非平稳时间序列分析

合集下载

第八章非平稳和季节时间序列模型分析方法

第八章非平稳和季节时间序列模型分析方法

第八章非平稳和季节时间序列模型分析方法时间序列是指观测值按照时间顺序排列的一组数据,其中具有季节性和非平稳性的时间序列数据具有特殊的分析需求。

本文将介绍非平稳和季节时间序列的分析方法。

一、非平稳时间序列分析方法非平稳时间序列是指其统计特征在时间上发生了变化,无法满足平稳性的要求。

非平稳时间序列具有趋势性、周期性、季节性和不规则性等特征。

对于非平稳时间序列的分析,我们可以采用以下方法:1.差分法:差分法是通过对时间序列取一阶或多阶差分来消除趋势性的影响。

通过差分后的时间序列进行分析,我们可以得到一个稳定的时间序列,并进行后续的建模和预测。

2.移动平均法:移动平均法是通过计算一定窗口范围内的观测值的平均值来消除短期波动的影响,从而得到一个平滑的时间序列。

通过移动平均后的时间序列进行分析,我们可以在一定程度上消除非平稳性的影响。

3.分解法:分解法是将非平稳时间序列分解为趋势项、季节项和随机项三个部分。

通过分解后的各个部分进行分析,我们可以了解趋势、季节和随机成分在时间序列中的作用,从而更好地进行建模和预测。

二、季节时间序列分析方法季节时间序列是指具有明显季节性的时间序列数据。

对于季节时间序列的分析,我们可以采用以下方法:1.季节性指数:季节性指数是用来描述季节性的强度和方向的指标。

通过计算每个季节的平均值与总平均值之比,可以得到季节性指数。

根据季节性指数的变化趋势,我们可以判断时间序列的季节性变化情况,并进行后续的建模和预测。

2.季节性趋势模型:季节性趋势模型是一种常用的季节时间序列建模方法。

该模型将时间序列分解为趋势项、季节项和随机项三个部分,并通过对这三个部分进行建模来分析季节性时间序列。

常用的季节性趋势模型包括季节性自回归移动平均模型(SARIMA)、季节性指数平滑模型等。

总结起来,非平稳和季节时间序列模型的分析方法主要包括差分法、移动平均法和分解法等对非平稳时间序列进行分析,以及季节性指数和季节性趋势模型等对季节性时间序列进行分析。

时间序列分析中的非平稳信号分析方法研究

时间序列分析中的非平稳信号分析方法研究

时间序列分析中的非平稳信号分析方法研究时间序列分析是统计学中的领域,用来研究一组与时间有关的数据。

时间序列分析非常重要,因为它可以帮助研究者预测机器人,股市和其他急于观察的数据。

但是,有时候我们会遇到一些非平稳的信号,导致预测分析非常困难。

在这种情况下,对非平稳信号的分析方法成为了非常重要的研究领域。

I. 什么是非平稳信号?平稳信号是指时间序列中平均值和方差都不随时间而变化的信号。

在这种情况下,我们可以使用平稳信号的统计模型进行分析和预测。

但是,在现实生活中,出现非平稳信号的情况是普遍存在的。

例如,物价、股票价格等往往都呈现出随时间变化的趋势性和季节性。

II. 非平稳信号的特点非平稳信号是指时间序列中均值,方差或者两者都在变化的信号。

与平稳信号不同,非平稳信号的各种统计量都会随时间的推移而变化,因此在真实的数据应用过程中非常常见。

1. 缺乏稳定性:不同时间点的数据存在着不同的特征,可以说非平稳序列在统计特征上表现出的一种不稳定性。

2. 时间相关性:非平稳时间序列中的不同时间点可能不是独立的,也就是说以前的一个时间点可能会对后续的时间点产生影响,这种影响通常以趋势的形式呈现。

3. 不存在平稳的统计模型:由于非平稳信号缺乏稳定性,所以不存在平稳的统计模型,要研究非平稳信号需要寻找其他方法。

III. 非平稳信号分析方法在研究非平稳信号的过程中,最常用的方法包括:时间序列分解、差分方法、ARIMA和ARCH模型等。

1. 时间序列分解时间序列分解是将非平稳信号分解为一些成分,例如趋势、周期和随机元素。

这种方法可以使我们更好地理解信号的变化过程和对不同成分的影响。

时间序列分解同时也对信号的去除趋势和季节成分非常有用。

2. 差分方法差分方法是通过对时间序列之间差异的计算,将其转化为平稳时间序列,从而避免非平稳信号带来的影响,使得时间序列分析得以进行。

这种方法适用于不太具有周期性的时序数据。

3. ARIMA模型ARIMA模型是最常用的时间序列分析方法之一。

第十一章 非平稳时间序列分析 《计量经济学》PPT课件

第十一章  非平稳时间序列分析  《计量经济学》PPT课件
GENR DY = Y – Y(-1) 生成差分序列Δy,用OLS法估计模型
Δyt = δyt-1 + ut 的参数,如图11.2.4所示:
图11.2.4
由图11.2.4可知,ˆ =0.105475, Tδ=9.987092。此结
果也可以由EViews软件中的单位根检验功能(选择 不包含常数项和滞后项数为零)直接给出, 如图11.2.5所示:
第十一章 非平稳时间序列分析 【本章要点】(1)非平稳时间序列基本概念 (2)时间序列的平稳性检验(3)协整的概念以 及误差修正模型(ECM) 本章将只对非平稳时间序列的基本概念、时间序 列的平稳性的单位根检验以及协整理论等进行简 要讲述。
时间序列的非平稳性,是指时间序列的统计规律随 着时间的位移而发生变化,即生成变量时间序列数 据的随机过程的统计特征随时间变化而变化。只要 宽平稳的三个条件不全满足,则该时间序列便是非 平稳的。当时间序列是非平稳的时候,如果仍然应 用OLS进行回归,将导致虚假的结果或者称为伪回 归。这是因为其均值函数、方差函数不再是常数, 自协方差函数也不仅仅是时间间隔的函数。
就是带趋势项的随机游走过程。
(二)单位根检验的基本思想
在(11.2.6)式中,若α = 0,则式(11.2.6)可以
写成:
yt = ρyt-1 + ut
(11.2.7)
式(11.2.7)称为一阶自回归过程,记作AR(1),可以
证明当| ρ | <1时是平稳的,否则是非平稳的。
AR(1)过程也可以写成算符形式:
(三)DF检验 (Dickey-Fuller Test) 1.DF检验 DF检验的具体作法是用传统方法计算出的参数的T— 统计量,不与t 分布临界值比较而是改成DF分布临界 值表。

第八章、非平稳时间序列分析

第八章、非平稳时间序列分析

第八章、非平稳时间序列分析很多时间序列表现出非平稳的特性:随机变量的数学期望和方差随时间的变化而变化。

宏观经济数据形成的时间序列中有很多是非平稳时间序列。

非平稳时间序列与平稳时间序列具有截然不同的特征,研究的方法也很不一样。

因此,在对时间序列建立模型时,必须首先进行平稳性检验,对于平稳时间序列,可采用第七章的方法进行分析,对于非平稳时间序列,可以将采用差分方法得到平稳时间序列,然后采用平稳时间序列方法对差分数据进行研究,对于多个非平稳时间序列则可以采用协整方法对其关系进行研究。

8.1 随机游动和单位根8.1.1随机游动和单位根如果时间序列t y 满足模型t t t y y ε+=-1 (8.1)其中t ε为独立同分布的白噪声序列, ,2,1,)(2==t Var t σε,则称t y 为标准随机游动(standard random walk )。

随机游动表明,时间序列在t 处的值等于1-t 时的值加上一个新息。

如果将t y 看作一个质点在直线上的位置,当前位置为1-t y ,则下一个时刻质点将向那个方向运动、运动多少(t ε)是完全随机的,既与当前所处的位置无关(t ε与1-t y 不相关),也与以前的运动历史无关(t ε与 ,,32--t t y y 不相关),由质点的运动历史和当前位置不能得出下一步运动方向的任何信息。

这便是 “随机游动”的由来。

随机游动时间序列是典型的非平稳时间序列。

将(8.1)进行递归,可以得出010211y y y y t s s t t t t t t t +==++=+=∑-=----εεεε (8.2)。

如果初始值0y 已知,则可以计算出t y 的方差为2)(σt y Var t =。

由此看出随机游动在不同时点的方差与时间t 成正比,不是常数,因此随机游动是非平稳时间序列。

下图给出了随12机游动时间序列图:图8.1 随机游动时间序列图将随机游动(8.1)用滞后算子表示为t t y L ε=-)1( (8.3),滞后多项式为L L -=Φ1)(。

非平稳时间序列分析与预测技术

非平稳时间序列分析与预测技术

非平稳时间序列分析与预测技术随着科技的不断发展和数据需求的增加,时间序列分析与预测技术在各行各业中扮演着重要的角色。

在现实生活中,很多数据都呈现出非平稳的特性,这使得传统的平稳时间序列分析方法可能不再适用。

因此,研究非平稳时间序列的分析与预测技术显得尤为重要。

### 非平稳时间序列的特点非平稳时间序列与平稳时间序列不同,它的均值、方差或自相关性随时间变化而变化。

这使得非平稳时间序列更具挑战性,也更具有实际意义。

在实际数据中,非平稳时间序列更为常见,因此我们需要一些特定的技术来处理这类数据。

### 非平稳时间序列分析方法常见的非平稳时间序列分析方法包括趋势分解、差分法、移动平均法等。

趋势分解是将非平稳时间序列分解为趋势项、季节项和随机项,以便更好地分析其规律性。

差分法是通过对数据进行差分操作,将非平稳时间序列转化为平稳时间序列,再应用传统的时间序列分析方法。

移动平均法则是通过计算数据的移动平均值来减小数据的变异性,从而更好地揭示数据的规律。

### 非平稳时间序列预测技术在面对非平稳时间序列的预测问题时,我们可以借助传统的时间序列预测技术,如ARIMA模型、指数平滑法等。

ARIMA模型是一种常用的时间序列预测模型,可以有效地处理具有自回归和滞后项的数据。

指数平滑法则通过指数加权的方法,对数据进行平滑处理,从而得到预测结果。

这些方法在处理非平稳时间序列时都具有一定的效果,可以为我们提供准确的预测结果。

### 应用案例以股市数据为例,股市价格表现出明显的非平稳特性,但投资者又需要准确的价格预测来做出决策。

通过对股市数据进行趋势分解、差分和移动平均处理,再应用ARIMA模型或指数平滑法进行预测,投资者可以更好地把握市场趋势,做出明智的投资选择。

### 总结非平稳时间序列分析与预测技术在实际应用中具有广泛的应用前景,可以帮助我们更好地理解数据的本质,做出准确的预测。

通过不断研究和探索,我们可以不断完善非平稳时间序列分析与预测技术,为各行各业的数据分析提供更可靠的支持。

时间序列分析中的平稳性与非平稳性

时间序列分析中的平稳性与非平稳性

时间序列分析中的平稳性与非平稳性时间序列分析是一种用来研究时间数据的统计方法,它可以揭示出时间序列数据的模式和趋势,并预测未来的发展。

在进行时间序列分析时,我们经常会遇到平稳性和非平稳性的问题,本文将重点讨论这两个概念及其在时间序列分析中的重要性。

1. 什么是平稳性?平稳性是指时间序列在统计特性上具有不变性,即其均值和方差不随时间的推移而发生改变。

具体而言,平稳时间序列的均值在时间维度上是稳定的,方差也不会随时间变化而增加或减小。

此外,平稳时间序列的自协方差只与时间间隔有关,而与特定时间点无关。

2. 平稳性的判断方法为了判断一个时间序列是否具有平稳性,我们可以使用一些统计检验方法。

常见的方法有ADF检验(Augmented Dickey-Fuller test)、KPSS检验(Kwiatkowski-Phillips-Schmidt-Shin test)等。

ADF检验通常用于检验平稳性,其原假设是时间序列具有单位根(非平稳),如果检验结果拒绝了原假设,则可以得出时间序列是平稳的结论。

3. 非平稳性的表现形式非平稳性的时间序列可能会呈现出明显的趋势、季节性或周期性变化。

趋势是时间序列长期的、持续的上升或下降,季节性是指时间序列在特定时间点上出现的周期性波动,周期性是指时间序列存在长期的、不规则的上升或下降。

4. 非平稳性的处理方法如果时间序列是非平稳的,我们需要对其进行处理,以使其具备平稳性。

常见的处理方法有差分法、对数变换等。

差分法可以通过计算相邻时间点的差值来消除趋势和季节性,对数变换则可以通过对时间序列取对数来减少其波动性。

5. 平稳性的重要性平稳性在时间序列分析中非常重要,具有以下几个方面的意义: - 简化模型:平稳时间序列的统计特性稳定,可以简化模型的建立和预测。

- 降低误差:平稳时间序列的随机误差具有恒定的方差,使得模型的预测更准确。

- 提高可靠性:基于平稳时间序列建立的模型具有更好的可靠性和稳定性,可以更好地应对未来的变化。

平稳性和非平稳时间序列分析

平稳性和非平稳时间序列分析
19
五、误差修正模型(Error correction 误差修正模型 model, ECM) 误差修正模型是有协积关系的一阶单积 时间序列 I (1) 之间,包含一个反映长期均 衡对短期波动影响的“误差修正机制” 的,特定形式的差分方程模型。
20
两个一阶单积的非平稳时间序列 I (1) 之间的回 归可能导致虚假回归。运用差分变换虽然可以 克服时间序列非平稳的问题,但差分变换会使 得经济变量关系的长期信息丧失,还会导致回 归模型误差序列相关性,从而使得回归分析失 效或降低价值。 采用由简单的自回归分布滞后模型ARDL(1,1) 导出的误差修正模型,则可以克服这些问题, 不仅能够保留变量关系的长期动态信息,而且 还能够保证回归分析的有效性。
6
1、基本的DF检验方法 (1)检验时间序列{ Yt }是否属于最基本的 单位根过程,也就是随机游走过程 Yt = Yt −1 + ε t ,其中 ε t 为白噪声过程。 (2)检验思路 首先 Yt 服从如下的自回归模型 Yt = δYt −1 + ε t
7
如果其中 δ = 1 ,或者变换成如下的回归 模型 ∆Yt = λYt −1 + ε t 中的 λ = 0 ,那么时间序列{ Yt }就是最基 本的单位根过程 Yt = Yt −1 + ε t ,肯定是非平 稳的。 对上述差分模型中的显著性检验,就是 检验时间序列是否存在上述单位根问题。
9
2、扩展迪基-富勒检验(ADF) 随机游走过程只是最简单的一种单位根 过程,许多非平稳时间序列包含更复杂 的单位根过程,包含常数项、趋势项和 高阶差分项等。 为了使迪基-富勒检验适用单位根过程的 检验,必须作适当的扩展。
10
扩展的方法是分别采用下列模型:

平稳性和非平稳时间序列分析

平稳性和非平稳时间序列分析
进行了d次差分才变为平稳序列。这种经 过d次差分才平稳的时间序列,称为d阶
“单积”(Integrated)的,并记I为(d) 。
14
四、时间序列的协积性 (一)定义 如果一组时间序列都 X1, , X n 是同阶单积
的(I (d) ),并且存在向量 (1, , n )
使加权组合1X1 n X n 为平稳序列 (I (0)),则称这组时间序列为“协积的”
(Cointegrated),其中 (1, , n ) 称为
“协积向量”。
15
具有协积性的非平稳序列各自的非平稳 趋势和波动有相互抵消的作用,因此虽 然非平稳本身有导致回归分析失效的影 响,但如果模型中的几个非平稳时间序 列具有协积性,回归分析仍然可以是有 效的,不需要担心非平稳性会造成问题。
16
11
不少非平稳时间序列作差分变换得到的差分序 列都是平稳序列。对于这种非平稳时间序列的 差分序列,基于平稳数据的计量分析就是有效 的。
由于时间序列的差分序列与时间序列本身包含 许多一致的信息,差分与原变量之间常常可以 相互转换,因此利用差分数据进行计量分析也 是有意义的。
并不是所有非平稳时间序列的差分序列都是平 稳的。利用差分数据进行分析之前,必须对差 分序列进行平稳性检验。检验的方法是把单位 根检验用于时间序列的差分序列。
Yt Yt1 t ,其中 t 为白噪声过程。
(2)检验思路 首先 Yt 服从如下的自回归模型
Yt Yt 1 t
6
如果其中 1 ,或者变换成如下的回归 模型 Yt Yt 1 t
中的 0 ,那么时间序列{Yt }就是最基
本的单位根过程 Yt Yt1 t ,肯定是非平 稳的。 对上述差分模型中的显著性检验,就是 检验时间序列是否存在上述单位根问题。

非平稳时间序列的随机分析

非平稳时间序列的随机分析
Cramer分解定理为我们研究非平稳时间序列 奠定了理论基础。
第二节 差分运算
对于随机非平稳序列来说,我们难以直接找 到其变化发展规律,主要是因为非平稳序列通常 都具有某种不稳定的趋势。所以,分析非平稳序 列的第一步是采取有效的手段提取其趋势使序列 变为平稳序列,然后利用平稳序列分析方法来处 理。提取序列趋势的工具主要是差分运算。
kt
t
例如,若
xt a bt t
则对序列 xt 做一阶差分
xt b t
就提取了序列中的确定性趋势信息。
若 xt a bt ct2 t ,则对 xt 做二阶差分
2 x 2c 2
t
t
即可提取序列中的确定性趋势信息。
yt 01yt q 2yt q1 vt
式中,vt 为残差序列。如果我们基于历史信息: ytq , ytq1, 预测 yt 的值,则 vt 可以理解为预测
误差,记 Var(v ) 2(q) ,显然有 2(q) Var( y ) ,
t
v
v
t
且滞后期 q 越大,意味着预测的步长越长,预测
的误差就越大,即2v(q) 越大。
实际上,时间序列中的差分运算类似于函数的 求导运算,如果一个时间序列的确定性趋势是时间 的 d 次多项式,则 d 阶差分后的序列的确定性趋势 就一定是常数,将不会再蕴含时间趋势,从而实现 序列的平稳化。
d
d
tj
j k,
( k 为常数)
j0
而由Cramer分解定理知,方差齐性非平稳序 列都可以分解为如下形式:
y
)t
,说明序列发展的
随机性强,历史信息对现值估计效果差,这时称
序列 yt是随机序列。
例如,对于平稳的ARMA(p,q) 模型:

非平稳和季节时间序列模型分析方法

非平稳和季节时间序列模型分析方法

非平稳和季节时间序列模型分析方法时间序列分析是指对时间序列数据进行建模和预测的统计方法。

根据数据的特点,时间序列可以分为平稳序列和非平稳序列。

在实际应用中,很多时间序列数据并不满足平稳性的假设,因此需要对非平稳序列进行处理和分析。

非平稳序列分析的方法之一是差分法。

差分法的基本思想是通过对原始序列进行差分,得到一个新的序列,使其成为平稳序列。

差分法可以通过一阶差分、二阶差分等方法来实现。

一般来说,一阶差分可以用来处理线性趋势,而二阶差分可以用来处理二次趋势。

另一种非平稳序列分析的方法是趋势-季节分解法。

这种方法首先对时间序列进行趋势分解,将原始序列拆分为趋势、季节和残差三个部分。

然后对残差序列进行平稳性检验,判断是否需要进一步进行差分。

最后,可以利用拆分后的趋势和季节序列进行预测。

对于带有季节性的时间序列数据,还可以采用季节时间序列模型进行分析。

常见的季节时间序列模型包括季节自回归移动平均模型(SARIMA)和季节指数平滑模型。

这些模型可以对季节性进行建模,并利用历史数据进行预测。

总结起来,非平稳和季节时间序列的分析方法可以包括差分法、趋势-季节分解法和季节时间序列模型。

这些方法能够有效地处理和分析非平稳和带有季节性的时间序列数据,为实际应用提供了重要的参考。

时间序列分析是一种广泛应用于金融、经济、气象、销售、股票市场等领域的数据分析方法,它的目标是根据过去的数据模式,预测未来的趋势和行为。

在时间序列分析中,平稳性是一个重要的概念,指的是在时间序列的整个时间范围内,序列的统计特性不会随着时间的推移而发生显著的变化。

然而,在实际应用中,很多时间序列数据并不满足平稳性的假设,因此需要对非平稳序列进行处理和分析。

非平稳序列的特点是随着时间的推移,其均值、方差和协方差等统计特性会发生显著的变化。

这使得对其进行建模和预测变得困难。

因此,我们需要采取一些方法来处理非平稳序列,使其满足平稳性的假设。

差分法是一种常用的处理非平稳序列的方法。

非平稳时间序列分析

非平稳时间序列分析

非平稳时间序列分析1、首先画出时序图如下:t从时序图中看出有明显的递增趋势,而该序列是一直递增,不随季节波动,所以认为该序列不存在季节特征。

故对原序列做一阶差分,画出一阶差分后的时序图如下:difx140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10从中可以看到一阶差分后序列仍然带有明显的增长趋势,再做二阶差分:dif2x90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110做完二阶差分可以看到,数据的趋势已经消除,接下来对二阶差分后的序列进行194519501945 19551960196519701975198019851990199520001950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000检验:AutocorrelationsLag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 Std Error0 577.333 1.00000 | |********************| 01 -209.345 -.36261 | *******| . | 0.0712472 -52.915660 -.09166 | .**| . | 0.0800693 9.139195 0.01583 | . | . | 0.0806004 15.375892 0.02663 . |* . | 0.0806155 -59.441547 -.10296 .**| . | 0.0806606 -23.834489 -.04128 | . *| . | 0.0813247 100.285 0.17370 | . |*** | 0.0814318 -146.329 -.25346 | *****| . | 0.0832909 52.228658 0.09047 | . |**. | 0.08711810 21.008575 0.03639 | . |* . | 0.08759311 134.018 0.23213 | . |***** | 0.08767012 -181.531 -.31443 | ******| . | 0.09073613 23.268470 0.04030 | . |* . | 0.09610814 71.112195 0.12317 | . |** . | 0.09619415 -105.621 -.18295 | ****| . | 0.09699116 37.591996 0.06511 . |* . | 0.09872717 23.031506 0.03989 | . |* . | 0.09894518 45.654745 0.07908 | . |** . | 0.09902719 -101.320 -.17550 | ****| . | 0.09934720 127.607 0.22103 | . |**** | 0.10090821 -61.519663 -.10656 | . **| . | 0.10333722 35.825317 0.06205 | . |* . | 0.10389323 -93.627333 -.16217 | .***| . | 0.10408124 55.451208 0.09605 | . |** . |从其自相关图中可以看出二阶差分后的序列自相关系数很快衰减为零,且都在两倍标准差范围之内,所以认为平稳,白噪声检验结果:Autocorrelation Check for White NoiseTo Chi- Pr >Lag Square DF ChiSq------------------- Autocorrelations -------------------6 30.70 6 <.0001 -0.363 -0.092 0.016 0.027 -0.103 -0.04112 84.54 12 <.0001 0.174 -0.253 0.090 0.036 0.232 -0.31418 97.98 18 <.0001 0.040 0.123 -0.183 0.065 0.040 0.07924 126.99 24 <.0001 -0.175 0.221 -0.107 0.062 -0.162 0.096P 值都小于 0.05 ,认为不是白噪声。

非平稳时序数据时间序列分析方法研究

非平稳时序数据时间序列分析方法研究

非平稳时序数据时间序列分析方法研究时间序列分析是一种重要的数据分析方法,它可以对时间序列数据进行建模、预测和分析。

然而在实际应用中,我们往往会遇到非平稳的时间序列数据。

非平稳时间序列数据的特点是其均值、方差等统计特征会随时间变化而变化,这给分析和预测带来了一定的困难。

本文将介绍非平稳时间序列数据的常见特征、分析方法和预测方法。

一、非平稳时间序列数据的常见特征1. 长期趋势:非平稳时间序列数据在较长时间范围内往往具有明显的上升或下降趋势。

2. 季节性变化:非平稳时间序列数据往往具有周期性的季节性变化,如气温、雨量等。

3. 波动性变化:非平稳时间序列数据在短期内往往呈现出较大的波动性,如股票价格、汇率等。

二、非平稳时间序列数据的分析方法1. 差分法:差分法是最常用的处理非平稳时间序列数据的方法,其思想在于将时间序列数据的差分转换为平稳时间序列数据再进行建模和分析。

差分法有一阶差分法、二阶差分法等多种,根据具体问题选择不同的差分方法。

2. 增长率法:增长率法是将时间序列数据的增长率序列作为新的时间序列数据来建模和分析,常用于处理长期趋势明显的非平稳时间序列数据。

3. 滑动平均法:滑动平均法是通过计算一定时间范围内数据的平均值来平滑时间序列数据并去除噪声干扰,常用于处理周期性和波动性明显的非平稳时间序列数据。

三、非平稳时间序列数据的预测方法1. ARIMA模型:ARIMA模型是传统的时间序列建模技术之一,其通过差分法将非平稳时间序列数据转化为平稳时间序列数据后建立自回归模型、移动平均模型和差分模型,用于进行预测。

2. GARCH模型:GARCH模型是通过对时间序列数据的方差进行建模并考虑异方差性差异来进行预测的一种方法,常用于处理波动性明显的非平稳时间序列数据。

3. ARCH模型:ARCH模型是GARCH模型的前身,其只考虑时间序列数据的方差进行建模,适用于处理时间序列数据的波动性变化。

总而言之,非平稳时间序列数据分析方法和预测方法的选择需要根据具体问题来确定。

第七章非平稳时间序列分析

第七章非平稳时间序列分析
精品课件
H0:时间序列是无趋势的; H1:序列包含趋势。
1、首先将时间序列按顺序分成 M 段,计算每段样本
数据的样本均值和样本方差,得到均值序列和方差序列:
( y1,
, yM ) 和 (12 ,
,
2 M
)

2、计算均值序列(或方差序列)的逆序总数
A
M 1
Ai

i 1
3、计算检验统计量。
在原假设下,序列为非趋势的,数据围绕水平线(常
第七章 非平稳时间序列分析
▪ 为什么研究非平稳时间序列?
精品课件
第一节 非平稳时间序列的特征
▪ 一、非平稳时间序列的概念
要判断一个序列是否是平稳的,只需判断下列三 个条件是否同时成立:
E(Yt )
Var(Yt ) 2
Cov(Yt,Ys ) rt s
(7.2)
上述三个条件中只要有一个不成立,就认为是
精品课件
二、基于相关图的平稳性检验法
▪ 一个平稳序列的自相关函数要么是截尾的, 要么是按照指数快速衰减到零,也就是说, 较长时间间隔后的自相关函数应该趋近于 0。而单位根过程的序列自相关函数没有 截尾现象,衰减是很缓慢的。
精品课件
▪ 模拟随机游走的自相关函数; ▪ 上证指数自相关函数; ▪ 上证指数收益率的自相关函数;
数)上下波动,则逆序的总数处于不大不小的适中位置;
若逆序数很小或过大,则支持备择假设,过小是趋势随时
间下降,过大是趋势随时间精品增课件加。
A 1 E(A) Z 2
D(A)
▪ 近似于标准正态分布
E(A) 1M(M1) 4
M(2M23M5)
精品D课(件A)
72
四、游程检验(略)

SAS学习系列38. 时间序列分析Ⅱ—非平稳时间序列的确定性分析

SAS学习系列38. 时间序列分析Ⅱ—非平稳时间序列的确定性分析

38. 非平稳时间序列的确定性分析实际中大多数时间序列是非平稳的,对非平稳时间序列的分析方法主要有两类:确定性分析和随机性分析。

确定性分析——提取非平稳时间序列明显的规律性(长期趋势、季节性变化、周期性),目的是:①克服其它因素影响,单纯测度出单一确定因素对序列的影响;②推断各种确定性因素彼此之间相互作用关系及它们对序列的综合影响。

随机性分析——分析非平稳时间序列由随机因素导致的随机波动性。

(一)趋势分析有的时间序列具有明显的长期趋势,趋势分析就是要找出并利用这种趋势对序列发展做出合理预测。

1. 趋势拟合法即把时间作为自变量,相应的序列观察值作为因变量,建立序列值随时间变化的回归模型。

分为线性拟合和非线性拟合。

2. 平滑法利用修匀技术,消弱短期随机波动对序列的影响,使序列平滑化,从而显示出长期趋势变化的规律。

(1)移动平均、加权移动平均已知序列值x1, …, x t-1, 预测x t的值为12ˆt t t n t x x x x n---+++= 称为n 期移动平均值,n 的选取带有一定的经验性,n 过长或过短,各有利弊,也可以根据均方误差来选取。

一般最新数据更能反映序列变化的趋势。

因此,要突出新数据的作用,可采用加权移动平均法:1122ˆt t n t n tw x x x xn ωωω---+++= 其中,111ni i n ω==∑. (2)二次移动平均对应线性趋势,移动平均拟合值有滞后性,可以采用二次移动平均加以改进:对移动平均值再做一次移动平均。

(3)指数平滑法指数平滑法是一种对过去观察值加权平均的特殊形式,观测值时间越远,其权数呈指数下降。

一次指数平滑法可用于对时间序列进行修匀,以消除随机波动。

预测公式为:1ˆˆ(1)t t t sx s αα-=+- 其中α∈(0, 1)为平滑常数,ˆt s 为第t 期平滑预测值,初始预测值0ˆs(通常取最初几个实测数据的均值)。

一般来说,时间序列有较大的随机波动时,宜选择较大的α值,以便能较快跟上近期的变化;也可以利用预测误差选择。

平稳性和非平稳时间序列分析

平稳性和非平稳时间序列分析

28
随机游走一直围绕最初出发点为中心前后左右移动,但随着游走 时间次数增加,围绕最初出发点的来回的距离(方差)越来越远。
29

随机游走模型。 它最早于1905年7月由卡尔〃皮尔逊(Karl Pearson)在 《自然》杂志上作为一个问题提出: 假如有一个醉汉醉得非常严重,完全丧失方向感,把他放 在荒郊野外,一段时间之后再去找他,在什么地方找到他 的概率最大呢?

奖级
中奖条件 红球 蓝球
说明
单注奖金
一等奖
●●● ●●●

当奖池资金低于 1亿元时,奖金 总额为当期高等 选6+1中6+1 奖奖金的70%与 奖池中累积的奖 金之和。
---------时间序列的动态特性 时间序列模型:时间序列各观测值之间的关系。
从系统的观点来看,某一时刻进入系统的输入 对系统后继行为的影响
与t无关,与 有关的有限值
60
ARMA(p,q)模型的平稳性条件

宽平稳时间序列(week stationary)—指序列的 统计性质只要保证序列的二阶矩平稳就能保证序 列的主要性质近似稳定。
5
时间序列的平稳性定义
如果在任取时间 t 、 s 和 k 时,时间序列 X t 满足如下三个条件:
EXt2
EX t
E( X t t )( X s s ) E( X k k )( X k st k st )
t 1 j t j

类似
阶数增加,越来越复杂!
53
一般情况?
cov( zt , zt ) E zt mt zt mt E zt zt
E (at 1at 1 j at j )(at 1at 1 j at j )

非平稳和季节时间序列模型分析方法

非平稳和季节时间序列模型分析方法

非平稳和季节时间序列模型分析方法非平稳时间序列是指在时间序列数据中,均值、方差、自相关函数等统计性质随时间变化的数据。

这种时间序列模型常常由于其自身的特性而较难进行分析和预测。

不过,季节时间序列是非平稳时间序列的一种特殊类型,其特点是在数据中存在明显的季节性变化。

对于这种时间序列,可以采用不同的分析方法进行预测和建模。

一、非平稳时间序列分析方法:1.差分法:差分法是通过对序列数据进行相邻时间点的差分,使得序列转变为平稳时间序列。

差分法有一阶差分、二阶差分等。

通过差分法可以使得序列的单位根等统计性质得到稳定。

2.滑动平均法:滑动平均法基于序列的平均值,将序列转化为平稳时间序列。

该方法通过计算序列的滑动平均值来消除序列的变化趋势。

3.指数平滑法:指数平滑法是一种通过加权平均的方法来消除序列的变化趋势。

指数平滑法可以根据实际情况选择不同的权重系数来进行计算。

4.回归分析:对于非平稳时间序列,通过引入自变量,建立回归模型来描述序列的变化。

回归分析可以通过多个变量的关系来解释序列的变动。

二、季节时间序列分析方法:1.季节分解法:季节分解法是将季节时间序列分解为长期趋势、季节性和随机成分的组合。

这种方法可以将季节性的变动独立出来,从而更好地进行建模和预测。

2.季节移动平均法:季节移动平均法通过计算时间序列在相邻季节的平均值,消除序列的季节性变动。

这种方法可以降低季节时间序列的变化趋势。

3.季节差分法:季节差分法是将季节时间序列转化为其相邻时间点的差分。

通过差分法可以去除序列的季节性变化,使得序列更为平稳。

4.季节ARIMA模型:季节ARIMA模型是一种结合了季节差分和ARIMA 模型的方法。

该方法可以同时考虑序列的季节性变化和非平稳性,通过建立ARIMA模型来进行预测和分析。

以上所述是常用的非平稳和季节时间序列模型分析方法。

根据实际情况,我们可以选择合适的方法来分析和预测时间序列数据,以提高分析的准确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

非平稳时间序列分析1、首先画出时序图如下:从时序图中看出有明显的递增趋势,而该序列是一直递增,不随季节波动,所以认为该序列不存在季节特征。

故对原序列做一阶差分,画出一阶差分后的时序图如下:从中可以看到一阶差分后序列仍然带有明显的增长趋势,再做二阶差分:做完二阶差分可以看到,数据的趋势已经消除,接下来对二阶差分后的序列进行检验:AutocorrelationsLag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 Std Error0 577.333 1.00000 | |********************| 01 -209.345 -.36261 | *******| . | 0.0712472 -52.915660 -.09166 | .**| . | 0.0800693 9.139195 0.01583 | . | . | 0.0806004 15.375892 0.02663 | . |* . | 0.0806155 -59.441547 -.10296 | .**| . | 0.0806606 -23.834489 -.04128 | . *| . | 0.0813247 100.285 0.17370 | . |*** | 0.0814318 -146.329 -.25346 | *****| . | 0.0832909 52.228658 0.09047 | . |**. | 0.08711810 21.008575 0.03639 | . |* . | 0.08759311 134.018 0.23213 | . |***** | 0.08767012 -181.531 -.31443 | ******| . | 0.09073613 23.268470 0.04030 | . |* . | 0.09610814 71.112195 0.12317 | . |** . | 0.09619415 -105.621 -.18295 | ****| . | 0.09699116 37.591996 0.06511 | . |* . | 0.09872717 23.031506 0.03989 | . |* . | 0.09894518 45.654745 0.07908 | . |** . | 0.09902719 -101.320 -.17550 | ****| . | 0.09934720 127.607 0.22103 | . |**** | 0.10090821 -61.519663 -.10656 | . **| . | 0.10333722 35.825317 0.06205 | . |* . | 0.10389323 -93.627333 -.16217 | .***| . | 0.10408124 55.451208 0.09605 | . |** . |从其自相关图中可以看出二阶差分后的序列自相关系数很快衰减为零,且都在两倍标准差范围之内,所以认为平稳,白噪声检验结果:Autocorrelation Check for White NoiseTo Chi- Pr >Lag Square DF ChiSq--------------------Autocorrelations--------------------6 30.70 6 <.0001 -0.363 -0.092 0.016 0.027 -0.103 -0.04112 84.54 12 <.0001 0.174 -0.253 0.090 0.036 0.232 -0.31418 97.98 18 <.0001 0.040 0.123 -0.183 0.065 0.040 0.07924 126.99 24 <.0001 -0.175 0.221 -0.107 0.062 -0.162 0.096P值都小于0.05,认为不是白噪声。

接下来对模型进行定阶:Minimum Information CriterionLags MA 0 MA 1 MA 2 MA 3 MA 4 MA 5AR 0 6.356905 6.141831 6.149838 6.175552 6.191564 6.203649AR 1 6.236922 6.168121 6.15152 6.172674 6.186962 6.193905AR 2 6.193215 6.180818 6.177337 6.197407 6.203224 6.207239AR 3 6.19748 6.203081 6.202837 6.221083 6.215313 6.188712AR 4 6.220313 6.22949 6.227445 6.241883 6.162837 6.189358AR 5 6.222131 6.236739 6.244025 6.264968 6.185963 6.210425Error series model: AR(10)Minimum Table Value: BIC(0,1) = 6.141831从sas的定阶结果来看,BIC(0,1)取得最小值,所以选取MA(1)模型,接下来对模型进行拟合:得到模型为:模型检验结果为:Conditional Least Squares EstimationStandard ApproxParameter Estimate Error t Value Pr > |t| LagMU 0.40286 0.16900 2.38 0.0181 0MA1,1 0.89063 0.03266 27.27 <.0001 1检验结果显示都显著。

接下来利用此模型对1997年的四个季度进行预测:Forecasts for variable x时间Forecast Std Error 95% Confidence Limits1997一季度7759.2061 31.2276 7698.0011 7820.41121997二季度7842.6135 40.3048 7763.6175 7921.60951997三季度7926.4237 48.9444 7830.4945 8022.35301997四季度8010.6368 57.4356 7898.0651 8123.2085预测图:本题代码data aa;input x@@;difx=dif(x);dif2x=dif(difx);t=intnx('quarter','1jan1947'd,_n_-1);format t year4.;cards;227.8 231.7 236.1 246.3 252.6 259.9 266.8 268.1 263.0259.5 261.2 258.9 269.6 279.3 296.9 308.4 323.2 331.1337.9 342.3 345.3 345.9 351.7 364.2 371.0 374.5 373.7368.7 368.4 368.7 373.4 381.9 394.8 403.1 411.4 417.8420.5 426.0 430.8 439.2 448.1 450.1 457.2 451.7 444.4448.6 461.8 475.0 499.0 512.0 512.5 516.9 530.3 529.2532.2 527.3 531.8 542.4 553.2 566.3 579.0 586.9 594.1597.7 606.8 615.3 628.2 637.5 654.5 663.4 674.3679.9701.2 713.9 730.4 752.6 775.6 785.2 798.6 812.5 822.2828.2 844.7 861.2 886.5 910.8 926.0 943.6 966.3 979.9999.3 1008.0 1020.3 1035.7 1053.8 1058.4 1104.2 1124.9 1144.41158.8 1198.5 1231.8 1256.7 1297.0 1347.9 1379.4 1404.4 1449.71463.9 1496.8 1526.4 1563.2 1571.3 1608.3 1670.6 1725.3 1783.51814.0 1847.9 1899.0 1954.5 2026.4 2088.7 2120.4 2166.8 2293.72356.2 2437.0 2491.4 2552.9 2629.7 2687.5 2761.7 2756.1 2818.82941.5 3076.6 3105.4 3197.7 3222.8 3221.0 3270.3 3287.8 3323.83388.2 3501.0 3596.8 3700.3 3824.4 3911.3 3975.6 4022.7 4100.44158.7 4238.8 4306.2 4376.6 4399.4 4455.8 4508.5 4573.1 4655.54731.4 4845.2 4914.5 5013.7 5105.3 5217.1 5329.2 5423.9 5501.35557.0 5681.4 5767.8 5796.8 5813.6 5849.0 5904.5 5959.4 6016.66138.3 6212.2 6281.1 6390.5 6458.4 6512.3 6584.8 6684.5 6773.66876.3 6977.6 7062.2 7140.5 7202.4 7293.4 7344.3 7426.6 7537.57593.6;proc gplot;plot x*t difx*t dif2x*t;symbol c=black i=join v=star;run;proc arima;identify var=x(1,1) nlag=8minic p=(0:5) q=(0:5);estimate q=1;forecast lead=5id=t interval=quarter out=results;run;proc gplot data=results;plot x*t=1 forecast*t=2 l95*t=3 u95*t=3/overlay;symbol1c=black i=none v=star;symbol2c=red i=join v=none;symbol c=green i=join v=none l=32;run;2、首先画出时序图:从时序图中可以看出序列存在递增趋势,而且存在季节性特征,接下来对序列进行一阶差分,画出差分后的时序图:可以看到趋势已经消除,但季节性仍存在,对其进行检验:AutocorrelationsLag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 Std Error0 16681.747 1.00000 | |********************| 01 -3098.631 -.18575 | ****| . | 0.0495682 49.867617 0.00299 | . | . | 0.0512503 -4342.304 -.26030 | *****| . | 0.0512504 -1177.801 -.07060 | .*| . | 0.0544025 3921.886 0.23510 | . |***** | 0.0546266 -258.497 -.01550 | . | . | 0.0570587 3392.968 0.20339 | . |**** | 0.0570698 -1407.632 -.08438 | **| . | 0.0588239 -4040.701 -.24222 | *****| . | 0.05912010 -1262.123 -.07566 | **| . | 0.06151011 -1890.805 -.11335 | **| . | 0.06173812 10239.264 0.61380 | . |************ | 0.06224713 -2555.185 -.15317 | ***| . | 0.07567114 -784.895 -.04705 | . *| . | 0.07642915 -4767.938 -.28582 | ******| . | 0.07650016 -1583.636 -.09493 | .**| . | 0.07908017 4107.732 0.24624 | . |***** | 0.07936018 -931.403 -.05583 | . *| . | 0.08121520 -2035.458 -.12202 | .**| . | 0.08291221 -3762.045 -.22552 | *****| . | 0.08335222 -868.587 -.05207 | . *| . | 0.08483823 -1587.006 -.09513 | .**| . | 0.08491624 9517.308 0.57052 | . |*********** | 0.085178从自相关系数图中可以看到,在其延迟12阶时,相关系数变大,说明序列存在明显季节性特征,对序列进行12步差分,时序图如下:检验结果为:Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 Std Error0 12557.531 1.00000 | |********************| 01 -1734.813 -.13815 | ***| . | 0.0503152 2375.783 0.18919 | . |**** | 0.0512673 279.359 0.02225 | . | . | 0.0530054 759.808 0.06051 | . |*. | 0.0530285 138.150 0.01100 | . | . | 0.0532036 655.488 0.05220 | . |*. | 0.0532097 -1028.202 -.08188 | **| . | 0.0533388 533.734 0.04250 | . |*. | 0.0536559 -158.605 -.01263 | . | . | 0.05374110 -1606.237 -.12791 | ***| . | 0.05374812 -5698.457 -.45379 | *********| . | 0.05473013 521.120 0.04150 | . |* . | 0.06354514 -509.219 -.04055 | . *| . | 0.06361415 -1020.660 -.08128 | .**| . | 0.06367916 -730.212 -.05815 | . *| . | 0.06394117 429.071 0.03417 | . |* . | 0.06407518 -825.235 -.06572 | . *| . | 0.06412119 592.947 0.04722 | . |* . | 0.06429220 -565.282 -.04502 | . *| . | 0.06437921 206.681 0.01646 | . | . | 0.06445922 -117.966 -.00939 | . | . | 0.06447023 774.691 0.06169 | . |* . | 0.06447324 -929.421 -.07401 | . *| . | 0.064622平稳性检验显示该序列相关系数迅速衰减为0,且在两倍标准差之内,序列已经平稳,接下来进行白噪声检验:Autocorrelation Check for White NoiseTo Chi- Pr >Lag Square DF ChiSq--------------------Autocorrelations--------------------6 24.69 6 0.0004 -0.138 0.189 0.022 0.061 0.011 0.05212 121.08 12 <.0001 -0.082 0.043 -0.013 -0.128 0.068 -0.45418 128.87 18 <.0001 0.041 -0.041 -0.081 -0.058 0.034 -0.06624 134.72 24 <.0001 0.047 -0.045 0.016 -0.009 0.062 -0.074p值均小于0.05,该序列不是白噪声。

相关文档
最新文档