基于51单片机的电机转速测量与显示系统
基于C51单片机直流电机测速仪设计
基于C51单片机直流电机测速仪设计摘要:电机的转速是各类电机运行过程中的一个重要监测量,测速装置在电机调速系统中占有非常重要的地位,特别是数字式测速仪在工业电机测速方面有独到的优势。
本文介绍了一种基于C51单片机的光电传感器转速测量系统的设计。
系统采用对射式光电传感器产生与齿轮相对应的脉冲信号,使用AT89C51单片机采样脉冲信号并计算每分钟内脉冲信号的数目,即电机对应的转速值,最终系统通过LCD实时显示电机的转速值。
经过软硬件系统的搭建,分别通过Protues软件系统仿真实验和实际电路搭建检查实验。
仿真实验表明本系统满足设计要求,并且结构简单、实用。
整个直流电机测速系统在降低测速仪成本,提高测速稳定性及可靠性等方面有一定的应用价值。
关键词:转速测量;光电传感器;单片机Based On C51 SCM Single DC Motor Speedometer DesignABSTRACT:Motor speed is all kinds of motor operation is an important process to monitor the amount of speed measuring device in the motor control system occupies a very important position, Especially the digital speedometer in the industrial motor speed has unique advantage. This paper describes a photoelectric sensor 51 SCM-based speed measurement system design. System uses a beam photoelectric sensor generates a pulse signal corresponding to the gear, the use of a sampling pulse signal AT89C51 SCM and calculating the pulse per minute, the number of signals that the speed of the motor corresponding to the value of the final system time through the LCD display the motor speed value.After a hardware and software system structures, respectively, through Protues software system to build the actual circuit simulation and experimental examination. Simulation results show that the system meets the design requirements, and the structure is simple and practical. DC Motor Speed entire system in reducing speedometer costs, improve reliability, speed stability and a certain application value.Keywords: Speed measurement; Photoelectric; Single chip micyoco目录1 绪论 (1)1.1 数字式转速测量系统的发展背景 (1)1.2 转速测量在国民经济中的应用 (1)1.3主要研究内容 (2)1.4 设计的目的和意义 (2)2 转速测量系统的原理 (4)2.1 转速测量原理 (4)2.2 转速测量计算方法 (5)3转速测量系统设计方案 (7)3.1 直流电机转速测量方法 (7)3.2 设计任务及方案 (8)4 直流电机测速系统设计 (9)4.1 单片机AT89C51介绍 (9)4.2 转速信号采集 (14)4.2 转速信号处理电路设计 (16)4.4 最小系统的设计 (17)4.4.1复位电路 (17)4.4.2 晶振电路 (20)4.5 显示部分设计 (20)5 直流测速系统仿真 (24)5.1 直流测速系统仿真 (24)5.1.1单片机最小系统仿真 (25)5.1.2 数码管显示仿真 (25)5.2 主程序流程设计 (26)5.2.1 主程序流程设计 (26)5.2.2 定时器的初始化 (27)5.3 实际电路实验 (28)参考文献 (30)致谢 (31)1 绪论1.1 数字式转速测量系统的发展背景在现代工业自动化高度发展的时期,几乎所有的工业设备都离不开旋转设备,形形色色的电机在不同领域发挥着很重要的作用。
基于单片机的电机转速测量系统设计_(附图及源程序)
摘要在工程实践中,经常会遇到各种需要测量转速的场合,测量转速的方法分为模拟式和数字式两种。
模拟式采用测速发电机为检测元件,得到的信号是模拟量。
数字式通常采用光电编码器,霍尔元件等为检测元件,得到的信号是脉冲信号。
随着微型计算机的广泛应用,特别是高性能价格比的单片机的出现,转速测量普遍采用以单片机为核心的数字式测量方法。
本文便是运用AT89C51单片机控制的智能化转速测量仪。
电机在运行过程中,需要对其进行监控,转速是一个必不可少的一个参数。
本系统就是对电机转速进行测量,并可以和PC机进行通信,显示电机的转速,并观察电机运行的基本状况。
本设计主要用AT89C51作为控制核心,由霍尔传感器、LED数码显像管、HIN232CPE电平转换、及RS232构成。
详细介绍了单片机的测量转速系统及PC机与单片机之间的串行通讯。
充分发挥了单片机的性能。
本文重点是测量速度并显示在5位LED数码管上。
其优点硬件是电路简单,软件功能完善,测量速度快、精度高、控制系统可靠,性价比较高等特点。
关键字:MSC-51(单片机);转速;传感器目录摘要 (1)Abstract .................................... 错误!未定义书签。
1 序言 (1)2 系统功能分析 (2)2.1 系统功能概述 (2)2.2 系统要求及主要内容 (3)3 系统总体设计 (4)3.1 硬件电路设计思路 (4)3.2 软件设计思路 (4)4 硬件电路设计 (6)4.1 单片机模块 (6)4.1.1 处理执行元件 (6)4.1.2 时钟电路 (10)4.1.3 复位电路 (11)4.1.4 显示电路 (12)4.2 霍尔传感器简介 (15)4.2.1 霍尔器件概述 (15)4.2.2 霍尔传感器的应用 (16)4.2.3 AH41霍尔开关 (17)4.3 发送模块 (18)5 软件设计 (22)5.1 单片机转速程序设计思路及过程 (22)5.1.1 单片机程序设计思路 (22)5.1.2 单片机转速计算程序 (23)5.1.3 二-十进制转换程序 (24)5.2 程序设计 (27)6 系统调试 (29)6.1 硬件调试 (29)6.2 软件调试 (30)6.3 综合调试 (32)6.4 故障分析与解决方案 (33)6.5 结论与经验 (34)参考文献 (36)致谢 (37)附录 (38)附录1 电路原理图 (38)附录2 元器件清单 (39)1 序言智能化转速测量可以对电机的转速进行测量,电机在运行的过程中,需要对其平稳性进行监测,适时对转速的测量有效地可以反映电机的状况。
基于51单片机的步进电机调速系统(含完整代码)
课程设计报告设计题目:遥控小车——基于51单片机的步进电机调速系统学院:专业:班级:学号:姓名:电子邮件:时间:成绩:指导教师:华南农业大学理学院应用物理系课程设计(报告)任务书学生姓名指导教师职称学生学号专业电子信息科学与技术题目基于51单片机的步进电机调速系统(遥控小车)任务与要求1. 设计并制作电路,利用单片计控制步进电机运转。
2. 通过键盘可以不间断地设定改变电机的转速、转向。
3. 利用显示器实时显示转速等参数。
4. 扩展功能:可设定转动步数。
开始日期2014 年3 月完成日期2014 年3 月1引言步进电机是一种将电脉冲转化为角位移的执行机构。
目前,步进机已经广泛应用于领域,例如工业生产中的机械臂的控制,照明装置和监控摄像机转动等。
步进机在装置转动、精确位移方面有很重大的作用。
本系统是基于STC89C51 单片机的遥控小车。
采用STC89C51单片机作为控制核心,通过ULN2003A驱动步进机(28BYJ-48)转动,由按键和显示屏1602组成人机交互模块,同时通过315M无线发射和接收模块向单片机输入控制信号,将整个系统固定于简易小车上,最终实现小车测试和远程遥控功能。
基本达到预定的设计要求以及功能的扩展。
2系统的设计与理论分析2.1系统总体设计2.2理论分析本设计分为两种工作模式:测试模式、遥控模式。
在电路板上有一个带锁的开关进行设置。
测试模式工作时,通过控制小车上的按键进行加速、减速、反转、设置、步数增、步数减等按键,单片机扫描按键,通过软件控制液晶模块显示对应的转速、设置的速度和步数,同时控制步进机模块进行相应的转动。
步进机的是由ULN2003A达林顿管驱动,由单片机控制输入脉冲的频率来控制步进机的转速,单片机是通过程序查表对4个I/O口输出脉冲,本次设计采用的是两相四线减速步进机,步进角为5.625°,减速比为64:1,程序采用的是8拍查表,具有较好的扭矩。
遥控模式工作时,遥控部分五个按键分别输入前、后、左、右、暂停,单片机扫描按键,通过无线发射模块发射串行编码,小车的无线接收模块接收对应的编码,送至单片机进行解码,从而控制液晶模块的显示和步进机模块的工作,进而完成功能。
基于单片机的电机转速测量系统的设计
仪 表 技 术 与 传 感 器
I sr me t T c n q e a d S n o n tu n e h iu n e s r
2 1 01
第 8期
No 8 .
基 于单 片机 的 电机 转 速测 量 系统 的设 计
王文成 李 ,
(. 1 潍坊学院信息与控制工程 系, 山东潍坊
霍尔元件作为 一种转 速测量 系统 的传 感器 , 有体 积小 、 它 重量轻 、 安装方便 等优点 , 该传 感器 是利用 霍尔效 应 原理 工作
式 中: 电机 的转 速 ; n为 P为 电机转 一 圈 的脉 冲数 ; T为输 出方 波信号 的周期 。
2 系 统 硬 件 设 计
收稿 日期 :0 0—1 21 2—2 收修改稿 日期 :0 1 3—1 7 2 1 一o 3
率, 根据式 ( ) 1 可计算 出 电机 的转速 。转 速检 测装 置的 软件 系 统主要包括 : 测速 主程序 、 据处 理子程 序 和显示 子程 序 。主 数
2 2 电 源 电路 .
图 5 电 机 测 速 电 路
3 软 件 设 计
系统 采用单片机 中的 I T N 0中断对转速 脉 冲进 行计数 。定
罩
时器 T 工作 于外部 事件 计数方式 , 1 对转速脉 冲计数 ; T O工作 于 定时器方式 。每到 1 读 1 8 次计数 值 , 此值 即为脉 冲信 号的频
式 中 : 为霍尔器件 的灵敏度 系数 ; 为控制 电流 ; , B为磁 感应
强度 。
等 I 。他们各 有优 点和缺点 , 3 直流测速 发 电机 是应用 范 围较 广 的测速元件 , 它的主要优点是 灵敏度 、 高线性误 差小 , 由于 但 它具有 电刷和换 向接触装置 , 因而可靠性 较差 , 应用 范 围有限 ; 普通光 电编码器 虽然精 度较 高 , 体积 大 , 但 成本 高。霍尔 元件 具有尺寸小 、 外围电路 简单 、 使用 寿命 长、 调试 方便等 特点用它
基于单片机的电机转速测量系统设计
基于单片机的电机转速测量系统设计一、绪论电机是现代工业生产中常用的电力传动装置,其转速的准确测量对于工业生产的稳定运行和质量控制具有重要意义。
本文设计了一种基于单片机的电机转速测量系统,通过对电机转速的实时监测和数据采集,实现对电机运行状态的有效控制和管理。
二、系统设计方案1.硬件设计:a.使用单片机作为控制核心,选择适合的单片机芯片,如STC89C52b.采用光电传感器作为转速检测元件,通过将光电传感器的发光管与光敏电阻相对应,并将其安装在电机转轴上,当转轴旋转时,光敏电阻会根据光线的变化产生电信号,通过电压变化实现转速测量。
c.添加滤波电路,通过对信号进行滤波处理,保证测量结果的稳定性和准确性。
d.利用LCD液晶显示模块,显示电机的实时转速。
e.设计相关电源和电路,保证系统正常运行。
2.软件设计:a.使用C语言编程,通过单片机的编程框架,编写测量转速的程序。
b.通过定时器中断的方式,实时采集光电传感器的信号,并进行信号处理,得到电机的实时转速值。
c.将转速值存储在内部存储器中,以备后续分析和处理。
d.利用LCD液晶显示模块,将转速值显示在LCD屏幕上,实现实时监测。
三、系统特点1.精确度高:通过光电传感器和滤波电路的配合使用,能够准确测量电机的转速,保证测量结果的准确性。
2.实时监测:通过单片机的编程,能够实时监测电机的转速,及时发现异常情况并进行处理。
3.数据采集:可以将转速数据存储在内部存储器中,方便后续分析和处理,实现对电机的有效控制和管理。
4.易于操作:通过LCD液晶显示模块,能够直观地显示转速值,操作简单方便。
5.低成本:该系统采用单片机作为核心,硬件设备简单,成本较低。
四、系统优化1.添加报警功能:当电机转速超过设定值或低于设定值时,系统能够及时发出警报提示操作人员,防止电机在异常情况下继续运行,保护设备安全。
2.添加通信功能:通过添加通信模块,将转速数据传输至上位机或者其他设备,实现对电机的远程监控和控制。
基于51单片机的步进电机控制系统设计
基于51单片机的步进电机控制系统设计步进电机是一种特殊的直流电动机,具有定角度、定位置、高精度等特点,在许多领域得到广泛应用,如机械装置、仪器设备、医疗设备等。
本文将基于51单片机设计一个步进电机控制系统,主要包括硬件设计和软件设计两部分。
一、硬件设计步进电机控制系统的硬件设计主要包括51单片机、外部电源、步进电机驱动模块、以及其他辅助电路。
1.51单片机选择由于步进电机控制需要执行复杂的算法和时序控制,所以需要一个性能较高的单片机。
本设计选择51单片机作为主控芯片,因为51单片机具有丰富的外设接口、强大的计算能力和丰富的资源。
2.外部电源步进电机需要较高的电流供给,因此外部电源选择稳定的直流电源,能够提供足够的电流供电。
电源电压和电流的大小需要根据具体的步进电机来确定。
3.步进电机驱动模块步进电机驱动模块是连接步进电机和51单片机的关键部分,它负责将51单片机输出的脉冲信号转化为对步进电机的驱动信号,控制步进电机准确转动。
常用的步进电机驱动芯片有L297、ULN2003等。
4.其他辅助电路为了保证步进电机控制系统的稳定运行,还需要一些辅助电路,如限流电路、电源滤波电路、保护电路等。
这些电路的设计需要根据具体的应用来确定。
二、软件设计1.系统初始化系统初始化主要包括对51单片机进行外部中断、定时器、串口和IO 口等初始化设置。
根据实际需求还可以进行其他模块的初始化设置。
2.步进电机驱动程序步进电机的驱动程序主要通过脉冲信号来控制电机的转动。
脉冲信号的频率和脉冲宽度决定了电机的转速和运行方向。
脉冲信号可以通过定时器产生,也可以通过外部中断产生。
3.运动控制算法步进电机的运动控制可以采用开环控制或闭环控制。
开环控制简单,但无法保证运动的准确性和稳定性;闭环控制通过对电机转动的反馈信号进行处理来调整脉冲信号的生成,从而实现精确的运动控制。
4.其他功能设计根据具体的应用需求,可以加入其他功能设计,如速度控制、位置控制、加速度控制等。
基于单片机的转速测试系统
基于单片机的转速测试系统介绍了一种利用89C51型单片机技术实现高精度转速测量系统的方法。
这种测量系统具有数据准确、精度高、体积小、使用方便等优点,具有广阔的应用前景。
标签:转速测量系统;单片机;光电传感器1 转速测试的原理伴随着现代化的生产规模不断地扩大,基于单片机转速测量系统在工业和民用领域中都有很高的使用价值。
国内外的各类转速测量系统都朝着高智能化、高精度化、小型化的方面发展。
在智能化的转速测量系统中可以对转速进行自动高精度测量,大大的提高了实用价值。
转速测试系统的原理是测量旋转中的转子所产生的周期脉冲信號频率。
主要有测周期法、测频率法和测频测周期法三种:①测周期法(T法)测周期法转速通过两脉冲信号产生的间隔宽度决定(脉冲宽度用TP来表示),假设用来采集数据的叶片有N片,那么测量的时间是每转的1/N。
TP通过定时器测得,时钟脉冲计数通过定时器计数获得,在TP内计数值若为M1,那么计算公式为:P是转轴旋转一周脉冲发生器产生的脉冲fc是硬件产生的时钟脉冲频率,单位用HZ来表示N为转速,单位:r/minM1为时钟脉冲影响T法测量额精度误差有两个因素:两脉冲的上升沿触发时间不一样,计数和定时不一致。
这种方法在测量低转速时精度很高,随着速度的不断增加,T法的测量准度也随着降低。
②测频法(M法)测量脉冲发生器所产生的脉冲数m1来测量转速在时间T内完成。
测量精度由于定时时间T和脉冲不能保证同步,以及在T内不能测量外部脉冲的完整周期,捕捉脉冲信号的能力变差。
T要足够的长,才能确保测量结果的准确性。
③测频测周期法测频测周期法即综合了T法和M法,分别对高、低转速测量。
通过测量检测时间和在此检测时间内光电脉冲发生器所产生的脉冲信号来确定转速。
为确保在不同转速的测量准确性,要保证对两种不同脉冲信号进行同步测量。
2 单片机转速测量系统的主要原理单片机转速测量系统在实际应用中,大多数情况下都会被视线安装在相应的设备上,通过对不同类型的传感器产生脉冲信号,这样才能实现对电机的转速的测量。
基于51单片机的直流电机转速PI控制
… …
图 xx 电路原理图
上图中 LED 数码管显示中的 74LS164 芯片的引脚及功能如下所述:
芯片引脚功能对照表
符号 SA、SB Q0~Q7 CP(CLK) VCC GND /MR(/CLR)
功能 串行数据输入端 并行数据输出端 时钟输入端(上升沿有效) 电源正(5V) 接地 清零端(低电平有效)
直流电机 PI 转速控制—基于 51 单片机
1.项目系统组成
本项目由 STC89C52RC 单片机最小系统,12MHZ 晶振。直流电机驱动电路、直流电机(5V)、光电测 速电路以及数码管显示电路组成。详细器件见下文电路图。
2.直流电机转速控制电路原理
直流调速的方法有多种,本文是基于 PWM(脉冲宽度调制)技术,改变直流电机等效电枢电压,以此 在一定范围实现直流电机的调速。
void timer1() interrupt 3 {
TR1=0; TH1=pwmh; TL1=pwml; PWM1=0;
//T1 中断响应函数
//关闭定时器 T1 //T1 重置初值 //T1 重置初值,改变 PWM 占空比 //输出低电平
}
void PID_pwm()
{
unsigned int speed=0,pwm=0,pwmhh=0,pwmll=0; speed=10*pulse; //脉冲数换算为转速(转/分)speed=60*pulse*1000/(12*50*10)
综上所述,要想电机正转,则需要 PWM1=1,同时 PWM2=0;要想电机反转,则需要 PWM2=1,同时 PWM1=0;要想电机停止,则需要 PWM1=1,同时 PWM2=1,或者 PWM1=0,同时 PWM2=0。
MCS-51单片机电机转速控制及测速显示系统
MCS-51单片机电机转速控制及测速显示系统简介MCS-51单片机是一种广泛应用于嵌入式系统的单芯片微型计算机。
本文将介绍基于MCS-51单片机的电机转速控制及测速显示系统。
该系统通过对电机信号进行处理,实现了对电机转速的控制和测速。
系统组成该系统由电机、电机驱动电路、MCS-51单片机、显示模块等组成。
电机驱动电路:使用了L298N电机驱动芯片,可以为电机提供双向直流电源。
该电子板还添加了变阻器控制,通过调节电子板上的两个旋钮来改变电机的转速和方向。
MCS-51单片机:采用AT89S52芯片,主控为MCS-51单片机,在控制电机的同时,还可以测量电机的转速。
通过单片机与电机驱动电路的控制,来控制电机的转速。
显示模块:采用了LCD2004液晶显示模块,可实现对转速和程序运行状态的显示。
系统原理当电机启动时,读取电机反馈的信号,并将该信号传递给MCS-51单片机进行处理。
根据控制算法,单片机输出PWM(脉冲宽度调制)信号给电机驱动模块,从而改变电机的转速和方向。
同时,单片机还可以测量电机旋转的速度,将其显示在LCD2004液晶显示器上。
当用户需要改变电机的转速时,可以通过旋转电子板上的旋钮来改变电机的转速和方向。
同时,LCD2004显示器可以显示电机的当前实际速度和设定速度,帮助用户更好的控制电机的运转。
系统功能该系统具有以下功能:1.控制电机的转速和方向;2.测量电机的转速;3.显示电机的当前实际速度和设定速度。
系统优势该系统采用MCS-51单片机,具有代码量小、容易维护、功耗低等优势,适合于嵌入式系统中的电机转速控制应用。
此外,显示模块也可以提供对系统状态的及时监控和反馈,便于故障排除。
本文介绍了基于MCS-51单片机的电机转速控制及测速显示系统。
该系统通过对电机信号进行处理,实现了对电机转速的控制和测速。
该系统具有代码量小、容易维护、功耗低等优势,适合于嵌入式系统中的电机转速控制应用。
同时,显示模块也可以提供对系统状态的及时监控和反馈,便于故障排除。
基于MCS-51单片机的直流电机转速测控系统设计
霍尔 传 感器 组 成 ,并通 过 MD 换 将转 速 转换 为 转
电压 信号 ,再 以脉 冲形 式 传给单 片机 。这 种设 计
收 稿 日期 :0 0 0 — 9 2 1— 4 1
方 法 具 有 频 率 响应 高 f 应频 率 达 2 H 以 上) 响 0k z 、
0业 口 口 口 口
图 3 脉 宽 调 制 过 程
口为显示 器段选 码 ,其 硬件 连接 电路如 图2 所示 。 本系 统 的脉 冲宽度 调制 (us dhMo ua P l Wit d l. e
Vo .2 No 1 11 .0
0c .2 1 t 00
2 1年 1 月 00 0
输 出幅值 不变 、抗 电磁 干扰 能力 强等 特点 。其 中 霍尔 传感 器输 人为 脉 冲信号 .十 分容 易与 微处 理 器 相连接 ,也 便 于实现 信号 的分 析处 理 。单 片机 的T 口可对该 脉 冲信 号进 行计数 。 O 设 计 时 .可通 过 单 片 机 的P . P . 个 接 o1 o5五 口来 完 成 键 盘 的 输 入 ,P . 1 6口可 完 成 呜 叫 和 报 警 ,P .接 电机 ,P . P .接显 示 器 的位选 ,P 2 0 21 24 ~ 0
析转 速 的过程 量 .并 超 限 自动报 警 。本 系 统 同时
2 硬 件 设 计
C 0 1 完全 集 成 的混 合信 号 系统 级 MC 85是 U芯 片 ,具 有 6 个 数 字 F 4 O引 脚 ,片 内含 有 V D监 视 D 器 、看 门狗 定 时器 和时 钟振 荡器 ,是真 正能 独 立 工 作 的片上 系统 ,并 能 快捷 准确 地 完成 信号 采集 和调 节 。同时也 方便 软件 编 程 、干扰 防制 、以及
基于C51单片机步进电机综合控制实验
重庆工商大学计算机与信息工程学院学院《单片机原理及应用》课程实验报告实验名称:步进电机综合控制实验实验班级:2010级自动化专业班级:2010级自动化三班指导老师:文远熔组员:陶园2010133330 王路2010133344江洋2010133335陈娅2010133326张琴芳2010133317张丹2010133320(组长)一、摘要:本实验利用8051单片机达到控制步进电机的启动、停止、正转、反转、点动、转过指定角度、状态显示和数据指示的目的,使步进电机控制更加灵活。
步进电机驱动芯片采用ULN2003,ULN2003具有大电流、高电压,外电路简单等优点。
利用ZLG7290模块驱动LED数码管显示速度设定值。
通过这个单片机控制系统的设计来掌握步进电机的工作原理和驱动过程以及LED显示原理和ZLG7290模块的使用方法,用LED数码管显示实验要求的状态结果,设计电路的硬件接线图和实现上述要求的程序。
关键词:51单片机步进电机ZLG7290 ULN2003二、设计内容与要求:1、任务介绍:实现步进电机按规定的速度正转、反转,转过指定的角度,要有点动功能。
所有命令通过键盘输入,步进电机在运行过程中要有状态和数据指示。
2、每套设计文档应包括:系统原理说明、程序框图、电路原理图和程序清单。
三、实验器件介绍及原理:本实验采用单片机来控制步进电机,实现了软件与硬件相结合的控制方法。
在单片机环境下,用ULN2003驱动芯片驱动步进电机,用ZLG7290芯片作用下的按键控制步进电机的运行,从而达到实验要求。
其控制框图(图一)为:图一:控制框图1、系统硬件介绍1.1步进电机1.1.1相关的技术指标:a、相数:指电机内部的线圈组数,目前常用的有二相、三相、四相、五相步进电机,本实验用的是四相步进电机。
电机相数不同,其步距角也不同。
b、步距角:表示控制系统每发一个步进脉冲信号,电机所转动的角度。
本实验程序运行前要先测量步进电机的步距角。
基于51单片机的直流电机PWM调速控制系统设计
基于51单片机的直流电机PWM调速控制系统设计I摘要本文主要研究了利用MCS-51系列单片机控制PWM信号从而实现对直流电机转速进行控制的方法。
本文中采用了三极管组成了PWM信号的驱动系统,并且对PWM信号的原理、产生方法以及如何通过软件编程对PWM信号占空比进行调节,从而控制其输入信号波形等均作了详细的阐述。
另外,本系统中使用了霍尔元件对直流电机的转速进行测量,经过处理后,将测量值送到液晶显示出来。
关键词:PWM信号,霍尔元件,液晶显示,直流电动机II目录目录 (III)1 引言 (1)1.1 课题背景 (1)1.1.2 开发背景 (1)1.1.3 选题意义 (2)1.2 研究方法及调速原理 (2)1.2.1 直流调速系统实现方式 (4)1.2.2 控制程序的设计 (5)2 系统硬件电路的设计 (6)2.1 系统总体设计框图及单片机系统的设计 (6)2.2 STC89C51单片机简介 (6)2.2.1 STC89C51单片机的组成 (6)2.2.2 CPU及部分部件的作用和功能 (6)2.2.3 STC89C51单片机引脚图 (7)2.2.4 STC89C51引脚功能 (7)3 PWM信号发生电路设计 (10)3.1 PWM的基本原理 (10)3.2 系统的硬件电路设计与分析 (10)3.3 H桥的驱动电路设计方案 (11)5 主电路设计 (13)5.1 单片机最小系统 (13)5.2 液晶电路 (13)5.2.1 LCD 1602功能介绍 (14)5.2.2 LCD 1602性能参数 (15)5.2.3 LCD 1602与单片机连接 (17)5.2.4 LCD 1602的显示与控制命令 (18)5.3 按键电路 (19)5.4 霍尔元件电路 (20)III5.4.1 A3144霍尔开关的工作原理及应用说明 (21)5.4.2 霍尔传感器测量原理 (22)6 系统功能调试 (23)总结 (24)致谢 (25)参考文献 (26)IV1 引言1.1 课题背景1.1.2 开发背景在现代电子产品中,自动控制系统,电子仪器设备、家用电器、电子玩具等等方面,直流电机都得到了广泛的应用。
基于单片机的电机转速测量仪设计
摘要本文讨论了以STC89C51单片机为核心的电机转速测量的硬件设计和软件设计,硬件主要由光电传感器、信号整形、LED数码管显示几局部组成。
详细介绍了利用光电传感器技术在电机转速测量中的实现及应用,以及对电机转速进展测量,并由数码管显示转速。
随着汽车及电子技术的开展,转速测量技术也在不断创新,各种转速测量仪在工业得到广泛应用,对电机的转速进展测量极大的提高了自动化程度。
关键字:单片机,光电传感器,信号整形,LED显示Design of Motor Speed Measurement InstrumentBased on MCUAbstractThis article discussed take STC89C51 monolithic integrated circuit as the core electrical machinery tachometric survey hardware design and the software design, the hardware mainly by the photoelectric sensor, t he signal shaping, the LED nixietube demonstrated that several parts compose. Introduced in detail the use photoelectric sensor technology and applies in electrical machinery tachometric survey's realization, as well as carries on the survey to the electri cal machinery rotational speed, and demonstrates the rotational speed by the nixietube. Along with the automobile and electronic technology's development, the tachometric survey technology unceasingly is also innovating, each kind of rotational speed measu ring instrument obtains the widespread application in the industry, carried on the survey enormous enhancement automaticity to electrical machinery's rotational speed.Keywords:Monolithic integrated circuit,Photoelectric sensor,Signal shaping,LED demonstrated目录1 绪论41.1设计题目41.2课题背景42 转速测量系统的设计52.1 转速测量方法及比拟52.1.1测频原理62.1.2.测周原理72.1.3.计数器原理72.2测量方案设计92.2.1 转速测量原理92.2.2 系统原理93 硬件电路设计103.1 电源模块103.1.1 LM2596开关电压调节器113.1.2 单片机和显示供电电路123.1.3 电机电源供电电路133.2单片机模块133.2.1 复位电路143.2.2 晶振电路153.2.3 单片机系统163.3 显示模块213.4 红外模块224 软件设计244.1 软件设计概述244.2 软件设计方案244.3 系统主程序254.4 显示子程序264.5 中断子程序275 系统调试285.1硬件调试285.2 软件调试295.3系统综合调试30结论31附录32参考文献40致411 绪论1.1设计题目题目:转速测量仪要求完成技术指标:1. 测量电机转速围0——9999转/分;2.通电就开场测量,按键后复位;3.八位数码管显示,误差<5%;1.2课题背景目前,在工程实践中,经常会遇到各种需要测量转速的场合。
基于51单片机的步进电机控制系统设计与实现
基于51单片机的步进电机控制系统设计与实现步进电机控制系统是基于51单片机的一种控制系统,它主要用来控制步进电机的转动方向和转速等参数。
下面详细解释一下这个系统的设计和实现。
1. 系统硬件设计步进电机控制系统的硬件主要包括51单片机、驱动电路、步进电机和电源等部分。
其中,驱动电路是控制步进电机的关键,它通常采用L298N芯片或ULN2003芯片等常用的驱动模块。
在硬件设计方面,主要需要考虑以下几个方面:(1)步进电机的种类和规格,以便选择合适的驱动电路和电源。
(2)驱动电路的接线和参数设置,例如步进电机的相序、脉冲频率和电流大小等。
(3)电源的选取和参数设置,以满足系统的供电要求和安全性要求。
2. 系统软件设计步进电机控制系统的软件设计主要包括编写控制程序和调试程序。
其中,控制程序是用来实现步进电机的正转、反转、加速和减速等控制功能,而调试程序则用来检测系统的电路和程序的正确性和稳定性。
在软件设计方面,主要需要考虑以下几个方面:(1)确定控制程序的算法和流程,例如使用“循环控制法”或“PID控制法”等控制方法。
(2)选择编程语言和编译器,例如使用汇编语言或C语言等。
(3)编写具体的控制程序和调试程序,并进行测试和调试,以确保程序的正确性和稳定性。
3.系统实现步进电机控制系统的实现主要包括硬件组装和软件烧录两个部分。
在硬件组装方面,需要按照硬件设计图纸进行零部件的选取和电路的组装,同时进行电源和信号线的接入。
在软件烧录方面,需要使用专用的编程器将程序烧录到51单片机的芯片中,并进行相应的设置和校验。
总之,基于51单片机的步进电机控制系统是一个功能强大、应用广泛的控制系统,可以实现精密控制和自动化控制等多种应用,具有很高的实用价值和研究价值。
基于51单片机的PWM直流电机调速系统
基于51单片机的PWM直流电机调速系统一、本文概述随着现代工业技术的飞速发展,直流电机调速系统在众多领域如工业自动化、智能家居、航空航天等得到了广泛应用。
在众多调速方案中,基于脉冲宽度调制(PWM)的调速方式以其高效、稳定、易于实现等优点脱颖而出。
本文旨在探讨基于51单片机的PWM直流电机调速系统的设计与实现,以期为相关领域的技术人员提供一种可靠且实用的电机调速方案。
本文将简要介绍PWM调速的基本原理及其在直流电机控制中的应用。
随后,将详细介绍基于51单片机的PWM直流电机调速系统的硬件设计,包括电机选型、驱动电路设计、单片机选型及外围电路设计等。
在软件设计部分,本文将阐述PWM信号的生成方法、电机转速的检测与控制算法的实现。
还将对系统的性能进行测试与分析,以验证其调速效果及稳定性。
本文将总结基于51单片机的PWM直流电机调速系统的优点与不足,并提出改进建议。
希望通过本文的阐述,能为相关领域的研究与应用提供有益参考。
二、51单片机基础知识51单片机,也被称为8051微控制器,是Intel公司在1980年代初推出的一种8位CISC(复杂指令集计算机)单片机。
尽管Intel公司已经停止生产这种芯片,但由于其架构的通用性和广泛的应用,许多其他公司如Atmel、STC等仍然在生产与8051兼容的单片机。
51单片机的核心部分包括一个8位的CPU,以及4KB的ROM、低128B 的RAM和高位的SFR(特殊功能寄存器)等。
它还包括两个16位的定时/计数器,四个8位的I/O端口,一个全双工的串行通信口,以及一个中断系统。
这些功能使得51单片机在多种嵌入式系统中得到了广泛的应用。
在PWM(脉冲宽度调制)直流电机调速系统中,51单片机的主要作用是生成PWM信号以控制电机的速度。
这通常是通过定时/计数器来实现的。
定时/计数器可以设置一定的时间间隔,然后在这个时间间隔内,CPU可以控制I/O端口产生高电平或低电平,从而形成PWM信号。
课程设计---直流电动机测速系统设计
专业课程设计题目三直流电动机测速系统设计院系:专业班级:小组成员:指导教师:日期:前言1.题目要求设计题目:直流电动机测速系统设计描述:利用单片机设计直流电机测速系统具体要求: 8051 单片机作为主控制器、利用红外光传感器设计转速测量、检测直流电机速度,并显示。
元件: STC89C52、晶振(12MHz)、小按键、 ST151、数码管以及电阻电容等2.组内分工(1)负责软件及仿真调试:主要由完成(2)负责电路焊接:主要由完成(3)撰写报告:主要由完成3.总体设计方案总体设计方案的硬件部分详细框图如图一所示 :数码管显示按键控制单片机 PWM 电机驱动一、转速测量方法转速是指作圆周运动的物体在单位时间内所转过的圈数,其大小及变化往往意味着机器设备运转的正常与否,因此,转速测量一直是工业领域的一个重要问题。
按照不同的理论方法,先后产生过模拟测速法 (如离心式转速表) 、同步测速法(如机械式或闪光式频闪测速仪) 以及计数测速法。
计数测速法又可分为机械式定时计数法和电子式定时计数法。
本文介绍的采用单片机和光电传感器组成的高精度转速测量系统,其转速测量方法采用的就是电子式定时计数法。
对转速的测量实际上是对转子旋转引起的周期脉冲信号的频率进行测量。
在频率的工程测量中,电子式定时计数测量频率的方法一般有三种:①测频率法:在一定时间间隔t 内,计数被测信号的重复变化次数N ,则被测信号的频率fx 可表示为f x =Nt(1)②测周期法:在被测信号的一个周期内,计数时钟脉冲数m0 ,则被测信号频率fx = fc/ m0 ,其中, fc 为时钟脉冲信号频率。
③多周期测频法:在被测信号m1 个周期内, 计数时钟脉冲数m2 ,从而得到被测信号频率fx ,则fx 可以表示为fx =m1 fcm2, m1 由测量准确度确定。
电子式定时计数法测量频率时, 其测量准确度主要由两项误差来决定: 一项是时基误差 ; 另一项是量化± 1 误差。
基于51单片机控制直流电机的设计
基于51单片机控制直流电机的设计设计目标:1.实现电机的正反转控制。
2.实现电机的速度控制。
3.实现电机的位置控制。
硬件设计:1.51单片机控制器:选择一款性能较好的51单片机,如STC89C522.直流电机:选择合适的直流电机,根据设计需求确定功率和转速。
3.驱动电路:为直流电机提供合适的驱动电路,可以选择H桥驱动芯片,如L298N。
4.传感器:根据设计需求,选用合适的传感器,如编码器、讯号灯等。
软件设计:1.系统初始化:对51单片机进行初始化设置,包括端口方向、定时器等配置。
2.速度控制:设计PID算法,实现对直流电机的速度控制。
通过读取传感器反馈的速度信息,与设定值进行比较,输出控制信号控制电机速度。
3.正反转控制:设计控制程序,读取输入信号控制直流电机的正反转。
可以通过输入按键、外部信号或者串口通信来实现控制。
4.位置控制:通过编码器等传感器读取直流电机的位置信息,与设定值进行比较,输出控制信号控制电机运动到目标位置。
5.通信功能:如果需要与其他设备进行通信,可以使用串口、蓝牙等通信模块实现数据传输。
设计步骤:1.确定设计需求:根据具体应用场景,确定控制电机的功能需求,包括速度控制、正反转控制和位置控制等。
2.硬件搭建:按照设计需求,选取合适的电机、驱动电路和传感器,并进行搭建和连接。
3.软件开发:根据设计目标,编写相应的程序代码,实现功能要求。
5.优化改进:根据实际使用情况,对系统进行优化改进,提高系统的性能和稳定性。
总结:基于51单片机控制直流电机的设计是一种常见的嵌入式系统开发方案。
通过合理选择硬件和设计软件,可以实现控制电机的速度、方向和位置等功能。
在实际应用中,还可以根据具体需求进行优化改进,使系统更加稳定和可靠。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录1 绪论 (2)1.1 题目背景及目的 (2)1.2 题目研究方法 (2)2 系统设计基础知识 (3)2.1 直流电机的基本知识 (3)2.2 51单片机的基础知识 (7)2.3 LED显示管 (10)2.4 传感器 (10)3 系统总体方案设计 (14)3.1 系统分析 (14)3.2 设计思路和方案 (16)3.3 系统构成 (17)4 硬件电路设计 (19)4.1 电源电路 (19)4.2 转速测量电路 (19)4.3 LED显示模块 (21)4.4 系统硬件设计 (21)5 系统软件设计 (23)5.1 计时方案的选择 (23)5.2 软件结构划分 (24)6设计心得与体会 (26)7参考文献 (26)摘要单片机又称单片微控制器(MCU),它把一个计算机系统集成到一个芯片上。
它的体积小、质量轻、价格便宜、为学习、应用和开发提供了便利条件。
随着电子技术的迅猛发展,单片机技术也有了长足的发展,目前单片机渗透到我们生活的各个领域,几乎很难找到哪个领域没有单片机的踪迹,导弹的导航装置,飞机上各种仪表的控制,计算机的网络通讯与数据传输,工业自动化过程的实时控制和数据处理,广泛使用的各种智能IC卡,民用豪华轿车的安全保障系统,录象机、摄象机、全自动洗衣机的控制,以及程控玩具、电子宠物等等,这些都离不开单片机。
各种电机在工业得到广泛应用,为了能方便的对电机进行控制、监视、调速,有必要对电机的转速进行测量,从而提高自动化程度。
转速是工程上一个常用参数。
转速测量的方法很多,采用光电开关管测量转速是较为常用的测量方法。
在本系统设计中,我们以51单片机为核心控制单元,以红外对管(或称光/电,电/光二极管)为传感器,通过光电传感器实时采集电机转速并进行处理与显示,设计出一个电动机转速测量系统,并研究其测量精度、测量围及响应速度.程序设计部分分为初始化模块、脉冲计数模块、计时模块、参数调整模块和显示模块.最后通过试验测试,得到了相应的技术参数,并对转速测量系统的误差进行了分析.要求设计的系统稳定可靠、抗干扰能力强、成本低,使用方便。
1 绪论1.1 题目背景及目的目前单片机渗透到我们生活的各个领域,几乎很难找到哪个领域没有单片机的踪迹,导弹的导航装置,飞机上各种仪表的控制,计算机的网络通讯与数据传输,工业自动化过程的实时控制和数据处理,广泛使用的各种智能IC卡,民用豪华轿车的安全保障系统,录象机、摄象机、全自动洗衣机的控制,以及程控玩具、电子宠物等等,这些都离不开单片机。
各种电机在工业得到广泛应用,为了能方便的对电机进行控制、监视、调速,有必要对电机的转速进行测量,从而提高自动化程度。
1.2 题目研究方法测量转子速度的方法很多,但多数比较复杂。
目前,测量转速的方法主要有四种:机械式、电磁式、光电式和激光式。
机械式主要利用离心力原理,通过一个随轴转动的固定质量重锤带动自由轴套上下运动,根据不同转速对应不同轴套位置获得测量结果原理简单直接,不需额外电器设备,适用于精度要求不高、接触式的转速测量场合。
电磁式系统由电磁传感器和安装在轴上的齿盘组成,主轴转动带动齿盘旋转,齿牙通过传感器时引起电路磁阻变化,经过放大整形后形成脉冲,通过脉冲得到转速值。
由于受齿盘加工精度、齿牙最小分辨间隔、电路最大计数频率等限制,测量精度不能保证。
光电式结构类似于电磁式结构,把旋转齿盘换作光电编码盘或黑白相间的反射条纹,把电磁传感器换作光电接收器,通过对反射回来的光脉冲信号计数得到测量结果。
由于受条纹最小分辨间隔、电路最大计数频率等限制,测量精度不能保证,所测转速值和电磁式一样为两个计数脉冲间距的平均值。
激光测速技术(LDV)是一种正在发展中的测速技术,通过激光多普勒效应获得转动体的瞬时角速度,理论上具有很高的瞬时转速测量精度,但目前实际产品精度不够高,并且价格昂贵,在实际使用上受到限制。
通过改进已有的电磁式传感器,设计一种适于瞬时转速测量的新型传感器,在旋转机械瞬时状态分析中具有一定的实际意义。
2 系统设计基础知识2.1 直流电机的基本知识直流电机的工作原理永磁式直流电机是应用很广泛的一种。
只要在它上面加适当电压。
电机就转动。
图2.1是这种电机的符号和简化等效电路[1]。
工作原理图:图2.1 直流电机的符号和等效电路这种电机由定子、转子、换向器(又称整流子)、电刷等组成,定子用作产生磁场。
转于是在定子磁场作用下,得到转矩而旋转起来。
换向器及时改变了电流方向,使转子能连续旋转下去。
也就是说,直流电压加在电刷上,经换向器加到转子线圈,流过电流而产生磁场,这磁场与定子的固定磁场作用,转子被强迫转动起来。
当它转动时,由于磁场的相互作用,也将产生反电动势,它的大小正比于转子的速度,方向和所加的直流电压相反。
图2.1(b)给出了等效电路。
Rw代表转子绕组的总电阻,E代表与速度相关的反电动势。
永磁式换流器电机的特点:当电机负载固定时,电机转速正比于所加的电源电压。
当电机直流电源固定时,电机的工作电流正比于转予负载的大小。
加于电机的有效电压,等于外加直流电压减去反电动势。
因此当用固定电压驱动电机时,电机的速度趋向于自稳定。
因为负载增加时,转子有慢下来的倾向,于是反电动势减少,而使有效电压增加,反过来又将使转子有快起来的倾向,所以总的效果使速度稳定。
当转子静止时,反电动势为零,电机电流最大。
其最大值等于V/Rw(这儿V是电源电压)。
最大·电流出现在刚起动的条件。
转子转动的方向,可由电机上所加电压的极性来控制。
体积小、重量轻、起动转矩大。
由于具备上述的那些特点,所以在医疗器械、小型机床、电子仪器、计算机、气象探空仪、探矿测井、电动工具、家用电器及电子玩具等各个方面,都得到广泛的应用。
对这种永磁式电机的控制,主要有电机的起停控制、方向控制、可变速度控制和速度的稳定控制。
电机的起/停控制电机的起/停控制,最简单最原始的方法是在电机与电源之间,加一机械开关。
或者用继电器的触点控制。
现在比较流行的方法,是用开关晶体管来代替机械开关,无触点、无火花干扰,速度快。
电路如图2.2(a)所示。
当输入端为低电平时,开关晶体管Q1截止,电机无电流而处于停止状态。
如果输入端为高电平时,Q1饱和导通,电机中有电流,因此电机起动运转。
图中二极管D1和D2是保护二极管,防止反电动势损坏晶体管。
电容C1是消除射频干扰而外加的。
R1基极限流电阻,限制Q1的基极电流。
在6V电源时,基极电流不超过52mA。
在这种情况下,Q1提供电机的最大电流为1A左右。
图2.2 用晶体管控制电机启停,(b)增强灵敏度图2.2(a)的电路,因基极电流需外部驱动电路。
如果再增加一级缓冲放大,如图2.2(b)的电路,驱动电流减少到2mA。
R3限制Q1的基极电流到安全值。
其他元件作用与(a)图中相同。
电机的方向控制水磁式换流器电机的转动方向,可以用改变电源极性的方法,使电机反转。
如果用正、负双极性电源,可用一个单刀进行转换,如图2.3(a)所示。
因为电机的电流直接通过开关,容易烧坏开关接点。
所以可以改用功率开关晶体管来代替机械开关,就可以克服上述缺点。
电路如图2.3(b)所示。
图2.3 电机方向控制电路工作原理:当开关SW1置于“正转”位时,Q1和Q3的基极加上偏流;Q2和Q4的偏置电路被断开。
所以Q1和Q3导通,Q2和Q4截止。
电流从V+→Q3发射极→Q3集电极→电机正端→电机负端→地形成回路,此时电机正转。
同理,如果SW1置于“反转’位置时,Q2和Q4得到偏流而导通;01和Q3截止。
电流从电源地端→电机负端→电机正端→Q4集电极→Q4发射极→电源负端形成回路,故电机电源与上述情况相反,因此电机反转。
而SW1置于断时,电机停止转动。
图2.3(b)电路中SW1要转接正、负电源。
在接口电路的应用中,用电子开关来代替SW1就比较困难。
为了克服这个缺点,可用图2.3(c)的电路加以改进。
图2.3(c)中的SW1就很容易用电子开关来代替。
在这个电路中,SW1置于“正转”位置时,Q1和Q3导通,Q2和Q4截止。
SW1置于“反转”位置时,Q2和Q4导通,Q1和Q3截止。
电机的速度控制直流电机的转速与所加的电压有效值成正比。
图2.4是12V直流电机的可变电压速度控制。
图中Q1和Q2是复合管射极跟随器,电机的直流电压可从0V变到12v。
这种电路的特点是:在中速和高速时,速度的控制和自动调节的性能很好。
但是低速和慢启动特性比较差。
用开关方式或脉宽调制,可以获得非常好的速度控制性能。
电路图如2.5所示:图2.4 12V DC电机速度控制图2.5 12V直流电机开关方式速度控制图中IC1作为50Hz的无稳多谐振荡器,它产生一个矩形波输出,占空比可变从20比1到1比20,由RV1进行调节。
这个波形经过Q1和Q2送到电机,电机上的电压有效值是随RV1的调节而变化的(总的周期是50HZ)。
不过电机上所加上的电压,是具有峰值电压为12V的功率脉冲。
因此在整个调速围;性能都非常好。
即使在很低的速度,转矩也很大。
速度控制的程度,正比于所加电压的有效值。
2.2 51单片机的基础知识随着大规模集成电路的出现和发展,芯片生产厂家把中央处理器CPU(Central Processing Unit),随机存取存RAM(Random Access Memory),只读存储器ROM(Read Only Memory),定时器/计数器以及I/O(Input/Output)接口电路等主要计算机部件,集成在一块集成电路芯片(硅片)上,形成芯片级计算机,称为单片微型计算机(single chip microcomputer),直译为单片机。
虽然单片机只是一个芯片,但从组成和功能上看,它已具有了微机系统的含义,又称微型处理部件MCU(Micro Controller Unit),单片机商品名称为微控制器单元。
单片机具有优异的性能价格比、体积小、可靠性高、控制功能强,广泛应用在智能仪表、机电一体化、实时过程控制、机器人、家用电器、模糊控制、通信系统等领域。
根据单片机能够一次处理的数据的宽度(二进制位数),单片机分为1位机、4位机、8位机、16位机、32位机。
目前,应用最广的产品是8位单片机,其中又属Intel 公司出品的MCS-51系列单片机应用最广。
MCS-51系列单片机已经成为事实上的工业标准,其部包含如下功能部件:1、一个8位的中央处理器CPU,完成运算和控制功能;2、一个片振荡器及时钟电路,外接石英晶体和微调电容需外接,为单片机产生时钟脉冲序列,系统允许的晶振频率0~33MHz;3、256B RAM数据存储器,前128单元作部数据存储器,可擦写的数据,后128单元为专用寄存器。
4、两个16位定时器/计数器,以实现定时或计数功能,并以其定时或计数结果对计算机进行控制。