圆锥曲线椭圆双曲线抛物线知识点总结例题习题精讲详细答案
圆锥曲线(椭圆、双曲线、抛物线)(精选20题)(解析版)
圆锥曲线(椭圆、双曲线、抛物线)(精选20题)保持做题的“手感”。
临近高考,考生仍要保持做数学题的手感,勤于动笔,勤于练习。
考前很多考生心态波动较大,比如看到考试成绩下降,就会非常焦虑。
实际上成绩有波动很正常,因为试卷的难度不一样,考生的发挥也不一样,试卷考查的知识点和考生掌握的情况也不一样。
考生不要因为一次考试而让自己过于焦虑,要辩证地去看待考试成绩。
在考试过程中,如果遇到新题或难题,一定要稳住心态。
考生要想到的是:我觉得难,别人也一样。
当然我们也不能因为题目简单就疏忽大意,要把自己的水平发挥出来,保证自己会做的题都不出错,难题尽可能多拿分。
圆锥曲线解题技巧尽量做出第一问,第二问多套模板拿步骤分1.利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤:(1)设直线方程,设交点坐标为x 1,y 1 、x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算Δ;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)的形式;(5)代入韦达定理求解2.若直线l :y =kx +b 与圆雉曲线相交于A (x 1,y 1),B (x 2,y 2)两点,由直线与圆锥曲线联立,消元得到Ax 2+Bx +C =0(Δ>0)则:x 1+x 2=-B A ,x 1x 2=CA则:弦长AB =x 1-x 2 2+y 1-y 2 2=x 1-x 2 2+kx 1-kx 2 2=1+k 2x 1-x 2 =1+k 2x 1+x 2 2-4x 1x 2=1+k 2-B A 2-4C A=1+k 2B 2-4ACA 2=1+k 2⋅ΔA或|AB |=1+1k2⋅y 1-y 22=1+1k2⋅y 1-y 2一、解答题1(2024·浙江温州·模拟预测)已知椭圆C :x 2a 2+y 2b2=1a >b >0 ,左右顶点分别是A -2,0 ,B 2,0 ,椭圆的离心率是22.点P 是直线x =32上的点,直线PA 与PB 分别交椭圆C 于另外两点M ,N .(1)求椭圆的方程.(2)若k AM =λk BN ,求出λ的值.(3)试证明:直线MN 过定点.【答案】(1)x 22+y ²=1(2)12(3)证明见解析【分析】(1)由题意结合a 2=b 2+c 2计算即可得;(2)设出点P 坐标,借助斜率公式计算即可得;(3)设出直线MN 方程,联立曲线方程,借助韦达定理与(2)中所得λ计算即可得.【详解】(1)由题意可得a =2,c a =22,即a 2=2c 2=b 2+c 2=2,所以b =c =1,则椭圆C :x22+y 2=1;(2)设P 32,n ,由于k AM =λk BN ,则λ=k PA k PB =n32+2n 32-2=2242=12;(3)显然MN 斜率不为0,设l MN :x =ty +m ,M x 1,y 1 ,N x 2,y 2 ,联立方程x =ty +mx 22+y 2=1,则有t 2+2 y 2+2tmy +m 2-2=0,Δ=4t 2m 2-4t 2+2 m 2-2 =8t 2-m 2+2 >0,则有y 1+y 2=-2tm t 2+2,y 1y 2=m 2-2t 2+2,由于k AM =λk BN ,则λ=kMA k BN =y 1x 2-2 y 2x 1+2 =y 1x 2-2 x 2+2 y 2x 1+2 x 2+2 =y 1x 22-2y 2x 1+2 x 2+2,因为x 222+y 22=1,故λ=-2y 1y 2x 1+2 x 2+2 =-2y 1y 2ty 1+m +2 ty 2+m +2 =4-2m 22m 2+42m +4=12,即3m 2+22m =2,解得m =-2或m =23,当m =-2时,2m 2+42m +4=0,故舍去,即m =23,适合题意,故MN :x =ty +23,则直线MN 过定点23,0.2(2024·辽宁·模拟预测)在直角坐标系xOy 中,点P 到点(0,1)距离与点P 到直线y =-2距离的差为-1,记动点P 的轨迹为W .(1)求W 的方程;(2)设点P 的横坐标为x 0(x 0<0).(i )求W 在点P 处的切线的斜率(用x 0表示);(ii )直线l 与W 分别交于点A ,B .若PA =PB ,求直线l 的斜率的取值范围(用x 0表示).【答案】(1)x 2=4y(2)(i )x 02,(ii )答案见解析【分析】(1)设点P 的坐标为(x ,y ),利用距离公式列式化简求解即可;(2)(i )利用导数的几何意义求得切线斜率;(ii )分析直线l 斜率存在设为y =kx +m ,与抛物线方程联立,韦达定理,表示出线段AB 中点M 的坐标,利用斜率关系得x 024=-1k x 0-x M +y M ,从而m =x 204+x 0k-2k 2-2,根据Δ>0,得k k -x 02 k 2+x02k +2 <0,分类讨论解不等式即可.【详解】(1)设点P 的坐标为(x ,y ),由题意得(x -0)2+(y -1)2-|y -(-2)|=-1,即x 2+(y -1)2=|y +2|-1,所以y +2≥0,x 2+(y -1)2=y +1. 或y +2<0,x 2+(y -1)2=-y -3.整理得y +2≥0,x 2=4y .或y +2<0,x 2=8y +8.故W 的方程为x 2=4y .(2)(i )因为W 为y =x 24,所以y =x2.所以W 在点P 处的切线的斜率为:x 02;(ii )设直线l 为y =kx +m ,点M 为线段AB 的中点,当k =0时,不合题意,所以k ≠0;因为点A ,B 满足x 2=4y ,y =kx +m . 所以x A ,x B 满足x 2-4kx -4m =0,从而Δ=16k 2+16m >0,x M =x A +xB 2=2k ,y M =kx M +m =2k 2+m .因为直线PM 的方程为y =-1k x -x M +y M ,所以x 024=-1kx 0-x M +y M ,即x 204=-1k x 0-2k +2k 2+m ,从而m =x 204+x 0k -2k 2-2.因为Δ=16k 2+16m >0,所以k 2+x 204+x0k -2k 2-2>0,即k -x 02 k 2+x 02k +2k<0,等价于k k -x 02 k 2+x02k +2 <0(其中x 0<0).①当x 204-8<0时,即x 0∈(-42,0)时,有k 2+x 02k +2>0,此时x 02<k <0,②当x 204-8=0时,即x 0=-42时,有k k -x 02 k +x 04 2<0,此时x 02<k <0,③当x 024-8>0时,即x 0∈(-∞,-42)时,有k k -x 02 k --x 0-x 20-324 k --x 0+x 20-324<0,其中x 02<0<-x 0-x 20-324<-x 0+x 20-324,所以k ∈x 02,0 ∪-x 0-x 20-324,-x 0+x 20-324.综上,当x 0∈[-42,0)时,k ∈x02,0 ;当x 0∈(-∞,-42)时,k ∈x 02,0 ∪-x 0-x 20-324,-x 0+x 20-324.3(2024·山西太原·三模)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右顶点分别为A 与B ,点D 3,2 在C 上,且直线AD 与BD 的斜率之和为2 .(1)求双曲线C 的方程;(2)过点P 3,0 的直线与C 交于M ,N 两点(均异于点A ,B ),直线MA 与直线x =1交于点Q ,求证:B ,N ,Q 三点共线.【答案】(1)x 23-y 2=1(2)证明见解析【分析】(1)由题意点D 3,2 在C 上,且直线AD 与BD 的斜率之和为2,建立方程组求解即可;(2)B ,N ,Q 三点共线,即证BN ⎳BQ,设出直线的方程联立双曲线的方程,由韦达定理,求出M ,N 的坐标,由坐标判断BN ⎳BQ,证明即可.【详解】(1)由题意得A -a ,0 ,B a ,0 ,且9a 2-2b2=123+a +23-a=2∴a 2=3b 2=1∴x 23-y 2=1(2)由(1)得A -3,0 ,B 3,0 ,设直线MN 的方程为x =ty +3t ≠±3 ,M x 1,y 1 ,N x 2,y 2 ,则BN=x 2-3,y 2 ,由x =ty +3x23-y 2=1 得t 2-3y 2+6ty +6=0,∴y 1+y 2=-6t t 2-3,y 1y 2=6t 2-3,直线AM 的方程为y =y 1x 1+3x +3 ,令x =1,则y =y 1x 1+31+3 ,∴Q 1,1+3 y 1x 1+3 ,∴BQ =1-3,1+3 y 1x 1+3,∵x 2-3 ⋅1+3 y 1x 1+3-1-3 y 2=1x 1+3x 2-3 ⋅1+3 y 1-1-3 x 1+3 y 2=1x 1+3ty 2+3-3 ⋅1+3 y 1-1-3 ty 1+3+3 y 2 =1x 1+3ty 2+3-3 ⋅1+3 y 1+3-1 ty 1+3+3 y 2 =23x 1+3ty 1y 2+y 1+y 2 =23x 1+36t t 2-3-6tt 2-3=0,∴BN ⎳BQ, 所以B ,N ,Q 三点共线.4(2024·重庆·模拟预测)如图,DM ⊥x 轴,垂足为D ,点P 在线段DM 上,且|DP ||DM |=12.(1)点M 在圆x 2+y 2=4上运动时,求点P 的轨迹方程;(2)记(1)中所求点P 的轨迹为Γ,A (0,1),过点0,12作一条直线与Γ相交于B ,C 两点,与直线y =2交于点Q .记AB ,AC ,AQ 的斜率分别为k 1,k 2,k 3,证明:k 1+k2k 3是定值.【答案】(1)x 24+y 2=1(2)证明见解析【分析】(1)设P x ,y ,则有M x ,2y ,根据M 在圆x 2+y 2=4上运动,即可求解x 、y 的关系式即为点P 的轨迹方程;(2)设出直线方程,直曲联立利用韦达定理求出x 1+x 2=-4k1+4k2x 1x 2=-31+4k2,求出k 1+k 2=4k 3,对y =kx +12,令y =2,得Q 32k ,2,求出k 3=2k3,即可求出k 1+k 2k 3是定值.【详解】(1)设P x ,y ,根据题意有M x ,2y ,又因为M 在圆x 2+y 2=4上运动,所以x 2+2y 2=4,即x 24+y 2=1,所以点P 的轨迹方程为:x 24+y 2=1.(2)根据已知条件可知,若直线BC 的斜率不存在,不合题意,若直线BC 斜率为0,直线BC 与直线y =2平行无交点也不合题意,所以直线BC 的斜率存在设为k ,直线BC 的方程为y =kx +12,联立x 24+y 2=1y =kx +12,则有1+4k 2x 2+4kx -3=0,且Δ>0,设B x 1,y 1 ,C x 2,y 2 ,则x 1+x 2=-4k1+4k2x 1x 2=-31+4k2,k 1=y 1-1x 1,k 2=y 2-1x 2,所以k 1+k 2=y 1-1x 1+y 2-1x 2=x 2kx 1-12 +x 1kx 2-12x 1x 2=2kx 1x 2-12x 1+x 2x 1x 2=2k -31+4k2-12-4k1+4k 2-31+4k 2=4k 3,对y =kx +12,令y =2,得x Q =32k ,所以Q 32k,2 ,所以k 3=2-132k=2k 3,所以k 1+k 2k 3=4k332k=2为定值.5(2024·湖北武汉·模拟预测)己知圆E :(x +6)2+y 2=32,动圆C 与圆E 相内切,且经过定点F 6,0(1)求动圆圆心C 的轨迹方程;(2)若直线l :y =x +t 与(1)中轨迹交于不同的两点A ,B ,记△OAB 外接圆的圆心为M (O 为坐标原点),平面上是否存在两定点C ,D ,使得MC -MD 为定值,若存在,求出定点坐标和定值,若不存在,请说明理由.【答案】(1)x 28+y 22=1(2)存在定点C -465,0 ,D 465,0 ,使得MC -MD =853(定值)【分析】(1)根据椭圆的定义得到动圆圆心的轨迹焦点在x 轴上的椭圆,进而求得椭圆的方程;(2)联立l :y =x +t 与椭圆方程,根据韦达定理得x 1+x 2=-8t 5,x 1x 2=4t 2-85,进而得出OA 和OB 的中垂线方程,联立方程求出交点即为圆心坐标的关系为x 2-y 2=4825,根据双曲线定义可得C -465,0 ,D 465,0 及MC -MD =853,方法二,设△OAB 外接圆方程为x 2+y 2+d x +ey =0,联立直线和与圆的方程,利用韦达定理和参数方程消去参数得圆心的坐标关系为x 2-y 2=4825,根据双曲线定义可得C -465,0 ,D 465,0 及MC -MD =853【详解】(1)设圆E 的半径为r ,圆E 与动圆C 内切于点Q .∵点F 在圆E 内部,∴点C 在圆E 内部.∴CE +CF =CE +CQ =r =42>EF =26,∴点C 的轨迹是焦点在x 轴上的椭圆,其方程为x 28+y 22=1.(2)(方法一)联立l :y =x +t 与椭圆方程,消y 得5x 2+8tx +4t 2-8=0,设A x 1,y 1 ,B x 2,y 2 ,则x 1+x 2=-8t 5,x 1x 2=4t 2-85,OA 的中垂线方程为:y -y 12=-x 1y 1x -x 12 ,即y =-x 1y 1x +x 212y 1+y 12①OB 的中垂线方程为:y =-x 2y2x +x 222y 2+y 22②由①②两式可得-x 1y 1x +x 212y 1+y 12=-x 2y 2x +x 222y 2+y 22,∴△OAB 外接圆圆心M 的横坐标x M =x 22y 1-x 21y 2+y 2-y 1 y 1y 22x 2y 1-x 1y 2 ,其中x 2y 1-x 1y 2=x 2x 1+t -x 1x 2+t =t x 2-x 1x 22y 1-x 21y 2+y 2-y 1 y 1y 2=x 22x 1+t -x 21x 2+t +x 2-x 1 x 1+t x 2+t =x 22x 1-x 12x 2 +t x 22-x 12 +x 2-x 1 x 1+t x 2+t=x 2-x 1 x 1x 2+t x 2+x 1 +x 1+t x 2+t =x 2-x 1 2x 1x 2+2t x 2+x 1 +t 2 ∴x M =x 2-x 1 2x 1x 2+2t x 2+x 1 +t 22t x 2-x 1=2x 1x 2+2t x 2+x 1 +t 22t =x 1x 2t +x 2+x 1+t 2=-3t 10-85t,又∵AB 的中垂线方程为y -y 1+y 22=-x -x 1+x 22 ,即y =-x -3t5,∴圆心M 的纵坐标为y M =--3t 10-85t -35t =-3t 10+85t,∴x M 2-y M 2=-3t 10-85t 2--3t 10+85t 2=4825,∴圆心M 在双曲线x 2-y 2=4825上,∴存在定点C -465,0 ,D 465,0 ,使得MC -MD =853(定值),(方法二)设△OAB 外接圆方程为x 2+y 2+d x +ey =0,联立l :y =x +t 与圆的方程,消y 得2x 2+2t +d +e x +t 2+et =0,则x 1+x 2=-2t +d +e 2=-8t 5,x 1x 2=t 2+et 2=4t 2-85∴2t +d +e =16t 5,t 2+et =8t 2-165,解得d =3t 5+165t ,e =3t 5-165t,设圆心坐标为M x ,y ,则x =-d 2=-3t 10-85t ,y =-3t 10+85t,∴x 2-y 2=-3t 10-85t 2--3t 10+85t 2=4825,∴圆心M 在双曲线x 2-y 2=4825上,∴存在定点C -465,0 ,D 465,0 ,使得MC -MD =853(定值),6(2024·山西·三模)已知抛物线E :y 2=2px p >0 的焦点F 到准线的距离为2,O 为坐标原点.(1)求E 的方程;(2)已知点T t ,0 ,若E 上存在一点P ,使得PO ⋅PT=-1,求t 的取值范围;(3)过M -4,0 的直线交E 于A ,B 两点,过N -4,43 的直线交E 于A ,C 两点,B ,C 位于x 轴的同侧,证明:∠BOC 为定值.【答案】(1)y 2=4x (2)6,+∞ (3)证明见详解【分析】(1)根据题意可知焦点F 到准线的距离为p =2,即可得方程;(2)设P x ,y ,利用平面向量数量积可得t -4=x +1x,结合基本不等式运算求解;(3)设A y 214,y 1 ,B y 224,y 2 ,C y 234,y 3,求直线AB ,AC 的方程,结合题意可得-16+y 1y 2=0-16-43y 1+y 3 +y 1y 3=0 ,结合夹角公式分析求解.【详解】(1)由题意可知:焦点F 到准线的距离为p =2,所以抛物线E 的方程为y 2=4x .(2)设P x ,y ,可知y 2=4x ,x ≥0,则PO =-x ,-y ,PT =t -x ,-y ,可得PO ⋅PT=-x t -x +y 2=x 2-tx +4x =x 2+4-t x =-1,显然x =0不满足上式,则x >0,可得t -4=x +1x,又因为x +1x ≥2x ⋅1x =2,当且仅当x =1x,即x =1时,等号成立,则t -4≥2,即t ≥6,所以t 的取值范围为6,+∞.(3)设Ay214,y1,B y224,y2,C y234,y3,则直线AB的斜率k AB=y1-y2y214-y224=4y1+y2,可得直线AB的方程y-y1=4y1+y2x-y214,整理得4x-y1+y2y+y1y2=0,同理可得:直线AC的方程4x-y1+y3y+y1y3=0,由题意可得:-16+y1y2=0-16-43y1+y3+y1y3=0,整理得y1=16y24y3-y2=3y1y3+16,又因为直线OB,OC的斜率分别为k OB=y2y224=4y2,k OC=y3y234=4y3,显然∠BOC为锐角,则tan∠BOC=k OB-k OC1+k OB⋅k OC=4y2-4y31+4y2⋅4y3=4y2-y3y2⋅y3+16=3y2⋅y3+16y2⋅y3+16=3,所以∠BOC=π3为定值.【点睛】方法点睛:求解定值问题的三个步骤(1)由特例得出一个值,此值一般就是定值;(2)证明定值,有时可直接证明定值,有时将问题转化为代数式,可证明该代数式与参数(某些变量)无关;也可令系数等于零,得出定值;(3)得出结论.7(2024·湖北·模拟预测)平面直角坐标系xOy中,动点P(x,y)满足(x+2)2+y2-(x-2)2+y2 =22,点P的轨迹为C,过点F(2,0)作直线l,与轨迹C相交于A,B两点.(1)求轨迹C的方程;(2)求△OAB面积的取值范围;(3)若直线l与直线x=1交于点M,过点M作y轴的垂线,垂足为N,直线NA,NB分别与x轴交于点S,T,证明:|SF||FT|为定值.【答案】(1)x22-y22=1(x≥2)(2)S△OAB∈[22,+∞)(3)证明见解析【分析】(1)根据双曲线的定义求解即可;(2)设直线l的方程为:x=my+2,与双曲线联立,利用面积分割法计算出S△OAB,在利用复合函数单调性求出S△OAB的范围;(3)首先计算出M,N的坐标,再计算出S,T的坐标即可证明|SF||FT|为定值。
高中数学高考试卷考点之椭圆双曲线抛物线和圆锥曲线的综合应用知识汇总,带参考答案共五十六页
数学高考试卷椭圆双曲线抛物线和圆锥曲线的综合应用,带参考答案本文收集整理了高中数学高考试卷椭圆、双曲线、抛物线和圆锥曲线的综合应用知识知识,并配上详细参考答案,内容全共五十六页。
同学们认真完成这些练习,并对过答案,对学习高中椭圆、双曲线、抛物线和圆锥曲线的综合应用知识知识,一定有很大的帮助,希望大家喜欢这份文档。
一、椭圆知识1.(2018全国Ⅱ,12)已知F 1,F 2是椭圆C : x 2a +y 2b =1 (a >b >0)的左,右焦点,A是C 的左顶点,点P 在过A 且斜率为√36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( )A .23 B .12 C .13 D .141.答案:D 因为△PF 1F 2为等腰三角形,∠F 1F 2P =120°,所以PF 2=F 1F 2=2c,由AP 斜率为√36得,tan∠PAF 2=√36,∴sin∠PAF 2=√13cos∠PAF 2=√12√13,由正弦定理得PF 2AF 2=sin∠PAF 2sin∠APF 2,所以2c a+c =1√13sin(π3−∠PAF 2)1√13√32⋅√12√13−12⋅1√1325∴a =4c,e =14,选D.2.(2017•新课标Ⅲ,10)已知椭圆C : =1(a >b >0)的左、右顶点分别为A 1 , A 2 , 且以线段A 1A 2为直径的圆与直线bx ﹣ay+2ab=0相切,则C 的离心率为( )A. B. C. D.2. 答案:A 以线段A 1A 2为直径的圆与直线bx ﹣ay+2ab=0相切, ∴原点到直线的距离=a ,化为:a 2=3b 2 . ∴椭圆C 的离心率e= = = .故选A .3.(2017•浙江,)椭圆+=1的离心率是( )A. B. C. D.3. 答案:B 椭圆+=1,可得a=3,b=2,则c==,所以椭圆的离心率为: =.故选B .4.(2016·浙江,7)已知椭圆C 1:x 2m 2+y 2=1(m >1)与双曲线C 2:x 2n2-y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( )A.m >n 且e 1e 2>1B.m >n 且e 1e 2<1C.m <n 且e 1e 2>1D.m <n 且e 1e 2<14.答案: A [由题意可得:m 2-1=n 2+1,即m 2=n 2+2, 又∵m >0,n >0,故m >n . 又∵e 21·e 22=m 2-1m 2·n 2+1n 2=n 2+1n 2+2·n 2+1n 2=n 4+2n 2+1n 4+2n 2=1+1n 4+2n 2>1,∴e 1·e 2>1.] 5.(2016·全国Ⅲ,11)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) A.13 B.12 C.23 D.345.A [设M (-c ,m ),则E ⎝⎛⎭⎫0,am a -c ,OE 的中点为D ,则D ⎝⎛⎭⎫0,am2(a -c ),又B ,D ,M 三点共线,所以m 2(a -c )=m a +c,a =3c ,e =13.]6.(2014·大纲全国,6)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1、F 2,离心率为33,过F 2的直线l 交C 于A 、B 两点.若△AF 1B 的周长为43,则C 的方程为( ) A.x 23+y 22=1 B.x 23+y 2=1 C.x 212+y 28=1 D.x 212+y 24=1 6.A [由椭圆的性质知|AF 1|+|AF 2|=2a ,|BF 1|+|BF 2|=2a , ∴△AF 1B 的周长=|AF 1|+|AF 2|+|BF 1|+|BF 2|=43,∴a = 3.又e =33,∴c =1.∴b 2=a 2-c 2=2,∴椭圆的方程为x 23+y 22=1,故选A.]7.(2018浙江,17)已知点P (0,1),椭圆x24+y 2=m (m >1)上两点A ,B 满足AP⃑⃑⃑⃑⃑ =2PB ⃑⃑⃑⃑⃑ ,则当m =___________时,点B 横坐标的绝对值最大.7.5 设A(x 1,y 1),B(x 2,y 2),由AP ⃑⃑⃑⃑⃑ =2PB ⃑⃑⃑⃑⃑ 得−x 1=2x 2,1−y 1=2(y 2−1),∴−y 1=2y 2−3, 因为A ,B 在椭圆上,所以x 124+y 12=m,x 224+y 22=m, ∴4x 224+(2y 2−3)2=m,∴x 224+(y 2−32)2=m4,与x 224+y 22=m 对应相减得y 2=3+m 4,x 22=−14(m 2−10m +9)≤4,当且仅当m =5时取最大值.8.(2016·江苏,10)如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.8.63 [联立方程组⎩⎨⎧x 2a 2+y 2b 2=1,y =b2,解得B 、C 两点坐标为B ⎝⎛⎭⎫-32a ,b 2,C ⎝⎛⎭⎫32a ,b2,又F (c ,0),则FB →=⎝⎛⎭⎫-32a -c ,b 2,FC →=⎝⎛⎭⎫3a 2-c ,b 2,又由∠BFC =90°,可得FB →·FC →=0,代入坐标可得:c 2-34a 2+b 24=0①,又因为b 2=a 2-c 2.代入①式可化简为c 2a 2=23,则椭圆离心率为e =ca=23=63. 9.(2014·辽宁,15)已知椭圆C :x 29+y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=________.9.12 [设MN 交椭圆于点P ,连接F 1P 和F 2P (其中F 1、F 2是椭圆C 的左、右焦点),利用中位线定理可得|AN |+|BN |=2|F 1P |+2|F 2P |=2×2a =4a =12.] 10.(2014·安徽,14)设F 1,F 2分别是椭圆E :x 2+y 2b 2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________. 10.x 2+3y 22=1 [设点A 在点B 上方,F 1(-c ,0),F 2(c ,0),其中c =1-b 2,则可设A (c ,b 2),B (x 0,y 0),由|AF 1|=3|F 1B |,可得AF 1→=3F 1B →,故⎩⎪⎨⎪⎧-2c =3(x 0+c ),-b 2=3y 0,即⎩⎨⎧x 0=-53c ,y 0=-13b 2,代入椭圆方程可得25(1-b 2)9+19b 2=1,得b 2=23,故椭圆方程为x 2+3y 22=1.] 11.(2014·江西,15)过点M (1,1)作斜率为-12的直线与椭圆C :x 2a 2+y 2b 2=1(a >b >0)相交于A ,B两点,若M 是线段AB 的中点,则椭圆C 的离心率等于________. 11.22 [设A (x 1,y 1),B (x 2,y 2),分别代入椭圆方程相减得(x 1-x 2)(x 1+x 2)a 2+(y 1-y 2)(y 1+y 2)b 2=0,根据题意有x 1+x 2=2×1=2,y 1+y 2=2×1=2,且y 1-y 2x 1-x 2=-12,所以2a 2+2b 2×⎝⎛⎭⎫-12=0,得a 2=2b 2,所以a 2=2(a 2-c 2),整理得a 2=2c 2得c a =22,所以e =22.] 12.(2018全国Ⅲ,20)已知斜率为k 的直线l 与椭圆C : x 24+y 23=1交于A ,B 两点,线段AB的中点为M(1 , m)(m >0). (1)证明:k <−12;(2)设F 为C 的右焦点,P 为C 上一点,且FP ⃑⃑⃑⃑⃑ +FA ⃑⃑⃑⃑⃑ +FB ⃑⃑⃑⃑⃑ =0.证明:|FA ⃑⃑⃑⃑⃑ |,|FP ⃑⃑⃑⃑⃑ |,|FB ⃑⃑⃑⃑⃑ |成等差数列,并求该数列的公差. 12.(1)设A(x 1,y 1),B(x 2,y 2),则x 124+y 123=1,x 224+y 223=1.两式相减,并由y 1−y2x 1−x 2=k 得x 1+x 24+y 1+y 23⋅k =0. 由题设知x 1+x 22=1,y 1+y 22=m ,于是k =−34m .①由题设得0<m <32,故k <−12. (2)由题意得F(1,0),设P(x 3,y 3),则 (x 3−1,y 3)+(x 1−1,y 1)+(x 2−1,y 2)=(0,0).由(1)及题设得x 3=3−(x 1+x 2)=1,y 3=−(y 1+y 2)=−2m <0. 又点P 在C 上,所以m =34,从而P(1,−32),|FP ⃑⃑⃑⃑⃑ |=32. 于是|FA⃑⃑⃑⃑⃑ |=√(x 1−1)2+y 12=√(x 1−1)2+3(1−x 124)=2−x 12. 同理|FB⃑⃑⃑⃑⃑ |=2−x 22.所以|FA⃑⃑⃑⃑⃑ |+|FB ⃑⃑⃑⃑⃑ |=4−12(x 1+x 2)=3. 故2|FP⃑⃑⃑⃑⃑ |=|FA ⃑⃑⃑⃑⃑ |+|FB ⃑⃑⃑⃑⃑ |,即|FA ⃑⃑⃑⃑⃑ |,|FP ⃑⃑⃑⃑⃑ |,|FB ⃑⃑⃑⃑⃑ |成等差数列. 设该数列的公差为d ,则2|d|=||FB⃑⃑⃑⃑⃑ |−|FA ⃑⃑⃑⃑⃑ ||=12|x 1−x 2|=12√(x 1+x 2)2−4x 1x 2.② 将m =34代入①得k =−1.所以l 的方程为y =−x +74,代入C 的方程,并整理得7x 2−14x +14=0.故x 1+x 2=2,x 1x 2=128,代入②解得|d|=3√2128. 所以该数列的公差为3√2128或−3√2128. 13.(2018天津,19)设椭圆22221x x a b+= (a >b >0)的左焦点为F ,上顶点为B . 已知椭圆的点A 的坐标为(),0b,且FB AB ⋅=(I )求椭圆的方程;(II )设直线l : (0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若sin 4AQ AOQ PQ=∠ (O 为原点) ,求k 的值. 13.(Ⅰ)设椭圆的焦距为2c ,由已知有2259c a =,又由a 2=b 2+c 2,可得2a =3b .由已知可得, FB a =,AB =,由FB AB ⋅=ab =6,从而a =3,b =2.所以,椭圆的方程为22194x y +=. (Ⅱ)设点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2). 由已知有y 1>y 2>0,故12PQ sin AOQ y y ∠=-. 又因为2y AQ sin OAB =∠,而∠OAB =π4,故2AQ =.由4AQ sin AOQ PQ=∠,可得5y 1=9y 2. 由方程组22{ 194y kx x y =+=,,消去x,可得1y =. 易知直线AB 的方程为x +y –2=0, 由方程组{20y kx x y =+-=,,消去x ,可得221ky k =+.由5y 1=9y 2,可得5(k +1)= 两边平方,整理得25650110k k -+=,解得12k =,或1128k =. 所以,k 的值为12或1128.14.(2017•江苏,17)如图,在平面直角坐标系xOy 中,椭圆E : =1(a >b >0)的左、右焦点分别为F 1 , F 2 , 离心率为,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点F 1作直线PF 1的垂线l 1 , 过点F 2作直线PF 2的垂线l 2 . (Ⅰ)求椭圆E 的标准方程;(Ⅱ)若直线l 1 , l 2的交点Q 在椭圆E 上,求点P 的坐标.14.(1)设椭圆的半焦距为c .因为椭圆E 的离心率为12,两准线之间的距离为8,所以12c a =, 228a c =,解得2,1a c ==,于是b ==因此椭圆E 的标准方程是22143x y +=. (2)由(1)知, ()11,0F -, ()21,0F . 设()00,P x y ,因为点P 为第一象限的点,故000,0x y >>. 当01x =时, 2l 与1l 相交于1F ,与题设不符. 当01x ≠时,直线1PF 的斜率为001y x +,直线2PF 的斜率为001y x -.因为11l PF ⊥, 22l PF ⊥,所以直线1l 的斜率为001x y -+,直线2l 的斜率为001x y --, 从而直线1l 的方程: ()0011x y x y +=-+, ① 直线2l 的方程: ()0011x y x y -=--. ② 由①②,解得2001,x x x y y -=-=,所以20001,x Q x y ⎛⎫-- ⎪⎝⎭.因为点Q 在椭圆上,由对称性,得20001x y y -=±,即2201x y -=或22001x y +=. 又P 在椭圆E 上,故2200143x y +=. 由22002201{ 143x y x y-=+=,解得00x y ==; 220022001{ 143x y x y +=+=,无解.因此点P的坐标为⎝⎭15.(2016·全国Ⅱ,20)已知椭圆E :x 2t +y 23=1的焦点在x 轴上,A 是E 的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (1)当t =4,|AM |=|AN |时,求△AMN 的面积; (2)当2|AM |=|AN |时,求k 的取值范围.15.解 (1)设M (x 1,y 1),则由题意知y 1>0.当t =4时,E 的方程为x 24+y 23=1,A (-2,0).由|AM |=|AN |及椭圆的对称性知,直线AM 的倾斜角为π4.因此直线AM 的方程为y =x +2.将x =y -2代入x 24+y 23=1得7y 2-12y =0,解得y =0或y =127,所以y 1=127.因此△AMN 的面积S △AMN =2×12×127×127=14449.(2)由题意t >3,k >0,A (-t ,0),将直线AM 的方程y =k (x +t )代入x 2t +y 23=1得(3+tk 2)x 2+2t ·tk 2x +t 2k 2-3t =0.由x 1·(-t )=t 2k 2-3t 3+tk 2得x 1=t (3-tk 2)3+tk 2,故|AM |=|x 1+t |1+k 2=6t (1+k 2)3+tk 2.由题设,直线AN 的方程为y =-1k (x +t ),故同理可得|AN |=6k t (1+k 2)3k 2+t .由2|AM |=|AN |得23+tk 2=k3k 2+t ,即(k 3-2)t =3k (2k -1),当k =32时上式不成立,因此t =3k (2k -1)k 3-2.t >3等价于k 3-2k 2+k -2k 3-2=(k -2)(k 2+1)k 3-2<0,即k -2k 3-2<0.由此得⎩⎪⎨⎪⎧k -2>0,k 3-2<0,或⎩⎪⎨⎪⎧k -2<0,k 3-2>0,解得32<k <2.因此k 的取值范围是(32,2).16.(2016·四川,20)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l :y =-x +3与椭圆E 有且只有一个公共点T . (1)求椭圆E 的方程及点T 的坐标;(2)设O 是坐标原点,直线l ′平行于OT ,与椭圆E 交于不同的两点A 、B ,且与直线l 交于点P .证明:存在常数λ,使得|PT |2=λ|P A |·|PB |,并求λ的值. 16.(1)解 由已知,a =2b ,则椭圆E 的方程为x 22b 2+y 2b 2=1.由方程组⎩⎪⎨⎪⎧x 22b 2+y 2b 2=1,y =-x +3,得3x 2-12x +(18-2b 2)=0.①方程①的判别式为Δ=24(b 2-3),由Δ=0,得b 2=3,此时方程①的解为x =2,所以椭圆E 的方程为x 26+y 23=1.点T 的坐标为(2,1).(2)证明 由已知可设直线l ′的方程为y =12x +m (m ≠0),由方程组⎩⎪⎨⎪⎧y =12x +m ,y =-x +3,可得⎩⎨⎧x =2-2m3,y =1+2m 3.所以P 点坐标为⎝⎛⎭⎫2-2m 3,1+2m 3.|PT |2=89m 2. 设点A ,B 的坐标分别为A (x 1,y 1),B (x 2,y 2).由方程组⎩⎨⎧x 26+y 23=1,y =12x +m ,可得3x 2+4mx +(4m 2-12)=0.②方程②的判别式为Δ=16(9-2m 2), 由Δ>0,解得-322<m <322.由②得x 1+x 2=-4m3,x 1x 2=4m 2-123.所以|P A |=⎝⎛⎭⎫2-2m 3-x 12+⎝⎛⎭⎫1+2m 3-y 12=52⎪⎪⎪⎪2-2m 3-x 1,同理|PB |=52⎪⎪⎪⎪2-2m 3-x 2.所以|P A |·|PB |=54⎪⎪⎪⎪⎝⎛⎭⎫2-2m3-x 1⎝⎛⎭⎫2-2m 3-x 2 =54⎪⎪⎪⎪⎪⎪⎝⎛⎭⎫2-2m 32-⎝⎛⎭⎫2-2m 3(x 1+x 2)+x 1x 2 =54⎪⎪⎪⎪⎪⎪⎝⎛⎭⎫2-2m 32-⎝⎛⎭⎫2-2m 3⎝⎛⎭⎫-4m 3+4m 2-123=109m 2. 故存在常数λ=45,使得|PT |2=λ|P A |·|PB |.17.(2015·重庆,21)如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆于P 、Q 两点,且PQ ⊥PF 1.(1)若|PF 1|=2+2,|PF 2|=2-2,求椭圆的标准方程; (2)若|PF 1|=|PQ |,求椭圆的离心率e .17.解 (1)由椭圆的定义,2a =|PF 1|+|PF 2|=(2+2)+(2-2)=4,故a =2. 设椭圆的半焦距为c ,由已知PF 1⊥PF 2,因此2c =|F 1F 2|=|PF 1|2+|PF 2|2=(2+2)2+(2-2)2=23,即c =3,即c =3,从而b =a 2-c 2=1. 故所求椭圆的标准方程为x 24+y 2=1.(2)法一 如图设点P (x 0,y 0)在椭圆上,且PF 1⊥PF 2,则x 20a 2+y 20b2=1,x 20+y 20=c 2, 求得x 0=±a c a 2-2b 2,y 0=±b 2c .由|PF 1|=|PQ |>|PF 2|得x 0>0,从而 |PF 1|2=⎝ ⎛⎭⎪⎫a a 2-2b 2c +c 2+b 4c 2=2(a 2-b 2)+2a a 2-2b 2=(a +a 2-2b 2)2. 由椭圆的定义,|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a , 从而由|PF 1|=|PQ |=|PF 2|+|QF 2|,有|QF 1|=4a -2|PF 1|. 又由PF 1⊥PF 2,|PF 1|=|PQ |,知|QF 1|=2|PF 1|, 因此,(2+2)|PF 1|=4a ,即(2+2)(a +a 2-2b 2)=4a , 于是(2+2)(1+2e 2-1)=4,解得e =12⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫42+2-12=6- 3. 法二 如图,由椭圆的定义,|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a .从而由|PF 1|=|PQ |=|PF 2|+|QF 2|,有|QF 1|=4a -2|PF 1|.又由PF 1⊥PQ ,|PF 1|=|PQ |,知|QF 1|=2|PF 1|,因此,4a -2|PF 1|=2|PF 1|,得|PF 1|=2(2-2)a ,从而|PF 2|=2a -|PF 1|=2a -2(2-2)a =2(2-1)a . 由PF 1⊥PF 2,知|PF 1|2+|PF 2|2=|F 1F 2|2=(2c )2,因此e =ca =|PF 1|2+|PF 2|22a =(2-2)2+(2-1)2=9-62=6- 3. 18.(2015·福建,18)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)过点(0,2),且离心率e =22.(1)求椭圆E 的方程;(2)设直线l :x =my -1(m ∈R )交椭圆E 于A ,B 两点,判断点G ⎝⎛⎭⎫-94,0与以线段AB 为直径的圆的位置关系,并说明理由.18.解 法一 (1)由已知得,⎩⎪⎨⎪⎧b =2,c a =22,a 2=b 2+c 2.解得⎩⎨⎧a =2,b=2,c = 2.所以椭圆E 的方程为x 24+y 22=1.(2)设A (x 1,y 1),B (x 2,y 2),AB 的中点为H (x 0,y 0).⎩⎪⎨⎪⎧x =my -1,x 24+y 22=1得(m 2+2)y 2-2my -3=0.所以y 1+y 2=2m m 2+2,y 1y 2=-3m 2+2,从而y 0=mm 2+2.所以|GH |2=⎝⎛⎭⎫x 0+942+y 20=⎝⎛⎭⎫my 0+542+y 20=(m 2+1)y 20+52my 0+2516. |AB |24=(x 1-x 2)2+(y 1-y 2)24 =(1+m 2)(y 1-y 2)24=(1+m 2)[(y 1+y 2)2-4y 1y 2]4=(1+m 2)(y 20-y 1y 2), 故|GH |2-|AB |24=52my 0+(1+m 2)y 1y 2+2516=5m 22(m 2+2)-3(1+m 2)m 2+2+2516=17m 2+216(m 2+2)>0, 所以|GH |>|AB |2.故点G ⎝⎛⎭⎫-94,0在以AB 为直径的圆外. 法二 (1)同法一.(2)设点A (x 1,y 1),B (x 2,y 2),则GA →=⎝⎛⎭⎫x 1+94,y 1,GB →=⎝⎛⎭⎫x 2+94,y 2.由⎩⎪⎨⎪⎧x =my -1,x 24+y 22=1得(m 2+2)y 2-2my -3=0, 所以y 1+y 2=2m m 2+2,y 1y 2=-3m 2+2,从而GA →·GB →=⎝⎛⎭⎫x 1+94⎝⎛⎭⎫x 2+94+y 1y 2=⎝⎛⎭⎫my 1+54⎝⎛⎭⎫my 2+54+y 1y 2 =(m 2+1)y 1y 2+54m (y 1+y 2)+2516=-3(m 2+1)m 2+2+52m2m 2+2+2516=17m 2+216(m 2+2)>0, 所以cos 〈GA →,GB →〉>0.又GA →,GB →不共线,所以∠AGB 为锐角. 故点G ⎝⎛⎭⎫-94,0在以AB 为直径的圆外. 19.(2015·陕西,20)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的半焦距为c ,原点O 到经过两点(c,0),(0,b )的直线的距离为12c .(1)求椭圆E 的离心率;(2)如图,AB 是圆M :(x +2)2+(y -1)2=52的一条直径,若椭圆E 经过A ,B 两点,求椭圆E的方程.19.解 (1)过点(c ,0),(0,b )的直线方程为bx +cy -bc =0, 则原点O 到该直线的距离d =bc b 2+c 2=bc a,由d =12c ,得a =2b =2a 2-c 2,解得离心率c a =32.(2)法一 由(1)知,椭圆E 的方程为x 2+4y 2=4b 2.① 依题意,圆心M (-2,1)是线段AB 的中点,且|AB |=10,易知,AB 与x 轴不垂直,设其方程为y =k (x +2)+1,代入①得(1+4k 2)x 2+8k (2k +1)x +4(2k +1)2-4b 2=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8k (2k +1)1+4k 2,x 1x 2=4(2k +1)2-4b 21+4k 2,由x 1+x 2=-4,得-8k (2k +1)1+4k 2=-4,解得k =12,从而x 1x 2=8-2b 2, 于是|AB |=1+⎝⎛⎭⎫122|x 1-x 2|=52(x 1+x 2)2-4x 1x 2=10(b 2-2),由|AB |=10,得10(b 2-2)=10,解得b 2=3, 故椭圆E 的方程为x 212+y 23=1.法二 由(1)知,椭圆E 的方程为x 2+4y 2=4b 2,②依题意,点A ,B 关于圆心M (-2,1)对称,且|AB |=10,设A (x 1,y 1),B (x 2,y 2),则x 21+4y 21=4b 2,x 22+4y 22=4b 2,两式相减并结合x 1+x 2=-4,y 1+y 2=2,得-4(x 1-x 2)+8(y 1-y 2)=0, 易知AB 与x 轴不垂直,则x 1≠x 2, 所以AB 的斜率k AB =y 1-y 2x 1-x 2=12, 因此直线AB 的方程为y =12(x +2)+1,代入②得x 2+4x +8-2b 2=0,所以x 1+x 2=-4,x 1x 2=8-2b 2, 于是|AB |=1+⎝⎛⎭⎫122|x 1-x 2|=52(x 1+x 2)2-4x 1x 2=10(b 2-2).由|AB |=10,得10(b 2-2)=10,解得b 2=3, 故椭圆E 的方程为x 212+y 23=1.20.(2015·北京,19)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点P (0,1)和点A (m ,n )(m ≠0)都在椭圆C 上,直线P A 交x 轴于点M .(1)求椭圆C 的方程,并求点M 的坐标(用m ,n 表示);(2)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N .问:y 轴上是否存在点Q ,使得∠OQM =∠ONQ ?若存在,求点Q 的坐标;若不存在,说明理由.20.解 (1)由题意得⎩⎪⎨⎪⎧b =1,c a =22,a 2=b 2+c2解得a 2=2,故椭圆C 的方程为x22+y 2=1.设M (x M ,0).因为m ≠0,所以-1<n <1.直线P A 的方程为y -1=n -1m x .所以x M =m 1-n,即M ⎝⎛⎭⎫m 1-n ,0. (2)因为点B 与点A 关于x 轴对称,所以B (m ,-n ). 设N (x N ,0),则x N =m1+n.“存在点Q (0,y Q )使得∠OQM =∠ONQ ”,等价于“存在点Q (0,y Q )使得|OM ||OQ |=|OQ ||ON |”,即y Q 满足y 2Q =|x M ||x N |.因为x M =m 1-n ,x N =m 1+n ,m 22+n 2=1.所以y 2Q =|x M ||x N |=m 21-n 2=2.所以y Q =2或y Q =- 2.故在y 轴上存在点Q ,使得∠OQM =∠ONQ ,点Q 的坐标为(0,2)或(0,-2). 21.(2015·江苏,18)如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且右焦点F 到左准线l 的距离为3. (1)求椭圆的标准方程;(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC =2AB ,求直线AB 的方程. 21.解 (1)由题意,得c a =22且c +a 2c=3,解得a =2,c =1,则b =1,所以椭圆的标准方程为x 22+y 2=1.(2)当AB ⊥x 轴时,AB =2,又CP =3,不合题意.当AB 与x 轴不垂直时,设直线AB 的方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2), 将AB 的方程代入椭圆方程,得(1+2k 2)x 2-4k 2x +2(k 2-1)=0, 则x 1,2=2k 2±2(1+k 2)1+2k 2,C 的坐标为⎝ ⎛⎭⎪⎫2k 21+2k 2,-k 1+2k 2,且 AB =(x 2-x 1)2+(y 2-y 1)2=(1+k 2)(x 2-x 1)2=22(1+k 2)1+2k 2.若k =0,则线段AB 的垂直平分线为y 轴,与左准线平行,不合题意. 从而k ≠0,故直线PC 的方程为y +k 1+2k 2=-1k ⎝⎛⎭⎫x -2k 21+2k 2,则P 点的坐标为⎝ ⎛⎭⎪⎫-2,5k 2+2k (1+2k 2),从而PC =2(3k 2+1)1+k 2|k |(1+2k 2).因为PC =2AB ,所以2(3k 2+1)1+k 2|k |(1+2k 2)=42(1+k 2)1+2k 2,解得k =±1.此时直线AB 的方程为y =x -1或y =-x +1.二、双曲线知识1.(2018浙江,2)双曲线x 23−y 2=1的焦点坐标是( ) A .(−√2,0),(√2,0) B .(−2,0),(2,0) C .(0,−√2),(0,√2) D .(0,−2),(0,2)1.B 因为双曲线方程为x 23−y 2=1,所以焦点坐标可设为(±c,0),因为c 2=a 2+b 2=3+1=4,c =2,所以焦点坐标为(±2,0),选B. 2.(2018全国Ⅰ,11)已知双曲线C :x 23−y 2=1,O 为坐标原点,F 为C 的右焦点,过F的直线与C 的两条渐近线的交点分别为M 、N .若△OMN 为直角三角形,则|MN |=( ) A .32 B .3 C .2√3 D .42.B 根据题意,可知其渐近线的斜率为±√33,且右焦点为F(2,0),从而得到∠FON =30°,所以直线MN 的倾斜角为60°或120°,根据双曲线的对称性,设其倾斜角为60°,可以得出直线MN 的方程为y =√3(x −2),分别与两条渐近线y =√33x 和y =−√33x 联立,求得M(3,√3),N(32,−√32),所以|MN |=2)√2)=3,故选B.3.(2018全国Ⅱ,5)双曲线x 2a 2−y 2b 2=1 (a >0, b >0)的离心率为√3,则其渐近线方程为( )A .y =±√2xB .y =±√3xC .y =±√22x D .y =±√32x 3.A ∵e =ca =√3,∴b 2a 2=c 2−a 2a 2=e 2−1=3−1=2,∴ba =√2,因为渐近线方程为y =±ba x ,所以渐近线方程为y =±√2x ,选A. 4.(2018全国Ⅲ,11)设F 1,F 2是双曲线C:x 2a 2−y 2b 2=1()的左、右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P .若|PF 1|=√6|OP |,则C 的离心率为( ) A .√5 B .√3 C .2 D .√24.B 由题可知|PF 2|=b,|OF 2|=c ,∴|PO |=a ,在Rt △POF 2中,cos∠PF 2O =|PF 2||OF 2|=bc, ∵在△PF 1F 2中,cos∠PF 2O =|PF 2|2+|F 1F 2|2−|PF 1|22|PF 2||F 1F 2|=bc ,∴b 2+4c 2−(√6a)22b∙2c=bc ⇒c 2=3a 2,∴e =√3.故选C.5.(2018天津,7)已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点. 设A ,B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为( )A .221412x y -= B .221124x y -= C .22139x y -= D .22193x y -=5.C 设双曲线的右焦点坐标为(),0F c (c >0),则A B x x c ==,由22221c y a b-=可得:2b y a =±,不妨设: 22,,,b b Ac B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,双曲线的一条渐近线方程为: 0bx ay -=,据此可得:21bc b d c -==,22bc b d c +==,则12226bcd d b c+===,则23,9b b ==,双曲线的离心率:2c e a ====,据此可得: 23a =,则双曲线的方程为22139x y -=. 本题选择C 选项.6.(2017•新课标Ⅱ,9)若双曲线C : ﹣ =1(a >0,b >0)的一条渐近线被圆(x ﹣2)2+y 2=4所截得的弦长为2,则C 的离心率为( )A.2B.C.D.6. A 双曲线C : ﹣=1(a >0,b >0)的一条渐近线不妨为:bx+ay=0,圆(x ﹣2)2+y 2=4的圆心(2,0),半径为:2,双曲线C : ﹣=1(a >0,b >0)的一条渐近线被圆(x ﹣2)2+y 2=4所截得的弦长为2,可得圆心到直线的距离为: = ,解得:,可得e 2=4,即e=2.故选A .7.(2017•新课标Ⅲ,5)已知双曲线C :﹣ =1 (a >0,b >0)的一条渐近线方程为y= x ,且与椭圆 + =1有公共焦点,则C 的方程为( )A.﹣ =1B.﹣ =1C.﹣=1 D.﹣=17. B 椭圆 +=1的焦点坐标(±3,0),则双曲线的焦点坐标为(±3,0),可得c=3,双曲线C :﹣ =1 (a >0,b >0)的一条渐近线方程为y=x ,可得 ,即 ,可得 = ,解得a=2,b= ,所求的双曲线方程为: ﹣ =1.故选B .8.(2017·天津,5)已知双曲线 ﹣ =1(a >0,b >0)的左焦点为F ,离心率为 .若经过F 和P (0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为( ) A.=1 B.=1 C.=1 D.=18. B 设双曲线的左焦点F (﹣c ,0),离心率e= =,c=a ,则双曲线为等轴双曲线,即a=b , 双曲线的渐近线方程为y=±x=±x ,则经过F 和P (0,4)两点的直线的斜率k= =,则=1,c=4,则a=b=2,∴双曲线的标准方程:;故选B .9.(2016·全国Ⅰ,5)已知方程x 2m 2+n -y 23m 2-n =1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A.(-1,3)B.(-1,3)C.(0,3)D.(0,3)9.A [∵方程x 2m 2+n -y 23m 2-n =1表示双曲线,∴(m 2+n )·(3m 2-n )>0,解得-m 2<n <3m 2,由双曲线性质,知c 2=(m 2+n )+(3m 2-n )=4m 2(其中c 是半焦距),∴焦距2c =2×2|m |=4,解得|m |=1,∴-1<n <3,故选A.]10.(2016·全国Ⅱ,11)已知F 1,F 2是双曲线E :x 2a 2-y 2b 2=1的左,右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A.2B.32C.3D.210.A [离心率e =F 1F 2MF 2-MF 1,由正弦定理得e =F 1F 2MF 2-MF 1=sin Msin F 1-sin F 2=2231-13= 2.故选A.]11.(2015·福建,3)若双曲线E :x 29-y 216=1的左、右焦点分别为F 1,F 2,点P 在双曲线E 上,且|PF 1|=3,则|PF 2|等于( )A.11B.9C.5D.311.B [由双曲线定义||PF 2|-|PF 1||=2a ,∵|PF 1|=3,∴P 在左支上,∵a =3,∴|PF 2|-|PF 1|=6,∴|PF 2|=9,故选B.]12.(2015·安徽,4)下列双曲线中,焦点在y 轴上且渐近线方程为y =±2x 的是( ) A.x 2-y 24=1 B.x 24-y 2=1 C.y 24-x 2=1 D.y 2-x 24=112.C [由双曲线性质知A 、B 项双曲线焦点在x 轴上,不合题意;C 、D 项双曲线焦点均在y 轴上,但D 项渐近线为y =±12x ,只有C 符合,故选C.]13.(2015·广东,7)已知双曲线C :x 2a 2-y 2b 2=1的离心率e =54,且其右焦点为F 2(5,0),则双曲线C 的方程为( )A.x 24-y 23=1B.x 216-y 29=1C.x 29-y 216=1D.x 23-y 24=1 13.B [因为所求双曲线的右焦点为F 2(5,0)且离心率为e =c a =54,所以c =5,a =4,b 2=c 2-a 2=9,所以所求双曲线方程为x 216-y 29=1,故选B.] 14.(2015·四川,5)过双曲线x 2-y 23=1的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则|AB |=( ) A.433B.2 3C.6D.4 314.D [焦点F (2,0),过F 与x 轴垂直的直线为x =2,渐近线方程为x 2-y 23=0,将x =2代入渐近线方程得y 2=12,y =±23,∴|AB |=23-(-23)=4 3.选D.]15.(2015·新课标全国Ⅱ,11)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为( ) A. 5 B.2 C. 3 D. 2 15.D [如图,设双曲线E 的方程为x 2a 2-y 2b 2=1(a >0,b >0),则|AB |=2a ,由双曲线的对称性,可设点M (x 1,y 1)在第一象限内,过M 作MN ⊥x 轴于点N (x 1,0),∵△ABM 为等腰三角形,且∠ABM =120°,∴|BM |=|AB |=2a ,∠MBN =60°,∴y 1=|MN |=|BM |sin ∠MBN =2a sin 60°=3a ,x 1=|OB |+|BN |=a +2a cos 60°=2a .将点M (x 1,y 1)的坐标代入x 2a 2-y 2b 2=1,可得a 2=b 2,∴e =ca =a 2+b 2a 2=2,选D.] 16.(2015·新课标全国Ⅰ,5)已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点,若MF 1→·MF 2→<0,则y 0的取值范围是( ) A.⎝⎛⎭⎫-33,33 B.⎝⎛⎭⎫-36,36 C.⎝⎛⎭⎫-223,223 D.⎝⎛⎭⎫-233,233 16.A [由题意知M 在双曲线C :x 22-y 2=1上,又在x 2+y 2=3内部,由⎩⎪⎨⎪⎧x 22-y 2=1,x 2+y 2=3,得y =±33,所以-33<y 0<33.] 17.(2014·天津,5)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为( ) A.x 25-y 220=1 B.x 220-y 25=1 C.3x 225-3y 2100=1 D.3x 2100-3y 225=1 17.A [由题意可知,双曲线的其中一条渐近线y =b a x 与直线y =2x +10平行,所以ba =2且左焦点为(-5,0),所以a 2+b 2=c 2=25,解得a 2=5,b 2=20,故双曲线方程为x 25-y 220=1.选A.]18.(2014·广东,4)若实数k 满足0<k <9,则曲线x 225-y 29-k =1与曲线x 225-k -y 29=1的( )A.离心率相等B.实半轴长相等C.虚半轴长相等D.焦距相等18.D [由0<k <9,易知两曲线均为双曲线且焦点都在x 轴上,由25+9-k =25-k +9,得两双曲线的焦距相等,选D.]19.(2014·新课标全国Ⅰ,4)已知F 为双曲线C :x 2-my 2=3m (m >0)的一个焦点,则点F 到C 的一条渐近线的距离为( ) A. 3 B.3 C.3m D.3m19.A [∵双曲线的方程为x 23m -y 23=1,∴焦点F 到一条渐近线的距离为 3.]20.(2014·重庆,8)设F 1,F 2分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,双曲线上存在一点P 使得|PF 1|+|PF 2|=3b ,|PF 1|·|PF 2|=94ab ,则该双曲线的离心率为( )A.43B.53C.94D.3 20.B [由双曲线的定义得||PF 1|-|PF 2||=2a ,又|PF 1|+|PF 2|=3b ,所以(|PF 1|+|PF 2|)2-(|PF 1|-|PF 2|)2=9b 2-4a 2,即4|PF 1|·|PF 2|=9b 2-4a 2,又4|PF 1|·|PF 2|=9ab ,因此9b 2-4a 2=9ab ,即9⎝⎛⎭⎫b a 2-9b a -4=0,则⎝⎛⎭⎫3b a +1⎝⎛⎭⎫3b a -4=0,解得b a =43⎝⎛⎭⎫b a =-13舍去,则双曲线的离心率e =1+⎝⎛⎭⎫b a 2=53.]21.(2014·山东,10)已知a >b >0,椭圆C 1的方程为x 2a 2+y 2b 2=1,双曲线C 2的方程为x 2a 2-y 2b 2=1,C 1与C 2的离心率之积为32,则C 2的渐近线方程为( ) A.x ±2y =0 B.2x ±y =0 C.x ±2y =0 D.2x ±y =021.A [椭圆C 1的离心率为a 2-b 2a ,双曲线C 2的离心率为a 2+b 2a ,所以a 2-b 2a ·a 2+b 2a =32,所以a 4-b 4=34a 4,即a 4=4b 4,所以a =2b ,所以双曲线C 2的渐近线方程是y =±12x ,即x ±2y =0.]22.(2014·大纲全国,9)已知双曲线C 的离心率为2,焦点为F 1、F 2,点A 在C 上.若|F 1A |=2|F 2A |,则cos ∠AF 2F 1=( ) A.14 B.13 C.24 D.2322.A [由双曲线的定义知|AF 1|-|AF 2|=2a ,又|AF 1|=2|AF 2|,∴|AF 1|=4a ,|AF 2|=2a . ∵e =ca =2,∴c =2a ,∴|F 1F 2|=4a .∴cos ∠AF 2F 1=|AF 2|2+|F 1F 2|2-|AF 1|22|AF 2|·|F 1F 2|=(2a )2+(4a )2-(4a )22×2a ×4a=14,故选A.]23.(2018江苏,8)在平面直角坐标系xOy 中,若双曲线x 2a −y 2b =1(a >0,b >0)的右焦点F(c,0)到一条渐近线的距离为√32c ,则其离心率的值是________.23.2 因为双曲线的焦点F(c,0)到渐近线y =±ba x,即bx ±ay =0的距离为√a 2+b2=bc c=b,所以b =√32c ,因此a 2=c 2−b 2=c 2−34c 2=14c 2, a =12c,e =2.24.(2017•山东,14)在平面直角坐标系xOy 中,双曲线=1(a >0,b >0)的右支与焦点为F 的抛物线x 2=2py (p >0)交于A ,B 两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为________.24. y=± x 把x 2=2py (p >0)代入双曲线=1(a >0,b >0),可得:a 2y2﹣2pb 2y+a 2b 2=0,∴y A +y B =,∵|AF|+|BF|=4|OF|,∴y A +y B +2× =4× ,∴ =p ,∴ = .∴该双曲线的渐近线方程为:y=± x .故答案为:y=± x .25.(2017•北京,9)若双曲线x 2﹣=1的离心率为 ,则实数m=________.25.2 双曲线x 2﹣=1(m >0)的离心率为 ,可得: ,解得m=2.故答案为:2.26.(2017•江苏,8)在平面直角坐标系xOy 中,双曲线﹣y 2=1的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是F 1 , F 2 , 则四边形F 1PF 2Q 的面积是________. 26.2双曲线﹣y 2=1的右准线:x=,双曲线渐近线方程为:y= x ,所以P ( , ),Q ( ,﹣ ),F 1(﹣2,0).F 2(2,0).则四边形F 1PF 2Q 的面积是: =2.故答案为:2.27.(2016·山东,13)已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是________.27.2 [由已知得|AB |=2b 2a ,|BC |=2c ,∴2×2b 2a =3×2c ,又∵b 2=c 2-a 2,整理得:2c 2-3ac -2a 2=0,两边同除以a 2得2⎝⎛⎭⎫c a 2-3c a-2=0,即2e 2-3e -2=0,解得e =2或e =-1(舍去).] 28.(2015·浙江,9)双曲线x 22-y 2=1的焦距是______,渐近线方程是______.28.23 y =±22x [由双曲线方程得a 2=2,b 2=1,∴c 2=3,∴焦距为23,渐近线方程为y =±22x .]29.(2015·北京,10)已知双曲线x 2a 2-y 2=1(a >0)的一条渐近线为3x +y =0,则a =________.29.33 [双曲线渐近线方程为y =±b a x ,∴b a =3,又b =1,∴a =33.] 30.(2015·湖南,13)设F 是双曲线C :x 2a 2-y 2b 2=1的一个焦点,若C 上存在点P ,使线段PF的中点恰为其虚轴的一个端点,则C 的离心率为________.30.5 [不妨设F (c ,0),则由条件知P (-c ,±2b ),代入x 2a 2-y 2b 2=1得c 2a 2=5,∴e = 5.]31.(2015·江苏,12)在平面直角坐标系xOy 中,P 为双曲线x 2-y 2=1右支上的一个动点.若点P 到直线x -y +1=0的距离大于c 恒成立,则实数c 的最大值为________. 31.22[双曲线x 2-y 2=1的渐近线为x ±y =0,直线x -y +1=0与渐近线x -y =0平行,故两平行线的距离d =|1-0|12+12=22.由点P 到直线x -y +1=0的距离大于c 恒成立,得c ≤22,故c 的最大值为22.] 32.(2014·浙江,16)设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m,0)满足|P A |=|PB |,则该双曲线的离心率是________. 32.52 [联立直线方程与双曲线渐近线方程y =±bax 可解得交点为 ⎝⎛⎭⎫am 3b -a ,bm 3b -a ,⎝ ⎛⎭⎪⎫-am 3b +a ,bm 3b +a ,而k AB =13,由|P A |=|PB |,可得AB 的中点与点P 连线的斜率为-3,即bm 3b -a +bm3b +a2-0am3b -a +-am 3b +a2-m=-3,化简得4b 2=a 2,所以e =52.]33.(2014·江西,20)如图,已知双曲线C :x 2a 2-y 2=1(a >0)的右焦点为F ,点A ,B 分别在C的两条渐近线上,AF ⊥x 轴,AB ⊥OB ,BF ∥OA (O 为坐标原点). (1)求双曲线C 的方程;(2)过C 上一点P (x 0,y 0)(y 0≠0)的直线l :x 0x a 2-y 0y =1与直线AF 相交于点M ,与直线x =32相交于点N .证明:当点P 在C 上移动时,|MF ||NF |恒为定值,并求此定值.33.(1)解 设F (c ,0),因为b =1,所以c =a 2+1,直线OB 的方程为y =-1a x ,直线BF 的方程为y =1a (x -c ),解得B ⎝⎛⎭⎫c 2,-c 2a . 又直线OA 的方程为y =1a x ,则A ⎝⎛⎭⎫c ,c a ,k AB =c a -⎝⎛⎭⎫-c 2a c -c 2=3a.又因为AB ⊥OB ,所以3a ·⎝⎛⎭⎫-1a =-1,解得a 2=3,故双曲线C 的方程为x 23-y 2=1.(2)证明 由(1)知a =3,则直线l 的方程为x 0x3-y 0y =1(y 0≠0),即y =x 0x -33y 0.因为直线AF 的方程为x =2,所以直线l 与AF 的交点为M ⎝⎛⎭⎫2,2x 0-33y 0;直线l 与直线x =32的交点为N ⎝ ⎛⎭⎪⎫32,32x 0-33y 0. 则|MF |2|NF |2=(2x 0-3)2(3y 0)214+⎝⎛⎭⎫32x 0-32(3y 0)2=(2x 0-3)29y 204+94(x 0-2)2=43·(2x 0-3)23y 20+3(x 0-2)2, 因为P (x 0,y 0)是C 上一点,则x 203-y 20=1,代入上式得 |MF |2|NF |2=43·(2x 0-3)2x 20-3+3(x 0-2)2=43·(2x 0-3)24x 20-12x 0+9=43, 所求定值为|MF ||NF |=23=233.三、抛物线1.(2018全国Ⅰ,8)设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM ⃑⃑⃑⃑⃑⃑ ⋅FN ⃑⃑⃑⃑⃑ =( ) A .5 B .6 C .7 D .81.D 根据题意,过点(–2,0)且斜率为23的直线方程为y =23(x +2),与抛物线方程联立{y =23(x +2)y 2=4x ,消元整理得:y 2−6y +8=0,解得M(1,2),N(4,4),又F(1,0),所以FM ⃑⃑⃑⃑⃑⃑ =(0,2),FN ⃑⃑⃑⃑⃑ =(3,4),从而可以求得FM⃑⃑⃑⃑⃑⃑ ⋅FN ⃑⃑⃑⃑⃑ =0×3+2×4=8,故选D. 2.(2016·全国Ⅰ,10)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( ) A.2 B.4 C.6 D.82.B [不妨设抛物线C :y 2=2px (p >0),则圆的方程可设为x 2+y 2=r 2(r >0),如图,又可设A (x 0,22),D ⎝⎛⎭⎫-p2,5,点A (x 0,22)在抛物线y 2=2px 上,∴8=2px 0,① 点A (x 0,22)在圆x 2+y 2=r 2上,∴x 20+8=r 2,② 点D ⎝⎛⎭⎫-p 2,5在圆x 2+y 2=r 2上,∴5+⎝⎛⎭⎫p22=r 2,③ 联立①②③,解得p =4,即C 的焦点到准线的距离为p =4,故选B.]3.(2015·天津,6)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线过点(2,3) ,且双曲线的一个焦点在抛物线y 2=47x 的准线上,则双曲线的方程为( ) A.x 221-y 228=1 B.x 228-y 221=1 C.x 23-y 24=1 D.x 24-y 23=1 3.D [双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±b a x ,又渐近线过点(2,3),所以2ba =3,即2b =3a ,①抛物线y 2=47x 的准线方程为x =-7,由已知,得a 2+b 2=7,即a 2+b 2=7②, 联立①②解得a 2=4,b 2=3,所求双曲线的方程为x 24-y 23=1,选D.] 4.(2015·浙江,5)如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( )A.|BF |-1|AF |-1B.|BF |2-1|AF |2-1C.|BF |+1|AF |+1D.|BF |2+1|AF |2+14.A [由图象知S △BCF S △ACF =|BC ||AC |=x B x A ,由抛物线的性质知|BF |=x B +1,|AF |=x A +1,∴x B =|BF |-1,x A =|AF |-1,∴S △BCF S △ACF =|BF |-1|AF |-1.故选A.]5.(2018全国Ⅲ,16)已知点M(−1 , 1)和抛物线C : y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若∠AMB =90°,则k =________.5.2 设A (x 1,y 1),B(x 2,y 2),则{y 12=4x 1y 22=4x2,所以y 12−y 22=4x 1−4x 2,所以k =y 1−y 2x 1−x 2=4y 1+y 2.取AB 中点M′(x 0,y 0),分别过点A,B 作准线x =−1的垂线,垂足分别为A ′,B′,因为∠AMB =90°,∴|MM ′|=12|AB |=12(|AF |+|BF |)=12(|AA ′|+|BB′|),因为M’为AB 中点,所以MM’平行于x 轴,因为M(-1,1),所以y 0=1,则y 1+y 2=2即k =2.6.(2017•新课标Ⅱ,16)已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN|=________.6. 6 抛物线C :y 2=8x 的焦点F (2,0),M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,可知M 的横坐标为:1,则M 的纵坐标为: ,|FN|=2|FM|=2 =6.故答案为:6.7.(2016·浙江,9)若抛物线y 2=4x 上的点M 到焦点的距离为10,则M 到y 轴的距离是________. 7.9 [抛物线y 2=4x 的焦点F (1,0).准线为x =-1,由M 到焦点的距离为10,可知M 到准线x =-1的距离也为10,故M 的横坐标满足x M +1=10,解得x M =9,所以点M 到y 轴的距离为9.] 8.(2015·陕西,14)若抛物线y 2=2px (p >0)的准线经过双曲线x 2-y 2=1的一个焦点,则p =________.8.22 [由于双曲线x 2-y 2=1的焦点为(±2,0),故应有p2=2,p =2 2.]9.(2014·湖南,15)如图,正方形ABCD 和正方形DEFG 的边长分别为a , b (a <b ),原点O 为AD 的中点,抛物线y 2=2px (p >0)经过C ,F 两点,则b a =________.9.1+2 [由正方形的定义可知BC =CD ,结合抛物线的定义得点D 为抛物线的焦点,所以|AD |=p =a ,D ⎝⎛⎭⎫p 2,0,F ⎝⎛⎭⎫p2+b ,b ,将点F 的坐标代入抛物线的方程得b 2=2p⎝⎛⎭⎫p 2+b =a 2+2ab ,变形得⎝⎛⎭⎫b a 2-2b a -1=0,解得b a =1+2或b a=1-2(舍去),所以ba =1+ 2.]10.(2014·上海,3)若抛物线y 2=2px的焦点与椭圆x 29+y 25=1的右焦点重合,则该抛物线的准线方程为______________. 10.x =-2[∵c 2=9-5=4,∴c =2.∴椭圆x 29+y 25=1的右焦点为(2,0),∴p2=2,即p =4. ∴抛物线的准线方程为x =-2.]。
高中数学高考几何解析(椭圆双曲线抛物线)课本知识讲解及练习(含答案)
高中数学高考几何解析(椭圆双曲线抛物线)课本知识讲解及练习(含答案)第五节椭圆一、必记3个知识点1.椭圆的定义(1)设椭圆x2a2+y2b2=1(a>b>0)上任意一点P(x,y),则当x=0时,|OP|有最小值b,这时,P在短轴端点处;当x=±a时,|OP|有最大值a,这时,P在长轴端点处.(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a是斜边长,a2=b2+c2.(3)已知过焦点F1的弦AB,则△ABF2的周长为4a.(4)若P为椭圆上任一点,F为其焦点,则a-c≤|PF|≤a+c.二、必明3个易误点1.椭圆的定义中易忽视2a>|F1F2|这一条件,当2a=|F1F2|其轨迹为线段F1F2,当2a<|F1F2|不存在轨迹.2.求椭圆的标准方程时易忽视判断焦点的位置,而直接设方程为x2a2+y2b2=1(a>b>0).3.注意椭圆的范围,在设椭圆x2a2+y2b2=1(a>b>0)上点的坐标为P(x,y)时,则|x|≤a,这往往在求与点P有关的最值问题中特别有用,也是容易被忽略而导致求最值错误的原因.三、技法1.求椭圆标准方程的2种常用方法(1)直接求出a,c来求解e.通过已知条件列方程组,解出a,c的值.(2)构造a,c的齐次式,解出e.由已知条件得出关于a,c的二元齐次方程,然后转化为关于离心率e的一元二次方程求解.(3)通过取特殊值或特殊位置,求出离心率.提醒:在解关于离心率e的二次方程时,要注意利用椭圆的离心率e∈(0,1)进行根的取舍,否则将产生增根.3.求解最值、取值范围问题的技巧(1)与椭圆几何性质有关的问题要结合图形进行分析,即使画不出图形,思考时也要联想到一个图形.(2)椭圆的范围或最值问题常常涉及一些不等式.例如,-a≤x≤a,-b≤y≤b,0<e<1,在求椭圆的相关量的范围时,要注意应用这些不等关系.(3)最值问题,将所求列出表达式,构造基本不等式或利用函数单调性求解.4.判断直线与椭圆位置关系的四个步骤第一步:确定直线与椭圆的方程.第二步:联立直线方程与椭圆方程.第三步:消元得出关于x(或y)的一元二次方程.第四步:当Δ>0时,直线与椭圆相交;当Δ=0时,直线与椭圆相切;当Δ<0时,直线与椭圆相离.5.直线被椭圆截得的弦长公式设直线与椭圆的交点坐标为A(x1,y1),B(x2,y2),则|AB|=(1+k2)[(x1+x2)2-4x1x2])=(y1+y2)2-4y1y2])(k为直线斜率).参考答案①F1,F2②|F1F2|③x轴,y轴④坐标原点⑤(-a,0)⑥(a,0)⑦(0,-b)⑧(0,b)⑨(0,-a)⑩(0,a)⑪(-b,0)⑫(b,0)⑬2a⑭2b⑮2c⑯(0,1)⑰c2=a2-b2第六节双曲线一、必记3个知识点1.双曲线的定义(1)平面内与两个定点F1、F2(|F1F2|=2c>0)的距离①________________为非零常数2a(2a<2c)的点的轨迹叫做双曲线.这两个定点叫做双曲线的②________,两焦点间的距离叫做③________.(2)集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.(ⅰ)当④________________时,M点的轨迹是双曲线;(ⅱ)当⑤________________时,M点的轨迹是两条射线;(ⅲ)当⑥________________时,M点不存在.2.双曲线的标准方程和几何性质⑧________x ∈对称轴:⑪________对称中心:⑫________顶点坐标:A 1⑮______,A 2⑯________⑱____________c =⑳________|=21________;线段________;a 叫做双曲线的虚半轴长>b >0)(1)双曲线为等轴双曲线⇔双曲线的离心率e =2⇔双曲线的两条渐近线互相垂直.(2)渐近线的斜率与双曲线的焦点位置的关系:当焦点在x 轴上时,渐近线斜率为±ba,当焦点在y 轴上时,渐近线斜率为±ab.(3)渐近线与离心率.x2a2-y2b2=1(a >0,b >0)的一条渐近线的斜率为ba=e2-1.(4)若P 为双曲线上一点,F 为其对应焦点,则|PF |≥c -a .二、必明4个易误点1.双曲线的定义中易忽视2a <|F 1F 2|这一条件.若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a >|F 1F 2|则轨迹不存在.2.双曲线的标准方程中对a ,b 的要求只是a >0,b >0,易误认为与椭圆标准方程中a ,b 的要求相同.若a >b >0,则双曲线的离心率e ∈(1,2);若a =b >0,则双曲线的离心率e =2;若0<a <b ,则双曲线的离心率e >2.3.注意区分双曲线中的a ,b ,c 大小关系与椭圆a ,b ,c 关系,在椭圆中a 2=b 2+c 2,而在双曲线中c2=a2+b2.4.易忽视渐近线的斜率与双曲线的焦点位置关系.当焦点在x轴上,渐近线斜率为±ba,当焦点在y轴上,渐近线斜率为±ab.三、技法1.双曲线定义的应用(1)判定满足某条件的平面内动点的轨迹是否为双曲线,进而根据要求可求出曲线方程;(2)在“焦点三角形”中,常利用正弦定理、余弦定理,经常结合||PF1|-|PF2||=2a,运用平方的方法,建立|PF1|与|PF2|的关系.[注意]在应用双曲线定义时,要注意定义中的条件,搞清所求轨迹是双曲线,还是双曲线的一支,若是双曲线的一支,则需确定是哪一支.2.求双曲线标准方程的一般方法(1)待定系数法:设出双曲线方程的标准形式,根据已知条件,列出参数a,b,c的方程并求出a,b,c的值.与双曲线x2a2-y2b2=1有相同渐近线时,可设所求双曲线方程为:x2a2-y2b2=λ(λ≠0).(2)定义法:依定义得出距离之差的等量关系式,求出a的值,由定点位置确定c的值.3.求双曲线离心率或其范围的方法(1)求a,b,c的值,由c2a2=a2+b2a2=1+b2a2直接求e.(2)列出含有a,b,c的齐次方程(或不等式),借助于b2=c2-a2消去b,然后转化成关于e的方程(或不等式)求解.4.求双曲线的渐近线方程的方法求双曲线x2a2-y2b2=1(a>0,b>0)的渐近线的方法是令x2a2-y2b2=0,即得两渐近线方程为:xa±yb=0.参考答案①之差的绝对值②焦点③焦距④2a<|F1F2|⑤2a=|F1F2|⑥2a>|F1F2|⑦x≥a或x≤-a⑧y≥a或y≤-a⑨x轴,y轴⑩坐标原点⑪x轴,y轴⑫坐标原点⑬(-a,0)⑭(a,0)⑮(0,-a)⑯(0,a)⑰y=±ba x⑱y=±ab x⑲ca⑳a2+b2212a222b23a2+b2第七节抛物线一、必记2个知识点1.抛物线定义、标准方程及几何性质x轴⑤________y轴⑥________O(0,0)O(0,0)O(0,0)O(0,0)F⑦________⑧________⑨________设AB是过抛物线y2=2px(p>0)的焦点F的弦,若A(x1,y1),B(x2,y2),则(1)x1x2=p24,y1y2=-p2.(2)弦长|AB|=x1+x2+p=2psin2α(α为弦AB的倾斜角).(3)以弦AB为直径的圆与准线相切.(4)通径:过焦点且垂直于对称轴的弦,长等于2p.二、必明2个易误点1.抛物线的定义中易忽视“定点不在定直线上”这一条件,当定点在定直线上时,动点的轨迹是过定点且与直线垂直的直线.2.抛物线标准方程中参数p易忽视,只有p>0,才能证明其几何意义是焦点F到准线l 的距离,否则无几何意义.三、技法1.应用抛物线定义的2个关键点(1)由抛物线定义,把抛物线上点到焦点距离与到准线距离相互转化.(2)注意灵活运用抛物线上一点P(x,y)到焦点F的距离|PF|=|x|+p2或|PF|=|y|+p2.2.求抛物线的标准方程的方法(1)求抛物线的标准方程常用待定系数法,因为未知数只有p,所以只需一个条件确定p值即可.(2)因为抛物线方程有四种标准形式,因此求抛物线方程时,需先定位,再定量.3.确定及应用抛物线性质的技巧(1)利用抛物线方程确定及应用其焦点、准线等性质时,关键是将抛物线方程化为标准方程.(2)要结合图形分析,灵活运用平面几何的性质以图助解.4.解决直线与抛物线位置关系问题的常用方法(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.提醒:涉及弦的中点、斜率时,一般用“点差法”求解.参考答案①相等②y2=-2px(p>0)③x2=-2py(p>0)④x2=2py(p>0)⑤x轴⑥y轴⑦F(-p2,0)⑧F(0,-p2)⑨F(0,p2)⑩e=1⑪x=-p2⑫y=-p2⑬-y0+p2⑭y0+p2⑮y≤0⑯y≥0。
圆锥曲线(椭圆、双曲线、抛物线)基础知识及常用结论
圆锥曲线(椭圆、双曲线、抛物线)基础知识及常⽤结论圆锥曲线必背⼝诀(红字为⼝诀)-椭圆⼀、椭圆定义定点为焦点,定值为长轴.(定值=2a )椭圆.定点为焦点,定直线为准线,定值为离⼼率.(定值=e )定点为短轴顶点,定值为负值. (定值2k e 1=-)⼆、椭圆的性质定理长轴短轴与焦距,形似勾股弦定理①准线⽅程准焦距,a ⽅、b ⽅除以c ②通径等于 2 ep ,切线⽅程⽤代替③焦三⾓形计⾯积,半⾓正切连乘b ④注解:1长轴2a =,短轴2b =,焦距2c =,则:222a b c =+2准线⽅程:2a x c= (a ⽅除以c )3椭圆的通径d :过焦点垂直于长轴的直线与椭圆的两交点之间的距离称为椭圆的通径.(通径22c b 2b 2a c ad 2ep =??==)过椭圆上00x y (,)点的切线⽅程,⽤00x y (,)等效代替椭圆⽅程得到.等效代替后的是切线⽅程是:0022x x y y1a b+=4、焦三⾓形计⾯积,半⾓正切连乘b焦三⾓形:以椭圆的两个焦点12F F ,为顶点,另⼀个顶点P 在椭圆上的三⾓形称为焦三⾓形.半⾓是指12F PF θ=∠的⼀半.则焦三⾓形的⾯积为:2S b 2tanθ=证明:设1PF m =,2PF n =,则m n 2a +=由余弦定理:222m n 2mn 4c cos θ+-?=22224a 4b m n 4b ()=-=+-即:22mn 2mn 4b cos θ-?=-,即:22b 1mn (cos )θ=+.即:2122b mn PF PF 1||||cos θ==+故:12F PF 1S m n 2sin θ=??△2212b b 211sin sin cos cos θθθθ=?=++⼜:22221222sin cossin tan cos cosθθθθθθ==+ 所以:椭圆的焦点三⾓形的⾯积为122F PF S b 2tan θ=. 三、椭圆的相关公式切线平分焦周⾓,称为弦切⾓定理①1F2FOxyPmn切点连线求⽅程,极线定理须牢记②弦与中线斜率积,准线去除准焦距③细看中点弦⽅程,恰似弦中点轨迹④注解:1弦切⾓定理:切线平分椭圆焦周⾓的外⾓,平分双曲线的焦周⾓. 焦周⾓是焦点三⾓形中,焦距所对应的⾓.弦切⾓是指椭圆的弦与其切线相交于椭圆上时它们的夹⾓,当弦为焦点弦时(过焦点的弦),那么切线是两个焦点弦的⾓平分线.2若000P x y (,)在椭圆2222x y 1a b+=外,则过0P 作椭圆的两条切线,切点为12P P ,,则点0P 和切点弦12P P ,分别称为椭圆的极点和极线.切点弦12P P 的直线⽅程即极线⽅程是0022x xy y1a b+=(称为极线定理)3弦指椭圆内的⼀弦AB .中线指弦AB 的中点M 与原点O 的连线,即OAB ?得中线.这两条直线的斜率的乘积,等于准线距离2c a x c=-去除准焦距2bp c=,其结果是:2AB OM2c p b k k x a==- 4中点弦AB 的⽅程:在椭圆中,若弦AB 的中点为00M x y (,),弦AB 称为中点弦,则中点弦的⽅程就是2200002222x x y y x y a b a b+=+,是直线⽅程.弦中点M 的轨迹⽅程:在椭圆中,过椭圆内点000P x y (,)的弦AB ,其中点M 的⽅程就是22002222x x y y x y a b a b+=+,仍为椭圆.这两个⽅程有些相似,要擦亮眼睛,千万不要搞混了.圆锥曲线必背⼝诀(红字为⼝诀)-双曲线⼀、双曲线定义⼆、双曲线的性质定理基本同椭圆,有所区别:实轴虚轴与焦距,形似勾股弦定理①准线⽅程准焦距,a ⽅、b ⽅除以c ②通径等于 2 e p ,切线⽅程⽤代替③焦三⾓形计⾯积,半⾓余切连乘b ④注解:1实轴2a =,虚轴2b =,焦距2c =,则:222a b c +=2准线⽅程2a x c=± (a ⽅除以c )准焦距p :焦点到准线的距离:2b pc = (b ⽅除以c )3通径等于2 e p ,切线⽅程⽤代替双曲线的通径d :过焦点垂直于长轴的直线与双曲线的两交点之间的距离称为双曲线的通径.(通径22c b 2b 2a c ad 2ep =??==)过双曲线上000P x y (,)点的切线⽅程,⽤000P x y (,)等效代替双曲线⽅程得到,等效代替后的是切线⽅程是:0022x x y y1a b-=4焦三⾓形计⾯积,半⾓余切连乘b焦三⾓形:以双曲线的两个焦点12F F ,为顶点,另⼀个顶点P 在椭圆上的三⾓形称为焦三⾓形.半⾓是指12F PF γ=∠的⼀半.双曲线2222x y 1a b-=的左右焦点分别为12F F ,,点P 为双曲线上异于顶点任意⼀点12F PF γ∠=,则双曲线的焦点三⾓形满⾜:2122b PF PF 1cos γ=- 其⾯积为;122F PF S b co 2t γ=.证明:设21PF m PF n ,==,则m n 2a -=在12F PF ?中,由余弦定理得:222121212PF PF 2PF PF F F cos γ+-=,即:222m n 2mn 4c cos γ+-?=22224a 4b m n 4b ()=+=-+ 即:2222m n 2mn m n 4b cos ()γ+-?=-+即:22mn 2mn 4b cos γ-?=,即:22b mn 1(cos )γ=-即:22b mn 1cos γ=-,即:2122bPF PF 1cos γ=-那么,焦点三⾓形的⾯积为:12F PF 1S mn 2sin γ?=?212b 21sin cos γγ=?-2222b 22b 122sin cossin cos sinγγγγγ==?-2b 2cot γ= 故:122F PF S b 2cot γ= 同时:12F PF 12P P 1S F F y c y 2?=?=?,故:2p b y c 2cot γ=±? 双曲线的焦点三⾓形的⾯积为:122F PF S b co 2t γ=.三、双曲线的相关公式切线平分焦周⾓,称为弦切⾓定理①切点连线求⽅程,极线定理须牢记②弦与中线斜率积,准线去除准焦距③细看中点弦⽅程,恰似弦中点轨迹④注解:1弦切⾓定理:切线平分椭圆焦周⾓的外⾓,平分双曲线的焦周⾓.焦周⾓是焦点三⾓形中,焦距所对应的⾓. 弦切⾓是指双曲线的弦与其切线相交于双曲线上时它们的夹⾓,当弦为焦点弦时(过焦点的弦),那么切线是两个焦点弦的⾓平分线.如图,12F PF ?是焦点三⾓形,12F PF ∠为焦周⾓,PT 为双曲线的切线. 则PT 平分12F PF ∠.2若000P x y (,)在双曲线2222x y 1a b-=外,以包含焦点的区域为内,不包含焦点的区域为外,则过0P 作双曲选的两条切线,切点为1P 、2P ,则点0P 和切点弦12P P 分别称为双曲线的极点和极线,切点弦12P P 的直线⽅程即极线⽅程是0022x xy y1a b-=(称为极线定理)3弦指双曲线内的⼀弦AB .中线指弦AB 的中点M 与原点O 的连线,即OAB ?得中线.这两条直线的斜率的乘积,等于准线距离2c a x c =去除准焦距2b p c=,其结果是:2AB OM2c p b k k x a==4中点弦AB 的⽅程:在双曲线中,若弦AB 的中点为00M x y (,),称弦AB 为中点弦,则中点弦的⽅程就是:2200002222x x y y x y aba b-=-,它是直线⽅程. 弦中点M 的轨迹⽅程:在双曲线中,过双曲线外⼀点000P x y (,)的弦AB ,其AB 中点M 的⽅程就是22002222x x y y x y a b a b-=-,仍为双曲线.这两个⽅程有些相似,要擦亮眼睛,千万不要搞混了.圆锥曲线必背⼝诀(红字为⼝诀)-抛物线⼀、抛物线定义抛物线,有定义,定点定线等距离12⼆、抛物线性质焦点准线极点线①,两臂点乘积不变②焦弦切线成直⾓,切点就是两端点③端点投影在准线,连结焦点垂直线④焦弦垂直极焦线⑤,切线是⾓平分线⑥直⾓梯形对⾓线,交点就是本原点⑦焦弦三⾓计⾯积,半个p ⽅除正弦⑧注解:1抛物线的焦点和准线是⼀对极点和极线.抛物线⽅程:2y 2px =,焦点(,)p F 02,准线p p x 2=-(抛物线的顶点(,)O 00到定点(,)p F 02和定直线p p x 2=-距离相等) 焦弦:过焦点的直线与抛物线相交于两点A 和B ,则AB 称为焦弦.弦中点(,)M M M x y ,A B M x x x 2+=,A B M y yy 2+= 焦弦⽅程:()p y k x 2=-,k 为斜率. 2焦点三⾓形两边OA 和OB 的点乘积为定值,且夹⾓是钝⾓. 证明:焦弦AB 满⾜的条件()2y 2pxp y k x 2?=??=- ()22p k x 2px 2-=? ()22222k p k x k 2px 04-++=由韦达定理得:2A B px x 4=2A B py y 22p p 2==-=-?=-,即:2A B p x x 4=,2A B y y p =- ①且:2A A B B A B A B 3OA OB x y x y x x y y p 04(,)(,)?=?=+=-<. 故:焦点三⾓形两边之点乘积为定值.3即:焦弦两端点的切线互相垂直. 证明:如图,由抛物线⽅程:2y 2px =得到导数:yy p '=,即:py y'=故:AEA p k y =,BE Bp k y = 于是:2AE BEA B A Bp p p k k y y y y ?=?=将①式2A B y y p =-代⼊上式得:AE BE k k 1?=-即:AE BE ⊥,故焦弦端点在准线的投影点与焦点构成直⾓三⾓形. 4即:焦弦端点在准线的投影点与焦点构成直⾓三⾓形. 证明:坐标B p C y 2(,)-,A p D y 2(,)-则:B CF p y (,)=-,A DF p y (,)=- 于是:2A B CF DF p y y ?=+将①式2A B y y p =-代⼊上式得:CF DF 0?= 故:CF DF ⊥即:焦弦端点A B ,在准线的投影点D C ,,则CF DF ⊥,即:焦弦端点在准线的投影点与焦点构成直⾓三⾓形.5若焦弦AB 对应的极点E ,则EF 为极焦线,于是EF AB ⊥⽤向量⽅法可证.由于M 是AB 的中点,AEB ?为直⾓三⾓形,计算可得E 是DC 的中点,故:ED EF EC == 由向量法可证EF AB 0?=即:焦弦AB 与极焦线EF 互相垂直. 6即:切线平分焦弦的倾⾓(或倾⾓的外⾓) 如图:因为ADE ?和AFE ?都是直⾓三⾓形,且由定义知:AF AD =,AE AE =故ADE AFE ??≌,则对应⾓相等. 即:AE 是DAF ∠的⾓平分线同理,BE 是CBF ∠的⾓平分线 7即:直⾓梯形ABCD 对⾓线相交于原点即:A O C ,,三点共线;B O D ,,三点共线. ⽤向量法证明:OA CO //,OB DO //证明:坐标2A A y A y 2p (,),2B B y B y 2p (,),B p C y 2(,)-,A pD y 2(,)-向量:2A A y OA y 2p (,)=,B pCO y 2(,)=-各分量之⽐:2A2x A 2xy OA y 2p p p CO 2()()==,2y A AB A B y OA y y y y y CO ()()==--将①式2A B y y p =-代⼊上式得:22yA A2A By OA y y y y p CO ()()==- 故:y x xyOA OA OACO CO CO()()()()==,即:OA CO // 同理:OB DO //.直⾓梯形ABCD 对⾓线相交于原点. 8即:焦弦三⾓形的⾯积为:sin 2 AOBp S 2α= (α为焦弦的倾⾓)证明:AB AF BF =+A B A B p p x x x x p 22=+ ++=++M p2x 2()=+2EM = 如图:GF 2OF p == 则:2EF GF 1pEM sin sinsin sin αααα==?= E于是:22pAB sin α= 故:AOB1S OF AB 2sin α?=221p 2p p 222sin sin sin ααα==附:圆锥曲线必背----极坐标圆锥曲线的极坐标以准焦距p 和离⼼率e 来表⽰常量,以极径ρ和极⾓θ来表⽰变量.0ρ≥,[,)o 0360θ∈以焦点(,)F 0θ为极点(原点O ),以椭圆长轴、抛物线对称轴、双曲线的实轴为极轴的建⽴极坐标系.故准线是到极点距离为准焦距p 、且垂直于极轴的直线L . 极坐标系与直⾓坐标系的换算关系是:ρ=,arctan y xθ= 或者:cos x ρθ=,sin y ρθ= 特别注意:极坐标系中,以焦点为极点(原点),⽽直⾓坐标系中以对称点为原点得到标准⽅程. 如图,O 为极点,L 为准线,则依据定义,到定点(极点)和到定直线(准线)的距离之⽐为定值(定值e )的点的轨迹为圆锥曲线. 所以,对极坐标系,请记住:⑴极坐标系的极点O 是椭圆的左焦点、抛物线的焦点、双曲线的右焦点;⑵曲线上的点(,)Pρθ到焦点F的距离是ρ,到准线的距离是cospρθ+,根据定义:cosepρρθ=+即:cosep eρθρ+=,即:cosep eρρθ=-,即:1eρθ=-①这就是极坐标下,圆锥曲线的通式.⑶对应不同的e,呈现不同的曲线. 对双曲线,只是右边的⼀⽀;对抛物线,开⼝向右.将极轴旋转o180,α和θ分别对应变换前后的极⾓,即转⾓为o180θα=+,则极坐标⽅程变换前⽅程为:cosep1eρα=-变换后⽅程为:cosep1eρθ=+②此时的极坐标系下,此时有:⑵对应不同的e,呈现不同的曲线对双曲线,只是左边的⼀⽀;对抛物线,开⼝向左.⑴将极轴顺时针旋转o90,即:o 90θα=+,则情况如图.圆锥曲线的⽅程为:sin ep1e ρθ=- ③此时的极坐标系下:对应于直⾓坐标系下,焦点在y 轴的情况,且极点O 对应于椭圆下⽅的焦点,双曲线上⽅的焦点,抛物线的焦点.对双曲线,只是y 轴上边的⼀⽀;对抛物线,开⼝向上. ⑵如果将极轴逆时针旋转o 90,即:o 90θα=-,则情况如图. 圆锥曲线的⽅程为:sin ep1e ρα=+ ③此时的极坐标系下:对应于直⾓坐标系下,焦点在y 轴的情况,且对应于椭圆上⽅的焦点,双曲线下⽅的焦点,抛物线的焦点.对双曲线,只是y 轴下边的⼀⽀;对抛物线,开⼝向下.⑴在极坐标系中,圆锥曲线的通式为:=cos ep1e ρθ- ①即:cos e ep ρρθ-=,即:cos ep e ρρθ=+即:(cos )(cos )(cos )2222222ep e e p e 2e p ρρθρθρθ=+=++ ②将222x y ρ=+,cos x ρθ=代⼊②式得:2222222x y e p e x 2e px +=++即:()2222221e x 2e px y e p --+= ③当e 1≠时有:()[()]()()22222222222222--++=+---- 即:()()()22222 2222222e p e e p 1e x y e p 11e 1e 1e --+=+=--- 即:()()22222222222e px y 1e1e p e p1e 1e --+=-- ④⑴当e 1<时,令()22222e p a 1e =-,2222e p b 1e=-,22e p c 1e=-则:()222222222e p e p a b 1e 1e-=---[()]()()2222e p e p 11e 1e 1e =--=--⽽:()()2422222222e p e p c a b 1e 1e ===--- 代⼊④式得:()2222x c y 1ab-+= ⑤这是标准的椭圆⽅程. ⑵当e 1>时,令()222 22e p a e 1=-,2222e p b e 1=-,22e p c e 1=-则:()222222222e p e p a b e 1e 1+=+--[()]()()2242e p e p 1e 1e 1e 1=+-=-- ⽽:()()2422222222e p e p c a b e 1e 1===+-- 代⼊④式得:()2222x c y 1ab+-= ⑥这是标准的双曲线⽅程.⑶当e 1=时,由③式()2222221e x 2e px y e p --+=得:222px y p -+=即:()22p y 2px p 2p x 2=+=+ 即:()2p y 2p x 2=+ ⑦这是标准的抛物线⽅程.。
圆锥曲线(椭圆,双曲线,抛物线)的定义方程和性质知识总结
椭圆的定义、性质及标准方程1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。
⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。
定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。
说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。
②若常数2a 小于2c ,则动点轨迹不存在。
2.3. 椭圆上的任一点和焦点连结的线段长称为焦半径。
焦半径公式:椭圆焦点在x 轴上时,设12F F 、分别是椭圆的左、右焦点,()00P x y ,是椭圆上任一点,则10PF a ex =+,20PF a ex =-。
推导过程:由第二定义得11PF e d =(1d 为点P 到左准线的距离), 则211000a PF ed e x ex a a ex c ⎛⎫==+=+=+ ⎪⎝⎭;同理得20PF a ex =-。
简记为:左“+”右“-”。
由此可见,过焦点的弦的弦长是一个仅与它的中点的横坐标有关的数。
22221x y a b +=;若焦点在y 轴上,则为22221y x a b+=。
有时为了运算方便,设),0(122n m m ny mx ≠>=+。
双曲线的定义、方程和性质1. 定义(1)第一定义:平面内到两定点F 1、F 2的距离之差的绝对值等于定长2a (小于|F 1F 2|)的点的轨迹叫双曲线。
说明:①||PF 1|-|PF 2||=2a (2a <|F 1F 2|)是双曲线;若2a=|F 1F 2|,轨迹是以F 1、F 2为端点的射线;2a >|F 1F 2|时无轨迹。
②设M 是双曲线上任意一点,若M 点在双曲线右边一支上,则|MF 1|>|MF 2|,|MF 1|-|MF 2|=2a ;若M 在双曲线的左支上,则|MF 1|<|MF 2|,|MF 1|-|MF 2|=-2a ,故|MF 1|-|MF 2|=±2a ,这是与椭圆不同的地方。
圆锥曲线--椭圆_双曲线、抛物线的经典题型和相关练习
FA P HBQ专题:解圆锥曲线问题常用方法(一)【学习要点】解圆锥曲线问题常用以下方法: 1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。
(2))0,0(12222>>=-b a by a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________(2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点Q 的坐标为 。
圆锥曲线(椭圆-双曲线-抛物线)的定义、方程和性质知识总结
椭圆的定义、性质及标准方程1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。
⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。
定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。
说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。
②若常数2a 小于2c ,则动点轨迹不存在。
2. 椭圆的标准方程、图形及几何性质:标准方程)0(12222>>=+b a by a x 中心在原点,焦点在x 轴上)0(12222>>=+b a b x a y 中心在原点,焦点在y 轴上图形范围 x a y b ≤≤,x b y a ≤≤,顶点()()()()12120000A a A a B b B b --,、,,、,()()()()12120000A a A a B b B b --,、,,、,对称轴 x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F)0(221>=c c F F离心率 )10(<<=e ace )10(<<=e ace 准线2a x c=±2a y c=±参数方程与普通方程22221x y a b +=的参数方程为 ()cos sin x a y b θθθ=⎧⎨=⎩为参数 22221y x a b +=的参数方程为 ()cos sin y a x b θθθ=⎧⎨=⎩为参数3. 焦半径公式:椭圆上的任一点和焦点连结的线段长称为焦半径。
高中数学椭圆双曲线抛物线考点精讲
专题椭圆双曲线抛物线.一、椭圆二、双曲线(a,0), (a,0)(0,a), (0,a)F1(c,0),F2(c,0),F1(0,c),F2(0,c). 1.从双曲线一个焦点到一条渐近线的距离等于b.2.共渐进线双曲线系:与22221x y a b -=共渐进线的双曲线方程是22x a-22y b =λ(λ≠0)双曲线的渐近线为0=±b ya x 时,它的双曲线方程可设为)0(2222≠=-λλby a x . 3.双曲线方程中化1为0,因式分解可得渐进线方程4.等轴双曲线:双曲线222a y x ±=-称为等轴双曲线,其渐近线方程为x y ±=,2=e .5.直线与双曲线仅有一个交点的位置关系:区域①:无切线,2条与渐近线平行的直线,合计2条; 区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计3条;区域③:2条切线,2条与渐近线平行的直线,合计4条;区域④:即定点在渐近线上且非原点,1条切线,1条与渐近线平行的直线,合计2条;区域⑤:即过原点,无切线,无与渐近线平行的直线.小结:过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有0、2、3、4条.三、抛物线定义 到定点的距离与到定直线的距离之比等于1的点的轨迹方程 px y 22=px y 22-=pyx 22= py x 22-=图形焦点 )0,2(p F )0,2(p F -)2,0(p F )2,0(p F -准线 2p x -= 2p x = 2p y -= 2p y =范围 0,x y ≥∈R0,x y ≤∈R ,0x y ∈≥R ,0x y ∈≤R 对称轴 x轴y 轴顶点 (0,0)离心率 1=e通经 2p焦半径12x pPF +=12x pPF +=12y pPF +=12y pPF +=1.抛物线22y px =中p 的几何意义是焦点到准线的距离,恒正;焦点坐标、准线方程与2p 相关,是一次项的四分之一2.注意抛物线焦点弦的特点: 如22ypx =中22121212,,4p y y p x x AB x x p =-==++例题精讲例1例2.已知圆C.直C.例3 .已知F1、F2过F1的直线交椭圆于A、B两点。
师:高中数学圆锥曲线所有知识点总结、图表总结、圆锥曲线基础练习及答案
高中数学第八章-圆锥曲线方程§08.圆锥曲线方程 知识要点一、椭圆方程.1. 椭圆方程的第一定义:为端点的线段以无轨迹方程为椭圆21212121212121,2,2,2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+⑴①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12222 b a by ax=+. ii.中心在原点,焦点在y 轴上:)0(12222 b a bx ay=+.②一般方程:)0,0(122B A By Ax =+.③椭圆的标准参数方程:12222=+b y a x 的参数方程为⎩⎨⎧==θθsin cos b y a x (一象限θ应是属于20πθ ).⑵①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±.②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2.③焦点:)0,)(0,(c c -或),0)(,0(c c -.④焦距:2221,2b a c c F F -==.⑤准线:c a x 2±=或c a y 2±=.⑥离心率:)10( e ace =.⑦焦点半径: i. 设),(00y x P 为椭圆)0(12222 b a by ax =+上的一点,21,F F 为左、右焦点,则由椭圆方程的第二定义可以推出. ii.设),(00y x P 为椭圆)0(12222 b a ay bx =+上的一点,21,F F 为上、下焦点,则由椭圆方程的第二定义可以推出.由椭圆第二定义可知:)0()(),0()(0002200201 x a ex x ca e pF x ex a ca x e pF -=-=+=+=归结起来为“左加右减”.注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. ⑧通径:垂直于x 轴且过焦点的弦叫做通经.坐标:),(2222a b c a b d -=和),(2ab c⑶共离心率的椭圆系的方程:椭圆)0(12222b a b y a x =+的离心率是)(22b a c a c e -==,方程t t by a x (2222=+是大于0的参数,)0 b a 的离心率也是ace = 我们称此方程为共离心率的椭圆系方程. ⑸若P 是椭圆:12222=+b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ∆的面积为2tan2θb (用余弦定理与a PF PF 221=+可得). 若是双曲线,则面积为2cot2θ⋅b .二、双曲线方程.1. 双曲线的第一定义:的一个端点的一条射线以无轨迹方程为双曲线21212121212121,222F F F F a PF PF F F a PF PF F F a PF PF ==-=-=-⇒-=+=0201,ex a PF ex a PF ⇒-=+=0201,ey a PF ey a PFasin α,)bsin α)N 的轨迹是椭圆⑴①双曲线标准方程:)0,(1),0,(122222222 b a bx ay b a by ax =-=-. 一般方程:)0(122 AC Cy Ax =+.⑵①i. 焦点在x 轴上:顶点:)0,(),0,(a a - 焦点:)0,(),0,(c c - 准线方程c a x 2±= 渐近线方程:0=±b ya x 或02222=-by a xii. 焦点在y 轴上:顶点:),0(),,0(a a -. 焦点:),0(),,0(c c -. 准线方程:c a y 2±=. 渐近线方程:0=±b x a y 或02222=-bx a y ,参数方程:⎩⎨⎧==θθtan sec b y a x 或⎩⎨⎧==θθsec tan a y b x .②轴y x ,为对称轴,实轴长为2a , 虚轴长为2b ,焦距2c. ③离心率ace =. ④准线距c a 22(两准线的距离);通径a b 22.⑤参数关系a ce b a c =+=,222. ⑥焦点半径公式:对于双曲线方程12222=-by a x (21,F F 分别为双曲线的左、右焦点或分别为双曲线的上下焦点)“长加短减”原则: aex MF a ex MF -=+=0201 构成满足a MF MF 221=-aex F M a ex F M +-='--='0201(与椭圆焦半径不同,椭圆焦半径要带符号计算,而双曲线不带符号) aey F M a ey F M a ey MF a ey MF -'-='+'-='+=-=02010201⑶等轴双曲线:双曲线222a y x ±=-称为等轴双曲线,其渐近线方程为x y ±=,离心率2=e .⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.λ=-2222by a x 与λ-=-2222b y a x 互为共轭双曲线,它们具有共同的渐近线:02222=-by a x . ⑸共渐近线的双曲线系方程:)0(2222≠=-λλb y a x 的渐近线方程为02222=-y a x 如果双曲线的渐近线为0=±bya x 时,它的双曲线方程可设为)0(2222≠=-λλb ya x.例如:若双曲线一条渐近线为x y 21=且过)21,3(-p 解:令双曲线的方程为:)0(422≠=-λλy x,代入)21,3(-得12822=-y x ⑹直线与双曲线的位置关系:区域①:无切线,2条与渐近线平行的直线,合计2条;区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计3条; 区域③:2条切线,2条与渐近线平行的直线,合计4条;区域④:即定点在渐近线上且非原点,1条切线,1条与渐近线平行的直线,合计2条; 区域⑤:即过原点,无切线,无与渐近线平行的直线.小结:过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有0、2、3、4条. (2)若直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入”“∆法与渐近线求交和两根之和与两根之积同号. ⑺若P 在双曲线12222=-by ax ,则常用结论1:P 到焦点的距离为m = n ,则P 到两准线的距离比为m ︰n.简证:ePF e PF d d 2121= =n m. 常用结论2:从双曲线一个焦点到另一条渐近线的距离等于b.三、抛物线方程.3. 设0 p ,抛物线的标准方程、类型及其几何性质:注:①x c by ay =++2顶点)244(2aba b ac --.②)0(22≠=p px y 则焦点半径2P x PF +=;)0(22≠=p py x 则焦点半径为2P y PF +=.③通径为2p ,这是过焦点的所有弦中最短的.④px y 22=(或py x 22=)的参数方程为⎩⎨⎧==pt y pt x 222(或⎩⎨⎧==222pt y ptx )(t 为参数). 四、圆锥曲线的统一定义..4. 圆锥曲线的统一定义:平面内到定点F 和定直线l 的距离之比为常数e 的点的轨迹. 当10 e 时,轨迹为椭圆; 当1=e 时,轨迹为抛物线; 当1 e 时,轨迹为双曲线; 当0=e 时,轨迹为圆(ace =,当b a c ==,0时). 5. 圆锥曲线方程具有对称性. 例如:椭圆的标准方程对原点的一条直线与双曲线的交点是关于原点对称的.因为具有对称性,所以欲证AB=CD, 即证AD与BC的中点重合即可. 注:1.椭圆、双曲线、抛物线的标准方程的其他形式及相应性质.2.等轴双曲线3. 共轭双曲线5. 方程y 2=ax 与x 2=ay 的焦点坐标及准线方程.6.共渐近线的双曲线系方程.一、椭圆知识总结表格:项目 内容第一定义 平面内与两个定点12,F F 的距离之和等于常数(大于12||F F )的点的轨迹叫椭圆。
圆锥曲线(椭圆,双曲线,抛物线)的定义、方程和性质知识总结
椭圆的定义、性质及标准方程1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。
⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。
定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。
说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。
②若常数2a 小于2c ,则动点轨迹不存在。
2. 椭圆的标准方程、图形及几何性质:标准方程)0(12222>>=+b a by a x 中心在原点,焦点在x 轴上)0(12222>>=+b a b x a y 中心在原点,焦点在y 轴上图形范围 x a y b ≤≤,x b y a ≤≤,顶点()()()()12120000A a A a B b B b --,、,,、,()()()()12120000A a A a B b B b --,、,,、,对称轴 x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F)0(221>=c c F F离心率 )10(<<=e ace )10(<<=e ace 准线2a x c=±2a y c=±参数方程与普通方程22221x y a b +=的参数方程为 ()cos sin x a y b θθθ=⎧⎨=⎩为参数 22221y x a b +=的参数方程为 ()cos sin y a x b θθθ=⎧⎨=⎩为参数3. 焦半径公式:椭圆上的任一点和焦点连结的线段长称为焦半径。
(完整版)圆锥曲线知识点+例题+练习含答案(整理).docx
(完整版)圆锥曲线知识点+例题+练习含答案(整理).docx圆锥曲线⼀、椭圆:( 1)椭圆的定义:平⾯内与两个定点F1 , F2的距离的和等于常数(⼤于| F1 F2 |)的点的轨迹。
其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距。
注意: 2a | F1F2 | 表⽰椭圆;2a | F1F2|表⽰线段F1F2; 2a| F1F 2 |没有轨迹;(2)椭圆的标准⽅程、图象及⼏何性质:中⼼在原点,焦点在x 轴上中⼼在原点,焦点在y 轴上标准⽅程图形x2y2y2x2a2b 21( a b 0)a 2b21(ab 0)yB 2yB 2P F2 PA 1 A 2x A 1xA 2OF1O F21B 1FB 1顶点对称轴焦点焦距离⼼率通径2b2aA1 (a,0), A2 (a,0)A1( b,0), A2 (b,0)B1 (0, b), B2(0, b)B1( 0,a), B2 (0, a) x 轴,y轴;短轴为2b,长轴为2aF1 (c,0), F2(c,0)F1 ( 0,c), F2 (0,c)| F1 F2 | 2c(c 0)c2 a 2 b 2(0 e 1) (离⼼率越⼤,椭圆越扁)a(过焦点且垂直于对称轴的直线夹在椭圆内的线段)3.常⽤结论:(1)椭圆x2y21(a b 0) 的两个焦点为F1, F2,过F1的直线交椭圆于A, B两a2 b 2点,则ABF 2的周长=(2)设椭圆x2y2221( a b 0)左、右两个焦点为 F1, F2,过 F1且垂直于对称轴的直线a b交椭圆于 P, Q 两点,则 P, Q 的坐标分别是| PQ |⼆、双曲线:( 1)双曲线的定义:平⾯内与两个定点F1 , F2的距离的差的绝对值等于常数(⼩于| F1F2 | )的点的轨迹。
其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。
注意: | PF1 || PF2 | 2a 与 | PF2 | | PF1 |2a ( 2a| F1F2 | )表⽰双曲线的⼀⽀。
选修2-1椭圆、双曲线、抛物线经典解析(含详细答案)
选修2-1椭圆、双曲线、抛物线经典解析知识点一 定义和性质的应用设F 1、F 2是椭圆x 29+y 24=1的两个焦点,P 为椭圆上的一点,已知P 、F 1、F 2是一个直角三角形的三个顶点,且|PF 1|>|PF 2|,求|PF 1||PF 2|的值.解 由题意知,a =3,b =2,则c 2=a 2-b 2=5,即c = 5. 由椭圆定义,知|PF 1|+|PF 2|=6,|F 1F 2|=2 5. (1)若∠PF 2F 1为直角,则|PF 1|2=|F 1F 2|2+|PF 2|2, |PF 1|2-|PF 2|2=20.即⎩⎪⎨⎪⎧|PF 1|-|PF 2|=103,|PF 1|+|PF 2|=6,解得|PF 1|=143,|PF 2|=43. 所以|PF 1||PF 2|=72.(2)若∠F 1PF 2为直角,则|F 1F 2|2=|PF 1|2+|PF 2|2. 即20=|PF 1|2+(6-|PF 1|)2,解得|PF 1|=4,|PF 2|=2或|PF 1|=2,|PF 2|=4(舍去).所以|PF 1||PF 2|=2.二 圆锥曲线的最值问题已知A (4,0),B (2,2)是椭圆x 225+y 29=1内的两定点,点M 是椭圆上的动点,求|MA |+|MB |的最值.解 因为A(4,0)是椭圆的右焦点,设A ′为椭圆的左焦点,则A ′(-4,0),由椭圆定义知|MA|+|MA ′|=10.如图所示,则|MA|+|MB|=|MA|+|MA ′|+|MB|-|MA ′|=10+|MB|-|MA ′|≤10+|A ′B|. 当点M 在BA ′的延长线上时取等号.所以当M 为射线BA ′与椭圆的交点时,(|MA|+|MB|)max=10+|A ′B|=10+210.又如图所示,|MA|+|MB|=|MA|+|MA ′|-|MA ′|+|MB|=10- (|MA ′|-|MB|)≥10-|A ′B|,当M 在A ′B 的延长线上时取等号.所以当M 为射线A ′B 与椭圆的交点时,(|MA|+|MB|)min=10-|A ′B|=10- 210.三 轨迹问题抛物线x 2=4y 的焦点为F ,过点(0,-1)作直线交抛物线于不同两点A 、B ,以AF ,BF 为邻边作平行四边形F ARB ,求顶点R 的轨迹方程.解 设直线AB :y =kx -1,A (x 1,y 1),B (x 2,y 2),R (x ,y ),由题意F (0,1),由⎩⎪⎨⎪⎧y =kx -1x 2=4y ,可得x 2-4kx +4=0,∴x 1+x 2=4k .又AB 和RF 是平行四边形的对角线, ∴x 1+x 2=x ,y 1+y 2=y +1.而y 1+y 2=k (x 1+x 2)-2=4k 2-2, ∴⎩⎪⎨⎪⎧x =4k y =4k 2-3,消去k 得x 2=4(y +3). 由于直线和抛物线交于不同两点,∴Δ=16k 2-16>0, ∴k >1或k <-1,∴x >4或x <-4.∴顶点R 的轨迹方程为x 2=4(y +3),且|x |>4.四 直线与圆锥曲线的位置关系已知直线l :y =kx +b 与椭圆x 22+y 2=1相交于A 、B 两点,O 为坐标原点.(1)当k =0,0<b <1时,求△AOB 的面积S 的最大值;(2)⊥OB →,求证直线l 与以原点为圆心的定圆相切,并求该圆的方程.解 (1)把y =b 代入x 22+y 2=1,得x =±2-2b 2.∴∴S △AOB=21× b22·22122b b +-= ,当且仅当b 2 =21,即b =2 时取等号.∴△AOB 的面积S 的最大值为2.(2)设A(x 1,y 1),B(x 2,y 2),由 得(1+2k 2)x 2+4kbx+2b 2-2=0,∴x 1+x 2=-241kbk+,x 1·x 2= 222212b k -+. 又∵OA ⊥OB ,∴(x 1,y 1)·(x 2,y 2)=0, 即x 1x 2+y 1y 2=0.又x 1x 2+ y 1y 2= x 1x 2 +( k x 1+b)(k x 2+b) =(k 2+1)·x 1x 2+kb(x 1 + x 2) +b 2=(k 2+1) 222212b k -+-kb 241kbk ++b 2 =222322012b k k--=+, ∴3b 2 = 2k 2+2.又设原点O 到直线l 的距离为d ,则d ===.∴l与以原点为圆心,以3为半径的定圆相切, 该圆的方程为x 2 + y 2 =32 高考分析1.如图所示,椭圆C :x 2a 2+y 2b2=1 (a >b >0)的一个焦点为F (1,0),且过点(2,0).(1)求椭圆C 的方程;(2)若AB 为垂直于x 轴的动弦,直线l :x=4与x 轴交于点N ,直线AF 与BN 交于点M , (ⅰ)求证:点M 恒在椭圆C 上; (ⅱ)求△AMN 面积的最大值.解 方法一 (1)由题设a=2,c=1,从而b 2=a 2-c 2=3,所以椭圆C 的方程为22143x y += (2)(ⅰ)由题意得F(1,0)、N(4,0).设A(m ,n),则B(m ,-n)(n ≠0),22143m n +=.① AF 与BN 的方程分别为:n (x -1)-(m -1)y =0,n (x -4)+(m -4)y =0.设M (x 0,y 0),则有⎩⎪⎨⎪⎧n (x 0-1)-(m -1)y 0=0, ②n (x 0-4)+(m -4)y 0=0, ③由②③得x 0=5m -82m -5,y 0=3n2m -5.由于x 204+y 203=(5m -8)24(2m -5)2+3n 2(2m -5)2=(5m -8)2+12n 24(2m -5)2=(5m -8)2+36-9m 24(2m -5)2=1.所以点M 恒在椭圆C 上.(ⅱ)设AM 的方程为x =ty +1,代入x 24+y 23=1,得(3t 2+4)y 2+6ty -9=0.设A (x 1,y 1)、M (x 2,y 2),则有y 1+y 2=-6t3t 2+4,y 1y 2=-93t 2+4,|y 1-y 2|=(y 1+y 2)2-4y 1y 2=43·3t 2+33t 2+4.令3t 2+4=λ (λ≥4),则|y 1-y 2|=43·λ-1λ=4 3 -⎝⎛⎭⎫1λ2+1λ =4 3 -⎝⎛⎭⎫1λ-122+14,因为λ≥4,0<1λ≤14,所以当1λ=14,即λ=4,t =0时,|y 1-y 2|有最大值3,此时AM 过点F .△AMN 的面积S △AMN =12|NF |·|y 1-y 2|有最大值92.方法二 同方法一.(2)(ⅰ)由题意得F (1,0)、N (4,0),设A (m ,n ),则B (m ,-n ) (n ≠0),m 24+n 23=1.①AF 与BN 的方程分别为n (x -1)-(m -1)y =0,② n (x -4)+(m -4)y =0.③由②③得:当x ≠52时,m =5x -82x -5,n =3y2x -5.④把④代入①,得x 24+y 23=1 (y ≠0).当x =52时,由②③得⎩⎨⎧32n -(m -1)y =0,-32n +(m +4)y =0,解得⎩⎪⎨⎪⎧n =0,y =0,与n ≠0矛盾.所以点M 的轨迹方程为x 24+y 23=1 (y ≠0),即点M 恒在椭圆C上.随堂练习一、选择题(本大题共12小题,每小题5分,共60分)1.双曲线3mx 2-my 2=3的一个焦点是(0,2),则m 的值是( ) A .-1 B .1C .-1020 D.102答案 A解析 化双曲线的方程为x 21m -y 23m=1,由焦点坐标(0,2)知:-3m -1m =4,即-4m =4,∴m =-1.2.设抛物线的顶点在原点,其焦点F 在y 轴上,又抛物线上的点P (k ,-2)与点F 的距离为4,则k 等于( )A .4B .4或-4C .-2D .-2或2 答案 B解析 由题意可设抛物线的方程为x 2=-2py (p >0).则抛物线的准线方程为y =p2,由抛物线的定义知|PF |=p 2-(-2)=p2+2=4,所以p =4,抛物线方程为x 2=-8y ,将y =-2代入,得x 2=16,∴k =x =±4.3.已知中心在原点,焦点在y 轴上的双曲线的渐近线方程为y =±12x ,则此双曲线的离心率为( )A.52 B. 5 C.52D .5 答案 B解析 由已知可设双曲线方程为y 2a 2-x 2b2=1(a >0,b >0),∴±a b =±12,∴b =2a ,∴b 2=4a 2,∴c 2-a 2=4a 2, ∴c 2=5a 2, ∴c 2a 2=5.∴e =ca= 5. 4.已知椭圆的方程是x 2+2y 2-4=0,则以M (1,1)为中点的弦所在直线方程是( ) A .x +2y -3=0 B .2x +y -3=0 C .x -2y +3=0 D .2x -y +3=0 答案 A解析 设弦的端点为A (x 1,y 1)、B (x 2,y 2), 则x 1+x 2=2,y 1+y 2=2.由x 21+2y 21=4,x 22+2y 22=4相减得(x 1+x 2)(x 1-x 2)+2(y 1+y 2)(y 1-y 2)=0, ∴(x 1-x 2)+2(y 1-y 2)=0,∴k AB =-12.∴弦所在的方程为y -1=-12(x -1)即x +2y -3=0.5.以x 24-y212=-1的焦点为顶点,顶点为焦点的椭圆方程为( )A.x 216+y 212=1B.x 212+y 216=1 C.x 216+y 24=1 D.x 24+y 216=1 答案 D解析 方程可化为y 212-x 24=1,该方程对应的焦点为(0,±4),顶点为(0,±23).由题意知椭圆方程可设为x 2b 2+y 2a2=1(a >b >0),则a =4,c 2=a 2-b 2=12,∴b 2=a 2-12=16-12=4.∴所求方程为x 24+y 216=1.6.θ是任意实数,则方程x 2+y 2cos θ=4的曲线不可能是( ) A .椭圆 B .双曲线 C .抛物线 D .圆 答案 C解析 由于没有x 或y 的一次项,方程不可能是抛物线,故选C.7.双曲线x 24+y 2k=1的离心率e ∈(1,2),则k 的取值范围是( )A .(-∞,0)B .(-12,0)C .(-3,0)D .(-60,-12) 答案 B解析 由题意a 2=4,b 2=-k ,c 2=4-k ,∴e 2=c 2a 2=4-k 4.又∵e ∈(1,2),∴1<4-k4<4,解得-12<k <0.8.双曲线x 2a 2-y 2b2=1 (a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为( )A .(1,3)B .(1,3]C .(3,+∞)D .[3,+∞) 答案 B解析 由题意知在双曲线上存在一点P , 使得|PF 1|=2|PF 2|,如图所示.又∵|PF 1|-|PF 2|=2a ,∴|PF 2|=2a ,即在双曲线右支上恒存在点P 使得|PF 2|=2a , 即|AF 2|≤2a .∴|OF 2|-|OA |=c -a ≤2a , ∴c ≤3a .又∵c >a ,∴a <c ≤3a ,∴1<ca≤3,即1<e ≤3.9.已知A 为椭圆x 216+y 212=1的右顶点,P 为椭圆上的点,若∠POA =π3,则P 点坐标为( )A .(2,3) B.⎝⎛⎭⎫455,±4155 C.⎝⎛⎭⎫12,±32 D .(4,±83)答案 B解析 由y =±3x 及x 216+y 212=1 (x >0)得解.10.等轴双曲线x 2-y 2=a 2截直线4x +5y =0所得弦长为41,则双曲线的实轴长是( )A.65B.125C.32 D .3 答案 D解析 注意到直线4x +5y =0过原点,可设弦的一端为(x 1,y 1),则有 ⎝⎛⎭⎫1+1625x 21=412.可得x 21=254,取x 1=52,y 1=-2. ∴a 2=254-4=94,|a |=32.11.过椭圆x 2a 2+y2b2=1(0<b <a )中心的直线与椭圆交于A 、B 两点,右焦点为F 2(c,0),则△ABF 2的最大面积是( )A .abB .acC .bcD .b 2 答案 C解析 S △ABF 2=S △OAF 2+S △OBF 2 =12c ·|y 1|+12c ·|y 2|(y 1、y 2分别为A 、B 两点的纵坐标),∴S △ABF 2=12c |y 1-y 2|≤12c ·2b =bc . 12.抛物线x 2=ay (a <0)的准线l 与y 轴交于点P ,若l 绕点P 以每秒π12弧度的角速度按逆时针方向旋转t 秒后,恰与抛物线第一次相切,则t 等于( )A .1B .2C .3D .4 答案 C解析 由已知得准线方程为y =-a4,∴P 点坐标为(0,-a4).设抛物线的切线l 1的方程为y =kx -a 4,由⎩⎪⎨⎪⎧y =kx -a 4x 2=ay,得x 2-akx +a 24=0,由题意得Δ=a 2k 2-4×a 24=0,解得k 2=1,∴y =x -a4,∴∠MPN =π4,∴π4π12=3,∴t =3.二、填空题(本大题共4小题,每小题4分,共16分)13.斜率为1的直线经过抛物线y 2=4x 的焦点,与抛物线相交于A 、B 两点,则AB 的长为________.答案 8解析 设A (x 1,y 1),B (x 2,y 2),抛物线y 2=4x 的焦点为F (1,0).则直线方程为y =x -1,由⎩⎪⎨⎪⎧y 2=4x ,y =x -1.得x 2-6x +1=0,∴x 1+x 2=6,x 1·x 2=1, |AB |=(1+1)[(x 1+x 2)2-4x 1x 2]=2(36-4)=8.14.已知圆x 2+y 2=1,从这个圆上任意一点P 向x 轴作垂线段PP ′,则线段PP ′的中点M 的轨迹方程是________.答案 x 2+4y 2=1解析 设M (x ,y ),P (x 0,y 0)由题意知 x 0=x ,y 0=2y ,∵P (x 0,y 0)在圆上,有x 20+y 20=1,∴x 2+4y 2=1.即为所求的轨迹方程.15.F 为抛物线y 2=2px (p >0)的焦点,P 为抛物线上任意一点,以PF 为直径作圆,则该圆与y 轴的位置关系是__________.答案 相切解析 设P (x 0,y 0),PF 中点为M ,则M 到y 轴距离d =x 0+p 22=12|PF |.16.椭圆x 225+y29=1上一点P 到两焦点的距离积为m ,则当m 最大时,点P 的坐标是________.答案 (0,3)或(0,-3)解析 设椭圆的两焦点分别为F 1、F 2由椭圆定义知: |PF 1|+|PF 2|=2×5=10. 由基本不等式知:m =|PF 1|·|PF 2|≤(|PF 1|+|PF 2|2)2=25.当且仅当|PF 1|=|PF 2|时取等号. 即|PF 1|=|PF 2|=5,m 取最大值. 所以P 点为椭圆短轴的端点.三、解答题(本大题共6小题,共74分) 17.(12分)如图所示,线段AB 与CD 互相垂直平分于点O ,|AB|=2a (a>0),|CD|=2b (b>0),动点P 满足|PA|·|PB|=|PC|·|PD|,求动点P 的轨迹方程.解 以O 为坐标原点,直线AB 、CD 分别为x 轴、y 轴建立坐标系,设P(x ,y)是曲线上的任意一点,则A(-a,0),B(a,0),C(0,- b),D(0,b). 由题意知:|PA|·|PB|=|PC|·|PD|,化简得:x 2-y 2= 222a b -即动点P 的轨迹方程为x 2-y 2=222a b - .18.(12分)k 代表实数,讨论方程kx 2+2y 2-8=0所表示的曲线.解 当k <0时,曲线y 24-x 2-8k=1为焦点在y 轴的双曲线;当k =0时,曲线2y 2-8=0为两条平行于x 轴的直线y =2或y =-2;当0<k <2时,曲线x 28k+y 24=1为焦点在x 轴的椭圆;当k =2时,曲线x 2+y 2=4为一个圆;当k >2时,曲线y 24+x 28k=1为焦点在y 轴的椭圆.19.(12分)已知椭圆x 29+y 24=1及点D (2,1),过点D 任意引直线交椭圆于A ,B 两点,求线段AB 中点M 的轨迹方程.解 设M (x ,y ),A (x 1,y 1),B (x 2,y 2),由题意得⎩⎪⎨⎪⎧4x 21+9y 21=36, ①4x 22+9y 22=36. ② ①-②,得4(x 1-x 2)(x 1+x 2)+9(y 1-y 2)(y 1+y 2)=0,因为M (x ,y )为AB 中点,所以x 1+x 2=2x ,y 1+y 2=2y .所以4×2x (x 1-x 2)+9×2y (y 1-y 2)=0.当x 1≠x 2时,y 1-y 2x 1-x 2=-4x9y .又y 1-y 2x 1-x 2=y -1x -2,所以y -1x -2=-4x9y .化简得4x 2+9y 2-8x -9y =0.因为当x 1=x 2时,中点M (2,0)满足上述方程,所以点M 的轨迹方程为4x 2+9y 2-8x -9y =0.20.(12分)一辆卡车高3米,宽1.6米,欲通过断面为抛物线的隧道,已知拱口AB 的宽恰好为拱高CD 的4倍,若|AB |=a 米,求能使卡车通过的a 的最小整数的值.解以拱顶为原点,拱高所在的直线为y 轴建立坐标系,如图,点B 的坐标为(,)24a a -,设抛物线方程为x 2=-2py (p>0),将点B 的坐标代入得2()2a =-2p ·()4a-,解得p = 2a ,所以抛物线方程为x 2=-ay.将点E(-0.8,y)代入抛物线方程得y=-0.64a,依题意点E 到拱底AB 的距离为4a -|y| =4a -0.64a≥3,解得a ≥12.21. 所以能使卡车通过的a 的最小整数值为13.。
最新圆锥曲线-椭圆-双曲线-抛物线-知识点总结-例题习题精讲-详细答案
课程星级:★★★★★【椭圆】 一、椭圆的定义1、椭圆的第一定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆。
这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距。
注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ;若)(2121F F PF PF <+,则动点P 的轨迹无图形。
二、椭圆的方程1、椭圆的标准方程(端点为a 、b ,焦点为c )(1)当焦点在x 轴上时,椭圆的标准方程:12222=+b y a x )0(>>b a ,其中222b a c -=;(2)当焦点在y 轴上时,椭圆的标准方程:12222=+b x a y )0(>>b a ,其中222b a c -=;2、两种标准方程可用一般形式表示:221x y m n += 或者 mx 2+ny 2=1 三、椭圆的性质(以12222=+by a x )0(>>b a 为例)知能梳理1、对称性:对于椭圆标准方程12222=+by a x )0(>>b a :是以x 轴、y 轴为对称轴的轴对称图形;并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。
2、范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。
3、顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。
②椭圆12222=+by a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。
③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。
a 和b 分别叫做椭圆的长半轴长和短半轴长。
椭圆、双曲线、抛物线重点知识总结常考题型技巧讲解
椭圆、双曲线、抛物线重点知识总结常考题型技巧讲解圆锥曲线、双曲线、抛物线一般作为高中数学的压轴题出现,很大部分同学不能灵活运用此部分知识失去部分分值。
今天颜老师就为大家分享一下圆锥曲线部分的知识点+常见题型解析,都是经典题型,期末考前一定要学会吃透!基础知识总结圆锥曲线常见题型+解题技巧1.直线与圆锥曲线位置关系圆锥曲线复习这类问题主要采用分析判别式,有△>0,直线与圆锥曲线相交;△=0,直线与圆锥曲线相切;△<0,直线与圆锥曲线相离.若且a=0,b≠0,则直线与圆锥曲线相交,且有一个交点.注意:设直线方程时一定要考虑斜率不存在的情况,可单独提前讨论。
2.圆锥曲线与向量结合问题圆锥曲线复习这类问题主要利用向量的相等,平行,垂直去寻找坐标间的数量关系,往往要和根与系数的关系结合应用,体现数形结合的思想,达到简化计算的目的。
3.圆锥曲线弦长问题圆锥曲线复习圆锥曲线复习弦长问题主要记住弦长公式:设直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则:4.定点、定值问题(1)定点问题可先运用特殊值或者对称探索出该定点,再证明结论,即可简化运算;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.5.最值、参数范围问题这类常见的解法有两种:几何法和代数法.(1)若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决,这就是几何法;(2)若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,这就是代数法.在利用代数法解决最值与范围问题时常从以下五个方面考虑:(1)利用判别式来构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;(3)利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;(4)利用基本不等式求出参数的取值范围;(5)利用函数的值域的求法,确定参数的取值范围.6.轨迹问题轨迹问题一般方法有三种:定义法,相关点法和参数法。
圆锥曲线(椭圆、双曲线、抛物线)知识点总结教学提纲
双曲线知识点一、 双曲线的定义:1. 第一定义:到两个定点F 1与F 2的距离之差的绝对值等于定长(<|F 1F 2|)的点的轨迹(21212F F a PF PF <=-(a 为常数))这两个定点叫双曲线的焦点.要注意两点:(1)距离之差的绝对值.(2)2a <|F 1F 2|.当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; 当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支;当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线;当2a >|F 1F 2|时,动点轨迹不存在.2. 第二定义:动点到一定点F 的距离与它到一条定直线l 的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线二、双曲线的标准方程:12222=-b y a x (a >0,b >0)(焦点在x 轴上);12222=-bx a y (a >0,b >0)(焦点在y 轴上);1. 如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上. a 不一定大于b.2. 与双曲线12222=-b y a x 共焦点的双曲线系方程是12222=--+kb y k a x 3. 双曲线方程也可设为:221(0)x y mn m n-=> 例题:已知双曲线C 和椭圆221169x y +=有相同的焦点,且过(3,4)P 点,求双曲线C 的轨迹方程。
三、点与双曲线的位置关系,直线与双曲线的位置关系: 1 点与双曲线:点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>的外部2200221x y a b ⇔-<点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>上220022-=1x y a b⇔2 直线与双曲线:(代数法)设直线:l y kx m =+,双曲线)0,0(12222>>=-b a by a x 联立解得02)(222222222=----b a m a mkx a x k a b1) 0m =时,b bk a a-<<直线与双曲线交于两点(左支一个点右支一个点);b k a ≥,bk a≤-,或k 不存在时直线与双曲线没有交点;2) 0m ≠时,k 存在时,若0222=-k a babk ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点;若2220b a k -≠,222222222(2)4()()a mk b a k a m a b ∆=-----2222224()a b m b a k =+-0∆>时,22220m b a k +->,直线与双曲线相交于两点; 0∆<时,22220m b a k +-<,直线与双曲线相离,没有交点;0∆=时22220m b a k +-=,2222m b k a +=直线与双曲线有一个交点; 若k 不存在,a m a -<<时,直线与双曲线没有交点; m a m a ><-或直线与双曲线相交于两点; 3. 过定点的直线与双曲线的位置关系:设直线:l y kx m =+过定点00(,)P x y ,双曲线)0,0(12222>>=-b a by a x1).当点00(,)P x y 在双曲线内部时:b bk a a-<<,直线与双曲线两支各有一个交点; a bk ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点;b k a >或bk a<-或k 不存在时直线与双曲线的一支有两个交点;2).当点00(,)P x y 在双曲线上时:bk a =±或2020b x k a y =,直线与双曲线只交于点00(,)P x y ;b bk a a -<<直线与双曲线交于两点(左支一个点右支一个点); 2020b x k a y >(00y ≠)或2020b x b k a a y << (00y ≠)或bk a <-或k 不存在,直线与双曲线在一支上有两个交点; 当00y ≠时,bk a =±或k 不存在,直线与双曲线只交于点00(,)P x y ;b k a >或bk a <-时直线与双曲线的一支有两个交点;b bk a a-<<直线与双曲线交于两点(左支一个点右支一个点); 3).当点00(,)P x y 在双曲线外部时: 当()0,0P 时,b bk a a -<<,直线与双曲线两支各有一个交点; b k a ≥或bk a ≤或k 不存在,直线与双曲线没有交点;当点0m ≠时,k =00(,)P x y 的直线与双曲线相切 bk a=±时,直线与双曲线只交于一点;几何法:直线与渐近线的位置关系例:过点(0,3)P 的直线l 和双曲线22:14y C x -=,仅有一个公共点,求直线l 的方程。
高考圆锥曲线知识点及相关习题精解(含答案)
高考圆锥曲线专题讲解第一部分:椭圆 1、知识关系网2、基本知识点1.椭圆的定义:第一定义:平面内到两个定点F 1、F 2的距离之和等于定值2a (2a >|F 1F 2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距.第二定义: 平面内到定点F 与到定直线l 的距离之比是常数e (0<e <1)的点的轨迹是椭圆,定点叫做椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率. 2.椭圆的标准方程及其几何性质(如下表所示)标准方程22221(0)x y a b a b+=>> 22221(0)x y a b b a +=>> 图形顶点 (,0)a ±,(0,)b ± (0,)a ±,(,0)b ±对称轴 x 轴,y 轴,长轴长为2a ,短轴长为2b焦点 1(,0)F c -、2(,0)F c1(0,)F c -、2(0,)F c焦距 焦距为122(0),F F c c => 222c a b =-离心率 e =c a(0<e <1)准线方程2a x c=±2a y c=±点P (x 0,y 0) 的焦半径公式|P F 右|=a -ex 0 , |P F 左|=a +ex 0(“左加右减”)|P F 上|=a -ey 0 , |P F 下|=a +ey 0注:1.焦半径(椭圆上一点到焦点的连线段)公式不要求记忆,但要会运用椭圆的第二定义. 2.椭圆参数方程cos sin x a y b αα=⎧⎨=⎩:如图点(cos ,sin )N a b αα的轨迹为椭圆.3、典型例题例1.F 1,F 2是定点,且|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则M 点的轨迹方程是( ) (A)椭圆 (B)直线 (C)圆 (D)线段例2. 已知ABC ∆的周长是16,)0,3(-A ,B )0,3(, 则动点的轨迹方程是( )(A)1162522=+y x (B))0(1162522≠=+y y x (C)1251622=+y x (D))0(1251622≠=+y y x 例3. 若F (c ,0)是椭圆22221x y a b+=的右焦点,F 与椭圆上点的距离的最大值为M ,最小值为m ,则椭圆上与F 点的距离等于2M m+的点的坐标是( ) (A)(c ,2b a ±) 2()(,)b B c a-± (C)(0,±b ) (D)不存在例4. 如果椭圆221259x y +=上有一点P ,它到左准线的距离为2.5,那么P 点到右焦点的距离与到左焦点的距离之比是( )。
圆锥曲线_椭圆_双曲线_抛物线_知识点总结_例题习题精讲_详细答案
椭圆一、椭圆的定义1、椭圆的第一定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆。
这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距。
注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ;若)(2121F F PF PF <+,则动点P 的轨迹无图形。
二、椭圆的方程1(1)当焦点在x 22b a -;(2)当焦点在y 22b a -;2三、椭圆的性质(1、对称性:对于椭圆标准方程12222=+by a x )0(>>b a :是以x 轴、y 轴为对称轴的轴对称图形;并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。
2、范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x≤,b y ≤。
3、顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。
②椭圆12222=+by a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。
③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。
a 和b 分别叫做椭圆的长半轴长和短半轴长。
4、离心率:①② 因为)0(>>c a e 越接近1,则c 反之,e 越接近于 当且仅当b a =a =。
③ 注意:椭圆22+a xe PM PF PM PF ==2211 )2(21a PF PF =+ )2(221ca PM PM =+5、椭圆的第二定义:平面内与一个定点(焦点)和一条定直线(准线)的距离的比为常数e ,(0<e <1)的点的轨迹为椭圆(e dPF =||)。
即:到焦点的距离与到准线的距离的比为离心率的点所构成的图形,也即上图中有e PM PF PM PF ==2211。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【椭圆】 一、椭圆的定义1、椭圆的第一定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆。
这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距。
注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ;若)(2121F F PF PF <+,则动点P 的轨迹无图形。
二、椭圆的方程1、椭圆的标准方程(端点为a 、b ,焦点为c )(1)当焦点在x 轴上时,椭圆的标准方程:12222=+by a x )0(>>b a ,其中222b a c -=;(2)当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;2、两种标准方程可用一般形式表示:221x y m n+= 或者 mx 2+ny 2=1三、椭圆的性质(以12222=+by a x )0(>>b a 为例)1、对称性:对于椭圆标准方程12222=+by a x )0(>>b a :是以x 轴、y 轴为对称轴的轴对称图形;并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。
2、范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。
3、顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。
②椭圆12222=+by a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。
③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。
a 和b 分别叫做椭圆的长半轴长和短半轴长。
4、离心率:① 椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作ac a c e ==22。
② 因为)0(>>c a ,所以e 的取值范围是)10(<<e 。
e 越接近1,则c 就越接近a ,从而22c a b -=越小,因此椭圆越扁;反之,e 越接近于0,c 就越接近0,从而b 越接近于a ,这时椭圆就越接近于圆。
当且仅当b a =时,0=c ,这时两个焦点重合,图形变为圆,方程为a y x =+22。
③ 离心率的大小只与椭圆本身的形状有关,与其所处的位置无关。
注意:椭圆12222=+by a x 的图像中线段的几何特征(如下图):e PM PF PM PF ==2211 )2(21a PF PF =+ )2(221ca PM PM =+5、椭圆的第二定义:平面内与一个定点(焦点)和一条定直线(准线)的距离的比为常数e ,(0<e <1)的点的轨迹为椭圆(e dPF =||)。
即:到焦点的距离与到准线的距离的比为离心率的点所构成的图形,也即上图中有e PM PF PM PF ==2211。
①焦点在x 轴上:12222=+by a x (a >b >0)准线方程:c ax 2±=②焦点在y 轴上:12222=+bx a y (a >b >0)准线方程:c a y 2±=6、椭圆的内外部需要更多的高考数学复习资料,请在淘.宝.上.搜.索.宝.贝. “高考复习资料 高中数学 知识点总结 例题精讲(详细解答)” 或者搜.店.铺..“龙奇迹【学习资料网】”(1)点00(,)P x y 在椭圆22221(0)x y a b a b+=>>的内部2200221x y a b ⇔+<(2)点00(,)P x y 在椭圆22221(0)x y a b a b+=>>的外部2200221x y a b ⇔+>四、椭圆的两个标准方程的区别和联系标准方程12222=+b y a x )0(>>b a 12222=+bx a y )0(>>b a 图形五、其他结论需要更多的高考数学复习资料,请在淘.宝.上.搜.索.宝.贝. “高考复习资料高中数学知识点总结例题精讲(详细解答)”或者搜.店.铺..“龙奇迹【学习资料网】”1、若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b+=2、若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+= 3、椭圆22221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=4、椭圆22221x y a b +=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y )5、设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF⊥NF。
6、过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF⊥NF。
7、AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM ABb k k a ⋅=-,即0202y a x b K AB -=。
8、若000(,)P x y 在椭圆22221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b+=+9、若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y yx y a b a b+=+【双曲线】一、双曲线的定义1、第一定义:到两个定点F 1与F 2的距离之差的绝对值等于定长(<|F 1F 2|)的点的轨迹(21212F F a PF PF <=-(a 为常数))。
这两个定点叫双曲线的焦点。
要注意两点:(1)距离之差的绝对值。
(2)2a <|F 1F 2|。
当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; 当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支; 当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线;当2a >|F 1F 2|时,动点轨迹不存在。
2、第二定义:动点到一定点F 的距离与它到一条定直线l 的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线。
这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线。
二、双曲线的标准方程(222a c b -=,其中|1F 2F |=2c )需要更多的高考数学复习资料,请在淘.宝.上.搜.索.宝.贝. “高考复习资料 高中数学 知识点总结 例题精讲(详细解答)” 或者搜.店.铺..“龙奇迹【学习资料网】”三、点与双曲线的位置关系,直线与双曲线的位置关系 1、点与双曲线 2、直线与双曲线四、双曲线与渐近线的关系 五、双曲线与切线方程 六、双曲线的性质 七、 弦长公式1、若直线y kx b =+与圆锥曲线相交于两点A 、B ,且12,x x 分别为A 、B 的横坐标,则221212()()AB x x y y =-+-,()22221212121141||AB k x k x x x x k a ∆=+-=++-=+若12,y y 分别为A 、B 的纵坐标,则12AB y =-=2、通径的定义:过焦点且垂直于实轴的直线与双曲线相交于A 、B 两点,则弦长ab AB 22||=。
3、若弦AB 所在直线方程设为x ky b =+,则AB 12y -。
4、特别地,焦点弦的弦长的计算是将焦点弦转化为两条焦半径之和后,利用第二定义求解 八、焦半径公式 九、等轴双曲线 十、共轭双曲线需要双曲线的详细资料,请在淘.宝.上.搜.索.宝.贝. “高考复习资料 高中数学 知识点总结 例题精讲(详细解答)” 或者搜.店.铺..“龙奇迹【学习资料网】”【抛物线】 一、抛物线的概念平面内与一定点F 和一条定直线l (l 不经过点F ) 距离相等的点的轨迹叫做抛物线。
定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线。
二、抛物线的性质三、相关定义1、通径:过抛物线的焦点且垂直于对称轴的弦H 1H 2称为通径;通径:|H 1H 2|=2P2、弦长公式:1212||||AB x x y y =-=-3、焦点弦:过抛物线22y px =(0)p >焦点F 的弦AB ,若1122(,),(,)A x y B x y ,则(1) ||AF =x 0+2p, (2)12x x =42p ,12y y =-p 2(3) 弦长)(21x x p AB ++=,p x x x x =≥+21212,即当x 1=x 2时,通径最短为2p (4) 若AB 的倾斜角为θ,则AB =θ2sin 2p(5)AF 1+BF 1=P2四、点、直线与抛物线的位置关系需要详细的抛物线的资料,请在淘.宝.上.搜.索.宝.贝. “高考复习资料 高中数学 知识点总结 例题精讲(详细解答)” 或者搜.店.铺..“龙奇迹【学习资料网】”【圆锥曲线与方程】 一、圆锥曲线的统一定义平面内的动点P(x,y)到一个定点F(c,0)的距离与到不通过这个定点的一条定直线l 的距离之比是一个常数e(e >0),则动点的轨迹叫做圆锥曲线。
其中定点F(c,0)称为焦点,定直线l 称为准线,正常数e 称为离心率。
当0<e <1时,轨迹为椭圆;当e=1时,轨迹为抛物线;当e >1时,轨迹为双曲线。
特别注意:当0=e 时,轨迹为圆(ac e =,当b a c ==,0时)。
二、椭圆、双曲线、抛物线的标准方程与几何性质三、曲线与方程四、坐标变换 1、坐标变换: 2、坐标轴的平移:3、中心或顶点在(h,k)的圆锥曲线方程需要更多的高考数学复习资料,请在淘.宝.上.搜.索.宝.贝. “高考复习资料 高中数学 知识点总结 例题精讲(详细解答)” 或者搜.店.铺..“龙奇迹【学习资料网】”【例】以抛物线x y 382=的焦点F 为右焦点,且两条渐近线是03=±y x 的双曲线方程为___________________.解: 抛物线x y 382=的焦点F 为)0,32(,设双曲线方程为λ=-223y x ,9)32(342=∴=∴λλ,双曲线方程为13922=-y x 【例】双曲线2224by x -=1(b ∈N)的两个焦点F 1、F 2,P 为双曲线上一点,|OP |<5,|PF 1|,|F 1F 2|,|PF 2|成等比数列,则b 2=_________。