第6章 同步发电机的运行原理
第六章-同步发电机
同步电机知识点(整理:王子铟、包振)1.同步电机概述:主要用于发电机,也可用于电动机,其定子结构与异步电机相同,区别主要在转子侧。
同步电机的转子装有磁极,通入直流电流励磁,具有确定的极性。
“同步”的体现:转子旋转的速度必须严格和定子磁场同步。
2.同步电机的转速与负载的大小无关,计算公式为pfn 60=,当同步电机并入无穷大电网时,其转速固定,无法通过各类调节来改变。
3.同步电机的结构和分类:同步电机有旋转电枢式(磁极装在定子上,用于小容量同步电机中)和旋转磁极式(磁极装在转子上,为大中型同步电机的基本形式)两种,主要以旋转磁极式为主。
旋转磁极式同步电机又分为隐极式和凸极式两种隐极式电机的代表:汽轮发电机;凸极式代表:水轮发电机。
4.同步发电机的额定值①额定电压UN (V 、kV ):额定运行时定子三相绕组上的线电压。
②额定电流IN (A 、kA ):额定运行时流过定子绕组的线电流。
③额定功率因数cos φN:额定运行时输出有功功率和视在功率比值。
④额定效率ηN :额定运行时的效率⑤额定容量S N =NN I U 3对发电机是出线端额定视在功率,单位为VA ,kVA 或MVA 对调相机是出线端额定无功功率,单位为var ,kvar 或Mvar ⑥额定功率P N对发电机是额定输出有功电功率P N =S N cos ϕN =N N I U 3cos ϕN对电动机是轴上输出额定机械功率P N =S N cos ϕN ηN =N N I U 3cos ϕN ηN5.同步发电机的空载运行(1)过程建立:转子励磁绕组通以直流励磁电流→形成静止磁场→转子由原动机拖动以同步转速旋转→静止磁场跟随转子一起转动,形成运动的磁场→交变的磁场在定子的三相对称绕组中感应出电动势。
因为定子电枢绕组开路,电枢电流为零,磁场全部由转子电流建立,因此漏磁通仅与转子励磁绕组交链。
感应电动势的计算:若主磁场B0在气隙中正弦分布,且以同步速n1旋转,则在定子绕组中产生对称三相电动势:︒∙︒∙︒∙∠=∠=∠=240,120,0000000E E E E E E C B A 有效值:0111044.4φN k N f E =(601pn f =)隐极机的励磁磁动势是矩形波,凸极机的励磁磁动势是阶梯波。
电机学第六章同步电机
交流主励磁机(100Hz)
~
自励 恒压器
可控 整流器
~
不可控 整流器
主发电机 ~
电流互感器
电压互感器
静止整流器励磁
电压 调整器
优点:运行、维护方便,没有直流励磁机,使励磁容量得以提高,因而在大 容量汽轮发电机 中得到了广泛的应用。
缺点:存在电刷、集电环的滑动接触(薄弱环节)。
• 自励式 主发电机发出的功率经静止整流器整流为直流,然后通过电刷和集电环通入到主发电机的励磁 绕组中。
当ψ角为不同值的电枢反应
Ψ=00 Ψ=900 Ψ=-900 00<Ψ<900 -900<Ψ<00
位置 q轴 d轴 d轴 d、q轴 d、q轴
电枢反应性质 交轴
直、去 直、增 交、直去 交、直增
负载性质 R L C
R、L R、C
励磁磁动势和电枢磁动势的区别
基波波形
幅值大小
位置
转速
励磁 磁动势
正弦波
恒定,由励磁电流决 由转子位置决定 由原动机的转速
Z
N
ns S
B
X
Fa
Y n s A相轴线 C Faq
电流超前电动势的向量图
FaqFacoψs 交磁
Fad Fa sin ψ 与Ff同 向,对 d轴磁场有加 强作用称之为助磁。
直轴电枢反应的影响 • 电机单机运行时,直轴电枢反应将直接影响端电压的大小。去磁时,端电压降低;助磁时 端电压升高。
• 并网运行时,直轴电枢反应影响电机输出的无功功率。
D2 5 ~ 7 L2
• 励磁绕组为集中绕组
• 立式结构
• 阻尼绕组
水轮发电机的转子结构
电机学 第6章 同步电机 - 2
转子装上阻尼绕组后,A相电流的表达式为:
iA
1 2E0[ X d
( 1 Xd
1 Xd
t
)e Td
( 1 X d
1 Xd
t
)e Td ]cos(t
0 )
2E0 X d
t
cos0e Ta
由于阻尼绕组的“屏蔽作用”,励磁绕组中直流感应电流的 初始幅值和峰值,将比无阻尼绕组时稍小。
5.同步补偿机
同步补偿机: 实质是一台不带任何机械负载 、专门用以改 善功率因数的同步电动机。
工作原理(按电动机惯例叙述) 正常励磁时,电枢电流很小,接近0 过励磁时,电流超前电压,即补偿机从电网 吸收超前的无功 欠励磁时,电流滞后电压,即补偿机从电网 吸收滞后的无功
过励补偿的工作原理
电力系统中大部分复杂为感性的,从电网吸收 一定的滞后无功,使电网功率因数很低。传输 一定功率时,电流偏大,线路损耗增加。
2E0
sin
t
e Ta
Xd
2. 无阻尼绕组时突然短路电流的表达式
突然短路时,电枢的短路电流中有交流分量和直流分量两部 分,即:
i i i
2E0[
1 Xd
( 1 Xd
1 Xd
t
)e Td ]sin(t )
2E0
sin
t
e Ta
Xd
突然短路时,定、转子电流的对应关系:
➢ 励磁电流的稳态分量If0将产生稳态短路电流;励磁电流的直 流瞬态分量△if=,与定子的瞬态交流分量相对应,两者均以 瞬态时间常数Td'衰减;励磁电流中的交流分量,则与定子 电流中的直流自由分量相对应,两者均以电枢时间常数Ta衰 减。
同步电机的基本工作原理与结构
转子
转子铁心:采用整块的含铬、镍和钼的合金钢锻成 励磁绕组:铜线制成 护环:保护励磁绕组受离心力时不甩出 中心环:支持护环,阻止励磁绕组轴向移动 滑环:引励磁电流经电刷、滑环进入励磁绕组
第二页,编辑于星期六:二十点 四分。
第6章 同步电机
转子
C A
定子绕组
B
900
q轴 U轴
F f 与Fa之间夹
角为 900
V2 W1
记Fa为Fad
d轴
Fa N
Ff
U1
电枢反应性质:
直轴助磁电枢反应
V轴
W2
S U2
V1
W轴
第二十三页,编辑于星期六:二十点 四分。
第6章 同步电机
6.3.4 一般情况下的电枢反应
空枢载 电电流动势角I E,超0 前电
00 900
q轴 U轴
引进600MW汽轮发电机
第十页,编辑于星期六:二十点 四分。
第6章 同步电机
国产300MW汽轮发电机
第十一页,编辑于星期六:二十点 四分。
第6章 同步电机
国产200MW汽轮发电机定子
第十二页,编辑于星期六:二十点 四分。
第6章 同步电机
国产200MW汽轮发电机定子铁心
第十三页,编辑于星期六:二十点 四分。
同步电动机、柴油发电机和调相机一般作成凸极式。
第十七页,编辑于星期六:二十点 四分。
第6章 同步电机
6.1.3 同步电机的额定值
额定容量SN 额定功率PN
指电机额定运行时,输出功率的保证值。同步发电机是指输出 的额定视在功率或有功功率,单位是KVA或KW。电动机额定容 量是指额定条件下转轴上输出的机械功率,单位是KW。调相机 用KVA或Kvar表示。
经典之-发电机同期并列原理详解
第六章同期系统将一台单独运行的发电机投入到运行中的电力系统参加并列运行的操作,称为发电机的并列操作。
同步发电机的并列操作,必须按照准同期方法或自同期方法进行。
否则,盲目地将发电机并入系统,将会出现冲击电流,引起系统振荡,甚至会发生事故、造成设备损坏。
准同期并列操作,就是将待并发电机升至额定转速和额定电压后,满足以下四项准同期条件时,操作同期点断路器合闸,使发电机并网。
(!)发电机电压相序与系统电压相序相同;(")发电机电压与并列点系统电压相等;(#)发电机的频率与系统的频率基本相等;($)合闸瞬间发电机电压相位与系统电压相位相同。
自同期并列操作,就是将发电机升速至额定转速后,在未加励磁的情况下合闸,将发电机并入系统,随即供给励磁电流,由系统将发电机拉入同步。
自同期法的优点:!合闸迅速,自同期一般只需要几分钟就能完成,在系统急需增加功率的事故情况下,对系统稳定具有特别重要的意义;"操作简便,易于实现操作自动化。
因为在发电机未加励磁电流时合闸并网,不存在准同期条件的限制,不存在准同期法可能出现的问题;#在系统电压和频率因故降低至不能使用难同期法并列操作时,自同期方法将发电机投入系统提供了可能性。
自同期法的缺点是:未加励磁的发电机合闸并入系统瞬间,相当一个大容量的电感线圈接入系统,必然会产生冲击电流,导致局部系统电压瞬间下降。
一般自同期法使用于水轮发电机及发电机—变压器组接线方式的汽轮发电机。
在采用自同期法实施并列前,应经计算核对。
发电厂发电机的并列操作断路器,称为同期点。
除了发电机的出口断路器之外在一次电路中,凡有可能与发电机主回路串联后与系统(或另一电源)之间构成唯一断路点的断路器,均可作为同期点。
例如,发电机—变压器组的高压侧断路器,发电机—三绕组变压器组的各侧断路器,高压母线联络断路器及旁路断-可编辑修改-!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!— —#"!+!8 + 8 + +路器,都可作为同期点。
同步发电机的运行原理概要
二、凸极同步发电机
图6.11 凸极同步电机的磁路 (a)直轴;(b)交轴
二、凸极同步发电机
二、凸极同步发电机
现在只讨论磁路不饱和情况。
同步发电机内的电磁关系如下:
If
Ff
0
E0
I
Id Iq
Fad
Faq
ad
aq
E ad
E aq
U Ira
E
二、凸极同步发电机
三、电枢反应
1、ψ=0° 时的电枢反应
F
Fa ( Faq )
1 d轴
E0
I
Ff
B0 (0 )
时空矢量图
三、电枢反应
1、ψ=0° 时的电枢反应 电枢磁势Fa滞 后励磁磁势Ff 90°,合成磁 势Fδ的大小略 有增加,分布 滞后励磁磁势 Ff一个锐角, 此时电枢反应 性质为交轴电 枢反应。
三、电枢反应
一、空载运行时的主磁通
从图可见,主极 磁通分成主磁通 Φ 0和漏磁通Φ fσ两 部分,前者通过 气隙并与定子绕 组相交链,后者 不通过气隙,仅 与励磁绕组相交 链。
0
f
一、空载运行时的主磁通
空载时: I=0 ,If≠0 , n=nN
空载时发电机内部电磁关系
0 E0 4.44 fNkN 10 I f Ff I f N f f 只增加磁极部分
同步发电机在对称负载下稳定运行时,维 持转速(频率)和功率因数为常数的条件下, 发电机的端电压U、负载电流I、励磁电 流If是3个主要的运行参数,它们都可以 在运行中被测量。 它们之间互有联系,当保持其中一个量为 常数,另外两个量之间的函数关系称为运 行特性。
同步发电机的工作原理
同步发电机的工作原理
同步发电机是一种常用于发电的电机,其工作原理基于电磁感应和电流激励的相互作用。
首先,同步发电机的转子由直流激励线圈和交流绕组组成。
直流激励线圈通过外部直流电源提供直流电流,形成一个磁场。
交流绕组则与电网相连,接受电网中的电压。
当同步发电机的转子旋转时,直流激励线圈产生的磁场也随之旋转。
这个旋转的磁场将与交流绕组中的电流相互作用,产生电磁感应力。
根据法拉第电磁感应定律,电磁感应力会导致交流绕组中的电流发生变化。
这个电流变化又会产生额外的磁场,与直流激励线圈产生的磁场叠加在一起。
如果两者的磁场方向一致,它们将相互增强,使得感应力增大。
反之,如果磁场方向相反,它们将相互抵消,使得感应力减小。
当感应力达到一个平衡时,同步发电机的转速将与电网的频率完全同步。
这是因为电网的频率是固定的,而同步发电机的旋转速度取决于直流激励线圈提供的直流电源电流。
因此,在感应力的作用下,同步发电机的转子将转向与电网频率相同的速度。
最后,同步发电机通过交流绕组将同步旋转的磁场转化为交流电能,输出给电网。
这样,同步发电机就实现了将机械能转化为电能的功能。
总结起来,同步发电机的工作原理是通过电磁感应力和电流激励的相互作用,使得转子转速与电网频率同步,并将机械能转化为电能输出到电网中。
06第六章 同步电机
= U cosψ 0 cosϕ + U sinψ 0 sin ϕ + IRa cosψ 0 + IX d sinψ 0
cosψ 0 =
(U cosϕ + IRa )2 + (U sin ϕ + IX q )2
E0 =
U cosϕ + IRa
sinψ 0 =
(U cosϕ + IRa )2 + (U sinϕ + IX q )2
得证第一式
U sin ϕ + IX q
代入前式得
(U cosϕ + IRa )2 + (U sinϕ + IX d )(U sinϕ + IX q ) (U cosϕ + IRa )2 + (U sin ϕ + IX q )2
IR IX cosϕ + a + sin ϕ + d U U
∗ 2 a 2 ∗ d ∗ q ∗ 2 a ∗ d ∗ 2 q ∗ a ∗2 a ∗ q ∗ d ∗ q ∗ 2 a ∗ 2 q
2 IX q IR sin ϕ + cosϕ + a + U U
∗ ∗ d Xq
)
得证第二式
∗ ∗ ∗ = Xq = Xs ,所以上两式简化为 对于隐极同步发电机,由于 X d = X q = X s 、 X d
E0 =
∗ E0 =
(U cosϕ + IRa )2 + (U sin ϕ + IX s )2
(U
∗
∗ cosϕ + Ra
) + (U
永磁同步发电机的工作原理
永磁同步发电机的工作原理一、基本原理从6.2节可见,永磁同步发电机是由定子与转子两部分组成,定子、转子之间有气隙。
永磁同步发电机的定子与普通交流电机相同,转子采用永磁材料。
其主磁通路径如图6-28所示。
图6-28 永磁同步发电机主磁通路径图6-29(a)为一台两极永磁同步发电机,定子三相绕组用3个线圈AX、BY、旋转,永磁磁极产生旋转的气隙磁场,其CZ表示,转子由原动机拖动以转速ns基波为正弦分布,其气隙磁密为——气隙磁密的幅值;式中B1θ——距坐标原点的电角度,坐标原点取转子两个磁极之间中心线的位置。
图6-29 两极永磁同步发电机在图6-29(a)位置瞬间,基波磁场与各线圈的相对位置如图6-29(b)所示。
定子导体切割该旋转磁场产生感应电动势,根据感应电动势公式e=Blv可知,导体中的感应电动势e将正比于气隙磁密B,其中l为导体在磁场中的有效长度。
基波磁场旋转时,磁场与导体间产生相对运动且在不同瞬间磁场以不同的气隙磁密B切割导体,在导体中感应出与磁密成正比的感应电动势。
设导体切割N极磁场时感应电动势为正,切割S极磁场时感应电动势为负,则导体内感应电动势是一个交流电动势。
对于A相绕组,线圈的两个导体边相互串联,其产生的感应电动势大小相等,方向相反,为一个线圈边内感应电动势的2倍(短距绕组需要乘短距系数,见第3章)。
将转子的转速用每秒钟内转过的电弧度ω表示,ω称为角频率。
在时间0~t内,主极磁场转过的电角度θ=ωt,则A相绕组的感应电动势瞬时值为——感应电动势的有效值。
式中E1三相对称情况下,B、C相绕组的感应电动势大小与A相相等,相位分别滞后于A相绕组的感应电动势120°和240°电角度,即可以看出,永磁磁场在三相对称绕组中产生三相对称感应电动势。
关于定子绕组中感应电动势的详细计算可参照第2章。
导体中感应电动势的频率与转子的转速和极对数有关。
若电机为两极电机,周,则导体中电动势交转子转1周,感应电动势交变1次,设转子每分钟转ns/60。
同步电机的工作原理
同步机电的工作原理同步机电是一种特殊的交流机电,其工作原理基于电磁感应和磁场的相互作用。
它与普通的异步机电相比,具有更高的效率和更稳定的转速控制性能。
同步机电的工作原理可以简单地描述为:当电流通过机电的定子绕组时,产生的磁场与转子上的永磁体或者电磁铁产生的磁场相互作用,从而产生转矩,使得转子尾随定子的磁场旋转。
具体来说,同步机电的工作原理可以分为以下几个方面:1. 磁场产生:同步机电的定子绕组通过外部电源供电,形成一个旋转磁场。
这个旋转磁场的频率和极数决定了同步机电的转速。
2. 磁场相互作用:同步机电的转子上安装有永磁体或者电磁铁,产生一个固定的磁场。
当定子绕组产生的旋转磁场与转子上的磁场相互作用时,会产生一个力矩,使得转子开始旋转。
3. 同步运行:同步机电的转子会以与定子磁场的旋转速度相同的速度旋转,这就是所谓的同步运行。
当转子的转速与定子磁场的旋转速度保持一致时,同步机电处于最佳工作状态。
4. 转速控制:同步机电的转速可以通过调节供电频率或者改变定子绕组的极数来实现。
通过控制供电频率,可以改变定子磁场的旋转速度,从而改变同步机电的转速。
此外,还可以通过改变定子绕组的极数来调整同步机电的转速。
5. 功率因数控制:同步机电的功率因数可以通过调节定子绕组的电流来控制。
通过控制定子绕组的电流,可以改变机电的功率因数,从而实现对电网的功率因数补偿。
总结起来,同步机电的工作原理是通过定子绕组产生旋转磁场,与转子上的永磁体或者电磁铁产生的磁场相互作用,从而产生转矩,驱动转子旋转。
通过调节供电频率和定子绕组的极数,可以实现对同步机电转速和功率因数的控制。
同步机电具有高效率和稳定的转速控制性能,广泛应用于工业生产和能源领域。
华中科技大学_电机学_第六章_同步电机(完美解析)概要
汽轮发电机完工后的定子
汽轮发电机转子加工
5
凸极同步电机
凸极同步电机的定子结构与隐极同步电机或异步电机的 基本相同,所不同的只是转子结构。
凸极同步电机转子由磁极、励磁线圈、磁轭和阻尼绕 组等部分构成。
6
凸极同步电机结构实物图
带阻尼绕组的凸极同步电机转子 水轮发电机定子分段铁心
7
三、 同步电机的励磁方式
21
双反应理论:
当 处于任意位置且不计饱和时:
分解
I Fa
E Fad ad ad
E Faq aq aq
或
I
分解
I d Fad ad Ead
I q Faq aq Eaq
气隙合成磁场:
B
E E E E ad aq 0
U=U Nφ,必须增加 If △AEF称为特性三角形,其中:
AE IX σ AF I f 为等效励磁电流
I 不变, 特性三角形不变
33
四、外特性及电压调整率
n=nN、If=常数、cos =常数时, U= f (I) 的关系曲线称为外特性。 电流 I 引起电压 U 变化的原因: 定子漏阻抗压降影响 电枢反应影响 电压调整率:
34
五、同步发电机稳态参数的计算与测定方法
1. 由空载和零功率因数特性确定定子Xδ,Ifa(Ffa)
由空载与零功率因数特性两特性之间存 在特性三角形的关系,确定Xσ, Ifa (Ffa)
IX σ Ffa
UN
磁路不饱和时, I X σ在线性段: 1)作直线OB; 2)过UN作直线平行于x轴,交零功 率因素曲线于A',取A'O'=AO 3)过O'作OB的平行线O'B', 三角形A' B' C'为所求的特性三角形。
同步发电机的电动势方程式和相量图解读
➢ 第1节 同步发电机的主磁通 ➢ 第2节 同步发电 机的电动势方程式和相量图 ➢ 第3节 同步发电机的运行特性
※第6章第2节 同步发电机的电动势方程式和相量图 ※
第2节 同步发电机的电动势方程式和相量图
➢ 一、隐极同步发电机 ➢ 二、凸极同步发电机
1、电磁过程 2、电动势方程式 3、等值电路和相量图
U
E0 U Ira jIxt
※第6章第2节 同步发电机的电动势方程式和相量图 ※
E0 Ea E U Ira Ea jIxa 电枢反应电抗 E jIx 漏电抗 E0 U Ira jIxa jIx
U Ira jI(xa x )
同步电抗 xt xa x
3、等值电路和相量图
※第6章第2节 同步发电机的电动势方程式和相量图 ※
E0
jId xd jIq xq
U
I
Iq
Id
小结:
第2节 同步发电机的电动势方程式和相量图 难点:电磁过程 重点:1、电动势方程式 2、等值电路和相量图
※第6章第2节 同步发电机的电动势方程式和相量图 ※
jxt
~ E0
I
U
jIxt
E0
U
I
tg Ixt U sin U cos
※第6章第2节 同步发电机的电动势方程式和相量图 ※
E0 (U cos)2 (Ixt U sin)2
二、 凸极同步发电机
d
1、电磁过程
q
直轴
I
Id
Fa d
Байду номын сангаас
ad
Ead jId xad
交轴 Iq Faq aq
Eaq jIq xaq E jIx
第六章 同步电机
电枢反应:电枢磁动势对主极磁场的影响。 电枢反应除使气隙磁场发生畸变,从而直接关 联到机电能量转换外,还有去磁或增磁作用, 对同步电机的运行性能产生重要的影响。同步 电动机的励磁系统分为直流发电机励磁系统和 半导体 励磁系统。 电枢反应的性质取决与电枢磁动势和主磁场在 空间的相对位置。分析表明,这一相对位置与 激磁电动势
即
P M
m ax
UE 0 m Xs
它正比于E0(即励磁电流),反比于同步电 抗。从功角特性可以决定电磁转矩与功角 之间的关系,由此可以得出相应的电磁 转矩,为 mUE 0 PM T s in 1 1 X s 式 中 , 单 位 是 W; 单 位 是 rad/s; 单 位 是 N· m。
PM mUI a cos muI a cos( ) mUI a cos cos mUI a sin sin
从图得:
U sin I a X s cos
E0 U cos I a X s sin
U sin I a cos Xs 所以有 E 0 U cos I a sin Xs
6.1.3 冷却问题简述 : 在中、小型电机中,都采用空气作为冷却介质。 当电机的容量很大时,电机内部的损耗及发热 量迅速增加,冷却问题显得格外重要,此时必 须加强通风或采用其他的冷却方式。 1)在大型汽轮发电机中,为了提高其冷却效 率,往往用氢气冷却,是氢气与空气混合后, 有爆炸危险,必须有一套控制设备来保证外界 空气不会渗入到电机内部。 目前在更大容量的发电机中,可以采用导线内 部直接冷却。例如采用空心导体(如图),冷 却介质直接在导体中流通而把热量带走,这样 能更有效地降低电机的温升。所采用的冷却介 质一般有氢气 及水等。
《同步电机》PPT课件
精选ppt
10
5、饱和系数: 饱和电机中E0一定时,气隙线
上的横坐标为气隙磁动势空载特性上的横坐标
为为励磁磁动势
饱和系数k=励磁磁动势/气隙磁动势=ac/ab= E0/UN
三、空载运行时空矢量图(见图6-7)
1、凸极机中: d轴-----直轴,转子磁极轴线
q轴-----交轴,N、S之间的中心线,与d轴垂直。
空载运行:原动机带动发电机在同步转速下运行,励磁(转子)绕组通过适 当的励磁电流,电枢(定子)绕组不带任何负载(开路)时的运行情况,称 为空载运行。
空载运行是同步发电机最简单的运行方式,其气隙磁场由转子磁势Ff(励 磁磁势)单独建立,称励磁磁场。又经气隙与定子交链的磁通。为一以同步转 速旋转的旋转磁场,磁密波形沿气隙圆周近似作正弦分布,其基波分量的 每极磁通用0表示, 0参与电机的机电能量转换。
E0
3、 E0 = f(Ff):改变If,可改变0 及E0,由此得空载特性曲线如图66。 空载特性与电机磁路的磁化曲线 具有类似的变化规律。
☆励磁电流较小时,由于磁通 较小,电机磁路没有饱和,空载特 性呈直线(将其延长后的射线称气 隙线)。
精选ppt 图6-6 空载特性曲线 9
随着励磁电流的增大,磁路逐渐饱和,磁化曲线开始进入饱和段。为合理 利用材料,空载额定电压一般设计在空载特性的弯曲处,如图中的c点。
2、时空矢量图(取定子绕组的时间参考轴即时轴与相轴重合)
Ff中的基波分量Ff1 (空间矢量)与由它产生的Bf1 (空间矢量)
☆空载特性可以通过计算或试验得到。试验测定的方法与直流发电机 类似。同步电机的空载特性也常用标么值表示,空载电势以额定电压为基 值,此时的励磁电流 (称为额定励磁电流)为励磁电流的基值。用标么值表 示的空载特性具有典型性,不论电机容量的大小,电压的高低,其空载特 性彼此非常接近。
同步电机(第六章)
列出电压方程:
E 0 E ad E aq U I Ra j I X
Fad Fa sin 0 Faq Fa cos 0
I f Ff 0 E 0
I
Id
Fad ad E ad Faq aq E aq
U E I ( Ra jX )
Ea a Fa I
所以:
Ea j I Xa
Xa是电枢反应磁通相应的电抗,称为电枢反应电抗。 (电枢电流产生电枢反应磁场,在定子每相绕组中感应 电势可以表示为电枢绕组相电流与电枢反应电抗的乘积) 所以:
E 0 U E a I ( Ra jX ) U I Ra jI ( X X a ) U I Ra j I X s
(3) 灯泡贯流式水轮发电机
(4)转子结构
10000kw水轮机转子
凸极极通常有卧式和立式两种结构,通常同步电动机、 同步补偿机、内燃机和冲击式水轮机拖动同步发电机采用 卧式结构,而大型水轮发电机采用立式结构,立式水轮发 电机的推力轴承是关键部件。
除了转子励磁绕组,通常在转子上还装有阻尼绕组。 起抑制转子转速的作用。在同步电动机和补偿机中,主要
汽轮发电机一般采用细长结构
(国产200MW汽轮发电机)
(国产600MW汽轮发电机)
Stator of Turbo-dynamo with 330MW Made in China (国产330MW汽轮发电机)
Stator Core of Turbo-dynamo with 330MW Made in China (国产330MW汽轮发电机定子铁心)
同步电机的工作原理
同步电机的工作原理引言概述:同步电机是一种常见的电动机类型,其工作原理基于电磁感应和磁场的相互作用。
本文将详细介绍同步电机的工作原理,包括磁场产生、转子与磁场的同步、转矩产生、调速控制以及应用领域。
一、磁场产生1.1 永磁同步电机:通过永磁体产生恒定磁场,磁场的极性和分布规律决定了电机的性能。
1.2 感应同步电机:通过电磁铁产生磁场,电磁铁的电流和磁场的强度成正比,可以实现磁场的调节。
1.3 混合型同步电机:同时利用永磁体和电磁铁产生磁场,结合了永磁同步电机和感应同步电机的优点。
二、转子与磁场的同步2.1 同步速度:同步电机的转子速度与磁场的旋转速度完全一致,这是同步电机的特点之一。
2.2 极对数:同步电机的极对数与磁场的极对数相等,极对数决定了同步电机的转速。
2.3 同步损耗:同步电机在运行过程中,由于转子与磁场的同步性,会产生一定的同步损耗。
三、转矩产生3.1 磁场转矩:同步电机的转子与磁场之间的相互作用会产生转矩,使电机能够输出功率。
3.2 电流转矩:通过控制电机的电流大小和相位,可以调节电机的转矩。
3.3 磁阻转矩:同步电机的转子具有一定的磁阻特性,磁阻转矩是由转子磁阻产生的。
四、调速控制4.1 感应同步电机的调速:通过调节电磁铁的电流大小和频率,可以实现感应同步电机的调速控制。
4.2 永磁同步电机的调速:通过调节永磁体的磁场强度,可以实现永磁同步电机的调速控制。
4.3 变频调速:利用变频器控制电机的供电频率,可以实现同步电机的精确调速。
五、应用领域5.1 工业领域:同步电机广泛应用于工业生产中的电动机械设备,如风力发电机组、水泵、压缩机等。
5.2 交通运输领域:同步电机被用于电动车辆、列车牵引等交通运输工具中,具有高效、低噪音等优点。
5.3 家用电器领域:同步电机在家用电器中的应用越来越广泛,如洗衣机、空调、冰箱等。
结论:同步电机是一种重要的电动机类型,其工作原理基于磁场产生、转子与磁场的同步、转矩产生、调速控制等方面。
大型同步发电机运行——第六章
本章要研究汽轮机和发电机大轴的低于同步频率的扭转振荡。它是由于同步发电机和 电容补偿的输电线间的电气谐振引起的。这种现象被称为次同步谐振 ( Subsynchrono-us Resonance 或简记 SSR)。
6-1 概述
最早研究次同步谐振的文章发表于 1937 年。当时由于机组比较小,机械扭振作用不明 显, 引起次同步谐振的主要原因是输电线串联电容引起的感应发电机效应。 该效应对电力系 统的影响并不十分严重,而且在同步机转子极面上嵌人的阻尼绕组可以抑制该效应。但是 70 年代以后,由于大机组的发展,汽轮发电机轴系的长度可达几十米,质量可达几百吨, 发生次同步谐振会造成大轴的严重损伤,危害电力系统的安全运行。自从 I970 年和 1971 年 美国莫哈夫(Mohave)电厂由于发生次同步谐振首次造成两个大轴损坏事故后, 引起了人们的 广泛注意,进行了大量研究工作。研究表明,大型汽轮发电机组的轴系已下能再像通常的电 力系统稳定研究中所处理的那样—仅视为一个集中的质点, 而应该看做为一种弹簧质量结构 二这种结构的机械轴系与电气部分相互作用会产生不稳定的次同多谐振,称为扭矩互作用 (Torsional Interaction)。 关于这个间题的大多数研究工作, 是把它做为小干扰稳定间题来处理 的。 在有串联电容补偿的系统中,若发生网络故障,特别是自动重合闸等大千扰情况,机 电相互作用也会引起轴系扭振,造成大轴损坏,这类同题称为暂态力矩放大现象(Transient Torque Application)。这类问题的研究方法主要是时域仿真法。 在电力系统中所发现的频率低于同步频率的机电谐振中,除上述由串联电容补偿所引 起的次同步谐振(SSR)外,还有由有源电力设备引起的,通常把它称为与装置有关的次同步 振荡(Device Dependent Subsynchronous Osillation);简称次同步振荡(5SO) 。 有源电力设备包括直流输电系统、电力系统稳定器、静止无功补偿器等功率控制没备。 与 SSR 样,SSO 主要也是研究与大轴扭振有关的扭振相互作用和暂态力邻放大两方面的问 题。由于篇幅所限,本章重点讨论由串联电容引起的 SSR 间题。现就上边提到的术语和部 分机理简述于下。
电机与拖动大学课程 第六章 同步电机
Fa
a
Ea
F E
Ff
1
F
E
Fa
感应电动势的正方向与产生它的磁通 的正方向不符合右手螺旋关系。与电 流方向相反,为反电势。
E0 j4.44 f1N1kw10 Ea j4.44 f1N1kw1a
对吗?
E j4.44 f1N1kw1
E j4.44 f1N1kw1
为便于分析,假设磁路不饱和,不考虑铁耗,转子为隐极,则电
Ea与
a
符合左手螺旋关系,Ea超前
90
a
度电角度,即超前 I 90度电角度。
Fa
a
Ea
I
Ea jIa X a
Xa为电枢反应电抗,相当于感应电机的励磁电抗,当磁路不饱和
气隙磁动势是由电枢磁动势与励磁磁动势的合成,当电机为隐极, 气隙均匀,若不计饱和,可根据气隙磁动势求出气隙磁场的分布。F HB0H0F
当电机为凸极,气隙不均匀,无法用解析表达式来求解。双反应理 论应运而生。
利用合成磁动势的方法走不通,在不计磁路饱和的情况下,先把 交直轴电枢磁动势及励磁磁动势各自形成的磁场分布求出来,然后 把我们所关心的基波磁场的效果进行叠加。这种分别计算交轴和直 轴电枢反应的方法,就是双反应理论。
(5)额定转速nN 是指同步电机的同步转速,单位r/min (6)额定效率ηN 额定运行时的效率 (7)额定功率因数cosφN 额定运行时的同步电机的功率因数
对于三相同步发电机:
PN SN cosN 3UN IN cosN
对于三相同步发电机:
PN 3UN INN cosN
§6-2 同步电机的电枢反应
这种负载时电枢电动势对主极基波磁场的影响称为电枢反应。
电枢反应与电流的大小、主磁路的饱和程度有关,与电枢磁动势与 励磁磁动势在空间中的相对位置有关,还与转子结构有关。
第六章学习指南
第六章学习指南熊永前一、内容及要求同步电机的结构型式,励磁方式,冷却方式、额定值。
同步电机的运行原理。
同步电机的电枢反应,隐极同步发电机的负载运行。
凸极同步电机的负载运行。
同步发电机的空载特性,零功率因数负载特性,短路比,外特性。
稳态参数的测定。
投入并联运行的条件和方法。
同步发电机的功率和转矩平衡方程式。
同步发电机的功角特性。
同步发电机与大电网并联运行时有功功率的调节和静态稳定。
无功功率的调节和V形曲线。
同步电动机的基本方程式矢量图和功角特性,无功功率的调节,同步电动机起动方法,同步调相机。
同步发电机不对称运行时的各相序阻抗和等效电路,三相同步发电机的不对称稳定短路。
不对称运行对电机的影响。
1.了解同步电机的主要结构型式及其应用特点、励磁方式和冷却方式;掌握同步电机的额定值。
2.了解同步发电机空载运行的原理,掌握空载运行时的时空矢量图。
掌握同步电机电枢反应的特点。
了解双反应理论。
3.掌握隐极和凸极同步发电机负载运行时的方程式和相量图以及同步电抗等参数。
掌握不饱和时同步发电机的计算。
4.掌握同步发电机各特性的原理和方法。
掌握利用各特性测量有关参数的方法。
掌握低转差法测量同步电抗的原理和方法。
5.掌握并联运行的条件,并网的方法。
掌握同步发电机的功率平衡和转矩平衡,功角特性。
掌握静态稳定,有功调节和无功调节的方法。
6.了解同步电动机的基本电磁关系。
了解同步电动机的起动和调速方法。
掌握同步调相机的原理和特点。
7.掌握各相序阻抗的物理概念极其大小关系,了解不对称稳定短路的分析方法,掌握稳定短路电流大小,了解负序和零序参数的测量方法,了解不对称运行的影响。
二、学习指导同步电机的一个基本特点是电枢电流的频率与转速之间的严格关系。
汽轮发电机由于转速高和容量大等特点必须采用隐极结构且转子直径不能太大,各零部件机械强度要求高。
水轮发电机则由于水轮机多为立式低转速,因此一般采用凸极结构,且极数很多,直径较大。
在分析同步电机内部的物理情况时,电枢反应占有重要地位。
第6章 同步电机
即
1.功率方程和电磁功率
由图6—27可见 故同步电机的电磁功率亦可写成
上式的第一部分与感应电机的电磁功率 表达式相同,第二部分则是同步电机常用的。 对于隐极同步电机,由于EQ=E0,故有
图6-27 从相量图导出 Ecosψ=Ucosφ+IRa
2.转矩方程
把功率方程(6—18)除以同步角速度,可得转矩方程
和 E 可以用相应的负电抗压降来表示 E ad aq
(6-15) 式中,Xad和Xaq分别称为直轴电枢反应电抗和交轴电枢反应电抗,将 I I ,可得 式(6-15)代入式(6-13),并考虑I
d q
式中,Xd和Xq分别称为直轴同步电抗和交轴同步电抗,它们是表征对 称稳态运行时电枢漏磁和直轴或交轴电枢反应的一个综合参数。上式就 是凸极同步发电机的电压方程。图6-20表示与上式相对应的相量图。
1.不考虑磁饱和
采用发电机惯例,以输出电流作为电枢电流的正方向时,电枢的电压 方程为 (6—6) 因为电枢反应电动势Ea正比于电枢反应磁通Φa,不计磁饱和时,Φa 又正比于电枢磁动势Fa和电枢电流I,即
与I 滞后于 Φ 以90°电角度,若不计定子铁耗,Φ 在时间相位上, E a a a 以90°电角度,于是亦可写成负电抗压降的 同相位,则 E 将滞后于 I a 形式,即
1.双反应理论
图6-19 凸极同步电机的气隙比磁导和直轴、交轴电枢反应 a)电枢表面不同位置处的气隙比磁导 b)直轴电枢磁动势所产生的直轴 电枢反应 c)交轴电枢磁动势所产生的交轴电枢反应
2.不考虑磁饱和时凸极同步发电机的电压方程和相 量图
不考虑磁饱和时同步发电机负载运行时物理量的关系:
If
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、电枢反应
3、ψ=-90° 时的电枢反应
F
1
Ff
d轴
B0 (0 )
Fa ( Fad )
I
E0 时空矢量图
三、电枢反应
3、ψ=-90° 时的电枢反应
• 直轴增磁电枢反应。
• 电磁力f1在转子上不产生的电磁转矩。
• 合成磁动势Fδ增大,使发电机的端电压上升。
• 要想保持发电机的端电压不变,需减小发电 机的励磁电流。 • 发电机输出无功功率。
2、电动势方程式
采用发电机惯例,以输出电流作为电枢电流 的正方向时,定子任一相的电动势方程为:
二、凸极同步发电机
不计磁饱和时
E ad和 E aq可以用相应的负电抗压降来表示
其中: xad —直轴电枢反应电抗 xaq —交轴电枢反应电抗
二、凸极同步发电机
综上,有凸极同步发电机的电动势平衡方程 式:
一、隐极同步发电机
由于电枢绕组的电阻ra很小,可以忽略不计, 则隐极同步发电机的电动势平衡方程式可写 成:
一、隐极同步发电机
3、等效电路和相量图
根据隐极同步发电机的电动势平衡方程式
(忽略电枢电阻)可做出如下隐极同步发电 机的等效电路图: Xt
I
U
一、隐极同步发电机
以发电机端电压为参考相量,作带阻感负载
00 900 -900 0~900
q轴 d轴 d轴
Faq
Fad Fad
波形 不变 下降 畸变 削弱 下降 不变 增强 增大 不变
Fad Faq 交、 削弱 下降 下降 R、L d、q轴 直去 Fad Faq 交、 增强 增大 下降 R、C 直增
-900~00 d、q轴
三、电枢反应
说明:
Fa Fad Faq;对应: I Id Iq
的饱和程度
一、空载运行时的主磁通
空载运行时气隙磁场仅由转子励磁磁
动势单独建立,磁场的强弱仅由励磁 电流大小决定。
二、带对称负载时的主磁通
负载运行时,定 子绕组中有电流 流过,便会产生 电枢基波旋转磁 动势。
负载运行时,同 步电机内由励磁 磁动势和电枢磁 动势共同建立的 主磁场。
二、带对称负载时的主磁通
一、隐极同步发电机
综上,有隐极同步发电机的电动势平衡方程 式:
其中: xa —电枢反应电抗 x —定子绕组漏电抗 xt xa x —隐极同步发电机的同步电抗
一、隐极同步发电机
同步电抗xt表征对称稳态运行时,电枢旋转 磁场和漏磁场总效应的一个综合参数。 同步电抗是同步发电机的一个重要参数,它 的大小直接影响发电机端电压随负载波动的 幅度、发电机短路电流的大小及在大电网中 并列运行的稳定性。
负载时: I ≠0 ,If≠0 , n=nN 负载时发电机内部电磁关系
I f Ff 0 主磁通 I Fa a
二、带对称负载时的主磁通
负载运行时,同步电机内的主磁场由
励磁磁动势和电枢磁动势共同建立。
三、电枢反应
空载:气隙磁动势 F Ff 负载:气隙磁动势 F Ff Fa
第6章 同步发电机的运行原理
同步发电机的主磁通 同步发电机的电动势方程式 和相量图 同步发电机的运行特性
6.1 同步发电机的主磁通
一、空载运行时的主磁通
同步发电机空载运行是指同步发电机被
原动机带动到同步转速,转子励磁绕组通 过直流励磁电流,定子绕组开路(定子绕 组电流为零)时的运行状况。(图示)
二、凸极同步发电机
其中: xd —直轴同步电抗,xd xq —交轴同步电抗, x
xad x q xaq x
由于电枢绕组的电阻ra很小,可以忽略不计, 则凸极同步发电机的电动势平衡方程式可写 成:
二、凸极同步发电机
直轴和交轴同步电抗的意义 由于电抗与绕组匝数的平方和所经磁路的磁 导成正比,所以
三、电枢反应
几个概念 ①内功率因数角ψ:空载电动势E0和电枢电 流 I 之间的夹角,与电机本身参数和负载 的大小、性质有关; ②功率因数角 :与负载性质有关; ③功率角(功角)θ:E0和U之间的夹角; 且有 (电感性负载) ④直轴(d轴):主磁极轴线(纵轴); ⑤交轴(q轴):转子相邻磁极轴线间的中 心线为交轴(横轴)
而:
Fad Fa sin Faq Fa cos
对应:
I d I sin I q I cos
分别为直轴和交轴分量 。
6.2 同步发电机的电动势方程式和 相量图
一、隐极同步发电机
1、电磁过程
其结构特点是气隙均匀,故同一电枢磁动势 作用在圆周气隙上的任何位置所产生的气隙 磁场和每极磁通量都是相同的,没必要象凸 极转子一样分解成交、直两个分量,可以整 体考虑电枢反应的影响。
三、电枢反应
2、ψ=90° 时的电枢反应
1
Fa ( Fad )
I
E0
B0 (0 )
F
d轴
时空矢量图
Ff
三、电枢反应
2、ψ=90° 时的电枢反应
• 直轴去磁电枢反应。
• 电磁力f1在转子上不产生的电磁转矩。
• 合成磁动势Fδ减小,使发电机的端电压下降。
• 要想保持发电机的端电压不变,需增大发电 机的励磁电流。 • 发电机输出无功功率。
三、电枢反应
1、ψ=0° 时的电枢反应
F
Fa ( Faq )
1 d轴
E0
I
Ff
B0 (0 )
时空矢量图
三、电枢反应
1、ψ=0° 时的电枢反应 电枢磁势Fa滞 后励磁磁势Ff 90°,合成磁 势Fδ的大小略 有增加,分布 滞后励磁磁势 Ff一个锐角, 此时电枢反应 性质为交轴电 枢反应。
同步发电机内的电磁关系如下:
励磁I f
电枢 I
Ff
0
E0
Fa
a
U
Ea
I ra
E jIx
一、隐极同步发电机
2、电动势方程式 参考正方向的选定: 相电流:首端流出为正; 相电动势:与相电流同正方向(并非同相 位); 相电压:首端指向末端为正。
一、隐极同步发电机
采用发电机惯例,以输出电流作为电枢电流 的正方向时,定子任一相的电动势方程为:
一、隐极同步发电机
因为电枢反应电动势Ea正比于电枢反应磁通 Φa,不计磁饱和时,Φa又正比于电枢磁动 势Fa和电枢电流I,即
在时间相位上,E a 滞后于 Φ a90°电角度, I 若不计定子铁耗, 与Φ a 同相位,则 Ea 将滞后于 90°电角度,于是亦可写成负 I 电抗压降的形式,即
三、电枢反应
4、 0°<ψ<90° 时的电枢反应
F
1 d轴
0 (0 )
Id
时空矢量图
枢反应,又 有直轴去磁 电枢反应。 • 发电机既输 出有功功率, Fad 又输出无功 功率。
Fa• 既有交轴电
三、电枢反应
5、 -90°<ψ<0° 时的电枢反应
的相量图如下:
E0 ( Ixt U sin ) (U cos )
2
2
Ixt U sin tan U cos
二、凸极同步发电机
1、电磁过程
其结构特点是气隙沿电枢圆周不均匀。 考虑到凸极电机气隙的不均匀性,把电枢反 应分成直轴和交轴电枢反应分别来处理。 (双反应理论)
如图所示。对于凸极电机,由于直轴下的气
隙较交轴下小, ad > aq ,所以Xad>Xaq,因 此在凸极同步电机中,Xd>Xq,且Xq*≈0.6Xd* 对于隐极电机,由于气隙是均匀的,故 Xd=Xq=Xt Xa(隐)>Xad(凸)>Xaq(凸)
二、凸极同步发电机
3、相量图 以发电机端电压为参考相量,作带阻感负载 的相量图如下:
E0 U cos( ) I d xd U cos Ixd sin
tan
Ixq U sin U cos
二、凸极同步发电机
说明: E0、ψ的公式同样适用于隐极电机,只要令 Xd = Xq = Xt 公式中 U、I、E 均为相值; 性质:滞后 >0 、超前 <0; 公式可直接改为标幺值形式。基值选定如下: – 容量基值 Sb = mUN Φ IN Φ – 电压基值 Ub = UN Φ – 电流基值 Ib = IN Φ – 阻抗基值 Zb = UNΦ /IN Φ – 励磁电流基值 Ifb = If0 (E0=UN)
同步发电机在对称负载下稳定运行时,维 持转速(频率)和功率因数为常数的条件下, 发电机的端电压U、负载电流I、励磁电 流If是3个主要的运行参数,它们都可以 在运行中被测量。 它们之间互有联系,当保持其中一个量为 常数,另外两个量之间的函数关系称为运 行特性。
一、空载特性
1.定义: n nN , I 0, E0 f ( I f ) 2.实验接线: 3.步骤:If↑→U0=0~1.25UN↑,注意:只能
二、凸极同步发电机
例1: 一台汽轮发电机 PN=135MW,定子 三相绕组Y接法,额定电压 UN=13.8kV, cos =0.8(滞后), xt=2.35Ω,忽略电 枢电阻,求额定运行时的E0N和ψN 。 解:发电机定子额定电流
二、凸极同步发电机
发电机定子采用Y接法,其额定相电压
6.3 同步发电机的运行特性