第1章 热力学第一定律 物理化学
第1章热力学第一定律
物理化学(讲稿)第一章热力学第一定律1.1热力学基本概念(Basic concepts of thermodynamics)1.1.1系统与环境(system and surroundings)系统:被划出来作为研究对象的这部分物体或空间。
环境:系统以外的其它部分。
实际上环境通常是指与系统有相互影响的有限部分。
系统可大可小,大到一座电弧炉及其几十吨钢液与炉渣,小到一个烧杯内盛的少量水,一个系统最少包含一种物质,多者可由几种物质来组成。
例如,炼钢过程中当钢水为系统时,与其有关的炉衬、炉渣及炉气则为环境。
假若研究脱硫、脱磷反应,因为这些反应发生在钢、渣两相界面处,可以把钢液与炉渣视为系统,而与系统有关的炉衬和炉气等则成为环境。
系统与环境间可以存在真实界面,也可以不存在界面。
例如,钢瓶中的氧气为系统,则钢瓶为环境,钢瓶内壁就是一个真实的界面;当研究空气中的氧气时,则空气中的其它气体为环境,此时则不存在界面。
所以不能以有无界面来划分系统与环境。
1)敞开系统:与环境之间既有物质交换,也有能量的传递的系统,称为敞开系统(或开放系统)。
例如,一个盛有热水的玻璃杯,敞开放置,将会向空气中挥发水蒸气,同时散发热量。
(2)封闭系统:与环境之间只有能量传递而没有物质交换的系统,称为封闭系统。
例如,将上例的玻璃杯加盖后,就成为一个封闭系统。
在封闭系统内,可以发生化学变化和由此引起成分变化,只要不从环境引入或向环境输出物质即可。
物理化学上常常讨论这种系统。
冶金过程常把冶金炉(如电炉、高炉、转炉)等看作一个封闭系统,忽略挥发掉的很少量物质。
(3)隔离系统:与环境之间既无物质交换,也无能量传递的系统,称为隔离系统(或孤立系统);例如,把盛有热水的玻璃杯盖起来,并把它放在一个绝热箱内,把整个绝热箱内的所有物质(水杯和空气)作为一个新系统,那么这个新系统就成为隔离系统。
因为这个系统与环境之间既没有物质交换,也没有能量交换。
1.1.2 系统性质、状态和状态函数广度性质(容量性质) (extensive pro-perty): 与系统的物质的量成正比,如体积、质量、熵等。
物理化学第一章 热力学第一定律1
• 二. 等容过程的热效应
• • • 设体系只作 体积功, 对于等容过程有:
U=Q+W=QV (∵W=-∫pdV=0 )
上式的物理含义为: 简单体系的等容过程一般为变温过程,其热量为: QV=∫CV dT 简单体系等容过程的内能改变值为: U=QV=∫CV dT =CV T (当体系的热容为常量时) 注意:等容过程的热效应等于体系内能的变化是有条件的, 此条件是,在此过程中,体系不作有用功。
•热容的单位是: J.K-1, 单位重量物质的热容称为比热, 单位是:J.K-1.kg-1. •1mol物质的热容称为摩尔热容(J/K.mol),记为:
•
CV,m或Cp,m
• 二、物质的热容 • 1. 理想气体的热容: • 能量均分原理:
• 每个分子能量表达式中的一个平方项对内能 的贡献为1/2kT,对热容的贡献为1/2k.
第一章 热力学第一定律 (first law of thermodynamics)
•
• • • • • E: T: V: U:
物质的能量: 任何物质所包含的能量为:
E = U+T+V
物质所含的全部能量,即总能量. 物质具有的宏观动能, 如: T=1/2· 2. mV 物质所具有的势能, 如重力势能等. 物质的内能,含粒子的平动能、转动能、振动 能、核运动能量、电子运动能量和分子间势 能等.
当高温物体与低温物体相接触时,热素将从 多的一方流向少的一方,于是,高温物体温度 降低,低温物体温度升高。
1840年 ,英国科学家Joule做了一系列实验,证 明了热量就是能量。并从实验数据得出了热功当 量:Joule发现把一磅水提高一华氏度,需消耗 772英尺- 磅的机械能,相当于1cal=4.157 J。
物理化学第1章 热力学第一定律
系统从环境吸热Q为正值,系统放热于环境Q为
负值。 ⑶单位: 常用单位为焦耳(J)或千焦耳(kJ)。
⒉功 ⑴定义和符号
系统与环境之间除热以外被传递的其他各种形式
的能量统称为功,用符号W表示。 ⑵正负值规定 系统对环境做功W为负值,系统从环境获得功W为 正值。
⑶单位:常用单位为焦耳(J)或千焦耳 (kJ)。
p( H 2 ) y( H 2 ) p总 =0.6427 108.9=70.00 kPa
p( N2 ) p总 p( H2 ) 38.89 kPa
四、阿马格分体积定律
由A、B、C组成的理想气体混合物
nRT (nA nB nC ) RT V p p
VA VB VC
⑶热力学能是系统的广度性质,具有加和性。
热力学能的微小变化dU可用全微分表示
通常,习惯将热力学能看作是温度和体积的函数,
即U=f(T,V),则
U U dU ( )V dT ( )T dV T V
理想气体的热力学能只是温度的函数。
1.3热力学第一定律
一、能量守恒与热力学第一定律
1.能量守恒定律
自然界的一切物质都具有能量,能量有各种各样形式, 并且能从一种形式转变为另一种形式,但在相互转变过 程中,能量的总数量不变。 2.热力学第一定律
本质:能量守恒定律。 常用表述:“第一类永动机是不可能造成的。” 第一类永动机是指不需要供给能量而可以连续不断做功
的机器。
二、封闭系统热力学第一定律的数学表达式
⑶恒容过程:变化过程中系统的体积始终恒定不变过程。
⑷绝热过程:系统与环境之间没有热交换的过程。 ⑸循环过程:系统由某一状态出发,经历一系列的变化,又 回到原状态的过程。
第一章,热力学第一定律(应化)
y2 Z Z Z dZ dx dy y1 x y x Z1 x1 y Z2 x2
Z dZ 0 (周而复始,变值为零)
(2)热和功是途径函数(过程变量),与某过程经历的具体途 径有关 微量热记作Q,不是dQ ,一定量的热记作Q ,不是Q。 微量功记作W,不是dW ,一定量的功记作W ,不是W。
功和热的特性:
(1)与过程有关;
(2)功和热不是系统的性质,不是状态函数; (3)功和热必须是以系统和环境实际交换的 能量来衡算。 (4)单位是能量的单位 J 和 KJ。
若已知过程始末态,需计算过程中某些状态函数的变 化,而其进行的条件不明,或计算困难较大,可设始末态 与实际过程相同的假设途径,经由假设途径的状态函数的 变化,即为实际过程中状态函数的变化。这种利用“状态 函数的变化仅取决于始末态而与途径无关”的方法,称为 状态函数法。
17
§1—2
热力学第一定律
一、热和功 1.热 定义:由于温度之差而在系统与环境之间 传递的能量称为热量,或简称热(heat)。 符号: 用“Q”表示; Q>0:系统从环境吸收热量, Q<0:系统向环境放出热量。 单位:焦耳(J)。
7
2.两者的关系:
两广度量之比或者是单位广度量为强度量
三.状态和状态函数 1.定义: 描述系统的各性质都具有确定值时 我们就说系统处于一定的状态;描述状态的性质 称状态函数.
8
p
V
性 质
T
描述了
总和
使成为确定
状态
Cp
…
U
9
各种性质间存在一定的联系,所以并不需要指定所有 的性质才能确定系统的状态。在除了压力以外,没有其它 广义力的场合,由一定量的纯物质构成的单相系统,只需 指定任意两个能独立改变的性质,即可确定系统的状态。
物理化学 第一章 热力学第一定律
状态函数的改变量,只与过
LA
LB
程的始终态有关,而与状态 变化的具体途径无关。
△L= LB - LA
推论1:根据特征2状态函数的改变量具有加和性。 △L= ∑△LB
如:水10℃→30℃→50℃→70℃→90℃ △T=90-10=80℃
△T=(30-10)+(50-30)+(70-50)+(90-70)=80℃ 推论2:循环过程状态函数的改变量为零。
第一章
热力学第一定律
主要解决的问题
变化过程中能量的传递和能量的 转化的计算问题
§1—1 基本概念及术语 一、系统与环境 系统:研究的对象。
环境:与系统密切相关的其余部分
系统的分类
1.隔离系统(孤立系统):系统与环境之间既 没有能量交换,也没有物质交换的系统。
2.封闭系统:系统与环境之间只有能量交换, 但没有物质交换的系统。
总结:由p-V图和上面的计算结果可知,1、2、 3、4个过程是在相同的始终态之间,采取不 同途径进行的四个过程,功的数值是不同的, 由1→4系统对外做功依次增加,证明功不是 状态函数,而是过程的属性和产物。
三、可逆过程和不可逆过程
把2、3、4、三个过程以对应方式逆转回去, 看环境消耗多少功?
(2)一次压缩
第一、状态函数的分类 1.广度性质(容量性质):其数值的大小与 系统中所含的物质量成正比。且具有加和性。
如:质量(m) 2.强度性质:其数值的大小与系统中所含的 物质量无关,且不具有加和性。
如:温度(T)
第二、状态函数之间的关系 热力学系统中的状态变量之间并不是独
的,彼此之间有着相互联系 如:理想气体的p,V,T
V(1 p+dp)dV=-
物理化学课件 第一章 热力学
The first law of themodynamics and thermochemistry
第一节 热力学概论
一. 热力学
热力学(Thermodynamics): 研究宏观系统各种过程中能量相互转换所遵循的规 律的科学, 化学热力学:
热力学应用于化学及其相关的过程 主要原理:
内容:通过导热壁分别与第三个物体达热平衡的任意两个物 体彼此间也必然达热平衡。
定律延伸:任一热力学均相体系,在平衡态各自存在一个称 之为温度的状态函数,对所有达热平衡的均相体系,其温 度相同。
温标:a)摄氏温标 以水为基准物,规定水的凝固为零点, 水的沸点与冰点间距离的1/100为1℃。
b)理想气体温标 以低压气体为基准物质,规定水的三相点 为273.16K,温度计中低压气体的压强为 pr
平衡态公理: 一个孤立体系,在足够长的时间内必将趋于唯一的
平衡态,而且永远不能自动地离开它。
四、状态和状态函数
(一)状态 —系统所有性质的综合表现 ➢系统处于确定的状态,系统所有性质具有确定值;
➢系统所有性质具有确定值,系统状态就确定了;
➢系统的性质是相互关联的,通常采用容易直接测量 的强度性质和必要的广度性质来描述系统所处状态。
五、过程与途径
过程:系统从始态到终态发生的变化 途径:系统完成一个过程的具体方式和步骤
过程 -系统从始态到终态状态随发生的一系列变化
➢ 化学变化过程 按变化的性质分 ➢ 物理过程
p、V、T变化过程
相变化过程
过程按变化的条件分: 等温(T = 0) 等容(V = 0)
表述为热力学第一定律(相变和化学反应热效应)、热力 学第二定律(方向、限度和平衡)、热力学第三定律(熵)
1 物化 第一章热力学第一定律-new
三、热力学第一定律的数学表达式 (★)
由能量守恒定律:
某封闭系统,从状态1变为状态2的 过程,系统与环境交换的热能为Q,系统 对环境做的功为W,则引起系统热力学能 的变化值为:
U = U2-U1=Q +W 对于系统的微小变化: dU = dQ + dW
28
说明:(1) W为总功 (2)适用热力学封闭系统 (3)组成恒定的均相封闭系统:
31
二、功与过程
1、不同过程,体积功的具体计算
A 、气体向真空膨胀(自由膨胀)
P外=0 B、等容过程 C、等压过程
W= 0
dV= 0 W=0 P1=P2 =P外=常数 W =-P(V2-V1)
32
2、恒外压的膨胀和压缩过程 3kPa,1m3 膨胀 压缩 1kPa,3m3 TK, n mol
TK, n mol
(3)孤立系统: isolated system
系统与环境之间 既没有物质交换 又没有能量交换
8
几个基本概念
二、系统的性质与状态 1、性质的定义:描述系统(研究对 象)的物理量称为系统的性质 热力学系统的性质指: T、 P、 V、 n、 U、 S 、 H等 2、性质的分类: 广度性质 强度性质
9
几个基本概念
25
热力学第一定律
体系整体运动动能 总能量
体系外力场中势能 体系内部能量的总和
二、热力学能(内能) (internal energy)
体系内部所有质点、所有能量的总和, 包括一切形式的能量 —— 内能U 内能的绝对值无法测量,重要的是变化值
26
热力学第一定律
(2)讨论:
二、内能
● 内能是体系的状态函数, 即:系统状态确定,U具有确定的值。 ● 内能是体系的广度性质 (与n成正比,具有加和性)
物理化学:第一章 热力学第一定律
始态A
途径I C
B 途径II
终态Y
基本概念
系统的变化过程分为:
A. 单纯p,V,T变化过程(p,V,T change process)
B. 相变化过程(phase transformation process)
C. 化学变化过程(chemical change process)
几种主要的p,V,T变化过程
学上是一次齐函数。(如n,V,U等)
2、强度性质(intensive properties):数值取决于体系自 身的特性,与体系的数量无关。不具有加和性。在数学上是 零次齐函数。(如p,T等)
一种广度性质 =强度性质, 另一种广度性质
如Vm=Vn
,b= m V
等
基本概念
3. 热力学平衡态(thermodynamical equilibrium state)
dz
(
z x
)
y
dx
( z y
)x
dy
dz 0
③ 状态方程(equation of state)
定义:体系状态函数之间的定量关系式。
理想气体
V= nRT p
基本概念
5. 过程与途径(process and path)
定义:当外界条件改变时,体系的状态随之发生变化,体系 从某一状态变为另一状态成为体系经历了热力学方程,简称 为过程。完整地描述一个过程,应当指明始态、终态,外界 条件及变化的具体步骤,变化的具体步骤称为途径。
特性:a 是状态的单值函数,状态一经确定,状态函数就有 确定的数值,而与体系到达状态前的历史无关。
b 状态变化,函数随之变化,变化取决于体系的始终态, 与途径无关。
c 状态函数的组合仍然是状态函数。 d 状态函数的微小变化,在数学上是全微分。
热力学第一定律物理化学
解:根据
T2
T2
H Qp dH CpdT mC dT
T1
T1
mC(T2 T1)
T2 = 351.7K 设每天蒸发出x克水恰能维持体温不变,则
x △VHm = Qp 2406x = 10460×103
x = 4327g
31
四、理想气体的热力学能和焓
32
结果:V p ΔT水=0 Q =0 W=0 ΔU=0 结论:U = f ( T ) H = f ( T )
33
用数学式表示为:
(UV )T 0 (HV )T 0
( U p
)T
0
( H p
)T
0
U U (T ) H H (T )
还可以推广为理想气体的Cv,Cp也仅为温度的函数。
34
五、热容与热的计算
无相变、无化学变化、不做其他功
C Q
dT
实验表明: 1. 物质的热容与状态有关(例:液态水和气态水) 2. 物质的热容与所进行的变温过程有关
W2 = △U2- Q2
=1.247×103J – 2.078×103J
= - 0.831×103J
43
第四节 功与过程
一、理想气体的恒温体积功 功的定义式
体积功
功 = 力 位移
p外
δW = – f dl
dl A
= – p外 A dl
gas d
δW = – p外dV
V
积分式 W
1.247 103 J
40
根据热力学第一定律,有 W1 = △U1- Q1 = 0
由式(1-25)可得
T2
H1 nC p,mdT nC p,m (T2 T1 )
物理化学热力学第一定律
§1.1 热力学概论 §1.2 热力学基本概念 §1.3 热力学第一定律 §1.4 体积功与可逆过程 §1.5 焓 §1.6 热容 §1.7 热力学第一定律的应用 §1.8 热化学 §1.9 化学反应热效应的计算 §1.10 能量代谢与微量量热技术简介(自习)
-1-
物理化学
第一章 热力学第一定律
-12-
Vm
V n
物理化学
§1.2 热力学基本概念
四、状态函数与状态方程 (state function & equation of state)
(一) 状态函数
体系状态一定时, 其值一定的物理量.
又称为系统的热力学性质.
eg. T 、p 、V、U、H 等。
-13-
物理化学
§1.2 热力学基本概念
eg.
dT =0 isothermal process dp =0 isobaric process
dV =0 isochoric process Q =0 idiabatic process dZ =0 cyclical process
-17-
物理化学
§1.2 热力学基本概念
状态函数法 ── 计算状态函数的改变值△Z △Z =Z2 - Z1 与路径无关
Q > 0 Q < 0
物理化学
§1.2 热力学基本概念
2. 功W ── 系统在广义力的作用下, 产生
了 广义位移时, 系统与环境交换的能量
为功W .
[W ] = J
其微变量用δW 表示;
规定: 体系从环境 得功为正. W > 0
体系对环境 作功为负. W < 0
-21-
物理化学
§1.2 热力学基本概念
物理化学第一章热力学第一定律讲解
U U2 U1 QW 对于微小变化 dU Q W
热力学能的单位: J
热力学能是状态函数,用符号U 表示,它的绝对值尚 无法测定,只能求出它的变化值。
热力学第一定律的文字表述
热力学第一定律是能量守恒与转化定律在热现象领域 内所具有的特殊形式,说明热力学能、热和功之间可以相 互转化,但总的能量不变。
U U (T , p,n)
若是 n 有定值的封闭系统,则对于微小变化
dU
U T
p
dT
U p
T
dp
如果是 U U (T ,V )
dU
U T
V
dT
U V
T
dV
U T
V
U T
V2 )
p2
O V1
p1V2
p2V2
V2 V
一次等外压压缩
p2
始
p1
p1
终
态
V2
V2
态
p
p1
p1V1
V1 p1V2
阴影面积代表We',1 p2
O
V1
p2V2
V2 V
2. 多次恒压压缩
现在,国际单位制中已不用 cal,热功当量这个词将逐渐被 废除。
§1.4 热力学第一定律
能量守恒定律 到1850年,科学界公认能量守恒定律是自然界的普
遍规律之一。能量守恒与转化定律可表述为:
自然界的一切物质都具有能量,能量有各种不同形 式,能够从一种形式转化为另一种形式,但在转化过 程中,能量的总值不变。
第一章热力学第一定律
方法——状态函数法。
在数学上,状态函数的微分是全微分
例 :U f (T ,V ) U U dU dT dV T V V T
22
《物理化学》
• 1.2.3 热力学平衡
• 热力学研究的对象是处于平衡态的系统。
• 一个处在一定环境下的系统的所有性质均不随时 间变化而变化,且当此系统与环境隔离后,也不会引
32
《物理化学》
• 1.3 热力学第一定律
• 1.3.1 能量守恒与热力学第一定律
能量守恒定律:能量既不会凭空产生,也不会凭空消失, 它只会从一种形式转化为另一种形式,或者从一个物体 转移到其它物体,而能量的总量保持不变。孤立系统的
总能量保持不变。
热力学第一定律:本质为能量守恒定律 • 第一类永动机是不可能制成的。 • 内能是系统的状态函数。 • 隔离系统中发生任何变化,其内能不变。
•能判断变化能否发生以及进行到什么程度,但 不考虑变化所需要的时间。
局限性 不知道反应的机理、速率和微观性质,只讲可能 性,不讲现实性。
17
《物理化学》
• 1.2.1 系统和环境
• 系统:我们所研究的那部分物质世界; • 环境:系统以外且与系统相关的部分。 系统与环境间有界面(假想的或真实的)分开, 可以有物质和能量的交换。
服从 pV=nRT 的气体为理想气体 或服从理想气体模型的气体为理想气体
(低压气体)p0 理想气体
8
《物理化学》 吸引力 分子相距较远时,有范德华力;
排斥力 分子相距较近时,电子云及核产生排斥作用。
E吸引 -1/r 6 E排斥 1/r n
Lennard-Jones理论:n = 12
E总 A B E吸 引+E 排 斥=- 6 12 r r
物理化学考研讲义第一章热力学定律
1-1 热力学的一些基本概念
1. 系统与环境
隔离系统:与环境间无物质无能量交换。 封闭系统:与环境间无物质有能量交换。(研究重点) 敞开系统:与环境间有物质有能量交换。 【例题 1.1】什么是系统?常见的系统包括哪几种?(上海大学 2015)
第一章 热力学第一定律
答案: 热力学把作为研究对象的那部分物质成为系统。包含隔离系统、封闭系统和敞开系统。
A、
B、
C、
D、
答案:D 解析:焓是定义出来的函数,不遵循能量守恒定律。
【例题 1.13】
适用于下列过程( )。(合肥工业大学 2012)
A、理想气体从
反抗恒定的外压
膨胀到
B、 ,
下冰融化成水。
C、
,下点解
水溶液
D、气体从
,
可逆变化到
,
答案:B 解析:A 选项是恒外压,不是等压条件。
【例题 1.14】对于理想气体的等容过程有 ( ) ,等压过程有 ( ) 。(四川大学 2012)
【例题 1.9】如图,在绝热盛水容器中,侵入电阻丝,通电一段时间,通电后水及电阻丝的温度均略有
升高,今以电阻丝为体系有:( )。(东华大学 2015)
A、
绝热
B、
C、
D、
答案:C
解析:以电阻丝为系统,得到电功
,电阻丝放热
得,温度升高
。
【例题 1.10】 在一保温良好、门窗紧闭的房间里,放有电冰箱,若将电冰箱门打开,且不断想冰箱供
,当温度升高时,系统除了增加热
力学能外,还要多吸收一部分热对外做膨胀功。)
【例题 1.15】在恒压下的一定量理想气体,当温度降低时,其内能将( )。(四川大学 2012)
物理化学热力学第一定律
第一章热力学第一定律热力学是研究热和其他形式能量间相互转化的规律。
其基础是热力学第一定律和热力学第二定律,这两个定律都是人类经验的总结,具有牢固的实践基础,它的正确性已有无数次实验事实所证实。
热力学第一定律1850年,Joule提出,主要研究热和其他形式能量在变化过程中相互转化的守恒关系。
热力学第二定律1848年和1850年分别由开尔文和克劳修斯建立主要研究热和其他形式能量相互转化的方向性问题。
这两个定律组成一个完整的热力学。
本世纪初又建立了热力学第三定律,这是一个低温现象的定律,主要阐明了规定熵的数值,对于化学平衡的计算有着重要的意义。
热力学在化学过程的应用,就形成了化学热力学,主要解决两大问题:(1) 化学过程中能量转化的衡算(2) 判断化学反应进行的方向和限度热力学方法的局限性:(1) 热力学研究的是宏观体系,只能表明有大量微粒组成的体系所表现出来的整体行为,所的结论均有统计意义;只反映它的平均行为,而不适用个别分子的行为,其特点是不考虑物质的微观结构和反映机理。
这两个特点决定了热力学只能告诉我们,在某种条件下,反映能否发生进行到什么程度,但不能告诉我们变化所需要的时间,反应发生的根本原因及变化所经过的过程。
经典热力学只考虑平衡问题,不考虑反应进行的细节,无需知道物质的微观结构,因此它只能对现象之间的联系做宏观的了解,而不能作微观的说明。
(2) 仅表示反应的可能性。
尽管热力学有这样的局限性,但他仍然不失为一种非常有用的理论工具,这是因为热力学有着牢固的实验基础,具有高度的普遍性和可靠性,从而能够指导生产实践。
§1-1 热力学基本概念一, 体系与环境(system and surrounding)在热力学中,为了明确讨论或研究的对象,常常将所研究的一部分物质或空间与其余的物质和空间分开,构成体系;与体系相联系的其他部分称为环境。
体系可以使实际存在的,也可以是想象的。
体系与环境间的界面可以是真实的界面,也可以是虚构的界面。
第一章 热力学第一定律
δ w = p外 dV
考虑下述理想气体的等温过程的体积功
w = ∫ p外 dV
V1
V2
普遍性 公式
1-4 可逆过程与不可逆过程 ( Reversible and Irreversible process) (1)向真空膨胀 ) (2)等容过程 ) (3)恒外压过程 ) (4)等压过程 )
w=0 w=0
(5) 体积功(膨胀功 expansion work): 体积功( ) 当系统的体积变化时,系统反抗环境 压力所作的功。
δ w = p外 dV
δw:微小数量的功 :
P外
V
1-3 热力学第一定律 The first law of thermodynamics
1. 能量转化与守恒定律 Joule 实验 2. 内能(internal energy) 内能( 热力学能( 热力学能(thermodynamic energy ) (1) 内能是组成体系的所有粒子的各种运动 和相互作用的能量的总和。 (2) 内能是系统的状态函数
则
∂F ∂F ∂F ∂z = + ∂x y ∂x z ∂z x ∂x y
此公式是以下数学处理方法的结果: 令:F = f ( x, z )
∂F ∂F 则 dF = dx + dz ∂x z ∂z x
(2)力平衡(mechanical equilibrium) )力平衡( 如果没有刚性壁存在, 如果没有刚性壁存在,系统各部分之 间,系统与环境之间没有不平衡的力存在
在不考虑重力场与其它外场作用的情况下, 系统内部处处压力相等
(3)相平衡(phase equilibrium) )相平衡( 相(phase) 系统内物理性质及化学性质完全均匀 的一部分称为一相。
物理化学第1章 热力学第一定律及其应用
Q U W U H=40.69kJ
37.59kJ
§2.6 理想气体的热力学能和焓
一、理想气体U
理想气体有两个基本特点:a 分子本身不占有体积 b分子间没有相互作用力
理气内能只是温度的函数,即 U =f (T )
具体写成数学式为:
功可以分为:
体积功:本教材又称膨胀功 定义——由于系统体积变化而与环境交换的功 We
非体积功:也称非膨胀功,其他功 指体积功以外的功 Wf 热力学中一般不考虑非膨胀功
四、数学表达式
设想系统由状态(1)变到状态(2),系统与环
境的热交换为Q,功交换为W,则系统的热力学能的变
化为:
U U2 U1 QW
二、内能(热力学能)
1.定义:指系统内部能量的总和, 包括分子运动的平动能、 分子之间相互作用的位能、 分子内部的所有能量 符号:U
系统总能量通常(E )有三部分组成:
(1)系统整体运动的动能
(2)系统在外力场中的位能 (3)内能
热力学中一般只考虑静止的系统,无整体运动,不考虑 外力场的作用,所以只注意内能
对于微小变化
dU Q W
说明:(1)W指的是总功,包括We、Wf (2)适用范围:封闭体系 、孤立体系 (没有物质交换的体系)
§2.4 体积功 W Fdl
一、体积功的计算 pi > pe We FedlFe AAdlpedV
公式说明:
(1)不管体系是膨胀还是压缩,体积功都用-p外dV表示; (2)不用-pdV表示;p指内部压力, p外指外压,也不能用-p外V、 -Vdp外表示。
§2.3 热力学的一些基本概念
一、系统与环境
物理化学第一章热力学第一定律 (1)
p
p1
' pe
p1V1
' pe V'
p1 (V1 V )
'
整个过程所作的
功为两步的加和。
27
p2
V1
V'
p2V2
V2
V
(3)外压比内压大一个无穷小的值 外压始终比内压大一无限小值,使压力缓慢
增加,恢复到原状,所作的功为:
p
W pi dV
15
热力学第一定律的经典表述:
不供给能量而可以连续不断对外做功的机器叫作 第一类永动机。无数事实表明,第一类永动机不 可能存在。 这种表述只是定性的, 不能定量的主要原因是测量 热和功所用的单位不同,它们之间没有一定的当量 关系。1840年左右, Joule和mayer 做了二十多年的 大量实验后,得到了著名的热功当量:1 cal = 4.184 J和 1J = 0.239 cal 。热功当量为能量守恒原 理提供了科学的实验证明。
3
§1.2 基本概念
一、系统和环境 二、状态和状态函数 三、相 四、过程与途径 五、热力学平衡系统
4
一、系统和环境 System and Surroundings
系统:研究对象 环境:系统以外的,与系统有关的部分 系统与环境有实际的或想象的界面分开 系统的分类:
System 物质交换 能量交换 敞开系统 open 可以 可以 密闭系统 closed 不可能 可以 孤立 ( 隔离 ) 系 统isolated 不可能 不可能
' e,3 V2
V1
p1
p1V1
' 阴影面积代表We,3
物理化学 第一章 热力学第一定律
1.1 热力学第一定律1.1.1 热力学的研究对象1.热力学:研究能量相互转换过程中所遵循的规律的科学2.化学热力学:用热力学的基本原理来研究化学现象以及和化学有关的物理现象的科学3.研究的内容:研究化学变化的方向和限度。
4.热力学方法:研究对象是由大量质点(原子、分子、离子等)构成的宏观物质体系,所得结论是大量质点集体的平均行为,具有统计意义。
5.局限性:只能告诉我们在某种条件下,变化能否自动发生,发生后进行到什么程度,但不能告诉我们变化所需的时间以及具体的机理———可能性1.1.2 基本概念1.1.2.1 体系与环境1.体系: 所研究的对象。
(物系或系统)2.环境:体系以外并与体系密切相关的部分。
3. 体系分类:敞开体系: 体系与环境之间既有物质交换又有能量交换() 封闭体系: 体系与环境之间没有物质交换只有能量交换() 孤立体系: 体系与环境之间没有物质交换没有能量交换 ()1.1.2.2 状态与状态函数1. 状态:体系的物理性质和化学性质的综合表现状态函数:描述体系状态的性质注:(1)体系与环境的划分不绝对 (2)体系与环境的界面可以是实际存在的,也可以是虚拟的2. 状态函数的特点:A.状态一定,值一定;反之亦然B.异途同归,值变相等,周而复始,数值还原。
C.状态函数的微小变化是全微分,并且可积分D.状态函数代数运算的结果仍然是状态函数,如ρ=m/VE.状态函数之间存在着相互联系,如对于一定量的理想气体P、V、T之间存在下列关系PV=nRT说明:①定量纯物质均相体系或组成不变的多组分均相体系:只需两个独立改变的状态函数就能确定体系的状态②组成可变的多组分均相体系:除两个独立改变的状态函数之外,还需各组分的物质的量3. 状态函数的分类:根据状态函数与体系物质的量的关系,状态函数可以分为两类:广度性质:其数值与体系中物质的量成正比,具有加和性。
整个体系的该广度性质的数值,是组成体系的各部分该性质数值的总和强度性质:其数值与体系中物质的量无关,没有加和性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
34
五、热容与热的计算
无相变、无化学变化、不做其他功
C
实验表明:
Q
dT
1. 物质的热容与状态有关(例:液态水和气态水) 2. 物质的热容与所进行的变温过程有关
35
1.恒容热容和恒压热容
恒压热容Cp:
Qp H Cp ( )p T dT
H Qp CpdT
恒容热容Cv:
QV U CV ( )V T dT
H 1 nC p ,m dT nC p ,m (T2 T1 )
T1
T2
5 1m ol 8.314J .m ol1 .K 1 (373.15 273.15) K 2 2.078 103 J
41
(1) 恒压升温过程
过程的终态:T2 = 373.15K
p2 = p1 = 1000kPa
广度性质(extensive properties) 又称为容量性质,它的数值与系统的物质的 量成正比,如体积、质量、熵等。这种性质有加 和性。
强度性质(intensive properties) 与系统的数量无关,不具有加和性,如温度、 压力等。
10
三、状态函数(state function)
状态:系统里一切性质(包括物理、化学性质) 的综合表现。 状态函数:系统里的宏观性质----热力学函数、状
U QV CV dT
36
热容与温度的关系:
C p,m a bT cT 2
或
C p,m a bT c '/ T 2
37
2. 理想气体的热容
气体的Cp恒大于Cv。对于理想气体:
C p CV nR
C p,m CV ,m R
单原子气体=? 双原子气体=?
被划定的研究对象。 环境(surroundings)
与系统密切相关、有相互 作用或影响所能及的部分。
6
根据系统与环境之间的关系,把系统分为三类: (1)敞开系统(open system)
7
(2)封闭系统(closed system)
8
(3)孤立系统(isolated system)
9
二、系统的性质
30
解:根据
H Q p dH C p dT mC dT
T1 T1
T2
T2
mC (T2 T1 )
T2 = 351.7K 设每天蒸发出x克水恰能维持体温不变,则 x △VHm = Qp 2406x = 10460×103 x = 4327g
31
四、理想气体的热力学能和焓
T 1 , P 1 , V1 , U 1 , H1 , S 1 , G 1
?
T 2 , P 2 , V2 , U 2 , H2 , S 2 , G 2
始态
< 0 = O > 0
终态
5
第一节 热力学基本概念 一、系统与环境(System and surrounding)
系统(System)(物系或体系)
(4)绝热过程(adiabatic process) 在变化过程中,体系与环境不发生热的传递。 (5)循环过程(cyclic process)
16
第二节 热力学第一定律 一、热和功(Heat and work)
热:因温度差而引起的能量交换,其否命题
无温度差便无热的交换即定温过程Q = 0
×
Q>0
43
第四节 功与过程
一、理想气体的恒温体积功
功的定义式
体积功
功 = 力 位移
p外 dl d V
A
δW = – f dl
= – p外 A dl
gas
膨胀 W –
δW = – p外dV
积分式 W =
V2
V1
p外dV
压缩 W +
44
不同过程 W 的计算
焦耳实验
p=p1=p2 真空自由膨胀 W= 0 ± dp 常 0 数 常数 恒外压过程 W= – p外(V2 – V1)
100℃, pө 水
100℃, pө 汽
40.7kJ/mol
电功
功
体积功 W 非体积功 W´
表面功
热和功不是状态函数,是过程量。
17
热功 + – 的规定(含义)
Q CdT
T1
T2
Q W
+
–
环 境
W p外 d V
V1
18
体 系
Q W
V2
二、热力学能(internal energy)
U 2 nCV ,m dT nCV ,m (T2 T1 )
T1 T2
3 1m ol 8.314J .m ol1 .K 1 (373.15 273.15) K 2 1.247 10 J
3
计算结果说明 什么?
根据热力学第一定律,有 W2 = △U2- Q2 =1.247×103J – 2.078×103J = - 0.831×103J
问题。确定了熵(S) 函数,
提出了熵判据。
3
热力学第三定律:提出了熵(S)的求算原则。
两定律的结合:定义了
Helmholze free energy (F)
Gibbs free energy(G)
4
研究方法:考察体系变化前后——起始状态 与终了状态之间函数的改变量来 做出方向和限度上的判断。
U H S G
体系的某一个状态函数改变了,是否其状态必定发生变 化?
13
四、热力学平衡态(thermodynamic equilibrium state)
热平衡(thermal equilibrium)
力学平衡(mechanical equilibrium)
物质平衡(material equilibrium)
-----------化学平衡和相平衡
26
为什么要定义焓? 为了使用方便,因为在等压、不作非膨胀功的条件下
,焓变等于等压热效应Qp 。Qp容易测定,从而可求其它
热力学函数的变化值。
焓不是能量
虽然具有能量的单位,但不遵守能量守恒定律,即孤立 体系焓变不一定为零(为什么?)。
27
28
三、 相变化 T
P 相变热(焓)
或 2255 Jg-1 查手册H2O : l g ΔvapHm = 40.67 kJmol-1 s l ΔfusHm = 6.02 kJmol-1 或 334.7 Jg-1
p2 = T2p1/T1 = 1366kPa
U 1 Q1 nCV ,m dT nCV ,m (T2 T1 )
T1 T2
3 1m ol 8.314J .m ol1 .K 1 (373.15 273.15) K 2 1.247 103 J
40
根据热力学第一定律,有 W1 = △U1- Q1 = 0 由式(1-25)可得
态性质或热力学性质。
例 理想气体的p、V、T、n都可称为状态函数。
11
特性: 状态函数在数学上具有全微分的性质。
状态函数有特征 状态一定值一定 殊途同归变化等 周而复始变化零
1?
体系的不同状态能否具有相同的体积?
体系的状态改变了,是否其所有的状态性质都要发生变 化?
Q、 W
U2
积分式 ΔU = Q ? W + 微分式 dU = δQ + δW
?
适用条件:
封闭体系内的任何过程
22
例题1 设有一电炉丝浸于水中,接上电源,通过电流一 段时间。如果按照下列几种情况作为系统,试问ΔU、 Q、W为正为负还是为零? (1)以水为系统; (2)以电炉丝和水为系统; (3)以电炉丝、水、电源及其他一切有影响的部分为系 统。
32
结果:V p ΔT水=0 Q =0 W=0 ΔU=0 结论:U = f ( T ) H=f(T)
33
用数学式表示为:
( U )T 0 V ( H )T 0 V
U ( )T 0 p
U U (T )
H H (T )
H ( )T 0 p
还可以推广为理想气体的Cv,Cp也仅为温度的函数。
14
五、过程与途径(process and path)
process:状态随时间变化的经过(系统状态所发生
的一切变化)。
path: 完成某一过程的具体步骤或具体路线。
15
常见的变化过程
(1)等温过程(isothermal process) T系= T环 (2)等压过程(isobaric process) p系 = p 环 (3)等容过程(isochoric process) V不变
Wn
,
P2 V2 V1
WR
,
V2
50
二、可逆过程的特点(Reversible process) 1. 由无限接近的平衡态构成 偏离平衡态 2. 若沿原路逆转,体系和环境均可复原 3. 做功具有极限值 达不到限度
W p外 d V
V1
V2
定压过程 W= – p(V2 – V1) 定容过程 W= 0
V2 V1 定温可逆过程 W nRT ln V1 dp×dV p1 p1V1=p2V2 nRT ln V2 nRT p2 V1 V dV 45
V2
pdV
一次等外压膨胀
46
多次等外压膨胀
第一章 热力学(thermodynamics)第一定律
热力学基本概念 热力学第一定律
热与过程
功与过程
1
• 热力学定义:
• 研究热功及其转换规律的科学即为热力学。把热