数学建模投资问题
投资问题数学建模
投资问题数学建模投资问题的数学建模是将投资问题转化为数学模型,并通过求解模型来得到最优的投资策略。
首先,我们需要定义一些变量:- t:投资期限,表示投资的时间长度。
- I(t):在t时刻的投资金额。
- R(t):在t时刻的投资收益率。
- C(t):在t时刻的现金流。
- X(t):在t时刻的投资组合,包括不同的投资品种和金额。
然后,我们可以根据投资问题的具体情况,建立数学模型。
以下是一些常见的投资问题数学建模方法:1. 简单的投资决策问题:假设只有一个投资品种,且投资金额恒定,我们可以使用期望收益率来衡量投资的性能。
数学模型如下:```max E[R(t)] - I(t)```该模型表示在投资期限为t的情况下,最大化期望收益率与投资金额的差值。
2. 多个投资品种的优化投资问题:假设有多个不同的投资品种可供选择,并且每个品种有不同的收益率和风险。
我们可以使用资本资产定价模型(Capital Asset Pricing Model, CAPM)或马科维茨组合理论(Markowitz Portfolio Theory)等模型来进行优化投资决策。
3. 动态投资决策问题:假设投资策略随时间变化,我们可以使用动态规划方法来建立模型。
这通常涉及到投资组合的再平衡和资产配置调整等决策。
4. 投资组合优化问题:假设有多个不同的投资品种可供选择,并且每个品种有不同的收益率、风险和相关性。
我们可以使用马科维茨组合理论等模型来建立投资组合的最优权重分配模型。
以上只是一些常见的投资问题数学建模方法,具体的建模方法需要根据具体的投资问题来确定。
需要注意的是,在建立数学模型时,还需要考虑到实际的投资限制和约束条件,如最小投资金额、投资品种的限制和杠杆效应等。
数学建模在投资风险管理中的应用
数学建模在投资风险管理中的应用一、引言在现代金融市场中,投资风险是不可避免的。
因此,如何有效地管理风险,达到更好的投资效果,一直是金融工作者们需要解决的核心问题。
数学建模作为一种工具,可以通过对金融数据进行分析、预测和优化,从而帮助投资者更好地管理风险。
二、基础数学知识在投资分析中的应用在投资分析中,基础数学知识如统计学、概率论、线性方程组、微积分等都有着重要的应用。
例如,在股票价格的分析中,投资者可以利用概率分布函数和统计方法来预测股票价格的走势。
同时,利用线性代数和微积分等数学方法,可以对多个股票进行组合投资的裸跑分析。
此外,在金融衍生品的定价分析中,利用微积分和概率论可以推导出定价公式,帮助投资者更好地进行衍生品的买卖和对冲。
三、数据分析在投资管理中的应用随着现代技术的不断发展,大量的投资数据也得到了收集和分析。
在投资管理中,数据分析可以帮助投资者更好地理解市场的趋势和动向,从而做出更为准确的投资决策。
例如,通过对历史股票价格的分析,可以发现股市的波动是有一定规律的,因此投资者可以利用这一规律制定相应的投资策略。
同时,在量化投资中,数据分析技术也被广泛应用,例如通过构建多因子模型来挖掘市场的潜在机会,从而达到更好的投资效果。
四、金融风险管理中的数学模型金融风险是投资过程中需要面对的一个重要挑战,而数学建模可以帮助我们更好地管理这些风险。
例如,在对冲基金风险管理中,利用随机过程和蒙特卡罗模拟等数学方法,可以帮助投资者更好地估计风险值。
同时,利用协方差矩阵和极值理论等数学工具,可以对股票组合进行风险分析和优化配置。
此外,金融市场中还存在着利率风险和信用风险等多种风险,针对不同类型的风险,数学模型也可以提供相应的解决方案。
五、结论综上所述,数学建模在投资风险管理中有着广泛的应用,基础数学知识可以帮助投资者更深入地理解市场的运作机制,数据分析技术可以帮助投资者更好地把握市场的趋势和动向,而金融风险管理中的数学模型则可以帮助投资者更好地管理和控制风险,从而达到更好的投资效果。
数学建模13道题
数学建模13道题1.某投资者有40000美元用于投资,她所考虑的投资方式的收益为:储蓄利率7%,市政债券9%,股票的平均收益为14%,不同的投资方式的风险程度是不同的。
该投资者列出了她的投资组合目标为:1)年收益至少为5000美元; 2)股票投资至少为10000美元;3)股票投资额不能超过储蓄和市政债券投资额之和;4)储蓄额位于5000-15000美元之间; 5)总投资额不超过40000美元。
2.用长8米的角钢切割钢窗用料。
每副钢窗含长1.5米的料2根,1.45米的2根,1.3米的6根,0.35米的12根,若需钢窗100副,问至少需切割8米长的角钢多少根?3.某照相机厂生产12,A A 两种型号的相机,每台12,A A 型相机的利润分别为25元和40元,生产相机需要三道工序,生产两种不同型号的相机在不同的工序所需要的工作时间(单位:小时)如下表所示:工序相机类型机身制造零件装配检验包装1A 0.1 0.2 0.1 2A0.70.10.3此外三道工序每周可供使用的工作时间为机身制造有150小时,零件装配有250小时,检验包装有100小时,而市场需要12,A A 型相机每周至少为350台和200台,该工厂应如何安排生产,才能使得工厂获得最大利润?4.某饲料公司生产饲养雏鸡,蛋鸡和肉鸡的三种饲料,三种饲料都是由A,B,C 三种原料混合而成,具体要求,产品单价,日销售量表如下:原料A 原料B 原料C 日销量(t )售价(百元/t )雏鸡饲料不少于50% 不超过20%5 9 蛋鸡饲料不少于30%不超过30% 18 7 肉鸡饲料不少于50%10 8 原料价格(百元/t ) 505 4 5受资金和生产能力的限制,每天只能生产30t ,问如何安排生产计划才能获利最大?5.某公司用木头雕刻士兵模型出售。
公司的两大主要产品类型分别是“盟军”和“联军”士兵,每件利润分别为28美元和30美元。
制作一个“盟军”士兵需要使用2张木板,花费4小时的木工,再经过2小时的整修。
数学建模—投资的收益和风险问题
数学建模—投资的收益和风险问题投资一直是人们追逐财富增值的方式之一。
然而,投资市场的不确定性和风险给人们带来了很大的挑战。
数学建模作为一种解决问题的工具,可以帮助我们分析和评估投资的收益和风险。
本文将从数学建模的角度探讨投资的收益和风险问题。
一、投资收益的数学建模投资收益是投资者最关心的问题之一,通过数学建模我们可以对投资收益进行评估和预测。
常用的数学模型之一是股票价格的随机过程模型,其中最经典的是布朗运动模型。
布朗运动模型假设股票价格的波动符合随机游走过程,即无论是股票的上涨还是下跌都服从正态分布。
在这个模型中,我们可以通过计算出股票价格的期望回报和标准差,来评估投资的收益和风险。
除了布朗运动模型,我们还可以利用时间序列分析来预测股票价格的变动趋势。
时间序列分析是一种利用历史数据来分析未来走势的方法,通过建立股票价格与时间的数学模型,可以得到股票价格的预测值。
然而,需要注意的是,时间序列分析并不能完全预测未来的变动,因为股票价格受到很多因素的影响,例如市场供求关系、公司业绩等。
二、投资风险的数学建模除了投资收益,投资风险也是投资者非常关注的问题。
投资风险是指投资在市场变动中可能遭受的损失和波动程度,通过数学建模我们可以对投资风险进行量化评估。
常用的风险评估方法之一是价值-at-风险(Value at Risk,VaR)模型。
VaR模型以一定的概率来评估投资可能遭受的最大损失。
该模型通过构建投资组合的收益分布函数,计算出投资组合在给定概率下可能遭受的最大损失。
VaR模型可以帮助投资者合理地控制风险,制定适当的投资策略。
除了VaR模型,我们还可以利用随机模拟方法来评估投资风险。
随机模拟方法通过生成一系列符合规定分布的随机数,来模拟投资组合的收益分布。
通过模拟大量的随机数,我们可以得到投资组合可能的收益和风险情况,进而评估投资的风险。
三、数学建模在投资决策中的应用数学建模在投资决策中有着广泛的应用。
数学建模—投资的收益和风险问题
学建模二号:名:级:投资的收益和风险问题摘要:某投资公司现有一大笔资金(8000 万),可用作今后一段时间的市场投资,假设可供选择的四种资产在这一段时间的平均收益率分别为 r i ,风险损失率分别为 q i 。
考虑到投资越分散,总的风险越小,公司确定,当用这笔资金购买若干种资产时,总体风险可用所投资的资产中最大的一个风险来度量。
另外,假定同期银行存款利率是 r0 =5%。
具体数据如下表:对于第一问,我建立了一个优化的线性规划模型,得到了不错的结果。
假设 5 年的投资时间,我认为五年末所得利润最大可为:37.94 亿。
具体如何安排未来一段时间内的投资,请看下面的详细解答。
如果可供选择的资产有如下15 种,可任意选定投资组合方式,就一般情况对以上问题进行讨论,结果又如何?对于第二问,考虑独立投资各个项目的到期利润率,通过分析,发现数据中存在着相互的联系。
由此,我建立了一个统计回归模型x5=a0+a1*x4+a2*x3+a3*x2+a4*x1+a5*x1^2+a6*x2^2+a7*x3^2+a8*x4^2通过这个模型,我预测了今后5年各个项目的到期利润率。
如第一个项目今后五年的到期利润率为:第一年:0.1431 第二年:0.1601 第三年:0.0605 第四年:0.1816 第五年:0.1572 。
(其他几个项目的预测祥见下面的解答)考虑风险损失率时,定义计算式为:f=d*p;d 为该项目 5 年内的到期利润率的标准差,p 为到期利润率;考虑相互影响各个项目的到期利润率时,我们在第一个模型的基础上建立一新的模型:x5=a10+a11*x4+a12*x3+a13*x2+a14*x1+a15*y5 y5=a20+a21*y4+a22*y3+a23*y2+a24*y1+a25*x5 (两个项目互相影响的模型) x5=a10+a11*x4+a12*x3+a13*x2+a14*x1+a15*y5+a16*z5y5=a20+a21*y4+a22*y3+a23*y2+a24*y1+a25*z5+a26*x5z5=a30+a31*z4+a32*z3+a33*z2+a34*z1+a35*x5+a37*y5(三个项目互相影响的模型)通过解方程组,我们可以预测出今后五年的到期利润率。
2023年数学建模c题目
2023年数学建模c题目
2023年数学建模竞赛C题是“多阶段投资组合优化问题”。
问题描述:
假设你是一位投资者,在多阶段投资环境中,需要确定在每个阶段应该如何分配你的投资金额。
为了简化问题,我们假设你只有一个投资目标,即在每个阶段最大化预期收益,并且你的投资金额为100万元。
具体来说,你需要确定在每个阶段应该投资多少金额,以及应该选择哪些资产进行投资。
投资环境包括股票、债券和现金等三种资产,每种资产的预期收益率和风险水平不同。
在每个阶段,你都需要考虑过去的历史数据和当前的市场情况来制定投资策略。
例如,在第一阶段,你需要基于过去10年的数据来确定股票、债券和现金的权重。
在第二阶段,你需要根据第一阶段的结果和市场情况来调整你的投资策略。
目标是最大化预期收益,同时考虑风险水平。
你需要确定一个多阶段投资组合优化模型,并使用历史数据和数学方法来解决这个问题。
问题要求:
1. 建立多阶段投资组合优化模型,并使用历史数据来求解该模型。
2. 确定投资策略,包括在每个阶段的投资金额和资产选择。
3. 分析投资结果,包括预期收益和风险水平。
4. 讨论如何根据市场变化调整投资策略。
5. 编写一个Python程序来实现你的模型和算法,并输出结果。
这是一个非常具有挑战性的问题,需要你掌握多阶段投资组合优化、统计分析和Python编程等方面的知识。
希望你能通过解决这个问题,提高自己的数学建模能力和实际应用能力。
数学建模项目投资
项目投资的最优问题摘要本文主要讨论项目投资的最优化问题。
首先对该问题进行分析,建立相应的数学模型,以使得投资获得的总利润达到最大值。
这是一个典型的线性规划问题,我们首先建立单目标的优化模型,以第五年末所拥有的本利息总额为目标函数,以资金流转分析加上各种投资金额的限制为约束条件。
再用lingo软件对问题进行求解,得到比较理想的结果:现有10万元的可用资金经最优投资到第五年末拥有总资金为143750元,即盈利43.75%。
在本文最后我们对项目投资最优的建模方法做了评价,对其算法(如:自行设计算法,利用软件进一步求解,多种方法相结合等)进行综合考虑并做了简要分析。
关键词:线性规划优化模型 lingo一问题的提出1.背景随着全球经济的高速发展,改革开放的不断推进,社会主义市场经济在中国不断完善,投资项目的最优化设计日渐突显其重要意义。
在这样的市场经济条件下,企业追求的目标是利润最大化。
由于企业的资金是有限的,对资金进行合理有效的配置,可以降低企业的成本,提高资金的使用效益,使企业获得最优效益。
投资项目的最优化设计日渐突显其重要意义。
2.问题的提出某部门在今后5年内考虑给以下4个项目投资:项目A:从第一年到第四年年初需要投资,并于次年末回收本利115%;项目B:从第三年年初需要投资,到第五年年末能回收本利125%,但规定最大投资额不超过4万元。
项目C:从第二年年初需要投资,到第五年年末能收回本利140%,但规定最大投资额不超过3万。
项目D:五年内,每年年初可以够买公债,于当年末归还并加利息6%;该部门现有资金10万元,问应该如何确定给这些项目的投资额,使第五年末拥有资金的本利总额最大?二问题的分析显然这是一个最优化问题,解决这类问题最常用方法就是线性规划方法。
线性规划可以合理地分配、使用有限的资源,使其能够获得“最优效益”。
目标函数是第五年末拥有资金的本利息总额。
为使资金得到有效利用,应在每年年初将手头全部资金投出去,每年年末回收各项投资的本利息即为第二年初手头拥有的投资总额,又全部投入到第二年年初所有可能的投资机会中去,以此类推,每年年初投资额等于头年末返回本利总额,这些资金流转分析加上各种投资金额的限制成为约束条件。
1998年数学建模a题
1998年数学建模a题
1998年A题数学建模题目为:研究与投资有关的经济发展问题。
该题要求研究者对影响投资环境的各种因素进行分析,并进行投
资经济学的建模。
研究的内容包括:投资回报、投资项目的净现值、
投资风险、投资成本、投资价值、投资结构、投资综合评价等。
首先,研究者应该对影响投资环境的各种因素进行全面分析,包
括民族国家的政治环境、经济环境、金融环境、法律环境以及社会文
化环境等,以确定背景和方向。
其次,研究者应采用投资回报模型,分析投资市场的现状,如投
资回报率、投资成本、投资风险等,进而判断投资环境的优劣。
此外,研究还可以运用净现值模型,根据投资价值的不同,以及
价格水平的变化,来判断投资项目的合理性。
最后,研究者还可以使用投资结构分析技术来进行投资综合评价,以了解投资环境中的优势和劣势,并给出相应的经济发展建议。
综上所述,1998年A题数学建模题目主要是要求研究者对影响投
资环境的各种因素进行全面分析,并运用投资回报模型、净现值模型
以及投资结构分析技术等,对投资市场进行分析,以便给出相应的经
济发展建议。
数学建模投资风险与收益
数学建模投资风险与收益
投资风险和收益是投资领域中的两个最重要的概念。
投资者在做出最终的决策之前,
必须仔细衡量这两者之间的关系。
投资风险是指可能发生的一系列不确定的事件,这些事件可能会导致投资者在投资过
程中遭受损失。
投资风险包括市场风险、信用风险、流动性风险和操作风险等。
投资收益是指投资者在投资中获得的收益,包括股息、利息、资本利得和其他收益等。
投资者的收益与投资风险密切相关,通常来说,风险越高,收益也就越高,反之亦然。
在数学建模中,我们可以使用各种数学工具和技巧来分析投资风险和收益之间的关系。
例如,我们可以使用统计方法来评估一个投资组合的风险和收益。
通过分析投资组合中每
个资产的历史数据,我们可以得出该组合的风险和收益情况,并通过优化投资组合的资产
配置,实现最大化收益和最小化风险的目标。
另外,我们还可以使用金融工程学中的定价模型来评估投资的风险和收益。
例如,利
用风险价格和风险杠杆来评估投资组合的风险和收益,并通过调整投资组合的配置,使风
险和收益达到最优化。
除了数学建模,我们还可以使用许多其他工具和技巧来帮助我们评估投资风险和收益
之间的关系。
例如,我们可以使用基本面分析来评估股票的价值,使用技术分析来预测股
票价格的变化,使用公司财务分析来评估企业的财务状况等。
总之,投资风险和收益是投资领域中的两个最重要的概念。
通过使用数学建模和其他
工具和技巧,我们可以更加准确地分析投资组合的风险和收益,并实现最优化的投资决
策。
投资的收益和风险问题—数学建模论文
投资的收益和风险问题摘要本论文主要讨论解决了在组合投资问题中的投资收益与风险的相关问题。
分别在不考虑风险和考虑风险的情况下建立相应的数学模型,来使得投资所获得的总利润达到最大。
问题一是一个典型的线性规划问题,我们首先建立单目标的优化模型,也即模型1,用Lingo软件求解,得到在不考虑投资风险的情况下,20亿的可用投资金额所获得的最大利润为153254.4万元。
然后分别分析预计到期利润率、可用投资总资金和各投资项目的投资上限对总利润的影响。
发现利润与利润率成正比的关系;可用投资总额有一个上限,当投资额小于这个上限时,总利润与可用投资额成正比的关系,当大于这个上限时,可用投资额与总的利润没有关系,总利润率保持不变;各项目的投资上限均与目标值呈正相关,项目预计到期利润率越大,该项目投资上限的变动对目标值的影响越大。
问题二是一个时间序列预测问题。
分别在独立投资与考虑项目间的相互影响投资的情况下来对到期利润率和风险损失率的预测。
两种情况下的预测思路与方法大致相同。
首先根据数据计算出到期利润率,将每一个项目的利润率看成一个时间序列,对该序列的数据进行处理,可以得到一个具有平稳性、正态性和零均值的新时间序列。
再计算该序列的自相关函数和偏相关函数,发现该时间序列具有自相关函数截尾,偏自相关函数拖尾的特点,所以可认为该序列为一次滑动平均模型(简称MA(1))。
接着,用DPS数据处理系统软件中的一次滑动平均模型依次预测出各项目未来五年的投资利润率。
对于风险损失率,我们用每组数据的标准差来衡量风险损失的大小,将预测出来的投资利润率加入到样本数据序列中,算出该组数据的标准差,用该值来衡量未来五年的风险损失率。
具体答案见4.2.2.1问题的分析与求解。
同样在考虑相互影响的情况下,我们运用ARMA(3,1)模型进行预测,结果见4.2.2.2 问题三与问题一类似,也是优化的问题,其目标仍是第五年末的利润最大,而且也没有考虑风险问题,只是约束条件改变了。
数学建模e题2023
数学建模e题2023
以下是2023年数学建模e题,供您参考:
1.人口增长问题:假设一个国家的人口每年以相同的增长率增长,
如果今年人口为(P),增长率是(r),那么明年的人口是多少?2.银行贷款问题:假设一个银行给一个客户提供了贷款,年利率为
(r),客户在(n) 年后一次性还清,那么银行贷款的总额是多少?
3.经济增长问题:假设一个国家的经济每年以相同的增长率增长,
如果今年的GDP 是(GDP),增长率是(r),那么明年的GDP 是多少?
4.投资问题:假设一个投资者将一定金额的投资放在一个项目上,
年利率为(r),投资者希望在(n) 年后获得一定的回报,那么他应该投资多少金额?
5.资源分配问题:假设有一个资源有限的系统,需要将资源分配给
(n) 个项目,每个项目都有自己的优先级和需要的资源量,如何分配资源使得优先级最高的项目得到足够的资源,同时保证其他项目的资源需求得到满足?
6.生产计划问题:假设一个工厂生产(n) 种产品,每种产品都有自
己的生产时间和生产成本,工厂的目标是在满足市场需求的同时,使得总生产成本最低,如何制定生产计划?
7.运输优化问题:假设有若干个货物要从起始点运送到目的地,运
输路线和运输成本已知,如何安排货物的运输顺序和路线,使得
总运输成本最低?
8.最大值最小化问题:假设有(n) 个数,每个数都可能是最大值或
者最小值,如何找到一种排列方式,使得这(n) 个数中的最大值最小化?
9.最小二乘法问题:给定一组数据点,如何找到一条直线,使得所
有点到这条直线的距离的平方和最小?
10.最短路问题:给定一个有向图,其中每条边都有一定的权重,如
何找到从起点到终点的最短路径?。
数学建模论文组合投资问题1
科院7组:蔡光达、王奇、鲁成组合投资问题摘要本文讨论了投资的风险和收益问题,建立了投资的单目标和多目标决策模型,并将多目标决策问题转化为单目标的决策模型,采用线性规划问题求解以解决公司的投资组合问题。
利用线性规划和灰色预测模型对公司五年投资过程中的投资的收益和风险分别进行了评估预测,求出了在不同的投资环境下第五年末的最大利润数值。
针对问题一:本文以第五年所得总金额为目标函数,应用线性规划理论建立了单目标优化模型,并运用Lingo软件求得第五年所得总金额的最大值:374140.5万,则第五年的最大利润:174140.5万。
针对问题二:本文分别对独立投资和同时投资这两种情况进行分析,对题中表2和表3进行了处理,算出来各项目每一年的到期利润率,分别以到期利润率的时间响应函数和标准差为目标函数建立了模型,运用灰色系统理论对上述两种投资方式近五年的各项目到期利润率进行预测,通过Matlab软件求得了两种不同投资方式的近五年各项目到期利润率预测结果(具体数据见表7.2和表7.3)和各项目标准差(具体数据见表7.5和7.6),并对预测结果进行了级比偏差检验,检验结果显示此时预测结果精度较高。
针对问题三:本文综合考虑了独立投资和同时投资这两种情况,同样以第五年的所得总金额为目标函数,并建立了单目标优化模型,通过Lingo软件求得第五年所得总金额的最优值:558422.0万,则第五年的最大利润358422.0万。
针对问题四:以题三中标准差最大值表示投资最大风险损失率,为此分别以第五年最大总金额和最小风险损失费为目标函数建立了多目标线性优化目标函数,比运用Lingo软件求得:当8.0s时,可得第五年总金额最大值:569975万,=则第五年的最大利润369975万。
针对问题五:假设一部分资金存入银行获取利息,并向银行贷款进行其他项目投资,然后根据题四方法和思想,运用Lingo软件求得:当3.0s时,可得第=五年总金额最大值:79582.4万,则第五年的最大利润59582.4万。
投资问题数学建模(Word最新版)
投资问题数学建模通过整理的投资问题数学建模相关文档,渴望对大家有所扶植,感谢观看!数学模型第一次探讨作业问题:某部门现有资金10万元,五年内有以下投资项目供选择:项目A:从第一年到第四年每年初投资,次年末收回本金且获利15%;项目B:第三年初投资,第五年末收回本金且获利25%,最大投资额为4万元;项目C:其次年初投资,第五年末收回本金且获利40%,最大投资额为3万元;项目D:每年初投资,年末收回本金且获利6%;问如何确定投资策略使第五年末本息总额最大?问题分析:用表示第i年对第j个项目的投资金额要使第五年年末本息总额最大,应当在每年将全部可用资金都用于投资,以确保资金的充分利用,由于项目投资均发生在年初,故以下只探讨年初的投资状况:第一年:其次年:手上资金(即第一年年末收回资金)为,全部用来对可投资项目投资,则有= 第三年:同理,有= 第四年:= 第五年:= 第五年年末本息和为(即第五年所能收回的全部资金)建立模型:= = = = ,求解模型:Lingo解法:可编写lingo程序如下:model: max=1.06*x54+1.15*x41+1.25*x32+1.4*x23;!目标函数; x11+x14=10;!以下约束条件表示每年资金全部用于投资;1.06*x14=x21+x23+x24; 1.15*x11+1.06*x24=x31+x32+x34;1.15*x21+1.06*x34=x41+x44; 1.15*x31+1.06*x44=x54; x23<=3;!限制B,C项目的最大投资额; x32<=4; end 运行结果如下:Global optimal solution found. Objective value: 14.37500 Infeasibilities:0.000000 Total solver iterations:1 Variable Value Reduced Cost X54 0.000000 0.000000 X41 4.500000 0.000000 X32 4.000000 0.000000 X23 3.000000 0.000000 X11 7.169811 0.000000 X14 2.830189 0.000000 X21 0.000000 0.000000 X24 0.000000 0.3036000E-01 X31 0.000000 0.000000 X34 4.245283 0.000000 X44 0.000000 0.2640000E-01 Row Slack or Surplus Dual Price1 14.37500 1.0000002 0.000000 1.4018503 0.000000 -1.3225004 0.000000 -1.2190005 0.000000 -1.1500006 0.000000 -1.0600007 0.000000 0.7750000E-018 0.000000 0.3100000E-01 所得最优值为14.375万元,对应的最优解为: x11=7.169811,x14=2.830189,x23=3,x32=4,x34=4.245283,x41=4.5,其余值为0 即第一年对A项目投资7.169811万元,对D项目投资2.830189万元;其次年对C项目投资3万元;第三年对B项目投资4万元,对D项目投资4.245283万元;第四年对A项目投资4.5万元。
(新)大学生建模报告汇总-数学建模论文《投资(风险)模型问题》_
数学建模论文《投资(风险)模型问题》建模小组成员:王雪峰(20031090029)李学敏(20031090039)董祥桥(20031090037)投资风险模型(数学规划模型)一、问题提出:某公司有开放式基金现有总额为15亿元的资金可用于投资,目前共有8个项目可供投资者选择。
每个项目重复投资,根据专家经验,对于每个项目投资总额不能太高,且有个上限这些项目所需要的投资额已经知道,在一般情况下,投资一年后各项目的利润也可估算出来。
表一:投资各项目所需要资金及预计一年后所得利润(单位:万元)该公司现在需要解决以下问题:1、就表一所提供的数据,试问应该如何投资使第一年的利润最大;2、在具体对这些项目进行投资时,实际还会出现项目之间相互影响的情况,公司在咨询了有关专家之后,得到以下可靠信息:①如果同时对第1、3项目投资,它们的利润分别为1005万元和1018.5万元;②如果同时对第4、5项目投资,它们的利润分别为1045万元和1276万元;③如果同时对2、6、7、8项目投资,它们的预计利润为1353万元、840万元、1610万元、1350万元;④如果考虑投资风险,则应该如何使收益尽可能大,而风险尽可能小。
投资项目总风险可用投资项目中最大一个风险来衡量,专家预测出投资项目Ai 的风险率为Qi , 数据见表二:表二:投资项目风险损失率:(%)由于专家具有较高的可信度,公司决策层需要知道以下问题的结果(1)如果只考虑专家的前三条信息,该资金该如何投资?(2)如果将专家的前四条信息考虑进来,该资金该如何投资?(3)如果不考虑专家的前三条意见而将八个项目一起投资并且考虑投资风险该如何投资使利润最大化?二、问题分析:我们实际所需要解决的问题:1、不考虑专家的意见我们将项目A1~A8全部投资,问如何投资使第一年利润最大?2、只针对专家所提供的前三条信息该如何投资以使利润最大化?3、针对专家所提出的四条信息该如何投资以使利润最大化?4、只考虑投资的风险损失率而不考虑各项目之间的影响该如何投资使利润最大化?在解决上述问题时需要注意到:1、每个项目都有投资上限:拿项目A1来说,每投资一次需要6700万元,我们有150000万元,那么理论上我们可以投资次,但是事实上由于我们有投资上限我们只能将项目A1投资34000/6700次;2、专家的前三条信息是在考虑了各项目之间的互相影响之后所提出来的,也就是说在解决问题1时无须考虑项目之间的相互影响;3、在解决问题2时需要注意投资上限以及我们所拥有的可活动资金的总额(为15亿元);4、考虑问题3和4时我们必须把专家所提出的风险损失率考虑在内,但是问题是:①什么是风险损失率②投资项目的总风险损失率该如何表示经过查找图书及网络资料我们得到了风险损失率的精确定义:所谓风险损失率是指:在一个投资周期内资产发生风险时可能的损失在总投资中所占的百分比;在此我们认为投资周期为一年。
数学建模:投资问题
投资的收益与风险问题摘要对市场上的多种风险资产和一种无风险资产(存银行)进行组合投资策略的设计需要考虑两个目标:总体收益尽可能大和总体风险尽可能小,而这两个目标在一定意义上是对立的。
本文我们建立了投资收益与风险的双目标优化模型,并通过“最大化策略”,即控制风险使收益最大,将原模型简化为单目标的线性规划模型一;在保证一定收益水平下,以风险最小为目标,将原模型简化为了极小极大规划模型二;以及引入收益——风险偏好系数,将两目标加权,化原模型为单目标非线性模型模型三。
然后分别使用Matlab的内部函数linprog,fminmax,fmincon对不同的风险水平,收益水平,以及偏好系数求解三个模型。
关键词:组合投资,两目标优化模型,风险偏好2.问题重述与分析3.市场上有种资产(如股票、债券、…)()供投资者选择,某公司有数额为的一笔相当大的资金可用作一个时期的投资。
公司财务分析人员对这种资产进行了评估,估算出在这一时期内购买的平均收益率为,并预测出购买的风险损失率为。
考虑到投资越分散,总的风险越小,公司确定,当用这笔资金购买若干种资产时,总体风险可用所投资的中最大的一个风险来度量。
购买要付交易费,费率为,并且当购买额不超过给定值时,交易费按购买计算(不买当然无须付费)。
另外,假定同期银行存款利率是, 且既无交易费又无风险。
()1、已知时的相关数据如下:试给该公司设计一种投资组合方案,即用给定的资金,有选择地购买若干种资产或存银行生息,使净收益尽可能大,而总体风险尽可能小。
2、试就一般情况对以上问题进行讨论,并利用以下数据进行计算。
本题需要我们设计一种投资组合方案,使收益尽可能大,而风险尽可能小。
并给出对应的盈亏数据,以及一般情况的讨论。
这是一个优化问题,要决策的是每种资产的投资额,要达到目标包括两方面的要求:净收益最大和总风险最低,即本题是一个双优化的问题,一般情况下,这两个目标是矛盾的,因为净收益越大则风险也会随着增加,反之也是一样的,所以,我们很难或者不可能提出同时满足这两个目标的决策方案,我们只能做到的是:在收益一定的情况下,使得风险最小的决策,或者在风险一定的情况下,使得净收益最大,或者在收益和风险按确定好的偏好比例的情况下设计出最好的决策方案,这样的话,我们得到的不再是一个方案,而是一个方案的组合,简称组合方案。
数学建模论文-投资规划问题
数学建模一周论文课程设计题目:投资规划问题摘要目前,证券在我国得到了迅速健康的发展,并且为我国的经济发展作出了很大贡献。
本文针对目前流行的各种不同的证券发行方案,建立线性规划模型,得出最佳的证券组合投资方案。
问题一中假设该经理有1000万资金可以进行投资支配,在满足题目给出的各限制范围内,以最大收益为目标函数,建立三个线性规划模型,分别为冒险模型、保守模型和一个折中模型,但是前两个不符合题目给出的约束条件,综合考虑,应选用折中模型,用Lingo求解得出了最大收益为29.83636万元,各种证券的投资方案见表二。
问题二中假设能以2.75%的利率借到不超过100万元资金,在相同的约束条件下,仍然建立线性规划模型,采用Lingo求解,得出最大收益为32.82000万元,投资方案见表五。
问题三中在1000万元资金情况下,若证券A的税前收益增加为4.5%,仍然建立线性规划模型,通过Lingo解得最大收益相对问题一中增加了,为30.27273万元,投资方案见表六;若证券C的税前收益减少为4.8%,用同样的方法求出最大收益相对问题一中减少了,为29.42400万元,投资方案见表七。
关键字:证券投资、线性规划、Lingo求解软件、投资风险某银行经理计划用一笔资金进行有价证券的投资,可供购进的证券及其信用等级、到期年限、收益如下表所示。
按照规定,市政证券的收益可以免税,其他证券的收益需按50%的税率纳税。
此外还有以下限制:●政府及代办机构的证券总共至少要购进400万元●所购证券的平均信用等级不超过1.4(信用等级数字越小,信用程度越高)●所购证券的平均到期年限不超过5年(2)如果能够以2.75%的利率借到不超过100万元资金,该经理应如何操作?(3)在1000万元资金情况下,若证券A的税前收益增加为4.5%,投资应否改变?若证券C的税前收益减少为4.8%,投资应否改变?模型假设1.假设在有价证券到期前,该经理不会中断投资。
数学建模典型例题
数学建模典型例题暂无明显问题的段落。
一、人体重变化假设某人每天的食量为焦耳,其中基本新陈代谢消耗了5038焦耳,体育运动消耗的热量为69焦耳/(千克•天)乘以他的体重(千克)。
假设以脂肪形式贮存的热量100%有效,1千克脂肪含热量焦耳。
我们需要研究此人体重随时间变化的规律。
一、问题分析人体重W(t)随时间t变化是由于消耗量和吸收量的差值所引起的。
假设人体重随时间的变化是连续变化过程,因此可以通过研究在△t时间内体重W的变化值列出微分方程。
二、模型假设1.以脂肪形式贮存的热量100%有效;2.当补充能量多于消耗能量时,多余能量以脂肪形式贮存;3.假设体重的变化是一个连续函数;4.初始体重为W。
三、模型建立假设在△XXX时间内:体重的变化量为W(t+△t)-W(t);身体一天内的热量的剩余为(-5038-69*W(t));将其乘以△XXX即为一小段时间内剩下的热量;转换成微分方程为:d[W(t+△t)-W(t)]=(-5038-69*W(t))dt;四、模型求解d(5429-69W)/(5429-69W)=-69dt/;W(0)=W;解得:69t/)5429-69W=(5429-69W)e;即:69t/)W(t)=5429/69-(5429-69W)/5429e;当t趋于无穷时,w=81.二、投资策略模型一、问题重述一家公司要投资一个车队并尝试着决定保留汽车时间的最佳方案。
5年后,它将卖出所有剩余汽车并让一家外围公司提供运输。
在策划下一个5年计划时,这家公司评估在年i的开始买进汽车并在年j的开始卖出汽车,将有净成本aij(购入价减去折旧加上运营和维修成本)。
以千元计数aij的由下面的表给出:年2 | 年3 | 年4 | 年5 | 年6 |年1 | 46 | 5 | 9 | 7 | 6 |年2 | 12 | 11 | 8 | 8 | 20 |年3 | 16 | 13 | 11 | 10 |。
|请寻找什么时间买进和卖出汽车的最便宜的策略。
数学建模优化类问题例子
数学建模优化类问题例子
1.最佳生产计划:有一家汽车零部件制造公司,需要决定该如何安排生产计划以最大化利润。
该公司需要考虑每个零部件的生产成本、供应链的延迟和运输成本等因素,以确定最佳的生产数量和交付时间。
2.最优投资组合:一位投资者有一定资金,希望通过合理的资产配置来最大化投资回报。
该投资者需要考虑不同资产类别的风险和回报率,并使用数学建模优化方法来确定最佳的资产配置比例。
3.旅行销售员问题:一位旅行销售员需要在多个城市之间进行访问,并希望以最小的总行驶距离完成所有访问任务。
通过使用数学建模和优化算法,销售员可以确定最佳的访问顺序,从而减少总行驶距离和时间。
4.最佳路径规划:在一个迷宫中,有一只小老鼠需要找到从起点到终点的最短路径。
通过将迷宫与数学模型相关联,可以使用图论和最短路径算法来确定小老鼠应该采取的最佳行动策略。
以上只是一些例子中的几个,实际上数学建模和优化方法可以应用于各种不同的问题领域,包括金融、物流、能源管理、医疗决策等。
通过数学建模和优化,可以帮助人们做出更明智的决策,提高效率和效果。
1998年大学生数学建模优秀论文投资收益和风险问题
基本假设
一, 投资行为只能发生在开始阶段,中途不得撤资或追加投资。 二, 任一资产可购买量足够多,足以吸纳全部投资资金。 三,几种资产相互之间不会产生影响,例如股市的涨跌不会影响到债券的 涨跌。 四,财务分析人员对平均收益率和风险的预测值是可信的。 五,M 值足够大,大至可忽略 ui 的影响。(因为一般情况下企业的投资动辄 成百上千万元,而 ui 仅为数百元,故可忽略其影响) 六,公司总会选择满意度高的方案。
? , 模型假设:由问题分析可知,在问题 1 的情况下,风险值只能是 2.5%, 1.5%,5.5%,2.6%,0%中的某一个。
? , 模型的建立与求解: 当风险为 2.5%时,此时购买 S1 的资金超过了 M 的一半。剩余的资金为了追 求最大收益,都将会购买净收益率最大的资产。最后发现所有的资金全部购买 了 S1。净收益率为 27%。 当风险为 1.5%时,可得购买 S1 和 S2 的资金大约各占一半,S2 所耗资金略多 一点。净收益率约为 23%。 当风险为 5.5%时,可得购买 S1 和 S3 的资金大约各占一半,S3 所耗资金略多 一点。净收益率约为 22.5%。 当风险为 2.6%时,可得购买 S1 和 S4 的资金大约各占一半,S4 所耗资金略多 一点。净收益率约为 22.5%。 当风险为 0%时,可得购买 S1 和 S0 的资金大约各占一半,S0 所耗资金略多一 点。净收益率约为 16%。 通过对以上结果的分析,我们发现模型中未体现出总风险随投资的分散而减 小,另外当有某种投资所耗资金超过 M 的一半时,无论其余的资金作何种投资, 总风险都不会发生变化。这些显然都是不符合实际情况的,因此我们需要对条 件进行完善。
当各资产投资份额不同时,即给 S1,S2,S3,S4,S0(银行)投资各不相同时, 将会得到市场总收益与市场总风险的对应关系,在二维坐标(Rj-Q)中其表示 为二维图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
某银行经理计划用一笔资金进行有价证劵的投资,可供购进的证劵以及其信用等级、到期年限、收益如下表所示。
按照规定,市政证劵的收益可以免税,其他证劵的收益需按照50%的税率纳税。
此外还有以下限制:(1)政府及代办机构的证劵总共至少要购进400万元;(2)所购证劵的平均信用等级不超过1.4(信用等级数字越小,信用程度越高);(2)如果能够以2.75%的利率借到不超过100万元资金,该经理应如何操作?(3)在1000万元资金情况下,若证劵A的税前收益增加为4.5%,投资应否改变?若证劵C的税前收益减少为4.8%,投资应否改变?2.模型的假设(1)假设该投资为连续性投资,即该经理投资不会受到年限过长而导致资金周转困难的影响;(2)假设证劵税收政策稳定不变而且该经理优先考虑可以免税的市政证劵的情况下再考虑其他证劵种类以节约成本;(3)假设各证劵之间相互独立而且各自的风险损失率为零。
(4)假设在经理投资之后,各证劵的信用等级、到期年限都没有发生改变;(5)假设投资不需要任何交易费或者交易费远远少于投资金额和所获得的收益,可以忽略不计;(6)假设所借贷资金所要支付的利息不会随时间增长,直接等于所给的利率乘上借贷资金。
3.符号说明X1:投资证劵A的金额(百万元);X2:投资证劵A的金额(百万元);X3:投资证劵A的金额(百万元);X4:投资证劵A的金额(百万元);X5:投资证劵A的金额(百万元);Y:投资之后所获得的总收益(百万元);对于该经理根据现有投资趋势,为解决投资方案问题,运用连续性投资模型,根据所给的客观的条件,来确定各种投资方案,并利用线性规划模型进行选择方案,以获得最大的收益。
问题一,该经理优先考虑可以免税的市政证劵的情况下再考虑其他证劵种类以节约成本,我们可以在所提出的假设都成立的前提下(尤其是假设所借贷资金所要支付的利息不会随时间增长,直接等于所给的利率乘上借贷资金)以及综合考虑约束资金和限制条件,将1000万元的资金按照一定的比例分别投资个各种证劵。
而该如何分配呢?怎样地分配才是最合理的呢?我们通过建立一个线性规划模型来解决这个问题。
由所给的表格知证劵A(市政),B(代办机构),C(政府),D(政府),E(市政)的信用等级分别为2,2,1,1,5,到期年限分别为9,15,4,3,2,1,到期税前收益(%)分别为4.3,5.4,5.0,4.4,4.5(市政证劵的收益可以免税,其他的收益按50%的税率纳税)以及政府及代办机构的证券总共至少要购进400万元,所购证券的平均信用等级不超过1.4(信用等级数字越小,信用程度越高),所购证券的平均到期年限不超过5年这三个约束条件,不妨设投资证劵A,B,C,D,E的金额分别为x1,x2,x3,x4,x5,建立线性规划模型,用lingo或者lindo软件求解即可得出最优投资方案和最大利润。
问题二中的解决方法和问题一中的解决方法是一样的,只不过在求解时需要进行灵敏度分析利用问题一的模型,把借贷的1百万元在投资后所获得的收益与借贷所要付出的利息作比较,即与2.75%的利率借到的1百万元资金的利息比较,若大于,则应借贷;反之,则不借贷。
若借贷,投资方案需将问题一模型的第二个约束条件右端10改为11,用lingo软件求解即可得出最优方案以及最大收益。
而对问题三,是否该改变要看最优解是否改变,如果各证劵所对应的字数在最优解不变的条件下目标函数允许的变化范围内,则不应该改变投资方案,反之则改变投资方案。
即证劵A所对应的系数只取决于到期税前收益,而证劵C所对应的系数取决于到期税前收益和其收益所需的税额。
同样的通过在问题一的灵敏度分析结果中可以知道最优解不变的条件下目标函数系数所允许的变化范围,根据题中证劵A和证劵C所对应的系数系数改变即可决定投资方案是否应改变。
5.模型的建立与求解问题一的求解:在提出的假设条件成立的前提下,根据题目给出的限制条件以及各种证劵的信息(政府及代办机构的证劵总共至少要购进4百万元;所购证劵的平均信用等级不超过1.4;所购证劵的平均到期年限不超过5年),设投资证劵A、证劵B、证劵C、证劵D、证劵E 的金额分别为:X1、X2、X3、X4、X5(百万元),投资之后获得的总收益为Y百万元。
对于平均信用等级和平均到期年限的求解,我们可以用加权算术平均值的算法求得,即用各个信用等级(平均到期年限)乘以相应的权,然后相加,所得之和再除以所有的权之和。
在1000万元的资金约束条件下,另外考虑到证劵B、C、D的收益都需按照50%的税率纳税,我们可以建立如下的线性规划模型:Max Y=0.043X1+(0.054*0.5)X2+(0.05*0.5)X3+(0.044*0.5)X4+0.045X5S.t.X2+X3+X4>=4X1+X2+X3+X4+X5<=10(2X1+2X2+X3+X4+5X5)/( X1+X2+X3+X4+X5)<=1.4(X1+15X2+4X3+3X4+2X5)/( X1+X2+X3+X4+X5)<=5将上面模型进行整理后可得:Max Y=0.043X1+0.027X2+0.025X3+0.022X4+0.045X5S.t.X2+X3+X4>=4X1+X2+X3+X4+X5<=106X1+6X2-4X3-X4+36X5<=04X1+10X2-X3-2X4-3X5<=0用LINGO求解可得Y=0.298,X1=2.182,X3=7.364,X5=0.454。
从结果上看出最优解方案不投资证劵B和证劵D,综合考虑它们的信用等级、到期年限和到期税前收益以及所要缴纳的税额我们可知这是合理的。
因为证劵B的到期税前收益虽然是五种证劵中最高的,但是它的到期年限过长不适合考虑,而证劵D的到期税前收益相对过低而且还需按50%的税率纳税,也不应该考虑。
而对证劵A的投资金额是最高的,首先由于不考虑证劵B、D的投资了,而又要求政府和代办机构的证劵至少要投资4万元,而上述方案中证劵C的投资金额为7.364百万元,这是符合要求的,另外综合考虑信用等级和到期年限,证劵A的信用等级最低而且到期年限也相对比较合适,我们也应该优先考虑证劵A。
而对于证劵E,其信用等级过高,几乎可认为是不可信的了,但又考虑到它的收益可以免税,所以我们可以稍微对它投资一些数额不多的金额,这也是合理的。
而当对证劵C和E的投资金额确定后,证劵A的也就确定了。
综上所述,我们可认为这个最优解方案是合理的。
问题二的求解:首先对问题一的求解后的影子价格分析可以知道,投资金额每增加100万元,收益可增加0.0298百万元,而借贷100万元所要支付的利息是0.0275百万元,比0.0298百万元少,所以应该借贷这100万元。
这时候问题的求解还是如同问题一一样建立一个线性规划模型来求出最优解,模型如下:(此时只是对问题一的模型中的第二个约束条件作了改变)Max Y=0.043X1+(0.054*0.5)X2+(0.05*0.5)X3+(0.044*0.5)X4+0.045X5S.t.X2+X3+X4>=4X1+X2+X3+X4+X5<=11(2X1+2X2+X3+X4+5X5)/( X1+X2+X3+X4+X5)<=1.4(X1+15X2+4X3+3X4+2X5)/( X1+X2+X3+X4+X5)<=5同样地,将上面模型进行整理后可得:Max Y=0.043X1+0.027X2+0.025X3+0.022X4+0.045X5S.t.X2+X3+X4>=4X1+X2+X3+X4+X5<=116X1+6X2-4X3-X4+36X5<=04X1+10X2-X3-2X4-3X5<=0用LINGO求解可得:Y=0.328,X1=2.4,X3=8.1,X5=0.5。
即应投资证劵A 2.4百万元,证劵C 8.1百万元,证劵E 0.5百万元。
此时收益总额为0.328百万元,再减去所要支付的利息0.0275百万元,还剩0.3005百万元,比问题一中的收益总额0.298百万元还要多,这也证明了借贷100万元来投资明智的选择。
(我们看到此时的收益总额0.328百万元减去0.298为0.030百万元,并不与其影子价格0.0298百万元相符合。
考虑到计算机在运算过程中对有效数字的取舍所带来的一点点偏差,我们认为这点偏差是可以接受的。
)问题三的求解:从问题一的灵敏度分析结果中知道,最优解不变的条件下目标函数系数允许的变化范围:X1的系数为(0.043-0.013,0.043+0.0035),即(0.030,0.0465),X3的系数为(0.025-0.0006,0.025+0.017),即(0.02494,0.042),当证劵A的税前收益增加为4.5%时,其在目标函数中的系数为0.045,在最优解不变的条件下目标函数系数允许的变化范围内,所以投资方案不应该改变。
当证劵C的税前收益减少为4.8%时,其在目标函数中的系数为0.024,不在X3允许的变化范围内,因此投资方案必须改变,重新找到一个最优解方案才能使银行经理获得最大收益值。
6.模型评价根据现有投资趋势,为解决投资方案问题,运用连续性投资模型,根据客观的条件,来确定各种投资方案,并利用改进的线性规划模型进行选择方案,以获得最大的收益,在此基础上选择方案进行合理的方案评价。
最后通过例题分析获得了实践证明。
在分析连续投资模型的基础上,对其在实际生活中的应用进行了推广,将其应用到虚拟游戏设计和农作物连续种植等中间,连续投资模型也会产生很大的经济效益。
连续性投资模型的应用原理符合实际,解决了投资中方案确定的难题,对各种投资问题都有很重要的参考意义。
7.参考文献[1] 张杰,周硕,郭丽杰,运筹学模型与实验,中国电力出版社,2007[2] 韩中庚,宋明武,邵广纪,数学建模竞赛,科学出版社,2007[3] 姜启源,鞋金星,叶俊,数学模型(第三版),高等教育出版社,2003[4] 费业泰,误差理论与数据处理(第五版),合肥工业大学,20048.附录LINGO代码:模型一:Max=0.043*x1+0.027*x2+0.025*x3+0.022*x4+0.045*x5;x2+x3+x4>=4;x1+x2+x3+x4+x5<=10;6*x1+6*x2-4*x3-4*x4+36*x5<=0;4*x1+10*x2-x3-2*x4-3*x5<=0;运行结果:(进行灵敏度分析)Global optimal solution found.Objective value: 0.2983636Total solver iterations: 3Variable Value Reduced CostX1 2.181818 0.000000X2 0.000000 0.3018182E-01X3 7.363636 0.000000X4 0.000000 0.6363636E-03X5 0.4545455 0.000000Row Slack or Surplus Dual Price1 0.2983636 1.0000002 3.363636 0.0000003 0.000000 0.2983636E-014 0.000000 0.6181818E-035 0.000000 0.2363636E-02 Ranges in which the basis is unchanged:Objective Coefficient RangesCurrent Allowable AllowableVariable Coefficient Increase Decrease X1 0.4300000E-01 0.3500000E-02 0.1300000E-01 X2 0.2700000E-01 0.3018182E-01 INFINITY X3 0.2500000E-01 0.1733333E-01 0.5600000E-03 X4 0.2200000E-01 0.6363636E-03 INFINITY X5 0.4500000E-01 0.5200000E-01 0.1400000E-01Righthand Side RangesRow Current Allowable AllowableRHS Increase Decrease2 4.000000 3.363636 INFINITY3 10.00000 INFINITY 4.5679014 0.0 105.7143 20.000005 0.0 10.00000 12.00000模型二:Max=0.043*x1+0.027*x2+0.025*x3+0.022*x4+0.045*x5;x2+x3+x4>=4;x1+x2+x3+x4+x5<=11;6*x1+6*x2-4*x3-4*x4+36*x5<=0;4*x1+10*x2-x3-2*x4-3*x5<=0;运行结果:Global optimal solution found.Objective value: 0.3282000Total solver iterations: 0Variable Value Reduced CostX1 2.400000 0.000000X2 0.000000 0.3018182E-01 X3 8.100000 0.000000X4 0.000000 0.6363636E-03 X5 0.5000000 0.000000Row Slack or Surplus Dual Price1 0.3282000 1.0000002 4.100000 0.0000003 0.000000 0.2983636E-014 0.000000 0.6181818E-035 0.000000 0.2363636E-02。