西南交《线性代数》离线作业-2014春季学期(优.选)
西南大学22春[0044]《线性代数》在线作业答案
0044 20221单项选择题1、()1.2.3.4.2、()1.2.3.4.3、(1. 42. 13. 34. 24、()1.2.3.4.5、()1.A的列向量组线性无关2.A的列向量组线性相关3.A的行向量组线性无关4.A的行向量组线性相关6、()1.2.3.4.7、1.2,4,62.1, 2, 33.1/2, 1, 3/24.2, 1, 2/38、()1.必有一列元素全为02.必有两列元素对应成比例3.必有一列向量可有其余列向量线性表示4.任一列向量是其余列向量的线性组合9、()1.有无穷多个解2.以上选项都不对3.存在唯一解4.无解10、(1.2.3.4.11、在下列矩阵中,可逆的矩阵是()1.2.3.4.12、()1.2.3.4.13、下列关于未知量x,y,z的方程是线性方程的是()1.2.3.4.14、()1. A. 0,1,22.1,2,33.1,2,3,44.0,1,2,315、()1.2.3.4.16、()1.-22. 13. 24.-117、()1.162.483.-164.-4818、()1.-102.103. 54.-519、()1.2.3.4.20、()1.2.3.4.21、()1.162. 23.84. 422、设A为n阶方阵, 且秩R(A) = r< n, 那么A的列向量组的秩()1. F. 小于r2.等于n3.等于r4.大于r23、()1.2.3.4.24、()1.将B矩阵的第二行加到第一行2.将B矩阵的第二列加到第一列3.AB=BA4.r(AB)=225、以123456为标准排列,则排列253146的逆序数是()1. 42. 33. 54. 226、设A, B均为n阶方阵, E为n阶单位矩阵, 则有()1.2.3.4.27、()1. E.2.3.4.28、()1.存在非零解2.无解3.以上选项都不对4.只有零解29、设3阶矩阵A与B相似,且已知A的特征值为-1,1,-7. 则|B| =()1.122.1/123.1/74.730、设n阶方阵A秩为n,下式不正确的是()1.2.3.4.31、()1.-32.-23. 24. 332、()1.2.3.4.33、(1.2.3.4.34、()1.2.3.4.35、()1.无解2.以上选项都不对3.有无穷多个解4.存在唯一解36、()1.2.3.4.37、如果n阶矩阵A的一个特征值为3, 那么必有()1.2.3.4.38、()1.-22. 33. 24.039、()1. 32. 23. 14.040、()1.2.3.4.以上选项都不对41、()1.(1,1,0)2.(-3,0,2)3.(0,-1,0)4.(2,1,1)42、以123456为标准排列,则排列154236的逆序数是()1. 52. 33. 24. 443、()1.2.3.4.44、()1.2.3.4.45、()1. 42. 23. 34. 146、()1. 22. 13.0,14.1,247、()1. B.2.A3.4.48、()1.2.3.4.49、()1. 12. 33. 24. 450、()1. 32.3.4.判断题51、齐次线性方程组的基础解系是该方程组的所有解向量构成的向量组的极大无关组。
西交《线性代数》在线作业(资料答案)
西交《线性代数》在线作业-0001试卷总分:100 得分:100一、单选题 (共 35 道试题,共 70 分)1.设矩阵A,B,C,X为同阶方阵,且A,B可逆,AXB=C,则矩阵X=( )A.A^-1CB^-1B.CA^-1B^-1C.B^-1A^-1CD.CB^-1A^-1答案:A2.设A是n阶方阵,若对任意的n维向量x均满足Ax=0,则( )A.A=0B.A=EC.r(A)=nD.0<r(A)<(n)答案:A3.n阶矩阵A具有n个不同的特征值是A与对角矩阵相似的( )。
A.充分必要条件;B.必要而非充分条件;C.充分而非必要条件;D.既非充分也非必要条件答案:C4.设向量组a1,a2,a3线性无关,则下列向量组中线性无关的是( )。
A.a1-a2,a2-a3,a3-a1B.a1,a2,a3+a1C.a1,a2,2a1-3a2D.a2,a3,2a2+a3答案:B5.设A为三阶方阵,且|A|=2,A*是其伴随矩阵,则|2A*|=是( ).A.31B.32C.33D.34答案:B6.设A,B均为n阶方阵,则等式(A+B)(A-B) = A2-B2成立的充分必要条件是( ).A.A=EB.B=OC.A=BD.AB=BA答案:D7.设A3*2,B2*3,C3*3,则下列( )运算有意义A.ACB.BCC.A+BD.AB-BC答案:B8.设二阶矩阵A与B相似,A的特征值为-1,2,则|B|=A.-1B.-2C.1D.2答案:B9.设向量组a1,a2,a3线性无关,则下列向量组中线性无关的是( )A.a1-a2,a2-a3,a3-a1B.a1,a2,a3+a1C.a1,a2,2a1-3a2D.a2,a3,2a2+a3答案:B10.设A为三阶方阵,|A|=2,则 |2A-1| = ( )A.1B.2C.3D.4答案:D11.设某3阶行列式︱A︱的第二行元素分别为-1,2,3,对应的余子式分别为-3,-2,1,则此行列式︱A︱的值为( ).A.3B.15C.-10D.8答案:C12.设a1,a2,a3,a4,a5是四维向量,则( )A.a1,a2,a3,a4,a5一定线性无关B.a1,a2,a3,a4,a5一定线性相关C.a5一定可以由a1,a2,a3,a4线性表示D.a1一定可以由a2,a3,a4,a5线性表出答案:B13.设u1, u2是非齐次线性方程组Ax=b的两个解, 若c1u1-c2u2是其导出组Ax=o的解, 则有( ).A.c1+c2=1B.c1= c2C.c1+ c2 = 0D.c1= 2c2答案:B14.n阶对称矩阵A为正定矩阵的充分必要条件是( ).A.∣A∣>0B.存在n阶矩阵P,使得A=PTPC.负惯性指数为0D.各阶顺序主子式均为正数答案:D15.用一初等矩阵左乘一矩阵B,等于对B施行相应的( )变换A.行变换B.列变换C.既不是行变换也不是列变换答案:A16.若n阶矩阵A,B有共同的特征值,且各有n个线性无关的特征向量,则( )A.A与B相似B.A≠B,但|A-B|=0C.A=BD.A与B不一定相似,但|A|=|B|答案:A17.已知三阶行列式D中的第二列元素依次为1,2,3,它们的余子式分别为-1,1,2,D的值为( )A.-3B.-7C.3D.7答案:A18.设A为n阶方阵,r(A)<n,下列关于齐次线性方程组Ax=0的叙述正确的是( )A.Ax=0只有零解B.Ax=0的基础解系含r(A)个解向量C.Ax=0的基础解系含n-r(A)个解向量D.Ax=0没有解答案:C19.设u1, u2是非齐次线性方程组Ax = b的两个解,若c1u1+c2u2也是方程组Ax = b的解,则( ).A.c1+c2 =1B.c1= c2C.c1+ c2 = 0D.c1= 2c2答案:A20.设三阶矩阵A的特征值为1,1,2,则2A+E的特征值为( ).A.3,5B.1,2C.1,1,2D.3,3,5答案:D21.设A,B,C均为n阶非零方阵,下列选项正确的是( ).A.若AB=AC,则B=CB.(A-C)^2 = A^2-2AC+C^2C.ABC= BCAD.|ABC| = |A| |B| |C|答案:D22.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有( )A.k≤3B.k<3C.k=3D.k>3答案:A23.设A是n阶方阵,若对任意的n维向量x均满足Ax=0,则( )A.A=0B.A=EC.r(A)=nD.0<r(A)<(n)答案:A24.设 A、B、C为同阶方阵,若由AB = AC必能推出 B = C,则A应满足( ).A.A≠OB.A=OC.|A|=0D.|A|≠0答案:D25.设A,B均为n阶非零方阵,下列选项正确的是( ).A.(A+B)(A-B) = A^2-B^2B.(AB)^-1 = B^-1A^-1C.若AB= O, 则A=O或B=OD.|AB| = |A| |B|答案:D26.设A,B均为n阶方阵,则( )A.若|A+AB|=0,则|A|=0或|E+B|=0B.(A+B)^2=A^2+2AB+B^2C.当AB=O时,有A=O或B=OD.(AB)^-1=B^-1A^-1答案:A27.设A为m*n矩阵,则有( )。
西南大学线性代数次网上作业
一、填空题(每小题3分,共15分)1.设矩阵A = ⎪⎪⎪⎭⎫ ⎝⎛100012021,B =⎪⎪⎪⎭⎫⎝⎛310120001,则A + 2B =⎪⎪⎪⎭⎫⎝⎛. 2.设向量⎪⎪⎪⎭⎫ ⎝⎛=1111α,⎪⎪⎪⎭⎫ ⎝⎛=0112α,⎪⎪⎪⎭⎫ ⎝⎛=0013α,⎪⎪⎪⎭⎫ ⎝⎛=110β,则β由α1,α2,α3线性表出的表示式为( ).3.设α1,α2是非齐次线性方程组Ax = b 的解,k 1,k 2为常数,若k 1α1+ k 2α2也是Ax = b 的一个解,则k 1+k 2 = ( ).4.设A 为n 阶可逆矩阵,已知A 有一个特征值为2,则(2A )-1必有一个特征值为( ). 5.若实对称矩阵A = ⎪⎪⎪⎭⎫ ⎝⎛a a a 000103为正定矩阵,则a 的取值应满足( ).二、单选题(每小题3分,共15分)1.设行列式2211b a b a = 1,2211c a c a = 2,则222111c b a c b a++ = ( ).(A) -3 (B) -1 (C) 1(D) 32.设A 为2阶可逆矩阵,且已知(2A )-1 =⎪⎪⎭⎫⎝⎛4321,则A = ( ).(A) 2⎪⎪⎭⎫⎝⎛4321(B) 214321-⎪⎪⎭⎫⎝⎛(C) ⎪⎪⎭⎫⎝⎛432121 (D) 1432121-⎪⎪⎭⎫⎝⎛ 3.设向量组α1,α2,…,αs 线性相关,则必可推出( ).(A) α1,α2,…,αs 中至少有一个向量为零向量 (B) α1,α2,…,αs 中至少有两个向量成比例(C) α1,α2,…,αs 中至少有一个向量可以表示为其余向量的线性组合 (D) α1,α2,…,αs 中每一个向量都可以表示为其余向量的线性组合4.设3阶矩阵A 与B 相似,且已知A 的特征值为2,2,3. 则|B -1| = ( ).(A) 121 (B) 71(C) 7 (D) 125.设3阶实对称矩阵A 与矩阵B = ⎪⎪⎪⎭⎫ ⎝⎛-200010001合同,则二次型x T Ax 的规范形为( ).(A) 2322212z z z ++- (B) 232221z z z ++- (C) 232221z z z +- (D) 232221z z z -+ 三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1.设矩阵A ,B ,C 为同阶方阵,则(ABC )T = A T B T C T . ( ) 2.设A 为3阶方阵,且已知|-2A | = 2,则|A | = -1. ( )3.设A 为m×n 矩阵,则齐次线性方程组Ax = 0仅有零解的充分必要条件是A 的列向量组线性无关. ( )4.设A 为3阶矩阵,且已知|3A+2E | = 0,则A 必有一个特征值为32. ( )5.二次型312123222132142),,(x x x x x x x x x x f ++++=的矩阵为⎪⎪⎪⎭⎫ ⎝⎛104012421. ( )四、 (10分) 求4阶行列式1111112113114111的值. 五、(10分) 设2阶矩阵A 可逆,且A -1 = ⎪⎪⎭⎫⎝⎛2121b b a a ,对于矩阵P 1 = ⎪⎪⎭⎫⎝⎛1021,P 2 = ⎪⎪⎭⎫⎝⎛0110,令B = P 1AP 2,求B -1.六、(10分) 设向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=31111α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=15312α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+-=21233t α,⎪⎪⎪⎪⎪⎭⎫⎝⎛--=t 10624α,试确定当t 为何值时,向量组α1,α2,α3,α4线性相关,并在线性相关时求它的一个极大线性无关组.七、(15分) 设线性方程组⎪⎩⎪⎨⎧-=++-=++-=++223321321321ax x x x ax x a x x x(1) 问a 为何值时,方程组有无穷多个解.(2) 当方程组有无穷多个解时,求出其通解(要求用它的一个特解和导出组的基础解系表示).八、(10分) 设p1,p2依次为n阶矩阵A的属于特征值λ1,λ2的特征向量,且λ1 ≠λ2. 证明p1- p2不是A的特征向量.。
西南大学《线性代数》网上作业及参考答案
===================================================================================================1:[论述题]线性代数模拟试题三参考答案:线性代数模拟试题三参考答案 1:[论述题]线性代数模拟试题四参考答案:线性代数模拟试题四参考答案 1:[论述题]线性代数模拟试题五参考答案:线性代数模拟试题五参考答案 1:[论述题]线性代数模拟试题六 一、填空题(每小题3分,共15分) 1. 行列式332313322212312111b a b a b a b a b a b a b a b a b a = ( ). 2. 设A 是4×3矩阵,R (A ) = 2,若B = ⎪⎪⎪⎭⎫ ⎝⎛300020201,则R (AB ) = ( ).3. 设矩阵A = ⎪⎪⎪⎭⎫⎝⎛54332221t ,若齐次线性方程组Ax = 0有非零解,则数t = ( ).4. 已知向量,121,3012⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=k βαα与β的内积为2,则数k = ( ).5. 已知二次型232221321)2()1()1(),,(x k x k x k x x x f -+-++=正定,则数k 的取值范围为( ).二、单项选择题(每小题3分,共15分) 1. 设A 为m ×n 矩阵,B 为n ×m 矩阵,m ≠n , 则下列矩阵中为n 阶矩阵的是( ). (A) B T A T (B) A T B T (C) ABA (D) BAB2. 向量组α1,α2,…,αS (s >2)线性无关的充分必要条件是( ). (A) α1,α2,…,αS 均不为零向量(B) α1,α2,…,αS 中任意两个向量不成比例 (C) α1,α2,…,αS 中任意s -1个向量线性无关(D) α1,α2,…,αS 中任意一个向量均不能由其余s -1个向量线性表示===================================================================================================3. 设3元线性方程组Ax = b ,A 的秩为2,η1,η2,η3为方程组的解,η1 + η2 = (2,0,4)T ,η1+ η3 =(1,-2,1)T ,则对任意常数k ,方程组Ax = b 的通解为( ).(A) (1,0,2)T + k (1,-2,1)T (B) (1,-2,1)T + k (2,0,4)T (C) (2,0,4)T + k (1,-2,1)T (D) (1,0,2)T + k (1,2,3)T 4. 设3阶方阵A 的秩为2,则与A 等价的矩阵为( ).(A) ⎪⎪⎪⎭⎫ ⎝⎛000000111(B) ⎪⎪⎪⎭⎫⎝⎛000110111(C) ⎪⎪⎪⎭⎫ ⎝⎛000222111(D) ⎪⎪⎪⎭⎫ ⎝⎛3332221115. 二次型f (x 1,x 2,x 3,x 4,)=43242322212x x x x x x ++++的秩为( ).(A) 1 (B) 2 (C) 3 (D) 4三、判断题(正确的打“√”,错误的打“×”,每小题3分,共15分)1. 设A 为n 阶方阵,n ≥2,则|-5A |= -5|A |. ( )2. 设行列式D =333231232221131211a a a a a a a a a = 3,D 1=333231312322212113121111252525a a a a a a a a a a a a +++,则D 1的值为5. ( ) 3. 设A = ⎪⎪⎭⎫⎝⎛4321, 则|A *| = -2. ( )4. 设3阶方阵A 的特征值为1,-1,2,则E - A 为可逆矩阵. ( )5. 设λ = 2是可逆矩阵A 的一个特征值,则矩阵(A 2)-1必有一个特征值等于41. ( ) 四、(10分) 已知矩阵A = ⎪⎪⎪⎭⎫⎝⎛-210011101,B =⎪⎪⎪⎭⎫⎝⎛410011103, (1) 求A 的逆矩阵A -1. (2) 解矩阵方程AX = B .===================================================================================================五、(10分)设向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=42111α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=21302α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=147033α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=02114α,求向量组的秩和一个极大线性无关组,并将其余向量用该极大线性无关组线性表示.六、(10分) 求线性方程组⎪⎩⎪⎨⎧=++=+++=+++322023143243214321x x x x x x x x x x x 的通解(要求用它的一个特解和导出组的基础解系表示)七、(15分) 用正交变换化二次型f (x 1, x 2, x 3)=2331214x x x x +-为标准形,并写出所用的正交变换.八、(10分) 设a ,b ,c 为任意实数,证明向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1111a α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=0112b α,⎪⎪⎪⎪⎪⎭⎫⎝⎛=0013c α,线性无关.参考答案:线性代数模拟试题六参考答案 一、填空题1. 0.2. 23.2.4.32. 5. k > 2. 二、单项选择题1(B). 2(D). 3(D). 4(B). 5(C). 三、判断题1. (⨯). 2(⨯). 3(√). 4(⨯). 5(√).===================================================================================================四、Solution (1)由于⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛-+-100210011110001101100210010011001101211r r⎪⎪⎪⎭⎫ ⎝⎛-----→⎪⎪⎪⎭⎫ ⎝⎛----→+-++111100122010112001111100011110001101132332111r r r r r r ⎪⎪⎪⎭⎫ ⎝⎛-----→-11110012201011200121r ,因此,有⎪⎪⎪⎭⎫ ⎝⎛-----=-1111221121A .(2) 因为B AX =,所以⎪⎪⎪⎭⎫⎝⎛-----=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-----==-3222342254100111031111221121B A X .五、Solution 因为()⎪⎪⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎪⎪⎭⎫⎝⎛--=+-+400027120330130101424271210311301,,,4321214321r r r r αααα⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→↔+--+-00001000011013011000000001101301100001100110130143324231141312r r r r r r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛→+-0000100001100301131r r , 于是,421,,ααα是极大无关组且2133ααα+=.===================================================================================================六、Solution 将增广矩阵B 化为行最简形得⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛=+-322103221011111322100112311111213r r B⎪⎪⎪⎭⎫ ⎝⎛-------→⎪⎪⎪⎭⎫ ⎝⎛----→++000003221021101000003221011111123211r r r r ⎪⎪⎪⎭⎫ ⎝⎛---→-00000322102110121r , 这时,可选43,x x 为自由未知量.令0,043==x x 得特解⎪⎪⎪⎪⎪⎭⎫⎝⎛-=0032*η.分别令⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛10,0143x x 得基础解系⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=1021,012121ξξ. 原线性方程组的通解为⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=00321021012121k k x ,其中21,k k 为任意常数.七、Solution 所给二次型的矩阵为⎪⎪⎪⎭⎫⎝⎛--=102000201A ,)3)(1(122110200201||λλλλλλλλλλ-+=-----=-----=-E A ,===================================================================================================所以A 的特征值为-1,0,3.当1-=λ时,齐次线性方程组=+x E A )(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛=1011ξ,单位化得⎪⎪⎪⎪⎪⎭⎫⎝⎛=210211p . 当0=λ时,齐次线性方程组=-x E A )0(0的基础解系为⎪⎪⎪⎭⎫⎝⎛=0102ξ,单位化得⎪⎪⎪⎭⎫ ⎝⎛=0102p .当3=λ时,齐次线性方程组=-x E A )3(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛-=1013ξ,单位化得⎪⎪⎪⎪⎪⎭⎫⎝⎛-=210213p .取()⎪⎪⎪⎪⎪⎭⎫⎝⎛-==2102101021021,,321p p p P ,在正交变换Py x =下得二次型的标准型为23213y y f +-=.===================================================================================================八、Proof 因为()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛=+-+-001010100001011100001011111,,341311321c b a c b a c b ar r r r ααα ⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→↔↔↔+-+-+-00010*********0000010001001010000100433241212324r r r r r r r cr r br r ar , 于是321,,ααα的秩为3,所以321,,ααα线性无关.1:[论述题]一、填空题(每小题3分,共15分)1. 设A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤411023, B =,010201⎢⎣⎡⎥⎦⎤则AB = ⎪⎪⎪⎭⎫⎝⎛. 2. 设A 为33⨯矩阵, 且方程组Ax = 0的基础解系含有两个解向量, 则R (A ) = ( ). 3. 已知A 有一个特征值-2, 则B = A 2+ 2E 必有一个特征值( ). 4. 若α=(1, -2, x )与),1,2(y =β正交, 则x y = ( ). 5. 矩阵A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-301012121所对应的二次型是( ).二、单选题(每小题3分,共15分)1. 如果方程⎪⎩⎪⎨⎧=+=-=-+0404033232321kx x x x x kx x 有非零解,则k = ( ).(A) -2 (B) -1===================================================================================================(C) 1 (D) 22. 设A 为n 阶可逆方阵,下式恒正确的是( ). (A) (2A )-1 = 2A -1 (B) (2A )T = 2A T (C) [(A -1)-1]T = [(A T )-1]T (D) [(A T )T ]-1 = [(A -1)-1]T3. 设β可由向量α1 = (1,0,0),α2 = (0,0,1)线性表示,则下列向量中β只能是( ). (A) (2,1,1) (B) (-3,0,2) (C) (1,1,0) (D) (0,-1,0)4. 向量组α1 ,α2 …,αs 的秩不为s (s 2≥)的充分必要条件是( ). (A) α1 ,α2 …,αs 全是非零向量 (B) α1 ,α2 …,αs 全是零向量(C) α1 ,α2 …,αs 中至少有一个向量可由其它向量线性表出 (D) α1 ,α2 …,αs 中至少有一个零向量 5. 与矩阵A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010001相似的是( ).(A) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100020001(B) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010011(C) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200011001(D) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100020101三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1. 设A 为三阶方阵且|A | = -2,则|3A T A | = -108. ( )2. 设A 为四阶矩阵,且|A | = 2,则|A *| = 23. ( ) 3. 设A 为m n ⨯矩阵,线性方程组Ax = 0仅有零解的充分必要条件是A 的行向量组线性无关. ( )4. 设A 与B 是两个相似的n 阶矩阵,则E B E A λλ-=-. ( )5. 设二次型,),(23222132,1x x x x x x f +-=则),(32,1x x x f 负定. ( )四、 (10分) 计算四阶行列式1002210002100021的值.===================================================================================================五、(10分) 设A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-200200011, B =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤300220011,且A , B , X 满足E X B A B E =--T T 1)( . 求X , X .1-六、(10分) 求矩阵A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-311111002的特征值和特征向量.七、(15分) 用正交变换化二次型322322213214332),,(x x x x x x x x f +++=为标准型,并写出所作的变换.八、(10分) 设21,p p 是矩阵A 的不同特征值的特征向量. 证明21p p +不是A 的特征向量.参考答案: 一、填空题1.⎪⎪⎪⎭⎫ ⎝⎛241010623. 2. 1. 3. 6. 4. 0.5. 2322312121324x x x x x x x +-++. 二、单项选择题1(B). 2(B) . 3(B) . 4(C) . 5(A) . 三、判断题1.( ⨯). 2(√). 3(⨯). 4(√). (5) (⨯). 四、Solution 按第1列展开,得===================================================================================================210021002)1(2100210021)1(110022100021000211411++-⋅+-⋅= 158)1(21-=⋅-⋅+=.五、Solution 由于E X B A B E =--T T 1)(,即[]E X A B E B =--T1)(,进而()E X A B =-T ,所以()[]1T --=A B X .因为()⎪⎪⎪⎭⎫ ⎝⎛=-100020002TA B ,所以⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=-100021000211000200021X . 六、Solution 因为λλλλλλλ----=----=-3111)2(31111102||E A321)2(3111)2(3212)2(12λλλλλλλ-=--=----=+c c , 所以A 的特征值为2.对于2=λ时,齐次线性方程组=-x E A )2(0与0321=+-x x x 同解,其基础解系为⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=101,01121ξξ,于是,A 的对应于2的特征向量为⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛10101121k k ,其中21,k k 不全为0. 七、Solution 所给二次型的矩阵⎪⎪⎪⎭⎫ ⎝⎛=320230002A .===================================================================================================因为λλλλλλλ---=---=-3223)2(32023002||E A )1)(5)(2(3121)5)(2(3525)2(121λλλλλλλλλλ---=---=----=+c c , 所以A 的特征值为1, 2, 5.当1=λ时,齐次线性方程组=-x E A )(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛-=1101ξ,单位化得⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=212101p . 当2=λ时,齐次线性方程组=-x E A )2(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛=0012ξ,单位化得⎪⎪⎪⎭⎫ ⎝⎛=0012p .当5=λ时,齐次线性方程组=-x E A )5(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛=1103ξ,单位化得⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=212103p .===================================================================================================取()⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-==2102121021010,,321p p p P ,在正交变换Py x =下得二次型的标准型为23222152y y y f ++=. 八、Proof 令21,p p 是A 的对应于不同特征值21,λλ的特征向量,即111p Ap λ=,222p Ap λ=.假设21p p +是A 的对应于λ的特征向量,即)()(2121p p p p A +=+λ. 由于22112121)(p p Ap Ap p p A λλ+=+=+,所以)(212211p p p p +=+λλλ,于是=-+-2211)()(p p λλλλ0. 根据性质4,知021=-=-λλλλ,进而21λλ=,矛盾.。
西南交大线性代数习题参考答案
西南交大线性代数习题参考答案第一章 行列式§1 行列式的概念1. 填空(1) 排列6427531的逆序数为 ,该排列为 排列。
(2) i = ,j = 时, 排列1274i 56j 9为偶排列。
(3) n 阶行列式由 项的代数和组成,其中每一项为行列式中位于不同行不同列的 n 个元素的乘积,若将每一项的各元素所在行标按自然顺序排列,那么列标构成一个n 元排列。
若该排列为奇排列,则该项的符号为 号;若为偶排列,该项的符号为 号。
(4) 在6阶行列式中, 含152332445166aa a a a a 的项的符号为 ,含324314516625a a a a a a的项的符号为 。
2. 用行列式的定义计算下列行列式的值(1)1122233233000a a a a a解: 该行列式的3!项展开式中,有 项不为零,它们分别为 ,所以行列式的值为 。
(2)12,121,21,11,12,100000n n n nn n n n n n n n nna a a a a a a a a a ------解:该行列式展开式中唯一不可能为0的项是 ,而它的逆序数是 ,故行列式值为 。
3. 证明:在全部n 元排列中,奇排列数与偶排列数相等。
证明:n 元排列共有!n 个,设其中奇排列数有1n 个,偶排列数为2n 个。
对于任意奇排列,交换其任意两个元的位置,就变成偶排列,故一个奇排列与许多偶排列对应,所以有1n 2n ,同理得2n1n ,所以1n 2n 。
4. 若一个n 阶行列式中等于0的元素个数比nn-2多,则此行列式为0,为什么?5. n 阶行列式中,若负项的个数为偶数,则n 至少为多少?(提示:利用3题的结果)6. 利用对角线法则计算下列三阶行列式 (1)21141183---(2)222111a b c a b c§2 行列式的性质1.利用行列式的性质计算系列行列式。
(1) 2141 3121 1232 5062-(2)100 110 011 001abcd ---(3)ab ac ae bd cd de bf cf ef ---2. 证明下列恒等式 (1)()33ax byay bzaz bxxy z D ay bz az bx ax by a b yz x az bx ax by ay bz zxy+++=+++=++++(提示:将行列式按第一列分解为两个行列式之和,再利用性质证明)(2) ()()()()()()()()()()()()22222222222222221231230123123a a a a b b b b cc c cd d d d ++++++=++++++(3)1111221100001000001n n n nnn n xx x a x a x a x a a a a x a ------=++++-+(提示:从最后一列起,后列的x 倍加到前一列)3. 已知四阶行列式D 的第三行元素分别为:1,0,2,4-;第四行元素的对应的余子式依次是2,10,a ,4,求a 的值。
线性代数西南交大答案
线性代数西南交大答案【篇一:西南交大线性代数期末试题】ss=txt>线性代数b期末试题(请考生注意本试卷共5页)一、判断题(正确填t,错误填f。
每小题2分,共10分)1. a是n阶方阵,??r,则有?a??a。
2. a,b是同阶方阵,且ab?0,则(ab)?1?b?1a?1。
3.如果a与b等价,则a的行向量组与b的行向量组等价。
4.若a,b均为n阶方阵,则当a?b时,a,b 一定不相似。
5.n维向量组??1,?2,?3,?4?线性相关,则??1,?2,?3?也线性相关。
二、单项选择题(每小题3分,共15分) 1.下列矩阵中,()不是初等矩阵。
001(a)??010100??100??100?(b)?000?? (c) ??020??(d) ??01?2??1000100010012.设向量组?1,?2,?3线性无关,则下列向量组中线性无关的是((a)?1??2,?2??3,?3??1 (b)?1,?2,?3??1(c)?1,?2,2?1?3?2 (d)?2,?3,2?2??33.设a为n阶方阵,且a2?a?5e?0。
则(a?2e)?1?() (a) a?e (b) e?a (c) 113(a?e) (d) 3(a?e)))( ) ( )))。
(((4.设a为m?n矩阵,则有()。
(a)若m?n,则ax?b有无穷多解;(b)若m?n,则ax?0有非零解,且基础解系含有n?m个线性无关解向量;(c)若a有n阶子式不为零,则ax?b有唯一解;(d)若a有n阶子式不为零,则ax?0仅有零解。
5.若n阶矩阵a,b有共同的特征值,且各有n个线性无关的特征向量,则()(a)a与b相似(b)a?b,但|a-b|=0(c)a=b(d)a与b不一定相似,但|a|=|b|三、填空题(每小题4分,共20分)0121.nn?10。
12.a为3阶矩阵,且满足a?3,则a=______,3a*?。
10213.向量组?1??1?,?2??2?,?3??4?,?4??2?是线性(填相关1570或无关)的,它的一个极大线性无关组是。
西南大学网络教育线性代数作业
1、矩阵的伴随矩阵是()....2、矩阵A适合条件[ ]时,它的秩为r.. A中任何r+1列线性相关;. A中任何r列线性相关;. A中有r列线性无关;. A中线性无关的列向量最多有r个.3、若齐次线性方程组有非零解,则必须满足[ ] . k=4. k=-1.k≠-1且k≠4. k=-1或k=44、下列n(n>2)阶行列式的值必为零的是[ ].行列式主对角线上的元素全为零.该行列式为三角行列式.行列式中零元素的个数多于n个.行列式中非零元素的个数少于n个5、下列各矩阵中,初等矩阵是[ ]。
....6、n阶矩阵A与对角矩阵相似的充分必要条件是[ ]。
. A有n个特征值. A有n个线性无关的特征向量. A的行列式不等于零. A的特征多项式没有重根7、A,B是n阶矩阵,则的充分必要条件是[ ] . AB=BA. A=0. B=0. A=B8、设n元齐次线性方程组Ax=0,若R(A)=r<n,则基础解系[ ]。
.惟一存在.共有n-r个.含有n-r个向量.含有无穷多个向量9、设A,B均为n阶可逆矩阵,则[ ]。
. A+B可逆. kA可逆(k为常数). AB可逆. (AB)-1=A-1B-110、行列式D=0的必要条件是[ ]。
. D中有两行(列)元素对应成比例. D中至少有一行各元素可用行列式的性质化为0. D中存在一行元素全为0. D中任意一行各元素可用行列式的性质化为0.11、的充分必要条件是()....12、A与B是两个相似的n阶矩阵,则().存在非奇异矩阵P,使..存在对角矩阵D,使A与B都相似于D.13、一个n维向量组(s>1)线性相关的充要条件是().含有零向量;.有一个向量是其余向量的线性组合;.有两个向量的对应分量成比例;.每一个向量是其余向量的线性组合.14、设A ,B均为n阶可逆矩阵,则(). A+B可逆. kA可逆(k为常数). AB可逆.15、两个n阶初等矩阵的乘积为().初等矩阵.单位矩阵.不可逆矩阵.可逆矩阵16、若A=,B=,其中是的代数余子式,则()。
西南交大工程数学Ⅰ4次离线作业
工程数学Ⅰ第1次离线作业三、主观题(共15道小题)29.求5元排列52143的逆序数。
解答:在排列52143中,排在5之后,并小于5的数有4个;排在2之后,并小于2的数有1个;排在1之后,并小于1的数有0个;排在4之后,并小于4的数有1个。
所以30.计算行列式解答:D的特点是:每列(行)元素之和都等于6容易发现,那么,把二、三、四行同时加到第一行,并提出第一行的公因子6,便得到由于上式右端行列式第一行的元素都等于1,那么让二、三、四行都减去第一行得中元素a求行列式和b的代数余子式。
31.解答:1 1=行列式展开方法=32.计算行列式解答:D,那么,把二、三、四行同时加到第一的特点是:每列元素之和都等于6容易发现,便得到行,并提出第一行的公因子6,那么让二、三、四列都减去第一列,第由于上式右端行列式第一行的元素都等于1一行就出现了三个零元素,即2 2求,设33.解答:34.,求解答:35.使之满足求矩阵X解答:3 3解矩阵方程,其中36.解答:AAB)作初等行变换是可逆矩阵。
对矩阵(,所以首先计算出,所以。
= 4)所以秩(A37.解答:4 438.求向量组解答:设39.5 5求解非齐次线性方程组解答:对增广矩阵施行初等行变换化成简单阶梯形矩阵40.设解答:6 6若41.设,求A的特征值和特征向量。
解答:7 742.,将对称矩阵求一个正交矩阵P 化为对角矩阵。
解答:8 8二次满足什么条件时,,已知二次型问:43.是负定的。
f 满足什么条件时,二次型型 f 是正定的;解答:的矩阵为二次型 f9 9的各阶主子式得计算 A2次离线作业工程数学Ⅰ第)14道小题三、主观题(共中的项。
D)是否是五阶行列式1判断();(230.5)不是;)是;(12解答:(31.的根。
求设解答:,那么,把二、三、四列同时加到行列式特点是:每行元素之和都等于 a+b+c+x 第 a+b+c+x,便得到一列,并提出第一列的公因子10 10倍得-b、-c、二、三、四列-a依次减去第一列的-a32.计算四阶行列式解答:的第一行元素的代数余子式依次为D由行列式的定义计算得33.用克莱姆法则解方程组解答:11 1134.解答:35.解答:化为阶梯形矩阵和简单阶梯形矩阵。
西南大学《线性代数》网上作业及参考答案
===================================================================================================1:[论述题]线性代数模拟试题三参考答案:线性代数模拟试题三参考答案 1:[论述题]线性代数模拟试题四参考答案:线性代数模拟试题四参考答案 1:[论述题]线性代数模拟试题五参考答案:线性代数模拟试题五参考答案 1:[论述题]线性代数模拟试题六 一、填空题(每小题3分,共15分) 1. 行列式332313322212312111b a b a b a b a b a b a b a b a b a = ( ). 2. 设A 是4×3矩阵,R (A ) = 2,若B = ⎪⎪⎪⎭⎫ ⎝⎛300020201,则R (AB ) = ( ).3. 设矩阵A = ⎪⎪⎪⎭⎫⎝⎛54332221t ,若齐次线性方程组Ax = 0有非零解,则数t = ( ).4. 已知向量,121,3012⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=k βαα与β的内积为2,则数k = ( ).5. 已知二次型232221321)2()1()1(),,(x k x k x k x x x f -+-++=正定,则数k 的取值范围为( ).二、单项选择题(每小题3分,共15分) 1. 设A 为m ×n 矩阵,B 为n ×m 矩阵,m ≠n , 则下列矩阵中为n 阶矩阵的是( ). (A) B T A T (B) A T B T (C) ABA (D) BAB2. 向量组α1,α2,…,αS (s >2)线性无关的充分必要条件是( ). (A) α1,α2,…,αS 均不为零向量(B) α1,α2,…,αS 中任意两个向量不成比例 (C) α1,α2,…,αS 中任意s -1个向量线性无关(D) α1,α2,…,αS 中任意一个向量均不能由其余s -1个向量线性表示===================================================================================================3. 设3元线性方程组Ax = b ,A 的秩为2,η1,η2,η3为方程组的解,η1 + η2 = (2,0,4)T ,η1+ η3 =(1,-2,1)T ,则对任意常数k ,方程组Ax = b 的通解为( ).(A) (1,0,2)T + k (1,-2,1)T (B) (1,-2,1)T + k (2,0,4)T (C) (2,0,4)T + k (1,-2,1)T (D) (1,0,2)T + k (1,2,3)T 4. 设3阶方阵A 的秩为2,则与A 等价的矩阵为( ).(A) ⎪⎪⎪⎭⎫ ⎝⎛000000111(B) ⎪⎪⎪⎭⎫⎝⎛000110111(C) ⎪⎪⎪⎭⎫ ⎝⎛000222111(D) ⎪⎪⎪⎭⎫ ⎝⎛3332221115. 二次型f (x 1,x 2,x 3,x 4,)=43242322212x x x x x x ++++的秩为( ).(A) 1 (B) 2 (C) 3 (D) 4三、判断题(正确的打“√”,错误的打“×”,每小题3分,共15分)1. 设A 为n 阶方阵,n ≥2,则|-5A |= -5|A |. ( )2. 设行列式D =333231232221131211a a a a a a a a a = 3,D 1=333231312322212113121111252525a a a a a a a a a a a a +++,则D 1的值为5. ( ) 3. 设A = ⎪⎪⎭⎫⎝⎛4321, 则|A *| = -2. ( )4. 设3阶方阵A 的特征值为1,-1,2,则E - A 为可逆矩阵. ( )5. 设λ = 2是可逆矩阵A 的一个特征值,则矩阵(A 2)-1必有一个特征值等于41. ( ) 四、(10分) 已知矩阵A = ⎪⎪⎪⎭⎫⎝⎛-210011101,B =⎪⎪⎪⎭⎫⎝⎛410011103, (1) 求A 的逆矩阵A -1. (2) 解矩阵方程AX = B .===================================================================================================五、(10分)设向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=42111α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=21302α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=147033α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=02114α,求向量组的秩和一个极大线性无关组,并将其余向量用该极大线性无关组线性表示.六、(10分) 求线性方程组⎪⎩⎪⎨⎧=++=+++=+++322023143243214321x x x x x x x x x x x 的通解(要求用它的一个特解和导出组的基础解系表示)七、(15分) 用正交变换化二次型f (x 1, x 2, x 3)=2331214x x x x +-为标准形,并写出所用的正交变换.八、(10分) 设a ,b ,c 为任意实数,证明向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1111a α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=0112b α,⎪⎪⎪⎪⎪⎭⎫⎝⎛=0013c α,线性无关.参考答案:线性代数模拟试题六参考答案 一、填空题1. 0.2. 23.2.4.32. 5. k > 2. 二、单项选择题1(B). 2(D). 3(D). 4(B). 5(C). 三、判断题1. (⨯). 2(⨯). 3(√). 4(⨯). 5(√).===================================================================================================四、Solution (1)由于⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛-+-100210011110001101100210010011001101211r r⎪⎪⎪⎭⎫ ⎝⎛-----→⎪⎪⎪⎭⎫ ⎝⎛----→+-++111100122010112001111100011110001101132332111r r r r r r ⎪⎪⎪⎭⎫ ⎝⎛-----→-11110012201011200121r ,因此,有⎪⎪⎪⎭⎫ ⎝⎛-----=-1111221121A .(2) 因为B AX =,所以⎪⎪⎪⎭⎫⎝⎛-----=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-----==-3222342254100111031111221121B A X .五、Solution 因为()⎪⎪⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎪⎪⎭⎫⎝⎛--=+-+400027120330130101424271210311301,,,4321214321r r r r αααα⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→↔+--+-00001000011013011000000001101301100001100110130143324231141312r r r r r r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛→+-0000100001100301131r r , 于是,421,,ααα是极大无关组且2133ααα+=.===================================================================================================六、Solution 将增广矩阵B 化为行最简形得⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛=+-322103221011111322100112311111213r r B⎪⎪⎪⎭⎫ ⎝⎛-------→⎪⎪⎪⎭⎫ ⎝⎛----→++000003221021101000003221011111123211r r r r ⎪⎪⎪⎭⎫ ⎝⎛---→-00000322102110121r , 这时,可选43,x x 为自由未知量.令0,043==x x 得特解⎪⎪⎪⎪⎪⎭⎫⎝⎛-=0032*η.分别令⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛10,0143x x 得基础解系⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=1021,012121ξξ. 原线性方程组的通解为⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=00321021012121k k x ,其中21,k k 为任意常数.七、Solution 所给二次型的矩阵为⎪⎪⎪⎭⎫⎝⎛--=102000201A ,)3)(1(122110200201||λλλλλλλλλλ-+=-----=-----=-E A ,===================================================================================================所以A 的特征值为-1,0,3.当1-=λ时,齐次线性方程组=+x E A )(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛=1011ξ,单位化得⎪⎪⎪⎪⎪⎭⎫⎝⎛=210211p . 当0=λ时,齐次线性方程组=-x E A )0(0的基础解系为⎪⎪⎪⎭⎫⎝⎛=0102ξ,单位化得⎪⎪⎪⎭⎫ ⎝⎛=0102p .当3=λ时,齐次线性方程组=-x E A )3(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛-=1013ξ,单位化得⎪⎪⎪⎪⎪⎭⎫⎝⎛-=210213p .取()⎪⎪⎪⎪⎪⎭⎫⎝⎛-==2102101021021,,321p p p P ,在正交变换Py x =下得二次型的标准型为23213y y f +-=.===================================================================================================八、Proof 因为()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛=+-+-001010100001011100001011111,,341311321c b a c b a c b ar r r r ααα ⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→↔↔↔+-+-+-00010*********0000010001001010000100433241212324r r r r r r r cr r br r ar , 于是321,,ααα的秩为3,所以321,,ααα线性无关.1:[论述题]一、填空题(每小题3分,共15分)1. 设A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤411023, B =,010201⎢⎣⎡⎥⎦⎤则AB = ⎪⎪⎪⎭⎫⎝⎛. 2. 设A 为33⨯矩阵, 且方程组Ax = 0的基础解系含有两个解向量, 则R (A ) = ( ). 3. 已知A 有一个特征值-2, 则B = A 2+ 2E 必有一个特征值( ). 4. 若α=(1, -2, x )与),1,2(y =β正交, 则x y = ( ). 5. 矩阵A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-301012121所对应的二次型是( ).二、单选题(每小题3分,共15分)1. 如果方程⎪⎩⎪⎨⎧=+=-=-+0404033232321kx x x x x kx x 有非零解,则k = ( ).(A) -2 (B) -1===================================================================================================(C) 1 (D) 22. 设A 为n 阶可逆方阵,下式恒正确的是( ). (A) (2A )-1 = 2A -1 (B) (2A )T = 2A T (C) [(A -1)-1]T = [(A T )-1]T (D) [(A T )T ]-1 = [(A -1)-1]T3. 设β可由向量α1 = (1,0,0),α2 = (0,0,1)线性表示,则下列向量中β只能是( ). (A) (2,1,1) (B) (-3,0,2) (C) (1,1,0) (D) (0,-1,0)4. 向量组α1 ,α2 …,αs 的秩不为s (s 2≥)的充分必要条件是( ). (A) α1 ,α2 …,αs 全是非零向量 (B) α1 ,α2 …,αs 全是零向量(C) α1 ,α2 …,αs 中至少有一个向量可由其它向量线性表出 (D) α1 ,α2 …,αs 中至少有一个零向量 5. 与矩阵A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010001相似的是( ).(A) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100020001(B) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010011(C) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200011001(D) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100020101三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1. 设A 为三阶方阵且|A | = -2,则|3A T A | = -108. ( )2. 设A 为四阶矩阵,且|A | = 2,则|A *| = 23. ( ) 3. 设A 为m n ⨯矩阵,线性方程组Ax = 0仅有零解的充分必要条件是A 的行向量组线性无关. ( )4. 设A 与B 是两个相似的n 阶矩阵,则E B E A λλ-=-. ( )5. 设二次型,),(23222132,1x x x x x x f +-=则),(32,1x x x f 负定. ( )四、 (10分) 计算四阶行列式1002210002100021的值.===================================================================================================五、(10分) 设A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-200200011, B =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤300220011,且A , B , X 满足E X B A B E =--T T 1)( . 求X , X .1-六、(10分) 求矩阵A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-311111002的特征值和特征向量.七、(15分) 用正交变换化二次型322322213214332),,(x x x x x x x x f +++=为标准型,并写出所作的变换.八、(10分) 设21,p p 是矩阵A 的不同特征值的特征向量. 证明21p p +不是A 的特征向量.参考答案: 一、填空题1.⎪⎪⎪⎭⎫ ⎝⎛241010623. 2. 1. 3. 6. 4. 0.5. 2322312121324x x x x x x x +-++. 二、单项选择题1(B). 2(B) . 3(B) . 4(C) . 5(A) . 三、判断题1.( ⨯). 2(√). 3(⨯). 4(√). (5) (⨯). 四、Solution 按第1列展开,得===================================================================================================210021002)1(2100210021)1(110022100021000211411++-⋅+-⋅= 158)1(21-=⋅-⋅+=.五、Solution 由于E X B A B E =--T T 1)(,即[]E X A B E B =--T1)(,进而()E X A B =-T ,所以()[]1T --=A B X .因为()⎪⎪⎪⎭⎫ ⎝⎛=-100020002TA B ,所以⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=-100021000211000200021X . 六、Solution 因为λλλλλλλ----=----=-3111)2(31111102||E A321)2(3111)2(3212)2(12λλλλλλλ-=--=----=+c c , 所以A 的特征值为2.对于2=λ时,齐次线性方程组=-x E A )2(0与0321=+-x x x 同解,其基础解系为⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=101,01121ξξ,于是,A 的对应于2的特征向量为⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛10101121k k ,其中21,k k 不全为0. 七、Solution 所给二次型的矩阵⎪⎪⎪⎭⎫ ⎝⎛=320230002A .===================================================================================================因为λλλλλλλ---=---=-3223)2(32023002||E A )1)(5)(2(3121)5)(2(3525)2(121λλλλλλλλλλ---=---=----=+c c , 所以A 的特征值为1, 2, 5.当1=λ时,齐次线性方程组=-x E A )(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛-=1101ξ,单位化得⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=212101p . 当2=λ时,齐次线性方程组=-x E A )2(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛=0012ξ,单位化得⎪⎪⎪⎭⎫ ⎝⎛=0012p .当5=λ时,齐次线性方程组=-x E A )5(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛=1103ξ,单位化得⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=212103p .===================================================================================================取()⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-==2102121021010,,321p p p P ,在正交变换Py x =下得二次型的标准型为23222152y y y f ++=. 八、Proof 令21,p p 是A 的对应于不同特征值21,λλ的特征向量,即111p Ap λ=,222p Ap λ=.假设21p p +是A 的对应于λ的特征向量,即)()(2121p p p p A +=+λ. 由于22112121)(p p Ap Ap p p A λλ+=+=+,所以)(212211p p p p +=+λλλ,于是=-+-2211)()(p p λλλλ0. 根据性质4,知021=-=-λλλλ,进而21λλ=,矛盾.。
西安交大网院《线性代数》作业集答案(魏战线)
线性代数作业集参考答案 第一章1.C .2.B .3.C .4. D .5. D .6.)(2b a -.7. 5.8. 1=λ或0=μ.9. 48. 10. 0. 11. (1)和(3)不正确,其余正确. 12. (1) );2()1(2+---a a λλ (2) ;)1)(3(3-+x x (3) 31; (4) 40; (5) ;142- (6) ).)((22221111c b d a c b d a --13. 3,2,4321-===x x x . 14. 1=k 或2=k . 16. 注意1D 与2D 的第4行对应元素有相同的余子式.第二章1. D.2. C.3. D.4. C.5. D.6. ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--3100013025. 7. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡10042032121. 8. 24. 9. 1-n a . 10. 2-. 11. (1)和(4)不正确,其余正确. 12. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--3351371088. 13. O A A A A A A A =-=-=--)2(2,2212n n n . 14. 6. 15. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----1161042211. 16. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-=-201032126)2(1I A A B . 17. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-=-011321330)2(1A I AB . 18. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100020003. 19. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-=-10111001141)2(211A IB .20.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+=-200040002)(41I A B . 21. ⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡----++68468327322731242124213111111313.22. 2716-. 23. 3. 25. )(51I A +-. 26. 利用:方阵P 可逆P ⇔可以写成若干个初等矩阵的乘积.第三章1. D.2. C.3. D.4. B.5. B.6. 3≠t .7. 8-=t .8. 3.9. 1. 10. 3. 11. (1)和(5)不正确,其余正确. 12. 2. 13. 32123021αααβ++-= 14. 当1≠a 时, 3211113212αααβ-++---+---=a b a b a a a b ;当1=a 且1-≠b 时,β不能由321,,ααα线性表示;当1=a 且1-=b 时,321)21()1(αααβc c c +-++-= (c 为任意常数). 15. (1)4321212432,2ααααβ--++--+=≠p pp p p ; (2) ,2=p 秩为3,321,,ααα是一个极大无关组. 16. 1-=a 时线性相关,1-≠a 时线性无关. 17. 秩为3,421,,ααα为一个极大无关组,且有2152132,3αααααα+=+=. 19.利用定义,及0A α0b A β=≠=j ,)3,2,1(=j . 20. 利用整体组与部分组线性相关性的关系.第四章1. A.2. D.3. B.4. B.5. C.6. 2.7.8. 8.415. 9. 1. 10. 0. 11. (5)不正确,其余正确. 12. (1) T T )1002(,)0,7,1,19(21,,,==ξξ,通解2211ξξx c c +=;(2) ,)0,1,6,8(1T -=ξT )1,0,5,7(2-=ξ,通解2211ξξx c c +=. 13. (1) 当8-=a 时,基础解系为T T )1,0,2,1(,)0,1,2,4(21--=-=ξξ,通解2211ξξx c c +=; 当8-≠a 时,基础解系为T )1,0,2,1(1--=ξ,通解ξx c =. (2) 当且仅当0=a 或6-=a 时有非零解,当0=a 时基础解系为T T )1,0,1(,)0,1,1(21-=-=ξξ,通解;2211ξξx c c +=当6-=a 时基础解系为T )3,2,1(=ξ,2通解ξx c =. 14. .)1,0,1,0()0,1,1,1(,121T T c c a -+-==x15. (1) TT T c c )1,0,7,5()0,1,2,1()0,0,5,2(21-+-+-=x ; (2) TTTc c )1,27,0,4()0,7,1,9()0,14,0,17(21-+-+-=x . 16.(1) 当1-≠a 且3≠a 时有唯一解:;11,11,12321+=+-=++=a x a x a a x 当1-=a 时无解;当3=a 时通解为T T c )1,3,7()0,1,3(-+-=x ;(2) 当4-≠a 时有唯一解:,151+=b x,441042++++-=a b a ab x ;433+-=a bx 当4-=a 且0≠b 时无解;当4-=a 且0=b 时,通解T T c )1,2,0()0,1,1(-+-=x . 17. T T c )2,1,0,1()4,3,2,1(--+. 19. 利用定义及齐次线性方程组向量形式与矩阵形式的转化.第五章1. B.2. A.3. B.4. C.5. C.6.43. 7. 6. 8. 2,1=-=b a . 9. 1. 10. 3-. 11. (3)和(4)不正确,其余正确. 12. (1).)5,4(,2;)1,1(,721T T --==λλ(2).)0,1,1(,3;)1,2,0(,)0,1,1(,2321T T T =-==λλλ (3) ,2;)1,1,1(,121==λλT ;)3,3,2(T.)4,3,1(,33T =λ 13. (2) ;322,111231011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-- (3) ;121,227211113⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-- (4).332,010100021⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡- 14..62225020731⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---- 15..110110001,1,0⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-===P y x16. .3- 17..34 18. ;1,2==λk 或.41,1==λk 19. (1) ;105,122151⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡- (2) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--421,61213162031612131;(3) ;511,31620316121316121⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-- (4) .422,11011000221⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡- 20..11112)(,51,1111211⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-=-A AP P P ϕ22. 首先由正交矩阵定义得1-=A A T,两端取行列式并利用0)det(>A ,得1)det(=A ,再利用**1)det(1A A A A A ===-T(*A 为A 的伴随矩阵),比较两端对应元素.第六章1. A.2. C.3. C.4. A.5. D.6. 2.7. 22213y y +. 8. 2>a . 9. 3. 10. 32212322214252x x x x x x x -+++. 11. (3)和(4)不正确,其余正确.12. .11011000221,,52232221⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==++P Py x y y y 13. ,3,2==b a ⎥⎦⎤⎢⎣⎡-=111121P . 14. .21212222131⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=P 15. 6||<t . 16. 证明二次型x A A x )(T T 为正定的.模拟试题(一)参考答案与提示一、(1)、(2)、(4)、(7)、(8)不对,其余正确. 二、.111022135⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---- 三、.10- 四、.53147⎥⎦⎤⎢⎣⎡-- 五、,)1,1,1(T -=ξ通解,ξk x =其中k 为任意常数. 六、1≠λ且2-≠λ时有唯一解,2-≠λ时无解,1=λ时通解为T T T k k x )1,0,1()0,1,1()0,0,1(21-+-+=,其中21,k k 为任意常数. 七、,121==λλ.)1,1,1(,2;)1,0,0()0,1,2(3321T T T k k k --=+-λ 八、⎥⎦⎤⎢⎣⎡-=-433451,5202221P y y ,所求正交变换为⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡2121y y x x P . 九、设x 满足0Bx =,两端左乘A ,得0x =,即齐次线性方程组0Bx =只有零解.模拟试题(二)参考答案与提示一、(1) (A). (2) (C). (3) (C). (4) (C). (5) (D). 二、(1) 6-. (2) .2-n (3) 2. (4) ⎥⎦⎤⎢⎣⎡18104941. (5) 2. 三、(1) 30. (2) 1. (3) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----132122121. (4) ⎥⎦⎤⎢⎣⎡--51023. (5) T )0,1,2,3(1-=ξ, .,)1,30,4(22112ξξx ξc c T +=-= (6) 321,,ααα为一个极大无关组,秩为3,.23214αααα+-= (7) );0()1,0,0(,1111≠=k k T λ );0()0,1,1(,2222≠-=k k T λ).0()0,2,1(,3333≠-=k k T λA 可对角化.四、.)1,0,1,0()0,1,0,1()0,0,1,0(,321T T T c c a -+-+==x五、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-===11011000221,1,0P b a . 六、只要证明321,,βββ是0Ax =的3个线性无关解即可.。
西南大学[0044]线性代数大作业答案春季
0044 20201单项选择题1、....2、矩阵A与B相似,则下列说法不正确的是().style="text-indent:32px">A与B有相同的特征值... A = B..R(A) = R(B)3、....4、....5、....6、.必有r个列向量线性无关.任意r个列向量都构成最大线性无关组.任何一个列向量都可以由其它r个列向量线性表出.任意r个列向量线性无关7、.0.1..0或1..8、.2.4..19、. C. 必有一列向量可有其余列向量线性表示.必有两列元素对应成比例.任一列向量是其余列向量的线性组合.必有一列元素全为010、. D. A有n个互异特征值.A是实对称阵.A有n个线性无关的特征向量.A的特征向量两两正交判断题11、. A.√. B.×12、. A.√. B.×13、. A.√. B.×14、. A.√. B.×15、. A.√. B.×16、. A.√. B.×17、. A.√. B.×18、. A.√. B.×19、. A.√. B.×20、设A、B为两个不可逆的同阶方阵,则|A|=|B| (). A.√. B.×21、转置运算不改变方阵的行列式、秩和特征值. ( ) . A.√. B.×22、. A.√. B.×23、. A.√. B.×24、. A.√. B.×主观题25、参考答案:26、参考答案:27、设三阶方阵A的三个特征值为1,2,3,则|A + E| = ( ).参考答案:2428、参考答案:29、参考答案:30、参考答案:31、参考答案:k>132、参考答案:333、参考答案:34、参考答案:35、参考答案:36、参考答案:237、参考答案:38、设线性方程组A x =0,A是4×5阶矩阵,如果R(A)=3,则其解空间的维数为( ).参考答案:239、参考答案:40、参考答案:41、参考答案:42、参考答案:43、参考答案:44、参考答案:45、参考答案:46、参考答案:47、参考答案:48、2.参考答案:49、参考答案:50、参考答案:51、参考答案:52、1.参考答案:53、参考答案:54、参考答案:55、参考答案:56、参考答案:57、参考答案:58、参考答案:59、参考答案:60、参考答案:。
西交20春《线性代数》在线作业1参考答案
D.D
答案:A
5.{图}
A.A
B.B
C.C
D.D
答案:D
6.{图}
A.A
B.B
C.C
D.D
答案:C
7.{图}
A.A
B.B
C.C
D.D
答案:B
8.{图}
A.A
B.B
C.C
D.D
答案:C
9.{图}
A.A
B.B
C.C
D.D
答案:A
10.设某3阶行列式︱A︱的第二行元素分别为-1,2,3,对应的余子式分别为-3,-2,1,则此行列式︱A︱的值为( ).
48.{图}
答案:错误
49.{图}
答案:正确
50.{图}
答案:错误
以下内容可以删除:
(一)非标准劳动关系产生的原因
非标准劳动关系是从标准劳动关系发展而来。标准劳动关系是一种典型的劳动契约关系,产生于资本主义社会,并一直延续至今。自20世纪60年代始,随着经济的迅速发展,信息技术的普遍应用,各国的产业结构和知识结构发生了巨大变化,进而要求劳动力作为生产要素流动性增强,灵活就业、弹性就业需求增大。因为,在工业、机械制造业占主导的产业结构模式下,固定用工制度、长期就业合同是主流的用工和就业形式,但随着商业、服务业的不断扩大,简单、统一的传统就业形式已经不能满足劳动关系双方主体的自身需求,取而代之的应是形式灵活、富于弹性的就业形式,非标准劳动关系也就应运而生。一方面,企业可以根据市场的需求变化,通过灵活多样的用工形式来雇佣非核心员工,弹性用工能够降低企业劳动力成本,提高企业竞争力,追逐利益最大化。“企业想要更好的迎接全球化带来的巨大的挑战,人力资源的运用必须要有弹性,也就是劳动弹性化。”
2014春季线性代数试卷 参考答案 定稿
解: 把1 ,2 ,3 ,4 按列排成矩阵并进行初等行变换把矩阵化为行阶梯型矩阵:
本题 得分
1 0 2 1
1 0 2 1
1
2
0
1
r2 r1
0
2
2
0
A (1 ,2 ,3 ,4 ) 2
2
1 5
3 1
0 4
r4 r3 r3 2r1 r5 r1
0 0
1 4
1 2 ………… 2 分
…………………………… 2 分
山
大 学
A 的全部特征值为 1 2 1 , 3 5 …………………………… 4 分
试
卷
当 1 2 1时,求出齐次线性方程组 (E A) X 0 的基础解系:
2 2 2
1 1 1
1 1
(E
A)
2 2
2 2
2 2
r
0 0
0 0
0 0
,基础解系为 1
10
分)设
A
2
1
2
,(1)试求
A
的特征值和特征向量;(2)利
2 2 1
用(1)的结果,求矩阵 E A1 的特征值,其中 E 为 3 阶单位矩阵。
本题
1 2 2
得分
解:(1)特征多项式为 E A 2 1 2 ( 1)2( 5)
2 2 1
燕
从而特征方程为 ( 1)2 ( 5) 0
共
x11 x2 (1 2 ) x3(1 2 3) 0 ……………… 2 分
本题 得分
页 整理得 ( x1 x2 x3)1 (x2 x3)2 x33 0 ……………… 3 分
第
由于 1
,2
,3
西南大学[0343]《线性代数》大作业答案
3.
A 中有 r 列线性无关;
4.
A 中线性无关的列向量最多有 r 个.
3、若齐次线性方程组
有非零解,则必须满足[ ]
1.
k=4
2.
k=-1
3.
k≠-1 且 k≠4
4.
k=-1 或 k=4
4、下列各矩阵中,初等矩阵是[ ]。
1.
2.
3.
4.
5、n 阶矩阵 A 与对角矩阵相似的充分必要条件是[ ]。
___ ___
40、行列式 参考答案:
-11
中元素-2 的代数余子式是_____
41、行列式 参考答案:
8
元素 x 的代数余子式是 .
42、行列式
=
。
参考答案:
0
43、 参考答案:
相
是 3 维向量组,则
线性 关。
44、矩阵 参考答案:
的伴随矩阵是
。
45、行列式 参考答案: 0
,则 =
46、设 A,B,C 均为 n 阶矩阵,若由
1.
A.√
2.
B.×
24、A是n阶正交矩阵,则
.
1.
A.√
2.
B.×
25、若 A,B 均为 n 阶可逆矩阵,则 AB 可逆。
1.
A.√
2.
B.×
主观题
26、设向量组
线性无关,则向量组
线性__________关。
参考答案: 无
27、已知 4 阶行列式中第 3 列元素依次为-1,2,0,1,它们的余子式依次分别为 5,3,-7,4,则 D=________ 参考答案:
1.
A.√
2.
B.×
20、齐次线性方程组有非零解的充要条件是其系数行列式等于零.。 ( )
西南大学线性代数作业答案
第一次行列式部分的填空题1.在5阶行列式ij a 中,项a 13a 24a 32a 45a 51前的符号应取 + 号。
2.排列45312的逆序数为 5 。
3.行列式25112214---x中元素x 的代数余子式是 8 . 4.行列式10232543--中元素-2的代数余子式是 —11 。
5.行列式25112214--x 中,x 的代数余子式是 —5 。
6.计算00000d c ba = 0行列式部分计算题 1.计算三阶行列式381141102--- 解:原式=2×(—4)×3+0×(—1)×(—1)+1×1×8—1×(—1)×(—4)—0×1×3—2×(—1)×8=—42.决定i 和j ,使排列1 2 3 4 i 6 j 9 7 为奇排列. 解:i =8,j =5。
3.(7分)已知0010413≠x x x,求x 的值.解:原式=3x 2—x 2—4x=2 x 2—4x=2x(x —2)=0 解得:x 1=0;x 2=2所以 x={x │x ≠0;x ≠2 x ∈R } 4.(8分)齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000z y x z y x z y x λλ 有非零解,求λ。
解:()211110100011111111-=--==λλλλλD由D=0 得 λ=15.用克莱姆法则求下列方程组:⎪⎩⎪⎨⎧=+-=++=++10329253142z y x z y x z y x 解:因为331132104217117021042191170189042135113215421231312≠-=⨯-⨯=-------=-------=)(r r r r r r D 所以方程组有唯一解,再计算:811110212942311-=-=D 1081103229543112-==D1351013291531213=-=D因此,根据克拉默法则,方程组的唯一解是:x=27,y=36,z=—45第二次线性方程组部分填空题1.设齐次线性方程组A x =0的系数阵A 的秩为r ,当r= n 时,则A x =0 只有零解;当A x =0有无穷多解时,其基础解系含有解向量的个数为 n-r .2.设η1,η2为方程组A x =b 的两个解,则 η1-η2或η2-η1 是其导出方程组的解。
西南交大2013线性代数期末考试试卷
西南交通大学2012-2013学年第(1)学期考试试卷课程代码 6010500 课程名称 线性代数B 考试时间 120 分钟阅卷教师签字:一、 选择题(共4小题,每题4分,总计16分)1. 设A 为n 阶矩阵,且2=A ,令T B A A =,则B =( ). (A )n2 (B )12-n (C )12+n (D )42. 设向量组1α,2α,3α,4α线性无关,则向量组12αα+,23αα+,34αα+,41αα+ ( ). (A )线性相关 (B )线性无关(C )既可能线性相关也可能线性无关 (D )是否线性相关与向量的维数有关 3. 设A 是n m ⨯矩阵,b 为n 维非零列向量,则下列结论正确的是( ). (A )若0=Ax 仅有零解,则b Ax =必有唯一解 (B )若0=Ax 有非零解,则b Ax =必有无穷多个解 (C )若b Ax =有无穷多个解,则0=Ax 仅有零解 (D )若b Ax =有无穷多个解,则0=Ax 必有非零解4. 若n 阶矩阵B A ,有共同的特征值,且各有n 个线性无关的特征向量,则( ). (A )A 与B 相似 (B )B A ≠,但0=-B A (C )B A = (D )A 与B 不相似,但B A =二、填空题(4小题,每题4分,共16分)5. 设矩阵123456111A ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,1224510110B ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,初等矩阵P 满足AP B =,则P = .6. 设A 为三阶可逆阵,1100220321A -⎛⎫⎪= ⎪ ⎪⎝⎭,则*A = .7. 设A 为86⨯的矩阵,已知它的秩为4,则0=Ax 的解空间维数为 .8. 若31212322212232x x x tx x x x f -+++=为正定二次型,则t 的取值范围是 .班 级 学 号 姓 名密封装订线 密封装订线 密封装订线三、解答下列各题(共3小题,每题8分,总计24分)9. 计算n 阶行列式011111011111011111011111D =.10. 设n 阶方阵A 满足0422=--E A A .证明3A E -可逆,并求1(3)A E --.11. 齐次线性方程组12341234123423503240230x x x x x x x x x x x x ⎧⎪⎨⎪⎩-++=-++-=--++=的一个基础解系及其通解.四、解答题(共3小题,每题8分,总计24分)12. 求向量组11211α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦--,22521α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦-,33574α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦--,416179α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦-的秩及一个极大线性无关组,并将其余向量通过该极大线性无关组表示出来.13. 设矩阵),,,(4321a a a a A =,其中432,,a a a 线性无关,3212a a a -=,1234b a a a a =+++,求方程组b Ax =的通解.14. 设三阶矩阵A 的特征值为1,1,2-. 求矩阵E A A B -+=2*的行列式B .五、解答下列各题(共3小题,总计20分)15. (12分)用正交变换x Py =化二次型323121232221321844552),,(x x x x x x x x x x x x f --+++=为标准形,并求出正交变换矩阵P .这里,T T x x x x ),,(321=,T T y y y y ),,(321=.16. (4分)用特征值定义证明:n 阶实对称的正交矩阵A 的特征值只能是1±.17. (4分)已知3阶矩阵A 与3维列向量α,若2,,A A ααα线性无关,且3232A A A ααα=-。
西南交大线性代数期末试题卷与答案
一、下列各题是否正确?若正确在括号内打“√”,否则打“×”(共计10分) 1.若两矩阵B A ,的乘积O AB =,则一定有O A =或O B =。
----------( ) 2.若向量组{4321,,,αααα}线性相关,则{321,,ααα}也线性相关。
---( ) 3.若A 是一个n 阶方阵且线性方程组b Ax =有解,则0||≠A 。
--------( ) 4.若B A ,都是n 阶方阵,则BA AB =。
------------------------------------( ) 5.若0=λ是方阵A 的一个特征值,则A 一定是不可逆的。
------------( ) 二、单项选择题(每小题3分,共计15分)1.若矩阵⎪⎪⎪⎭⎫ ⎝⎛------128846423221λ的秩为1,则λ的取值为 【 】 (A). 2; (B). 4-; (C). 6; (D). 8-. 2.若3阶方阵A 的行列式2=A ,则=--12A 【 】 (A). 16-; (B).-4; (C).41-; (D). 161- 3.若A 、B 是等价的n 阶方阵,则矩阵A 、B 一定满足 【 】 (A).特征值相等; (B).秩相等; (C).行列式相等; (D).逆矩阵相等. 4.若n m A A ⨯=且r A R =)(,则方程组0=Ax 的基础解系中的向量个数是 【 】 (A).r ; (B).r m -; (C).r n -; (D).n5.若n 阶矩阵B 与A 相似,AP P B 1-=,x 是矩阵A 的对应于特征值0λ的特征向量,那么矩阵B 的对应于特征值0λ的一个特征向量为 【 】 (A).x ; (B).x 0λ; (C).Px ; (D).x P 1- 三、填空题(每小题5分,共计20分)1.向量组⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=4630 ,3411 ,2212 ,12214321αααα的一个最大无关组是 __。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西南交《线性代数》离线作业1一、单项选择题(只有一个选项正确,共8道小题)1. 下列矩阵中, B 不是初等矩阵。
(A)(B)(C)(D)2. 则D。
(A)(B)(C)(D)3. A、B为 n阶方阵,且A、B等价,| A |=0 ,则R(B) A 。
(A) 小于n(B) 等于n(C) 小于等于n(D) 大于等于n4. 若A为5阶方阵且|A|=2,则|-2A|= C 。
(A) 4(B) -4(C) -64(D) 6416.行列式| 1 2 3 12, 4 1 2 5 | = 4 。
17.则t= 318.|AB|=019.λ=-320.k= 321.λ= 322.(2,3,1)T-23.答:题目等价为讨论123,,βββ线性无关的条件。
1122331312123230()()()0k k k k k k k k k βββλαλαλα++=⇔+++++=因为131232132=0,,=0=0k k k k k k λαααλλ+⎧⎪+⎨⎪+⎩线性无关,所以123,,βββ是Ax=0的一个基础解系,则齐次方程组132132=0=0=0k k k k k k λλλ+⎧⎪+⎨⎪+⎩只有零解,故系数行列式不为零。
3101001+0-101λλλλλ≠⇔≠⇔≠ 所以,-1λ≠时,123,,βββ是Ax=0的一个基础解系24. 设A 是反对称矩阵,E+A 是可逆矩阵。
是正交矩阵。
证明:因为A T=-A,故[(E-A)(E+A)-1]T [(E-A)(E+A)-1]=(E+A T )-1(E-A )T (E-A)(E+A)-1=(E-A)-1(E+A )(E-A)(E+A)-1(E+A )与(E-A)可交 =(E-A)-1(E+A ) (E+A)-1(E-A)=E所以,(E−A) (E+A) −1是正交矩阵。
25. 已知3阶方阵A 可逆且求A 的伴随矩阵的逆矩阵.解:1111*1112*1*1***12*1 0 112 2 0,6,1/63 3 3632()1()6026032,632()()6602032A A A AAA AAA A A A A A AA AAA A----------⎛⎫⎪====⎪⎪⎝⎭-⎛⎫⎪===- ⎪⎪-⎝⎭===-⎛⎫⎪===- ⎪⎪-⎝⎭26.解:此题即为线性方程组11223344x+x+x+x=ααααβ的可解性问题,增广矩阵为:123410312103121121101101 (,,,,)23102600101421451000010Aa b a ba aααααβ⎛⎫⎛⎫⎪ ⎪----⎪ ⎪==→⎪ ⎪+++-⎪ ⎪++⎝⎭⎝⎭所以,1a≠-时有唯一的线性表示,a=-1且b=1时有多种线性表示当1a≠-时,解方程得唯一的线性表示为:123111(23)(1)111b b ba a aβααα---=-+-++++a=-1且b=1时,线性表示为:121121324(23)(1)k k k k kβαααα=--+-++或线性表示的系数满足121234312101100010xxk kxx--⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪-⎪ ⎪ ⎪ ⎪=++⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭27.解:对矩阵1234(,,,)121012101210211303330111224606660000123404440000A A αααα=⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪---⎪ ⎪ ⎪=→→ ⎪ ⎪ ⎪----⎪⎪ ⎪----⎝⎭⎝⎭⎝⎭进行初等行变换所以向量组1234(,,,)A αααα=的秩为2,12{,}αα是其一个最大线性无关西南交《线性代数》离线作业2一、单项选择题(只有一个选项正确,共8道小题)1. 设向量组 α1,α2,α3 线性无关,则下列向量组中线性无关的是 ( B )。
(A) α 1 − α 2 , α 2 − α 3 , α 3 − α 1 (B) α 1 , α 2 , α 3 + α 1 (C) α 1 , α 2 ,2 α 1 −3 α 2 (D) α 2 , α 3 ,2 α 2 + α 32.C(A) 必有一列元素全为0; (B) 必有两列元素对应成比例;(C) 必有一列向量是其余列向量的线性组合; (D) 任一列向量是其余列向量的线性组合。
3. 矩阵 ( 0 1 1 −1 2 ,0 1 −1 −1 0 ,0 1 3 −1 4 ,1 1 0 1 −1 ) 的秩为( C )。
(A) 1 (B) 2 (C) 3 (D) 44. 若矩阵 ( 1 a −1 2, 1 −1 a 2 ,1 0 −1 2 ) 的秩为2,则 a 的值为 B 。
(A) 0四、主观题(共12道小题)15.设α 1 =( 6 −2 0 4 ) , α 2 =( −3 1 5 7 ) ,则3 α 1 −2 α 2 =(24,-8,-10,-2)16.设α=( −1 1 0 ) , A=( 2 0 1 0 4 2 1 1 0 ) , B=( 1 0 0 3 2 2 ) ,则αAB=(0,1,4)17.1*5|A|1/3,|3|3A-==18.是线性_相关_____的,它的一个极大线性无关组124,,ααα。
19.n时,此方程组只有零解。
20.是分块对角矩阵,其中|A|=(2n+1)!!21.|AB|=-822.a>1/223.为标准形。
解: 二次型的矩阵200A=032023⎛⎫⎪⎪⎪⎝⎭2-200E-A=0-3-2=-4]00-2-3(2)(1)(5)0=125λλλλλλλλλλ⎛⎫⎪-=⎪⎪⎝⎭---=(2)[(-3)解得,,所以A 的特征值为1,2,5.1-100-100E-A=0-2-2=0-2-20-2-2000()(0,1,1)TA E x⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭-=-的基础解系a20002E-A=0-1-20-2-1(2)(1,0,0)TA E x⎛⎫⎪⎪⎪⎝⎭-=的基础解系为a312312311233001005E-A=02-2=01-10-22000(5)(0,1,1)11 ,,(0,1,1),(1,0,0),(0,1,1)22100(,,),p020005TA E xa a a p p pp p p AP-⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭-==-==⎛⎫⎪== ⎪⎪⎝⎭的基础解系为a将单位化得令P则是正交矩阵,且P故X=PY 是正交变换, 满足f = y12+2y22+5y32.24.解:12112111121=...=,141n n nn n nn na aU AU A U A U Ub b-----⎛⎫⎛⎫⎛⎫⎛⎫=====⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭12111111 1111111121()(2,3),,112111,,(2,3),1112211120232*3111203232*32n n n n n nn n n n nnnnA p pP P P AP D diag A PDPA PD PaUbσ--------------⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭-⎛⎫⎛⎫=====⎪ ⎪-⎝⎭⎝⎭-⎛⎫⎛⎫-⎛⎫⎛⎫===⎪ ⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫==⎪⎝⎭特征向量:1112323n nnn nA U+-⎛⎫-= ⎪-⎝⎭25.{}{}{}123121234124123412341234()=2R()=3,,R,,,,,3,,,,,R,,=10RRαααααααααααααααααααααααα==++解:由Ⅰ,Ⅱ知线性无关且可由线性表出因而向量组与是等价的向量组,所以26.用正交变换化二次型为标准型,并求出所用的正交变换及f的标准型。
问:这个二次型是否是正定的?为什么?解:二次型的矩阵为:200032023A⎛⎫⎪= ⎪⎪⎝⎭,矩阵A的特征值为1231,2,5λλλ===西南交《线性代数》离线作业316.a=617._________________。
(1,2,3,4)(2,0,2,4)T Tk+--18.1,2a≠-时方程组有唯一解。
19.|A|=2420.t=621.1111120410211111,40620322002A X BA---⎛⎫⎛⎫⎛⎫⎪=-===⎪ ⎪⎪⎝⎭⎝⎭⎪⎝⎭解:22.解:A的特征值:|A-λE|=λ(λ-2)(λ-3),所以特征值是:0,2,3B的特征值为:k2,(k+2) 2,(k+3) 2,222(2)(3)kD kk⎛⎫⎪=+⎪⎪⎪+⎝⎭B为正定,则k2>0且(k+2) 2>0且(k+3) 2>0,即K≠0,-2,-3.23.01A⇔⇔≠证明:AB-A-B+E=E(A-E)(B-E)=E|A-E||B-E|=1,所以|A-E|,所以不是的特征值24.已知方阵(1)求a,b的值;(2)求可逆矩阵P及对角矩阵D,使得解:(1)由特征值和矩阵的关系:1231233(2)0,2,1()136A a ba btrace A aλλλλλλ⎧=+====-⎨=++=++=⎩解得(2)1212331123==3(1,2,1),(0,0,1)=0(1,1,0)(,,),(3,3,0)T TTppP p p p AP diagλλλ-=-====对于的特征向量为p对于的特征向量为则P25.解:因为|3E+A|=0,所以-3是矩阵A的特征值21*11*1*2160,410,-344,312T E A A AA AA A A A AA A A----==<=-≠==-=由AA得,。
由于故因为所以矩阵A是可逆的且是的一个特征值由于所以的一个特征值是由推得的另一个特征值是6最新文件---------------- 仅供参考--------------------已改成word文本--------------------- 方便更改。