高等数学同济第六版上_答案解析第七章
高等数学上第七章教材答案

高等数学上第七章教材答案首先,我们需要明确在高等数学第七章教材中涉及的主要内容和问题。
第七章通常是关于多元函数的导数和微分学的学习。
在本文中,将提供一些关于多元函数导数和微分的例题和详细解答。
1. 多元函数的导数第七章首先介绍了多元函数的导数的定义和性质。
多元函数的导数可以通过偏导数求解,即固定其它变量,只对某个变量求导。
举例来说,如果给出一个多元函数 f(x, y),其中 x 和 y 是变量,我们可以通过求解∂f/∂x 和∂f/∂y 来得到该函数的偏导数。
例题 1:考虑函数 f(x, y) = x^2 + 3xy + y^2,求该函数的偏导数∂f/∂x 和∂f/∂y。
解答 1:对于∂f/∂x,将 y 视为常数,则有∂f/∂x = 2x + 3y。
对于∂f/∂y,将 x 视为常数,则有∂f/∂y = 3x + 2y。
2. 多元函数的微分在第七章的后半部分,我们学习了多元函数的微分。
微分是导数的线性逼近,可以用于估计函数值的变化。
多变量函数的微分可以通过求出各个偏导数的和来得到。
例题 2:给定函数 g(x, y) = x^3 + 2xy^2 - y^3,求该函数在点 (1, 2) 处的微分dg。
解答 2:首先计算各个偏导数:∂g/∂x = 3x^2 + 2y^2,∂g/∂y = 4xy - 3y^2。
然后带入点 (1, 2) 得到∂g/∂x = 7,∂g/∂y = -8。
因此,在点 (1, 2) 处的微分dg = ∂g/∂x · dx + ∂g/∂y · dy = 7dx - 8dy。
3. 高阶偏导数和混合偏导数在处理多元函数时,我们还需要了解高阶偏导数和混合偏导数的概念。
高阶偏导数指的是多次对同一变量求导的结果,而混合偏导数则是对多个变量进行求导后的结果。
例题 3:考虑函数 h(x, y) = x^3 + x^2y + xy^2 + y^3,求该函数的二阶偏导数∂^2h/∂x^2。
《高等数学》同济第六版 第7章答案

1 3
1 (5)此级数为等比级数且公比 q = − ,所以该级数收敛,且收敛于 3
(6)此级数为等比级数且公比 q =
1 1 1 − (− ) 3
=
3 ; 4
7 > 1, ,所以该级数发散。. 6
6.将循环小数 0.25252525 " 写成无穷级数形式并用分数表示. 解: 0.25252525 " = 0.25 + 0.0025 + 0.000025 + "
∞ 1 1 1 (−1) n −1 = 1− + − +" = ∑ 3 5 7 n =1 2n − 1
级数
∞ ∞ 1 1 nπ (−1) 2 n −1 发散而级数 收敛,所以级数 条件收敛. sin ∑ ∑ ∑ 2 n =1 2n − 1 n =1 n n =1 2n − 1 ∞
(4) lim
n →∞
∑ (−1)
n+2 6n + 1
解: (1) lim
n →∞
∞ ∞ un 1 1 (2n − 1) 2 1 = lim = ,而级数 ∑ 2 收敛,所以级数 ∑ 收敛; 2 1 1 n →∞ 4 n =1 n n =1 (2n − 1) n2 n2
从而级数
∑ (−1)
n =1
∞
n −1
1 绝对收敛; (2n − 1) 2
2n + 2 (1) ∑ 2n n =1
∞
n! (2) ∑ n n =1 3
∞
(3)
∑n
n =1
∞
3
sin
π
2n
2n ⋅ n ! (4) ∑ nn n =1
∞
2n + 4 ∞ n +1 2n + 2 a n +1 1 解: (1) lim = lim 2 = < 1 ,所以级数 收敛; n →∞ 2n + 2 n→∞ a 2 2n n n =1 2n
同济大学 第六版 高数练习册答案 上册

高等数学习题解答第一章(7-11) 第六节 极限存在准则 两个重要极限1.0;1;1;0;2;2/32. 1-e ;1432;0;;;--e e e e3. 证明:{n x }显然单调递增,1x 3≤,若31≤-n x ,则n x ≤33+≤3∴ {n x }单调有界,∴{n x }收敛,不妨设∞→n lim n x =a , 则有 a =3+a ,解得,a =(1+13)/2,2)131(-=a∴2)131(lim +=∞→n n x4. 解:1)12111(22222+≤++++++≤+n n nn n n n n n11limlim22=+=+∞→∞→n nn n n n n∴1)12111(lim 222=++++++∞→nn n n n第七节 无穷小的比较1.(B )2. (A )3. 证明: 令t x sin = , 1sin lim arcsin lim00==→→ttx x t x∴当0→x 时,x x ~arcsin 。
4. 解:(1)0lim →x x x 25tan =0lim →x x x 25=25(2)0lim →x ())cos 1(arcsin 2x x x -=0lim →x 222x x x =∞(3)0lim →x x x )sin 21ln(-=0lim→x 2sin 2-=-xx(4)0lim →x =-+1)21ln(3x e x 3232lim 0=→x x x(5)0lim→x x x x 3sin sin tan -=0lim →x =-xx x x cos )cos 1(sin 30lim →x 322xx x=1/2(6)0lim →x ⎪⎭⎫ ⎝⎛-x x tan 1sin 1=0lim →x x x sin cos 1-=0lim →x 022=x x (7)431)3tan arctan (lim 220=+=+++→nn n n n a n n第八节 函数的连续性与间断点1. 0 ;2. 充要;3. 2;4. D5. B6. C7. 解:12121lim 1212lim )(lim0=+-=+-=--+∞→+∞→→+t tt t t t x x f1)(lim 0-=-→x f x ∴ )(x f 在x=0 不连续,且x=0 为函数)(x f 的第一类间断点。
高等数学第六版(上册)第七章课后习题答案

1 高等数学第六版(上册)第七章课后习题答案习题7-11.设 u =a -b +2c ,v =-a +3b -c .试用 a 、b 、c 表示 2u -3v . 解 2u -3v =2(a -b +2c )-3(-a +3b -c )=2a -2b +4c +3a -9b +3c=5a -11b +7c .2.如果平面上一个四边形的对角线互相平分,试用向量证明这是平行四边形.→ → → → → →证 AB =OB -OA ;DC =OC -OD ,→ → → →而OC =-OA ,OD =-OB , → → → → → →所以 DC =-OA +OB =OB -OA =-AB .这说明四边形ABCD 的对边AB =CD 且AB //CD ,从而四边形 ABCD 是平行四边形.3.把∆ABC 的BC 边五等分,设分点依次为D 1、D 2、D 3、D 4,再把→各分点与点A 连接.试以AB =c 、 → → →→BC =a 表示向量D 1A 、D 2 A 、D 3 A 、→ D 4 A .→ → → 解 D 1A =BA -BD 1 =-c -5a , → → → 2 D 2 A =BA -BD 2 =-c -5a , → → → 3 D 3 A =BA -BD 3 =-c -5a , → → → 4 D 4 A =BA -BD 4 =-c -5a .62 +72 +(-6)2 4.已知两点M 1(0, 1, 2)和M 2(1,-1, 0).试用坐标表示式表→ →示向量M 1M 2 及-2M 1M 2 .→解 M 1M 2 =(1, -1, 0)-(0,1, 2) =(1, -2, -2) ,→ -2M 1M 2 =-2(1, -2, -2)=(-2, 4, 4) .5.求平行于向量 a =(6, 7,-6)的单位向量.解 |a |= =11,平行于向量a =(6, 7,-6)的单位向量为 1a =(6, 7, -6) 或-1a =(-6, -7, 6) .|a | 1111 11 |a | 11 11116.在空间直角坐标系中,指出下列各点在哪个卦限?A (1,-2, 3);B (2, 3,-4);C (2,-3,-4);D (-2,-3, 1).解A 在第四卦限,B 在第五卦限,C 在第八卦限,D 在第三卦 限.7.在坐标面上和坐标轴上的点的坐标各有什么特征?指 出下列各点的位置:A (3, 4, 0);B (0, 4, 3);C (3, 0, 0);D (0,-1, 0).解 在 xOy 面上,点的坐标为(x ,y , 0);在 yOz面上,点的坐标为(0,y ,z );在 zOx 面上,点的坐标为(x , 0,z ).在 x 轴上,点的坐标为(x , 0, 0);在 y 轴上,点的坐标为(0,y , 0) ,在z 轴上,点的坐标为(0,0,z ).A 在 xOy 面上,B 在 yOz 面上,C 在 x 轴上,D 在 y 轴上.8.求点(a ,b ,c )关于(1)各坐标面; (2)各坐标轴;(3)坐标原点的对称点的坐标.解 (1)点(a ,b ,c )关于xOy 面的对称点为(a ,b ,-c ),点(a ,b ,c )关于yOz 面的对称点为(-a ,b ,c ),点(a ,b ,c )关于zOx面的对称点为(a ,-b ,c ).(2) 点(a ,b ,c )关于x 轴的对称点为(a ,-b ,-c ),点(a ,b ,c )关于y 轴的对称点为(-a ,b ,-c ),点(a ,b ,c )关于 z 轴的对称点为(-a , -b ,c ).(3) 点(a ,b ,c )关于坐标原点的对称点为(-a ,-b ,-c ).9.自点P 0(x 0,y 0,z 0)分别作各坐标面和各坐标轴的垂线,写出各垂足的坐标.解 在 xOy 面、yOz 面和 zOx 面上,垂足的坐标分别为(x 0,y 0, 0)、(0,y 0,z 0)和(x 0, 0,z 0).在 x 轴、y 轴和 z 轴上,垂足的坐标分别为(x 0, 0, 0),(0,y 0, 0) 和(0, 0,z 0).10.过点P 0(x 0,y 0,z 0)分别作平行于z 轴的直线和平行于xOy 面的平面,问在它们上面的点的坐标各有什么特点?解 在所作的平行于 z 轴的直线上,点的坐标为(x 0,y 0,z );在所作的平行于 xOy 面的平面上,点的坐标为(x ,y ,z 0).11.一边长为a 的立方体放置在xOy面上,其底面的中心在坐标原点,底面的顶点在 x 轴和 y 轴上,求它各顶点的坐标.解因为底面的对角线的长为标分别为2a ,所以立方体各顶点的坐 (,(a ) ,2 , 0, 0), 2, 0, a ), 2 (0,, 0) ,(0, , a ) , 2, 2) . 212.求点 M (4,-3, 5)到各坐标轴的距离.(-3)2 +52 34 42 +52 41 ⎩ 解点M 到x 轴的距离就是点(4,-3, 5)与点(4, 0, 0)之间的距离,即d x = = .点M 到y 轴的距离就是点(4,-3, 5)与点(0,-3, 0)之间的距离,即d y = = .点 M 到 z 轴的距离就是点(4,-3, 5)与点(0, 0, 5)之间的距离, 即d z = =5 .13.在 yOz 面上,求与三点 A (3, 1, 2)、B (4,-2,-2)和 C (0, 5, 1) 等距离的点.解设所求的点为P (0,y ,z )与A 、B 、C 等距离,则→ |PA |2=32 +(y -1)2 +(z -2)2 ,→ |PB |2=42+(y +2)2+(z +2)2,→ | PC |2=(y -5)2 +(z -1)2 .由题意,有→ → → | PA |2=| PB |2=| PC |2 ,⎧32+(y -1)2+(z -2)2=(y -5)2+(z -1)2 ⎨42+(y +2)2+(z +2)2=(y -5)2+(z -1)2 解之得 y =1,z =-2,故所求点为(0, 1,-2).14.试证明以三点 A (4, 1, 9)、B (10,-1, 6)、C (2, 4,3)为顶点的三角形是等腰三角直角三角形.解因为42 +(-3)2 即(2-4)2 +(4-1)2 +(3-9)2 (2-10)2 +(4+1)2 +(3-6)2 2→ |AB |= →|AC |= → |BC |= → → → =7 ,=7 ,=7 ,→ →所以|BC |2=|AB |2+|AC |2,|AB |=|AC |.因此∆ABC 是等腰直角三角形.→ 15.设已知两点M 1(4, 的模、方向余弦和方向角.→2,1) 和M 2(3, 0, 2).计算向量M 1M 2 解 M 1M 2 =(3-4, 0- →|M 1M 2 |= 2, 2-1) =(-1, = 2 ;2,1) ;cos α=-1, 2 cos β 2 cos γ=1; 2α=2π, 3 β=3π, 4 γ=π. 316.设向量的方向余弦分别满足(1)cos α=0; (2)cos β=1;(3) cos α=cos β=0,问这些向量与坐标轴或坐标面的关系如何?解(1)当cos α=0时,向量垂直于x 轴,或者说是平行于yOz面.(2) 当cos β=1时,向量的方向与y 轴的正向一致,垂直于 zOx 面.(3) 当cos α=cos β=0时,向量垂直于x 轴和y 轴,平行于z轴,垂直于 xOy 面.17.设向量r 的模是4,它与轴u 的夹角是60︒,求r 在轴u 上的投影.(10-4)2 +(-1-1)2 +(6-9)2 (-1)2 +( 2)2 +12解 Pr j r =|r |⋅cos π=4⋅1=2 .u 3 218.一向量的终点在点 B (2,-1, 7),它在 x 轴、y 轴和 z轴上的投影依次为 4,-4, 7.求这向量的起点 A 的坐标.解设点A 的坐标为(x ,y ,z ).由已知得⎧⎪2-x =4 ⎨-1-y =-4 ,⎪⎩7-z =7解得 x =-2,y =3,z =0.点 A 的坐标为 A (-2, 3, 0).19.设m =3i +5j +8k ,n =2i -4j -7k 和p =5i +j -4k .求向量a =4m +3n -p 在x 轴上的投影及在y 轴上的分向量.解因为a =4m +3n -p=4(3i +5j +8k )+3(2i -4j -7k )-(5i +j -4k )=13i +7j +15k ,所以 a =4m +3n -p 在 x 轴上的投影为 13,在 y 轴上的分向量 7j .17 习题 7-21.设 a =3i -j -2k ,b =i +2j -k ,求(1)a ⋅b 及 a ⨯b ; (2)(-2a )⋅3b 及 a ⨯2b ; (3)a 、b 夹角的余弦.解(1)a ⋅b =3⨯1+(-1)⨯2+(-2)⨯(-1)=3,i j k a ⨯b = 3-1 - 2 =5i +j + 7k .1 2 -1(2)(-2a )⋅3b =-6a ⋅b =-6⨯3=-18,a ⨯2b =2(a ⨯b )=2(5i +j +7k )=10i +2j +14k .(3)cos(a ,^b )=|a ⋅b |= 3 =3 .|a ||b |14 6 2212.设 a 、b 、c 为单位向量,且满足 a +b +c =0,求 a ⋅b +b ⋅c +c ⋅a .解因为a +b +c =0,所以(a +b +c )⋅(a +b +c )=0,即a ⋅a +b ⋅b +c ⋅c +2a ⋅b +2a ⋅c +2c ⋅a =0,于是 a ⋅b +b ⋅c +c ⋅a =-1(a ⋅a +b ⋅b +c ⋅c )=-1(1+1+1)=-3.2 2 2→ → 3.已知M 1(1,-1, 2)、M 2(3, 3, 1)和M 3(3, 1, 3).求与M 1M 2 、M 2M 3 同时垂直的单位向 量.→ 解 M 1M 2=(3-1,3+1,1-2)=(2,4,-1),→M 2M 3 =(3-3,1-3, 3-1) =(0, - 2, 2) . → → i j k n =M 1M 2⨯M 2M 3 = 2 4 0 -2 -1 =6i - 4 j - 4k ,2|n |=36+16+16=2,e =±1(6i - 4 j -4k )=±1(3i - 2 j - 2k ) 为所求向量.2 17 174.设质量为100kg 的物体从点 M 1(3, 1, 8)沿直线称动到点 M 2(1, 4,2),计算重力所作的功(长度单位为 m ,重力方向为 z 轴负方向).解 F =(0, 0,-100⨯9. 8)=(0, 0,-980), →S =M 1M 2 =(1-3, 4-1, 2-8) =(-2, 3, -6) .W =F ⋅S =(0, 0,-980)⋅(-2, 3,-6)=5880(焦耳).→ 5.在杠杆上支点O 的一侧与点O 的距离为x 1的点P 1处,有一与O P 1 成角θ1的力F 1→作用着;在O 的另一侧与点O 的距离为x 2的点P 2处,有一与OP 2 成角θ1的力F 1作用着.问 θ1、θ2、x 1、x 2、|F 1|、|F 2|符合怎样的条件才能使杠杆保持平衡?解因为有固定转轴的物体的平衡条件是力矩的代数和为零,再注意到对力矩正负的22 + 22 +12OA OB 规定可得,使杠杆保持平衡的条件为x 1|F 1|⋅sin θ1-x 2|F 2|⋅sin θ2=0,即 x 1|F 1|⋅sin θ1=x 2|F 2|⋅sin θ2.6.求向量 a =(4,-3, 4)在向量 b =(2, 2, 1)上的投影.解Pr j b a =a ⋅e b =a ⋅b =1a ⋅b = 1 (4,-3,4)⋅(2,2,1)=1(4⨯2-3⨯2+4⨯1)=2. |b ||b | 3 7.设 a =(3, 5,-2),b =(2, 1, 4),问 λ与 μ有怎样的关系,能使得 λa +μb 与 z 轴垂直? 解 λa +μb =(3λ+2μ, 5λ+μ,-2λ+4μ),λa +μb 与 z 轴垂 ⇔λa +μb ⊥k⇔(3λ+2μ, 5λ+μ,-2λ+4μ)⋅(0, 0, 1)=0,即-2λ+4μ=0,所以 λ=2μ.当 λ=2μ时,λa +μb 与 z 轴垂直.8.试用向量证明直径所对的圆周角是直角.→ → 证明 设 AB 是圆 O 的直径,C 点在圆周上,则OB =-OA ,→ →|OC |=|OA | .→→→ → → → → → → → →→ 因为 AC ⋅BC =(OC -OA )⋅(OC -OB ) =(OC -OA )⋅(OC +OA ) =|OC |2 -|OA |2 =0 ,→ →所以 AC ⊥BC ,∠C =90︒.9.设已知向量 a =2i -3j +k ,b =i -j +3k 和 c =i -2j ,计算: (1)(a ⋅b )c -(a ⋅c )b ; (2)(a +b )⨯(b +c );(3)(a ⨯b )⋅c .解 (1)a ⋅b =2⨯1+(-3)⨯(-1)+1⨯3=8,a ⋅c =2⨯1+(-3)⨯(-2)=8,(a ⋅b )c -(a ⋅c )b =8c -8b =8(c -b )=8[(i -2j )-(i -j +3k )]=-8j -24k .(2)a +b =3i -4j +4k ,b +c =2i -3j +3k ,i j (a +b )⨯(b +c )=3 -4 2 -3 k 4 =-j -k . 3i (3) a ⨯b = 2 1 j k -3 1 =-8i -5 j +k , -1 3(a ⨯b )⋅c =-8⨯1+(-5)⨯(-2)+1⨯0=2.→ 10.已知OA =i +3 j , →OB =j +3k ,求 ∆OAB 的面积.→→ → →解 根据向量积的几何意义,于是∆OAB 的面积为S =1| →⨯→| . 2|OA ⨯OB | 表示以OA 和 OB 为邻边的平行四边形的面积,19 →→ i jk →→因为OA ⨯OB = 1 0 3 =-3i -3 j +k , |OA ⨯OB |=0 1 3 (-3)3 +(-3)2 +12= ,所以三角形∆OAB 的面积为 S =1|→⨯→|=1 19 . 2 OA OB 2 12.试用向量证明不等式:a 2 +a 2 +a 2b 2 +b 2 +b 2 ≥|a b +a b +a b | , 1 2 3 1 2 3 11 2 2 33其中a 1、a 2、a 3、b 1、b 2、b 3为任意实数,并指出等号成立的条件.解设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则有a ⋅b =|a |⋅|b |cos(a ,^b )≤|a |⋅|b | ,于是 a 2 +a 2 +a 2b 2 +b 2 +b 2 ≥|a b +a b +a b | , 1 2 3 1 2 3 11 2 2 3 3其中当cos(a ,^b ) =1时,即 a 与 b 平行是等号成立.14 6 x 2 +y 2 +z 2(x - 2)2 +(y -3)2 +(z - 4)2 29 y 2 +z 2 x 2 +y 2 习题 7-31.一动点与两定点(2, 3, 1)和(4, 5, 6)等距离,求这动点的轨迹方程.解设动点为M (x ,y ,z ),依题意有(x -2)2+(y -3)2+(z -1)2=(x -4)2+(y -5)2+(z -6)2,即4x +4y +10z -63=0. 2.建立以点(1, 3,-2)为球心,且通过坐标原点的球面方程.解 球的半径R =12+32+(-2)2= ,球面方程为(x -1)2+(y -3)2+(z +2)2=14, 即 x 2+y 2+z 2-2x -6y +4z =0.3.方程x 2+y 2+z 2-2x +4y +2z =0 表示什么曲面?解由已知方程得(x 2-2x +1)+(y 2+4y +4)+(z 2+2z +1)=1+4+1,即(x -1)2+(y +2)2 +(z +1)2=(6)2 ,所以此方程表示以(1,-2,-1)为球心,以为半径的球面.4.求与坐标原点O 及点(2, 3, 4)的距离之比为1:2 的点的全体所组成的曲面的方程,它表示怎样曲面?解设点(x ,y ,z )满足题意,依题意有=1 , 2 化简整理得(x +2)2 +(y +1)2 +(z +4)2 =116,3 3 9它表示以(-2,-1,-4)为球心,以2 为半径的球面.3 3 35.将zOx 坐标面上的抛物线z 2=5x 绕x 轴旋转一周,求所生成的旋转曲面的方程.解将方程中的z 换成± 得旋转曲面的方程y 2+z 2=5x . 6.将zOx 坐标面上的圆x 2+z 2=9绕z 轴旋转一周,求所生成的旋转曲面的方程.解将方程中的x 换成± 得旋转曲面的方程x 2+y 2+z 2=9.7.将 xOy 坐标面上的双曲线 4x 2-9y 2=36 分别绕 x 轴及 y轴旋转一周,求所生成的旋转曲面的方程.解双曲线绕x 轴旋转而得的旋转曲面的方程为4x2-9y2-9z2=36.双曲线绕y 轴旋转而得的旋转曲面的方程为4x2+4z2-9y2=36.8.画出下列方程所表示的曲面:(1) (x -a)2 +y2 =(a)2 ;2 2(2) -x2 +y2=1 ;4 9(3) x2 +z2 =1 ;9 4(4)y 2-z =0;(5)z =2-x 2.9.指出下列方程在平面解析几何中和在空间解析几何中分别表示什么图形:(1)x =2;解在平面解析几何中,x =2 表示平行于y 轴的一条直线;在空间解析几何中,x =2 表示一张平行于 yOz 面的平面.(2)y =x +1;解 在平面解析几何中,y =x +1 表示一条斜率是 1,在 y 轴上的截距也是 1的直线;在空间解析几何中,y =x +1 表示一张平行于 z 轴的平面.(3)x 2+y 2=4;解 在平面解析几何中,x 2+y 2=4 表示中心在原点,半径是 4 的圆;在空间解析几何中, x 2+y 2=4 表示母线平行于 z 轴,准线为 x 2+y 2=4 的圆柱面.(4)x 2-y 2=1.解 在平面解析几何中,x 2-y 2=1 表示双曲线;在空间解析几何中,x 2-y 2=1表示母线平行于 z 轴的双曲面.10.说明下列旋转曲面是怎样形成的:(1) x 2 +y 2 +z 2 =1 ; 4 9 9解这是xOy 面上的椭圆x 2 +y 2 =1绕x 轴旋转一周而形成的,或是zOx 面上的椭圆 4 9x2 +z2 =1 绕 x 轴旋转一周而形成的.4 9(2) x2 -y2+z2 =1 ; 4解这是xOy 面上的双曲线x2 -y2=1 y 轴旋转一周而形成的,或是yOz 面上的双曲4线-y2+z2 =1绕 y 轴旋转一周而形成的.4(3)x2-y2-z2=1;解这是xOy 面上的双曲线x2-y2=1 绕x 轴旋转一周而形成的,或是zOx 面上的双曲线x2-z2=1 绕 x 轴旋转一周而形成的.(4)(z-a)2=x2+y2.解这是zOx 面上的曲线(z-a)2=x2绕z轴旋转一周而形成的,或是yOz面上的曲线(z-a)2=y2绕 z 轴旋转一周而形成的.11.画出下列方程所表示的曲面:(1)4x2+y2-z2=4;(2)x2-y2-4z2=4;(3)z=x2 +y2 .3 4 9⎨y =2 4-x 2-y 2 ⎨x -y =0 ⎨x 2+2 2z 习题 7-41.画出下列曲线在第一卦限内的图形:(1) ⎧x =1 ; ⎩(2)⎧z = ; ⎩(3) ⎧x 2 +y 2 =a 2 . ⎩⎨y =2x -3 ⎩ ⎩⎨x 2+2 2z -y =0 ⎨x 2+2 2z -y =0 ⎨x 2+2 2z -y =0 ⎨z =0 ⎨y =x 2.指出下方程组在平面解析几何中与在空间解析几何中分别表示什么图形:(1) ⎧y = 5x +1 ; ⎩ 解 在平面解析几何中,⎧y = 5x +1 表示直线y =5x +1 与y =2x -3 的交点(-4, -17) ;在空 ⎨y =2x -3 3 3 间解析几何中,⎧y = 5x +1 表示平面y =5x +1 与y =2x -3 的交线,它表示过点(-4, -17, 0) ,并且行于 z 轴.⎨y =2x -3 3 3 ⎧⎪x 2+y 2 =1(2)⎨4 9 .⎪⎩y =3 ⎧⎪x 2+y 2 =1x 2 y 2 解 在平面解析几何中, ⎨4 9 ⎪⎩y =3 表示椭圆 4 9 =1 与其切线y =3 的交点(0,3);在 ⎧⎪x 2+y 2 =1 x 2 y 2 空间解析几何中, ⎨4 9 ⎪⎩y =3 表示椭圆柱面 4 +9 =1 与其切平面 y =3 的交线. 3.分别求母线平行于 x 轴及 y 轴而且通过曲线⎧2x 2 +y 2 +z 2 =16 的柱面方程. ⎩解把方程组中的x 消去得方程3y 2-z 2=16,这就是母线平行于x 轴且通过曲线⎧2x 2 +y 2 +z 2 =16 的柱面方程. ⎩把方程组中的y 消去得方程3x 2+2z 2=16,这就是母线平行于y 轴且通过曲线⎧2x 2 +y 2 +z 2 =16 的柱面方程. ⎩ 4.求球面 x 2+y 2+z 2=9 与平面 x +z =1 的交线在 xOy 面上的投影的方程.解由x +z =1 得z =1-x 代入x 2+y 2+z 2=9 得方程2x 2-2x +y 2=8,这是母线平行于z 轴,准线为球面x 2+y 2+z 2=9 与平面x +z =1 的交线的柱面方程,于是所求的投影方程为⎧2x 2 - 2x +y 2 =8 . ⎩5.将下列曲线的一般方程化为参数方程:(1) ⎧x 2 +y 2 +z 2 =9 ; ⎩⎨z =0 ⎨z =0解将y =x 代入x 2+y 2+z 2=9 得2x 2+z 2=9,即令 x =3cos t ,则 z =3sin t .2故所求参数方程为x 2 3 2 +z 2 =1 . 32 x = 3cos t , 2 y = 3cos t ,z =3sin t .2(2) ⎧(x -1)2 +y 2 +(z +1)2 = 4 . ⎩ 解 将 z =0 代入(x -1)2+y 2+(z +1)2=4 得(x -1)2+y 2=3.令 x =1+ 3cos t ,则 y =3 sin t ,于是所求参数方程为x =1+ 3 cos t , y = 3 sin t ,z =0.⎧⎪x =a c os θ 6.求螺旋线⎨y =a sin θ在三个坐标面上的投影曲线的直角坐标方程.⎪⎩z =b θ解由前两个方程得x 2+y 2=a 2,于是螺旋线在xOy 面上的投影曲线的直角坐标方程为⎧x 2 +y 2 =a 2 . ⎩由第三个方程得θ=z 代入第一个方程得 bx =cos z ,即 z =b arccos x ,a b a于是螺旋线在zOx 面上的投影曲线的直角坐标方程为⎧⎪z =b arccos x . ⎨ a ⎪⎩y =0由第三个方程得θ=z 代入第二个方程得 by =sin z ,即 z =b arcsin y ,a b a于是螺旋线在yOz 面上的投影曲线的直角坐标方程为⎧⎪x =0 ⎨z =b arcsin y ⎩⎪ a .a 2 -x 2 -y 2 a 2 -x 2 -y 27.求上半球0≤z ≤的投影. 与圆柱体x 2+y 2≤ax (a >0)的公共部分在xOy 面和zOx 面上 解圆柱体x 2+y 2≤ax 在xOy 面上的投影为x 2+y 2≤ax ,它含在半球0≤z ≤在 xOy 面上的投影 x 2+y 2≤a 2内,所以半球与圆柱体的公共部分在 xOy 面上的投影为 x 2+y 2≤ax .为求半球与圆柱体的公共部分在 zOx 面上的投影,由圆柱面方程 x 2+y 2=ax 得 y 2=ax -x 2,代入半球面方程z = ,得z =zOx 面上的投影为(0≤x ≤a ),于是半球与圆柱体的公共部分在0≤z ≤a 2 -ax (0≤x ≤a ),即 z 2+ax ≤a 2, 0≤x ≤a ,z ≥0.8.求旋转抛物面 z =x 2+y 2(0≤z ≤4)在三坐标面上的投影.解 令 z =4 得 x 2+y 2=4,于是旋转抛物面 z =x 2+y 2(0≤z ≤4)在 xOy 面上的投影为 x 2+y 2≤4. 令 x =0得 z =y 2,于是旋转抛物面 z =x 2+y 2(0≤z ≤4)在 yOz 面上的投影为 y 2≤z ≤4.令 y =0得 z =x 2,于是旋转抛物面 z =x 2+y 2(0≤z ≤4)在 zOx 面上的投影为 x 2≤z ≤4.a 2 -x 2 -y 2 a 2 -ax习题 7-51.求过点(3, 0,-1)且与平面3x-7y+5z-12=0 平行的平面方程.解所求平面的法线向量为n=(3,-7, 5),所求平面的方程为3(x-3)-7(y-0)+5(z+1)=0,即 3x-7y+5z-4=0.2.求过点M0(2, 9,-6)且与连接坐标原点及点M0的线段OM0垂直的平面方程.解所求平面的法线向量为n=(2, 9,-6),所求平面的方程为2(x-2)+9(y-9)-6(z-6)=0,即 2x+9y-6z-121=0.3.求过(1, 1,-1)、(-2,-2, 2)、(1,-1, 2)三点的平面方程.解 n1=(1,-1, 2)-(1, 1,-1)=(0,-2,3),n1=(1,-1, 2)-(-2,-2, 2)=(3, 1,0),所求平面的法线向量为i jn=n1⨯n2= 0 -23 1所求平面的方程为k3 =-3i +9 j +6k , 0-3(x-1)+9(y-1)+6(z+1)=0,即 x-3y-2z=0.4.指出下列各平面的特殊位置,并画出各平面:(1)x=0;解 x=0 是 yOz 平面.(2)3y-1=0;解3y-1=0 是垂直于y 轴的平面,它通过y 轴上的点(0, 1, 0).322 +(-2)2 +11(3)2x -3y -6=0;解 2x -3y -6=0 是平行于 z 轴的平面,它在 x 轴、y轴上的截距分别是 3 和-2.(4)x - 3y =0;解x - 3y =0是通过z 轴的平面,它在xOy 面上的投影的斜3(5)y +z =1;解y +z =1 是平行于x 轴的平面,它在y 轴、z 轴上的截距均 为 1.(6)x -2z =0;解 x -2z =0 是通过 y 轴的平面.(7)6x +5-z =0.解 6x +5-z =0 是通过原点的平面.5.求平面 2x -2y +z +5=0与各坐标面的夹角的余弦.解此平面的法线向量为 n =(2,-2, 1).此平面与yOz 面的夹角的余弦为cos α=cos(n ^,i )=n ⋅i = 2 =2;|n |⋅|i | 22+(-2)2+11 3此平面与zOx 面的夹角的余弦为cos β=cos(n ,^j )=n ⋅j = -2 =-2;|n |⋅|j | 3此平面与xOy 面的夹角的余弦为cos γ=cos(n ,^ k )=n ⋅k = 1 =1.|n |⋅|k | 22+(-2)2+11 36.一平面过点(1, 0,-1)且平行于向量 a=(2, 1, 1)和 b=(1,-1, 0),试求这平面方程.解所求平面的法线向量可取为i jn=a⨯b=2 11-1 所求平面的方程为k1 =i +j -3k , 0(x-1)+(y-0)-3(z+1)=0,即 x+y-3z-4=0.7.求三平面x+3y+z=1, 2x-y-z=0,-x+2y+2z=3 的交点.解解线性方程组⎧⎪x+3y+z=1⎨2x-y-z=0⎪⎩-x+2y+2z=3得 x=1,y=-1,z=3.三个平面的交点的坐标为(1,-1, 3).8.分别按下列条件求平面方程:(1)平行于zOx面且经过点(2,-5,3);解所求平面的法线向量为j =(0, 1, 0),于是所求的平面为0⋅(x-2)-5(y+5)+0⋅(z-3)=0,即 y=-5.(2)通过 z 轴和点(-3, 1,-2);解 所求平面可设为 Ax+By=0.因为点(-3, 1,-2)在此平面上,所以-3A+B=0,将B=3A 代入所设方程得Ax+3Ay=0,所以所求的平面的方程为x+3y=0,(3)平行于 x 轴且经过两点(4, 0,-2)和(5, 1, 7).解所求平面的法线向量可设为n=(0,b,c).因为点(4,0,-2) 和(5, 1, 7)都在所求平面上,所以向量n1=(5, 1, 7)-(4, 0,-2)=(1, 1, 9)与n 是垂直的,即b+9c=0,b=-9c ,于 是 n=(0,-9c,c)=-c(0, 9,-1).所求平面的方程为9(y-0)-(z+2)=0,即 9y-z-2=0.9.求点(1, 2, 1)到平面x+2y+2z-10=0 的距离.解点(1, 2, 1)到平面x+2y+2z-10=0 的距离为d =|1+2⨯2+2⨯1-10|=1.12 + 22 +22⎨2x +y +z =4 ⎨2x +y +z =4 ⎨2x +z =4习题 7-6 1.求过点(4,-1, 3)且平行于直线 x -3=y =z -1的直线方程.2 1 5解所求直线的方向向量为s =(2, 1, 5),所求的直线方程为x -4=y +1=z -3.2 1 52.求过两点 M 1(3,-2, 1)和 M 2(-1, 0, 2)的直线方程.解 所求直线的方向向量为 s =(-1, 0, 2)-(3,-2, 1)=(-4, 2, 1), 所求的直线方程为x -3=y +2=x -1.-4 2 13.用对称式方程及参数方程表示直线⎧x -y +z =1 . ⎩解 平面 x -y +z =1 和 2x +y +z =4 的法线向量为 n 1=(1,-1, 1), n 2=(2, 1, 1),所求直线的方向向量为i s =n 1⨯n 2 = 1 2 j k-1 1 =-2i +j +3k . 1 1在方程组⎧x -y +z =1 ⎩ 中,令 y =0,得⎧x +z =1 ⎩,解 得 x =3, z =-2.于是点(3, 0,-2)为所求直线上的点.所求直线的对称式方程为x -3=y =z +2;-2 1 3参数方程为x =3-2t ,y =t ,z =-2+3t .⎨3x +5y -2z +1=0 ⎩ ⎩⎨-2x +y +z =7 ⎨2x -y -z =0 4.求过点(2, 0,-3)且与直线⎧x -2y +4z -7=0 ⎩垂直的平面 方程.解所求平面的法线向量n 可取为已知直线的方向向量,即i j n =(1, -2, 4)⨯(3, 5, -2)= 1- 2 3 5 k 4=-16i +14 j +11k . -2所平面的方程为-16(x -2)+14(y -0)+11(z +3)=0,即 16x -14y -11z -65=0.5.求直线⎧5x -3y +3z -9=0与直线⎧2x +2y -z +23=0的夹角 的余弦.⎨3x -2y +z =0 ⎨3x +8y +z -18=0 解两直线的方向向量分别为i s 1 = 5 3 i j k-33 =3i + 4 j -k , -2 1j ks 2 = 22 38 -1 =10i -5 j +10k . 1两直线之间的夹角的余弦为cos(s ,^s )= s 1⨯s 2 1 2 | s |⋅|s | 1 2= 3⨯10+4⨯(-5)+(-1)⨯10 =0. 32 +42 +(-1)2 102 +(-5)2 +1026.证明直线⎧x +2y -z =7 ⎩ 与直线⎧3x +6y -3z =8平行. ⎩解两直线的方向向量分别为i j s 1=1 2 -21 i j k-1 =3i +j +5k , 1ks 2 = 3 2 6 -3=-9i -3j -15k .-1-1因为 s 2=-3s 1,所以这两个直线是平行的.7.求过点(0, 2,4)且与两平面 x +2z =1 和 y -3z =2平行的直线方程. 解因为两平面的法线向量n 1=(1, 0, 2)与n 2=(0, 1,-3)不平行,所以两平面相交于一直线,此直线的方向向量可作为所求直线的方向向量s ,即i j s = 10 01 k 2=-2i +3j +k . -3所求直线的方程为 x =y -2=z -4.-2 3 1 8.求过点(3, 1,-2)且通过直线 x -4=y +3=z 的平面方程.5 2 1 解所求平面的法线向量与直线x -4=y +3=z 的方向向量5 2 1s 1=(5, 2, 1)垂直.因为点(3, 1,-2)和(4,-3, 0)都在所求的平面上,所以所求平面的法线向量与向量s 2=(4,-3,0)-(3,1,-2)=(1,-4,2) 也是垂直的.因此所求平面的法线向量可取为⎨x -y -z =0 ⎨x -y -z =0i j n =s 1 ⨯s 2 =5 2 1-4 k 1 =8i -9 j -22k . 2所求平面的方程为8(x -3)-9(y -1)-22(z +2)=0,即 8x -9y -22z -59=0.9.求直线⎧x +y +3z =0 与平面 x -y -z +1=0 的夹角. ⎩解已知直线的方向向量为i s =(1,1, 3)⨯(1, -1, -1)=1 1 j k 1 3 -1 -1=2i + 4 j -2k =2(i + 2 j -k ) , 已知平面的法线向量为 n =(1,-1,-1).因为s ⋅n =2⨯1+4⨯(-1)+(-2)⨯(-1)=0,所以 s ⊥n ,从而直线⎧x +y +3z =0 与平面 x -y -z +1=0 的夹角为 0. ⎩10.试确定下列各组中的直线和平面间的关系: (1) x +3=y +4=z 和 4x -2y -2z =3;-2 -7 3解 所给直线的方向向量为 s =(-2,-7,3),所给平面的法线向量为 n =(4,-2,-2).因为 s ⋅n =(-2)⨯4+(-7)⨯(-2)+3⨯(-2)=0,所以 s ⊥n ,从而所给直线与所给平面平行.又因为直线上的点(-3,-4, 0)不满足平面方程 4x -2y -2z =3,所以所给直线不在所给平面上. (2) x =y =z 和 3x -2y +7z =8;3 -2 7⎩ ⎩解 所给直线的方向向量为 s =(3,-2,7),所给平面的法线向量为 n =(3,-2, 7).因为 s =n ,所以所给直线与所给平面是垂直的. (3) x -2=y +2=z -3和 x +y +z =3.3 1 -4解 所给直线的方向向量为 s =(3,1,-4),所给平面的法线向量为 n =(1, 1, 1).因为 s ⋅n =3⨯1+1⨯1+(-4)⨯1=0,所以 s ⊥n ,从而所给直线与所给平面平行.又因为直线上的点(2,-2,3)满足平面方程 x +y +z =3,所以所给直线在所给平面上. 11.求过点(1,2,1)而与两直线⎧x +2y -z +1=0 和⎧2x -y +z =0平行的平面的方程.⎨x -y +z -1=0 ⎨x -y +z =0 解已知直线的方向向量分别为i s 1=(1,2,-1)⨯(1,-1,1)=1 1 i s 1 =(2, -1,1)⨯(1, -1,1)=2 1 j k 2 -1 =i -2 j -3k ,-1 1j k -1 1 =-j -k . -1 1所求平面的法线向量可取为i n =s 1⨯s 2 =1 0 所求平面的方程为j k -2 -3 =-i +j -k ,-1 -1-(x -1)+(y -2)-(z -1)=0,即 x -y +z =0.12.求点(-1, 2, 0)在平面 x +2y -z +1=0 上的投影.⎨2x -y +z -4=0 解平面的法线向量为n =(1, 2,-1).过点(-1, 2, 0)并且垂直于已知平面的直线方程为x +1=y -2=z .1 2 -1将此方程化为参数方程x =-1+t ,y =2+2t ,z =-t ,代入平面方程 x +2y -z +1=0 中,得(-1+t )+2(2+2t )-(-t )+1=0,解得t =-2.再将t =-2代入直线的参数方程,得x =-5,y =2, 3 3 3 3z =2.于是点(-1, 2, 0) 在平面x +2y -z +1=0上的投影为点 3 (-5, 2, 2) . 2 3 313.求点 P (3,-1,2)到直线⎧x +y -z +1=0 ⎩ 解已知直线的方向向量为的距离.i s =(1,1,-1)⨯(2,-1,1)=1 2 j k 1 -1=-3j -3k . -1 1过点P 且与已知直线垂直的平面的方程为-3(y +1)-3(z -2)=0,即 y +z -1=0.解线性方程组⎧⎪x +y -z +1=0⎨2x -y +z -4=0 ,⎪⎩y +z -1=0得 x =1, y =-1, 2 z =3.22 ⎨2x -y +z -4=0 ⎨3x -y -2z -9=0 点P (3,-1, 2)到直线⎧x +y -z +1=0 ⎩与点(1, -1, 3) 间的距离,即的距离就是点P (3,-1, 2) 2 2d =. 214.设M 0是直线L 外一点,M 是直线L 上任意一点,且直线的方向向量为s ,试证:点M 0到直线L 的距离→ d =|M 0M ⨯s |. |s |→解设点M 0到直线L 的距离为d ,L 的方向向量s =MN ,根→ → 据向量积的几何意义,以M 0M 和MN 为邻边的平行四边形的面积为→ → →|M 0M ⨯MN |=|M 0M ⨯s | ,→ → → 又以 M 0M 和 MN 为邻边的平行四边形的面积为 d ⋅|MN |=d ⋅| s | . 因此→d ⋅|s |=| → M 0M ⨯s |, d =|M 0M ⨯s |. | s | 15.求直线⎧2x -4y +z =0 ⎩在平面4x -y +z =1 上的投影直线 的方程.解过已知直线的平面束方程为(2+3λ)x +(-4-λ)y +(1-2λ)z -9λ=0.为在平面束中找出与已知平面垂直的平面,令(4 -1, 1)⋅(2+3λ,-4-λ, 1-2λ)=0,⎩ 即4⋅(2+3λ)+(-1)⋅(-4-λ)+1⋅(1-2λ)=0.解之得λ=-13.将λ=-13代入平面束方程中,得11 1117x +31y -37z -117=0.故投影直线的方程为⎧4x -y +z =1 ⎨17x +31y -37z -117 =0 16.画出下列各曲面所围成的立体图形:(1)x =0,y =0,z =0,x =2,y =1, 3x +4y +2z -12=0;(2)x =0,z =0,x =1,y =2, z =y ;4.(3)z=0,z=3,x-y=0,x-3y=0,x2+y2=1(在第一卦限内);(4)x=0,y=0,z=0,x2+y2=R2,y2+z2=R2(在第一卦限内).总习题七1.填空(1)设在坐标系[O;i,j,k]中点A和点M的坐标依次为(x0,y0,z0)和(x,y,z),则在[A;i,j,k]→坐标系中,点M 的坐标为,向量OM的坐标为.解 M(x-x0,y-y0,z-z0),→OM =(x, y, z) .提示:自由向量与起点无关,它在某一向量上的投影不会因起点的位置的不同而改变.(2)设数λ1、λ2、λ3不全为0,使λ1a+λ2b+λ3c=0,则a、b、c三个向量是的.解共面.(3)设a=(2,1,2),b=(4,-1,10),c=b-λa,且a⊥c,则λ= .解 3.提示:因为 a⊥c,所以 a⋅c=0.又因为由a⋅c=a⋅b-λa⋅a=2⨯4+1⨯(-1)+2⨯10-λ(22+12+22)=27-9λ,所以λ=3.(4)设a、b、c都是单位向量,且满足a+b+c=0,则a⋅b+b⋅c+c⋅a= .解 -3.2提示:因为a+b+c=0,所以(a+b+c)⋅(a+b+c)=0,即a⋅a+b⋅b+c⋅c+2a⋅b+2a⋅c+2c⋅a=0,于是a⋅b+b⋅c+c⋅a=-1(a⋅a+b⋅b+c⋅c)=-1(1+1+1)=-3.2 2 2(5)设|a|=3,|b|=4,|c|=5,且满足a+b+c=0,则|a⨯b+b⨯c+c⨯a|= .解36.提示:c=-(a+b),a⨯b+b⨯c+c⨯a=a⨯b-b⨯(a+b)-(a+b)⨯a=a⨯b-b⨯a-b⨯a=3a⨯b,|a⨯b+b⨯c+c⨯a|=3|a⨯b|=3|a|⋅|b|=3⋅3⋅4=36.2.在y轴上求与点 A(1,-3, 7)和点 B(5, 7,-5)等距离的点.解设所求点为M(0,y, 0),则有12+(y+3)2+72=52+(y-7)2+(-5)2,即(y+3)2=(y-7)2,解得 y=2,所求的点为 M(0, 2, 0).3.已知 ∆ABC 的顶点为 A(3,2,-1)、B(5,-4,7)和C(-1,1,2),求从顶点 C 所引中线的长度.解线段AB 的中点的坐标为(3+5, 2-4, -1+7) =(4, -1, 3) .所求中线的长度为2 2 2.→→→4.设∆ABC 的三边BC =a 、CA=b 、AB =c ,三边中点依次为D、E、F,试用向量a、d = (4+1)2 +(-1-1)2 +(3- 2)2 = 30→→→b 、c 表示AD 、BE 、CF ,并证明→→→AD +BE +CF =0 . 解 →=→+→=c +1a , ADABBD 2→=→+→=a +1b , BEBCCE 2→=→+→=b +1c . CFCAAF 2→→→3 3AD +BE +CF =2 (a +b +c )=2(-c +c )=05.试用向量证明三角形两边中点的连线平行于第三边,且其长度等于第三边长度的一半.证明设D ,E 分别为AB ,AC 的中点,则有 →=→-→=1( →-→) , DE AE AD 2AC AB→ →→→→BC =BA +AC =AC -AB ,所以→1→DE =2BC ,从而 DE //BC ,且|DE |=1| BC | .26.设|a +b |=|a -b |,a =(3,-5, 8),b =(-1, 1,z ),求 z .解a +b =(2,-4, 8+z ),a -b =(4,-6, 8-z ).因为|a +b |=|a -b |,所以,解得 z =1.7.设|a |=, |b |=1,(a ,^b ) =π,求向量 a +b 与 a -b 的夹角.6解 |a +b |2=(a +b )⋅(a +b )=|a |2+|b |2+2a ⋅b =|a |2+|b |2+2|a |⋅|b |cos(a ,^b ) =3+1+2|a -b |2=(a -b )⋅(a -b )=|a |2+|b |2-2a ⋅b =|a |2+|b |2-2|a |⋅|b |cos(a ,^b )=3+1-2 设向量a +b 与a -b 的夹角为θ,则3 cos π=7 ,63 cos π=1 .6cos θ=(a +b )⋅(a -b )= |a |2 -|b |2 |a +b |⋅|a -b | θ=arccos 2.7|a +b |⋅|a -b | 22 +(-4)2 +(8+z )2 = 42 +(-6)2 +(8-z )2 38.设 a +3b ⊥7a -5b ,a -4b ⊥7a -2b ,求(a ,^b ) . 解 因为 a +3b ⊥7a -5b ,a -4b ⊥7a -2b , 所以 (a +3b )⋅(7a -5b )=0,(a -4b )⋅(7a -2b )=0, 即 7|a |2+16a ⋅b -15|b |2=0, 7|a |2-30a ⋅b +8|b |2=0, 又以上两式可得|a |=|b |= 2 a ⋅b ,于是cos(a ,^b ) =a ⋅b =1,(a ,^b ) =π.|a |⋅|b | 239.设 a =(2,-1,-2),b =(1, 1,z ),问 z 为何值时(a ,^b ) 最小?并求出此最小值. 解 cos(a ,^b ) =a ⋅b =1-2z . |a |⋅|b | 3 2+z 2因为当 0<(a ,^b )<π时,cos(a ,^b ) 为单调减函数.求(a ,^b ) 的最小值也就是求 f (z )=1-2z2的最大值.3 2+z 2令 f '(z ) =1⋅-4-z =0 ,得 z =-4.3 (2+z 2)3/ 2当z =-4时,cos(a ,^b )=2,所以(a ,^b )=2min2 410.设|a |=4, |b |=3, (a ,^b ) =π,求以 a +2b 和 a -3b 为边的平行四边形的面积.6解 (a +2b )⨯(a -3b )=-3a ⨯b +2b ⨯a =5b ⨯a .以a +2b 和a -3b 为边的平行四边形的面积为|(a + 2b )⨯(a -3b )|=5|b ⨯a |=5|b |⋅|a |sin(a ,^b ) =5⋅3⋅4⋅1=30 .211.设 a =(2,-3, 1),b =(1,-2, 3),c =(2, 1, 2),向量 r 满足 r ⊥a ,r ⊥b , Prj c r =14,求 r . 解 设 r =(x ,y ,z ).因为r ⊥a ,r ⊥b ,所以r ⋅a =0,r ⋅b =0,即 2x -3y +z =0,x -2y +3z =0.又因为Prj cr =14,所以r ⋅1c =14 ,即|c |2x +y +2z =42. 解线性方程组⎪(x -1)2+(y +1)2+(z -2)2⎧⎪2x -3y +z =0 ⎨x -2y +3z =0 , ⎪⎩2x +y +2z =42得 x =14,y =10,z =2,所以 r =(14, 10, 2).i j k另解 因为 r ⊥a ,r ⊥b ,所以 r 与a ⨯b =2-3 1 -2 1 =-7i -5 j -k 平行,故可设 r =λ(7, 5, 1).3又因为Prj c r =14,所以r ⋅1c =14 ,r ⋅c =42,即|c |λ(7⨯2+5⨯1+1⨯2)=42,λ=2,所以 r =(14, 10, 2).12.设a =(-1, 3, 2),b =(2,-3,-4),c =(-3, 12, 6),证明三向量a 、b 、c 共面,并用a 和b 表示 c .证明向量a 、b 、c 共面的充要条件是(a ⨯b )⋅c =0.因为i j a ⨯b =-1 3 2 -3 k2 =-6i -3k ,- 4 (a ⨯b )⋅c =(-6)⨯(-3)+0⨯12+(-3)⨯6=0,所以向量a 、b 、c 共面.设c =λa +μb ,则有(-λ+2μ, 3λ-3μ, 2λ-4μ)=(-3, 12, 6), 即有方程组⎧-λ+ 2μ=-3 ⎨3λ-3μ=12 , ⎪⎩2λ-4μ=6解之得λ=5,μ=1,所以 c =5a +b .13.已知动点 M (x ,y ,z )到 xOy 平面的距离与点 M 到点(1, -1, 2)的距离相等,求点 M 的轨迹方程.解根据题意,有|z |= ,或 z 2=(x -1)2+(y +1)2+(z -2)2,化简得(x -1)2+(y +1)2=4(z -1),这就是点 M 的轨迹方程.14.指出下列旋转曲面的一条母线和旋转轴:(1)z =2(x 2+y 2);解 旋转曲面的一条母线为 zOx 面上的曲线 z =2x 2,旋转轴为 z 轴.2⎨x =0 ⎨x =0⎨x =0 (2) x 2 +y 2 +z 2=1 ; 36 9 36解 旋转曲面的一条母线为 xOy 面上的曲线 x 2 +y 2=1,旋转轴为 y 轴.(3)z 2=3(x 2+y 2);36 9解 旋转曲面的一条母线为 yOz 面上的曲线 z = 3 y ,旋转轴为 z 轴.(4) x 2 -y 2 -z 2=1. 4 4解 旋转曲面的一条母线为 xOy 面上的曲线 x 2-y 2=1 ,旋转轴为 x 轴.415.求通过点 A (3, 0, 0)和 B (0, 0, 1)且与 xOy 面成 π角的平面的方程.3 解 设所求平面的法线向量为 n =(a ,b ,c ).→BA =(3, 0, -1) ,xOy 面的法线向量为 k =(0, 0, 1).→ 按要求有n ⋅ =0, n ⋅k =cos π,BA⎧⎪3a -c =0 |n |⋅|k | 3即解之得 c =3a , b =± 26a .于是所求的平面的方程为(x -3) ±26 y +3z =0 ,即x + 26y +3z =3,或 x -26 y +3z =3 .16.设一平面垂直于平面z =0,并通过从点(1, -1, 1)到直线⎧y -z +1= 0的垂线,求此平 ⎩面方程.解 直线⎧y -z +1= 0的方向向量为 s =(0, 1,-1)⨯(1, 0, 0)=(0,-1,-1). ⎩设点(1, -1, 1)到直线⎧y -z +1= 0的垂线交于点(x 0,y 0,z 0).因为点(x 0,y 0,z 0)在直线⎩⎨x =0⎧y -z +1= 0上,所以(x 0,y 0,z 0)=(0,y 0,y 0+1).于是,垂线的方向向量为 ⎩s 1=(-1,y 0+1,y 0).显然有s ⋅s 1=0,即-y 0-1-y 0=0, y =-1. 2 从而 s 1 =(-1, y 0 +1, y 0) =(-1, 1, -1) .2 2所求平面的法线向量可取为n =k ⨯s 1 =k ⨯(-i +1j -1k ) =-1i -j ,所求平面的方程为2 2 2 -1(x -1) -(y +1) =0 ,即 x +2y +1=0 217.求过点(-1, 0, 4),且平行于平面3x -4y +z -10=0,又与直线x +1=y -3=z相交的直1 12 线的方程.解过点(-1, 0, 4),且平行于平面3x -4y +z -10=0 的平面的方程为3(x +1)-4(y -0)+(z -4)=0,即 3x -4y +z -1=0. 将直线x +1=y -3=z化为参数方程 x =-1+t ,y =3+t ,z =2t ,代入平面方程 3x -4y +z -1=0,1 12 得3(-1+t )-4(3+t )+2t -1=0,解得t =16.于是平面3x -4y +z -1=0 与直线x +1=y -3=z的交点的坐标为(15, 19,32),这也1 12 是所求直线与已知直线的交点的坐标.所求直线的方向向量为s =(15, 19, 32)-(-1, 0, 4)=(16, 19, 28), 所求直线的方程为x +1=y =z -4. 16 19 2818.已知点 A (1, 0, 0)及点 B (0, 2, 1),试在 z 轴上求一点 C ,使∆ABC 的面积最小.→ 解 设所求的点为 C (0, 0,z ),则 AC =(-1, 0, z ) ,→BC =(0, - 2, z -1) .→→i j k因为 AC ⨯BC =-10 0 - 2 z z -1= 2z i +(z -1) j + 2k ,所以∆ABC 的面积为x 2 +y 2 x 2 +y 2 ⎨z = 22(x -1)+(y -1) ⎩ ⎩ ⎩⎨y =0 ⎩ ⎨x =0 ⎩ ⎩⎨z =0⎩ ⎩S =1|→⨯→|=14z 2 +(z -1)2 + 4 . 2AC BC 2令dS =1⋅ 8z +2(z -1)=0,得z =1,所求点为C (0,0,1). dz 4 4z 2 +(z -1)2 +4 5519.求曲线⎧z = 2-x 2 -y 2 ⎩ 在三个坐标面上的投影曲线的方程. 解在xOy 面上的投影曲线方程为⎧(x -1)2 +(y -1)2 = 2-x 2 -y 2 ,即⎧x 2 +y 2 =x +y .⎨z =0 ⎨z =0 在zOx 面上的投影曲线方程为⎧z =(x -1)2+(± ⎨y =0 2-x 2 -z -1)2 ,即⎧2x 2+ 2xz +z 2- 4x -3z + 2=0 .⎩ 在yOz 面上的投影曲线方程为⎧z =(±⎨x =0 2-y 2 -z -1)2 +(y -1)2 ,即⎧2y 2+ 2yz +z 2- 4y -3z + 2=0 .⎩20.求锥面z =与柱面z 2=2x 所围立体在三个坐标面上的投影.解锥面与柱面交线在xOy 面上的投影为⎧2x =x 2 +y 2 ,即⎧(x -1)2 +y 2 =1 ,⎨z =0 ⎨z =0 所以,立体在 xOy 面上的投影为⎧(x -1)2 +y 2 ≤1.⎩ 锥面与柱面交线在yOz 面上的投影为 ⎧⎪z =⎧⎪(z 2-2)2+y 2=1⎨ ,即⎨2 , ⎪⎩x ⎪⎩x =0⎧⎪(z 2-2)2+y 2≤1 所以,立体在yOz 面上的投影为⎨2 .⎪⎩x =0锥面z = 与柱面z 2=2x 与平面y =0 的交线为⎧z =|x |和⎧z = 2x ,⎨y =0 ⎨y =0所以,立体在zOx 面上的投影为⎩x 2 +y 2⎧x ≤z≤ ⎨y =021.画出下列各曲面所围立体的图形:(1)抛物柱面 2y 2=x ,平面 z =0 及x =y=z =1 ;4 2 2(2)抛物柱面 x 2=1-z ,平面 y =0,z =0 及 x +y =1;(3) 圆锥面z = 及旋转抛物面z =2-x 2-y 2;(4) 旋转抛物面x 2+y 2=z ,柱面y 2=x ,平面z =0及x =1.2x.。
同济大学第六版高等数学上册课后答案全集

高等数学第六版上册课后习题答案第一章习题1-11.设A=(-∞,-5)⋃(5,+∞), B=[-10, 3),写出A⋃B, A⋂B, A\B及A\(A\B)的表达式.解A⋃B=(-∞, 3)⋃(5,+∞),A⋂B=[-10,-5),A\B=(-∞,-10)⋃(5,+∞),A\(A\B)=[-10,-5).2.设A、B是任意两个集合,证明对偶律: (A⋂B)C=A C ⋃B C .证明因为x∈(A⋂B)C⇔x∉A⋂B⇔ x∉A或x∉B⇔ x∈A C或x∈B C ⇔ x∈A C ⋃B C,所以(A⋂B)C=A C ⋃B C .3.设映射f : X →Y, A⊂X, B⊂X .证明(1)f(A⋃B)=f(A)⋃f(B);(2)f(A⋂B)⊂f(A)⋂f(B).证明因为y∈f(A⋃B)⇔∃x∈A⋃B,使f(x)=y⇔(因为x∈A或x∈B) y∈f(A)或y∈f(B)⇔ y∈f(A)⋃f(B),所以f(A⋃B)=f(A)⋃f(B).(2)因为y ∈f(A ⋂B)⇒∃x ∈A ⋂B , 使f(x)=y ⇔(因为x ∈A 且x ∈B) y ∈f(A)且y ∈f(B)⇒ y ∈ f(A)⋂f(B),所以 f(A ⋂B)⊂f(A)⋂f(B).4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g =ο, Y I g f =ο, 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.证明 因为对于任意的y ∈Y , 有x =g(y)∈X , 且f(x)=f[g(y)]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射.又因为对于任意的x 1≠x 2, 必有f(x 1)≠f(x 2), 否则若f(x 1)=f(x 2)⇒g[ f(x 1)]=g[f(x 2)] ⇒ x 1=x 2.因此f 既是单射, 又是满射, 即f 是双射.对于映射g : Y →X , 因为对每个y ∈Y , 有g(y)=x ∈X , 且满足f(x)=f[g(y)]=I y y =y , 按逆映射的定义, g 是f 的逆映射. 5. 设映射f : X →Y , A ⊂X . 证明:(1)f -1(f(A))⊃A ;(2)当f 是单射时, 有f -1(f(A))=A .证明 (1)因为x ∈A ⇒ f(x)=y ∈f(A) ⇒ f -1(y)=x ∈f -1(f(A)), 所以 f -1(f(A))⊃A .(2)由(1)知f -1(f(A))⊃A .另一方面, 对于任意的x ∈f -1(f(A))⇒存在y ∈f(A), 使f -1(y)=x ⇒f(x)=y . 因为y ∈f(A)且f 是单射, 所以x ∈A . 这就证明了f -1(f(A))⊂A . 因此f -1(f(A))=A .6. 求下列函数的自然定义域:(1)23+=x y ;解 由3x +2≥0得32->x . 函数的定义域为) ,32[∞+-. (2)211x y -=; 解 由1-x 2≠0得x ≠±1. 函数的定义域为(-∞, -1)⋃(-1,1)⋃(1, +∞).(3)211x xy --=; 解 由x ≠0且1-x 2≥0得函数的定义域D =[-1, 0)⋃(0, 1].(4)241xy -=; 解 由4-x 2>0得 |x|<2. 函数的定义域为(-2, 2).(5)x y sin =;解 由x ≥0得函数的定义D =[0, +∞).(6) y =tan(x +1);解 由21π≠+x (k =0, ±1, ±2, ⋅ ⋅ ⋅)得函数的定义域为 12-+≠ππk x (k =0, ±1, ±2, ⋅ ⋅ ⋅). (7) y =arcsin(x -3);解 由|x -3|≤1得函数的定义域D =[2, 4].(8)xx y 1arctan 3+-=; 解 由3-x ≥0且x ≠0得函数的定义域D =(-∞, 0)⋃(0, 3).(9) y =ln(x +1);解 由x +1>0得函数的定义域D =(-1, +∞).(10)xe y 1=.解 由x ≠0得函数的定义域D =(-∞, 0)⋃(0, +∞). 7. 下列各题中, 函数f(x)和g(x)是否相同?为什么?(1)f(x)=lg x 2, g(x)=2lg x ;(2) f(x)=x , g(x)=2x ;(3)334)(x x x f -=,31)(-=x x x g .(4)f(x)=1, g(x)=sec 2x -tan 2x .解 (1)不同. 因为定义域不同.(2)不同. 因为对应法则不同, x <0时, g(x)=-x .(3)相同. 因为定义域、对应法则均相相同.(4)不同. 因为定义域不同.8. 设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, ϕ(-2), 并作出函数y =ϕ(x)的图形.解 21|6sin |)6(==ππϕ, 22|4sin |)4(==ππϕ, 22|)4sin(|)4(=-=-ππϕ, 0)2(=-ϕ. 9. 试证下列函数在指定区间内的单调性:(1)xx y -=1, (-∞, 1); (2)y =x +ln x , (0, +∞).证明 (1)对于任意的x 1, x 2∈(-∞, 1), 有1-x 1>0, 1-x 2>0. 因为当x 1<x 2时,0)1)(1(112121221121<---=---=-x x x x x x x x y y , 所以函数x x y -=1在区间(-∞, 1)内是单调增加的. (2)对于任意的x 1, x 2∈(0, +∞), 当x 1<x 2时, 有 0ln)()ln ()ln (2121221121<+-=+-+=-x x x x x x x x y y , 所以函数y =x +ln x 在区间(0, +∞)内是单调增加的.10. 设 f(x)为定义在(-l , l)内的奇函数, 若f(x)在(0, l)内单调增加,证明f(x)在(-l, 0)内也单调增加.证明对于∀x1, x2∈(-l, 0)且x1<x2,有-x1,-x2∈(0, l)且-x1>-x2.因为f(x)在(0, l)内单调增加且为奇函数,所以f(-x2)<f(-x1),-f(x2)<-f(x1), f(x2)>f(x1),这就证明了对于∀x1, x2∈(-l, 0),有f(x1)< f(x2),所以f(x)在(-l, 0)内也单调增加.11.设下面所考虑的函数都是定义在对称区间(-l, l)上的,证明:(1)两个偶函数的和是偶函数,两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,偶函数与奇函数的乘积是奇函数.证明(1)设F(x)=f(x)+g(x).如果f(x)和g(x)都是偶函数,则F(-x)=f(-x)+g(-x)=f(x)+g(x)=F(x),所以F(x)为偶函数,即两个偶函数的和是偶函数.如果f(x)和g(x)都是奇函数,则F(-x)=f(-x)+g(-x)=-f(x)-g(x)=-F(x),所以F(x)为奇函数,即两个奇函数的和是奇函数.(2)设F(x)=f(x)⋅g(x).如果f(x)和g(x)都是偶函数,则F(-x)=f(-x)⋅g(-x)=f(x)⋅g(x)=F(x),所以F(x)为偶函数,即两个偶函数的积是偶函数.如果f(x)和g(x)都是奇函数,则F(-x)=f(-x)⋅g(-x)=[-f(x)][-g(x)]=f(x)⋅g(x)=F(x),所以F(x)为偶函数, 即两个奇函数的积是偶函数. 如果f(x)是偶函数, 而g(x)是奇函数, 则F(-x)=f(-x)⋅g(-x)=f(x)[-g(x)]=-f(x)⋅g(x)=-F(x), 所以F(x)为奇函数, 即偶函数与奇函数的积是奇函数. 12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数?(1)y =x 2(1-x 2);(2)y =3x 2-x 3;(3)2211xx y +-=; (4)y =x(x -1)(x +1);(5)y =sin x -cos x +1;(6)2x x a a y -+=. 解 (1)因为f(-x)=(-x)2[1-(-x)2]=x 2(1-x 2)=f(x), 所以f(x)是偶函数.(2)由f(-x)=3(-x)2-(-x)3=3x 2+x 3可见f(x)既非奇函数又非偶函数.(3)因为())(111)(1)(2222x f x x x x x f =+-=-+--=-, 所以f(x)是偶函数.(4)因为f(-x)=(-x)(-x -1)(-x +1)=-x(x +1)(x -1)=-f(x), 所以f(x)是奇函数.(5)由f(-x)=sin(-x)-cos(-x)+1=-sin x -cos x +1可见f(x)既非奇函数又非偶函数.(6)因为)(22)()()(x f a a a a x f x x x x =+=+=-----, 所以f(x)是偶函数. 13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期:(1)y =cos(x -2);解 是周期函数, 周期为l =2π.(2)y =cos 4x ;解 是周期函数, 周期为2π=l . (3)y =1+sin πx ;解 是周期函数, 周期为l =2.(4)y =xcos x ;解 不是周期函数.(5)y =sin 2x .解 是周期函数, 周期为l =π.14. 求下列函数的反函数:(1)31+=x y 错误!未指定书签。
同济大学第六版高等数学上下册课后习题答案5-7

同济大学第六版高等数学上下册课后习题答案5-71. 判别下列各反常积分的收敛性, 如果收敛, 计算反常积分的值:(1)⎰+∞14xdx; 解 因为3131)31(lim 3131314=+-=-=-+∞→+∞-+∞⎰x x x dx x , 所以反常积分⎰+∞14x dx收敛, 且3114=⎰∞+x dx . (2)⎰+∞1xdx ;解 因为+∞=-==+∞→+∞∞+⎰22lim 211x xxdx x , 所以反常积分⎰+∞1xdx 发散.(3)dx e ax ⎰+∞-0(a >0); 解 因为aa e a e adx e ax x ax ax 11)1(lim 100=+-=-=-+∞→+∞-+∞-⎰, 所以反常积分dx e ax ⎰+∞-0收敛, 且adx e ax 10=⎰+∞-.(4)⎰+∞-0ch tdt e pt (p >1); 解 因为1]1111[21][21ch 20)1()1(0)1()1(0-=+--=+=+∞+--∞++--∞+-⎰⎰p p e pe p dt e e tdt e tp t p t p tp pt ,所以反常积分⎰+∞-0ch tdt e pt 收敛, 且1ch 20-=⎰∞+-p p tdt e pt .(5)⎰+∞-0sin tdt e pt ω(p >0, ω>0); 解⎰⎰+∞-+∞--=0cos 1sin t d e tdt ept ptωωω⎰⎰+∞-+∞-+∞--=-⋅+-=020sin 1)(cos 1cos 1t d e pdt pe t te pt pt pt ωωωωωωω⎰+∞-+∞--⋅+-=0202)(sin sin 1dt pe t pte p ptpt ωωωωω⎰+∞--=022sin 1tdt e p pt ωωω,所以 22sin w p tdt e pt +=⎰+∞-ωω.(6)⎰+∞∞-++222x x dx;解 πππ=--=+=++=++⎰⎰+∞∞-+∞∞-+∞∞-)2(2)1arctan()1(12222x x dxx x dx . (7)dx xx ⎰-121;解 这是无界函数的反常积分, x =1是被积函数的瑕点.11)1(lim 112110212=+--=--=--→⎰x x dx x x x .(8)⎰-22)1(x dx;解 这是无界函数的反常积分, x =1是被积函数的瑕点. 因为⎰⎰⎰-+-=-212102202)1()1()1(x dxx dx x dx , 而 +∞=--=-=--→⎰111lim 11)1(110102x x x dx x ,所以反常积分⎰-202)1(x dx发散.(9)⎰-211x xdx ;解 这是无界函数的反常积分, x =1是被积函数的瑕点.21232121]12)1(32[)111(1-+-=-+-=-⎰⎰x x dx x x x xdx322]12)1(32[lim 38231=-+--=+→x x x .(10)⎰-ex x dx 12)(ln 1.解 这是无界函数的反常积分, x =e 是被积函数的瑕点.2)arcsin(ln lim )arcsin(ln ln )(ln 11)(ln 111212π===-=--→⎰⎰x x x d x x x dx ex e ee.2. 当k 为何值时, 反常积分⎰+∞)(ln kx x dx收敛? 当k 为何值时, 这反常积分发散? 又当k 为何值时, 这反常积分取得最小值?解 当k <1时, +∞=-==+∞+-+∞+∞⎰⎰2122)(ln 11ln )(ln 1)(ln k kk x k x d x x x dx ;当k =1时, +∞===+∞+∞+∞⎰⎰222)ln(ln ln ln 1)(ln x x d x x x dxk ; 当k >1时,k k kkk x kx d x x x dx -+∞+-+∞+∞-=-==⎰⎰12122)2(ln 11)(ln 11ln )(ln 1)(ln . 因此当k >1时, 反常积分⎰+∞0)(ln k x x dx 收敛; 当k ≤1时, 反常积分⎰+∞0)(ln k x x dx发散. 当k >1时, 令kk k x x dx k f -∞+-==⎰10)2(ln 11)(ln )(, 则 )2ln ln 11()1(2ln ln )2(ln 2ln ln )2(ln 11)2(ln )1(1)(21112+---=----='---k k k k k f k kk. 令f '(k )=0得唯一驻点2ln ln 11-=k . 因为当2ln ln 111-<<k 时f '(k )<0, 当2ln ln 11->k 时f '(k )>0, 所以2ln ln 11-=k 为极小值点, 同时也是最小值点, 即当2ln ln 11-=k 时, 这反常积分取得最小值 3. 利用递推公式计算反常积分⎰+∞-=0dx e x I x n n . 解 因为101000-+∞--+∞-+∞-+∞-=+-=-==⎰⎰⎰n x n x n x n x n n nI dx e x n e x de x dx e x I ,所以 I n = n ⋅(n -1)⋅(n -2)⋅ ⋅ ⋅2⋅I 1. 又因为 1000001=-=+-=-==+∞-+∞-+∞-+∞-+∞-⎰⎰⎰xx x x x e dx e xe xde dx xe I ,所以 I n = n ⋅(n -1)⋅(n -2)⋅ ⋅ ⋅2⋅I 1=n !.。
《高数(同济六版)》第七章 微分方程--参考答案

第七章 微分方程—练习题参考答案一、填空题1. 三阶;2. 023=+'-''y y y ;3. 1-='xy y ; 4. x e 22ln ⋅ ; 5. x x e c e c 221-+;6. 错误 、错误、错误、正确.二、选择题1-5:ACDCB; 6-8: CCB;三、计算与应用题1、(1)解:变量分离得,1122-=+x xdx y ydy , 两边积分得,c x y ln 21)1ln(21)1ln(2122+-=+, 从而方程通解为 )1(122-=+x c y .(2)解:整理得,xy x y dx dy ln =,可见该方程是齐次方程, 令u x y =,即xu y =,则dx du x u dx dy +=,代入方程得,u u dxdu x u ln =+, 变量分离得,xdx u u du =-)1(ln ,积分得,c x u ln ln )1ln(ln +=-, 所以原方程的通解为cx x y =-1ln,或写为1+=cx xe y . (3)解:整理得,x e y x y =+'1,可见该方程是一阶线性方程,利用公式得通解为 )(1)(1)(11c e xe x c dx xe x c dx e e e y x x x dx x x dx x +-=+=+⎰⎰=⎰⎰-. (4)解:整理得,x y x x dx dy 1ln 1=+,这是一阶线性方程,利用公式得通解为 )2ln (ln 1)ln (ln 1)1(2ln 1ln 1c x x c dx x x x c dx e x e y dx x x dx x x +=+=+⎰⎰=⎰⎰-, 代入初始条件1==e x y 得21=c ,从而所求特解为)ln 1(ln 21x x y +=. (5)解:将方程两边逐次积分得,12arctan 11c x dx xy +=+='⎰, 2121)1ln(21arctan )(arctan c x c x x x dx c x y +++-=+=⎰,即原方程通解为212)1ln(21arctan c x c x x x y +++-=. (6)解:方程中不显含未知函数y ,所以可令)(x p y =',则)(x p y '='',代入方程得, x p p =-',这是一阶线性方程,其通解为x x x x x x dx dx e c x c e xe e c dx e x e c dx e x e p 111111)()()(+--=+--=+=+⎰⎰=----⎰⎰, 从而x e c x y 11+--=',两边积分得原方程通解为 21221c e c x x y x ++--=.2、解:将⎰+=x du u f x x f 0)()(两边对x 求导并整理得,1)()(=-'x f x f ,这是一阶线性微分方程,所以 )()()()(1c e e c dx e e c dx e e x f x x x x dx dx +-=+=+⎰⎰=---⎰⎰,又由⎰+=xdu u f x x f 0)()(可知0)0(=f ,从而1=c ,所以所求1)(-=x e x f .3、证明:因为)(),(),(321x y x y x y 都是方程)()()(x f y x Q y x P y =+'+''的特解,所以21y y -和32y y -都是方程)()()(x f y x Q y x P y =+'+''对应齐次方程的解, 又因3221y y y y --不恒等于常数,所以21y y -和32y y -线性无关, 从而对应齐次方程的通解为)()(322211y y c y y c Y -+-=,所以原方程的通解为1y Y y +=1322211)()(y y y c y y c +-+-=,即3221211)()1(y c y c c y c y --++=.。
同济高等数学第六版-D7_7常系数齐次线性微分方程-精选文档

目录 上页 下页 返回 结束
小结:
y p y q y 0( p , q 为常数 )
2 特征方程: r p r q 0 , 特征根 :r ,r 1 2
特征根
通
解
r 1 r 2 实根
p r r 1 2 2
r i 1 , 2
r x r x 1 2 y C e C e 1 2 r x 1 y ( C C x ) e 1 2 x y e ( C cos x C sin x ) 1 2
x x ( t) . 速度为 v 0, 求物体的运动规律
解: 由第六节例1 (P323) 知, 位移满足 因此定解问题为
dx 2 2 n k x 0 2 dt dt d x x t 0 x 0, t 0 v0 dt
d x
2
O x
x
目录 上页 下页 返回 结束
1) 无阻尼自由振动情况 ( n = 0 )
k 1 ( D D x D x sin x ] 1 2 k )
பைடு நூலகம்
(以上 C ) i, D i 均为任意常数
目录 上页 下页 返回 结束
例1. 求方程 的通解. y 2 y 3 y 0 2 1 , r 3 , 解: 特征方程 r 2 r 3 0 ,特征根: r 1 2
2
1 x y ( y y ) e cosx 1 2 1 2 1 x e sinx y ( y y ) 2 2 2 i 1
利用解的叠加原理 , 得原方程的线性无关特解:
因此原方程的通解为 y p y q y 0( p , q 为常数 ) x 2( y e C cos x C sin x ) 1 2 特征方程 r p r q 0
同济大学高等数学第六版作者答案详解1-8

(2) 对 x = 0 , 因为 f (0) 无定义 , lim x→ 0
30
x x = lim = 1 , 所以 x = 0 为第一类间 tan x x → 0 x
断点 ( 可去间断点 ) , 重新定义函数 : f 1 ( x) = x , tan x x ≠ kπ ,kπ + x=0 π , 2 ( k ∈ Z) ,
3 1 f ( x0 ) < f ( x) < f ( x0 ) < 0 . 2 2 因此 ,不 论 f ( x0 ) > 0 或 f ( x0 ) < 0 ,总 存在 x0 的 某一 邻 域 U ( x0 ) ,当 x ∈ U ( x0 ) 时 , f ( x) ≠ 0 .
倡
7畅 设 f ( x) = x ,x ∈ Q , 0 ,x ∈ Q ,
2
0≤ x≤1, 1< x≤2; -1≤ x≤1, x< -1或 x>1.
2
图 1- 8
2- x, x, 1,
解 (1) f ( x) 在 [0 , 1) 及 (1 , 2] 内连续 , 在 x=1处,
x→ 1 - x→ 1 x→ 1 x→ 1
故 f ( x) 在 x = 1 处连续 , 因此 f ( x) 在 [0 , 2] 上连续 , 函数的图形如图 1 - 9 所示 .
C
32
证明 : (1) f ( x) 在 x = 0 连续 ; (2) f ( x) 在非零的 x 处都不连续 . 证 (1) 橙 ε > 0 , 取 δ = ε, 则当 | x - 0| = | x| < δ 时 , 故 lim f ( x) = f (0) , 即 f ( x) 在 x = 0 连续 . x→ 0 | f ( x) - f (0) | = | f ( x) | ≤ | x | < ε ,
同济大学高等数学第六版 第七章 微分方程

C 1 ,C 2 是两个独立的任意常数, 故它是方程的通解.
利用初始条件易得: C ,C 2 0, 故所求特解为 1 A
x A cos k t
例2. 已知曲线上点 P(x, y) 处的法线与 x 轴交点为 Q
且线段 PQ 被 y 轴平分, 求所满足的微分方程 . 解: 如图所示, 点 P(x, y) 处的法线方程为 1 (Xx ) Yy y y 令 Y = 0 , 得 Q 点的横坐标
P ( x ) d x
齐次方程通解
非齐次方程特解
5 d y 2 y 例1. 解方程 ( x 1 ) 2. d x x 1 d y 2d x dy 2y 0, 即 解: 先解 y x 1 dx x 1 2 积分得 ln 即 y y 2 ln x 1 ln C , C ( x 1 ) 2则 y u ( x ) ( x 1 ) , 用常数变易法求特解. 令
x y ( C 为任意常数 ) ln ( 1 e ) y C 所求通解:
例4. 已知放射性元素铀的衰变速度与当时未衰变原
子的含量 M 成正比, 已知 t = 0 时铀的含量为 M 0 , 求在 衰变过程中铀含量 M(t) 随时间 t 的变化规律. d M M( 0 ) t 解: 根据题意, 有 d M M t 0 0 (初始条件) dM ( ) d t 对方程分离变量, 然后积分: M t M 即M C e 得 ln M t ln C , M0 利用初始条件, 得 CM 0 t 故所求铀的变化规律为 M M e . o 0
ue
P(x)dx
( x ) d x P
P (x)dx
Q (x )
P ( x ) d x e Q ( x ) e d x C 故原方程的通解 y P ( x ) d x P ( x ) d x P (x )dx e Q ( x ) e d x y Ce 即
同济大学第六版高等数学上下册课后习题答案7-6

同济大学第六版高等数学上下册课后习题答案7-6 习题7,6yx,3z,1,, 1, 求过点(4~ ,1~ 3)且平行于直线的直线方程,215解所求直线的方向向量为s,(2~ 1~ 5)~所求的直线方程为y,1x,4z,3,,,2152, 求过两点M(3~ ,2~ 1)和M(,1~ 0~ 2)的直线方程, 12解所求直线的方向向量为s,(,1~ 0~ 2),(3~ ,2~ 1),(,4~ 2~ 1)~所求的直线方程为y,2x,3x,1,,,,421x,y,z,1, 3, 用对称式方程及参数方程表示直线, ,2x,y,z,4,解平面x,y,z,1和2x,y,z,4的法线向量为n,(1~ ,1~ 1)~ 1n,(2~ 1~ 1)~所求直线的方向向量为 2ijk, s,n,n,1,11,,2i,j,3k12211x,y,z,1x,z,1,, 在方程组中~令y,0~得~解得x,3~ ,,2x,y,z,42x,z,4,,z,,2, 于是点(3~ 0~ ,2)为所求直线上的点,所求直线的对称式方程为yx,3z,2,, ,,213参数方程为x,3,2t~ y,t~ z,,2,3t,x,2y,4z,7,0, 4, 求过点(2~ 0~ ,3)且与直线垂直的平面,3x,5y,2z,1,0,方程,解所求平面的法线向量n可取为已知直线的方向向量~即ijk, n,(1, ,2, 4),(3, 5, ,2),1,24,,16i,14j,11k35,2所平面的方程为,16(x,2),14(y,0),11(z,3),0~即 16x,14y,11z,65,0,2x,2y,z,23,05x,3y,3z,9,0,, 5, 求直线与直线的夹角,,3x,2y,z,03x,8y,z,18,0,,的余弦,解两直线的方向向量分别为ijk~ s,5,33,3i,4j,k13,21ijk, s,22,1,10i,5j,10k2381两直线之间的夹角的余弦为s,s^12cos(s, s), 12|s|,|s|123,10,4,(,5),(,1),10,,0 , 2222223,4,(,1)10,(,5),10x,2y,z,73x,6y,3z,8,, 6, 证明直线与直线平行, ,,,2x,y,z,72x,y,z,0,, 解两直线的方向向量分别为ijk~ s,12,1,3i,j,5k1,211ijk, s,36,3,,9i,3j,15k22,1,1因为s,,3s~所以这两个直线是平行的, 217, 求过点(0~ 2~ 4)且与两平面x,2z,1和y,3z,2平行的直线方程,解因为两平面的法线向量n,(1~ 0~ 2)与n,(0~ 1~ ,3)不平12行~所以两平面相交于一直线~此直线的方向向量可作为所求直线的方向向量s~即ijk, s,102,,2i,3j,k01,3所求直线的方程为y,2xz,4,, ,,231y,3x,4z,, 8, 求过点(3~ 1~ ,2)且通过直线的平面方程,521y,3x,4z,, 解所求平面的法线向量与直线的方向向量521s,(5~ 2~ 1)垂直, 因为点(3~ 1~ ,2)和(4~ ,3~ 0)都在所求的平面上~ 1所以所求平面的法线向量与向量s,(4~ ,3~ 0),(3~ 1~ ,2),(1~ ,4~2)2也是垂直的, 因此所求平面的法线向量可取为ijk, n,s,s,521,8i,9j,22k121,42所求平面的方程为8(x,3),9(y,1),22(z,2),0~即 8x,9y,22z,59,0,x,y,3z,0, 9, 求直线与平面x,y,z,1,0的夹角, ,x,y,z,0,解已知直线的方向向量为ijk~ s,(1, 1, 3),(1, ,1, ,1),113,2i,4j,2k,2(i,2j,k)1,1,1已知平面的法线向量为n,(1~ ,1~ ,1),因为s,n,2,1,4,(,1),(,2),(,1),0~x,y,3z,0,所以s ,n~从而直线与平面x,y,z,1,0的夹角为0, ,x,y,z,0, 10, 试确定下列各组中的直线和平面间的关系:y,4x,3z,, (1)和4x,2y,2z,3,,2,73解所给直线的方向向量为s,(,2~ ,7~ 3)~所给平面的法线向量为n,(4~ ,2~ ,2),因为s,n,(,2),4,(,7),(,2),3,(,2),0~所以s,n~从而所给直线与所给平面平行, 又因为直线上的点(,3~ ,4~ 0)不满足平面方程4x,2y,2z,3~所以所给直线不在所给平面上,yxz,, (2)和3x,2y,7z,8,3,27解所给直线的方向向量为s,(3~ ,2~ 7)~所给平面的法线向量为n,(3~ ,2~ 7),因为s,n~所以所给直线与所给平面是垂直的,y,2x,2z,3,, (3)和x,y,z,3,31,4解所给直线的方向向量为s,(3~ 1~ ,4)~所给平面的法线向量为n,(1~1~ 1),因为s,n,3,1,1,1,(,4),1,0~所以s,n~从而所给直线与所给平面平行, 又因为直线上的点(2~ ,2~ 3)满足平面方程x,y,z,3~所以所给直线在所给平面上,x,2y,z,1,02x,y,z,0,, 11, 求过点(1~ 2~ 1)而与两直线和 ,,x,y,z,1,0x,y,z,0,,平行的平面的方程,解已知直线的方向向量分别为ijk~ s,(1, 2, ,1),(1, ,1, 1),12,1,i,2j,3k11,11ijk, s,(2, ,1, 1),(1, ,1, 1),2,11,,j,k11,11所求平面的法线向量可取为ijk~ n,s,s,1,2,3,,i,j,k120,1,1所求平面的方程为,(x,1),(y,2),(z,1),0~即x,y,z,0,12, 求点(,1~ 2~ 0)在平面x,2y,z,1,0上的投影,解平面的法线向量为n,(1~ 2~ ,1), 过点(,1~ 2~ 0)并且垂直于已知平面的直线方程为y,2x,1z,, ,12,1将此方程化为参数方程x,,1,t~ y,2,2t~ z,,t~代入平面方程x,2y,z,1,0中~得(,1,t),2(2,2t),(,t),1,0~5222x,,解得t,,, 再将t,,代入直线的参数方程~得~~ y,33332, 于是点(,1~ 2~ 0)在平面x,2y,z,1,0上的投影为点z,3522(,, , ),233x,y,z,1,0, 13, 求点P(3~ ,1~ 2)到直线的距离, ,2x,y,z,4,0,解已知直线的方向向量为ijk, s,(1, 1, ,1),(2, ,1, 1),11,1,,3j,3k2,11过点P且与已知直线垂直的平面的方程为,3(y,1),3(z,2),0~即y,z,1,0,解线性方程组x,y,z,1,0,,2x,y,z,4,0 ~ ,,y,z,1,0,13y,,z,得x,1~~ ,22x,y,z,1,0, 点P(3~ ,1~ 2)到直线的距离就是点P(3~ ,1~ 2),2x,y,z,4,0,13与点间的距离~即 (1, ,, )2213322 , d,(3,1),(,1,),(2,),222214, 设M是直线L外一点~ M是直线L上任意一点~且直0线的方向向量为s~试证: 点M到直线L的距离 0,|MM,s|0 , d,|s|,s,MN 解设点M到直线L的距离为d~ L的方向向量~根0,,MN据向量积的几何意义~以和为邻边的平行四边形的面MM0积为,,,~ |MM,MN|,|MM,s|00,,,MN又以和为邻边的平行四边形的面积为, MMd,|MN|,d,|s|0因此,,|,s|MM0, d,|s|,|MM,s|~ , d0|s|2x,4y,z,0, 15, 求直线在平面4x,y,z,1上的投影直线,3x,y,2z,9,0, 的方程,解过已知直线的平面束方程为(2,3,)x,(,4,,)y,(1,2,)z,9,,0, 为在平面束中找出与已知平面垂直的平面~令(4 ,1~ 1),(2,3,~ ,4,,~ 1,2,),0~即 4,(2,3,),(,1),(,4,,),1,(1,2,),0,1313解之得, 将代入平面束方程中~得 ,,,,,,111117x,31y,37z,117,0,故投影直线的方程为4x,y,z,1, , ,17x,31y,37z,117,0,16, 画出下列各曲面所围成的立体图形:(1)x,0~ y,0~ z,0~ x,2~ y,1~ 3x,4y,2z,12,0,yz, (2)x,0~ z,0~ x,1~ y,2~ ,422 (3)z,0~ z,3~ x,y,0~~ x,y,1(在第一卦限内), x,3y,0222222 (4)x,0~ y,0~ z,0~ x,y,R~ y,z,R(在第一卦限内),。
《高等数学》第六版同济大学上册课后答案详解

《高等数学》第六版同济大学上册课后答案详解
《高等数学》第六版同济大学上册课后答案详解
第六版同济大学高等数学上册课后答案详解
《高等数学第六版上册》是2007年高等教育出版社出版的图书。
本书是同济大学数学系编《高等数学》的第六版,依据最新的“工科类本科数学基础课程教学基本要求”,为高等院校工科类各专业学生修订而成。
本次修订时对教材的深广度进行了适度的调整,使学习本课程的学生都能达到合格的要求,并设置部分带*号的内容以适应分层次教学的需要;吸收国内外优秀教材的优点对习题的类型和数量进行了凋整和充实,以帮助学生提高数学素养、培养创新意识、掌握运用数学工具去解决实际问题的能力;对书中内容进一步锤炼和调整,将微分方程作为一元函数微积分的应用移到上册,更有利于学生的学习与掌握。
本书分上、下两册出版,上册包括函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用、微分方程等内容,书末还附有二、三阶行列式简介、几种常用的曲线、积分表、习题答案与提示
高等数学是大学必修数学科目之一,当然这对于非数学专业的同学而言,简直就是难上加难,但是对于数学专业同学而言,这就是基础课,必须踏踏实实的学好,否则对于以后的学习真的就是难上加难,牧边我就是深有体会啊。
高等数学同济第六版上_答案解析第七章

于是
3 已知 M1(1 1 2)、M2(3 3 1)和 M3(3 1 3) 求与 M1M 2 、 M 2 M 3 同时垂直的单位向
轴 垂直于 xOy 面
u 上的投影
ww
(2)当 cos1 时 向量的方向与 y 轴的正向一致 垂直于 zOx 面 (3)当 coscos0 时 向量垂直于 x 轴和 y 轴 平行于 z 17 设向量 r 的模是 4 它与轴 u 的夹角是 60 求个学科的课后答案、视频教程在线浏览及下载。
解 设所求的点为 P(0 y z)与 A、B、C 等距离 则
| PA|2 32 ( y 1)2 ( z 2)2
由题意 有
| PA|2 | PB |2 | PC |2
即
解之得 y1 z2 故所求点为(0 1 2)
14 试证明以三点 A(4 1 9)、B(10 1 6)、C(2 4 3)为顶点 的三角形是等腰三角直角三角形
t
此文档由天天learn()为您收集整理。
关于 yOz 面的对称点为(a b c) 点(a b c)关于 zOx 面的对称点 为(a b c)
(2)点(a b c)关于 x 轴的对称点为(a b c) 点(a b c)关于 y 轴的对称点为(a b c) 点(a b c)关于 z 轴的对称点为(a b c) (3)点(a b c)关于坐标原点的对称点为(a b c) 9 自点 P0(x0 y0 z0)分别作各坐标面和各坐标轴的垂线 写 出各垂足的坐标
w.
面
tt
cos 1 cos 2 cos 1 2 2 2 2 3 3 3 4 16 设 向 量 的 方 向 余 弦 分 别 满 足 (1)cos0 (2)cos1 (3)coscos0 问这些向量与坐标轴或坐标面的关系如何?
同济大学高等数学上册第七章常微分方程

同济大学高等数学上册第七章常微分方程同济大学高等数学上册是大多数理工科专业的学生必修的课程,第七章是关于常微分方程的内容。
常微分方程是数学中的一个重要分支,广泛应用于物理、化学、经济等领域。
掌握常微分方程的基本理论和解法对于理解和应用这些领域的知识具有重要意义。
本章内容主要包括:一阶常微分方程、高阶常微分方程、一阶线性微分方程、可分离变量的微分方程、齐次线性微分方程和一阶齐次线性方程、一阶齐次线性非齐次方程、二阶常系数齐次线性方程、常系数非齐次方程等。
一、一阶常微分方程一阶常微分方程是指未知函数的导数只包含一阶导数的方程。
例如,dy/dx = f(x)。
常微分方程的求解可以采用分离变量法、恰当方程、公式法等。
其中分离变量法是常用的解法之一。
分离变量法的基本思想是将方程两边的变量分离开来,从而达到求解的目的。
二、高阶常微分方程高阶常微分方程是未知函数的导数包含高于一阶导数的方程。
例如,d²y/dx² + p(x) dy/dx + q(x) y = f(x)。
高阶常微分方程的求解可以采用常系数线性微分方程的方法。
常系数线性微分方程是指系数为常数的微分方程,其求解方法相对简单。
三、一阶线性微分方程一阶线性微分方程是指未知函数的导数与未知函数本身之间线性相关的方程。
例如,dy/dx + p(x) y = q(x)。
一阶线性微分方程的求解可以借助于积分因子的方法。
积分因子的选择是使方程两边的未知函数系数相等,从而将方程转化为可积分的形式。
四、可分离变量的微分方程可分离变量的微分方程是指未知函数和自变量可以在方程中分离的方程。
例如,dy/dx = f(x)/g(y)。
可分离变量的微分方程的求解可以通过对方程两边的变量分离,然后进行适当的积分得到。
这种方法常用于求解一些特殊形式的微分方程。
五、齐次线性微分方程和一阶齐次线性方程齐次线性微分方程是指未知函数的导数和未知函数本身之间构成齐次线性关系的微分方程。
(完整版)高等数学第六版(同济大学)上册课后习题答案解析

高等数学第六版上册课后习题答案及解析第一章习题1—11. 设A=(-, —5)(5, +),B=[-10, 3), 写出A B,A B, A\B及A\(A\B)的表达式。
解A B=(-, 3)(5, +),A B=[-10,—5),A\B=(—, -10)(5, +),A\(A\B)=[-10, -5).2. 设A、B是任意两个集合,证明对偶律: (A B)C=A C B C。
证明因为x(A B)C x A B x A或x B x A C或x B C x A C B C,所以(A B)C=A C B C。
3. 设映射f : X Y, A X, B X。
证明(1)f(A B)=f(A)f(B);(2)f(A B)f(A)f(B).证明因为y f(A B)x A B, 使f(x)=y(因为x A或x B) y f(A)或y f(B)y f(A)f(B),所以f(A B)=f(A)f(B).(2)因为y f(A B)x A B, 使f(x)=y(因为x A且x B) y f(A)且y f(B)yf (A )f (B ),所以 f (A B )f (A )f (B )。
4。
设映射f : XY , 若存在一个映射g : Y X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个xX , 有I X x =x ; 对于每一个y Y , 有I Y y =y 。
证明:f 是双射, 且g 是f 的逆映射: g =f —1.证明 因为对于任意的yY , 有x =g (y )X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射. 又因为对于任意的x 1x 2, 必有f (x 1)f (x 2), 否则若f (x 1)=f (x 2)g [ f (x 1)]=g [f (x 2)]x 1=x 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轴 垂直于 xOy 面
u 上的投影
ww
(2)当 cos1 时 向量的方向与 y 轴的正向一致 垂直于 zOx 面 (3)当 coscos0 时 向量垂直于 x 轴和 y 轴 平行于 z 17 设向量 r 的模是 4 它与轴 u 的夹角是 60 求 r 在轴
天天learn()为您提供大学各个学科的课后答案、视频教程在线浏览及下载。
w.
面
tt
cos 1 cos 2 cos 1 2 2 2 2 3 3 3 4 16 设 向 量 的 方 向 余 弦 分 别 满 足 (1)cos0 (2)cos1 (3)coscos0 问这些向量与坐标轴或坐标面的关系如何?
ar
a4m3np 4(3i5j8k)3(2i4j7k)(5ij4k ) 13i7j15k
n.
解 因为
ne
19 设 m3i5j8k n2i4j7k 和 p5ij4k 求向量 a4m3np 在 x 轴上的投影及在 y 轴上的分向量
t
此文档由天天learn()为您收集整理。
习题 72 1 设 a3ij2k bi2jk 求(1)ab 及 ab (2)(2a)3b 及 a2b (3)a、b 夹角的余弦 解 (1)ab31(1)2(2)(1)3
i j k a b 3 1 2 5i j 7k 1 2 1 (2)(2a)3b 6ab 6318 a2b2(ab)2(5ij7k)10i2j14k |a b| 3 3 | a || b| 14 6 2 21 2 设 a、b、c 为单位向量 且满足 abc0 求 abbcca 解 因为 abc0 所以(abc)(abc)0 即 aabbcc2ab2ac2ca0 (3) cos(a, b)
天天learn()为您提供大学各个学科的课后答案、视频教程在线浏览及下载。
w.
解 在 xOy 面上 点的坐标为(x y 0) 在 yOz 面上 点的坐 标为(0 y z) 在 zOx 面上 点的坐标为(x 0 z)
tt
A(3 4 0) B(0 4 3) C(3 0 0) D(0 1 0)
t
此文档由天天learn()为您收集整理。
关于 yOz 面的对称点为(a b c) 点(a b c)关于 zOx 面的对称点 为(a b c)
(2)点(a b c)关于 x 轴的对称点为(a b c) 点(a b c)关于 y 轴的对称点为(a b c) 点(a b c)关于 z 轴的对称点为(a b c) (3)点(a b c)关于坐标原点的对称点为(a b c) 9 自点 P0(x0 y0 z0)分别作各坐标面和各坐标轴的垂线 写 出各垂足的坐标
2 x 4 1 y 4 7 z 7
解得 x2 y3 z0 点 A 的坐标为 A(2 3 0)
ww
天天learn()为您提供大学各个学科的课后答案、视频教程在线浏览及下载。
w.
tt
le
所以 a4m3np 在 x 轴上的投影为 13 在 y 轴上的分向量 7j
解 点 M 到 x 轴的距离就是点(4 3 5)与点(4 0 0)之间的距 离 即
d x (3)2 52 34
点 M 到 y 轴的距离就是点(4 3 5)与点(0 3 0)之间的距 离 即
d y 42 0 5)之间的距离 即
此文档由天天learn()为您收集整理。
| AB | (10 4)2 (11)2 (6 9)2 7 | AC | (2 4)2 (4 1)2 (39)2 7 | BC | (2 10)2 (4 1)2 (3 6)2 7 2
ww
w.
D4 A
le
3 把ABC 的 BC 边五等分 设 分点依次为 D1、D2、D3、D4 再把
ar
这说明四边形 ABCD 的对边 ABCD 且 AB//CD 从而四边形 ABCD 是平行四边形
n.
ne
而
OC OA OD OB
t
此文档由天天learn()为您收集整理。
解 因为
ww
32 ( y 1)2 ( z 2)2 ( y 5)2 ( z 1)2 42 ( y 2)2 ( z 2)2 ( y 5)2 ( z 1)2
天天learn()为您提供大学各个学科的课后答案、视频教程在线浏览及下载。
解 (1)点(a b c)关于 xOy 面的对称点为(a b c) 点(a b c)
ww
在 x 轴上 点的坐标为(x 0 0) 在 y 轴上 点的坐标为(0 y 0) 在 z 轴上 点的坐标为(0 0 z)
A 在 xOy 面上 B 在 yOz 面上 C 在 x 轴上 D 在 y 轴上
所以
DC OA OB OB OA AB
tt
各分点与点 A 连接 试以 AB c 、
BC a 表示向量 D1 A 、 D2 A 、 D3 A 、
解 D1 A BA BD1 c 1 a 5 D2 A BA BD2 c 2 a 5 D3 A BA BD3 c 3a 5 D4 A BA BD4 c 4 a 5
ar
10 过点 P0(x0 y0 z0)分别作平行于 z 轴的直线和平行于 xOy 面的平面 问在它们上面的点的坐标各有什么特点?
n.
在 x 轴、 y 轴和 z 轴上 垂足的坐标分别为(x0 0 0) (0 y0 0) 和(0 0 z0)
ne
t
此文档由天天learn()为您收集整理。
le
7 在坐标面上和坐标轴上的点的坐标各有什么特征?指 出下列各点的位置
ar
n.
A(1 2 3) B(2 3 4) C(2 3 4) D(2 3 1)
ne
1 a ( 6 , 7 , 6 ) 或 1 a ( 6 , 7 , 6 ) |a | 11 11 11 |a | 11 11 11
4 已知两点 M1(0 1 2)和 M2(1 1 0) 试用坐标表示式表 示向量 M1M 2 及 2 M1M 2 解 M1M 2 (1, 1, 0) (0, 1, 2) (1, 2, 2)
2M1M 2 2(1, 2, 2) (2, 4, 4) 5 求平行于向量 a(6 7 6)的单位向量
解 |a | 62 72 (6)2 11 平行于向量 a(6 7 6)的单位向量为
6 在空间直角坐标系中 指出下列各点在哪个卦限?
解 A 在第四卦限 B 在第五卦限 C 在第八卦限 D 在第三卦 限
8 求点(a b c)关于(1)各坐标面 (2)各坐标轴 (3)坐标原点 的对称点的坐标
解 设所求的点为 P(0 y z)与 A、B、C 等距离 则
| PA|2 32 ( y 1)2 ( z 2)2
由题意 有
| PA|2 | PB |2 | PC |2
即
解之得 y1 z2 故所求点为(0 1 2)
14 试证明以三点 A(4 1 9)、B(10 1 6)、C(2 4 3)为顶点 的三角形是等腰三角直角三角形
所以 | BC |2 | AB |2 | AC |2 | AB || AC | 因此ABC 是等腰直角三角形
15 设已知两点 M1(4, 2, 1) 和 M2(3 0 2) 计算向量 M1M 2 的模、方向余弦和方向角
解 (1)当 cos0 时 向量垂直于 x 轴 或者说是平行于 yOz
解 在 xOy 面、 yOz 面和 zOx 面上 垂足的坐标分别为(x0 y0 0)、(0 y0 z0)和(x0 0 z0)
ww
解 因为底面的对角线的长为 2a 所以立方体各顶点的坐 标分别为
( 2 a, 0, 0) ( 2 a, 0, 0) (0, 2 a, 0) (0, 2 a, 0) 2 2 2 2 ( 2 a, 0, a) ( 2 a, 0, a) (0, 2 a, a) (0, 2 a, a) 2 2 2 2 12 求点 M(4 3 5)到各坐标轴的距离
le
ar
n.
| M1M 2 | (1)2 ( 2 )2 12 2
ne
解 M1M 2 (3 4, 0 2, 2 1) (1, 2, 1)
t
此文档由天天learn()为您收集整理。
解 Pr ju r | r |cos 4 1 2 2 3 y 轴和 z 轴上 18 一向量的终点在点 B(2 1 7) 它在 x 轴、 的投影依次为 4 4 7 求这向量的起点 A 的坐标 解 设点 A 的坐标为(x y z) 由已知得
w.
tt
| PC |2 ( y 5)2 ( z 1)2
le
| PB |2 42 ( y 2)2 ( z 2)2
ar
n.
B(4 2 2)和 C(0 5 13 在 yOz 面上 求与三点 A(3 1 2)、 1)等距离的点
ne
t
d z 42 (3)2 5
习题 7-1 1 设 uab2c va3bc 试用 a、b、c 表示 2u3v 解 2u3v 2(ab2c)3(a3bc) 2a2b4c3a9b3c 5a11b7c 2 如果平面上一个四边形的对角线互相平分 试用向量证 明这是平行四边形 证 AB OB OA DC OC OD
天天learn()为您提供大学各个学科的课后答案、视频教程在线浏览及下载。