′(x)>0⇒y=h(x)在x∈R上单调递增.x→-∞时,h(x)→-∞与h(x)≥0矛盾.——————————6分②当a+1>0时,由h′(x)>0得x>ln(a+1),由h′(x)<0得x<ln(a+1)=(a+1)-(a+1)ln(a+1)-b≥0.———8分得当x=ln(a+1)时,h(x)min(a+1)b≤(a+1)2-(a+1)2ln(a+1) (a+1>0).令F(x)=x2-x2ln x(x>0),则F′(x)=x(1-2ln x),——————10分由F′(x)>0得0<x<,由F′(x)<0得x>,当x=时,F(x)=,∴当a=-1,b=时,(a+1)b的最大值为.—————————max—————————————13分21、解:(Ⅰ)∵函数,∴(x>0).∵曲线y=f(x)在x=1和x=3处的切线互相平行,∴f'(1)=f'(3),即,解得.————————————4分(Ⅱ)(x>0).①当a≤0时,x>0,ax﹣1<0,在区间(0,2)上,f'(x)>0;在区间(2,+∞)上f'(x)<0,故f(x)的单调递增区间是(0,2),单调递减区间是(2,+∞).②当时,,在区间(0,2)和上,f'(x)>0;在区间上f'(x)<0,故f(x)的单调递增区间是(0,2)和,单调递减区间是③当时,,故f(x)的单调递增区间是(0,+∞).④当时,,在区间和(2,+∞)上,f'(x)>0;在区间上f'(x)<0,故f(x)的单调递增区间是和(2,+∞),单调递减区间是.————————————8分(Ⅲ)由已知,在(0,2]上有f(x)max <g(x)max.由已知,g(x)max=0,由(Ⅱ)可知,①当时,f(x)在(0,2]上单调递增,故f(x)max=f(2)=2a﹣2(2a+1)+2ln2=﹣2a﹣2+2ln2,所以,﹣2a﹣2+2ln2<0,解得a>ln2﹣1,故.——————————————————12分②当时,f(x)在上单调递增,在上单调递减,故.由可知,2lna>﹣2,﹣2lna<2,所以,﹣2﹣2lna<0,f(x)max<0,综上所述,a>ln2﹣1.————————————————14分21072 5250 剐31873 7C81 粁31426 7AC2 竂z33043 8113 脓e35722 8B8A 變 39463 9A27 騧K34467 86A3 蚣38124 94EC 铬=40272 9D50 鵐。

2021-2022年高三上学期10月月考数学(理)试题含答案

2021-2022年高三上学期10月月考数学(理)试题含答案

2021-2022年高三上学期10月月考数学(理)试题含答案一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集集合{}{}1,2,5,4,5,6U A C B ==,则集合A. B. C. D.2.若,则下列不等式中成立的是A. B. C. D.3.函数的零点有A.0个B.1个C.2个D.3个 4.设0.13592,1,log 210a b g c ===,则a,b,c 的大小关系是 A. B. C. D.5.下面几种推理过程是演绎推理的是A.两条直线平行,同旁内角互补,如果是两条平行直线的同旁内角,则B.由平面三角形的性质,推测空间四面体的性质C.某校高三共有10个班,1班有51人,2班有53人,三班有52人,由此推测各班都超过50人D.在数列中,()11111,221n n n a a a n a -⎛⎫==+≥ ⎪-⎝⎭,计算,由此猜测通项 6.已知函数的导函数为,且满足,则A. B. C.1 D.e7.函数)0,0y a a =>≠的定义域和值域都是,则A.1B.2C.3D.48.函数满足,那么函数的图象大致为9.设函数是定义在R 上周期为3的奇函数,若,则有 A. B. C.D.10.已知()32log ,03,,,,1108,333x x f x a b c d x x x ⎧<≤⎪=⎨-+>⎪⎩是互不相同的正数,且()()()()f a f b f c f d ===,则abcd 的取值范围是A.B. C. D.第II 卷(非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分.请把答案填在题中横线上.11. __________.12.设实数满足240,0,0.x y x y y +-≤⎧⎪-≥⎨⎪>⎩则的最大值为_________.13.观察下列式子222222131151117:1,1,1222332344+<++<+++<,…,根据上述规律,第n 个不等式应该为__________________________.14.在等式“”的两个括号内各填入一个正整数,使它们的和最小,则填入的两个数依次为_______、_______.15.下列四个命题:①命题“若a=0,则ab=0”的否命题是“若a=0,则ab ”;②若命题,则;③若命题“”与命题“”都是真命题,则命题q 一定是真命题;④命题“若,则()1log 1log 1a a a a ⎛⎫+<+ ⎪⎝⎭”是真命题. 其中正确命题的序号是_________.(把所有正确命题序号都填上)三、解答题:本大题有6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤16. (本题满分12分)已知集合{}{}22log 8,0,14x A x x B xC x a x a x +⎧⎫=<=<=<<+⎨⎬-⎩⎭. (I )求集合;(II )若,求实数a 的取值范围.17. (本题满分12分)设命题p :函数在R 上是增函数,命题()2:,2310q x R x k x ∃∈+-+=,如果是假命题,是真命题,求k 的取值范围.18. (本题满分12分)已知函数.(I )若函数的图象在处的切线方程为,求a,b 的值;(II )若函数在R 上是增函数,求实数a 的最大值.19. (本题满分12分)已知二次函数()()2,f x x bx c b c R =++∈. (I )若,且函数的值域为,求函数的解析式;(II )若,且函数在上有两个零点,求的取值范围.20. (本题满分13分)某地空气中出现污染,须喷洒一定量的去污剂进行处理.据测算,每喷洒1个单位的去污剂,空气中释放的浓度y (单位:毫克/立方米)随着时间x (单位:天)变化的函数关系式近似为161,04815,42x x y x x ⎧-≤≤⎪⎪-=⎨⎪-<≤10⎪⎩,若多次喷洒,则某一时刻空气中的去污剂浓度为每次投放的去污剂在相应时刻所释放的浓度之和.由实验知,当空气中去污剂的浓度不低于4(毫克/立方米)时,它才能起到去污作用.(I )若一次喷洒4个单位的去污剂,则去污时间可达几天?(II )若第一次喷洒2个单位的去污剂,6天后再喷洒a (1≤a ≤4)个单位的去污剂,要使接下来的4天中能够持续有效去污,试求a 的最小值(精确到0.1,参考数据:取1.4).21. (本题满分14分)设,函数.(I)求的单调递增区间;(II)设,问是否存在极值,若存在,请求出极值;若不存在,请说明理由;(III)设是函数图象上任意不同的两点,线段AB的中点为,直线AB的斜率为为k.证明:.T *35356 8A1C 訜21153 52A1 务24278 5ED6 廖37058 90C2 郂40714 9F0A 鼊B21961 55C9 嗉35803 8BDB 诛e24194 5E82 庂F。

高三数学11月联考试题 理含解析 试题

高三数学11月联考试题 理含解析 试题

卜人入州八九几市潮王学校上高二数学中,2021届高三数学11月联考试题理〔含解析〕一、选择题〔本大题一一共12小题〕1.集合,,那么A. B.C. D.2.i为虚数单位,假设复数,那么A. B. C. D.13.设随机变量,假设,那么实数a的值是A.1B.2C.3D.44.将函数的图象上所有的点横坐标扩大到原来的2倍纵坐标不变,再把图象上各点的向右平移个单位长度,那么所得图象的解析式为A. B.C. D.5.在等差数列中,,那么数列的前11项和A.8B.16C.22D.446.因场HY储藏的需要,某公司1月1日起,每月1日购置了一样金额的某种物资,连续购置了4次.由于场变化,5月1日该公司不得不将此物资全部卖出.该物资的购置和卖出都是以份为计价单位进展交易,且该公司在买卖的过程中赢利,那么下面三个折线图中反映了这种物资每份价格单位:万元的可能变化情况是A. B. C. D.7.定义在R上的偶函数满足,当时,,那么A. B. C. D.8.函数的局部图象大致是A. B.C. D.9.椭圆,F为椭圆在y轴正半轴的焦点,,P是椭圆上任意一点,那么的最大值为A. B. C. D.10.如图来自古希腊数学家希波克拉底所研究的平面几何图形.此图由两个圆构成,O为大圆圆心,线段AB为小圆直径.的三边所围成的区域记为I,黑色月牙局部记为Ⅱ,两小月牙之和斜线局部局部记为Ⅲ在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为,,,那么A.B.C.11.定义在R上的函数满足,且对任意的不相等的实数,有成立,假设关于x的不等式在上恒成立,那么实数m的取值范围A. B. C. D.12.在三棱锥中,,,,点P在平面ACD内,且,设异面直线BP与CD所成角为,那么的最小值为A.B.C.D.二、填空题〔本大题一一共4小题〕13.平面向量的夹角为,且那么______.14.正数项数列的前n项和为,满足,且,那么数列的通项公式为______.15.,那么的展开式中,常数项为______.16.中,角A、B、C所对的边分别为a、b、c______三、解答题〔本大题一一共7小题〕17.设函数求函数的单调递增区间和对称中心;在锐角中,假设,且能盖住的最小圆的面积为,求周长的取值范围.18.如图,三棱柱的所有棱长均为2,底面侧面,,P为的中点,.证明:假设M是AC棱上一点,满足,求二面角的余弦值.19.某地4个蔬菜大棚顶部,阳光照在一棵棵蔬菜上.这些采用水培、无土栽培方式种植的各类蔬菜,成为该地区居民争相购置的对象.过去50周的资料显示,该地周光照量小时都在30以上.其中缺乏50的周数大约有5周,不低于50且不超过70的周数大约有35周,超过70的大约有10周.根据统计某种改良黄瓜每个蔬菜大棚增加量百斤与每个蔬菜大棚使用农夫1号液体肥料千克之间对应数据为如下列图的折线图:Ⅰ根据数据的折线图,用最小二乘法求出y关于x的线性回归方程;并根据所求线性回归方程,估计假设每个蔬菜大棚使用农夫1号肥料10千克,那么这种改良黄瓜每个蔬菜大棚增加量y是多少斤?Ⅱ因蔬菜大棚对光照要求较大,某光照控制仪商家为应对恶劣天气对光照的影响,为该基地提供了局部光照控制仪,该商家希望安装的光照控制仪尽可能运行,但每周光照控制仪最多可运行台数受周光照量X限制,并有如下关系:假设某台光照控制仪运行,那么该台光照控制仪周利润为5000元;假设某台光照控制仪未运行,那么该台光照控制仪周亏损800元,欲使商家周总利润的均值到达最大,应安装光照控制仪多少台?附:回归方程系数公式:,.20.椭圆的左,右焦点分别为,,离心率为,P是椭圆C上的一个动点,且面积的最大值为.求椭圆C的方程;设斜率存在的直线与椭圆C的另一个交点为Q,是否存在点,使得?假设存在,求出t的取值范围;假设不存在,请说明理由.21..求函数的极值;设,对于任意,,总有成立,务实数a的取值范围.22.曲线C的参数方程为为参数;以极点O为原点,极轴为x轴的非负半轴建立平面直角坐标系,直线l:,与曲线C相交于M、N两点.求曲线C的极坐标方程;记线段MN的中点为P,假设恒成立,务实数的取值范围.23.设函数.求不等式的解集;假设存在,使得不等式成立,务实数a的取值范围.答案和解析1.【答案】D【解析】解:,;,.应选:D.可解出集合M,N,然后进展并集、交集的运算即可.考察描绘法的定义,以及并集、交集的运算,分式不等式的解法.2.【答案】C【解析】解:根据题意,复数,那么,,那么;应选:C.根据题意,计算可得,进而求出的值,据此计算可得答案.此题考察复数和复数模的计算,关键是求出z,属于根底题.3.【答案】A【解析】解:随机变量,,由,可得与关于直线对称,那么,即.应选:A.由可得,由,可得与关于直线对称,再由中点坐标公式列式求得a值.此题考察正态分布曲线的特点及曲线所表示的意义,考察正态分布中两个量和的应用,考察曲线的对称性,属于根底题.4.【答案】C【解析】解:将函数的图象上所有的点横坐标扩大到原来的2倍纵坐标不变,可得函数的图象;再把图象上各点向右平移个单位长度,那么所得图象的解析式为函数,应选:C.由题意利用函数的图象变换规律,得出结论.此题主要考察函数的图象变换规律,属于根底题.5.【答案】C【解析】解:在等差数列中,,,整理得,数列的前11项和:.应选:C.利用等差数列通项公式推导出,由此能求出数列的前11项和.此题考察数列的前11项和的求法,考察等差数列、等比数列的性质等根底知识,考察运算求解才能,是根底题.6.【答案】D【解析】解:设公司每月1日用于购置某种物资的金额为a万元,图中四次购置的物资为,5月1日一次卖出公司得到,公司盈利,故正确;图中四次购置的物资为,5月1日一次卖出公司得到,公司亏损,故不正确;图中四次购置的物资为,5月1日一次卖出公司得到,公司盈利,故正确.应选:D.设公司每月1日用于购置某种物资的金额为a万元,分别求出三种图形下公司5月1日该公司将此物资全部卖出所得金额,与4a进展大小比较得答案.此题考察根据实际问题选择函数模型,正确理解题意是关键,是中档题.7.【答案】A【解析】解:偶函数的图象关于y轴对称,满足,函数关于对称,故函数的周期,当时,,那么.应选:A.由可知,函数关于,对称,从而可求函数的周期T,然后结合区间上的函数解析式可求.此题主要考察了利用函数的性质求解函数值,解题的关键是函数周期确实定.8.【答案】A【解析】解:当时,,故排除C,当时,,故排除D,当时,,故排除B,应选:A.根据函数值的变化趋势,取特殊值即可判断.此题考察了函数图象的识别,考察了函数值的特点,属于根底题.9.【答案】B【解析】解:椭圆,如图,,设椭圆的右焦点为,那么,;由图形知,当P在直线的延长线与椭圆的交点时,,此时获得最大值;的最大值为:.应选:B.求出椭圆的焦点坐标,画出图形,可得;通过由图形知,当P在直线上时,推出结果即可.此题考察了椭圆的定义HY方程及其性质、直线与椭圆相交问题、三角形三边大小关系,考察了推理才能与计算才能,属于中档题.10.【答案】D【解析】解:设,那么,,以AB中点为圆心的半圆的面积为,以O为圆心的大圆面积的四分之一为,以AB为弦的大圆的劣弧所对弓形的面积为,黑色月牙局部的面积为,图Ⅲ局部的面积为.设整个图形的面积为S,那么,,.,应选:D.设,那么,分别求出三个区域的面积,由测度比是面积比得答案.此题考察几何概型概率的求法,考察数形结合的解题思想方法,正确求出各局部面积是关键,是中档题.11.【答案】D【解析】【分析】此题主要考察函数的奇偶性和单调性的综合应用,函数的恒成立问题,表达了转化的数学思想,属于较难题.由条件利用函数的奇偶性和单调性,可得对恒成立,且对恒成立.求得相应的最大值和最小值,从而求得m的范围.【解答】解:定义在R上的函数的图象关于y轴对称,函数为偶函数,函数数在上递减,在上单调递增,假设不等式对恒成立,即对恒成立.对恒成立,即对恒成立,即且对恒成立.令,那么,在上递增,上递减,.令,,在上递减,.综上所述,应选D.12.【答案】A【解析】解:取CD中点K,连接AK,BK,,,,,为正,取AK中点O,连接BO,那么,且,易知平面ABK,,平面ACD,,在图中圆O上,当P与G,H重合时,最大,当P与M,N重合时,最小.应选:A.取CD中点K,易得三角形ABK为正三角形,取AK中点O,可证平面ACD,进而确定点P的位置,求得最小值.此题考察了异面直线所成角的求法,线面垂直等知识,考察了运算求解才能,是中档题.13.【答案】2【解析】解:根据题意,平面向量的夹角为,且,那么,那么,那么;故答案为:2.根据题意,由数量积的计算公式可得,又由,代入数据计算可得答案.此题考察向量模的计算,关键是掌握向量数量积的计算公式.14.【答案】【解析】解:正数项数列的前n项和为,满足,且,整理得,所以,即,整理得常数,故数列是以1为首项,2为公比的等比数列.所以.故答案为:直接利用数列的递推关系式的应用求出数列的通项公式.此题考察的知识要点:数列的递推关系式的应用,数列的通项公式的求法,主要考察学生的运算才能和转换才能及思维才能,属于中档题型.15.【答案】【解析】解:,,那么,令,解得:,那么,常数项为,故答案为:.根据定积分的运算性质,即可求得m的值,根据二项式定理求得展开式的通项,令x的次数为0,即可求得r,即可求得常数项.此题考察定积分的运算性质,二项式定理的应用,考察转化思想,属于中档题.16.【答案】A,Ba是最小边,所以A为最小角,所以,故,故正确.故答案为.对于,可先根据三角形内角和定理判断角的范围,从而确定的值域;对于,结合式子的特点,可构造函数,研究其单调性解决问题;对于,利用内角和定理结合两角和的正切公式研究的符号即可;对于,可以利用平面向量的运算方法将给的条件转化为三边a,b,c17.【答案】解:由得,的单调递增区间为.由,解得,的对称中心为,,为锐角三角形,,,,能盖住的最小圆为的外接圆,故由得设的角A、B、C所对的边分别为a,b,c,那么由正弦定理得故,,,为锐角三角形,即,,,的周长的取值范围为.【解析】化简,利用的单调区间和对称中心即可;能盖住的最小圆为的外接圆,利用正弦定理把边化为角求周长的取值范围.此题考察了降幂公式,三角函数的单调区间,对称中心,以及三角形周长的取值范围的常规求法.18.【答案】证明:取AB的中点D,连接OP,CD,OD,易证OPCD为平行四边形,从而.由底面侧面,底面侧面,,底面ABC,所以侧面,即侧面B.又侧面,所以.又侧面为菱形,所以,从而平面.因为平面,所以解:由知,,,,以O为原点,建立如下列图的空间直角坐标系.因为侧面是边长为2的菱形,且,所以0,,1,,,,,,得.设,得,所以,所以.而.所以,解得.所以,,.设平面的法向量,由得,取.而侧面的一个法向量.设二面角的大小为.那么.【解析】取AB中点D,设与交于点O,连接OP,CD,依题意得,由平面平面,可得平面,即,又四边形为菱形,得,可得平面,可证得以O为原点,如下列图建立空间直角坐标系,利用向量法求解.此题考察了空间线线垂直的断定,向量法求线面、面面角,属于中档题.19.【答案】解:Ⅰ由题意可得:,那么:,所以y关于x的线性回归方程为,当时,百斤斤,所以估计假设每个蔬菜大棚使用农夫1号肥料10千克,那么这种改良黄瓜每个蔬菜大棚增加量y是550斤.Ⅱ记商家总利润为Y元,由条件可知至少需安装1台,安装1台光照控制仪可获得周利润5000元,安装2台光照控制仪的情形:当时,一台光照控制仪运行,此时元,当时,两台光照控制仪都运行,此时元,故Y的分布列为所以元,安装3台光照控制仪的情形:当时,一台光照控制仪运行,此时元,当时,两台光照控制仪运行,此时元,当时,三台光照控制仪都运行,此时元,故Y的分布列为所以元,综上,为使商家周总利润的均值到达最大应该安装2台光照控制仪.【解析】Ⅰ由题中所给的数据求得线性回归方程,然后进展预测即可;Ⅱ由题意分类讨论求解分布列和数学期望即可.此题考察了线性回归方程及其应用,离散型随机变量的分布列等,重点考察学生对根底概念的理解和计算才能,属于中等题.20.【答案】解:Ⅰ椭圆离心率为,当P为C的上顶点时,的面积有最大值.,,,.故椭圆C的方程为:.Ⅱ设直线PQ的方程为,当时,代入,得:;设,,线段PQ的中点为,,,即,,直线TN为线段PQ的垂直平分线;,那么.所以,,当时,因为,当时,因为,当时,符合题意.综上,t的取值范围为.【解析】此题考察直线与椭圆的位置关系的应用,椭圆的方程的求法,圆锥曲线的范围的求法,考察转化思想以及计算才能.Ⅰ根据椭圆离心率为,的面积为列式计算a,b,c即可.Ⅱ设出直线PQ的方程,与椭圆方程联立,得出关于x的一元二次方程;再设出P、Q的坐标,表示出线段PQ的中点R,根据,求出T点的横坐标t的取值范围,即可得出结论.21.【答案】解:,.x e0 0单调递减极小值单调递增极大值单调递减的极小值为:,极大值为:.由可知当时,函数的最大值为.对于任意,,总有成立,等价于恒成立,.时,因为,所以,即在上单调递增,恒成立,符合题意.当时,设,,所以在上单调递增,且,那么存在,使得所以在上单调递减,在上单调递增,又,所以不恒成立,不合题意.综合可知,所务实数a的取值范围是.【解析】,令,解得,利用导数研究函数的单调性即可得出.由可知当时,函数的最大值为对于任意,,总有成立,等价于恒成立,对a分类讨论:时,利用及其根本不等式的性质即可得出.当时,设,,利用单调性与函数的零点即可得出.此题考察了利用导数研究函数的单调性极值与最值、等价转化方法、分类讨论方法,考察了推理才能与计算才能,属于难题.22.【答案】解:把曲线C的参数方程为参数,消去参数,可得曲线C的普通方程为,,,曲线C的极坐标方程为;联立和,得,设、那么,由,得,当时,取最大值,故实数的取值范围为.【解析】把曲线C的参数方程中的参数消去,可得曲线C的普通方程,结合极坐标与直角坐标的互化公式可得曲线C的极坐标方程;联立直线l与曲线C的极坐标方程,求得M,N的极径,再由,结合正弦函数的有界性求解满足恒成立的实数的取值范围.此题考察简单曲线的极坐标方程,考察参数方程化普通方程,考察计算才能,是中档题.23.【答案】解:Ⅰ由,得:,解得:,故不等式的解集是;Ⅱ假设存在,使得不等式成立,即存在,使得成立,当时,即在上有解,故,当时,不成立,当时,即在上有解,故,当时,即在上有解,故,综上,.【解析】Ⅰ两边平方求出不等式的解集即可;Ⅱ通过讨论x的范围,去掉绝对值,别离参数a,结合x的范围从而求出a的范围即可.此题考察理解绝对值不等式问题,考察分类讨论思想,转化思想,是一道综合题.。

2021年10月广东省普通高中2022届高三上学期10月阶段性质量检测数学试卷及答案

2021年10月广东省普通高中2022届高三上学期10月阶段性质量检测数学试卷及答案

2021年10月广东省普通高中2022届高三上学期10月阶段性质量检测数学试卷★祝考试顺利★(含答案)本试卷分选择题和非选择题两部分。

满分150分,考试时间120分钟。

本卷命题范围:集合、常用逻辑用语、函数与导数、三角函数与解三角形,解答题高考范围。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集U ={x|-1≤x ≤5,x ∈Z},集合A ={0,1,2,3,4},B ={-1,0,1,2},则A ∩(∁U B)=A.{0,1,2}B.{1,2}C.{3,4}D.{3,4,5}2.设命题p :∃n ∈N *,n 2+2n>3,则命题p 的否定是A.∃n ∉N *,n 2+2n>3B.∃n ∈N *,n 2+2n ≤3C.∀n ∈N *,n 2+2n ≤3D.∀n ∈N *,n 2+2n>33.函数f(x)=1x+4x 在[1,2)上的值域是 A.[5,172) B[4,172) C.(0,172) D.[5,+∞) 4.已知sinθ-2cosθ=0,θ∈(0,2π),则cos sin 2sin2θθθ--5.若1和2是函数f(x)=4lnx +ax 2+bx 的两个极值点,则log 2(2a -b)=A.-3B.-2C.2D.36.已知函数f(x)=lnx +ax 在函数g(x)=x 2-2x +b 的递增区间上也单调递增,则实数a 的取值范围是A.(-∞,-1]B.[0,+∞)C.(-∞,-1]∪[0,+∞)D.(-1,0]7.在△ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c,则“acosA =bcosB ”是“△ABC 是以A 、B 为底角的等腰三角形”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.若对任意的x 2,x 2∈(m,+∞),且x 1<x 2,都有122121x lnx x lnx x x --<2,则m 的最小值是(注:e =2.71828…为自然对数的底数) A.1e B.e C.1 D.3e二、选择题:本题共4小题,每小题5分,共20分。

广东省江门市2021届高三上学期调研测试数学试题

广东省江门市2021届高三上学期调研测试数学试题

江门市2021届普通高中高三调研测试数学一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}1,2aA =,{},B a b =,若12A B ⎧⎫=⎨⎬⎩⎭,则A B =( )A. 11,2⎧⎫⎨⎬⎩⎭B. 11,2⎧⎫-⎨⎬⎩⎭C. 11,1,2⎧⎫-⎨⎬⎩⎭D. 1,1,2b ⎧⎫⎨⎬⎩⎭C根据集合{}1,2a A =,且12A B ⎧⎫=⎨⎬⎩⎭,由122a=求解.因为集合{}1,2aA =,且12AB ⎧⎫=⎨⎬⎩⎭,所以122a=, 解得1a =-,则 12b =, 所以A B =11,1,2⎧⎫-⎨⎬⎩⎭故选:C2. 已知i 是虚数单位,若复数11iz ai+=-为纯虚数,则实数a 的值为( ) A. -1 B. ±1C. 0D. 1D先利用复数的除法化简复数z ,再由其为纯虚数求解. 因为复数()()()()()()2111111111i ai a a i i z ai ai ai a ++-+++===--++,且为纯虚数, 所以10a -=, 解得1a = 故选:D3. 若6个人分4张无座的足球门票,每人至多分1张,而且票必须分完,那么不同分法的种数是( )A. 46B. 64C. 15D. 360 C根据组合的定义,结合组合数公式进行计算求解即可. 因为是无座的足球门票,所以可以看成相同的元素,因此可以看成组合问题,则有466!6515(64)!4!2C⨯===-⋅.故选:C4. 设D为ABC所在平面内一点,3AC=,BC AC⊥,13CD AC=,则DA AB⋅=()A. 24 B. -24 C. 12 D. -12D可知D在AC的延长线上,则4DA=,由()DA AB DA CB CA⋅=⋅-可计算.13CD AC=,D∴在AC的延长线上,且1CD=,即4DA=,()04312DA AB DA CB CA DA CB DA CA∴⋅=⋅-=⋅-⋅=-⨯=-.故选:D.5. 在()()42121x x-+的展开式中4x的系数为()A. 13B. 11C. 11- D. 20-C先求出()41x+展开式的通项为4k kkT C x=,展开式中4x的项有44441C x x⨯=和22244212x C x x-=-,系数相加即可求解.()41x+展开式的通项为4k kkT C x=,展开式中4x项为44441C x x⨯=和22244212x C x x-=-,所以()()42121x x-+的展开式中4x的系数为11211-=-,故选:C6. 已知函数()22xf x x=+,2()log2g x x x=+,3()2h x x x=+的零点分别为a,b,c,则a,b,c的大小顺序为()A. a c b<< B. c b a<< C. b a c<< D. b c a<<A判断()22x f x x =+,2()log 2g x x x =+,3()2h x x x =+的零点所在的区间即可比较大小. 由函数()22x f x x =+,2()log 2g x x x =+,3()2h x x x =+的零点分别为a ,b ,c , 可得函数2x y =,2log y x =,3y x =与2y x =-图象交点的横坐标分别为a ,b ,c , 在同一直角坐标系中作出四个函数的图象如图所示:由图知0a <,0b >,0c ,所以a c b <<, 故选:A关键点点睛:本题的关键点是将函数的零点分别转化为函数2x y =,2log y x =,3y x =与2y x =-图象交点的横坐标分别为a ,b ,c ,在同一直角坐标系中作出四个函数的图象即可比较a ,b ,c 的大小.7. 四名同学各掷骰子5次,分别记录每次骰子出现的点数,根据四名同学的统计结果,可以判断出一定没有出现点数6的是( ) A. 平均数为3.中位数为2 B. 中位数为3.众数为2 C. 平均数为2.方差为2.4 D. 中位数为3.方差为2.8C根据题意,举出反例说明,即可得出正确选项.对于A, 当掷骰子出现结果为1,1,2,5,6时,满足平均数为3.中位数为2,可以出现点数6,所以A 错误;对于B,当掷骰子出现结果为2,2,3,4,6时,满足中位数为3.众数为2, 可以出现点数6,所以B 错误;对于C,若平均数为2.且出现6点,则方差221(62) 3.2245s >-=>,所以平均数为2.方差为2.4时一定没有出现点数6,所以C 正确;对于D,当当掷骰子出现结果为2,3,3,5,6时,中位数为3,方差为2222221(23)(33)(33)(53)(63) 2.85s +++++⎡⎤=-----=⎣⎦,可以出现点数6,所以D 错误. 综上可知,C 为正确选项. 故选:C本题考查了平均数、中位数、众数和方差在统计中的应用,各个数据对总体的影响,属于基础题. 8. 已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β,直线l 满足l ⊥m ,l ⊥n ,,l α⊄,l β⊄则 ( ) A. α∥β且l ∥αB. α⊥β且l ⊥βC. α与β相交,且交线垂直于lD. α与β相交,且交线平行于lD试题分析:由m ⊥平面α,直线l 满足l m ⊥,且l α⊄,所以//l α,又n ⊥平面β,,l n l β⊥⊄,所以l β//,由直线,m n 为异面直线,且m ⊥平面,n α⊥平面β,则α与β相交,否则,若//αβ则推出//m n ,与,m n 异面矛盾,所以,αβ相交,且交线平行于l ,故选D . 考点:平面与平面的位置关系,平面的基本性质及其推论.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分. 9. 下列说法正确的是( )A. “数列{}n a 为常数列”是“数列{}n a 为公比等于1的等比数列”的必要不充分条件B. 设,a b ∈R ,则“0a b >>”是“11a b<”的充分不必要条件 C. “向量0a b ⋅<”是“,a b <>为钝角”的充要条件D. “0x ∀>,1x e x >+”的否定形式是“00x ∃≤,001xe x ≤+”AB根据充分条件与必要条件的概念,逐项判断,可判断AB 正确,C 错误;根据全称命题的否定,可判断D 错.A 选项,若数列{}n a 是各项都为0的常数列,则数列{}n a 不可能是等比数列;若数列{}n a 为公比等于1的等比数列,则数列{}n a 是常数列,因此“数列{}n a 为常数列”是“数列{}n a 为公比等于1的等比数列”的必要不充分条件,即A 正确;B 选项,由0a b >>可得11a b <;但由11a b<不能得出0a b >>(如2a =-,1b =);所以“0a b >>”是“11a b<”的充分不必要条件,故B 正确; C 选项,由,a b <>为钝角可得0a b ⋅<;但是有0a b ⋅<不能推出,a b <>为钝角(如a 与b 方向相反时,夹角为π),所以“向量0a b ⋅<”是“,a b <>为钝角”的必要不充分条件;故C 错;D 选项,“0x ∀>,1x e x >+”的否定形式是“00x ∃>,001xe x ≤+”,故D 错.故选:AB.10. 将函数()()sin 0f x x ωω=>的图象向右平移4π个单位长度,所得的图象经过点3,04π⎛⎫⎪⎝⎭,且()f x 在10,4⎡⎤⎢⎥⎣⎦上为增函数,则ω取值可能为( )A. 2B. 4C. 5D. 6ABD由()f x 图象向右平移4π个单位长度可得sin 4y x πω⎛⎫=- ⎪⎝⎭,由图象经过点3,04π⎛⎫⎪⎝⎭可得0sin2πω=,即得()2k k Z ω=∈,再由()f x 在10,4⎡⎤⎢⎥⎣⎦上为增函数,可得142πω≤,即可求解.将函数()()sin 0f x x ωω=>的图象向右平移4π个单位长度可得:sin 4y x πω⎛⎫=- ⎪⎝⎭因为所得的图象经过点3,04π⎛⎫⎪⎝⎭,所以30sin 44ππω⎛⎫=-⎪⎝⎭即0sin 2πω=, 所以()2k k Z πωπ=∈,解得()2k k Z ω=∈,因为()f x 在10,4⎡⎤⎢⎥⎣⎦上为增函数,所以142πω≤ 即02ωπ<≤,所以1k =时,2ω=;2k =时,4ω=;3k =时,6ω=; 所以ω取值可能为2,4,6, 故选:ABD关键点点睛:本题的解题关键在于整体代入法的灵活应用,涉及零点的整体代入和单调区间的整体代入才能突破难点.11. 在平面直角坐标系xOy 中,点()4,4M 在抛物线()220y px p =>上,抛物线的焦点为F ,延长MF 与抛物线相交于点N ,则下列结论正确的是( ) A. 抛物线的准线方程为1x =- B. 174MN =C. OMN 的面积为72D. MF NF MF NF +=AD根据条件求出p ,再联立直线与抛物线求出N ,进而求出结论. 解:点(4,4)M 在抛物线22(0)y px p =>上,242?42p p ∴=⇒=,24y x ∴=,焦点为(1,0),准线为1x =-,A 对,因为(4,4)M ,故404413MF k -==-, 故直线MF 为:4(1)3y x =-,联立244(1)3y xy x ⎧=⎪⎨=-⎪⎩⇒2161(1)494x x x -=⇒=或4x =, 1(4N ∴,1)-,452p MF ∴=+=,15424p NF =+=,525544MN ∴=+=,B 错,25·4MF NF MN MF NF +===,D 对,OMN 的面积为115·()15222M N OF y y -=⨯⨯=.故C 错, 故选:AD .12. 对于定义域为R 的函数()f x ,()'f x 为()f x 的导函数,若同时满足:①()00f =;②当x ∈R 且0x ≠时,都有()0xf x '>;③当120x x <<且12x x =时,都有()()12f x f x <,则称()f x 为“偏对称函数”.下列函数是“偏对称函数”的是( ) A. 21()x x f x e e x =--B. 2()1x f x e x =+-C. 31,0(),0x e x f x x x ⎧-≥=⎨-<⎩D. 42,0()ln(1),0x x f x x x >⎧=⎨-≤⎩ACD结合“偏对称函数”的性质,利用导数的方法,分别讨论四个函数是否满足三个条件,即可得到所求结论. 条件①()00f =;由选项可得:001(0)00f e e =--=,02(0)010f e =+-=,03(0)10f e =-=,4()ln(10)0f x =-=,即ABCD 都符合;条件②0()0()0x xf x f x >⎧'>⇔⎨'>⎩,或0()0x f x <⎧⎨'<⎩; 即条件②等价于函数()f x 在区间(,0)-∞上单调递减,在区间(0,)+∞上单调递增;对于21()x xf x e e x =--,则()()21()11212x x x x f x e e e e =-+-=-', 由0x >可得,()()120(1)1x xf x e e '-=+>,即函数1()f x 单调递增;由0x <可得,()()120(1)1x xf x e e '-=+<,即函数1()f x 单调递减;满足条件②;对于2()1x f x e x =+-,则2()10x f x e =+>'显然恒成立,所以2()1xf x e x =+-在定义域上单调递增,不满足条件②;对于31,0(),0x e x f x x x ⎧-≥=⎨-<⎩,当0x <时,3()f x x =-显然单调递减;当0x ≥时,3()1x f x e =-显然单调递增;满足条件②;对于42,0()ln(1),0x x f x x x >⎧=⎨-≤⎩,当0x ≤时,4()ln(1)f x x =-显然单调递减;当0x >时,4()2f x x =显然单调递增,满足条件②; 因此ACD 满足条件②;条件③当120x x <<且12x x =时,12x x -=,都有()()12f x f x <,即()()()()21220f x f x f x f x -=-->,对于21()x xf x e e x =--,()()212122211211x x x x f x f x e e e e x x -=-+--+()()()()22222222222222x x x x x x x x x e e e e e e e x e ----=----=-+-,因为222x x e e -+≥=,当且仅当22x x e e -=,即20x =时,等号成立, 又20x >,所以222x x e e -+>,则()()()()2222122211222x x x xf x f x e e e e x x ----=--->令()x xg x e e x -=--,0x >,所以()1110x x e e g x -'=+->=>在0x >上显然恒成立,因此()x xg x e e x -=--在0x >上单调递增,所以()()00g x g >=, 即()()()222121120x xf x f x e e x -->-->,所以()()1211f x f x >满足条件③;对于31,0(),0x e x f x x x ⎧-≥=⎨-<⎩,()()2232311211x xf x f x e x x e -=--=-+,令()1x h x e x =--,0x >,则()10xh x e '=->在0x >上显然恒成立,所以()()00h x h >=,则()()23231210xf x f x e x --=>-,即()()3231f x f x >满足条件③;对于42,0()ln(1),0x x f x x x >⎧=⎨-≤⎩,()()()()212122442ln 12ln 1f x f x x x x x -=--=-+,令()()2ln 1u x x x =-+,0x >, 则()1221101u x x'=->-=>+在0x >上显然恒成立,所以()()00u x u >=,则()()()1422422ln 10f x f x x x -=-+>,即()()1442f x f x >满足条件③; 综上,ACD 选项是“偏对称函数”, 故选:ACD. 思路点睛:求解此类函数新定义问题时,需要结合函数新定义的概念及性质,结合函数基本性质,利用导数的方法,通过研究函数单调性,值域等,逐项判断,即可求解.(有时也需要构造新的函数,进行求解.)三、填空题:本题共4小题,每小题5分,共20分.13. 已知圆2264120x y x y +-++=与直线x a =相切,则a =________.2或4由圆的一般式方程求出圆心和半径,利用直线与圆相切可得圆心到直线的距离等于半径,即可求解.由2264120x y x y +-++=可得()()22321x y -++=, 圆心()3,2-,半径1r =,由圆与直线相切可得:31a -=,解得:2a =或4a =, 故答案为:2或4 14. 若1x >,则141x x +-的最小值是___________. 8.先判断4(1)0x ->和101x >-,再根据基本不等式求141x x +-的最小值即可. 解:因为1x >,所以4(1)0x ->,101x >-,所以1144(1)44811x x x x +=-++≥=-- 当且仅当14(1)1x x -=-即32x =时,取等号,所以141x x +-的最小值是8. 故答案为:8本题考查利用基本不等式求最值,是基础题.15. 某学校组织学生参加数学测试,某班成绩的频率分布直方图如图,数据的分组依次为[)20,40,[)40,60,[)60,80,[]80,100.由此估计该班学生此次测试的平均分为_________.68用每组中间值结合频率分布直方图即可求出.由频率分布直方图可得平均数为()300.005500.01700.02900.0152068⨯+⨯+⨯+⨯⨯=. 故答案为:68.16. 正方形ABCD 的边长为1,,P Q 分别为边,AB AD 上的点,若APQ ∆的周长为2,则PCQ ∠=__________.4π. 分析:本题考查了几何图形的简单应用,根据图形构建全等三角形,求得角度. 详解:由题意,得2AP AQ PQ ++= ,因为边长为1 所以1,1AQ QD AP PB +=+= 所以2AP AQ QD PB +++= 两式相减,得PQ PB QD =+延长AB 至M ,使BM DQ = ,连接CM ,易证CBM CDQ ∆≅∆ 所以,BCM DCQ CM CQ ∠==因为90BCM QCB ∠+∠= ,所以90BCM QCB ∠+∠= ,即90QCM ∠=PM PB BM PB DQ PQ =+=+=在CPQ ∆ 与CPM ∆中CP CP CQ CM PQ PM =⎧⎪=⎨⎪=⎩所以,CPQ CPM ∆≅∆ 所以124PCQ PCM QCM π∠=∠=∠=点睛:本题考查了几何图形的简单应用,关键是找准各个线段间的相互关系,属于中档题. 四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知数列{}n a 满足()1102n n a a n N ++-=∈,且2a ,32a +,4a 成等差数列.(1)求数列{}n a 的通项公式;(2)若()2log n n b a n N +=∈,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T . (1)2nn a =;(2)222nn +-. (1)由题意判断出{}n a 为等比数列,2a ,32a +,4a 成等差数列,列式求解出1a ,可得{}n a 的通项公式;(2)得n b n =,所以2n n n n b nC a ==,则前n 项和n T 利用错位相减法计算即可. 解:(1)依题12n n a a +=,∴{}n a 是以2为公比的等比数列, 又2a ,32a +,4a 成等差数列.∴()32422a a a +=+,即()11124228a a a +=+,∴12a =,∴2n n a =.(2)由(1)得n b n =,设2n n n n b n C a ==,231123122222n n n n nT --=+++⋅⋅⋅++ ① 231112122222n n n n nT +-=++⋅⋅⋅++ ② ①-②:21111112211111112222222212nn n n n n n n n n T +++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=++⋅⋅⋅+-=-=-- ⎪⎝⎭-, ∴11222222n n n nn n T -+=--=-. 本题的核心是考查错位相减求和,一般地,如果数列{}n a 是等差数列,{}n b 是等比数列,求数列{}n n a b ⋅的前n 项和时,可采用错位相减法求和,一般是式两边同乘以等比数列{}n b 的公比,然后作差求解.18. 已知a ,b ,c 分别为ABC 三个内角A ,B ,C 的对边,a cos Csin C -b -c =0. (1)求A ;(2)若a =2,ABCb ,c . (1)A =3π.;(2)b =c =2. (1)利用正弦定理将边转化为角,再利用和差公式可求出A ; (2)面积公式和余弦定理相结合,可求出b ,c【详解】解:(1)由a cos C sin C -b -c =0及正弦定理得 sin A cos C sin A sin C -sin B -sin C =0. 因为B =π-A -C ,sin A sin C -cos A sin C -sin C =0.由于sin C ≠0,所以sin 1()62A π-=.又0<A <π,故A =3π. (2)ABC 的面积S =12bc sin A bc =4. 而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8. 解得b =c =2.本题考查正弦定理、面积公式和余弦定理,考查基本分析求解能力,属基础题.19. 现有编号为1,2,3的三只小球和编号为1,2,3的三个盒子,将三只小球逐个随机地放入三个盒子中,每只球的放置相互独立.(1)求恰有一个空盒的概率;(2)求三只小球在三个不同盒子中,且每只球编号与所在盒子编号不同的概率;(3)记录所有至少有一只球的盒子,以X表示这些盒子编号的最小值,求()E X.(1)23;(2)227;(3)43.(1)方法一:将三个小球放在盒子的基本事件全部写出来,写出满足条件的基本事件,用满足条件的个数除以总的个数计算其概率;方法二:用排列组合数表示;(2)方法一:将三个小球放在盒子的基本事件全部写出来,写出满足条件的基本事件,用满足条件的个数除以总的个数计算其概率;方法二:用排列组合数表示;(3)方法一:将三个小球放在盒子的基本事件全部写出来,写出满足条件的基本事件,用满足条件的个数除以总的个数计算其概率;方法二:用排列组合数表示;解:方法一:记三个球分别为①,②,③,试验的全部基本事件如下表:共27种.(1)记“恰有一个空盒”为事件A ,事件A 包含的基本事件数有18种. 根据古典概型公式()182273P A ==. (2)记“三只小球在三个不同盒子中,且每只球的编号与所在盒子编号不同”为事件B , 事件B 包含的基本事件数有2种. 根据古典概型公式2()27P B =. (3)X 的可能取值为1,2,3.19(1)27P X ==,7(2)27P X ==,1(3)27P X ==; X 的分布列如下:()1232727273E X =⨯+⨯+⨯=. 方法二:(1)记“恰有一个空盒”为事件A ,则11133232()33C C C P A ==. (2)记“三只小球在三个不同盒子中,且每只球的编号与所在盒子编号不同”为事件B . 则322()327P B ==. (3)X 的可能取值为1,2,3.3333219(1)327P X -===,333217(2)327P X -===,311(3)327P X ===; X 的分布列如下: X1 23P1927727127()1232727273E X =⨯+⨯+⨯=. 求古典概型概率的步骤:(1)判断本试验的结果是否为等可能事件,设出所求事件A ;(2)分别求出基本事件的总数n 与所求事件A 中所包含的基本事件个数m ; (3)利用公式()mP A n=,求出事件A 的概率. 20. 《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1000多年,在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵(qian du ):阳马指底面为矩形,一侧棱垂直于底面的四棱锥,鳖臑(bie nao )指四个面均为直角三角形的四面体.如图在堑堵111ABC A B C -中,AB AC ⊥.(1)求证:四棱锥11B A ACC -为阳马;(2)若AB AC =,12C C =,且直线1AC 与平面11BCC B 5,求锐二面角11C A B C --的余弦值.(1)证明见解析;(2)155. (1)通过证明AB ⊥面11ACC A ,结合四边形11ACC A 为矩形即可证明; (2)以A 为原点,建立如图所示空间直角坐标系,利用向量法即可求解.(1)证明:∵1A A ⊥底面ABC ,AB 面ABC ,∴1A A AB ⊥, 又AB AC ⊥,1A AAC A =,∴AB ⊥面11ACC A , 又四边形11ACC A 为矩形, ∴四棱锥11B A ACC -为阳马.(2)解:在ABC 中作AH BC ⊥于H ,连结1C H . 显然1AC H ∠为直线1AC 与平面11BCC B 所成的角. 设2BC a =,则AH a =,214C H a =+. 故125tan 54AC H a ∠==+,解得1a =, ∴2BC =,2AB AC ==, ∵AB AC ⊥,1A A ⊥底面ABC .∴以A 为原点,建立如图所示空间直角坐标系,则()2,0,0B,()2,0C ,()10,0,2A ,()12,0,2A B =-,()2,2,0BC =-,()112,0AC =.设面1A BC 的一个法向量()1111,,x n y z =,由11100n A B n BC ⎧⋅=⎪⎨⋅=⎪⎩,即111200z -=+=⎪⎩,令1x =,得()12,n =,设平面11A BC 的一个法向量()2222,,n x y z =,则2121100n A B n AC ⎧⋅=⎪⎨⋅=⎪⎩,即222020z y -==⎪⎩,令1x =,得()22,0,1n =,∴12121215cos ,5n n n n n n ⋅==⋅,故锐二面角11C A B C --的余弦值为5. 利用法向量求解空间二面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.21. 已知0a >,函数()sin 2sin cos 2f x a x x x x =-++,[]0,2x π∈.(1)当4a =,求()f x 在,22f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线方程; (2)讨论函数()f x 的零点个数. (1)4y π=-;(2)答案见解析.(1)4a =时,()4sin 2sin cos 2f x x x x x =-++,计算2f π⎛⎫⎪⎝⎭可得切点,对()f x 求导,计算2k f π⎛⎫'= ⎪⎝⎭,即可写出点斜式方程;(2)求出()f x 的导数,对a 分类求解导函数的零点,列表分析单调性,再结合函数零点的判定可得结论.(1)()4sin 2sin cos 2f x x x x x =-++,222()4cos 2cos 2sin 24cos 4cos f x x x x x x '=-+-+=-, 02π⎛⎫'= ⎪⎝⎭f ,42f ππ⎛⎫=- ⎪⎝⎭, 所以切线方程:4y π=-.(2)22()cos 2cos 2sin 2f x a x x x '=-+-+2cos 4cos cos (4cos )a x x x x a =-+=-. ①当04a <<时,cos 4a x =在0,2π⎛⎫ ⎪⎝⎭和3,22⎛⎫⎪⎝⎭ππ内分别有一解,依次记为1x ,2x , 令'()0f x =得:123,,,x x x ππ=.(0)0f =,()10f x >,2f a ππ⎛⎫=- ⎪⎝⎭,3302f a ππ⎛⎫=+>⎪⎝⎭,(2)40f ππ=>, ()22222sin 2sin cos 2f x a x x x x =-++22sin 202ax x =-+>.所以,当0a π<<时,02f a ππ⎛⎫=-> ⎪⎝⎭,()y f x =在[]0,2π有1个零点;当a π=时,02f a ππ⎛⎫=-= ⎪⎝⎭,()y f x =在[]0,2π有2个零点;当4a π<<时,02f a ππ⎛⎫=-< ⎪⎝⎭,()y f x =在[]0,2π有3个零点.②当4a =时, 令()0f x '=得:30,,,2x πππ=.(0)0f =,02f a ππ⎛⎫=-< ⎪⎝⎭,3302f a ππ⎛⎫=+> ⎪⎝⎭,(2)40f ππ=>. 所以,()y f x =在[]0,2π有2个零点. ③当4a >时, 令'()0f x =得:3,22x ππ=.(0)0f =,02f a ππ⎛⎫=-< ⎪⎝⎭,3302f a ππ⎛⎫=+> ⎪⎝⎭,(2)40f ππ=>. 所以,()y f x =在[]0,2π有2个零点,综上所述:当0a π<<时,()y f x =在[]0,2π有1个零点; 当a π=或4a ≥时,()y f x =在[]0,2π有2个零点; 当4a π<<时,()y f x =在[]0,2π有3个零点. 方法点睛:利用导数研究函数单调性的方法(1)确定函数()f x 的定义域;求导函数()'f x ,由()0f x '>(或()0f x '<)解出相应的x 的范围,对应的区间为()f x 的增区间(或减区间); (2)确定函数()f x 定义域;求导函数()'f x ,解方程()0f x '=,利用()0f x '=的根将函数的定义域分为若干个子区间,在这些子区间上讨论()'f x 的正负,由符号确定()f x 在子区间上的单调性.22. 已知椭圆E :()222210x y a b a b+=>>经过点31,2P ⎛⎫ ⎪⎝⎭,且离心率12e =.(1)求椭圆E 的方程;(2)若M ,N 是椭圆E 上异于P 的两点,直线PM ,PN 的斜率分别为1k ,2k 且121k k +=-,PD MN ⊥,D 为垂足.是否存在定点Q ,使得DQ 为定值?若存在,请求出Q 点坐标及定值.若不存在,请说明理由.(1)22143x y +=;(2)存在,53,24Q ⎛⎫ ⎪⎝⎭. (1)根据椭圆离心率公式,结合代入法,椭圆中,,a b c 的关系进行求解即可;(2)设出直线MN 的方程与椭圆方程联立,根据121k k +=-,结合直线斜率公式、一元二次方程根与系数关系、根的判别式可以判断出直线MN 所过的定点,最后根据直角三角形的性质进行求解即可. 解:(1)由12c e a ==,得2a c =,224a c =,22223b a c c =-=. 因为2223121a b ⎛⎫ ⎪⎝⎭+=, 所以222312143c c ⎛⎫⎪⎝⎭+=, 解得:21c =,23b =,24a =.所以椭圆E 的方程为22143x y +=.(2)设()11,M x y ,()22,N x y ,由题意得直线MN 的斜率一定存在,直线MN 的方程为y kx m =+,则联立22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消y 得:()2224384120k x kmx m +++-=, ()()2222644434120k m k m ∆=-+->,得:22430k m -+>,122843km x x k +=-+,212241243m x x k -=+, ()()()()12211212121233331122221111y x y x y y k k x x x x ⎛⎫⎛⎫--+---- ⎪ ⎪⎝⎭⎝⎭+=+=----21()()()()12211233112211kx m x kx m x x x ⎛⎫⎛⎫+--++-- ⎪ ⎪⎝⎭⎝⎭=-- ()()()121212121232(23)21kx x m x x k x x m x x x x ⎛⎫+-+-+-- ⎪⎝⎭=-++ 22222224123882(23)4324343412814343m km km k m k m k k k m km k k ⎛⎫-⎛⎫⎛⎫⎛⎫+------ ⎪⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭=-⎛⎫--+ ⎪++⎝⎭ 22224126129412843k km m k m km k -+-++=-+++. 由121k k +=-得:2281023120k km m m k ++--=,即(223)(4)0k m k m +-+=,当2230k m +-=,直线33(1)22y kx k k x ⎛⎫=+-=-+ ⎪⎝⎭过定点31,2P ⎛⎫ ⎪⎝⎭,舍去. 当40k m +=,直线4(4)y kx k k x =-=-过定点()4,0T .此时,222433120k m k -+=->,得1122k -<<,存在直线过定点()4,0T . 当Q 为P ,T 的中点,即53,24Q ⎛⎫ ⎪⎝⎭,此时124P DQ T ===. 关键点睛:本题的关键有二:一是根据一元二次方程根与系数的关系,结合已知,得到直线MN 过定点()4,0T ; 二应用直角三角形斜边中线等于斜边一半这个性质进行求解.。

广东省江门市陈经纶中学2021-2022学年高三数学文月考试题含解析

广东省江门市陈经纶中学2021-2022学年高三数学文月考试题含解析

广东省江门市陈经纶中学2021-2022学年高三数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知集合,,则()A.B.C.D.参考答案:D略2. 已知S n是数列{a n}的前n项和,且,则()A. 20B. 25C. 30D. 35参考答案:D【分析】先由得到数列是等差数列,再根据,即可求出结果.【详解】因为是数列的前项和,且,所以,因此数列是公差为的等差数列,又,所以,因此.故选D【点睛】本题主要考查等差数列的性质、以及等差数列的前项和,熟记等差数列的性质以及前项和公式即可,属于常考题型.3. 从4名男生和3名女生中选出4人参加市中学生知识竞赛活动,若这4人中必须既有男生又有女生,不同的选法共有(A)140种(B)120种(C)35种(D)34种参考答案:D 略4. 如右图,某几何体的三视图均为边长为l的正方形,则该几何体的体积是()A. B. C.1 D.参考答案:A5. 设全集.已知四棱锥的三视图如右图所示,则四棱锥的四个侧面中的最大面积是A.B.C. D.参考答案:A四棱锥如图所示:,,所以四棱锥的四个侧面中的最大面积是6.6. 已知是定义在R上的奇函数,它的最小正周期为T,则的值为A.0 B. C.TD.参考答案:A解析:因为的周期为T,所以,又是奇函数,所以,所以则7. 已知,现有下列命题:其中的所有正确命题的序号是()(A)(B)(C)(D)参考答案:C 8. 用C(A)表示非空集合A中的元素个数,定义.若,,且|A-B|=1,由a的所有可能值构成的集合为S,那么C(S)等于( )A.1 B.2 C.3 D.4参考答案:A略9. 在等比数列{}中,若是方程则=()A. B .- C. D. 3参考答案:C略10.已知等比数列{a n}的前n项为S n,S3 = 3,S6 = 27,则此等比数列的公比q等于()A.2 B.-2 C. D.-参考答案:答案:A二、填空题:本大题共7小题,每小题4分,共28分11. 已知向量=(2,1),=(x,﹣6),若⊥,则|+|= .参考答案:5【考点】平面向量数量积的运算.【专题】方程思想;分析法;平面向量及应用.【分析】由向量垂直的条件:数量积为0,可得x=3,再由向量模的公式,计算即可得到所求.【解答】解:向量=(2,1),=(x,﹣6),若⊥,则?=2x﹣6=0,解得x=3,即有+=(5,﹣5),则|+|==5,故答案为:5.【点评】本题考查向量的垂直的条件:数量积为0,考查向量的模的计算,属于基础题.12. 已知f(x)是定义域为R的偶函数,当x≥0时,那么,不等式的解集是.参考答案:13. 、若函数的最小值为3,则实数=参考答案:或略14. 已知则的最大值是_____________.;参考答案:略15. 方程表示焦点在轴的椭圆时,实数的取值范围是____________ 参考答案:16. 若关于,的不等式组(为常数)所表示的平面区域的面积等于2,则的值为 .参考答案:317. 在△ABC中,a=1,b=2,cosC=,sinA= .参考答案:【考点】余弦定理;正弦定理.【专题】转化思想;综合法;解三角形.【分析】利用余弦定理可得c,cosA,再利用同角三角函数基本关系式即可得出.【解答】解:由余弦定理可得:c2=12+22﹣=4,解得c=2.∴cosA===,又A∈(0,π),∴sinA===.故答案为:.【点评】本题考查了余弦定理、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.三、解答题:本大题共5小题,共72分。

2021-2022年高三上学期10月月考试题数学(理)含答案

2021-2022年高三上学期10月月考试题数学(理)含答案

2021-2022年高三上学期10月月考试题数学(理)含答案一、填空题:1. 设全集为,集合,集合,则(∁)= ▲2. 命题“对,都有”的否定为 ▲3. 对于函数,“是奇函数”是“的图象关于轴对称”的_____▲_____条件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”之一)4. 函数)12(log 1)(21+=x x f 的定义域为 ▲5. 已知向量,,,若,则实数 ▲6. 过原点作曲线的切线,则此切线方程为 ▲7. 已知的零点在区间上,则的值为 ▲8. 已知为非零向量,且夹角为,若向量,则 ▲9. 函数]2,0[,sin 21π∈-=x x x y 的单调增区间为 ▲ 10. 设是定义在上周期为4的奇函数,若在区间,⎩⎨⎧≤<-<≤-+=20,102,)(x ax x b ax x f ,则 ▲ 11. 已知定义在上的奇函数和偶函数满足2)()(+-=+-x x a a x g x f ,且,若,则 ▲12. 在面积为2的中,分别是的中点,点在直线上,则的最小值是 ▲13.若函数定义在上的奇函数,且在上是增函数,又,则不等式的解集为 ▲14. 已知函数)(|1|)(22R m x mx x x f ∈--+=,若在区间上有且只有1个零点,则实数的取值范围是 ▲二、解答题:15. 已知函数为定义在上的奇函数,且当时,.(1)求的解析式;(2)若函数在区间上单调递增,求实数的取值范围.16. 设集合,|lg ,0,3x a B x y a a R a x -⎧⎫==≠∈⎨⎬-⎩⎭. (1)当1时,求集合;(2)当时,求的取值范围.17. 如图,在△OAB 中,已知P 为线段AB 上的一点,(1)若,求,的值;(2)若,,,且与的夹角为60°时,求 的值.18. 某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中,为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.(1)求的值;(2)若该商品的成本为3元/千克,试确定销售价格的值,使商场每日销售该商品所获得的利润最大.19.中心在原点,焦点在轴上的椭圆的焦距为2,两准线间的距离为10. 设过点作直线交椭圆于两点,过点作轴的垂线交椭圆于另一点(1)求椭圆的方程;(2)求证直线过轴上一定点(3)若过点作直线与椭圆只有一个公共点求过两点,且以为切线的圆的方程.20.已知函数.(1)求函数的极值;(2)求函数(为实常数)的单调区间;(3)若不等式对一切正实数恒成立,求实数的取值范围.数学答题纸xx.10一、填空题(14×5=70分)1、2、,3、充分不必要4、5、16、7、18、9、10、11、12、13、14、或二、解答题(共90分)19、(16分)(1)设椭圆的标准方程为依题意得:222,1,,210,c c a a c=⎧=⎧⎪⎪⎨⎨==⎪⎩⎪⎩得 所以,椭圆的标准方程为(2)设,,AP=tAQ ,则.结合⎪⎪⎩⎪⎪⎨⎧=+=+14514522222121y x y x ,得⎪⎩⎪⎨⎧-=+-=t t x t x 233221. 设B (x ,0),则,,所以,直线过轴上一定点B (1,0). (3)设过点的直线方程为:代入椭圆方程 得: 2222(45)50125200k x k x k +-+-=.依题意得:即2222(50)4(45)(12520)0k k k -+-=得:且方程的根为.当点位于轴上方时,过点与垂直的直线与轴交于点,直线的方程是:11),(,0)5y x E =-∴.所求的圆即为以线段为直径的圆,方程为:22324()(;5525x y -+-=同理可得:当点位于轴下方时,圆的方程为:22324()(.5525x y -++=20. 已知函数.(1)求函数的极值;(2)求函数(为实常数)的单调区间;(3)若不等式对一切正实数恒成立,求实数的取值范围.解:(1)g (x )=lnx -x +1,g′(x )=1x -1=1-x x ,当0<x <1时,g′(x )>0;当x >1时,g′(x )<0,可得g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,故g (x )有极大值为g (1)=0,无极小值.(2)h (x )=lnx +|x -a|.当a ≤0时,h (x )=lnx +x -a ,h′(x )=1+1x >0恒成立,此时h (x )在(0,+∞)上单调递增;当a >0时,h (x )=⎩⎨⎧lnx +x -a ,x ≥a ,lnx -x +a ,0<x <a .①当x ≥a 时,h (x )=lnx +x -a ,h′(x )=1+1x >0恒成立,此时h (x )在(a ,+∞)上单调递增;②当0<x <a 时,h (x )=lnx -x +a ,h′(x )=1x -1=1-x x .当0<a ≤1时,h′(x )>0恒成立,此时h (x )在(0,a )上单调递增;当a >1时,当0<x <1时h′(x )>0,当1≤x <a 时h′(x )≤0,所以h (x )在(0,1)上单调递增,在(1,a )上单调递减.综上,当a ≤1时,h (x )的增区间为(0,+∞),无减区间;当a >1时,h (x )增区间为(0,1),(a ,+∞);减区间为(1,a ).(3)不等式(x 2-1)f (x )≥k (x -1)2对一切正实数x 恒成立,即(x 2-1)lnx ≥k (x -1)2对一切正实数x 恒成立.当0<x <1时,x 2-1<0;lnx <0,则(x 2-1)lnx >0;当x ≥1时,x 2-1≥0;lnx ≥0,则(x 2-1)lnx ≥0.因此当x >0时,(x 2-1)lnx ≥0恒成立.又当k ≤0时,k (x -1)2≤0,故当k ≤0时,(x 2-1)lnx ≥k (x -1)2恒成立. 下面讨论k >0的情形.当x >0且x ≠1时,(x 2-1)lnx -k (x -1)2=(x 2-1)[lnx -k(x -1)x +1]. 设h (x )=lnx -k(x -1)x +1( x >0且x ≠1),222)1(1)1(2)1(21)('++-+=+-=x x x k x x k x x h . 记△=4(1-k )2-4=4(k 2-2k ).① 当△≤0,即0<k ≤2时,h′(x )≥0恒成立,故h (x )在(0,1)及(1,+∞)上单调递增.于是当0<x <1时,h (x )<h (1)=0,又x 2-1<0,故(x 2-1) h (x )>0,即(x2-1)lnx>k(x-1)2.当x>1时,h(x)>h(1)=0,又x2-1>0,故(x2-1)h(x)>0,即(x2-1)lnx>k(x-1)2.又当x=1时,(x2-1)lnx=k(x-1)2.因此当0<k≤2时,(x2-1)lnx≥k(x-1)2对一切正实数x恒成立.②当△>0,即k>2时,设x2+2(1-k)x+1=0的两个不等实根分别为x1,x2(x1<x2).函数φ(x)=x2+2(1-k)x+1图像的对称轴为x=k-1>1,又φ(1)=4-2k<0,于是x1<1<k-1<x2.故当x∈(1,k-1)时,φ(x)<0,即h′(x)<0,从而h(x)在(1,k-1)在单调递减;而当x∈(1,k-1)时,h(x)<h(1)=0,此时x2-1>0,于是(x2-1)h(x)<0,即(x2-1)lnx<k(x-1)2,因此当k>2时,(x2-1)lnx≥k(x-1)2对一切正实数x不恒成立.综上,当(x2-1)f (x)≥k(x-1)2对一切正实数x恒成立时,k≤2,即k的取值范围是(-∞,2].22481 57D1 埑S=}20695 50D7 僗lo37408 9220 鈠39810 9B82 鮂"p38024 9488 针T。

2021年广东省普通高中学业水平合格性考试 数学试卷(解析版)

2021年广东省普通高中学业水平合格性考试 数学试卷(解析版)

12021年广东省普通高中学业水平合格性考试数学试卷一.选择题:本大题共15题,每小题6分,共90分。

在每小题给出的四个选项中,只有 项是符合题目要求的1设全集U={2,3,4,5},A={2},则=A C U ( )A. {2,3,4,5}B.{2,3,4,5}C.{3,4,5}D.{3,4}答案:C2. 已知212cos =−)(απ,则αsin 的值为( ) A. 21 B 21− C 23 D -23 解:答案:A ,21sin 2cos ==−ααπ)(3.下列函数为偶函数的是( ) A.1)(+=x x f B 221)(xx x f += C 3)(x x f = D x x f sin )(= 答案:B解:A 选项既不是奇函数也不是偶函数,C 和D 选项是奇函数4.已知32.0=a ,323.0,3.0==c b ,则c b a ,,的大小关系( )A.b c a <<B.c a b <<C.b a c <<D.c b a <<答案:A解:008.02.03==a ,027.03.0,09.03.032====c b ,所以b c a <<25.经过点A (-1,6),B (0,2)的直线方程是( )A.024=−−y xB.024=−−y xC.024=++y xD.024=−+y x答案:D 解:由题意知4)1(062−=−−−=AB k ,所以024)0(42=−+−−=−y x x y ,即 6.同时抛掷两粒均匀的骰子,则向上的点数之和是6的概率是( ) A.121 B.111 C.365 D.61 答案:C解:同时抛掷两粒均匀的骰子一共有36种结果,其中点数之和为6的有5种结果,所以向上的点数之和是6的概率365=P 7.下列函数在其定义域内为减函数的是( )A.3x y =B.121+=x yC.x y 3log =D.x y )31(= 答案:D解:A 3x y =在定义域内为增函数,B 121+=x y 在定义域为增函数, C.x y 3log = 在),(∞+0为增函数, D.x y )31(=在定义域为减函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学月考试题 理本试卷.满分150分.考试时间120分钟.一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{}0,1,2,3,4,5U =,{}1,2,3A =,{}2540B x x x =∈-+≥Z ,则()UAB =( )A . {}1,2,3B . {}1,2C . {}2,3D . {}2 2. 设a ∈R ,复数i3ia z -=+(i 是虚数单位)的实部为2,则复数z 的虚部为( ) A .7- B .7 C . 1- D .1 3. 已知sin 2cos 0αα+=,则tan 2α=( ) A .34 B .43 C .43- D .34-4. 已知命题p :x ∃∈R ,1lg x x -≥,命题q :()0,x π∀∈,1sin 2sin x x+>,则下列判断正确的是( )A .p q ∨是假命题B .p q ∧是真命题C .()p q ∨⌝是假命题D .()p q ∧⌝是真命题5.已知抛物线224y ax =(0a >)上的点()03,M y 到焦点的距离是5,则抛物线的方程为( )A . 28y x = B .212y x = C . 216y x = D .220y x =6. 若,x y 满足约束条件2020220x y x y x y +-≥⎧⎪--≤⎨⎪--≥⎩,则2z x y =+的最小值为( )A . 4-B . 2C .83D . 4 7. 已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1 D.128. 中国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器——商鞅铜方升,其三视图如图1所示(单位:寸),若π取3,其体积为13.5(立方寸),则图中的A. 2.4B. 1.8C. 1.6D. 1.29. 如图2所示的程序框图,若输入110011a=,则输出结果是( )A.45B.47C.51D.5310.已知lnxπ=,5log2y=,12ez-=,则( )A.x y z<<B.y z x<<C.z xy<<D.z y x<<11.已知函数()21cos22xf x xωω=+-(0,xω>∈R).若函数()f x在区间(),2ππ内没有零点,则ω的取值范围是( )A.50,12⎛⎤⎥⎝⎦B.55110,,12612⎛⎤⎡⎫⎪⎥⎢⎝⎦⎣⎭C.50,6⎛⎤⎥⎝⎦D.55110,,12612⎛⎤⎡⎤⎥⎢⎥⎣⎦⎝⎦12.如图3所示,在平面直角坐标系xOy中,点B,C分别在x轴和y轴非负半轴上,点A在第一象限,且90BAC∠=︒,4AB AC==,那么O,A两点间距离的( )A. 最大值是最小值是4B. 最大值是8,最小值是4C. 最大值是最小值是2D. 最大值是8,最小值是2二.填空题:本大题共4小题,每小题5分,满分20分.13.已知向量()1,m=-a,()0,1=b,若向量a与b的夹角为3π,则实数m的值为.俯视图侧视图图1DCEAB图414.()723x x x ⎛⎫-- ⎪⎝⎭的展开式中4x 的系数是 (用数字作答).15.已知()()3e e 6x x f x x -=++,()10f a =,则()f a -=_________.16.ABC ∆中,AB AC =,D 为AC 边上的点,且4AC CD =,2BD =,则ABC ∆的面积最大值为 .三.解答题:本大题共6小题,共70分,解答须写出必要的文字说明.证明过程或演算步骤. 17.(本小题满分12分)已知数列{}n a 为公差不为0的等差数列,满足15a =,且2930,,a a a 成等比数列. (Ⅰ) 求{}n a 的通项公式;(Ⅱ) 若数列{}n b 满足1n n n b b a +-=(n *∈N ),且13b =,求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T . 18.(本小题满分12分)如图4,在四棱锥E ABCD-中,//AB CD ,90ABC ∠=︒,2CD AB ==24CE =,120BCE ∠=︒,DE =(Ⅰ) 证明:平面BCE ⊥平面CDE ;(Ⅱ) 若4BC =,求二面角E AD B --的余弦值. 19.(本小题满分12分)某工厂的检验员为了检测生产线上生产零件的情况,从产品中随机抽取了80个进行测量,根据所测量的数据画出频率分布直方图如下:注:尺寸数据在[)63.0,64.5内的零件为合格品,频率作为概率.(Ⅰ) 从产品中随机抽取4件,合格品的个数为ξ,求ξ的分布列与期望; (Ⅱ) 从产品中随机抽取n 件,全是合格品的概率不小于30%,求n 的最大值;(Ⅲ) 为了提高产品合格率,现提出,A B 两种不同的改进方案进行试验.若按A 方案进行试验后,随机抽取15件产品,不合格个数的期望是2;若按B 方案试验后,抽取25件产品,不合格个数的期望是4,你会选择哪个改进方案?20.(本小题满分12分)椭圆C :22221x y a b +=(0a b >>)的离心率为12,其左焦点到点()2,1P 不过原点O 的直线l 与椭圆C 相交于A 、B 两点,且线段AB 被直线OP 平分. (Ⅰ) 求椭圆C 的方程;(Ⅱ) 求ABP ∆的面积取最大时直线l 的方程.21.(本小题满分12分) 已知函数f (x )=x 2+a ln x . (1)当a =-2时,求函数f (x )的单调递减区间;(2)若函数g (x )=f (x )+2x在[1,+∞)上单调,求实数a 的取值范围.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清楚题号.22.(本小题满分10分)选修44-:坐标系与参数方程选讲 在平面直角坐标系xOy 中,曲线1C :cos sin x a a y a ϕϕ=+⎧⎨=⎩(ϕ为参数,实数0a >),曲线2C :cos sin x b y b b ϕϕ=⎧⎨=+⎩(ϕ为参数,实数0b >).在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线l :θα=(0ρ≥,0α≤2π≤)与1C 交于O A 、两点,与2C 交于O B 、两点.当0α=时,1OA =;当2πα=时,2OB =.(Ⅰ) 求a ,b 的值; (Ⅱ) 求22OA OA OB +⋅的最大值.23.(本小题满分10分)选修45-:不等式选讲设函数()12f x x a x a=++-(x ∈R ,实数0a <).(Ⅰ) 若()502f >,求实数a 的取值范围; (Ⅱ) 求证:()f x ≥2019届高三数学(理科)段考答案一、选择题:本题共12小题,每小题5分,共60分二.填空题:本大题共4小题,每小题5分,满分20分. 13.3 14. 84 15. 2 16. 327三.解答题:本大题共6小题,共70分,解答须写出必要的文字说明.证明过程或演算步骤. 17.【解析】(Ⅰ) 设等差数列{}n a 的公差为d (0d ≠),依题意得()()()2111298a d a d a d ++=+ …2分又15a =,解得2d =,所以23n a n =+. …………………………………………4分(Ⅱ)依题意得123n n b b n +-=+,即121n n b b n --=+(2n ≥且n *∈N )所以()()()112211n n n n n b b b b b b b b ---=-+-+-+ ………………………………………6分()()()2132121532n n n n ++=++-+++=22n n =+.………………………8分对13b =上式也成立,所以()2n b n n =+,即()11111222n b n n n n ⎛⎫==- ⎪++⎝⎭, …………10分 所以1111111112324352n T n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-= ⎪ ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦13112212n n ⎛⎫-- ⎪++⎝⎭.…………12分18.【解析】(Ⅰ)证明:因为//AB CD ,90ABC ∠=︒,所以CD BC ⊥.……1分因为42,CD CE DE ===,所以222 C D CE DE +=,所以CD CE ⊥, ……………………………………………………………2因为BCCE C =,所以CD ⊥平面BCE . ……………………………3又CD ⊂平面CDE ,所以平面BCE ⊥平面CDE . ……………………4(Ⅱ)以C 为原点,建立空间直角坐标系C xyz -如图所示,则 …………5分()()()()4,0,2,400,,0,0,4A B E D -,,,………………………6分所以()()4,0,2,2AD AE =-=--,……………………………7分设平面ADE 的法向量为()1,,x y z =n ,则1100AD AE ⎧⋅=⎪⎨⋅=⎪⎩n n ,即420520x z x z -+=⎧⎪⎨-+-=⎪⎩,解得2y z x ⎧=⎪⎨=⎪⎩,令1x =,则()1=n ,…………………………………………9分显然平面ABD 的一个法向量为()20,1,0=n ,………………………………………10分 所以121212cos ,8⋅<>===n n n n n n ,所以二面角E AD B --的余弦值为.………12分 19.【解析】(Ⅰ)由直方图可知,抽出产品为合格品的频率为()0.750.650.20.50.8++⨯=, 即抽出产品为合格品的概率为45,…………………………………………………………1分 从产品中随机抽取4件,合格品的个数ξ的所有可能取值为0,1,2,3,4,且()41105625P ξ⎛⎫===⎪⎝⎭,()3144116155625P C ξ⎛⎫==⋅⋅=⎪⎝⎭,()22244196255625P C ξ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭, ()33441256355625P C ξ⎛⎫==⋅= ⎪⎝⎭,()4425645625P ξ⎛⎫=== ⎪⎝⎭,………………………………3分所以ξ的分布列为ξ的数学期望455E ξ=⨯=.………………………………………………5分 (Ⅱ) 随机抽取n 件,全是合格品的概率为45n⎛⎫⎪⎝⎭,依题意40.35n⎛⎫≥ ⎪⎝⎭,故n 的最大值为5.…………8分(Ⅲ) 按A 方案随机抽取产品不合格的概率是a ,随机抽取15件产品,不合格个数()15,XB a ;按B 方案随机抽取产品不合格的概率是b ,随机抽取25件产品,不合格个数()25,YB b ,依题意152EX a ==,254EY b ==,解得215a =,425b =,………………………………11分 因为241525<,所以应选择方案A 20.【解析】(Ⅰ)依题意12c e a ==,……………1分 左焦点(),0c -到点()2,1P 的距离d ==分解得24a =,21c =,故23b =,故所求椭圆C 的方程为22143x y +=(Ⅱ)易得直线OP 的方程12y x =,设()11,A x y ,()22,B x y ,AB 中点()00,R x y ,其中0012y x =, 因为,A B 在椭圆上,所以2211143x y +=,2222143x y +=,相减得2222212104433x x y y -+-=, 即()()21021022043x x x y y y -⋅-⋅+=,故0212103342AB x y y k x x y -==-⋅=--,……………6分设直线AB 的方程为l :32y x m =-+(0m ≠),代入22143x y +=中, 消去y 整理得223330x mx m -+-=,……………………………………………………7分 由()()()22234333120m m m∆=-⨯-=->,得m -<<0m ≠.由韦达定理得12x x m +=,21233m x x -=,…………………………………8分所以12AB x =-==,……………………………9分又点()2,1P 到直线l 的距离82241313m m d --==,………………………………10分所以ABP ∆的面积()()221341226ABP S AB d m m ∆==--,其中2323m -<<且0m ≠.令()()()22412f m m m =--,则()()()()()()24426441717f m m m m m m m '=----=-----+,令()0f m '=得17m =-,(因4和17+不满足2323m -<<且0m ≠,舍去) 当()23,17m ∈--时,()0f m '>,当()17,23m ∈-时,()0f m '<,所以,当17m =-时,ABP S ∆取得最大值,此时直线l 的方程为322720x y ++-=. …………12分21.解:(1)由题意知,函数的定义域为(0,+∞),……………1分 当a =-2时,f ′(x )=2x -2x=2x +1x -1x,。

相关文档
最新文档