小升初简便运算专题讲解 (2)
小升初数学8种简便计算方法归类与复习方法
![小升初数学8种简便计算方法归类与复习方法](https://img.taocdn.com/s3/m/743840116d85ec3a87c24028915f804d2b168777.png)
小升初数学8种简便计算方法归类与复习方法在小升初考试中,数学在很大程度上决定着总分数的高低,那么,如何在小升初数学考试计算中拿得高分甚至满分呢?编在这里整理了相关资料,希望能帮到您。
小升初数学8种简便计算方法归类1.提取公因式这个方法实际上是运用了乘法分配律,将相同因数提取出来,考试中往往剩下的项相加减,会出现一个整数。
注意相同因数的提取。
例如:0.92×1.41+0.92×8.59=0.92×(1.41+8.59)2.借来借去法看到名字,就知道这个方法的含义。
用此方法时,需要注意观察,发现规律。
还要注意还哦 ,有借有还,再借不难。
考试中,看到有类似998、999或者1.98等接近一个非常好计算的整数的时候,往往使用借来借去法。
例如:9999+999+99+9=9999+1+999+1+99+1+9+1-43.拆分法顾名思义,拆分法就是为了方便计算把一个数拆成几个数。
这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。
分拆还要注意不要改变数的大小哦。
例如:3.2×12.5×25=8×0.4×12.5×25=8×12.5×0.4×254.加法结合律注意对加法结合律(a+b)+c=a+(b+c)的运用,通过改变加数的位置来获得更简便的运算。
例如:5.76+13.67+4.24+6.33=(5.76+4.24)+(13.67+6.33)5.拆分法和乘法分配律结合这种方法要灵活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一个整数的时候,要首先考虑拆分。
例如:34×9.9 = 34×(10-0.1)案例再现:57×101=?6.利用基准数在一系列数种找出一个比较折中的数字来代表这一系列的数字,当然要记得这个数字的选取不能偏离这一系列数字太远。
小升初简便运算专题讲解.pdf
![小升初简便运算专题讲解.pdf](https://img.taocdn.com/s3/m/9c554ea76294dd88d0d26bd6.png)
小升初简便运算明确三点:1、一般情况下,四则运算的计算顺序是:有括号时,先算,没有括号时,先算,再算,只有同一级运算时,从左往右。
2、由于有的计算题具有它自身的特征,这时运用运算定律,可以使计算过程简单,同时又不容易出错。
加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c3、注意:对于同一个计算题,用简便方法计算,与不用简便方法计算得到的结果相同。
我们可以用两种计算方法得到的结果对比,检验我们的计算是否正确。
4、熟记规律,常能化难为易:一、变换位置(带符号搬家)当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
a+b+c=a+()+( ); a+b-c=a-( )+( );a-b-c=a-( )-( )a×b×c=a×( ) ×( );a÷b÷c=a÷( ) ÷( );a×b÷c=a÷( )×( ),a÷b×c=a×( )÷( )例1:用简便算法计算12.06+5.07+2.9434÷4÷1.7+102×7.3÷5.130.34-10.2+9.66+ 125÷2×8二、结合律法1、加括号法(1)当一个计算模块(同级运算)只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。
但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。
(即在加减运算中添括号时,括号前保留原符号,括号前是加号,括号里不变号,括号前是减号,括号里要变号)根据:加法结合律a+b+c=a+(); a+b-c=a+( )a-b+c=a-( ); a-b-c=a-( )例2:用简便方法计算(2)当一个计算模块(同级运算)只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。
完整版2019年小升初简便运算专题讲解
![完整版2019年小升初简便运算专题讲解](https://img.taocdn.com/s3/m/9b07465f81c758f5f71f6782.png)
2019年小升初简便运算专题讲解1、一般情况下,四则运算的计算顺序是:有括号时,先算,没有括号时,先算,再算,只有同一级运算时,从左往右。
2、由于有的计算题具有它自身的特征,这时运用运算定律,可以使计算过程简单,同时又不容易出错。
加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)乘法交换律:a ×b=b×a乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:(a+b)×c=a×c+b×c 3、注意:对于同一个计算题,用简便方法计算,与不用简便方法计算得到的结果相同。
我们可以用两种计算方法得到的结果对比,检验我们的计算是否正确。
4、熟记规律,常能化难为易:一、变换位置(带符号搬家)当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
)- )+( );a-b-c=a-( a+b+c=a+( )+( ); a+b-c=a-()();÷() ÷b÷c=a÷();a ×() ×c=a×(b×a))÷( a×b÷c=a÷( )×( ),a÷b×c=a×( 例1:用简便算法计算+1、12.06+5.07、 2 2.944、 30.34 3、-10.2+9.66 + 125÷2×85、 34÷4÷1.7+102×7.3÷5.16、7×3÷7×37、 8、二、结合律法1、加括号法(1)当一个计算模块(同级运算)只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。
但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。
小升初数学简便计算完整版
![小升初数学简便计算完整版](https://img.taocdn.com/s3/m/fcf449574531b90d6c85ec3a87c24028905f8564.png)
小升初数学简便计算完整版数学是一个需要大量计算的科学。
在小学阶段,我们学习了加减乘除等基本运算。
而在小升初的数学考试中,我们需要熟练掌握这些基本运算,并且能够应用到解决实际问题中。
在小升初的数学考试中,除了基本运算外,还会涉及到一些简单的几何知识、分数的运算、整数的运算等。
本文将介绍一些简便计算的方法,希望能够帮助到小升初考生。
一、加法运算:要熟练掌握加法运算,可以根据不同的数字特点来进行计算。
比如:1.两个数相加时,如果有进位,则进位数的个数等于个位数和十位数进位数的和;2.两个数相加时,如果个位数为9,十位数进位数为1,则个位数为0,十位数不变;3.两个数相加时,如果单位数和十位数的和大于10,则把个位数减去10,然后十位数进位。
二、减法运算:对于减法运算,同样可以根据数字的特点来进行简便计算。
比如:1.两个数相减时,如果减数中的个位数小于被减数中的个位数,则十位数减1,个位数为10加个位数,然后相减;2.两个数相减时,如果减数中的个位数大于被减数中的个位数,则减法退位,个位数为个位数加10,十位数减1,然后相减。
三、乘法运算:乘法运算是数学中最重要的一种运算方法。
在小升初的数学考试中,经常会涉及到乘法的计算。
为了熟练掌握乘法运算,可以用以下方法简便计算:1.乘法交换律:axb=bxa。
如果遇到一个两位数和一个一位数相乘,可以按照这个规律交换位置进行计算;2.乘法的分配律:ax(b+c)=(axb)+(axc)。
如果遇到一个数乘以一个多位数,可以进行分步计算,将乘法运算和加法运算结合起来。
四、除法运算:除法运算是对除法的一种简便计算方法。
在小升初的数学考试中,常常会涉及到除法的计算。
以下是一些简便计算方法:1.除法的基本法则:如果被除数的个位数小于除数个位数,则商的个位数为0;2.除法的特殊法则:如果被除数是10的倍数,则商的个位数等于除数个位数;3.除法的近似法则:如果被除数和除数个位数相等,则商的个位数为1通过运用以上简便计算方法,我们可以在小升初数学考试中提高计算速度。
2020-2021【小升初】简便运算讲解(奥数专题)
![2020-2021【小升初】简便运算讲解(奥数专题)](https://img.taocdn.com/s3/m/61ee13d09fc3d5bbfd0a79563c1ec5da51e2d653.png)
2020-2021【⼩升初】简便运算讲解(奥数专题)奥数之计算综合⽬录:计算专题1⼩数分数运算律的运⽤:计算专题2⼤数认识及运⽤计算专题3分数专题计算专题4列项求和计算专题5计算综合计算专题6超⼤数的巧算计算专题7利⽤积不变、拆数和乘法分配率巧解计算题:计算专题8牢记设字母代⼊法计算专题9利⽤a ÷b=ba巧解计算题:计算专题10利⽤裂项法巧解计算题计算专题11(递推法或补数法) 计算专题12.斜着约分更简单计算专题13定义新运算计算专题14解⽅程计算专题15等差数列计算专题16尾数与完全平⽅数计算专题17加法原理、乘法原理计算专题18分数的估算求值计算专题19简单数论奥数专题20周期问题计算专题1⼩数分数运算律的运⽤:【例题精选】例题⼀: 4.75+9.63+(8.25-1.37)例题⼆:11 333387797906666124+例题三:32232537.96555+例题四:36?1.09+1.2?67.3例题五: 81.5?15.8+81.5?51.8+67.6?18.5 【练习】1、 6.73-892(3.271)1717+- 2、71713(43)0.7513413-+-3. 975?0.25+4- 4、 999999×222222+333333×3333345、 45?2.08+1.5?37.66、1391371137 138138?+?7、72?2.09-1.8?73.6 8、 53.5?35.3+53.5?43.2+78.5?46.5计算专题2⼤数认识及运⽤【例题精讲】例题⼀:1234+2341+3412+4123 例题⼆:4223.411.157.6 6.5428 5++例题三:199319941199319921994-+?例题四:(229779+)÷(5579+)例题五:有⼀串数1, 4, 9, 16,25……它们是按照⼀定规律排列的,那么其中第2010个数与2011个数相差多少?例六: 2010×201120112011-2011×201020102010【综合练习】1、 23456+34562+45623+56234+623452、198819891987 198819891+?-3、99999?77776+33333?666666、(8361971++)÷(3541179++)7、123456789×987654321-123456788×987654322计算专题3分数专题【例题精讲】例题⼀:443745271526例题⼆:11731581164179例题三:13274155+例题四:5152566139131813++例题五:20÷2010 20102010 2011÷【综合练习】1、 73?74 752、2008201020093、1157764、131441513445+ 5、13392744+ 6、1451 179179+7、238 23823831581516152++计算专题4列项求和【例题精讲】例题⼀:1111.......12233499100++++例题⼆:1111.......2446684850++++例题三:179111315131220304056-+-+-例题四:1111111248163264128++++++例题五:(1111234+++)?(11112345+++)-(++++)?(111234++)【综合练习】1、1111........1011111212134950++++2、1111112612203042+++++3、 1111142870130208++++4、 191113151420304256-+-+5、 201020102010201020101223344556++++6、22222392781243++++7、 1111111111111111() ()()()89101191011128910111291011+++?+++-++++?++计算专题5计算综合【例题精讲】例题⼀: 11111......1212312341234 (4950)+++++++++++++++例题⼆: 111111111?111111111 例题三: 12324671421135261072135++++111...1111222...2222333...3333=÷个个个例题五:从2000到6999这5000个数中数字只和能被5整除的数⼀共有多少个?例六:100+99—98—97+96+95—94—93……+4+3—2—1例七:??+????? ?????? ??+???? ?????? ??+991-1991131-131121-1211【综合练习】1、1111111111+++++++++361015212836455055 2、76666666666666201062011 个个3、1612886443224201612108654??+??++??+?? 4、 2201242012222222444444个个 62012666666个??÷5、(1+3+5+7+...+1999)-(2+4+6+8+ (1998)6、????1001-151-141-131-121-17、(13 +23 )+(14 +24 +34 )+(15 +25 +35 +45 )+…+(1100 +2100 +3100 +4100 +…+99100 )计算专题6超⼤数的巧算熟记规律,常能化难为易。
小升初常考简便运算
![小升初常考简便运算](https://img.taocdn.com/s3/m/5ea20d22376baf1ffc4fad8c.png)
顾名思义,拆分法就是为了方便计算把一个数拆成几个数。
这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。
分拆还要注意不要改变数的大小哦。
3.2×12.5×25 1.25×88 3.6×0.252. 巧变除为乘也就是说,把除法变成乘法,例如:除以41可以变成乘4。
7.6÷0.25 3.5÷0.125七、裂项法分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
分数裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。
分数裂项的最基本的公式这一种方法在一般的小升初考试中不常见,属于小学奥数方面的知识。
有余力的孩子可以学一下。
简便运算(一)专题简析:根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简,化难为易。
例题1。
计算4.75-9.63+(8.25-1.37)原式=4.75+8.25-9.63-1.37=13-(9.63+1.37)=13-11=2练习1计算下面各题。
1. 6.73-2 817 +(3.27-1 917 ) 2. 759 -(3.8+1 59 )-115小学生小升初数学常见简便计算总结要想提高计算能力,首先要学好各种运算的法则、运算定律及性质,这是计算的基础。
小升初数学8种简便计算方法归类与复习方法.doc
![小升初数学8种简便计算方法归类与复习方法.doc](https://img.taocdn.com/s3/m/1980c9d125c52cc58ad6beb3.png)
小升初数学8种简便计算方法归类与复习方法小升初数学8种简便计算方法归类与复习方法在小升初考试中,数学在很大程度上决定着总分数的高低,那么,如何在小升初数学考试计算中拿得高分甚至满分呢?编在这里整理了相关资料,希望能帮到您。
小升初数学8种简便计算方法归类1.提取公因式这个方法实际上是运用了乘法分配律,将相同因数提取出来,考试中往往剩下的项相加减,会出现一个整数。
注意相同因数的提取。
例如:0.92 1.41+0.92 8.59=0.92 (1.41+8.59)2.借来借去法看到名字,就知道这个方法的含义。
用此方法时,需要注意观察,发现规律。
还要注意还哦,有借有还,再借不难。
考试中,看到有类似998、999或者1.98等接近一个非常好计算的整数的时候,往往使用借来借去法。
例如:9999+999+99+9=9999+1+999+1+99+1+9+1-43.拆分法顾名思义,拆分法就是为了方便计算把一个数拆成几个数。
这需要掌握一些好朋友,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。
分拆还要注意不要改变数的大小哦。
例如:3.2 12.5 25=8 0.4 12.5 25=8 12.5 0.4 254.加法结合律注意对加法结合律(a+b)+c=a+(b+c)的运用,通过改变加数的位置来获得更简便的运算。
例如:5.76+13.67+4.24+6.33=(5.76+4.24)+(13.67+6.33)5.拆分法和乘法分配律结合这种方法要灵活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一个整数的时候,要首先考虑拆分。
例如:34 9.9 = 34 (10-0.1)案例再现:57 101=?6.利用基准数在一系列数种找出一个比较折中的数字来代表这一系列的数字,当然要记得这个数字的选取不能偏离这一系列数字太远。
例如:2072+2052+2062+2042+2083=(2062x5)+10-10-20+217.利用公式法(1) 加法:交换律,a+b=b+a结合律,(a+b)+c=a+(b+c)(2) 减法运算性质:a-(b+c)=a-b-c,a-(b-c)=a-b+ca-b-c=a-c-b(a+b)-c=a-c+b=b-c+a(3):乘法(与加法类似):交换律,a*b=b*a结合律,(a*b)*c=a*(b*c)分配率,(a+b)xc=ac+bc(a-b)*c=ac-bc(4) 除法运算性质(与减法类似):a (b*c)=ab ca (b c)=a bxca b c=a c b(a+b) c=a c+b c(a-b) c=a c-b c前边的运算定律、性质公式很多是由于去掉或加上括号而发生变化的。
小升初常考简便运算
![小升初常考简便运算](https://img.taocdn.com/s3/m/6211e52c52d380eb62946dbf.png)
小学数学简便运算方法归类一、带符号搬家法(根据:加法交换律和乘法交换率)当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带 符搬家”。
二、结合律法(一)加括号法1.当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。
但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。
(即在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。
)2.当一个计算题只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。
但是在除号后面添括号时,括到括号里的运算,原来是乘,现在就要变为除;原来是除,现在就要变为乘。
(即在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。
)c)(二)去括号法1.当一个计算题只有加减运算又有括号时,我们可以将加号后面的括号直接去掉,原来是加现在还是加,是减还是减。
但是将减号后面的括号去掉时,原来括号里的加,现在要变为减;原来是减,现在就要变为加。
(现在没有括号了,可以带符号搬家了哈) (注:去掉括号是添加括号的逆运算)2.当一个计算题只有乘除运算又有括号时,我们可以将乘号后面的括号直接去掉,原来是乘还是乘,是除还是除。
但是将除号后面的括号去掉时,原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。
(现在没有括号了,可以带符号搬家了哈) (注:去掉括号是添加括号的逆运算)三、乘法分配律法1.分配法括号里是加或减运算,与另一个数相乘,注意分配24×(1211-83-61-31)2.提取公因式注意相同因数的提取。
0.92×1.41+0.92×8.59516×137-53×1373.注意构造,让算式满足乘法分配律的条件。
257×103-257×2-257 2.6×9.9 四、借来还去法看到名字,就知道这个方法的含义。
小升初简便运算专题讲解.pptx
![小升初简便运算专题讲解.pptx](https://img.taocdn.com/s3/m/110445f0dd3383c4bb4cd2c0.png)
乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:(a+b)×c=a×c+b×c 3、注意:对于同一个计算题,用简便方法计算,与不用简便方法计算得到的结果相同。我们可以用两种计算方法 得到的结果对比,检验我们的计算是否正确。
4、熟记规律,常能化难为易:
一、变换位置(带符号搬家)
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
(注:去掉括号是添加括号的逆运算) a+(b+c)= a +(b-c)= a-(b-c)= a-( b +c)= 例 4:用简便方法计算
5.68+(5.39+4.32)+ 19.68-(2.97+9.68) 4.75-9.63+(8.25-1.37)
2 当一个计算模块(同级运算)只有乘除运算又有括号时,我们可以将乘号后面的括号直接去掉,原来是 乘还 是乘,是除还是除。但是将除号后面的括号去掉时,原来括号里的乘,现在就要变为除;原来是除,现在就要 变 为乘。(现在没有括号了,可以带符号搬家了)(注:去掉括号是添加括号的逆运算)
30.34-10.2+9.66 + 125÷2×8
二、结合律法 1、加括号法
1 当一个计算模块(同级运算)只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号 里的 运算原来是加还是加,是减还是减。但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为 减 ;原来是减,现在就要变为加。(即在加减运算中添括号时,括号前保留原符号,括号前是加号,括号里不变号, 括号前是减号,括号里要变号)
1.分配法
括号里是加或减运算,与另一个数相乘,注意分配
例 6:简便运算:
小升初化学简便运算专题讲解
![小升初化学简便运算专题讲解](https://img.taocdn.com/s3/m/fe0fc245a7c30c22590102020740be1e650ecc08.png)
小升初化学简便运算专题讲解随着时间的推移,学生们接触到的化学知识越来越深入,研究也越来越困难。
本文旨在为小学升初中的学生提供一些关于化学简便运算的讲解。
一、化学分子式的计算方法:化学分子式是将分子中各种原子的种类和数量用化学符号和数字组在一起所得到的组成式。
根据这个定义,我们可以用下列公式来计算分子式:(1)已知各元素的质量百分比,求分子式:第一步:将各元素质量百分比转化为元素的量百分比(即千分数),例如:若A元素质量分数为30%(即0.3),其量百分数为0.3 ÷32=9.375‰。
第二步:将各元素量百分数除以它们之间的最小量比,然后四舍五入,取整,并将结果(1或大于1的整数)分别作为化学式中各元素的下标。
例如:设化合物中含有A、B、C三个元素,而A元素的量百分数为9.375‰,B元素的量百分数为281.25‰,C元素的量百分数为70.3125‰,则它们之间的最小量比为1∶3∶8,相应地将它们的量百分数除以最小量比后,结果分别为9.375÷1=9;281.25÷3=94,70.3125÷8=8,分别作为化学式中A、B和C的下标。
(2)已知各元素量的质量(克),求分子式:第一步:求出各元素的摩尔数;第二步:求出各元素的量的比例;第三步:求出各元素的量与最小量比之比;第四步:用得到的结果作为原子下标,化简即可。
二、溶液中的计算方法:(1)浓度的计算:浓度是指单位体积或相应的溶液重量中所含的溶质物质的质量或物质的量。
其计算公式为:$$C=\frac{n}{V}$$其中C为溶液浓度(mol/L),n为溶质物质的物质量(mol),V为溶液体积(L)。
(2)配制溶液的方法:配制分子量为M的溶液,按照下列方法操作:第一步:准备M/100的浓度溶液,也就是称取分子量为M的物质,使其在1升体积的溶液中的摩尔数为0.01M。
第二步:当需要k毫升M的溶液时,取出k/10毫升的M/100的浓度溶液,加入水,加至体积为k毫升。
小升初简便运算
![小升初简便运算](https://img.taocdn.com/s3/m/2b6f338984254b35eefd34bc.png)
3.(1) 1989×1999-1988×2000 (2)8642×2468-8644×2466
四、拓展演练
1.1234×4326+2468×2837
2. 275×12+1650×23-3300×7.5
3. 7654321×1234567-7654322×1234566
解(二):原式=
=7×3×30
=630
例2.(1) (2)(9 +7 )÷( + )
例3. + + ……+
三、熟能生巧
1. (1)238÷238 (2)3.41×9.9×0.38÷0.19÷3 ÷1.1
2.(1) (2)( +1 + )÷( + + )
3. + + + + +
四、拓展演练
1.(1)123 ÷41 (2) ×2.84÷3 ÷(1 ×1.42)×1
让我们先回忆一下基本的运算法则和性质:
乘法结合律:a×b×c=a×(b×c)=(a×c)×b
乘法分配律:a×(b+c)=a×b+a×c a×(b-c)=a×b-a×c
二、典型例题
例1. (1)9999×7778+3333×6666 (2)765×64×0.5×2.5×0.125
分析(一):通过观察发现这道题中9999是3333的3倍,因此我们可以把3333和6666分解后重组,即3333×3×2222=9999×2222 这样再利用乘法分配律进行简算。
简便运算中常用的技巧有“拆”与“凑”,拆是指把一个数拆成的两部分中含有一个整十、整百、整千或者有利于简算的数,凑是指把几个数凑成整十、整百、整千……的数,或者把题目中的数进行适当的变化,运用运算定律或性质再进行简算。
小升初简便运算专题讲解
![小升初简便运算专题讲解](https://img.taocdn.com/s3/m/93a64e8d71fe910ef12df8db.png)
6月12日:小升初简便运算明确三点:1、一般情况下,四则运算的计算顺序是:有括号时,先算,没有括号时,先算,再算,只有同一级运算时,从左往右。
2、由于有的计算题具有它自身的特征,这时运用运算定律,可以使计算过程简单,同时又不容易出错。
加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:(a+b)×c=a×c+b×c3、注意:对于同一个计算题,用简便方法计算,与不用简便方法计算得到的结果相同。
我们可以用两种计算方法得到的结果对比,检验我们的计算是否正确。
4、熟记规律,常能化难为易:一、变换位置(带符号搬家)当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
a+b+c=a+( )+( ); a+b-c=a-( )+( );a-b-c=a-( )-( )a×b×c=a×( ) ×( );a÷b÷c=a÷( ) ÷( );a×b÷c=a÷( )×( ),a÷b×c=a×( )÷( )例1:用简便算法计算1、12.06+5.07+2.942、3、4、30.34-10.2+9.66 + 125÷2×85、 34÷4÷1.7+102×7.3÷5.16、7×3÷7×37、8、二、结合律法1、加括号法(1)当一个计算模块(同级运算)只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。
但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。
小升初简便运算方法详解 乘法分配律篇
![小升初简便运算方法详解 乘法分配律篇](https://img.taocdn.com/s3/m/8c482d60ccbff121dc368336.png)
简便运算方法详解(乘法分配律小升初篇)前言:简便运算在历年的小升初考试以及名校选拔中都占有巨大的分值。
在简便运算专题中,乘法分配律占据重要的位置。
接下来将深度分析乘法分配律的题型和方法总结。
同学们要做好笔记了哦!首先我们来回顾一下字母表示乘法分配律:这类题通常分为两种类型,第一种是从做到右,也就是顺向的乘法分配律应用。
但我们做题的时候经常遇到逆向应用,通常我们是从a×c+b×c这种形式转化到c×(a+b)这种形式,其实质是提取公因数。
这是出题的一般规律。
一.出题形式同学们只要看到__×__+__×__或者是__×___-__×__的形式,毫无疑问,这一题需要用到乘法分配律的知识去解答。
二.类型1)间接提取公因数1.1)小数、分数和百分数之间的相互转化×60+75%x5例1 0.75×35+34分析:本题一眼看上去并没有直接的公因数可以进行提取,但仔细一看,存在着小数、分数和百分数三种形式,这个时候我们需要统一成一种,即可提取公因数。
解:原式=0.75×35+0.75×60+0.75x5=0.75x(35+60+5)=0.75x100=75看到这里有同学会问,那什么时候统一成小数,什么时候统一成分数呢?其实,如果提取公因式后,和能和公因数进行约分,则化为分数为宜。
如:34x(1+2+5)=34x8=61.2)倍数关系例2 2.8×36+5.6x32分析:本题满足乘法分配律的形式,但是同样的没有直接的公因数可以进行提取,也不是小数,分数和百分数的互化,这个时候我们需要仔细观察,看每个数之间是否存在倍数关系,明显5.6是2.8的2倍。
解:原式=2.8×36+2.8×2×32=2.8×36+2.8×64=2.8×(36+64)=2.8×100=280例3 925×425+4.25÷160 分析:本题依然是倍数关系,其中425是4.25的100倍。
小升初简便运算专题讲解
![小升初简便运算专题讲解](https://img.taocdn.com/s3/m/04bdf939d1f34693daef3ee3.png)
小升初简便运算明确三点:1、一般情况下,四则运算的计算顺序是:有括号时,先算,没有括号时,先算,再算,只有同一级运算时,从左往右。
2、由于有的计算题具有它自身的特征,这时运用运算定律,可以使计算过程简单,同时又不容易出错。
加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:(a+b)×c=a×c+b×c3、注意:对于同一个计算题,用简便方法计算,与不用简便方法计算得到的结果相同。
我们可以用两种计算方法得到的结果对比,检验我们的计算是否正确。
4、熟记规律,常能化难为易:一、变换位置(带符号搬家)当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
a+b+c=a+( )+( ); a+b-c=a-( )+( );a-b-c=a-( )-( )a×b×c=a×( ) ×( );a÷b÷c=a÷( ) ÷( );a×b÷c=a÷( )×( ),a÷b×c=a×( )÷( )例1:用简便算法计算12.06+5.07+2.94 34÷4÷1.7+102×7.3÷5.130.34-10.2+9.66 + 125÷2×8二、结合律法1、加括号法(1)当一个计算模块(同级运算)只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。
但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。
(即在加减运算中添括号时,括号前保留原符号,括号前是加号,括号里不变号,括号前是减号,括号里要变号)根据:加法结合律a+b+c=a+( ); a+b-c=a+( ) a-b+c=a-( ); a-b-c=a-( )例2:用简便方法计算(2)当一个计算模块(同级运算)只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初简便运算明确三点:1、一般情况下,四则运算的计算顺序是:有括号时,先算,没有括号时,先算,再算,只有同一级运算时,从左往右。
2、由于有的计算题具有它自身的特征,这时运用运算定律,可以使计算过程简单,同时又不容易出错。
加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:(a+b)×c=a×c+b×c3、注意:对于同一个计算题,用简便方法计算,与不用简便方法计算得到的结果相同。
我们可以用两种计算方法得到的结果对比,检验我们的计算是否正确。
4、熟记规律,常能化难为易:一、变换位置(带符号搬家)当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
a+b+c=a+( )+( ); a+b-c=a-( )+( );a-b-c=a-( )-( )a×b×c=a×( ) ×( );a÷b÷c=a÷( ) ÷( );a×b÷c=a÷( )×( ),a÷b×c=a×( )÷( )例1:用简便算法计算12.06+5.07+2.94 34÷4÷1.7+102×7.3÷5.130.34-10.2+9.66 + 125÷2×8二、结合律法1、加括号法(1)当一个计算模块(同级运算)只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。
但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。
(即在加减运算中添括号时,括号前保留原符号,括号前是加号,括号里不变号,括号前是减号,括号里要变号)根据:加法结合律a+b+c=a+( ); a+b-c=a+( ) a-b+c=a-( ); a-b-c=a-( )例2:用简便方法计算(2)当一个计算模块(同级运算)只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。
但是在除号后面添括号时,括到括号里的运算,原来是乘,现在就要变为除;原来是除,现在就要变为乘。
(即在乘除运算中添括号时,括号前保留原符号,括号前是乘号,括号里不变号,括号前是除号,括号里要变号)根据:乘法结合律a×b×c=a×( ) a×b÷c=a×( ) a÷b÷c=a÷( ) a÷b×c=a÷( )例3:用简便方法计算1、1.06×2.5×42、17×0.6÷0.33、18.6÷2.5÷0.4 + 700÷14×22、去括号法(1)当一个计算模块只有加减运算又有括号时,我们可以将加号后面的括号直接去掉,原来是加现在还是加,是减还是减。
但是将减号后面的括号去掉时,原来括号里的加,现在要变为减;原来是减,现在就要变为加。
(现在没有括号了,可以带符号搬家了)(注:去掉括号是添加括号的逆运算)a+(b+c)= a +(b-c)= a-(b-c)= a-( b +c)= 例4:用简便方法计算5.68+(5.39+4.32)+ 19.68-(2.97+9.68) 4.75-9.63+(8.25-1.37)(2)当一个计算模块(同级运算)只有乘除运算又有括号时,我们可以将乘号后面的括号直接去掉,原来是乘还是乘,是除还是除。
但是将除号后面的括号去掉时,原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。
(现在没有括号了,可以带符号搬家了)(注:去掉括号是添加括号的逆运算)a×(b×c) = , a×(b÷c) = , a÷(b×c) = , a÷(b÷c) = 。
例5:用简便方法计算0.25×(4×1.2)+1.25×(8÷0.5) 46÷(4.6×2)+ 4÷(6÷0.25) 1.25×(213×0.8)三、乘法分配律法乘法分配律公式:m(a ±b)=ma ±mb ma ±mb= m(a ±b) 1.分配法括号里是加或减运算,与另一个数相乘,注意分配例6:简便运算: 24×(1211-83-61-31)2.提取公因式乘法分配律的逆运算:注意相同因数的提取例7:简便计算: 0.92×1.41+0.92×8.59516×137-53×137 5.8×4.7+5.8×12.1-5.8×6.8 6×108-107-5×1083.注意构造,让算式满足乘法分配律的条件。
例8:简便运算257×103-257×2-2571.25×10833338712 ×79+790×6666114 36×1.09+1.2×67.3335 ×2525 +37.9×62581.5×15.8+81.5×51.8+67.6×18.5 0.495×2500+495×0.24+51×4.95四、借来还去法看到名字,就知道这个方法的含义。
用此方法时,需要注意观察,发现规律。
还要注意还哦 ,有借有还,再借不难嘛。
1、凑整法例9:简便运算 9999+999+99+9 4821-9982、拆分法顾名思义,拆分法就是为了方便计算把一个数拆成几个数。
这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。
分拆还要注意不要改变数的大小。
例10:简便计算3.2×12.5×25 1.25×88+3.6×0.25 765×64×0.5×2.5×0.1253、巧变除为乘也就是说,把除法变成乘法,例如:除以41可以变成乘4。
利用a ÷b=ab 巧解计算题巧解计算题例11:简便计算7.6÷0.25+3.5÷0.125 6.4×480×33.3÷3.2÷120÷66.6(927 +729 )÷(57 +59 )五、裂项法分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
分数裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。
分数裂项的最基本的公式可以学一下。
例12:简便计算12×4+14×6+16×8+…..+148×50110×11+111×12+112×13+113×14+114×151 2+16+112+120+130+1421-16+142+156+172114-920+1130-1342+155611×4+14×7+17×10+…..+197×100113-712+920-1130+1342-155619981×2+19982×3+19983×4+19984×5+19985×6综合例题精讲:99999×77778+33333×666661993×1994-11993+1992×199412+14+18+116+132+1642 3+29+227+281+2243简便运算练习题:6.73-2817+(3.27-1917) 759-(3.8+159)-11514.15-(778-61720)-2.12513713-(414+3713)-0.75 3.5×114+125%+112÷45975×0.25+934×76-9.75925×425+4.25÷1600.9999×0.7+0.1111×2.7 45×2.08+1.5×37.652×11.1+2.6×778 48×1.08+1.2×56.8 72×2.09-1.8×73.66.8×16.8+19.3×3.2 139×137138 +137×1138 4.4×57.8+45.3×5.6204+584×19911992×584-380-1143 (89 +137 +611 )÷(311 +57 +49 ) (3711 +11213 )÷(1511 +1013 )。