数学建模投资问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
某银行经理计划用一笔资金进行有价证劵的投资,可供购进的证劵以及其信用等级、到期年限、收益如下表所示。按照规定,市政证劵的收益可以免税,其他证劵的收益需按照50%的税率纳税。此外还有以下限制:
(1)政府及代办机构的证劵总共至少要购进400万元;
(2)所购证劵的平均信用等级不超过1.4(信用等级数字越小,信用程度越高);
(2)如果能够以2.75%的利率借到不超过100万元资金,该经理应如何操作?
(3)在1000万元资金情况下,若证劵A的税前收益增加为4.5%,投资应否改变?若证劵C的税前收益减少为4.8%,投资应否改变?
2.模型的假设
(1)假设该投资为连续性投资,即该经理投资不会受到年限过长而导致资金周转困难的
影响;
(2)假设证劵税收政策稳定不变而且该经理优先考虑可以免税的市政证劵的情况下再考
虑其他证劵种类以节约成本;
(3)假设各证劵之间相互独立而且各自的风险损失率为零。
(4)假设在经理投资之后,各证劵的信用等级、到期年限都没有发生改变;
(5)假设投资不需要任何交易费或者交易费远远少于投资金额和所获得的收益,可以忽
略不计;
(6)假设所借贷资金所要支付的利息不会随时间增长,直接等于所给的利率乘上借贷资
金。
3.符号说明
X1:投资证劵A的金额(百万元);
X2:投资证劵A的金额(百万元);
X3:投资证劵A的金额(百万元);
X4:投资证劵A的金额(百万元);
X5:投资证劵A的金额(百万元);
Y:投资之后所获得的总收益(百万元);
对于该经理根据现有投资趋势,为解决投资方案问题,运用连续性投资模型,根据所给的客观的条件,来确定各种投资方案,并利用线性规划模型进行选择方案,以获得最大的收益。
问题一,该经理优先考虑可以免税的市政证劵的情况下再考虑其他证劵种类以节约成本,我们可以在所提出的假设都成立的前提下(尤其是假设所借贷资金所要支付的利息不会随时间增长,直接等于所给的利率乘上借贷资金)以及综合考虑约束资金和限制条件,将1000万元的资金按照一定的比例分别投资个各种证劵。而该如何分配呢?怎样地分配才是最合理的呢?我们通过建立一个线性规划模型来解决这个问题。由所给的表格知证劵A(市政),B(代办机构),C(政府),D(政府),E(市政)的信用等级分别为2,2,1,1,5,到期年限分别为9,15,4,3,2,1,到期税前收益(%)分别为4.3,5.4,5.0,4.4,4.5(市政证劵的收益可以免税,其他的收益按50%的税率纳税)以及政府及代办机构的证券总共至少要购进400万元,所购证券的平均信用等级不超过1.4(信用等级数字越小,信用程度越高),所购证券的平均到期年限不超过5年这三个约束条件,不妨设投资证劵A,B,C,D,E的金额分别为x1,x2,x3,x4,x5,建立线性规划模型,用lingo或者lindo软件求解即可得出最优投资方案和最大利润。
问题二中的解决方法和问题一中的解决方法是一样的,只不过在求解时需要进行灵敏度分析利用问题一的模型,把借贷的1百万元在投资后所获得的收益与借贷所要付出的利息作比较,即与2.75%的利率借到的1百万元资金的利息比较,若大于,则应借贷;反之,则不借贷。若借贷,投资方案需将问题一模型的第二个约束条件右端10改为11,用lingo软件求解即可得出最优方案以及最大收益。
而对问题三,是否该改变要看最优解是否改变,如果各证劵所对应的字数在最优解不变的条件下目标函数允许的变化范围内,则不应该改变投资方案,反之则改变投资方案。即证劵A所对应的系数只取决于到期税前收益,而证劵C所对应的系数取决于到期税前收益和其收益所需的税额。同样的通过在问题一的灵敏度分析结果中可以知道最优解不变的条件下目标函数系数所允许的变化范围,根据题中证劵A和证劵C所对应的系数系数改变即可决定投资方案是否应改变。
5.模型的建立与求解
问题一的求解:
在提出的假设条件成立的前提下,根据题目给出的限制条件以及各种证劵的信息(政府及代办机构的证劵总共至少要购进4百万元;所购证劵的平均信用等级不超过1.4;所购证劵的平均到期年限不超过5年),设投资证劵A、证劵B、证劵C、证劵D、证劵E 的金额分别为:X1、X2、X3、X4、X5(百万元),投资之后获得的总收益为Y百万元。对于平均信用等级和平均到期年限的求解,我们可以用加权算术平均值的算法求得,即用各个信用等级(平均到期年限)乘以相应的权,然后相加,所得之和再除以所有的权之和。在1000万元的资金约束条件下,另外考虑到证劵B、C、D的收益都需按照50%的税率纳税,我们可以建立如下的线性规划模型:
Max Y=0.043X1+(0.054*0.5)X2+(0.05*0.5)X3+(0.044*0.5)X4+0.045X5
S.t.
X2+X3+X4>=4
X1+X2+X3+X4+X5<=10
(2X1+2X2+X3+X4+5X5)/( X1+X2+X3+X4+X5)<=1.4
(X1+15X2+4X3+3X4+2X5)/( X1+X2+X3+X4+X5)<=5
将上面模型进行整理后可得:
Max Y=0.043X1+0.027X2+0.025X3+0.022X4+0.045X5
S.t.
X2+X3+X4>=4
X1+X2+X3+X4+X5<=10
6X1+6X2-4X3-X4+36X5<=0
4X1+10X2-X3-2X4-3X5<=0
用LINGO求解可得Y=0.298,X1=2.182,X3=7.364,X5=0.454。从结果上看出最优解方案不投资证劵B和证劵D,综合考虑它们的信用等级、到期年限和到期税前收益以及所要缴纳的税额我们可知这是合理的。因为证劵B的到期税前收益虽然是五种证劵中最高的,但是它的到期年限过长不适合考虑,而证劵D的到期税前收益相对过低而且还需按50%的税率纳税,也不应该考虑。而对证劵A的投资金额是最高的,首先由于不考虑证劵B、D的投资了,而又要求政府和代办机构的证劵至少要投资4万元,而上述方案中证劵C的投资金额为7.364百万元,这是符合要求的,另外综合考虑信用等级和到期年限,证劵A的信用等级最低而且到期年限也相对比较合适,我们也应该优先考虑证劵A。而对于证劵E,其信用等级过高,几乎可认为是不可信的了,但又考虑到它的收益可以免税,所以我们可以稍微对它投资一些数额不多的金额,这也是合理的。而当对证劵C和E的投资金额确定后,证劵A的也就确定了。
综上所述,我们可认为这个最优解方案是合理的。
问题二的求解:
首先对问题一的求解后的影子价格分析可以知道,投资金额每增加100万元,收益可增加0.0298百万元,而借贷100万元所要支付的利息是0.0275百万元,比0.0298百万元少,所以应该借贷这100万元。这时候问题的求解还是如同问题一一样建立一个线性规划模型来求出最优解,模型如下:(此时只是对问题一的模型中的第二个约束条件作了改变)
Max Y=0.043X1+(0.054*0.5)X2+(0.05*0.5)X3+(0.044*0.5)X4+0.045X5
S.t.
X2+X3+X4>=4
X1+X2+X3+X4+X5<=11
(2X1+2X2+X3+X4+5X5)/( X1+X2+X3+X4+X5)<=1.4
(X1+15X2+4X3+3X4+2X5)/( X1+X2+X3+X4+X5)<=5
同样地,将上面模型进行整理后可得:
Max Y=0.043X1+0.027X2+0.025X3+0.022X4+0.045X5
S.t.