保险精算第二版习题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
保险精算第二版习题及
答案
Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#
保险精算(第二版)
第一章:利息的基本概念 练 习 题
1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。
2.(1)假设A(t)=100+10t, 试确定135,,i i i 。
(2)假设()()100 1.1n
A n =⨯,试确定 135,,i i i 。
3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。
4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。
5.确定10000元在第3年年末的积累值:
(1)名义利率为每季度计息一次的年名义利率6%。 (2)名义贴现率为每4年计息一次的年名义贴现率6%。 6.设m >1,按从大到小的次序排列()()m m d d i i δ<<<<。 7.如果0.01t t δ=,求10 000元在第12年年末的积累值。、
8.已知第1年的实际利率为10%,第2年的实际贴现率为8%,第3年的每季度计息的年名义利率为6%,第4年的每半年计息的年名义贴现率为5%,求一常数实际利率,使它等价于这4年的投资利率。
9.基金A 以每月计息一次的年名义利率12%积累,基金B 以利息强度6
t t δ=积累,在时刻t (t=0),两笔基金存入的款项相同,试确定两基金金额相等的下一时刻。
10. 基金X 中的投资以利息强度0.010.1t t δ=+(0≤t ≤20), 基金Y 中的投资以年实际利率i 积累;现分别投资1元,则基金X 和基金Y 在第20年年末的积累值相等,求第3年年末基金Y 的积累值。
11. 某人1999年初借款3万元,按每年计息3次的年名义利率6%投资,到2004年末的积累值为( )万元。
A. 7.19
B. 4.04
C.
D.
12.甲向银行借款1万元,每年计息两次的名义利率为6%,甲第2年末还款4000元,则此次还款后所余本金部分为( )元。 225 213 C.7 136 987 第二章:年金 练习题
1.证明()n m m n v v i a a -=-。
2.某人购买一处住宅,价值16万元,首期付款额为A ,余下的部分自下月起每月月初付1000元,共付10年。年计息12次的年名义利率为% 。计算购房首期付款额A 。
3. 已知7 5.153a = , 117.036a =, 189.180a =, 计算 i 。
4.某人从50岁时起,每年年初在银行存入5000元,共存10年,自60岁起,每年年初从银行提出一笔款作为生活费用,拟提取10年。年利率为10%,计算其每年生活费用。
5.年金A 的给付情况是:1~10年,每年年末给付1000元;11~20年,每年年末给付2000元;21~30年,每年年末给付1000元。年金B 在1~10年,每年给付额为K 元;11~20年给付额为0;21~30年,每年年末给付K 元,若A 与B 的现值相等,已知1012
v =,计算K 。
6. 化简()1020101a v v ++ ,并解释该式意义。
7. 某人计划在第5年年末从银行取出17 000元,这5年中他每半年末在银行存入一笔款项,前5次存款每次为1000元,后5次存款每次为2000元,计算每年计息2次的年名义利率。
8. 某期初付年金每次付款额为1元,共付20次,第k 年的实际利率为
1
8k
+,计算V(2)。
9. 某人寿保险的死亡给付受益人为三个子女,给付形式为永续年金,前两个孩子第1到n年每年末平分所领取的年金,n年后所有的年金只支付给第三个孩子,若三个孩子所领取的年金现值相等,那么v=( )
A.
1
1
3
n
⎛⎫
⎪
⎝⎭
B.
1
3n C.
1
3
n
⎛⎫
⎪
⎝⎭
D.3n
11. 延期5年连续变化的年金共付款6年,在时刻t时的年付款率为()21
t+,t 时刻的利息强度为1/(1+t),该年金的现值为()
.54 C
第三章:生命表基础
练习题
1.给出生存函数()
2 2500 x
s x e-
=,求:
(1)人在50岁~60岁之间死亡的概率。
(2)50岁的人在60岁以前死亡的概率。
(3)人能活到70岁的概率。
(4)50岁的人能活到70岁的概率。
2. 已知Pr[5<T(60)≤6]=,Pr[T(60)>5]=,求
60
q。
3. 已知
800.07
q=,
803129
d=,求
81
l。
4. 设某群体的初始人数为3 000人,20年内的预期死亡人数为240人,第21年和第22年的死亡人数分别为15人和18人。求生存函数s(x)在20岁、21岁和22岁的值。
5. 如果22
1100x x x
μ=
+
+-,0≤x ≤100, 求0l =10 000时,在该生命表中1岁到4岁之间的死亡人数为( )。
6. 已知20岁的生存人数为1 000人,21岁的生存人数为998人,22岁的生存人数为992人,则|201q 为( )。 A. 0.008 B. C. D. 第四章:人寿保险的精算现值 练 习 题
1. 设生存函数为()1100
x
s x =- (0≤x ≤100),年利率i =,计算(保险金额为1元):
(1)趸缴纯保费130:10
Ā的值。 (2)这一保险给付额在签单时的现值随机变量Z 的方差Var(Z)。
2. 设年龄为35岁的人,购买一张保险金额为1 000元的5年定期寿险保单,保险金于被保险人死亡的保单年度末给付,年利率i=,试计算: